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Abstract

In this dissertation, we model three network-based optimization problems. Chapter 2 ad-

dresses the question of what the operation plan should be for interdependent infrastructure sys-

tems in resource-constrained environments so that they collectively operate at the highest level.

We develop a network-based operation model of these systems that accounts for interdependen-

cies among them. To solve this large-scale model, a solution approach is proposed that relatively

quickly generates high-quality solutions to the problem.

Chapter 3 presents a routing model for a single train within a railyard with the objective of

minimizing the total length traveled by train. The difference between this problem and the tradi-

tional shortest path is that the route must accommodate the length of the train at any time, subject

to yard tracks’ configuration. This problem has application in the railway industry where they

need to solve the single-train routing problem repeatedly for simulations of train movements in

large complex yards. We develop an optimal polynomial-time algorithm that solves an important

special case of the problem.

Chapter 4 extends the problem defined in Chapter 3 to a two-train routing problem with the

objective of minimizing the overall time possible to schedule the routes in a conflict-free manner.

We propose a routing problem that indirectly aims to decrease the overall scheduling time for

the two trains. We develop a scheduling model that compares the performance of the solution

obtained by the proposed routing model with the solutions obtained by solving the problem as

two separate single-train yard routing problems. The comparison indicates a better performance

obtained by the proposed routing model for specific problems.
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1. Introduction

This dissertation is focused on non-traditional network flow problems with complicating con-

straints. Modeling approach and solution methodology are proposed to address each problem.

Chapter 2 is an interdependent multi-layered network flow study focused on the allocation

of resources to maximize networks’ operability. This study focuses on the application of operat-

ing interdependent infrastructure systems in a resource-constrained environment. When an event

occurs that causes disruptions in these systems, it is vital to provide operation plans and to deter-

mine where to route the limited resources available such that the disrupted interdependent system

of infrastructures collectively operates at the highest possible level.

This chapter provides a network-based approach to model the operations of interdepen-

dent infrastructure systems, where flow corresponds to the delivery of an infrastructure’s ser-

vices, to capture the performance of infrastructures given a set of operational components. In this

network-based approach, unmet demand results in inoperable components and therefore loss of

performance. We develop a mathematical formulation that plans the flow and network component

operability decisions for the interdependent networks in a way that the overall performance is at

the highest level. The objective of the formulation measures how well the set of interdependent

infrastructure systems are operating by assuming a reward for making components operable and a

cost for routing flow. Our model considers cost as a factor in its formulation since the satisfaction

of demand or increasing the level of services from indirect routes is less efficient.

Our model has several unique features over previous network-based models of interdepen-

dent infrastructure systems: (i) it is a compact formulation; (ii) it has the capability to capture

many common types of interdependence; (iii) it allows for non-uniform dependency requirements

on the consumption of flow at a given node in a given layer; and (iv) it considers intra-layer de-

pendency within a layer. Computational experiments indicate that failing to model nonuniform

dependency requirements may drastically reduce the quality of strategic restoration decisions

derived to restore a disrupted collection of infrastructure systems. We prove that this problem
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is strongly NP-complete. We contribute valid inequalities for our model and develop a solution

method that exploits a high degree of integrality in LP relaxation solutions to obtain strong upper

and lower bounds quickly in comparison to CPLEX.

Chapter 3 is a network-based study focused on the routing of a single train within a rail-

yard. One of the fundamental problems faced by rail freight transportation system is how to opti-

mally move cars and shipments through the railyard. Railyard routing is of importance since such

a problem must be solved repeatedly in a very short time for simulations of train movements in

large complex yards. Therefore an efficient solution method for this problem is of importance.

The existing literature on the yard routing problem has not addressed the routing of trains that

accounts for the geometry of the track segments in the railyard as well as the fact that the train

occupies space in the railyard.

This chapter presents a model to route a single train specified by its origin, destination,

and length within a railyard subject to the geometry of the track segments. The objective of the

model is to minimize the total length traveled by train to reach its destination. In this problem,

the railyard is modeled as a network where nodes correspond to switches in the yard, and edges

correspond to track segments. The proposed approach models the problem in two stages: a pre-

processing stage that takes as input the specific length of the train and tracks’ configuration to

determine the feasibility of certain movements for the train in the railyard and a routing stage that

finds a shortest origin-destination route given the output of the preprocessing stage. The routing

stage of the problem is modeled as a shortest path problem which can be solved with classical

shortest path algorithms. We prove that the preprocessing stage is NP-complete and develop an

algorithm and an integer programming formulation to solve it. A linear programming formulation

is developed that solves an important special case of the preprocessing stage in polynomial time

which leads to an efficient solution method for the whole problem.

The proposed yard routing model is validated on a real railyard dataset. As the solution

time is of importance in yard routing, our computational experiments point out the quick com-

putational time needed for the approach to identify an optimal solution for the special case that
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happens in real yard networks.

Chapter 4 extends the work in Chapter 3 to routing two trains in a railyard. With the in-

crease in railway traffic and its growing demand, it is necessary to exploit the capacity of the

current railway network as efficiently as possible since extending the rail tracks to enhance the

railway infrastructure is very cost-intensive or may not be feasible in some areas. One of the

challenges in doing so is planning a conflict-free movement of trains through a railyard. In the

problem of routing trains in a yard network, there are two important types of decisions: the rout-

ing plan assigns trains to routes and the scheduling plan which assigns blocking times to the track

segments and nodes in each route used by a train. These two components are not independent

of each other as conflicts might be avoided by making changes to both of them. Looking for a

conflict-free schedule requires keeping track of all the trains at all times which is computation-

ally difficult. In this chapter, we propose the routing and scheduling problems to be solved sep-

arately to decrease the overall computational difficulty. The routing component is solved first

which is not constrained by the scheduling components. Given the two routes obtained by the

routing model, the scheduling model generates a conflict-free scheduling plan with minimum

overall time.

We develop a model to route two trains specified by its origin, destination, and length

within a railyard subject to the geometry of the track segments. The objective of the model is

to indirectly decrease the overall scheduling time by accounting for the waiting times the train

have on their own routes to avoid conflict. We also develop a scheduling model that takes as input

the routes for the two trains to determine a conflict-free scheduling plan that minimizes the over-

all time. This model includes three sets of constraints: (1) the constraints to plan each individual

route; (2) the constraints that enforce the minimum headway time between the two trains passing

the same location in the railyard ; and (3) the constraints to prevent the two trains to pass through

each other in the railyard. Computational experiments demonstrate that this approach, in generat-

ing a routing plan, has a better total travel time when compared to the case where we generate the

train routes individually as a single-train yard routing problem in the yard network.
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2. Interdependent Multi-layered Network Flow Problem

2.1 Introduction

Critical infrastructure systems are becoming increasingly dependent on each other to im-

prove their performance and operational efficiency. Recent advancement in our information tech-

nology is one reason that interdependencies among these systems have increased (Pederson et al.,

2006; Rinaldi et al., 2001). For example, telecommunication and power systems have a cyber-

physical interdependency; telecommunication systems need power to operate while the power

systems depend on the control signals which require the communication system. These interde-

pendencies emerge in different forms such as physical flow of commodities and flow of informa-

tion.

While interdependencies improve operational efficiency in infrastructure systems, they also

increase system vulnerability. Recent natural events such as hurricanes, floods, earthquakes, and

terrorist attacks, such as the 2001 World Trade Center attack, have shown that interdependen-

cies among critical infrastructures magnify the impact of the initial failure and increase system

vulnerability. The interconnectedness and mutual interdependence among critical infrastructures

has become so significant that disruption in one may lead to disruptions in others causing cas-

cading and catastrophic failures. The 2003 Northeast US power blackout (Liscouski and Elliot,

2004), the 2003 Italy power blackout (Buldyrev et al., 2010), Hurricane Sandy in 2012 (Behesh-

tian et al., 2018), and Hurricanes Harvey, Irma and Maria in 2017 (Nateghi, 2018) are examples

of cascading disruptions across infrastructures. Additionally, restoring infrastructure systems

after a disaster has become more difficult due to increased interconnectedness. The increase in

vulnerability of our critical infrastructures is one motivation for studying these interdependent

systems.

The application of our work to infrastructure interdependence is preceded (and motivated)

by a body of literature that identifies and analyzes interdependencies in infrastructure systems.

Rinaldi et al. (2001) classify interdependencies among infrastructure systems into physical, cy-
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ber, geographical, and logical interdependencies. This classification is commonly used by other

researchers as a criterion to compare different modeling approaches in this area of study. In ad-

dition, Rinaldi (2004) discusses complicating factors associated with modeling infrastructure

interdependencies and suggests there may be no single modeling methodology that can address

all of them. This statement is backed by a review of the literature on modeling interdependent

infrastructures, which we now summarize.

Infrastructure interdependencies have been examined through a number of different mod-

eling approaches. A number of these models are based upon the Leontief input-output model

(Leontief, 1951), a framework used to study the interconnectedness among the sectors of an

economy. In this model, the economy consists of n interacting sectors, each producing one prod-

uct, and the output of one sector is proportional to its input. Haimes and Jiang (2001) propose

a Leontief-based input-output model of infrastructure interdependencies that assumes each in-

frastructure has a set of inputs and is the input for a set of other infrastructures. The theory and

methodology of the model was discussed later by Haimes et al. (2005). The proposed model can

consider the interconnectedness among infrastructures as well as the intraconnectedness within

each of them. A weakness of this modeling approach is that the model cannot be used to analyze

the interdependencies at the infrastructure component level (Ouyang, 2014).

This weakness motivates the use of network-based models to analyze interdependent in-

frastructure systems. These approaches represent each infrastructure by a network, where nodes

are the components of the infrastructure and arcs either represent the relational connections among

components or the physical components of the infrastructure. Lee et al. (2007) propose an Inter-

dependent Layered Network (ILN) mathematical formulation which can be used to model the

services delivered by interdependent infrastructure systems. Recently, the planning emphasis of

decision makers has shifted from prevention, protection, and hardening of infrastructure systems

for disruptive events to resilience and recovery when there are disruptions (Baroud et al., 2014;

Pant et al., 2014).
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Research in the area of recovery includes efforts to reestablish the distribution of services

disrupted after a disaster through restoration of infrastructure (McLay, 2015). Similar to the inter-

connectedness and interdependencies among infrastructure systems, restoration efforts of one in-

frastructure have dependency on other infrastructures’ restoration planning. Sharkey et al. (2016)

introduce the new concept of restoration interdependencies among interdependent infrastructures

and classify them.

Some researchers define restoration efforts as the allocation of available resources to install

temporary components or to repair the damaged ones in an infrastructure to reestablish the distri-

bution of its disrupted services. With this definition there are two sets of decisions in restoration

planning: determining the set of components that are going to be operational over the restoration

process (i.e., design) and planning the installation or repair tasks (i.e., scheduling). Thus, Nurre

et al. (2012) propose the use of an integrated network design and scheduling (IDNS) problem to

model restoration activities in infrastructures.

A downside of INDS is that it does not consider the interdependencies among infrastruc-

ture networks. The ILN model proposed by Lee et al. (2007), which accounts for interdependen-

cies, allows restoration planning by determining a set of components that need to be installed or

repaired. However, their model does not take into account the cost of restoration and it does not

give any information about when to perform the restoration tasks. Gong et al. (2009) present a

modeling framework to schedule the optimal solution provided by the ILN model. The schedul-

ing involves the assignment of repair tasks to work groups and sequence of activities to reestab-

lish the distribution of services provided by the network.

There has been further research on incorporating restoration planning to the network-based

operation model of interdependent infrastructure systems. Cavdaroglu et al. (2013) propose an in-

tegrated model that incorporates the restoration planning as well as its scheduling. The objective

of their model measures how well the services are restored during the restoration effort.

González et al. (2016) introduce an interdependent network design model that accounts for

interdependencies based on colocation and limited availability of resources. Sharkey et al. (2015)
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provide an extension to the formulation proposed by Cavdaroglu et al. (2013) to consider dif-

ferent classes of restoration interdependencies discussed in Sharkey et al. (2016). Sharkey et al.

(2015) also investigate the effect of decentralized restoration efforts (i.e., each infrastructure con-

trols its own efforts independently) as well as value of sharing information across infrastructures

to coordinate efforts.

2.2 Problem Definition

This chapter provides an approach to model the operations of interdependent infrastructure

systems in order to analyze their performance. We focus on the application of operating interde-

pendent critical infrastructure systems in a resource constrained environment. After a chemical,

biological, radiological, nuclear, or high-yield explosive (CBRNE) event or natural disaster, dam-

age to infrastructure may prevent the satisfaction of all demanded services. It is vital to provide

operation plans and to determine where to route the limited resources available such that the dis-

rupted interdependent system of infrastructures collectively operates at the highest possible level.

We use a network-based approach to model the operation of interdependent infrastructure sys-

tems, where flow corresponds to the delivery of an infrastructure’s services, to capture the perfor-

mance of infrastructures given a set of operational components. In this network-based approach,

unmet demand results in inoperable components and therefore loss of performance. We develop

a mathematical formulation that plans the flow and network component operability decisions for

the interdependent networks. The objective of the formulation measures how well the set of in-

terdependent infrastructure systems are operating by assuming a reward for making components

operable and a cost for routing flow. Our model considers cost as a factor in its formulation since

the satisfaction of demand or increasing the level of services from indirect routes is less efficient.

Capturing the performance of an infrastructure given a set of operational components is of

main importance in restoration problems which are not computationally tractable for larger net-

works and more layers (Nurre and Sharkey, 2014). However, the existing literature (Cavdaroglu

et al., 2013; González et al., 2016; Lee et al., 2007; Sharkey et al., 2015) has not explored the op-
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erational problem’s structure in detail, focusing instead on resource allocation decisions required

to implement the restoration efforts. We contribute a thorough analysis of the operations of inter-

dependent networks in resource constrained environments. It is our hope that as a result of this

research, the operational problem is easier to solve thereby enabling better performance when

including these developments in restoration problems.

The main contributions of this chapter are as follows: (i) our proposed model is stated

more compactly than existing interdependent network flow models and has the capability to cap-

ture many common interdependence classifications; (ii) our work is the first to allow for either

(ii:a) the network dependency on a node to be non-uniform across the network layers or (ii:b)

the possibility of dependency within a single layer; (iii) we prove that incorporating this feature

causes the decision version of the model to be strongly NP-complete, even the case of a single-

layer network; (iv) we contribute valid inequalities for our model and develop a solution method

that exploits a high degree of integrality in LP relaxation solutions to obtain strong upper and

lower bounds quickly in comparison to CPLEX; and (v) we demonstrate that failing to incorpo-

rate (ii:a) could drastically alter and reduce the quality of restoration plans generated by existing

optimization models.

2.3 Problem Formulation

The purpose of this section is to provide a mixed-integer programing model of the opera-

tions of interdependent infrastructure systems. We refer to the associated problem as the interde-

pendent multi-layered network flow (IMN) problem. The IMN problem is to determine the flow

of services through interdependent infrastructures systems to maximize their performance less

cost.

The IMN model considers a set of directed networks Gk = (Nk,Ak), k ∈ K—hereafter re-

ferred to as layers—whose node sets are overlapping. Associated with each layer is a flow, i.e.,

an assignment of values to xk ∈ R|A
k|

+ for each k ∈ K that satisfies flow balance and capacity con-

straints on Gk. Each layer’s flow is a separate commodity in the sense that it has its own supply
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and demand nodes, and flow does not cross layers. We may therefore refer to the commodity as-

sociated with layer k ∈ K as commodity k. As in a minimum-cost flow (MCF) model, we asso-

ciate a linear cost with flow of each commodity. In addition to the multi-commodity aspect, IMN

generalizes MCF in the following ways: (1) each node may become inoperable in one or more

layers—no layer-k flow is permitted through any inoperable node in layer k; (2) there is only a

soft requirement to satisfy demands within each layer—this is accomplished by assigning a re-

ward for each operable node in each layer and forcing each node i ∈ Nk to become inoperable in

layer k if its layer-k demand is not satisfied; and (3) each node i ∈ Nk ∩Nk′,k 6= k′, will addition-

ally become inoperable in layer k′ if the imbalance at node i in layer k (i.e., ∑ j∈Nk:( j,i)∈Ak xk
ji−

∑ j∈Nk:(i, j)∈Ak xk
i j) is less than a threshold value.

We now define the sets, parameters and variables used in the IMN problem.

SETS

• K : the set of layers

• Nk : the set of nodes in layer k

• Ak : the set of arcs in layer k

• Gk = (Nk,Ak) : the directed network representing layer k

PARAMETERS

• uk
i j,(i, j) ∈ Ak : the flow capacity on arc (i, j) ∈ Ak

• ck
i j,(i, j) ∈ Ak : the cost per unit flow of commodity k on arc (i, j) ∈ Ak

• f k
i , i ∈ Nk : the reward when node i ∈ Nk is operable in layer k

• dkk
i , i ∈ Nk: the supply (if dkk

i < 0) or demand (if dkk
i > 0) of commodity k at node i ∈ Nk

• dkk′
i , i ∈ Nk ∪Nk′,k 6= k′ : the required consumption of commodity k at node i for node i to

be operable in network layer k′
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VARIABLES

• xk
i j : the flow on arc (i, j) ∈ Ak

• yk
i : whether (1) or not (0) node i is operable in layer k

The mixed-integer formulation of the IMN problem is given by:

maximize ∑
k∈K

∑
i∈Nk

f k
i yk

i − ∑
k∈K

∑
(i, j)∈Ak

ck
i jx

k
i j (2.1a)

subject to ∑
j:(i, j)∈Ak

xk
i j− ∑

j:( j,i)∈Ak

xk
ji ≤−dkk′

i yk′
i ∀k,k′ ∈ K,∀i ∈ Nk∩Nk′ (2.1b)

xk
i j ≤ uk

i jy
k
i ∀k ∈ K,∀(i, j) ∈ Ak (2.1c)

xk
i j ≤ uk

i jy
k
j ∀k ∈ K,∀(i, j) ∈ Ak (2.1d)

yk
i ∈ {0,1} ∀k ∈ K,∀i ∈ Nk (2.1e)

xk
i j ≥ 0 ∀k ∈ K,∀(i, j) ∈ Ak. (2.1f)

Objective (2.1a) seeks to maximize the reward obtained from activating network compo-

nents less the total cost of flow across all networks. Constraint (2.1b) ensures the flow balance

at each node in each layer, effectively requiring that the net flow into node i in each layer k is at

least dkk′
i if flow of commodity k′ is permitted through node i, i.e., node i is operational in layer

k′. This constraint guarantees that if node i is to be operable in layer k′, then node i must consume

the required dkk′
i units of each commodity k ∈ K. Constraint (2.1c) and (2.1d) simultaneously

ensure that (i) flow on arc (i, j) is permissible only if both nodes i and j are operable in layer k

and (ii) all flows satisfy capacity requirements. Constraint (2.1e) and (2.1f) define the binary and

non-negativity restrictions on the decision variables.

Before describing specific relationships of Model (2.1) to the literature on interdependent

networks, we first provide some additional discussion regarding the types of interdependency that

can be incorporated via the d-parameters, a unique feature that allows our model to incorporate

many types of interdependence. If dkk
i < 0, the right-hand side (r.h.s.) of Constraint (2.1b) cor-
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responding to node i and layer k′ = k takes a positive value (unless node i is forced inoperable

in layer k via its dependence on some other layer), and node i therefore acts as a supply node for

commodity k. If dkk
i > 0, the r.h.s. of this constraint takes a positive value, and it therefore acts

as a demand node for commodity k. Unless this demand is satisfied (i.e., the left-hand side of this

constraint is no more than −dkk
i ), then yk

i must equal zero. A positive value of dkk
i imposes a form

of intralayer dependence—commodity k may not enter or leave node i unless dkk
i units of the

commodity will be consumed at node i. Interlayer dependence can be incorporated via positive-

valued dkk′
i , i∈Nk∩Nk′ ,k 6= k′: From Constraint (2.1b) corresponding to i∈Nk∩Nk′ , node i must

become inoperable in layer k′ unless node i consumes dkk′
i units of commodity k. One potential

application of this feature is a power network where the physical components need to consume

power (e.g., to operate sensors) in order to distribute or produce power.

2.4 Model Capabilities

Previous models on the operations of infrastructure systems or coordinating restoration

efforts (Cavdaroglu et al., 2013; Gong et al., 2009; González et al., 2016; Sharkey et al., 2015)

follow the structure of the ILN model proposed by Lee et al. (2007). The following list, identified

by Lee et al. (2007) provides a structure to explain how IMN can capture different types of inter-

dependence. These types of interdependence imply that an impact on one infrastructure system is

also an impact on one or more other infrastructure system. All of these forms of dependence can

be incorporated into IMN as well, as we now summarize.

Input dependence: This interdependency is one of the important operational interdependencies

where a component of an infrastructure requires the services of other infrastructures to be opera-

tional. For example, power is needed at a central office in the telecommunications infrastructure

to ensure proper operations (Cavdaroglu et al., 2013). This type of dependence is directly mod-

eled in IMN via the dkk′
i parameter. If dkk′

i > 0, then node i must consume flow in layer k in order

to be operable in layer k′.

Mutual dependence: Two infrastructures are said to be mutually interdependent if both are de-
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pendent on each other, meaning an output of an infrastructure is an input to another infrastructure

and vice versa. This type of dependence can be incorporated into IMN by setting both dkk′
i > 0

and dk′k
i > 0 for some node i ∈ Nk.

Shared dependence: The application of this type of dependence is when physical components

of some infrastructures used in providing the services are shared. To model this dependence, an

arc that is used in different layers is shared. This type of dependence would add a limit on the

total flow of a set of layers R ⊆ K for the arcs with shared capacity. Shared dependence can be

incorporated by adding constraints of the form,

∑
k∈R

xk
i j ≤ uR

i j (2.2)

in the IMN model. An application of this extension to the IMN formulation is in modeling mul-

tiple commodities flowing in each network layer where each arc’s capacity is shared across the

set of commodities. That is, let W ` represent a group of layers with the same network topology

(i.e., (Nk,Ak,ck) are the same for each k ∈W `), such that ∪`∈LW ` = K. Let u`i j be the flow capac-

ity on arcs (i, j) in group `. Then the multicommodity IMN model can be obtained by replacing

Constraints (2.1c)–(2.1d) in Model (2.1) with

∑
k∈W `

xk
i j ≤ u`i jy

k
i , ∀k ∈ K,∀` ∈ L,∀(i, j) ∈ Ak, (2.3a)

∑
k∈W `

xk
i j ≤ u`i jy

k
j, ∀k ∈ K,∀` ∈ L,∀(i, j) ∈ Ak. (2.3b)

In this version of the model, arc capacity constraints on individual commodities can be captured

by defining groups with a singleton layer. In general this type of dependence does not require the

restriction that all layers have all of the same topology as it is defined on components level. This

general case can also be incorporated in the IMN formulation.

Exclusive-or dependence: Physical components of a set (R) of infrastructures are allowed to
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provide one of the services at a time. This type of dependency would add a constraint of the form

∑
k∈R

yk
i ≤ 1, (2.4)

in the IMN model if either arc (i, j) or node i is to provide one service at a time.

Colocated dependence: This type of interdependency would add constraints on the condition of

the components situated within a prescribed geographical region. The colocated dependence can

be applied in constructing the IMN formulation where physical components of different infras-

tructures, such as nodes and arcs, exist in multiple network layers.

As compared to previous network-flow-based models of infrastructure interdependencies,

IMN offers several computational and theoretical advantages. Whereas Lee et al. (2007) and Ma-

tisziw et al. (2010) utilize an exponential model that enumerates o-d paths in order to represent

operational dependencies, the IMN formulation is polynomial in the number of network com-

ponents (i.e., nodes and arcs). Additionally, IMN improves upon the (single time-period version

of the) operational dependency models used in Cavdaroglu et al. (2013), Paredes and Dueñas-

Osorio (2015), and Sharkey et al. (2015) in that the number of binary variables is reduced by

a factor of K, the number of network layers. The operational dependency models of Lee et al.

(2007), Cavdaroglu et al. (2013), Sharkey et al. (2015), and Shen (2013) utilize a representa-

tion of dependency that requires enumerating dependencies among all pairs of components that

exist in different layers. By contrast, our model takes a simpler form that allows dependencies

across layers only within a node that exists in both layers. The resulting model can be stated

more compactly, thereby leading to easier theoretical analysis; furthermore, as we now demon-

strate, the simplification is made without loss of generality. Toward this end, suppose node i in

layer k needs to consume d units of flow in order for node j in layer k′ to be operational. To in-

corporate this dependency into our model, we define a new layer k′′ with node set {i, j,s} and arc

set {(s, i),(i, j)}. Node s has one unit of resource in layer k′′ (i.e., dk′′k′′
s = −1). Layer k′′ is de-

pendent on layer k at node i with d units of flow (i.e., dkk′′
i = d). Layer k′ is dependent on layer k′′
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at node j with one unit of flow (i.e., dk′′k′
i = 1). These settings will model the general case where

there is dependency between uncommon nodes in two layers.

In addition to the advantages described above, IMN has some practical advantages over

previous network-based models of operational dependency. In modeling input dependency, pre-

vious work assumed that the dependent nodes (child nodes) are all either operational or not, de-

pending on the unmet demand of the node (parent node) that the child nodes depend upon (Cav-

daroglu et al., 2013; Lee et al., 2007; Sharkey et al., 2015). This way of modeling the input de-

pendency can be captured as a special case of the IMN model where the dependence parameters

of the child nodes on the parent node are equal. Suppose the parent node i is in layer k and a set

(R) of layers depend on the unmet demand (dkk
i ) of the parent node, then dkk′

i = dkk
i , ∀k′ ∈ R.

However, the IMN model generally allows child nodes to require different levels of support from

a common parent node. For instance, the power requirement for a node in infrastructure A can

be different from its power requirement in infrastructure B. The interdependent network design

model proposed by González et al. (2016) also allows partial functionality in the set of child

nodes but the interdependency defined in their model is based on the idea that the functionality

of the child node depends on the functionality of other nodes not the flow going through them.

In summary, IMN generalizes the functionality of previous operations models of interde-

pendent infrastructure systems in a compact way. It allows for different dependency requirements

for dependent components with a common parent component, and it incorporates the new feature,

interlayer dependence. We now proceed by discussing the complexity of IMN due to this new

feature.

2.5 Complexity

We now establish the complexity of the decision version of Model (2.1) (which we denote

as IMN-MCFd) based on a reduction from the “exact cover by 3-sets” problem (denoted as X3C).

Towards this end, we first define the two problems:

IMN-MCF Decision Problem (IMN-MCFd)
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Question: Given H ∈ R and an instance of Model (2.1), does there exist a feasible solution

to Model (2.1) with objective value at least H?

Exact cover by 3-sets (X3C)

Instance: A finite set Q = {q j : 1 ≤ j ≤ 3m} and a collection C = {Ci : 1 ≤ i ≤ n} of

three-element subsets of Q.

Question: Does C contain an exact cover, i.e., a sub-collection C ? ⊆ C such that each ele-

ment of Q is included in exactly one element of C ??

We now establish strong NP-completeness of IMN-MCFd when |K| = 1 based on a reduction

from X3C, which is known to be strongly NP-complete (Garey and Johnson, 1979). Towards this

end, we first discuss implications of Constraints (2.1b)–(2.1d) on feasible flows. When xk′
i j > 0

for some k′ ∈ K and (i, j) ∈ Ak, Constraints (2.1c)–(2.1d) imply that yk′
i = yk′

j = 1. Due to Con-

straints (2.1b), it follows that ∑ j:( j,i)∈Ak xk
ji−∑ j:(i, j)∈Ak xk

i j ≥ dkk′
i , ∀k ∈ K, and ∑i:(i, j)∈Ak xk

i j −

∑i:( j,i)∈Ak xk
i j ≥ dkk′

j , ∀k ∈ K. In particular, in the case of a single layer network (i.e., K = {1}),

these relationships imply that d11
i and d11

j units of flow must be consumed at nodes i and j re-

spectively, if any flow is to be transported along arc (i, j). The following proof draws upon this

relationship to establish strong NP-completeness of the single-layer version of IMN-MCFd.

Theorem 1 IMN-MCFd is NP-complete.

Proof. Inclusion in NP is clear due to the fact that the objective value and all constraints of the

IMN model can be computed in polynomial time.

We prove NP-completeness of IMN-MCFd when |K| = 1 via reduction from X3C. Given

an instance of X3C, define an instance of IMN-MCFd as follows: Construct node sets U = {vi :

1≤ i≤ n} and V = {vn+i : 1≤ i≤ 3m}. The single layer G1 of the transformed network is defined
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by setting N1 = {s, t}∪U ∪V and A1 = D∪E ∪F , where

D = {(s,vi) : 1≤ i≤ n},

E = {(vi,vn+ j) : 1≤ i≤ n, q j ∈Ci},

F = {(vn+i, t) : 1≤ i≤ 3m}.

Capacities u1
vv′ are assigned as follows: Define all arcs in D as uncapacitated, and let arcs in E ∪F

have unit capacity. Assign a supply of d11
s = −4m units at node s, and let c1

vv′ = 0, ∀(v,v′) ∈ A1.

Define f 1
t = 1 and f 1

i = 0, ∀i ∈ N1 \{t}, and let H = 1 so that IMN-MCFd seeks only to identify

whether it is possible to make node t active.

Summarizing the notation defined thus far, a feasible solution to this instance of IMN-

MCFd consists of an s-t flow, plus some additional flow that is consumed to satisfy dependency

requirements d11
i , i ∈ N. We define these dependency requirements now. First, let d11

t = 3m.

Thus, if node t is to be active, it must be possible to send at least 3m units of flow from s to t sub-

ject to capacities on arcs E ∪F . (Since |F |= 3m and u1
vv′ = 1, ∀(v,v′) ∈ F , this is only possible if

x1
vv′ = u1

vv′, ∀(v,v
′) ∈ F .) Now, let d11

v = 1, ∀v ∈U , and d11
v = 1 for all other vertices v; hence, in

sending 3m units of flow from s to t, at most m vertices v ∈U can be used because each one con-

sumes one unit of flow and only 4m units are supplied at s. Figure 2.1 illustrates the construction

of G1, with dependency relationships illustrated by dashed arcs.

We now prove that existence of an s-t flow of value 3m (yielding y1
t = 1) implies that C

contains an exact cover of Q. Suppose such a flow exists, and note (by the argument given in the

previous paragraph) that this flow passes through at most m nodes—say vi, i ∈ I—in the set U .

Noting (by capacities on arcs E) that at most 3 units of flow may pass through any node vi, i ∈ I,

it follows that |I| = m, and each arc (vi,vn+ j), i ∈ I, q j ∈ Ci carries unit flow. However, noting

that arcs (vn+ j, t), 1 ≤ j ≤ 3m have unit capacity, this flow can reach the sink only if all subsets

Ci, i ∈ I are non-overlapping. Because the collection C ? ≡ {Ci : i ∈ I} is pairwise mutually exclu-

sive and ∑i∈I |Ci|= 3m, C ? is an exact cover of Q and a solution to X3C.
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s

t

v1 v2 v3 v4

vn+1 vn+2 vn+3 vn+4 vn+5 vn+6

1 1 1 1

3m = 6

Arcs (v,v′) ∈ D
c1

vv′ = 0, u1
vv′ = ∞

Arcs (v,v′) ∈ E
c1

vv′ = 0, u1
vv′ = 1

Arcs (v,v′) ∈ F
c1

vv′ =−1, u1
vv′ = 1

d11
s =−4m =−8

Nodes v ∈U
d11

v = 1

Nodes v ∈V
d11

v = 0

Node t
d11

t = 3m

Figure 2.1: Construction of IMN-MCFd instance corresponding to an instance of X3C with Q =
{1,2,3,4,5,6}, C1 = {1,2,3}, C2 = {1,3,4}, C3 = {2,5,6}, and C4 = {3,4,6}. A dashed loop
from a node v onto itself indicates d11

v > 0. Each such loop is labeled with the corresponding
value d11

v .

Conversely, suppose C ? ≡ {Ci : i ∈ I} is an exact cover by 3-sets. Then by applying the

logic of the previous paragraph in reverse order—a solution to IMN-MCFd can be constructed by

activating nodes vi, i ∈ I (and supplying these nodes with the required flow), assigning unit flow

to arcs (vi,vn+ j), i ∈ I, q j ∈Ci, and assigning appropriate flow to arc sets D and F as required to

satisfy flow balance. �

This proof establishes NP-completeness for IMN-MCFd even when (i) the network con-

tains only a single layer and (ii) the network is acyclic. The NP-completeness of IMN problem

motivates our development of valid inequalities in the following section.
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2.6 Model Improvement

This section is focused on identifying classes of valid inequalities in order to strengthen the

bounds provided by the linear programming relaxation of the MIP formulation.

2.6.1 Mixing Inequalities

Let 0≡ a0 ≤ a1 ≤ ·· · ≤ am and consider the set

Z = {(ψ,z) ∈ R×{0,1}m|ψ≥ a jz j,∀ j = 0, ...,m}, (2.5)

where z0 ≡ 0 (arbitrarily). Define M = {0, ...,m} and let H ⊆ M such that {0} ⊂ H. Letting

q≡ |H|−1, number the elements of H as H = {h(0),h(1), ...,h(q)} such that h(0) = 0, h(q) = m,

and h(0)< h(1)< ... < h(q). The so-called mixing inequality

ψ≥
q

∑
i=1

(
ah(i)−ah(i−1)

)
zh(i), (2.6)

due to Günlük and Pochet (2001), is known to be valid for Z. This class of valid inequalities

has been implemented to tighten MIP formulations incorporating the quantity max{a jz j|z j ∈

{0,1}m}. See, for example, the “step inequalities” of Morton et al. (2007) and Sullivan et al.

(2014), which specialize to the mixing inequalities for a special case of the models examined.

We augment Model (2.1) by generating inequalities corresponding to each ψk
i ≡−∑ j:(i, j)∈Ak xk

i j +

∑ j:( j,i)∈Ak xk
ji, where Constraints (2.1b) used to define the set Z associated with a given k ∈ K

and i ∈ Nk. Specifically, number the elements of K̄ as K̄ = {k̄(0), k̄(1), k̄(2), ..., k̄(|K|)} such that

K̄ = {0,1, ...,K} and dkk̄(1)
i ≤ dkk̄(2)

i ≤ ... ≤ dkk̄(|K|)
i and k̄(0) = 0. Define Z by setting m = K,

a j = dkk̄( j)
i and z j = yk̄( j)

i ∀ j = 1, ...,m. Inequality (2.6) specializes to mixing inequality

− ∑
j:(i, j)∈Ak

xk
i j + ∑

j:( j,i)∈Ak

xk
ji ≥

q

∑
s=1

(dkk̄(h(s))
i −dkk̄(h(s−1))

i )yk̄(h(s))
i , (2.7)
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and must therefore be valid for Model (2.1) for each H ⊆ {0,1, . . . , |K|}, {0} ⊂ H, because Z

corresponds directly to the set of Constraints (2.1b) and therefore contains the feasible region

of Model (2.1). Additionally, because the Inequality (2.7) generated under H ⊆ {0,1, . . . , |K| −

1} is dominated by the Inequality (2.7) generated under H ′ ≡ H ∪ {|K|}, we may restrict the

choice of H to those subsets of {0,1, . . . , |K|} that contain both 0 and k̄(|K|). We now illustrate

Inequality (2.7) for our model.

Example. Suppose node i in layer k has a demand of dkk
i = 5. Additionally, suppose layers

k′ and k′′ depend on layer k at node i such that dkk′
i = 10 and dkk′′

i = 20.

If H is defined as {k,k′}, the Inequality (2.7) is

− ∑
j:(i, j)∈Ak

xk
i j + ∑

j:( j,i)∈Ak

xk
ji ≥ 5yk

i +(10−5)yk′
i . (2.8)

If H is defined as {k,k′′}, the Inequality (2.7) is

− ∑
j:(i, j)∈Ak

xk
i j + ∑

j:( j,i)∈Ak

xk
ji ≥ 5yk

i +(20−5)yk′′
i . (2.9)

If H is defined as {k′,k′′}, the Inequality (2.7) is

− ∑
j:(i, j)∈Ak

xk
i j + ∑

j:( j,i)∈Ak

xk
ji ≥ 10yk′

i +(20−10)yk′′
i . (2.10)

If H is defined as {k,k′,k′′}, the Inequality (2.7) is

− ∑
j:(i, j)∈Ak

xk
i j + ∑

j:( j,i)∈Ak

xk
ji ≥ 5yk

i +(10−5)yk′
i +(20−10)yk′′

i . (2.11)

Table 2.1 shows the minimum net flow requirement and the right hand sides of the four

inequalities for node i in layer k for different combinations of the y-variables. These inequalities

are valid since their right hand side is less than equal to the minimum net flow requirement. Also
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Table 2.1: Inequality (2.11)
r.h.s.

Combinations Minimum net flow (2.8) (2.9) (2.10) (2.11)
yk

i = yk′
i = yk′′

i = 0 0 0 0 0 0
yk

i = 1,yk′
i = yk′′

i = 0 5 5 5 0 5
yk

i = 1,yk′
i = yk′′

i = 1 20 10 20 20 20
yk

i = 1,yk′
i = 0,yk′′

i = 1 20 5 20 10 15
yk

i = 1,yk′
i = 1,yk′′

i = 0 10 10 5 10 10

it can be seen that Inequality (2.8) is dominated by Inequality (2.11) which justifies why we force

subset H to include k̄(|K|).

When K is large, the number of subsets H will increase exponentially. In this case, we can

define a separation problem that could be used within a branch-and-cut approach to identify a

most-violated inequality of the form (2.7) as Morton et al. (2007) and Sullivan et al. (2014) de-

scribed for their step inequalities.

For H ⊆ {0,1, . . . , |K|}, {0, k̄(|K|)} ⊆ H, let gk
i (H;y) denote the r.h.s. of Inequality (2.7).

Given an LP solution (x̂, ŷ) to a node in the branch-and-bound tree, the separation problem iden-

tifies a subset H ⊆ {0,1, . . . , |K|}, {0, k̄(|K|)} ⊆ H that maximizes gk
i (H; ŷ) in order to generate a

most-violated mixing inequality of the form

− ∑
j:(i, j)∈Ak

xk
i j + ∑

j:( j,i)∈Ak

xk
ji ≥ gk

i (H; ŷ), (2.12)

or prove that no such inequality is violated by (x̂, ŷ). As we will demonstrate, the maximum

value of gk
i (H; ŷ) corresponds to the case where each element j ∈ H \ {0} is such that ŷk̄( j)

i ≥

ŷk̄( j′)
i , ∀ j′ = j+ 1, j+ 2, . . . , k̄(|K|). Algorithm 1 provides a polynomial separation routine based

upon this observation.

Theorem 2 Algorithm 1 identifies an inequality of the form (2.12) that is most violated with re-

spect to a solution (x̂, ŷ) or establishes that no such inequality is violated.

Proof. Let H∗= {h∗(0),h∗(1), ...,h∗(q)} be the set obtained with Algorithm 1 such that dkk̄(h∗(0))
i ≤
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Algorithm 1: Identify most-violated mixing inequality with respect to solution (x̂, ŷ)

1 c = 0, q = 0, H = {0}
2 while q < s do
3 q = argmax j{ŷ

j
i | j ∈ {c+1,2, ...,s}}

4 H = H ∪ k̄(q)
5 c = q
6 end
7 Return H

dkk̄(h∗(1))
i ≤ ... ≤ dkk̄(h∗(q))

i . Let H = {h(0),h(1), ...,h(r)} ⊆ {0, ...,m} be another set such that

dkk̄(h(0))
i ≤ dkk̄(h(1))

i ≤ ... ≤ dkk̄(h(r))
i . We show that for any set H, the inequality generated by

H does not dominate the inequality generated by H∗. Suppose we have a case in which h∗( j) <

h(a) < h∗( j+ 1) < h(a+ 1). We show that for the interval [dkk̄(h∗( j))
i ,dkk̄(h∗( j+1))

i ], ŷk̄(h∗( j+1))
i in-

creases gk
i (H

∗; ŷ) at least as much as ŷk̄(h(a))
i and ŷk̄(h(a+1))

i increase gk
i (H; ŷ). Based on line 3 of

the Algorithm 1, we know that ŷk̄(h∗( j+1))
i ≥ ŷk̄(h(a))

i and ŷk̄(h∗( j+1))
i ≥ ŷk̄(h(a+1))

i . Then

(dkk̄(h(a))
i −dkk̄(h∗( j))

i )ŷk̄(h∗( j+1))
i ≥ (dkk̄(h(a))

i −dkk̄(h∗( j))
i )ŷk̄(h(a))

i (2.13)

(dkk̄(h∗( j+1))
i −dkk̄(h(a))

i )ŷk̄(h∗( j+1))
i ≥ (dkk̄(h∗( j+1))

i −dkk̄(h(a))
i )ŷk̄(h(a+1))

i (2.14)

By summing 2.13 and 2.14, we have

(dkk̄(h∗( j+1)
i −dkk̄(h∗( j))

i )ŷk̄(h∗( j+1)
i ≥ (dkk̄(h(a))

i −dkk̄(h∗( j))
i )ŷk̄(h(a))

i +(dkk̄(h∗( j+1))
i −dkk̄(h(a))

i )ŷk̄(h(a+1)
i

(2.15)

which shows that for the interval of interest, H∗ increases gk
i (H

∗; ŷ) as much as any other set H

increases gk
i (H; ŷ). This proof is for the case that one element of the set H is between two con-

secutive elements of the set H∗. Other cases, there may be 0,2, ...,r− 1 elements of the set H

between two consecutive elements of H∗. The proof for these cases are analogous. Therefore, for

the interval [0,dkk̄(|K|)
i ] =

q⋃
j=0

[dkk̄(h∗( j))
i ,dkk̄(h∗( j+1))

i ], H∗ increases the gk
i (H

∗; ŷ) at least as much

as any other set H increases gk
i (H; ŷ), meaning gk

i (H
∗; ŷ)≥ gk

i (H; ŷ). �
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2.6.2 Precedence Inequalities

The second set of valid inequalities identified for Model (2.1) are logical inequalities stat-

ing that a dependent node i can be operational if and only if it is operational in all the supporting

layers. This valid inequality is

yk′
i ≤ yk

i , ∀i ∈ Nk∩Nk′, dkk′
i > 0. (2.16)

Inequality (2.16) is valid because dkk′
i > 0 implies the imbalance of node i in layer k must be at

least dkk′
i if i is to be operable in layer k′ (i.e., yk′

i = 1), but this is only possible if flow is permit-

ted to enter node i in layer k. Therefore, if yk′
i = 1, we must also have that yk

i = 1, and the inequal-

ity is therefore valid. Preliminary computational experience suggests that this valid inequality is

likely to be violated by an optimal solution to the LP relaxation of IMN for values of i ∈ Nk∩Nk′

such that solutions for the scenarios in which dkk
i > dkk′

i > 0. We now demonstrate that the LP

relaxation of Model (2.1) may have an optimal solution that violates Inequality (2.16).

Example. Consider a node i that appears in two layers, k and k′, such that dkk
i = 10 and

dkk′
i = 5. Suppose these are the only non-zero d-values associated with node i. Furthermore,

suppose node i carries a positive reward in both layers, i.e., f k
i > 0 and f k′

i > 0. Let ek(i) =

−∑ j:(i, j)∈Ak xk
i j +∑k:( j,i)∈Ak xk

ji denote the imbalance of commodity k at node i. Constraints (2.1b)

associated with ek(i) reduce to ek(i) ≥ 10yk
i and ek(i) ≥ 5yk′

i . Note that yk
i and yk′

i appear else-

where in the model only in (1) the objective, with a positive coefficient, and (2) in Constraints (2.1c)–

(2.1d), on the right-hand side of a “≤” constraint. For fixed ek(i), it will therefore be optimal to

set yk
i = min{1,ek(i)/10} and yk′

i = min{1,ek(i)/5} in the LP relaxation. Therefore, if ek(i) = 5

in the solution to the LP relaxation, then yk
i = 0.5 and yk′

i = 1, violating Inequality (2.16).

In Section 2.8, we show that the two valid inequalities do not directly enhance the CPLEX

solver. However, our experiments revealed that these valid inequalities increase the percentage

of binary variables that take integer values in solutions to the LP relaxation of the MIP, which

CPLEX does not exploit to quickly find better solutions. This observation motivates the solution
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approach we present in the following section.

2.7 Solution Method

The purpose of this section is to develop a solution approach for the IMN problem. Antic-

ipating the difficulty of solving the IMN problem due to the strong NP-completeness classifica-

tion, an efficient solution approach is necessary to decrease the computational effort. Based upon

preliminary computational experiments, we did not observe the valid inequalities presented in

Section 2.6 to be effective at improving solution times of the MIP formulation. What we did ob-

serve, however, is that the valid inequalities both (i) strengthen the bound provided by the LP re-

laxation of the MIP and (ii) increase the percentage of binary variables that take integer values in

solutions to the LP relaxation of the MIP. The latter observation motivated the solution approach

that we describe in this section. We will summarize experimental results to demonstrate (i) and

(ii) in Section 2.8. Before doing so, we first develop the solution approach that was motivated by

these observations.

The main idea in our solution approach, which is inspired by the approach in Helber and

Sahling (2010), is to solve a sequence of LP relaxations to IMN in an iterative fix-and-optimize

approach to find feasible solutions. The “fix” part of the approach is determined after solving the

LP relaxation of Model (2.1), augmented with any valid inequalities we choose to add. The “op-

timize” part of the approach solves an additional optimization program, this time an integer pro-

gram, to determine if it is possible to convert the fractional solution resulting from the “fix” step

into an integer solution without modifying any of the variables that were integral in the fractional

solution. Because solutions to the LP relaxation, augmented with our inequalities, tend to have a

high concentration of integer-valued variables, the additional effort that we do in the “optimize”

part is not significant.

In our implementation of this algorithm, we terminate after identifying any integer-feasible

solution. Our reason for doing this is because our experience suggests that this usually happens

within a few iterations of our algorithm, and the resulting solution usually has an objective value
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within 1% of the LP bound. It should be noted that, although our implementation does provide

both an upper and lower bound on the optimal objective value, we have not guaranteed conver-

gence to a global optimal solution because we terminate at the first found feasible solution.

We term this approach Iterative Fractional Remover (IFR) because in each iteration we

seek to remove fractional LP relaxation solutions if they cannot be extended into feasible integer

solutions. In Algorithm 4, we formalize the IFR approach. In each iteration, we first solve the LP

relaxation of Model (2.1) plus inequalities (2.7) and (2.16). If the solution of this step is integral,

then the optimal solution is found and we stop. Otherwise, we solve Model (2.1) with additional

constraints that fix a subset of binary variables to the values determined in the LP relaxation solu-

tion if they were integral numbers. We solve the problem over the subset of binary variables that

have not been fixed. If this problem is infeasible, a cut will be added to make sure that we can-

not fix those binary variables simultaneously. We continue this process until we find a feasible

solution to the IP. In line 3 of Algorithm 4, we augment the LP relaxation with the solution elim-

inating inequality that mandates some y-variable for which ŷk
i has integer value must be changed

to yield any MIP-feasible solution.

Algorithm 2: Iterative Fractional Remover (IFR)
1 NotFeasible = true
2 while NotFeasible do
3 Solve the LP relaxation with solution (x̂, ŷ)
4 if the solution is integral then
5 NotFeasible = false
6 else
7 Solve the MIP that results from IMN when the integer-valued y-variables in (x̂, ŷ)

are fixed
8 if the MIP is feasible then
9 NotFeasible = false

10 Let (x̂∗, ŷ∗) denote the integer solution to IMN
11 else
12 Add inequality ∑k∈K,i∈Nk:ŷk

i∈{0,1}
yk

i ≤ |{k ∈ K, i ∈ Nk : ŷk
i ∈ {0,1}|−1

13 end
14 end
15 end
16 return (x̂∗, ŷ∗)
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2.8 Computational Results

This section presents a computational analysis of the proposed model and the IFR solution

approach. All tests were conducted on an Intel Xeon E5-2670 2.60 GHz, 32 GB RAM computer

using IBM ILOG CPLEX Optimization Studio 12.6.3 to implement the IMN formulation and

IFR.

2.8.1 Model Capabilities

The focus of this section is to demonstrate IMN capabilities over previous models on the

operations of interdependent infrastructure systems. As discussed in Section 3.2, previous work

(Cavdaroglu et al., 2013; Lee et al., 2007; Sharkey et al., 2015) assumed that the dependent nodes

(child nodes) are all either operational or not, depending on the unmet demand of the parent

node that the child nodes depend upon which can be considered as a special case of IMN when

dkk′
i = dkk′′

i ∀k,k′ ∈ K \ k. However, IMN generally allows child nodes to require different levels

of support from a common parent node which may result in different operational levels in depen-

dent networks and better utilization of available resources.

Consider a 3-layer IMN instance where the only dependency defined in the problem is that

layer 2 and 3 depend on layer 1. Each network is generated to have nodes (hubs) with many more

connections than others. There is one source node in the first layer which acts as a hub. Layer

1 in this instance is shown in Figure 2.2 with the source node in the middle of the network with

green color. The three layers have the same set of 50 nodes but the arc set for each layer is dif-

ferent. The probability of adding an arc between any pair of nodes (i.e., arc density) in all layers

are set to 0.04, and the flow cost of each arc is zero. We solve a sequence of 11 IMN instances,

s = 0,5,10, ...,50, in which all of the instances in the sequence are identical with the excep-

tion that the interlayer dependency values (i.e., dkk′
i ,k 6= k′) differ among instances. Instances

s = 0,5,10, ...,50 are defined with s = |d12
i − d13

i |,∀i ∈ N1 ∩N2 ∩N3. Therefore, as s increases

one layer becomes more heavily dependent on layer 1 while the dependence of the other layer
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Figure 2.2: Layer 1 - Source node is colored green. Other nodes are colored red and blue accord-
ing to whether it is the dependency of layer 2 or 3 that is increasing, respectively.

remains constant (min{d12
i ,d13

i } = [8,12]). The probability that either one the layers 2 or 3 to

be chosen as the layer with a constant dependency on layer 1 is 50% at each node. Hereafter, we

denote this first sequence of instances as IMN-Seq(s), s = 0,5,10, ...,50. From this sequence of

instances, we construct a second sequence of 11 instances PREV-Seq(s), s = 0,5,10, ...,50, that

would have been solvable using a previously existing model from the literature without restora-

tion decisions (Cavdaroglu et al., 2013; Lee et al., 2007; Sharkey et al., 2015). Specifically, for

each s = 0,5,10, ...,50, we construct an instance satisfying dkk′
i = dkk′′

i ,∀k,k′,k′′ ∈ K,∀i ∈ Nk ∩

Nk′ ∩Nk′′ by setting d̄12
i = d̄13

i = max{d12
i ,d13

i }. We refer to d̄ as the estimated d parameter. We

define instance PREV-Seq(s), s = 0,5,10, ...,50, exactly as instance IMN-Seq(s) with the excep-

tion that d̄ is used instead of d to define the interlayer dependence for each node. We consider

two environments for this IMN instance as follows

1. Resource-constrained environment: The available resources in layer 1 are 80% of the

required amount to activate all the nodes in other layers when s is equal to zero. Arcs are

uncapacitated in this environment. Figure 2.3 shows the optimal operational level (i.e., the

proportion of nodes that are functional in a given layer) for layer 2 and 3 in IMN-Seq and
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Figure 2.3: Effect of requiring different levels of support from a common system on the solution
in a resource-constrained environment

PREV-Seq. The horizontal axis shows the instance number s (i.e., the value of |d13
i − d12

i |)

for every node in the set N1 ∩N2 ∩N3. As seen in Figure 2.3, an increase in s decreases

the IMN-Seq operational levels in both layers until the point where the resources are just

enough to activate the nodes that have constant dependency (independent of s) on layer 1.

However, as s increases in the PREV-Seq, the operational level of both layer 2 and 3 con-

verges to zero since there are not enough resources to satisfy the maximum dependency

parameter (i.e., max{d12
i ,d13

i }). Even though there are enough resources to activate almost

40% of the components, both layers will become inactive which shows that we are not us-

ing the resources to increase the overall functionality of the systems.

2. Arc capacity-constrained environment: In this case, there are enough resources in layer

1 to activate all the dependent nodes. However, the arc capacity constraints are binding.

Similar to Figure 2.3, the horizontal and vertical axes in Figure 2.4 show the variable s and

the operational level. As s increases, the solution for PREV-Seq(s) will converge to inac-

tivity of both layer 2 and 3 as the arc capacities do not allow for an increase in the amount

of flow to satisfy the demands. However, the arc capacities allow the resource in layer 1 to
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Figure 2.4: Effect of requiring different levels of support from a common system on the solution
in an arc capacity-constrained environment

reach the demand nodes with constant dependency (independent of s) which can be cap-

tured with the solution of IMN. Therefore, using previously available modeling approaches

to solve an instance in an arc capacity-constrained environment may result in not fully ex-

ploiting the resource to increase the operational levels for dependent systems.

In summary, applying existing operation models (Cavdaroglu et al., 2013; Lee et al., 2007;

Sharkey et al., 2015) to the cases where dependent systems require different levels of support

from independent systems may result in solutions that differ drastically from IMN solutions.

Now for the same sequences, suppose that half of the arcs in the independent network, layer 1,

have been disrupted and we need to determine 5 arcs to install in this layer as a restoration plan to

increase the operational efficiency in the dependent networks, layer 2 and 3. One type of restora-

tion problem consists of two stages: (i) selecting components to install and (ii) determining the

resulting operational efficiency from the decision made in the first stage. Let the the binary vari-

able zk
i j represent the decision to install the temporary arc (i, j) in layer k. Let Āk denote the set

of disrupted arcs in layer k. The first stage has a constraint that bounds the number of temporary

arcs installed which is written as
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∑
k∈K

∑
(i, j)∈Āk

zk
i j ≤ B. (2.17)

There is also a constraint that links together the restoration parts of the model and the network

flow parts of the model which is denoted as the following inequality. This constraint, given as

xk
i j ≤ uk

i jz
k
i j, ∀k ∈ K,∀(i, j) ∈ Āk, (2.18)

ensures that flow is not permitted on disrupted arcs that were not repaired.

Using the IMN-Seq and PREV-Seq instance sequences defined in the previous subsection,

we solve the restoration problem described above. We then compare the optimal objective value

v∗s for the IMN-Seq instances to the IMN objective value vIMN
s that would result if the z-solution

obtained from the PREV-Seq instances is fixed and the resulting IMN instance is re-solved. We

then compute the relative loss of operational efficiency, defined as 100%(v∗s − vIMN
s )/v∗s for each

instance s = 0,5,10, ...,50. Figure 2.5 shows the relative loss of operational efficiency across the

11 instances. As s increases, the loss increases overall. The inconsistency in the increasing trend

is caused by the existence of multiple optimal restoration solutions in the PREV-Seq instances

which correspond to different operational efficiencies in the IMN problem. Figures 2.6 and 2.7

show the solutions to s = 50 for layer 1 in the resource constrained environment. Green arcs de-

note the temporary arcs installed and the black arcs have positive flow. Based upon these figures,

the restoration solutions for PREV-Seq may prefer to install temporary arcs to connect nodes with

smaller estimated d-parameters to gain more reward with the limited resources. With the IMN

model, temporary arcs are mostly used to satisfy the demands that are not affected by the value s

directly from the resource node to gain the rewards in either layer 2 or 3. In summary, the restora-

tion solution greatly depends on the value of the d-parameters as well as the difference between

the d-parameters associated with the two dependent layers at a specific node. The difference in

restoration solutions are even more significant if the estimated d-parameters used in the existing
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Figure 2.5: Loss in dependent networks operational efficiency due to utilizing previous opera-
tional model instead of IMN

models are further from the actual d-parameters of the layers. This difference in restoration solu-

tions can result in a significant reduction in operational efficiency if existing models are used to

model non-uniform dependencies.

2.8.2 MIP and IFR

The focus of this section is to (i) demonstrate the effect of valid inequalities on Model (2.1)

and (ii) evaluate the performance of the proposed solution approach (IFR) in comparison to the

standard MIP solver, CPLEX. This computational analysis will be done by examining synthe-

sized data sets of interdependent networks. The instances are made with different parameter set-

tings to account for their effects on the performance of both solution approaches. Table 2.2 shows

the different parameters used to generate these instances.

The structure of networks is either random or scale-free. A scale-free network has nodes

(hubs) that have more connections than others which is appropriate to represent real-world net-

works. We have used the Barabási and Albert (1999) model to create scale-free networks that

correspond to a specific arc density. To generate a random network, we add a directed arc be-

tween any pair of nodes with a probability that is equal to the arc density. Network layers have
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Figure 2.6: Layer 1 restoration solution to instance PREV-Seq(50)

Figure 2.7: Layer 1 restoration solution to instance IMN-Seq(50)
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Table 2.2: Parameter settings
Parameter Settings
Network structure Random, Scale-free
Interdependency structures All on one, One on All, Random
Number of layers 3,5
Number of nodes in each layer 2000
Amount of resources in each layer 50%,150%
Number of resource nodes in each layer 4,10
Arc capacities [10,15], [20,25]
Intralayer dependency probability 0.1,0.2,0.4,0.5
Arc density 0.01, 0.05
Arc cost [3,7], [4,6], no cost
Reward (if Arc cost is “no cost”) [1,3]
Reward (if Arc cost is [3,7] or [4,6]) [500,1000], [1000,1500], [1500,2000]

[2000,2500], [2500,3000]
Dependency parameter [10,20], [5,25]

the same node sets. There are three types of interdependency structures we considered for this

computational study: all layers are dependent on one layer (e.g., the dependency of water, telecom-

munications, and transportation on the electric power infrastructure), one layer is dependent on

all other layers (e.g., the dependency of transportation systems on natural gas, oil and electric

power systems) and random interdependency. In each layer, the total amount of resources are set

to be 50% or 150% of the average total within-layer demand to represent resource-constrained

and resource-abundant environments. Arc capacities are generated uniformly from one of the

two ranges mentioned in Table 2.2 as preliminary computational experiments revealed that these

ranges tend to create binding constraints in Model (2.1). Because cost and reward parameters can

be scaled without impacting the set of optimal solutions, we fix the cost and change the reward

parameter. Cost parameters are generated uniformly from the two ranges, one of which is a sub-

set of the other. We also consider the case where there is no arc cost. For the instances that do not

have an arc cost, we use the range [1,3] for the node rewards so that we can create a combinato-

rial problem where only the resources and arc capacities are important in solving the problem.

For the cases with positive arc cost, we have used five disjoint reward ranges to account for the

effect of increasing node rewards. There are two ranges chosen as the dependency parameter in
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which one of them is a subset of the other in order to see the effect of a wider range on the re-

sults, especially the solution to the LP relaxation. We have generated 3876 IMN instances after

removing 348 instances where both approaches find a solution with objective value equal to zero.

The 4224 (3876+ 348) instances are generated with all combination of the parameters listed in

Table 2.2 except for the intralayer dependency probability parameter which was equally assigned

to the instances.

We first examine the effect of valid inequalities (mixing and precedence) on the solution to

the LP relaxation of Model (2.1) by comparing the percentage of binary variables y that are in-

tegral in the solution and how it improves the objective value. Since the number of layers in the

test instances are small, we added all of the mixing inequalities to the LP relaxation formulation.

Figure 2.8 shows this percentage for the test instances with and without the valid inequalities. As

seen in this figure, valid inequalities increase the percentage of integral binary variables to more

than 97% for almost every instances which motivated us to develop the solution approach, IFR.

Based on our observations, high intralayer dependency probability and smaller arc capacities

have significant effects on decreasing this percentage for the test instances that do not have the

valid inequalities. For these test instances, the LP bound improvement due to including the valid

inequalities is the difference between the LP bound with and without valid inequalities divided by

the LP bound without valid inequalities. The improvement is reported to be between 0% and 11%

in all the test instances.

Second, we solve our test instances with the IFR and the standard MIP solver, CPLEX,

with 30 minutes as the time limit. The time limit for the LP and the MIP components in the IFR

is set to be 500 and 200 seconds, respectively. Figure 2.9 shows the percentage gap obtained with

these two approaches. For all these test instances, it takes IFR at most 2 iterations to find a feasi-

ble solution. Note that the valid inequalities are not present in the MIP formulation since CPLEX

can have the same improvement on the upper bound of the formulation with its own built-in cuts

in the root node of the branch and bound approach. We also examine the percentage gap of MIP

if terminated after the amount of time required for IFR to find a feasible solution. A summary
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Figure 2.8: Proportion of binary variables with integral value in the LP relaxation solution of
IMN

of this set of experiments is presented in Figure 2.9. From Figure 2.9, we can conclude that IFR

outperforms CPLEX (with respect to optimality gap and solution time criteria) and the gains are

even more clear when considering what CPLEX accomplishes if allowed to run for only as long

as IFR. We also compare the cumulative proportion of instances for which IFR or MIP terminates

within a specific time for the two approaches in Figure 2.10. As can be seen from Figure 2.10,

IFR is faster than MIP in solving the instances to the percentage gap shown in Figure 2.9.

Third, we take a closer look at the instances for which MIP hit the 30 minutes time limit

without solving to optimality. The percentage gap obtained by the two approaches is shown in

Figures 2.11. The better performance of IFR in comparison to CPLEX in solving these instances

is even more significant in these cases. Figure 2.11 reveals that fewer than 30% of IFR instances

result in at least a 10% optimality gap; however the optimality gap exceeds 10% for more than

50% of MIP instances.

In summary, the valid inequalities bring the LP relaxation solution closer to a feasible MIP

solution. IFR exploits this effect of valid inequalities to find the feasible MIP solution. With this
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Figure 2.11: Percentage gap obtained with IFR and MIP for the instances in which MIP hit the
time limit

computational study we have shown that IFR can find a better solution with less computational

time in comparison with the MIP formulation for most of the instances.

2.9 Conclusion

We have developed a mathematical formulation that models the operation of interdepen-

dent infrastructure systems in order to optimize operations in a resource constrained environment.

The objective of the model is to maximize the overall functionality of interdependent networks

while keeping the cost as low as possible. Our model has several unique features over previous

network-based models of interdependent infrastructure systems: (i) it is a compact formulation;

(ii) it has the capability to capture many common types of interdependence; (iii) it allows for

non-uniform dependency requirements on the consumption of flow at a given node in a given

layer; and (iv) it considers intra-layer dependency. We showed that this problem is strongly NP-

complete. We then identified two sets of valid inequalities which we utilized to develop a solution

approach that exploits the effect of valid inequalities on the LP relaxation solution to expedite

finding feasible solution to the problem. We tested IFR on a set of synthesized instances repre-
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senting interdependent infrastructure systems. Our computational experiments point out the quick

computational time needed for the approach to identify high-quality solutions for most of the

instances. Further, we demonstrate that failing to model feature (iii) described above (i.e., non-

uniform dependency requirements) may drastically reduce the quality of strategic restoration de-

cisions derived to restore a disrupted collection of infrastructure systems. The work in this paper

will be of value to future research in the area of restoration planning as it provides a compact op-

erational level that can be solved in an efficient way. The model can also be extended to optimize

mitigation strategies over a set of potential disasters.
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3. Single-train Yard Routing Problem

3.1 Introduction

One of the fundamental and difficult problems faced by rail freight transportation systems

is how to move cars and shipments through the railyard. Upon receiving a request from shippers,

the railroads must decide which route should be taken to move cars from one location in the rail-

yard to another (Haghani, 1987). Railyard routing is of importance since such a problem must be

solved repeatedly in a very short time for simulations of train movements in large complex yards.

There appear to be different streams of research related to routing trains. In the first stream,

the focus is on finding the fastest or cost-efficient routes in a network-level routing problem. Her-

nando et al. (2018) propose a method to find the fastest route from one station to another under

consideration of both the train’s acceleration and deceleration time and the time required to re-

verse direction. Fu and Dessouky (2018) study a single-train station-to-station routing problem

in a rail network with only double track segments, where the objective is to route one train as fast

as possible subject to acceleration and deceleration restrictions. This problem is an NP-hard spe-

cial case of the problem examined by Nagarajan and Ranade (2008), which incorporates conflicts

due to the existence of pre-scheduled routes. Researchers have also considered the problem of

minimizing transportation cost over multiple origin-destination pairs with fuzzy input parameters

(Yang et al., 2011) and multiple transportation modes (Sun et al., 2016) and combined it with a

train formation plan (Lin, 2017). Haghani (1989) presents a model to combine the tactical train

routing problem and the operational empty car distribution model. This combined problem is to

determine the optimal routing and empty car distribution policies based on a forecast of demands

to be shipped between the yards of its network.

Other researchers focus on a yard-level routing problem that optimizes a specific objective.

Examples of optimization criteria are minimizing the number of direction changes and manual

crossovers (Riezebos and Van Wezel, 2009) and finding the most economical car paths (Fügen-

schuh et al., 2013).
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The second stream of work related to the train routing problem focuses on developing a set

of possible routes for each origin-destination pair in a network of rail stations. Railway opera-

tions (i.e., the processes that take place on and around the rail infrastructure) are usually designed

in advance in terms of routing assigned to each train and their timings (timetable). However, the

timetable may become infeasible when disturbances arise at the operational level. The real-time

railway traffic management problem (rtRTMP) aims to respond to such disturbances by generat-

ing a new efficient feasible plan of operations by determining a conflict-free set of train routes.

The most widely used objective function in this problem is to minimize the propagation of de-

lays. Rather than solve this NP-hard problem directly, researchers have approached rtRTMP by

first solving a separate optimization problem in order to identify a subset of alternative routes for

each train (Sama et al., 2016, 2017).

The existing literature on the yard routing problem has focused on choosing a route from a

predefined set of routes for each train. In order to automate the process of generating the routes

(e.g., for incorporation in one of the existing routing models), it is necessary to account for the

geometry of the track segments in the railyard as well as the fact that the train occupies space in

the railyard. There is some precedent, the context of convoy routing (Akgün and Tansel, 2007;

Chardaire et al., 2005; Goldstein et al., 2010; Gopalan, 2015), for non-rail-related routing of

commodities that take up space on the network, but the combination of this feature with com-

plex track geometry has not been addressed. In this paper, we seek to optimize the route selection

from among all the possible routes in the yard network while explicitly considering the geometry

of the yard network and the space taken up by the train.

Given a railyard and a single train specified by its origin, destination, and length, our work

is to determine a feasible route for the train with a minimum total length subject to the geometry

of the yard tracks. The length of a train equals to the length of its locomotive and the cars that it

moves in the railyard. The difference between this problem and the traditional shortest path prob-

lem is that the route must accommodate, subject to the geometry of the yard tracks, the length of

the cut of cars plus the length of the locomotive at any time. In this chapter, we will propose an

42



approach to model this problem and find an optimal route for the train in the railyard. Cordeau

et al. (1998) models the railyard as a network. Hence, we use a network-based approach to model

the single train routing problem where edges and nodes correspond to track segments and con-

nections between those track segments in the yard, respectively. The proposed approach models

the problem in two stages: a preprocessing stage that takes as input the specific length of the train

and tracks’ configuration to determine the feasibility of certain movements for the train in the

railyard and a routing stage that finds a shortest origin-destination route given the output of the

preprocessing stage.

The main contributions of this chapter are as follows: (i) our proposed modeling approach

for a train routing problem is the first to consider the geometry of the track segments in a rail-

yard; (ii) we prove that the preprocessing problem is NP-complete and develop an algorithm and

an integer programming formulation to model it; (iii) we develop a linear programming formu-

lation that solves an important special case of the preprocessing stage in polynomial time; (iv)

our approach to model the routing stage can be solved with classical shortest path algorithms; (v)

we develop a solution algorithm that allows the preprocessing stage to be solved as needed with

regard to the solution of the routing stage; and (vi) our modeling approach is validated on a real

railyard dataset provided by a major rail company.

3.2 Problem Definition

We consider the problem of routing a train of length L ≥ 0 through a railyard defined by

the undirected network G = (N,E) with nodes N and edges E. Edges in this network correspond

to track segments and nodes correspond to connections between those track segments. The train

consists of a locomotive and a cut of cars attached to the locomotive. The locomotive can either

pull or push the cars in the railyard. Let ce ≥ 0, e ∈ E, denote the length of edge e. For each node

i ∈ N, let N(i)⊆ N \{i} denote the set of nodes adjacent to i. Number the nodes adjacent to i ∈ N

as N(i) = {Nk(i)}
|N(i)|
k=1 and the edges adjacent to i ∈ N as {e(i,k)}|N(i)|

k=1 where e(i,k) ≡ [i,Nk(i)].

Let node iO and iD denote the origin and destination of the train route, respectively. The railyard
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Figure 3.1: Switch node i

network G has special structure as described below:

Property 1 |N(i)| ≤ 3, ∀i ∈ N. That is, each node must have a degree at most three.

In order to describe further properties of the yard network, we now formalize some additional

definitions.

Definition 1 If |N(i)| = 3, then i ∈ N is said to be a switch node. Define NS as the set of switch

nodes.

Switch nodes impose some restrictions on the train’s movement through the yard, as we

now summarize. For a switch node i, the collection of nodes {i,N1(i),N2(i),N3(i)} are always

oriented (see Figure 3.1) such that, among the three edges {e(i,k)}3
k=1, exactly one pair of edges

forms an acute angle. Without loss of generality, suppose the edges e(i,2) and e(i,3) associated

with each switch node i ∈ NS form an acute angle. We now provide definitions and properties that

enable mathematically representing this restriction.

Definition 2 For e,e′ ∈ E, e 6= e′, we say that edge pair {e,e′} is directly traversable if (1) e

and e′ share exactly one node as a common endpoint and (2) the angle formed by e and e′ is non-

acute. For example, the edge pairs {[4,5], [5,7]} and {[4,5], [5,6]} are directly traversable in

Figure 3.2, but {[5,6], [6,7]} is not.

By appropriately numbering the neighbors of each switch node, the following properties

will be satisfied:

Property 2 For i ∈ N with |N(i)| ≥ 2, the edge pair {e(i,1),e(i,2)} is directly traversable.

Property 3 For i ∈ NS, the edge pair {e(i,1),e(i,3)} is directly traversable.
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Property 4 For i ∈ NS, the edge pair {e(i,2),e(i,3)} is not directly traversable.

Assumption 1 Because degree-two nodes do not have acute angles (see Property 2), one can

transform the yard network to an equivalent yard network with only leaf nodes and switch nodes.

This transformation entails contracting the two edges (with lengths l1 and l2) adjacent to a degree-

two node into a single edge with length l1 + l2. When convenient, we may therefore assume with-

out loss of generality that all nodes in N \NS are leaf nodes.

Definition 3 A sequence of edges e(1)–e(2)–· · ·–e(k) is said to be a walk provided that each

successive pair of edges has exactly one endpoint in common. Alternatively, we may refer to the

walk e(1)–e(2)–· · ·–e(k) by listing its nodes in sequence, e.g., as i(0)–i(1)–· · ·–i(k). For exam-

ple, the node sequence 3–4–12–11–9–3–2 is a walk in the yard network illustrated in Figure 3.2.

When a network satisfies Properties 1–4, we say that the network has yard structure or is

a yard network. We now present some additional definitions that will enable us to represent the

train’s movement through the yard network.

Definition 4 A walk e(1)–e(2)–· · ·–e(k) is said to be a directly traversable walk provided that

each successive pair of edges is directly traversable. For instance 2–3–4–5–7–8–2–3 is a directly

traversable walk in Figure 3.2, but 2–3–9–11–12–4–3 is not because it traverses the acute angles

{[2,3], [3,9]} and {[12,4], [4,3]}.

Definition 5 A directly traversable walk i(0)–i(1)–· · ·–i(k) is said to be a simple directly traversable

walk provided that (a) there exists a node j ∈ {i(0), i(k)} that the walk visits no more than twice

and (b) the remaining |N| − 1 nodes are visited by the walk no more than once. (Thus, only one

node may be visited twice by a simple directly traversable walk, and that node must be the first

or last node on the walk.) For example, 2–3–4–5–7–8–2 is a simple directly traversable walk in

Figure 3.2, but 2–3–4–5–7–8–2–5 is not because more than one node is repeated.

Definition 6 A simple directly traversable walk W, with nodes i(0)–i(1)–· · ·–i(k), is said to be

anchored at node j if j = i(0) and N1( j) = i(1). In this case, we say W is an “SDT( j) walk.”
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For example, 3–4–5–7 and 3–4–5–6 are SDT(3) walks in Figure 3.2, but 3–2–8 is not because

N1(3) 6= 2 (i.e., the edge [2,3] is one of the edges on node 3’s acute angle).

Definition 7 A directly traversable walk W, with nodes i(0)–i(1)–· · ·–i(k), is said to be a “re-

verse SDT( j) walk” or “r-SDT( j) walk” if i(0) = j and i(1) ∈ {N2( j),N3( j)}. For example, the

node sequence 4–12–11–9 is an r-SDT(4) walk in the yard network illustrated in Figure 3.2.

Definition 8 An SDT( j) (respectively, r-SDT( j)) walk ( j =) i(0)–i(1)–· · ·–i(k) is said to be max-

imal if there does not exist a node j′ ∈ N such that i(0)–i(1)–· · ·–i(k)– j′ is an SDT( j) (respec-

tively, r-SDT( j)) walk. For example, 3–4–5–6 and 4–12–11–9–3–4 are respectively maximal

SDT(3) and maximal r-SDT(4) walks in Figure 3.2; however, 3–4–5–7 is not a maximal SDT(3)

walk because it can be extended as 3–4–5–7–8 into another SDT(3) walk.

Definition 9 Let MS j and MS j respectively be the length of the longest SDT( j) walk and the

length of the longest r-SDT( j) walk. For example, MS3 = 18 corresponding to the SDT(3) walk

3–4–5–7–8–2–3 in Figure 3.2, and MS3 = 24 corresponding to the r-SDT(3) walk 3–9–11–12–4–

5–7–8–2–3–4.

Definition 10 A simple directly traversable walk i(0)–i(1)–· · ·–i(k) is said to be a directly traversable

cycle if i(0) = i(k). For instance, 2–3–4–5–7–8–2 is both a maximal SDT(2) walk and a directly

traversable cycle in Figure 3.2.

Given the above definitions, we are now in a position to formally characterize the set of

feasible train positions inside the railyard.

Definition 11 A simple directly traversable walk e(1)–e(2)–· · ·–e(k) (with node representation

i(0)–i(1)–· · ·–i(k)) is said to be a feasible position for the train of length L if ce(1)+ ce(2)+ · · ·+

ce(k) ≥ L. If j = i(0) ∈ NS and N1( j) = i(1), then we say the feasible position is anchored at

j or that the feasible position is an “SDT( j) feasible position.” For example, the node sequence

3–4–5–6 is an SDT(3) feasible position for a train of length 3 in Figure 3.2.
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Figure 3.2: A yard network in which each edge e ∈ E is labeled with length ce.

There are restrictions on the train’s movement through the yard, as we now summarize. To

traverse the edge pair {e( j,2),e( j,3)}, j ∈ NS, in sequence, the train’s entire length must first

pass through node j before it reverses its direction to continue with the intended walk. There-

fore, a necessary condition to traverse the edge pair {e( j,2),e( j,3)}, i ∈ NS, in sequence is

the existence of an SDT( j) feasible position. In this case, we say the switch node is indirectly

traversable. This definition is formalized below.

Definition 12 Define NL as the subset of nodes j ∈ NS such that the edge pair {e( j,2),e( j,3)} is

indirectly traversable (that is, there exists a feasible SDT( j) position) for a train of length L.

The routing problem is intended to find a shortest route for the train from one feasible po-

sition to another feasible position in the yard network. By contrast, we are assuming the origin

and destination are nodes in the network. One could transform a problem with origin/destination

feasible positions into a set of problems with origin/destination nodes by extracting as many as

four pairs of origin/destination nodes, with one being an endpoint of the origin feasible position

and the other an endpoint of the destination feasible position.
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Figure 3.3: Modifying network to account for idle cars

The destination node of the train may also constrain its movement. If the destination node

is a leaf, the locomotive must push the cars in backward onto the track, so as not to trap itself on

the track behind the cars. This means that the train must reverse its direction an odd and an even

number of times before it reaches its leaf node destination assuming that it pulls and pushes the

cars from its origin, respectively. The methodology we describe in this chapter will provide a

means for restricting the direction of arrival at the destination.

The last restriction on the train’s movement stems from the state of the yard which is con-

stantly changing. Idle cars may be occupying track space through the yards which have effects

on train movement. In the network shown in Figure 3.3 that there is an idle car on arc (2,3), we

modify the network G = (N,E) to G′ = (N ∪{5,6},E ∪ [2,5]∪ [6,3] \ [2,3]) to be used as a rail-

yard network in a routing problem.

Given all of the restrictions expressed above, the resulting optimization problem is to iden-

tify a shortest route for the train through a railyard from one location to another. We term this

optimization problem as the Yard Routing Problem (YRP).

3.3 Problem Formulation

The proposed formulation in this section models the YRP in two stages: (1) the preprocess-

ing stage which checks whether or not the walk [i,N2(i)]–[i,N3(i)] at every switch node i ∈ NS

is indirectly traversable for the train of length L; and (2) the routing stage which finds the short-

est route possible for the train given the information obtained from the first stage. Note that the

yard network used to solve the YRP is designed after considering the idle cars in the yard. As

explained in the previous section, MSi ≥ L will be a necessary condition to imply that node i is
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indirectly traversable. We need to ensure that a shortest route obtained in the routing stage is also

feasible for the train and does not cause the train to have a collision with itself while traveling

toward its destination node. This concern will not exist if the yard network is acyclic or has a

lower bound on the length of directly traversable cycles, therefore, discovering that a switch node

i ∈ NS is indirectly traversable a necessary and sufficient condition to imply that the train can re-

verse directions at node i (e.g., arriving on edge e(i,2), passing through node i in the direction

of node N1(i), reversing direction, and then continuing on edge e(i,3)). It should be noted, how-

ever, that this condition is only necessary (and not sufficient) in the case where there is a directly

traversable cycle of length less than L units. For example, in the yard network illustrated in Fig-

ure 3.2, node 3 is indirectly traversable if L equals 18 units. In this yard, the train cannot traverse

the walk 2–3–9–11–12–4 without colliding with itself but it is a valid walk if the YRP is divided

to two stages. Although there is some loss of generality in assuming all directly traversable cy-

cles are longer than the train itself, we focus on this case for three reasons: (i) In practice, the

routing problem is commonly solved to support the operation of combining cars within cut of

cars—in this process, there will be a number of cars attached, possibly from different locations

within the yard, before the cut of cars becomes too lengthy for our model to handle; (ii) although

we cannot guarantee it, using solutions to the case of “well-conditioned” cycles may provide so-

lutions that are useful if there exist ill-conditioned cycles in the network; and (iii), we have ad-

dressed the case of well-conditioned cycles in significant detail, providing ideas that may prove

to be useful in analyzing the case of ill-conditioned cycles at a later time. We now proceed to ex-

plain each proposed stage to solve the YRP.

3.3.1 Preprocessing Stage

In this stage, we check each switch node j ∈ NS to determine whether or not edge pair

{e( j,2),e( j,3)} is indirectly traversable. The preprocessing problem for a given switch node is

defined below.
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PREPROCESS( j)

Instance: A yard network G = (N,E) with numbered adjacency lists {Nk(i)}
|N(i)|
k=1 for all

i ∈ N and edge costs ce ≥ 0, e ∈ E; a train length L≥ 0; a switch node j ∈ NS.

Question: Does there exist an SDT( j) feasible position? (Equivalently: Does there exist an

SDT( j) walk of length at least L?)

We prove that PREPROCESS(·) is NP-complete in Section 3.3.1.1 but show in Sections 3.3.1.2–

3.3.1.3 that it is polynomially solvable in the special case where a minimum length is imposed on

all directly traversable cycles.

3.3.1.1 Complexity

We establish the NP-completeness of PREPROCESS(·) based on a reduction from the

longest path problem, which is known to be NP-complete (Garey and Johnson, 1979).

LONGEST-PATH

Instance: An undirected network G̃ = (Ñ, Ẽ), a positive length L̃ and two nodes s̃, t̃ ∈ Ñ.

Question: Does there exist a simple path (i.e., in which each node is visited at most once)

of at least L̃ edges between the nodes s̃ and t̃ in network G̃?

We now establish the complexity of PREPROCESS(·).

Theorem 3 PREPROCESS(·) is NP-complete.

Proof. Inclusion in NP is clear due to the fact that the length of a walk can be computed in poly-

nomial time. We prove NP-hardness of PREPROCESS(·) via reduction from LONGEST-PATH.

Towards proving NP-hardness, we first note that LONGEST-PATH remains NP-complete under

the assumption that every node in Ñ \ {s̃} remains connected to t̃ when s̃ and its adjacent edges

are removed. This assumption does not change the complexity of longest path because a simple

path that begins at node s̃ may not re-enter node s̃.
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Given an arbitrary instance Ĩ = {Ñ, Ẽ, L̃, s̃, t̃} of LONGEST-PATH, we construct an in-

stance I = {N,E,L,c, j} of PREPROCESS( j) as described below. We first expand G̃ = (Ñ, Ẽ) by

attaching a chain of |Ñ|+ 1 nodes {t0, t1, t2, · · · , t |Ñ|} to node t̃. Let N̄ denote the modified node

set.

Thus far, yard structure (i.e., Properties 1–4 as defined in Section 3.2) has not been im-

parted on the network. (Specifically, we may currently have that d(i) > 3 for some nodes i ∈

N̄, where d(i) is the degree of node i in the expanded network; furthermore, nodes will need to

be designated as switch or non-switch nodes with an appropriate numbering provided for each

switch nodes’ neighbors.) We now explain an additional expansion that will provide the required

yard structure.

Initially, we construct a new node s and add the edge [s, s̃], increasing d(s̃) by one. We also

construct nodes {s2,s3} as leaf-node neighbors of s. Now that d(s) = 3, we may define s as a

switch node (as is required in order for PREPROCESS(s) to be well-defined) with N1(s) = s̃,

N2(s) = s2, and N3(s) = s3 and set j = s. (In what follows, it is possible that s̃ will be replaced as

the first neighbor of s.) The transformation up to this point is shown in Figure 3.4.

Now, for each node i ∈ N̄ (which does not include {s,s2,s3}), we perform the following:

(a) if d(i) = 1, no action is required because Properties 1–4 impose no restriction on leaf nodes;

(b) if d(i) = 2, no action is required—simply set the pair of edges adjacent to i to be directly

traversable so that Properties 1–4 are satisfied for this node; (c) if d(i) ≥ 3, perform the expan-

sion that is depicted in Figure 3.5 and described in the following paragraph.

For i ∈ N̄ with d(i) ≥ 3, we let {u(1),u(2), . . . ,u(d(i))} denote the neighbors of i and

replace node i with 3d(i) new switch nodes defined by the sets {v(i, `)}d(i)
`=1, {q(i, `)}d(i)

`=1, and

{r(i, `)}d(i)
`=1. Edges are added between these nodes as follows:

• For `= 1, . . . ,d(i), define N1(v(i, `)) = u(`), N2(v(i, `)) = q(i, `), and N3(v(i, `)) = r(i, `).

• For `= 2, . . . ,d(i)−1, define N1(q(i, `)) = q(i, `+1), N2(q(i, `)) = v(i, `), and N3(q(i, `)) =

q(i, `− 1). Perform the same definitions for ` = 1 and ` = d(i) with the following excep-

tions:
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– For `= d(i), define N1(q(i, `)) = r(i,1).

– For ` = 1, N3(q(i, `) is undefined. Thus, q(i,1) will have degree two in the trans-

formed network.

• For `= 2, . . . ,d(i)−1, define N1(r(i, `)) = r(i, `−1), N2(r(i, `)) = v(i, `), and N3(r(i, `)) =

r(i, `+ 1). Perform the same definitions for ` = 1 and ` = d(i) with the following excep-

tions:

– For `= 1, define N1(r(i, `)) = q(i,d(i)).

– For ` = d(i), N3(r(i, `)) is undefined. Thus, r(i,d(i)) will have degree two in the

transformed network.

Because node i—which was previously a neighbor of nodes {u(1),u(2), . . . ,u(d(i))}–has been

removed, node v(i, `) will replace the position of node i in the numbered adjacency list for node

u(`), ` = 1, . . . ,d(i). We define V (i) = {v(i, `)}d(i)
`=1∪{q(i, `)}

d(i)
`=1∪{r(i, `)}

d(i)
`=1 as the set of new

nodes that resulted from expanding node i ∈ N̄ (where V (i) = {i} if d(i)≤ 2) and e?(i) as the new

edge between q(i,d(i)) and r(i,1). For d(i) ≥ 3, observe that a simple directly traversable walk

between any pair of nodes in {v(i, `)}d(i)
`=1 on the subgraph induced by V (i) must traverse the edge

e?(i).

Let G denote the resulting network, and observe that the nodes of the resulting network

G have maximum degree three with all degree-three nodes having designated first, second, and

third neighbors—therefore, G constitutes a yard network. Let N and E respectively denote the

nodes and edges of this network, and define NS as the set of degree-three nodes. The node sets

V (i), i ∈ N̄ are disjoint, and only s, s2, and s3 are contained within N but not
⋃

i∈N̄ V (i).

We assign the length of edge e ∈ E as ce = 0 if (a) there exists a node i ∈ N̄ such that both

of the endpoints of E are elements of V (i) or (b) one of the endpoints of e is the node s; other-

wise, ce = 1. In particular, note that for each t`, `= 1, . . . , |Ñ|, the edge [t`−1, t`] is contained in E

with unit length.
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Figure 3.4: First step in constructing the instance I = {N,E,L,c, j} of PREPROCESS( j)

Figure 3.5: Expansion performed on node i ∈ N̄ with d(i)≥ 3
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We now prove that the answer to PREPROCESS(s) for a train of length L = L̃+ |Ñ|+ 1

is “yes” if and only if the answer to LONGEST-PATH is “yes.” Suppose there exists an SDT(s)

feasible position. Note that this position intersects a sequence of node sets V (i(0))–V (i(1))–· · ·–

V (i(m)), where i(h) ∈ N̄, ∀h ∈ {0,1, . . . ,m} and [i(h−1), i(h)] ∈ Ẽ, ∀k ∈ {1, . . . ,h}, and i(0) = s̃

based on the construction of G. The length of this walk from the switch node s until it intersects

V (i(0)) = V (s̃) is zero. For a given h ∈ {0,1, . . . ,m}, the walk may pass through several edges in

V (i(h)); however, the combined length of all such edges is zero. The walk also traverses m unit-

length edges in moving from V (i(h−1)) to V (i(h)) for all h = 1, . . . ,m, and the total length of the

walk is therefore

m≥ L (= L̃+ |Ñ|+1). (3.1)

Because each simple directly traversable walk that enters and exits V (i), i ∈ N̄, must traverse the

edge e?(i), it is therefore impossible to enter and exit V (i) a second time. Because each V (i), i ∈

N̄, may be exited at most once, the nodes {i(0), i(1), . . . , i(m)} are unique. Combining this obser-

vation with Equation (3.1), the maximum length of any SDT(s) walk would be upper-bounded by

|Ñ| if the chain t0–t1–· · ·–t |Ñ| were excluded from E. Because m> |Ñ|, the set {i(0), i(1), . . . , i(m)}

must include nodes in the chain. Furthermore, a simple directly traversable walk that enters the

chain cannot leave the chain, and therefore i(m) ∈ {t0, t1, . . . , t |Ñ|}. Without loss of general-

ity, we assume that i(m) = t |Ñ|, extending the feasible position if necessary so that it includes

all nodes and edges in the chain. Summarizing the above, we have identified a feasible position

that satisfies i(h) = t |Ñ|−m+h, h ∈ {m− |Ñ|,m− |Ñ|+ 1, . . . ,m}. Because [i(h− 1), i(h)] ∈

Ẽ, ∀h ∈ {1, . . . ,m}, we have that (s̃ =) i(0)–i(1)–· · ·–i(m−|Ñ|− 1) is an s̃-t̃ path in G̃ of length

m− |Ñ| − 1, which is at least L̃ by Equation (3.1). The answer to LONGEST-PATH is therefore

“yes.”

Conversely, suppose there exists an s̃-t̃ path (s̃ =) i(0)–i(1)–· · ·–i(h) (= t̃) of h ≥ L̃ edges

in G̃. Based on construction of G̃, there is an SDT(s) walk in G with length h that traverses the

node sets V (i(0))–V (i(1))–· · ·–V (i(h)). Noting that i(h) = t̃ and the SDT(s) walk has not yet

traversed any nodes in the chain, we may extend this walk to obtain the SDT(s) walk V (i(0))–
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V (i(1))–· · ·–V (i(h))–V (t0)–V (t1)–· · ·–V (t |Ñ|), which has length h+ Ñ + 1 ≥ L̃+ Ñ + 1 = L.

Therefore, the answer to PREPROCESS(s) is “yes” and the proof of this theorem is complete. �

This proof establishes NP-completeness for the general case of PREPROCESS(·). How-

ever, its complexity changes when network G has special structures as we summarize in Sec-

tions 3.3.1.2–3.3.1.3. Towards analyzing PREPROCESS(·), it will be useful to define two sub-

routines that contract the network in a way that preserves both yard structure and Assumption 1.

CONTRACT-1(i)

Given: A leaf node i that is the first neighbor of switch node i′ ∈ NS, i.e., i = N1(i′) and

e(i′,1) = [i, i′].

Procedure: Remove the leaf node i, the switch node i′, and all edges adjacent to i′. For

k ∈ {2,3}, add a new leaf node ik and a new edge [Nk(i′), ik] with length ce(i′,1)+ ce(i′,k). Let

ik replace i′ in the numbered adjacency list of node Nk(i′).

CONTRACT-2(i)

Given: A leaf node i that is the second or third neighbor of switch node i′ ∈ NS, i.e., i =

Nk(i′) and e(i′,k) = [i, i′] for some k ∈ {2,3}. Let k′ denote the (unique) element of {2,3}\

{k}.

Procedure: Remove the leaf node i, the switch node i′, and all edges adjacent to i′. Add

a new edge [N1(i′),Nk′(i′)] with length ce(i′,1)+ ce(i′,k′). Let N1(i′) and Nk′(i′) respectively

replace i′ in the numbered adjacency list of nodes Nk′(i′) and N1(i′).

Figure 3.6 illustrates the yard network that results upon executing CONTRACT-2(1) and

CONTRACT-1(4) in sequence. We now prove some fundamental properties of these subroutines.

Lemma 1 Let i be any leaf node such that N1(i′) = i for some switch node i′ ∈ NS. Let j ∈ NS \

{i′}, and let G′ denote the network that results upon executing CONTRACT-1(i). Then, (a) the

maximum length of any SDT( j) walk is the same in G and G′, and (b) the maximum length of any

r-SDT( j) walk is the same in G and G′.
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Figure 3.6: Process of executing CONTRACT-2(1) and CONTRACT-1(4) in sequence

Proof. We prove part (a) by establishing that there exists a maximal SDT( j) walk of length l in

G if (←) and only if (→) there exists a maximal SDT( j) walk of length l in G′. Because ce ≥

0, ∀e ∈ E, there is always a maximal SDT( j) walk among the set of maximum-length SDT( j)

walks, and this therefore establishes the result.

Proof of (→): Let W , with node representation ( j =) i(0)–i(1)–· · ·–i(m), be a maximal

SDT( j) walk of length l in G. If W includes node i′, then (because W is maximal) W must also

include i, and we therefore have the following two cases: (I) W includes both node i′ and node i;

and (II) W includes neither node i′ nor node i.

Proof of (→; Case I): Suppose W includes both node i and i′. Because i is a leaf node, we

may assume i(m) = i, i(m− 1) = i′, and i(m− 2) = Nk(i′) for some k ∈ {2,3}. Because W is a

directly traversable walk, only its first or last node may be repeated; therefore, i′ must be distinct

from i(1), i(2), . . . , i(m− 2). By assumption, i′ must also be distinct from i(0) = j. Therefore,

after CONTRACT-1(i) has been performed, the sub-walk ( j =) i(0)–i(1)–· · ·–i(m−2) (= Nk(i′))

remains an SDT( j) walk in G′ and its length is l− ce(i′,k)− ce(i′,1) in both G and G′. Observe that

CONTRACT-1(i) has inserted in G′ the new leaf node ik and the new edge [Nk(i′), ik] with length

ce(i′,k) + ce(i′,1); thus, i(0)–i(1)–· · ·–i(m− 2) can be extended in G′ to i(0)–i(1)–· · ·–i(m− 2)–

ik with length l− ce(i′,k)− ce(i′,1)+(ce(i′,k)+ ce(i′,1)) = l. Because ik is a leaf node, this walk is
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maximal in G′, thereby completing the proof of this case.

Proof of (→; Case II): Suppose W includes neither node i nor node i′. Note that all edges

removed by CONTRACT-1(i) were incident to node i′. Therefore, we must have that i(0)–i(1)–

· · ·–i(m) remains an SDT( j) walk in G′, and its length remains l. Furthermore, if i′ is adjacent

to i(m), it must be the case that [i(m− 1), i(m)] and [i(m), i′] form an acute angle. Therefore,

if CONTRACT-1(i) added any new edges that are adjacent to i(m), that edge will also form an

acute angle with [i(m− 1), i(m)]. Consequently, W remains maximal in G′, thus completing the

proof of this direction.

Proof of (←): Let W , with node representation ( j =) i(0)–i(1)–· · ·–i(m), be a maximal

SDT( j) walk of length l in G′. We prove that G contains a maximal SDT( j) walk of length l in

two cases: (I) W includes either node i2 or node i3; and (II) W includes neither node i2 nor i3.

Proof of (←; Case I): Suppose W includes node Nk(i′). If Nk(i′) = i(m), it must be the

case that [i(m− 1), i(m)] and [i(m), i′] form an acute angle in G. Therefore, we must have that

( j =) i(0)–i(1)–· · ·–i(m) remains an SDT( j) walk in G, and its length remains l. In another

case, suppose W includes node ik as well. Because ik is a leaf node, we may assume i(m) = ik,

and i(m− 1) = Nk(i′) for some k ∈ {2,3}. Before CONTRACT-1(i) has been performed, the

sub-walk ( j =) i(0)–i(1)–· · ·–i(m− 1) (= Nk(i′)) was an SDT( j) walk in G and its length was

l− ce(i′,k)− ce(i′,1). Observe that CONTRACT-1(i) has removed in G the switch node i′, the leaf

node i and the edges [Nk(i′), i′] and [i′, i] with length ce(i′,k) and ce(i′,1), respectively; thus, i(0)–

i(1)–· · ·–i(m− 1) can be extended in G to i(0)–i(1)–· · ·–i(m− 1)–i′–i with length l− ce(i′,k)−

ce(i′,1)+(ce(i′,k)+ ce(i′,1)) = l. Because i is a leaf node, this walk is maximal in G, thereby com-

pleting the proof of this case.

Proof of (←; Case II): Suppose W includes neither node i2 nor i3. Note that all edges re-

moved by CONTRACT-1(i) were incident to node i′. Therefore, we must have that i(0)–i(1)–· · ·–

i(m) remains an SDT( j) walk in G, and its length remains l.

The proof of part (b) is identical to the proof of part (a) after replacing “SDT( j)” through-

out the proof with “r-SDT( j).” �
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In the absence of directly traversable cycles, we have the following additional characteri-

zation of maximal SDT( j) and maximal r-SDT( j) walks. This result is useful because there will

always exist a maximal SDT( j) walk among the set of maximum-length SDT( j) walks, and like-

wise for r-SDT( j).

Lemma 2 If G contains no directly traversable cycles, then the following statement is true for

every switch node j ∈ NS: every maximal SDT( j) walk and every maximal r-SDT( j) walk ends at

a leaf node.

Proof. We prove the statement only for maximal SDT( j) walks because the proof is analogous

for maximal r-SDT(u) walks after replacing “SDT” with “r-SDT.” Let ( j =) i(0)–i(1)–· · ·–i(m)

denote a maximal SDT( j) walk. If i(m) is not a leaf node, then by Assumption 1, i(m) is a switch

node; thus, there exists a node j′ ∈ N such that the edge pair {[i(m− 1), i(m)], [i(m), j′]} is di-

rectly traversable—if i(m−1) = N1(i(m)), then j′ = N2(i(m)); else j′ = N1(i(m)). If j′ = i(h) for

some h ∈ {0,1, . . . ,m− 1}, then we have identified the directly traversable cycle i(h)–i(h+ 1)–

· · ·–i(m)– j′ (a contradiction with the assumption that there are no directly traversable cycles);

else, i(0)–i(1)–· · ·–i(m)– j′ is an SDT( j) walk (a contradiction because i(0)–i(1)–· · ·–i(m) is a

maximal SDT( j) walk). �

Using Lemma 2, we may prove (in the vein of Lemma 1 for CONTRACT-1(·)) conditions

under which CONTRACT-2(·) preserves MSi and MSi.

Lemma 3 Let i be a leaf node with the smallest value of ce(i,1). (That is, i is a leaf node with the

shortest-length adjacent edge.) If i ∈ {N2(i′),N3(i′)} for some i′ ∈ NS, then let G′ denote the

network that results upon executing CONTRACT-2(i). For any j ∈ NS \ {i′} (a) the maximum

length of any SDT( j) walk is the same in G and G′, and (b) the maximum length of any r-SDT( j)

walk is the same in G and G′.
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Proof. We will assume without loss of generality that i = N3(i′) (i.e., k = 3 and k′ = 2 in the def-

inition of CONTRACT-2(i)) as the proof for i = N2(i′) is symmetric. We prove part (a) by estab-

lishing that (→) for every maximum-length, maximal SDT( j) walk in G, there exists an SDT( j)

walk of the same length in G′, and (←) for every maximum-length, maximal SDT( j) walk in G′,

there exists an SDT( j) walk of the same length in G.

Proof of (→): Let W , with node representation ( j =) i(0)–i(1)–· · ·–i(m), denote a maximum-

length, maximal SDT( j) walk in G. We prove this result in three cases: (I) W includes neither i′

nor i, (II) W includes i′ but not i, and (III) W includes both i′ and i.

Proof of (→, Case I): If W includes neither i′ nor i, then W is an SDT( j) walk with the

same length in G′, and there is nothing to prove.

Proof of (→, Case II): If W includes i′ but not i, then let h{1,2, . . . ,m−1} denote the index

such that i(h) = i′. (Note h 6= 0 because j is distinct from i′ by assumption in the lemma’s state-

ment, and h 6= m because we know that maximal SDT( j) walks end at a leaf nodes but i′ ∈ NS.)

Because i = N3(i′) is not traversed, we know that either i(h− 1) = N1(i′) and i(h+ 1) = N2(i′)

or i(h− 1) = N2(i′) and i(h+ 1) = N1(i′). Therefore, the total length of the edges [i(h− 1), i(h)]

and [i(h), i(h+ 1)] is ce(i′,1)+ ce(i′,2). As a consequence of CONTRACT-2(i), nodes i(h− 1) and

i(h+ 1) are neighbors in G′ such that ( j =) i(0)–i(1)–· · ·–i(h− 1)–i(h+ 1)–i(h+ 2)–· · ·–i(m) is

an SDT( j) walk in G′. Because the new edge [i(h− 1), i(h+ 1)] in G′ has length ce(i′,1)+ ce(i′,2),

this SDT( j) walk has the same length as W .

Proof of (→, Case III): If W includes both i′ and i, then we must have that i(m− 1) = i′

and i(m) = i—in this case we could construct another maximal SDT( j) walk W ′ by replacing

[i(m− 1), i(m)] = e(i′,3) in W with e(i′,2) and then iteratively extending the SDT( j) walk (as

in the proof of Lemma 2 until it is no longer possible to add additional edges. By Lemma 2, W ′

ends at a leaf node; furthermore, because i is a leaf node with the smallest value of ce(i,1), the

last edge of W ′ must have length at least ce(i,1). Because the edge e(i,1) is the only edge in W

that is not in W ′, we have that W ′ is also a maximum-length, maximal SDT( j) walk. Case III is

therefore proven as a consequence of Case II, thereby completing the proof of (→).
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Proof of (←): Let W , with node representation ( j =) i(0)–i(1)–· · ·–i(m), denote a maximum-

length, maximal SDT( j) walk in G′. Let e′ denote the unique edge added to G′ by CONTRACT-

2(i). If e′ is not traversed by W , then W is also an SDT( j) walk in G, and its length remains the

same. We therefore assume e′ is traversed by W , i.e., there exists h ∈ {1, . . . ,m} such that e′ =

[i(h− 1), i(h)], where ce′ = ce(i′,1)+ ce(i′,2). In this case, ( j =) i(0)–i(1)–· · ·–i(h− 1)–i′–i(h)–

i(h+1)–· · ·–i(m) is an SDT( j) walk in G, and its length is the same in G′ as in G. This completes

the proof of (←) as well as part (a).

The proof of part (b) is identical to the proof of part (a) after replacing “SDT( j)” through-

out the proof with “r-SDT( j).” �

Given the above results, we are now in position to analyze PREPROCESS(·) for special

cases of the network G.

3.3.1.2 Case 1: G contains no directly traversable cycles

We now demonstrate that if G contains no directly traversable cycles, we can solve

PREPROCESS( j) in polynomial time. Although this assumption is not realistic in practice, it

provides considerable simplifications that will extend naturally (see Section 3.3.1.3) to the more

realistic case where all directly traversable cycles have length at least L.

Under the assumption that G contains no directly traversable cycles, we demonstrate that

PREPROCESS( j) can be solved for all j ∈ NS by solving a single linear program (LP) that simul-

taneously determines the values MS j and MS j for every switch node j ∈ NS. Naturally, MS j ≥ L

will be necessary and sufficient to imply the answer to PREPROCESS( j) is “yes.”

Let yi and xi, i ∈ NS, respectively be variables that represent MSi and MSi. The LP is given

as
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min ∑
i∈NS

yi, (3.2a)

s.t. yi ≥ ce(i,1), ∀i ∈ NS : |N(N1(i))|= 1, (3.2b)

yi ≥ xN1(i)+ ce(i,1), ∀i,N1(i) ∈ NS,N1(N1(i)) = i, (3.2c)

yi ≥ yN1(i)+ ce(i,1), ∀i,N1(i) ∈ NS,N1(N1(i)) 6= i, (3.2d)

xi ≥ ce(i,k), ∀i ∈ NS, k ∈ {2,3} : |N(Nk(i))|= 1, (3.2e)

xi ≥ xNk(i)+ ce(i,k), ∀i ∈ NS, k ∈ {2,3} : Nk(i) ∈ NS, N1(Nk(i)) = i, (3.2f)

xi ≥ yNk(i)+ ce(i,k), ∀i ∈ NS, k ∈ {2,3} : Nk(i) ∈ NS, N1(Nk(i)) 6= i, (3.2g)

invoking Assumption 1 to eliminate degree-two nodes. The maximum space from a switch node

i in the direction of its leaf node neighbor Nk(i) is specified by Constraint (3.2b) for k = 1 and

Constraint (3.2e) for k ∈ {2,3}. Constraints (3.2f) and (3.2g) establish lower bounds on the max-

imum space from a switch node i in the direction of its second or third neighbor, provided that

the neighbor is a switch node. For a switch node i, the maximum space in the direction of its

first neighbor, provided that the neighbor is a switch node, is specified in Constraints (3.2c) and

(3.2d). The objective function (3.2a) ensures that we do not overestimate the space variables.

Before establishing the relevant properties of LP (3.2), we first illustrate its application to

the notional yard network depicted in Figure 3.7. The LP for this example network is given as
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min y3 + y4 + y6 + y8, (3.3a)

s.t. x3 ≥ 3, (3.3b)

x3 ≥ 2, (3.3c)

y3 ≥ x4 +2, (3.3d)

x4 ≥ 2, (3.3e)

x4 ≥ x6 +3, (3.3f)

y4 ≥ x3 +2, (3.3g)

x6 ≥ 3, (3.3h)

x6 ≥ y8 +2, (3.3i)

y6 ≥ y4 +3, (3.3j)

x8 ≥ 2, (3.3k)

x8 ≥ y6 +2, (3.3l)

y8 ≥ 2. (3.3m)

Constraints (3.3b), (3.3c), (3.3e), (3.3h), and (3.3k) specify lower bounds on the maximum space

from nodes 3, 5, 6 and 8 in the direction of their leaf node neighbors. Note that x-variables are

used to represent these quantities because the leaf nodes correspond to either the second or third

neighbor of nodes 3, 5, 6 and 8. Constraint (3.3m) performs a similar function for node 8, en-

suring y8 ≥ 2 because the adjacent leaf node is the first neighbor of node 8. The remaining con-

straints ensure that variables x and y of the switch nodes are in a correct relationship with their

neighbors’ variables based on how they are connected. For example, Constraint (3.3f) ensures

that x4 (the space from node 4 in the direction of nodes 5 and 6) should be at least 3 (the length

edge [4,6]) plus x6 (the space from node 6 in the direction of nodes 7 and 8). An optimal solution

to this LP is (x3,x4,x6,x8)= (3,7,4,10) and (y3,y4,y6,y8)= (9,5,8,2). If L= 6, PREPROCESS( j)
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Figure 3.7: An acyclic network

would return “yes” for j = 3 and j = 6 (because y j ≥ L) and “no” otherwise.

The combination of Lemmas 1–3 yields a procedure for decomposing the yard network,

one switch node at a time, in such a way that preserves MS j and MS j. This will yield not only a

proof (see Theorem 4) of correctness for LP (3.2), but specialized procedure to solve the LP (and

PREPROCESS( j), ∀ j ∈ NS) that exploits network structure.

Lemma 4 If G contains no directly traversable cycles, then G contains a leaf node i (that is con-

nected to a switch node, say i′ ∈ NS) such that executing either CONTRACT-1(i) or CONTRACT-

2(i) yields a new network G′ that satisfies the following property: For every j ∈ NS \ {i′}, (a)

the maximum length SDT( j) walk is the same in G and G′, and (b) the maximum length r-SDT( j)

walk is the same in G and G′.

Proof. This result follows as a direct consequence of Lemmas 1 and 3 upon selecting i as a leaf

node that has the shortest adjacent edge. Based on Lemma 2, the leaf node i exists in G since it

contains no directly traversable cycles. If i = N1(i′), Lemma 1 provides the result upon executing

CONTRACT-1(i); otherwise, Lemma 3 provides the result upon executing CONTRACT-2(i). �

As another consequence of the assumption that there are no directly traversable cycles,

removing a leading sequence of edges from a maximum-length SDT(·) or r-SDT(·) walk will

yield another maximum-length SDT(·) or r-SDT(·) walk.
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Lemma 5 Suppose ( j =) i(0)–i(1)–· · ·–i(m) is a maximum-length SDT( j) walk in a yard net-

work G that contains no directly traversable cycles. Then for every h = 1, . . . ,m− 1, the sub-

walk i(h)–i(h+ 1)–· · ·–i(m) is a maximum-length SDT(i(h)) walk (if i(h+ 1) = N1(i(h))) and a

maximum-length r-SDT(i(h)) walk otherwise.

Proof. Suppose that i(h+ 1) = N1(i(h)). By contradiction, let (i(h) =) i′(0)–i′(1)–· · ·–i′(m′)

be an SDT(i(h)) walk that is strictly longer than the SDT(i(h)) walk i(h)–i(h + 1)–· · ·–i(m).

We have either (I) i(0)–i(1)–· · ·–i(h)–i′(1)–i′(2)–· · ·–i′(m′) is an SDT( j) walk or (II) the node

sets {i(0), i(1), . . . , i(h)} and {i′(1), i′(2), . . . , i′(m′)} overlap. In case (I), the new walk must be

longer than i(0)–i(1)–· · ·–i(m) because i′(0)–i′(1)–· · ·–i′(m′) is longer than i(h)–i(h+ 1)–· · ·–

i(m) (a contradiction). Case (II) is also a contradiction because it implies existence of a directly

traversable cycle, i(`)–i(`+1)–· · ·–i(h)–i′(1)–i′(2)–· · ·–i′(`′), where `′ ∈ {1, . . . ,m′} is the small-

est index such that i′(`′) ∈ {i(1), i(2), . . . , i(h)}. �

The following definitions will aid in proving the correctness of LP (3.2). For j ∈ NS, define

Q( j)≡ {i ∈ NS : there exists an SDT(i) walk that includes j}, (3.4a)

Q̄( j)≡ {i ∈ NS : there exists an r-SDT(i) walk that includes j}. (3.4b)

Note that Q( j)∩ Q̄( j) 6= /0 implies existence of a closed directly traversable walk (by merg-

ing the SDT(i) and r-SDT(i) walk), which therefore implies existence of a directly traversable

cycle. We may therefore assume Q( j)∩ Q̄( j) = /0, ∀ j ∈ NS. Further, because j is reachable along

an SDT(i) or r-SDT(i) walk if and only if i is reachable along and SDT( j) or r-SDT( j) walk,

Q( j)∪ Q̄( j) must equal the set of switch nodes that are reachable from node j.

We now build towards a proof that an optimal solution of the LP (3.2) establishes the value

of MSi. Towards this end, we first establish the impact of the subroutines CONTRACT-1(·) and

CONTRACT-2(·) on LP (3.2). Both CONTRACT-1(·) and CONTRACT-2(·) will remove a sin-

gle switch node from the network. With reference to the removed switch node i′, it will simplify
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exposition throughout the remainder of this section to rename variables (xi,yi), i ∈ NS \ {i′} as

(w(i′)
i ,z(i

′)
i ), i ∈ NS \{i′} as follows:

For i′ ∈ NS, i ∈ Q(i′): w(i′)
i ≡ yi and z(i

′)
i = xi, (3.5a)

For i′ ∈ NS, i ∈ Q̄(i′): w(i′)
i ≡ xi and z(i

′)
i = yi. (3.5b)

Lemma 6 Let i be a leaf node that is the first neighbor of a switch node i′, i.e., i = N1(i′). Let

G denote the original network, and let G′ denote the network after CONTRACT-1(i) has been

executed. Similarly, let LP(G) and LP(G′) denote the LP (3.2) under each network, and let Γ(G)

and Γ(G′) denote the respective sets of variables associated with these LPs. Then LP(G′) is a

restriction of LP(G) in the sense that (a) Γ(G′) ⊆ Γ(G) and (b) any feasible solution to LP(G′)

can be extended into a feasible solution for LP(G) by assigning values to the variables in Γ(G) \

Γ(G′).

Proof. Let i′ denote the switch node that was removed by CONTRACT-1(i). The set of vari-

ables associated with LP(G′) includes (x j,y j), j ∈ NS \ {i′}, while the set of variables associated

with LP(G) are (x j,y j), j ∈ NS. This proves part (a) as Γ(G′)∪ {xi′,yi′} = Γ(G). Consider a

solution (x j,y j), j ∈ NS \ {i′} to LP(G′). We now establish that the solution to LP(G′) can be

extended to a solution (x̄ j, ȳ j), j ∈ NS to LP(G) by assigning ȳi′ = ce(i′,1) and x̄i′ = max{z̄(i
′)

N2(i′)
+

ce(i′,2), z̄
(i′)
N3(i′)

+ ce(i′,3)}. Assuming neither N2(i′) nor N3(i′) is a leaf node (with a description of

simplification in these special cases to follow), the constraints that involve variables yi′ and xi′ in
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the LP(G) are:

yi′ ≥ ce(i′,1), (3.6a)

xi′ ≥ ce(i′,2)+ z̄(i
′)

N2(i′)
, (3.6b)

w̄(i′)
N2(i′)

≥ ce(i′,2)+ yi′, (3.6c)

xi′ ≥ ce(i′,3)+ z̄(i
′)

N3(i′)
, (3.6d)

w̄(i′)
N3(i′)

≥ ce(i′,3)+ yi′, (3.6e)

Constraints (3.6a) is satisfied at equality by the given value for ȳi′ . Constraints (3.6b) and (3.6d)

must be satisfied because x̄i′ is set equal to max{z̄(i
′)

N2(i′)
+ ce(i′,2), z̄

(i′)
N3(i′)

+ ce(i′,3)}. On the other

hand, LP(G′) contains the constraints w̄(i′)
N2(i′)

≥ ce(i′,2) + ce(i′,1) and w̄(i′)
N3(i′)

≥ ce(i′,3) + ce(i′,1),

respectively corresponding to the switch node N2(i′) and N3(i′) in the direction of the new leaf

nodes constructed by CONTRACT-1(i). Because yi′ has been set equal to ce(i′,1), constraints

(3.6c) and (3.6e) must be satisfied. If N2(i′) is a leaf node, the proof is modified by setting z̄(i
′)

N2(i′)
=

0 and removing constraint (3.6c); likewise, if N3(i′) is a leaf node, set z̄(i
′)

N3(i′)
= 0 and remove con-

straint (3.6e). Therefore, all constraints involving the two variables yi′ and xi′ are satisfied by the

chosen setting, completing the proof of part (b). �

Lemma 7 Let i be a leaf node with the smallest value of ce(i,1). (That is, i is a leaf node with the

shortest-length adjacent edge.) If i ∈ {N2(i′),N3(i′)} for some i′ ∈ NS, then let G′ denote the

network that results upon executing CONTRACT-2(i). Let LP(G) and LP(G′) denote LP (3.2)

under the original and contracted network, and let Γ(G) and Γ(G′) denote their respective sets

of variables. Then LP(G′) is a restriction of LP(G) in the sense that (a) Γ(G′)⊆ Γ(G) and (b) any

feasible solution to LP(G′) can be extended into a feasible solution for LP(G) by assigning values

to the variables in Γ(G)\Γ(G′).

Proof. With the exception of node i′, all switch nodes from G remain switch nodes in G′; there-

fore, Γ(G′)∪{xi′,yi′}= Γ(G), proving part (a).
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We now prove part (b). Towards this end, we assume without loss of generality that i =

N3(i′) as the proof for i = N2(i′) is symmetric. Let (x̄ j, ȳ j), j ∈ NS \ {i′}, denote any feasible

solution to LP(G′). In accordance with Equations (3.5), let (w̄(i′)
j , z̄(i

′)
j ), j ∈ NS \ {i′} denote the

(fixed) values of (w(i′)
j ,z(i

′)
j ) under solution (x̄ j, ȳ j), j ∈ NS \ {i′}. Observe for k ∈ {1,2} that

z̄(i
′)

Nk(i′)
= x̄Nk(i′) and w̄(i′)

Nk(i′)
= ȳNk(i′) if N1(Nk(i′)) = i′; otherwise, z̄(i

′)
Nk(i′)

= ȳ(i
′)

Nk(i′)
and w̄(i′)

Nk(i′)
= x̄Nk(i′).

To prove part (b), it suffices to prove that xi′ and yi′ can be assigned values such that the

collection {x̄ j : j ∈ NS \ {i′}} ∪ {ȳ j : j ∈ NS \ { j}} ∪ {xi′,yi′} satisfies the (exhaustive) set of

constraints

xi′ ≥ ce(i′,3), (3.7a)

yi′ ≥ z̄(i
′)

N1(i′)
+ ce(i′,1), (3.7b)

w̄(i′)
N1(i′)

≥ xi′+ ce(i′,1), (3.7c)

xi′ ≥ z̄(i
′)

N2(i′)
+ ce(i′,2), (3.7d)

w̄(i′)
N2(i′)

≥ yi′+ ce(i′,2), (3.7e)

that are included in LP(G) but not in LP(G′). (Note: In the above we have assumed N1(i′) and

N2(i′) are not leaf nodes, but will summarize at the end of this proof the modifications that are

necessary if this is not the case.)

We claim that the assignment xi′ = z̄(i
′)

N2(i′)
+ ce(i′,2) and yi′ = z̄(i

′)
N1(i′)

+ ce(i′,1) satisfies the sys-

tem (3.7) and therefore proves the result. This assignment immediately satisfies Constraints (3.7b)

and (3.7d) at equality. Additionally, due to Constraints (3.2c), (3.2d), (3.2f), and (3.2g) of LP(G′)

corresponding to node i = N1(i′) in the direction of node N2(i′), we have that

w̄(i′)
N1(i′)

≥ z̄(i
′)

N2(i′)
+ ce(i′,1)+ ce(i′,2), (3.8)
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and corresponding to node i = N2(i′) in the direction of node N1(i′), we have that

w̄(i′)
N2(i′)

≥ z̄(i
′)

N1(i′)
+ ce(i′,1)+ ce(i′,2). (3.9)

Therefore, upon substituting xi′ into (3.8) and yi′ into (3.9), Constraints (3.7c) and (3.7e)

are satisfied with respect to this assignment.

To complete the proof, Constraint (3.7a) must be dominated by Constraint (3.7d) as a con-

sequence of our selection of i. To see this, let (i′ =) i(0)–i(1)–· · ·—i(m) (with edge representa-

tion e(1)–e(2)–· · ·–e(m)) denote any maximal SDT(i′) walk in G such that i(1) = N2(i′). Then,

LP(G) includes the constraint set

xi′ ≥ z̄(i
′)

i(1)+ ce(1), (3.10a)

z̄(i
′)

i(h) ≥ z̄(i
′)

i(h+1)+ ce(h+1), ∀h = 1, . . . ,m−2, (3.10b)

z̄(i
′)

i(m−1) ≥ ce(m), (3.10c)

where z̄(i
′)

i(m) does not appear on the right-hand side of Constraint (3.10c) because (via Lemma 2),

maximal SDT(i′) walks must end at a leaf node. Summing Constraints (3.10) yields xi′ ≥∑
m
h=1 ce(h)≥

ce(m). By assumption in this lemma’s statement, i(m) is either the second or third neighbor of

i(m− 1), and by selecting i as a leaf node with the minimum-cost adjacent edge, we must have

ce(m) ≥ ce( j,3). Thus, we have that xi′ ≥ ce( j,3) and Constraint (3.7a) is satisfied.

Finally, we address the case where either N1(i′) or N2(i′) is a leaf node. If N1(i′) is a leaf

node, the proof proceeds exactly as above after assigning the value z̄(i
′)

N1(i′)
= 0 and removing con-

straint (3.7c). Similarly, if N2(i′) is a leaf node, apply the above proof after assigning z̄i′
N2(i′)

= 0

and removing constraint (3.7e). �

Lemmas 6–7 lead to the following proof of correctness for LP (3.2).

Theorem 4 If G contains no directly traversable cycles, then (a) LP (3.2) is feasible and (b) y j =

MS j, ∀ j ∈ NS in every optimal solution.
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Proof. By iteratively selecting a leaf node i with the shortest adjacent edge, we can execute ei-

ther CONTRACT-1(i) or CONTRACT-2(i), depending on whether or not i is the first neighbor

of some switch node. By selecting i in this way, Lemma 4 guarantees the resulting network will

preserve MS j, j ∈ NS, in each iteration, with the exception that MSi′ (where i′ is the neighbor of

the leaf node i) is no longer defined. Because each iteration removes a switch node, the number

of iterations will be P≡ |NS|. Therefore, for p = 0,1, . . . ,P, let Gp denote the network that results

after p iterations and let LP(Gp) denote the corresponding instance of LP (3.2). Define NS(p) as

the set of switch nodes in Gp such that

NS = NS(0)⊇ NS(1)⊇ ·· · ⊇ NS(P) = /0. (3.11)

We now complete the proof in two parts: We first establish the existence of a feasible solution for

which y j = MS j for every switch node j ∈NS, thus establishing result (a); we then establish result

(b) by proving that MS j is a lower bound on feasible y j, implying that y j = MS j, ∀ j ∈ NS for any

optimal solution under Objective (3.2a).

To prove result (a), we prove the following statement inductively: For all p = 0,1, . . . ,P,

there exists a feasible solution to LP(Gp) in which y j = MS j and x j = MS j, ∀ j ∈ NS(p). The

base case, p = P, is trivial because NS(P) = /0; thus, LP(GP) has no variables or constraints and is

therefore vacuously feasible.

We will now assume the result holds for a given value of p and prove the result must also

hold for p− 1. Let i′ denote the (unique) switch node in NS(p− 1) \ NS(p), let i denote the

leaf node that was contracted to remove node i′. Let (x̄ j, ȳ j), j ∈ NS(p) denote a fixed solution

that satisfies the induction hypothesis, i.e., ȳ j = MS j and x̄ j = MS j, ∀ j ∈ NS(p). By applying

Lemma 6 (if i = N1(i′)) or Lemma 7 (if i = N2(i′)), we may assign values to xi′ and yi′ such that

the collection {x̄ j, ȳ j : j ∈ NS(p)} ∪ {xi′,yi′} is feasible to LP(Gp−1). We now prove that this

assignment provides the required solution to establish the case p−1 in the inductive proof.

Towards proving that yi′ = MSi′ in case p− 1 (denoted as “Result I”), let (i′ =) i(0)–
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i(1)–· · ·–i(m) (with edge representation e(1)–e(2)–· · ·–e(m) such that e(1) = e(i′,1)) denote a

maximum-length SDT(i′) walk in Gp−1. By Lemma 4, we have that

MSi′ =
m

∑
h=1

ce(h). (3.12)

We have either i(2) = N1(i(1)), which we denote as “Result I, Case A” or succinctly “Case (I:A),”

or i(2) ∈ {N2(i(1)),N3(i(1))}, which we denote as “Case (I:B)”. We prove that Lemmas 6–7 set

yi′ = MSi′ in each of these cases.

In case (I:A), suppose i(2) = N1(i(1)). By Lemma 5, i(1)–i(2)–· · ·–i(m) is a maximum-

length SDT(i(1)) walk. We proceed with the proof of this case by assuming that CONTRACT-

2(i) was executed in iteration p, and we end the proof of this case by summarizing the simplifica-

tions that result if CONTRACT-1(i) was executed instead. Lemma 7 sets

yi′ = ce(i′,1)+ z̄(i
′)

N1(i′)
, (3.13a)

= ce(1)+ z̄(i
′)

i(1), (3.13b)

= ce(1)+ ȳi(1), (3.13c)

= ce(1)+MSi(1), (3.13d)

= ce(1)+
m

∑
h=2

ce(h), (3.13e)

which is equal to MSi′ by Equation (3.12), thereby yielding the result. In the above, Equation (3.13a)

is taken directly from Lemma 7. Equation (3.13b) holds because i(1) = N1(i′) in order for (i′ =

) i(0)–i(1)–· · ·–i(m) to be an SDT(i′) walk. Equation (3.13c) employs the substitution z̄(i
′)

i(1) =

ȳi(1) from Equation (3.5) because i′ is reachable from i(1) along the r-SDT(i(1)) walk i(1)–i(0).

Equation (3.13d) invokes the induction hypothesis, and Equation (3.13e) employs Lemmas 5–

Lemma 4, which state that (Lemma 4) MSi(1) must equal the length of the longest SDT(i(1))

walk in Gp−1 and (Lemma 5) the length of this walk is ∑
m
h=2 ce(h). To complete the proof of this

case, observe that if CONTRACT-1(i) was executed in iteration p, then m= 1 and Equations (3.13)
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hold upon setting z̄(i
′)

N1(i′)
= 0 (as specified by Lemma 6).

In case (I:B), Suppose i(2) ∈ {N2(i(1)),N3(i(1))}. By Lemma 5, i(1)–i(1)–· · ·–i(m) is a

maximum-length r-SDT(i(1)) walk. In this case, the proof is analogous to case I with the modi-

fication that ȳi(1) is replaced by x̄i(1) (because i′ is now reachable along the SDT(i(1)) walk i(1)–

i(0)) and MSi(1) is replaced by MSi(1) (upon invoking the induction hypothesis). The analog of

Equation (3.13e) holds upon invoking Lemmas 4–5 to guarantee that MS j = ∑
m
h=2 ce(h). This

completes the proof of Case (I:B) and Result I.

Towards proving that xi′ = MSi′ in case p−1 (denoted as “Result II”), let (i′ =) i(0)–i(1)–

· · ·–i(m) (with edge representation e(1)–e(2)–· · ·–e(m)) denote a maximum-length r-SDT(i′)

walk in Gp−1. Assume without loss of generality that i(1) = N2( j), i.e., such that e(1) = e( j,2).

Lemma 4 now implies

MS j =
m

∑
h=1

ce(h). (3.14)

Analogous to result I, we have either i(2) = N1(i(1)), which we denote “case (II:A),” or i(2) ∈

{N2(i(1)),N3(i(1))} denoted “case (II:B).”

In case (II:A), suppose i(2) = N1(i(1)) such that Lemma 5 guarantees i(1)–i(2)–· · ·–

i(m) is a maximum-length SDT(i(1)) walk. We will first prove this case assuming CONTRACT-

1(i) was executed in iteration p and then provide a summary of the simplifications that result if

CONTRACT-2(i) was executed instead. Lemma 6 sets xi′ =max
{

ce(i′,2)+ z̄(i
′)

N2(i′)
,ce(i′,3)+ z̄(i

′)
N3(i′)

}
,
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which yields

x j = max
{

ce(i′,2)+ z̄(i
′)

N2(i′)
,ce(i′,3)+ z̄(i

′)
N3(i′)

}
, (3.15a)

= max
{

ce(1)+ z̄(i
′)

i(1),ce(i′,3)+ z̄(i
′)

N3(i′)

}
, (3.15b)

= max
{

ce(1)+ ȳi(1),ce(i′,3)+ z̄(i
′)

N3(i′)

}
, (3.15c)

= max
{

ce(1)+MSi(1),ce(i′,3)+ z̄(i
′)

N3(i′)

}
, (3.15d)

= max

{
ce(1)+

m

∑
h=2

,ce(i′,3)+ z̄(i
′)

N3(i′)

}
, (3.15e)

= max
{

MSi′,ce(i′,3)+ z̄(i
′)

N3(i′)

}
, (3.15f)

after applying the logic of (3.13) to the first term in the maximum. We now prove that

MSi′ ≥ ce(i′,3) + z̄(i
′)

N3(i′)
(and therefore xi′ = MSi′ . By Lemma 5, z̄(i

′)
N3(i′)

equals either MSN3(i′) (if

N1(N3(i′)) = i′) or MSN3(i′) (otherwise); therefore, there exists a directly traversable walk W of

length z̄N3(i′) that begins at node N3(i′). One of these cases yields that W is an r-SDT(N3(i′)) walk

and N3(i′)–i′ is an SDT(N3(i′)) walk while the other yields that W is an SDT(N3(i′)) walk and

N3(i′)–i′ is an r-SDT(N3(i′)) walk; thus, W cannot include i′ (as this would imply Q(i′)∩ Q̄(i′) 6=

/0 and the existence of a directly traversable cycle in Gp−1). Therefore, we can create an r-SDT(i′)

walk by merging [i′,N3(i′)] = e(i′,3) with the edges of W . This walk has length ce(i′,3)+ z̄(i
′)

N3(i′)
,

and we must therefore have MSi′ ≥ ce(i′,3) + z̄(i
′)

N3(i′)
because MSi′ is defined as the maximum

length among r-SDT(i′) walks. This completes the proof that xi′ = MSi′ if CONTRACT-1(i) is

executed in iteration p. If CONTRACT-2(i) is executed instead, then the proof holds upon setting

z̄(i
′)

N3(i′)
= 0 as is specified by Lemma 7.

In case (II:B), suppose i(2) ∈ {N2(i(1)),N3(i(1))}. The proof of this case is identical to

case (II:A) with the exception that ȳi(1) is replaced by x̄i(1) and MSi(1) is replaced by MSi(1). The

extension from (II:A) to (II:B) is analogous to the extension from (I:A) to (I:B).

With results I and II established, we have now completed inductive proof for case p− 1,

which therefore yields that LP(Gp) contains a feasible solution in which y j = MS j and x j =
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MS j, ∀ j ∈ NS(p), for all cases p = 0,1, . . . , p. In particular, case p = 0 yields that y j = MS j

and x j = MS j, ∀ j ∈ NS, is feasible for LP (3.2), thus completing the proof of result (a).

To prove result (b), we establish that y j ≥ MS j, ∀ j ∈ NS, for every feasible solution to

LP (3.2). For any switch node j ∈ NS, let ( j =) i(0)–i(1)–· · ·–i(m) (with edge representation

e(1)–e(2)–· · ·–e(m)) be any maximum-length, maximal SDT( j) walk such that MS j = ∑
m
h=1 ce(h).

Then LP (3.2) contains the constraints

yu ≥ z( j)
i(1)+ ce(1), (3.16a)

z( j)
i(h) ≥ z( j)

i(h+1)+ ce(h+1), ∀h = 1, . . . ,m−2, (3.16b)

z( j)
i(m−1) ≥ ce(m), (3.16c)

where z( j)
i(m) does not appear on the right-hand side of (3.16c) because Lemma 2 guarantees that

i(m) is a leaf node. Summing inequalities (3.16) yields

y j ≥
m

∑
h=1

ce(h) = MS j. (3.17)

Note that the feasible solution with y j = MS j, ∀ j ∈ NS, as established in result (a), simultane-

ously achieves the lower bound provided for each y j, j ∈ NS. Because all y-variables appear with

a positive coefficient of Objective (3.2a), this solution must be optimal for (3.2). For the same

reason, any solution with y j > MS j for some j ∈ NS would be sub-optimal for LP (3.2), thereby

proving result (b). �

Theorem 4 states that the preprocessing problem can simultaneously be solved for all the

switch nodes in the yard with one LP formulation, LP (3.2). The theorem will also help us to

prove that the preprocessing problem is polynomially solvable for the next case.
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3.3.1.3 Case 2: Yard network has minimum directly traversable cycle length at least L

In this subsection, we demonstrate that PREPROCESS(i) remains polynomially solvable

provided that the yard network does not contain directly traversable cycles of length less than L.

For this case, we propose a modified version of the LP (3.2), using the same variables defined in

the LP (3.2), to solve PREPROCESS(i). As opposed to the acyclic case, the procedure for this

case will require solving a different LP associated with each switch node i ∈ NS. We again in-

voke Assumption 1 to remove nodes of degree two, and we then modify network G = (N,E)

to obtain a new network G′ = (N′,E ′) as follows: (a) Let j2 ≡ N2(i) and j3 ≡ N3(i) denote

the second and third neighbors of i in the original network; (b) create four new nodes to define

N′ = N∪{ j′2, j′′2 , j′3, j′′3}; (c) set E ′ = E∪{[i, j′2], [ j
′′
2 , j2], [i, j′3], [ j

′′
3 , j3]}\{[i, j2], [i, j3]}; (d) respec-

tively define the second and third neighbors of i as j′2 and j′3; (e) in a similar fashion, define j′′2

and j′′3 as the appropriately numbered neighbors of j2 and j3, replacing i’s position in their previ-

ous adjacency list; and (f) respectively assign lengths 0, ci j2 , 0, and ci j3 to edges [i, j′2], [ j
′′
2 , j2],

[i, j′3], and [ j′′3 , j3]. This modification is intended to disconnect the node i from its second and

third neighbors as i should not be adjacent to N2(i) or N3(i) in any SDT(i) feasible position. Note

that i is a switch node in the transformed network, so the variable yi is included in the LP (3.2).

With some minor modifications, the LP (3.2) can be applied to G′ to solve PREPROCESS(i),

where the optimal value of yi will (under ideal circumstances) indicate that i is indirectly traversable

if yi ≥ L—we will refer to this LP as LPi. Having yi ≥ L in an optimal solution to LPi turns out

to be a sufficient condition to prove that i is indirectly traversable, but it is not a necessary con-

dition. In fact, an indirectly traversable node i may lead to an infeasible LPi in certain cases. We

will demonstrate that infeasibility of LPi results when LPi includes constraints that correspond to

edges that form a directly traversable cycle in G′. Provided that such a directly traversable cycle

is reachable from i, the minimum-cycle-length condition will allow us to use infeasibility of LPi

to conclude that i is indirectly traversable. Towards solving PREPROCESS(i) in this manner, we

must first remove from G′ any edges that are not contained in any SDT(i) walk. We accomplish

this by performing a breadth first search starting from node i to identify which edges’ constraints
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should remain in LPi.

We now prove the necessary results that allow us to use the infeasibility of LPi or having

yi ≥ L in an optimal solution to LPi to conclude that the answer to PREPROCESS(i) is “yes.”

Before explaining these results, we note that a feasible LPi must have an optimal solution since

all the x variables are nonnegative and zero is a lower bound on the objective value.

Lemma 8 Suppose LPi is feasible. In any optimal solution to LPi, the value of yi is no less than

MSi.

Proof. Let e(1)–e(2)–· · ·–e(m) (with node representation i(0)–i(1)–· · ·–i(m)) denote a SDT(i)

walk of length MSi. We prove that yi ≥ MSi in any solution to LPi. We prove the result for the

case where N1(i(h− 1)) = i(h) for all h ∈ {1,2, . . . ,m} and i(k) is a switch node. (For h =

1, . . . ,m, if i(h) ∈ {N2(i(h− 1)),N3(i(h− 1))} the proof can be modified by replacing yi(h)

throughout the proof with xi(h).) With this simple directly traversable walk, we can extract from

LPi the constraints

yi(h−1) ≥ ce(h)+ yi(h),∀h = 1, . . . ,k. (3.18)

Summing these equations yields

yi = yi(0) ≥ ce(1)+ ce(2)+ ....+ ce(k)+ yi(k). (3.19)

Because ce(1)+ ce(2)+ · · ·+ ce(k) = MSi and yi(k) ≥ 0, this establishes yi ≥MSi. �

Lemma 9 Suppose LPi is feasible. In any optimal solution to LPi, the value of yi exceeds the

value MSi only if it is possible to reach a node j in a cycle W via an SDT(i) walk such that W is

indirectly traversable when oriented such that j is its first and last node.

Proof. We prove that if it is not possible to reach such a node j via an SDT(i) walk, then the

value yi in an optimal solution of LPi is equal to the value MSi. Because we have pruned off
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edges in G′ that are not reachable via an SDT(i) walk, this assumption implies that LPi is an in-

stance of the acyclic LP (3.2). Based on Lemma 4, the value of yi in an optimal solution equals

(and therefore does not exceed) MSi. �

Lemma 10 LPi is infeasible only if it is possible to reach a node j in a cycle W via an SDT(i)

walk such that W is directly traversable when oriented such that j is its first and last node.

Proof. Analogous to the proof of Lemma 9, LPi corresponds to an instance of the acyclic LP (3.2)

if no such node j exists, and Theorem 4 guarantee feasibility of this LP. �

Theorem 5 Provided all cycles have length at least L, switch node i∈NS is indirectly traversable

if and only if (a) LPi is infeasible or (b) yi ≥ L in an optimal solution of LPi.

Proof. This result follows from Lemmas 8–10. Lemma 8 tells us that finding yi < L in the so-

lution of the LPi is sufficient to establish that switch node i is not indirectly traversable. Based

on Lemma 9, finding yi ≥ L in the solution of the LPi means either MSi ≥ L or there is a cycle

of length at least L that is reachable (and directly traversable) via an SDT(i) walk. In both cases,

the switch node i is indirectly traversable. Lemma 10 also states that an infeasible LPi means that

there is there is a cycle of length at least L that is reachable (and traversable) via an SDT(i) walk,

and i is therefore indirectly traversable. �

Theorem 6 The preprocessing problem is polynomially solvable when all cycles are at least L in

length.

Proof. Based upon Theorem 5, solving PREPROCESS(i) corresponds to solving LPi, whose

formulation is polynomial in the size of the PREPROCESS(i) input. Linear programs are polyno-

mially solvable (Khachiyan, 1980). �
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3.3.1.4 Case 3: G contains a directly traversable cycle of length less than L

As explained in Section 3.3, PREPROCESS(·) is NP-complete in general. In this subsec-

tion, we propose two modeling approaches for this case of PREPROCESS(·). The first one is an

algorithm that, for a specific switch node i ∈ NS, searches the yard network to determine if there

is a feasible position for the train anchored at node i. There are two constraints involved in this

search algorithm: (1) it does not search the routes that are not directly traversable; (2) it ensures

that the routes do not visit any edges twice.

A dynamic programming algorithm (Algorithm 3) is proposed to solve the preprocessing

problem. This algorithm invokes an auxiliary function represented in Algorithm 4 to compare

MSi to L for a given switch node i ∈ NS. In Algorithm 3, we define a set V to ensure we do not

visit any edges twice. In line 3 of Algorithm 3, we loop over all the switch nodes in the network

G to determine whether they are traversable or not. For a switch node i, we check the length of

the first edge from node i in the direction of node N1(i) ([i,N1(i)]). If the length is greater than L

units, then that specific switch node is traversable. Otherwise, we check whether there is a space

of at least length L− ciN1(i) at node N1(i) in the direction of its neighbors except node i. We con-

tinue to do this until we finish the search process for the switch node i. We keep a record of the

nodes that we visit during this search with the set V . Whenever we reach a node that is already in

the set V we stop that branch of the search. There exist four cases when we continue the search

from a node i in the direction of node j: (1) node j is a leaf node (2) node j has two outgoing

edges; (3) node j is a switch node and its first neighbor is node i; (4) node j is a switch node and

its first neighbor is not node i. These four cases are considered in lines 1, 3, 14, and 27 of Al-

gorithm 4, respectively. The complexity of the proposed algorithm greatly depends on the pro-

portion of switch nodes in the network and how the switch nodes are connected to each other,

besides the input parameter L. The greater the density of switch nodes in the network, the more

time will be needed to solve the preprocessing problem and the worst case complexity is expo-

nential in the size of the node set. However, in practical cases where the proportion of switch

nodes in the network is very small, the proposed algorithm would be efficient.
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Algorithm 3: Preprocessing
input : L,NS,G = (N,A)
output: NL

1 Set NL = /0

2 Set V = /0

3 for i ∈ NS do
4 if ciN1(i) > L then
5 NL = NL∪{i}
6 else
7 V =V ∪{i,N1(i)}
8 if f (i,N1(i),L− ciN1(i),V ) then
9 NL = NL∪{i}

10 end
11 end
12 Set V = /0

13 end

3.3.2 Routing Stage

The information on whether or not a train of specific length can traverse the walk [N2(i), i]–

[i,N3(i)] indirectly at each switch node i ∈ NS (i.e., the set NL) is obtained by the proprocessing

stage. The routing stage finds a shortest route using the information obtained from the prepro-

cessing stage. The routing problem for a given origin-destination pair and a train of length L is

defined below.

ROUTING(O,D,L)

Instance: A yard network G = (N,E) with edge costs ce ≥ 0, e ∈ E; a train length L≥ 0; a

set of switch nodes NL; the origin node iO; the destination node iD.

Problem: Find a walk i(0)–i(1)–· · ·–i(m) that minimizes the value Ln1 +∑
m
j=1 c[i( j−1),i( j)]

where i(0) = iO, i(m) = iD, n1 is the number of nodes in the walk that are indirectly tra-

versed, and the edge pair [i( j), i( j + 1)]–[i( j + 1), i( j + 2)] is either directly or indirectly

traversable for all j ∈ {0, . . . ,m−2}.

There are a set of assumptions in the routing problem. The train starts its route from the
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Algorithm 4: Auxiliary function ( f )
input : i,N1(i),L,V
output: true\false

1 if |N(N1(i))|= 1 then
2 return false
3 else if |N(N1(i))|= 2 and N(N1(i)) = {i, j} then
4 if L < cN1(i) j then
5 return true
6 else
7 if j /∈V then
8 V =V ∪{ j}
9 if f (N1(i), j,L− cN1(i) j,G,V ) then

10 return true
11 end
12 end
13 end
14 else if N1(N1(i)) = i then
15 for node j(6= i) such that j is a neighbor of N1(i) do
16 if L < cN1(i) j then
17 return true
18 else
19 if j /∈V then
20 V =V ∪{ j}
21 if f (N1(i), j,L− cN1(i) j,G,V ) then
22 return true
23 end
24 end
25 end
26 end
27 else
28 j = N1(N1(i))
29 if L < cN1(i) j then
30 return true
31 else
32 if j /∈V then
33 V =V ∪{ j}
34 if f (N1(i), j,L− cN1(i) j,G,V ) then
35 return true
36 end
37 end
38 end
39 end
40 return false
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origin by pulling the cars. We consider the middle point of the train as its location in the yard. So

when this middle point reaches the destination node, we say that the train has reached the desti-

nation location. This assumption impacts the total length of the route from the origin to the desti-

nation. When the train passes a switch node i indirectly, it must find a feasible position anchored

at node i. Therefore, the middle point traverse an extra L units which should be added to the total

length of the route from the origin to the destination. As mentioned in Section 3.2, if the desti-

nation node has one outlet, the locomotive must push the cars in backward into the track. So, in

this case, the train can pass the switch nodes indirectly an odd number of times. Toward solving

ROUTING(O,D,L), we first expand the network G = (N,E) as follows:

• We expand the network to account for the direction of each edge that a train passes. So

each non-switch node is expanded to two nodes to account for the direction of the train

when passing the node. Let G′ = (N′,A) be the modified network.

• We make a duplicate copy of network G′. Let G′′ denote this network. The reason that we

have two identical networks G′ (pull layer) and G′′ (push layer) is to account for how the

locomotive moves the cars behind it, whether it pushes or pulls them.

• We expand each switch node i ∈ NS to 6 nodes (2 for each direction, 3 for each adjacent

edge) in each layer. Let V ′k(i) and V ′′k (i), k ∈ {1,2,3} respectively denote the pair of push-

and pull-layer nodes corresponding to Nk(i).

• For each pair of nodes in V ′(i) that the train can traverse their adjacent edges directly (i.e.,

between V ′1(i) and either V ′2(i) or V ′3(i)), we construct a directed arc of length zero. We do

the same for the set V ′′(i).

• For each switch node i that can be traversed indirectly, create four directed arcs with length

L: two between V ′2(i) and V ′′3 (i), and two between V ′3(i) V ′′2 (i). The reason for setting L as

the length is that the train must find an SDT(i) feasible position to continue with the in-

tended walk which adds L units to total length of the route that the train takes.
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Figure 3.8: Initial Network

For instance, Figure 3.9 illustrates the expanded version of yard shown in Figure 3.8, in

which we assume {[3,4], [4,5]} is indirectly traversable. The cost of each green arc is zero as all

of these arcs correspond to a directly traversable route through Figure 3.8. However, the blue arcs

denote the move from one acute edge to the other one, which is not directly traversable. In order

to this, the train must move onto an SDT(i) feasible position which increases the total length trav-

eled by L units. Because traversing an indirectly traversable pair of edges requires reversing the

train’s direction, all of the blue arcs have one endpoint in the pull layer and one endpoint in the

push layer.

After expanding the yard network G, we need to specify the origin and the destination.

Since we assume that the locomotive starts with pulling the cars, we only consider the nodes in

the pull layer of the expanded network G′ that were originated from the origin node in G as the

origin. So we connect these nodes to a dummy origin node with the right direction. To generate

the destination node, we connect all the nodes in push and pull layers of the expanded network

that were originated from the destination node in G to a dummy destination node, unless there is

a restriction that the destination must be in pushlayer. However, if the destination node is a leaf,

we set the node in the push layer as our destination. After expanding the yard network and deter-

mining the origin and destination node, we formulate the YRP as a shortest path problem on the

expanded network to obtain a shortest route for the train which is an optimal solution to the YRP.

Remark 1 There are two ways to solve the YRP with the proposed two-stage approach for case

2 of the yard network. Since the value of yi in the optimal solution to LPi can be computed in-

dependently of the L-parameter, one can compute the optimal value of yi for every switch node

i and use this information to solve the routing stage for a specific train of length L. Another way
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Figure 3.9: Expanded network of the yard instance in Figure 3.8

is to assume that all the switch nodes are indirectly traversable for train of length L and solve the

routing problem first. Then preprocess the indirectly traversed switch nodes in the current solu-

tion one by one, update and solve the routing problem after each preprocess is solved until the

route uses only switch nodes that have already been identified as indirectly traversable. Our pre-

liminary experiments showed that the first way was very fast, and so we did not report results for

the second approach.

We now present a YRP instance, the steps to model the problem and how to solve it. The

YRP instance is shown in Figure 3.10. Edge lengths are shown in the arc labels. The dashed link

represent other parts of the network that are directly traversable with a total length of 10 units.

However, the left end point of the dashed link makes an acute angle with the edge [3,4]. In this

instance, the length of the train is 2 units which makes all the switch nodes indirectly traversable.

Since the destination node has one outlet, the destination node is in the push layer of the ex-

panded network and there is no need to add a dummy destination. We assume that locomotive
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Figure 3.10: A YRP instance (L = 2)

starts the trip by pulling the cars, so the origin node is in the pull layer. There exist two possible

solutions for this instance which are shown in Figure 3.11 and 3.12. As it can be seen in these

two figures, the number of times that locomotive moves from one layer to another layer is an odd

number to satisfy the requirement that it should reach the destination node by pushing the cars.

We now proceed by proposing an alternative approach to solve the PREPROCESS(·) using the

expanded yard network defined in this section.

3.3.3 An Alternative Preprocessing Approach

Using the expanded network of a yard network defined in Section s:chapter2routing, we

propose an alternative approach to solve PREPROCESS(i). This approach is an integer pro-

gramming formulation that takes, as its input, only one layer of the expanded version of network

G′ = (N′,E ′) described for switch node i in Section 3.3.1.3. Without loss of generality, we choose

the pull layer of the expanded version. Define Ḡ′′ = (N̄′′, Ā′′) as the pull layer of the expanded

version of network G′. Note that there is no arc connecting the two layers, push and pull, in G′′

when we use only one layer of the expanded version of network G′. This means that the train

cannot be positioned in a way that it occupies the walk [N3( j), j]–[ j,N2( j)] where j ∈ N′S. We

can use the network G′′ to find out whether there is feasible position for a train of length L at
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Figure 3.11: Optimal solution to instance of Figure 3.10 (objective value = 23)
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Figure 3.12: A feasible solution to instance of Figure 3.10 (objective value = 24)
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node i in the direction of its first neighbor. Let xi j ((i, j) ∈ Ā) equal 1 if node i immediately pre-

cedes node j in the feasible position; else, let xi j equal to 0. Let pi equal 1 if node i is the first

node in the position. Let qi equal 1 if node i is the last node in the position.

min ∑
(i, j)∈A′′

ci jxi j + ε ∑
(i, j)∈A′′

xi j, (3.20a)

s.t. ∑
j:(i, j)∈A′′

xi j− ∑
j:( j,i)∈A′′

xi j = pi−qi, i ∈ N′′ (3.20b)

∑
(i, j)∈A′′

ci jxi j ≥ L, (3.20c)

x contains no subtours, (3.20d)

∑
i∈N′′

pi = 1, (3.20e)

∑
i∈N′′

qi = 1, (3.20f)

pi,qi ∈ {0,1}, i ∈ N′′ (3.20g)

xi j ∈ {0,1}, (i, j) ∈ A′′ (3.20h)

Constraints (3.20b) and (3.20c) ensure x defines a feasible position—with subtours excluded by

Constraints (3.20d)—that begins at node i∈N if pi = 1 and ends at i if qi = 1. Constraints (3.20e)

and (3.20f) respectively specify that the position must start and end at exactly one node. Objec-

tive (3.20a) ensures that the formulation gives the smallest position possible and ε is introduced

to break symmetry in favor of shorter positions. With this formulation, we can solve the prepro-

cessing for a switch node i by setting pi = xi,N1(i) = 1 and see whether the formulation is feasible

or not. Feasibility of the formulation means that there is feasible position anchored at node i for

a train of length L. We justify the necessity of the Constraint (3.20d) as the feasible position gen-

erated with the Formulation (3.20) can consist of two disjoint walks in which one of them is a

cycle.

Algorithm 3 and Formulation (3.20) can solve PREPROCESS(·) in all cases of network G.
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We now proceed by presentation the computational results.

3.4 Computational Results

This section presents computational results for the proposed combined preprocess-routing

approach to solve the YRP. The computational experiment is performed on a real yard network

dataset provided by a major rail company. This yard network has 4601 nodes, 4725 edges (0.04%

arc density) and 287 switch nodes (6% switch node density). As the length of the smallest di-

rectly traversable cycle in this dataset is 2380 units, we solve the YRP only for values L ≤ 2380

to ensure that we can solve the preprocessing problems with the LPi formulation. All tests were

conducted on an Intel Core i7 CPU @ 2.93 GHz, 8 GB RAM computer using IBM ILOG CPLEX

Optimization Studio 12.6 to implement the modeling approach. To perform the computational ex-

periments for this section, we generated 400 instances of the yard routing problem with different

origin and destination. Out of these 400 instances, we have removed 125 of them that the train

did not change its direction in the optimal route, even for the smallest L examined. The solution

times are less than one second for all the instances as the modeling approach solves the prob-

lem in polynomial time. In this section, we show how the L parameter, objective function, and

whether or not congestion caused by idle cars affect the optimal solution of the problems.

For the instances generated, four different lengths for the train (L) are examined consider-

ing that these lengths should all be less than the length of the shortest cycle in the yard network in

order for us to use LPi to solve PREPROCESS(i). We examined two objective functions for the

yard routing problems, minimizing the total length of the route including the L units increase in

the objective value for traversing the switch nodes indirectly (OF1) and minimizing the number

times that the train traverse the switch nodes indirectly (OF2). We consider two environments for

the yard network to perform the experiments: an empty yard network (NC) and a yard network

with one percent congestion (C). The one-percent congestion is done randomly for each track

segment in the railyard since we do not have a clear information on the probability distribution

of congestion on the track segments. We do not increase the congestion percentage to ensure that
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the instances do not become infeasible.

For the first set of experiments, we choose OF1 and NC as the objective function and yard

environment, respectively. Figure 3.13(a) and 3.13(b) show the impact of the increase in L on the

total and the pure length of the optimal route, respectively. Instances that hit the upper limit of

the plot are infeasible. These two figures compare the cumulative proportion of instances within

the y-axis value for different parameters of L. The value “pure length of the optimal route” does

not include the L units in it for when the train reverses its direction. Those instances that the blue

plot hit the highest value are infeasible. As can be seen in Figure 3.13(b) increasing the length

of the train up to 1000 units does not change the optimal route. However, when L increases to

2000 units, the previous optimal route is no longer feasible. The reason is that there cannot be

a feasible position for the train of length 2000 units at switch nodes where the train reverses its

direction in the previous optimal route.

Figure 3.14 shows the number of times that the train uses an indirectly-traversable walk at

switch nodes in the yard. Instances with −1 as the number of indirectly traversed switch nodes

are infeasible. Even though on average this value decreases as the length of the train increases,

there exist some instances where this value increases depending on the origin and destination

which is illustrated in Figure 3.15. In Figure 3.15, the two plots at each point in the x-axis corre-

sponds to the same problem. Those instances with negative y-axis are infeasible.

For the second set of experiments, we choose OF2 and NC as the objective function and

the yard environment, respectively. Figure 3.16 and 3.17 compare the new results with the pre-

vious set. There is a significant trade-off between decreasing the number of indirectly traversed

walks in the optimal routes and its total length. In practical situations where indirectly travers-

ing the switch nodes is difficult or expensive, this shows the trade-off in changing the objective

function.

For the last set of experiments, we choose OF1 and NC as the objective function and the

yard environment, respectively. Figure 3.18 compares the new results with the first set of exper-

iment. Those instances that the blue plot hit the highest value are infeasible. We can approxi-
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Figure 3.13: Impact of the parameter L on (a) the total length and (b) the pure length of the short-
est route in the yard network with no congestion
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Figure 3.14: Impact of the parameter L on number of indirectly traversed switch nodes in the op-
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Figure 3.16: Impact of the objective function on the total length of the optimal route for a train
with length 100 units
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Figure 3.17: Impact of the objective function on number of indirectly traversed switch nodes in
the optimal route for a train with length 100 units
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Figure 3.18: Impact of the congestion on the total length of the optimal route for a train with
length 100 units

mately say that the congestion in the yard network does not change the optimal solution for 80

percent of the instances but it makes the other origin-destination pair infeasible.

3.5 Conclusion

We have presented an approach that models the single-train yard routing problem subject

to the geometry of the yard network and the length of the train. The objective of the model is to

minimize the total length of the route that the train takes to reach its destination. Our model is

different from previous work as it considers the geometry of the track segments in the yard and

that the train route must accommodate the total length of the train. The proposed approach mod-

els the problem in two stages, preprocessing and routing. We have shown that the preprocessing

is NP-complete for the general case and we could develop an approach that solves an important

special case in polynomial time. An algorithm and an integer programming formulation are pro-

posed to solve the general case of the preprocessing.

In routing a single train in a railyard, the solution time is of importance as the problem

must be solved repeatedly in a very short time for simulations of train movements in large com-

plex yards. Our computational experiments point out the quick computational time needed for the
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approach to identify the optimal solution for the special case that happens in real yard networks.
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4. Two-train Yard Routing Problem

4.1 Introduction

With the increase in railway traffic and its growing demand, it is necessary to exploit the

capacity of the current railway network as efficiently as possible since extending the rail tracks

to enhance the railway infrastructure is very cost-intensive or may not be feasible in some areas.

One of the difficult problems in doing so is planning a conflict-free movement of trains through a

railway station. In the problem of routing trains in a yard network, there are two important types

of decisions: the routing plan assigns trains to routes and the scheduling plan assigns blocking

times to the track segments and nodes in each route used by a train. These two components are

not independent of each other as conflicts might be avoided by making changes to both of them.

In chapter 3, we reviewed the research related to the routing of a single train in a yard network.

We now give a literature overview of research that allocates the track capacity of the yard net-

work to trains in a conflict-free manner.

One of the most common optimization in routing multiple trains through a rail yard is to

use conflict graph methodology. In this approach, nodes represent a train path and edges corre-

spond to pairwise conflicts, and the routing problem can be explicitly modeled as a node packing

problem. Zwaneveld et al. (1996) propose the first node packing model to route trains through

railway stations, and this problem was later shown to be NP-hard by Kroon et al. (1997). The

model has a timetable as input and determines whether or not this is feasible with respect to the

safety rules and the connection requirements at the station. Despite assuming each train’s candi-

date routes are enumerated a priori, the model remains difficult to solve even after adding clique

inequalities within a branch-and-cut approach. Zwaneveld et al. (2001) and Caimi et al. (2005)

respectively develop new exact and heuristic solution approaches for this problem.

The node packing approach (and all of the papers mentioned in the previous paragraph)

for train routing requires the identification of all conflicting train movement prior to formulating

the model which makes the approach inflexible in dynamic environments (Lusby et al., 2011b).
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In order to address this weakness, Lusby et al. (2011a) examine the problem of maximizing the

number of trains that can be routed conflict-free through a junction given the scheduled arrival

and departure of trains. They propose a set packing model in which no pair of selected train

routes may simultaneously occupy any track section. Although the set packing model does not

require a priori identification of route-pair conflicts, it does require enumerating each train’s can-

didate paths. Caimi et al. (2011) show that maximal conflict cliques can be identified efficiently

for this problem and used to strengthen the formulation of the set packing model.

Further research has sought to identify route-to-train assignments, under a number of ob-

jectives, in which the candidate routes and their scheduled arrival and departure times are fixed a

priori. Sun et al. (2014) develop a multi-objective train routing model on a one-way double track

rail network that takes into account energy consumption, the user satisfaction, and the average

travel time of all trains. Sels et al. (2014) study the train platforming problem with the objective

of minimizing the penalty cost of moving assignments from real to fictive platform and of mov-

ing assignment from preferred to non-preferred (real) platforms.

There are routing models that are not constrained by the scheduled arrival and departure

times for trains. Burggraeve and Vansteenwegen (2017) propose an approach in which the rout-

ing problem precedes the timetabling problem. The routing problem, unrestricted by potential

impacts on the timetable, first assigns trains to routes in order to minimize maximal node usage.

Given the each train’s route, a mixed-integer linear programming model generates a “passenger

robust” timetable that determines when each train occupies each of the segments on its route. Lu

et al. (2004) study the train routing problem in densely populated metropolitan areas, an appli-

cation that requires accounting for the different trackage configurations in the rail network and

the trains’ acceleration and deceleration rates. Borndörfer et al. (2016) investigate the problem

of routing freight with defined origin and destination in a macroscopic transportation network.

Their problem is to minimize the sum of all expected delays and all running times. They formu-

late the problem as a multi-commodity flow on a time-expanded graph which then reduced to a

mixed-integer linear programming by piecewise linear approximation.
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In addition to the disaggregated routing and timetabling research described above, there

are integrated approaches that solve the two problems simultaneously. Li et al. (2013) formulate

a compound model of train routing and scheduling. The objective of their model is to minimize

the total delay of all trains in the railway network. A set of routes for each train from the origin

to the destination are predefined and trains can only select one route in their feasible route sets.

The constraints that they consider in their model are (1) safety constraints that ensure there must

be a minimum headway for two trains passing the same railway section in the same direction;

(2) conflict constraints for the scenarios where two trains of opposite direction occupy the same

rail section at the same time. These constraints ensure a train must dwell on the station such that

the other train can meet and cross; (3) capacity constraints that ensure the number of trains at

the station does not exceed the capacity of stations at any time. They propose a route adjustment

algorithm to obtain good route schemes based on the trains’ delay information. Dewilde et al.

(2013) works on the robustness of a complex station. Their proposed approach iterates between

routing decisions, timetabling and platform assignments to increase robustness. The objective

of their methodology is to maximize the minimal time span between any two trains in a station

zone. In their routing module, a route is selected from a set of candidate routes.

Looking for a conflict-free schedule requires keeping track of all the trains at all times

which is computationally difficult. In this chapter, the routing and scheduling problems are solved

separately to decrease the overall computational difficulty. We indirectly deal with the time index

in the conflict-free definition by accounting for it as a distance in the routing model. We develop

a routing model that using its solution we can generate a scheduling plan with minimum overall

time. In order to obtain a conflict-free schedule, the routing component is solved first which is

not constrained by the scheduling components. Then the schedule of the conflict-free movements

is generated once the routes are defined. We consider the geometry of the yard network when we

choose a route for each train with respect to its length. We demonstrate that this approach, in gen-

erating a routing plan, has a better total travel time when compared to the case where we generate

the train routes individually as a single-train yard routing problem in the yard network.
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The main contributions of this chapter are: (i) our proposed yard routing model to gener-

ate a routing plan for two origin-destination pairs is the first to consider the geometry of the track

segments in the railyard, in a way that scheduling the solution leads to the minimum possible to-

tal travel time; (ii) we develop a scheduling model that can generate a non-conflicting timetable

given the solution obtained from the routing model; and (iii) we demonstrate, on a realistic rail-

yard dataset, that this two-train routing model yields a schedule with less overall time when com-

pared to the solution of two separate single-train routing models as presented in Chapter 3.

4.2 Problem Definition

We consider the problem of routing two trains of given lengths from their origins to their

destination through a railyard defined by the undirected network G = (N,E) with node set N and

edge set E. The yard network has the same topological properties and the same restriction on the

trains’ movements as the single case of this problem, and we will describe the yard network using

the notation of Chapter 3. The purpose of determining the routes for the two trains is to gener-

ate a conflict-free schedule that requires the least overall time. We indirectly estimate the overall

time with the total equivalent distance the two trains travel (i.e., assuming trains move at a con-

stant speed through the network). In addition to the length of the routes that the two trains must

travel to reach their destination, the time to complete the routes may be increased if one train

needs to wait on the other in order to avoid conflict. This can occur when the two trains traverse

the same track segment in the opposite direction. Our proposed model seeks to minimize the es-

timated overall time or its equivalent distance. The resulting optimization problem is to identify

a route for each locomotive to pull a cut of cars across a yard from one location to another with

the objective of minimizing the total length of the two routes and their penalty distance, subject

to the constraints of the geometry of the yard tracks. We refer to this optimization problem as the

Two-train Yard Routing Problem (TYRP).
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4.3 Problem Formulation

In this section, we propose a model that routes two trains in a railyard with the objective

of avoiding direction-wise conflicts between the trains on yard track segments and then in Sec-

tion 4.4 we develop a model that optimizes their scheduling assuming the routes are fixed. This

model is built given the information obtained from solving PREPROCESS(·) for all the switch

nodes (i.e., the value of yi in the optimal solution to PREPROCESS(i) for all i ∈ NS). In order to

formulate this model, we first define the necessary sets, parameters and variables.

Sets:

• G = (N,E) : the undirected yard network (described in Section 3.2)

• G′ = (N,A) : the directed version of the network G

• Gk = (N′,Ak) : the expanded network of G (described in Section 3.3.2) for train k ∈ {1,2}

• S(i, j) : the set of all arcs in the expanded network of G that originated from the arc (i, j) ∈

A

• Sk(i) : the set of all arcs in the expanded network of G for train k ∈ {1,2} that connects the

nodes originated from the switch node i ∈ NLk
in layer push with those in layer pull

• T k
i : the set of all the arcs in the network G′ that creates a feasible position for train k ∈

{1,2} to traverse the switch node i ∈ NLk
indirectly

Note that G1 may have different arc set from G2 since the two trains can have different

lengths that affects the set of indirectly traversable switch nodes. As described in Section 3.3.2,

each direction of an edge [i, j] in the network G (or each arc in the network G′) is represented

by two arcs (pull and push) in the expanded network of G which constructs the set S(i, j). In the

yard illustrated in Figure 4.1, the set T k
5 includes the arcs (5,O2), (O2,5) if train k has a length of

2 units. The set T k
i is constructed using the solution of PREPROCESS(i) and the length of train k.
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Figure 4.1: A two-train yard routing problem with the parameters L1, L2, s1, s2, and B set to 2
unit, 2 unit, 1 unit per hour, 1 unit per hour, and 5 hours, respectively. Edge lengths are defined
as the arc labels. The yard network continues at node 1, 7, 9, and 11 which is not shown in this
figure.

In the expanded network illustrated in Figure 3.9 of Section 3.3.2, the set S(3) includes the blue

arcs.

Parameters:

• c(i, j) : the length of the directed arc (i, j) ∈ Ak in the network Gk

• Lk : the length of train k ∈ {1,2}

• bk
i :


1 if node i ∈ N′ is the origin for train k ∈ {1,2} in the network Gk

−1 if node i ∈ N′ is the destination for train k ∈ {1,2} in the network Gk

0 otherwise

Variables:

• xk
i j : whether (1) or not (0) the arc (i, j) ∈ Ak is traversed by train k ∈ {1,2} in Gk

• zk
i j : whether (1) or not (0) at least one of the arcs in the set S(i, j) for arc (i, j) ∈ A is tra-

versed by train k ∈ {1,2} in network Gk

• yi j : whether (1) or not (0) the length of arc (i, j)∈ A is counted as a penalty in the objective

value
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• tk
i : whether (1) or not (0) train k ∈ {1,2} traverses the switch node i ∈ NLk

indirectly in

network Gk

The integer programming formulation is given by:

min ∑
k∈{1,2}

∑
(i, j)∈Ak

ci jxk
i j + ∑

(i, j)∈A
ci jyi j (4.1a)

subject to

∑
j:(i, j)∈Ak

xk
i j− ∑

j:( j,i)∈Ak

xk
ji = bk

i ∀k ∈ {1,2},∀i ∈ N′ (4.1b)

∑
(i′, j′)∈S(i, j)

xk
i′ j′ ≤ zk

i j ∀k ∈ {1,2},∀(i, j) ∈ A (4.1c)

∑
(i′, j′)∈S(i)

xk
i′ j′ ≤ 4tk

i ∀k ∈ {1,2},∀i ∈ NLk
(4.1d)

z1
i j + z2

ji ≤ 1+ yi j ∀(i, j) ∈ A (4.1e)

zk′
jm + tk

i ≤ 1+ y jm ∀( j,m) ∈ A∩T k
i , i ∈ NLk

,∀k,k′ ∈ {1,2};k 6= k′ (4.1f)

t1
i + t2

i ≤ 1+ y jm ∀( j,m) ∈ A∩T 1
i ∩T 2

i ,∀i ∈ NL1
∩NL2

(4.1g)

tk
i ∈ {0,1} ∀k ∈ {1,2},∀i ∈ NLk

(4.1h)

xk
i j ∈ {0,1} ∀k ∈ {1,2},∀(i, j) ∈ Ak (4.1i)

zk
i j ∈ {0,1} ∀k ∈ {1,2},∀(i, j) ∈ A (4.1j)

yi j ∈ {0,1} ∀(i, j) ∈ A (4.1k)

Objective (4.1a) seeks to minimize the total length of the routes for the two trains plus

the penalty of the two routes. Constraint (4.1b) ensures the flow balance at each node in the ex-

panded network of G for each train, effectively requiring that the net flow into node i for train k is

equal to the flow balance value of that node. Constraint (4.1c) ensures that if train k traverses arc

(i, j) ∈ A in either the push or the pull layer in its expanded network Gk, then the train traverses

that arc (i, j). If train k traverses between the two layers push and pull at switch node i, then train

k traverses node i indirectly which is stated by Constraint (4.1d). Constraint (4.1e) ensures that a
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track segment is traversed in the two routes and counted as a penalty only if both trains traverse

that track segment in the opposite direction. If a train traverses a switch node i indirectly and the

other train traverses the edge [ j,k] in the SDT(i) feasible position of the first train, we count the

length of that edge as a penalty in the objective function using Constraint (4.1f). If the two trains

traverse the same switch node indirectly, we double count the length of the edges in the feasible

position of the shorter train as a penalty in the objective function using Constraint (4.1g). Con-

straint (4.1h)–(4.1k) define the binary restrictions on the decision variables. We now proceed to

the next section in which we describe how to schedule the routes in a conflict-free manner.

4.4 Model Validation

In this section, we compare the routes obtained using the Model (4.1) with the routes ob-

tained by solving the two origin-destination pairs individually as a single-train yard routing prob-

lem. In order to perform this comparison, we develop a scheduling formulation that minimizes

the overall time for the two trains to reach their destination given the two trains’ routes. With this

scheduling model, we can compute the overall scheduling time for the two solutions obtained

with the two model. The reason to choose the single-train routing model as our reference is that

this model runs in polynomial time and consider the track segments configuration. We now pro-

vide the following notation necessary to represent the scheduling model.

Notation:

• Rk: the sequence of nodes {ik(h)}n(k)
h=0 visited by either the front or back of train k ∈ {1,2}

in its optimal route.

• R( f ,k): the sequence of nodes {i( f ,k)(h)}n( f ,k)
h=0 visited by the front of train k ∈ {1,2} in its

optimal route.

• R(b,k): the sequence of nodes {i(b,k)(h)}n(b,k)
h=0 visited by the back of train k ∈ {1,2} in its

optimal route.
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• R( f b,k): the sequence of nodes {i( f b,k)(h)}n( f b,k)
h=0 visited by both the front and back of train

k ∈ {1,2} in its optimal route.

Sets:

• H(k) = {0, . . . ,n(k)} for k ∈ {1,2}

• H( f ,k) = {0, . . . ,n( f ,k)} for k ∈ {1,2}

• H(b,k) = {0, . . . ,n(b,k)} for k ∈ {1,2}

• H( f b,k) = {0, . . . ,n( f b,k)} for k ∈ {1,2}

We use the yard network illustrated in Figure 4.1 to give an example of the above notation.

In this figure, suppose we determined that train 1 uses the route O1–3–4–8–D1 to reach its des-

tination. Assuming that train 1 starts from its origin by pulling the cars attached to it, the node

sequences O1–3–4–5–4–8–9–8–D1, O1–3–4–5–4–8–D1, O1–3–4–8–9–8–D1, and O1–3–4–8–D1

denote R1, R( f ,1), R(b,1), and R( f b,1), respectively. Since the train traverses the node 4 indirectly,

the front of it travels to the node 5 so its back can continue the walk from node 4 to node 8. The

turns at node 4 and 8 imply that the front will visit some nodes that are not visited by the back,

and vice versa. The sets H(k), H( f ,k), H(b,k), and H( f b,k) respectively have 9, 7, 7, and 5 po-

sitions in them.

Parameters:

• M : the summation of the time the two take to traverse their own route without any waiting

time

• B : a minimum required headway between the two trains passing the same location

• sk : the speed of train k ∈ {1,2}.

• Dk
h : 1 and −1 for when the train k ∈ {1,2} pulls and pushes the cars attached to it at posi-

tion h ∈ H(k), respectively
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• Pk(h) : whether (f) or not (b) train k ∈ {1,2} is pulling the cars attached to it at position

h ∈ H(k)

The minimum required headway is the shortest distance or time between vehicles achiev-

able by a rail system without a reduction in the speed of trains which is determined by the struc-

ture of the signaling system. In the yard network illustrated in Figure 4.1 that train 1 takes the

route O1–3–4–8–D1, D1
0 = D1

1 = D1
2 = 1 and D1

3 = D1
4 = −1 where there are 4 positions in

H( f b,1), while P1
0 = P1

1 = P1
2 = P1

3 = P1
7 = P1

8 = f and P1
4 = P1

5 = P1
6 = b where there are 8

positions in H(1). The parameters Dk
h and Pk(h) are defined on the same domain but have differ-

ent outputs. They respectively output 1 and f if train k pulls the cars attached to it at position h

and −1 and b otherwise.

Functions:

• For h∈H(k) such that ik(h)∈R( f ,k), g( f ,k)(h) denotes the values h′ ∈H( f ,k) with i( f ,k)(h′)=

ik(h) for k ∈ {1,2}.

• For h∈H(k) such that ik(h)∈R(b,k), g(b,k)(h) denotes the value h′ ∈H(b,k) with i(b,k)(h′)=

ik(h) for k ∈ {1,2}.

• For h ∈ H( f b,k), z( f ,k)(h) denotes the value h′ ∈ H( f ,k) with i( f ,k)(h′) = i( f b,k)(h) for

k ∈ {1,2}.

• For h ∈ H( f b,k), z(b,k)(h) denotes the value h′ ∈ H(b,k) with i(b,k)(h′) = i( f b,k)(h) for

k ∈ {1,2}.

• For h ∈H( f b,k), z(k)(h) denotes the value h′ ∈H(k) with i(k)(h′) = i( f b,k)(h) for k ∈ {1,2}.

• dk(h,h′) denote the distance between position h ∈ ik(h) and h′ ∈ ik(h) in the route of train k

(Rk).

Mapping functions g(·,k)(·) and z(·,k)(·) are used between the position indices in the pair of

sets {H(k),H(·,k)} and {H( f b,k),H(·,k)}, respectively.

104



Sets:

• Sk(h) = {h′ ∈ Hk : h′ ≥ h,dk(h,h′)≤ Lk,Dk
h = Dk

h′},h ∈ Hk, k ∈ {1,2}

The set Sk(h) includes the positions within Lk distance units of the position h such that train k

does not change its direction.

Variables:

• t( f ,k)
h : the time that the front of train k ∈ {1,2} reaches position h ∈ H( f ,k)

• t(b,k)h : the time that the back of train k ∈ {1,2} reaches position h ∈ H(b,k)

• yhh′′ : whether (1) or not (0) train 2 reaches position h′′ ∈ H(2) before train 1 reaches posi-

tion h ∈ H(1)

Assuming trains do not traverse one switch node indirectly twice for the notational simplicity, the

scheduling model is given by:
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minimize max{t( f ,1)
n(1) , t

( f ,2)
n(2) } (4.2a)

subject to

t( f ,k)
h+1 − t( f ,k)

h ≥ c[i( f ,k)(h+1),i( f ,k)(h)]/sk ∀k ∈ {1,2},∀h ∈ H( f ,k)\n( f ,k) (4.2b)

t(b,k)h+1 − t(b,k)h ≥ c[i(b,k)(h+1),i(b,k)(h)]/sk ∀k ∈ {1,2},∀h ∈ H(b,k)\n(b,k) (4.2c)

t(b,k)
z(b,k)(h′)

− t( f ,k)
z( f ,k)(h′)

≥ Dk
z(k)(h′)L

k/sk ∀k ∈ {1,2},∀h′ ∈ H( f b,k) (4.2d)

t( f ,k)
0 ≥ 0 ∀k ∈ {1,2} (4.2e)

t( f ,2)
g( f ,2)(h′′)

− t(P
1(h),1)

g(P1(h),1)(h′)
≥−Myhh′′+T 1

hh′(1− yhh′) ∀h ∈ H(1),h′′ ∈ H(2), (4.2f)

h′ ∈ S1(h); i1(h) = i2(h′′)

t(b,2)
g(b,2)(h′′)

− t(P
1(h),1)

g(P1(h),1)(h′)
≥−Myhh′′+T 1

hh′(1− yhh′) ∀h ∈ H(1),h′′ ∈ H(2), (4.2g)

h′ ∈ S1(h); i1(h) = i2(h′′)

t( f ,1)
g( f ,1)(h)

− t(P
2(h′′),2)

g(P2(h′′),2)(h′)
≥−M(1− yhh′′)+T 2

h′′h′yhh′ ∀h ∈ H(1),h′′ ∈ H(2), (4.2h)

h′ ∈ S2(h′′); i1(h) = i2(h′′)

t(b,1)
g(b,1)(h)

− t(P
2(h′′),2)

g(P2(h′′),2)(h′)
≥−M(1− yhh′′)+T 2

h′′h′yhh′ ∀h ∈ H(1),h′′ ∈ H(2), (4.2i)

h′ ∈ S2(h′′); i1(h) = i2(h′′)

t( f ,k)
h ≥ 0 ∀k ∈ {1,2},∀h ∈ H( f ,k) (4.2j)

t(b,k)h ≥ 0 ∀k ∈ {1,2},∀h ∈ H(b,k) (4.2k)

yhh′ ∈ {0,1} ∀h ∈ H(1),h′ ∈ H(2) (4.2l)

where T k
hh′ is defined as B+ (Lk − dk(h,h′))/Sk if ik(h) is not part of a feasible position to tra-

verse a switch node at position h′′ indirectly and B+(2Lk−dk(h,h′)−2dk(h,h′′))/Sk otherwise.

The value T k
hh′ can be defined as the time a train must wait untill after the other train reach a cer-

tain neighbor (at poosition h′ of the other train) of a node (at position h of train k) visited by both

trains before train k passes that node (at position h of train k).

Objective (4.2a) seeks to minimize the overall time that the fronts of two trains take to
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reach their destinations. Constraint (4.2b) and (4.2c) ensures the time between when the front

and back of train k traverses two consecutive nodes in its route is at least the time that the train

needs to travel the distance between those nodes, respectively. Constraint (4.2d) ensures that the

time between when the front and back of train k traverses one specific node is at least the time

that the train needs to travel its length. Constraint (4.2e) sets the initial time for the two trains,

which is the time that their fronts are placed in their origins, to be zero. Constraints (4.2f)–(4.2i)

simultaneously ensures that if the two trains pass the same node in their routes, one must wait un-

til the other pass that node and reach to a certain position before entering that node. Constraints

(4.2j)–(4.2l) define the binary and non-negativity restrictions on the decision variables.

We now explain each of these constraints for the same example shown in Figure 4.1. Let

train 1 and train 2 take the routes O1–3–4–8–D1 and O2–5–4–3–D2 to reach their destination, re-

spectively. One instance of the set of Constraints (4.2b) and (4.2c) for train 1 would be for the

time its front visits node 4 to be at least 6 (= 6/s1) units greater than the time its front visits node

3. One instance of the set of constraints (4.2d) for train 1 would be for the time its front visits

node 4 to be at least 2 (= 2/s1) units greater than the time its back visits node 4, assuming that

the train moves from its origin by pulling the cars attached to it. One instance of the set of Con-

straints (4.2f)–(4.2i) is that if train 2 visit node 5 before train 1, then train 1 cannot visit this node

until after B (= B+(L2−d2(node 5,node 4))/s2 = B+(2−2)/1 = B) units of time passed when

the front of train 2 reached node 4.

4.5 A Problem Instance

In this section, we present how the two models, two-train yard routing and single-train yard

routing, solve the instance illustrated in Figure 4.1. We solve the instance using the Model (4.1)

and also as two single-train yard routing problems. The solution are:

Model (4.1):

Optimal route for train 1: O1–3–4–8–D1 with total length 19(= c(O1,3)+ c(3,4)+ c(4,8)+

c(8,D1)+2L1) units
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Optimal route for train 2: O2–5–13–D2 with total length 14(= c(O2,5)+ c(5,13)+ c(13,D2))

units

Two single-train yard routing problems:

Optimal route for train 1: O1–3–4–8–D1 with total length 19(= c(O1,3)+ c(3,4)+ c(4,8)+

c(8,D1)+2L1) units

Optimal route for train 2: O2–5–4–3–D2 with total length 13(= c(O2,5)+ c(5,4)+ c(4,3)+

c(3,D2)) units

There are two possible routes with lengths 13 and 14 units for train 2 to reach its destina-

tion. The reason that Model (4.1) chooses the longest one over the shortest one is that the shortest

route traverses certain edges in the opposite direction of the way the first train traverses them,

which we referred to as penalty of the route in our two-train yard routing model. This penalty

is large enough for our two-train yard routing model to choose the second best route (with total

length 14 units) for train 2 that does not have any penalty cost. Now we schedule these two sets

of solutions using Model (4.2). The total travel time of the two solutions are:

- (routes are obtained by Model (4.1))

Total travel time for train 1: 19 units of time

Total travel time for train 2: 14 units of time

Optimal objective value = max{14,19}= 19

- (routes are obtained by single-train yard routing model)

Total travel time for train 1: 19 units of time

Total travel time for train 2: 26 (13 (traveling time) plus 13 (waiting time for the front of

train 1 to exit node 5)) units of time

Optimal objective value = max{19,26}= 26
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This example represents a case where the two-train yard routing model outperform the

single-train yard routing model in overall scheduling time because of the direction-wise con-

flicts between the two trains. We now proceed to the computational experiment performed on a

realistic yard data set.

4.6 Computational Results

This section presents computational results to compare the performance of the proposed

modeling approach with the single-train yard routing model proposed in Chapter 3 to solve the

routing of two trains in a yard network. This comparison is based on the result of the scheduling

model developed in Section 4.4 for the two solutions obtained by the two models. The computa-

tional experiment is performed on the same real yard network dataset used in Chapter 3. In this

section, we show how the length parameter of the two trains and the location of two origins and

destinations effect on the performance of the modeling approach.

To generate the instances, first we randomly choose two distinct circular areas with a radius

of 500 units in the yard network such that the distance between the center of these two circular

areas is 5000, 10000, and 20000 units. Let S1, S2, and S3 denote these three sets, respectively.

We generate 100 instances from each set in a way that the origin of one train and the destination

of the other are chosen randomly from one of the circular areas, and vice versa from the other

circular area in the set. The reason behind this instance generation process is to have interesting

instances where the two models give two different solutions. For each set, we run the instances

with three different values of L, 500, 1000, and 2000 units. The value of the parameters s1 and

s2 are both set to 10 units per unit of time. The value of the parameter B is set to double the time

that the train can travel its length (i.e., 2Lk/sk).

We compare the optimal scheduling objective value ν2 of the routings obtained by two-

train routing approach to the optimal scheduling objective value ν1 of the routings obtained by

single-train routing approach. We use the relative difference in the scheduling objective values

of the two routing approaches for comparison which is defined as 100(ν1− ν2)/ν1. Figure 4.2,
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Figure 4.2: Problem set S1

4.3, and 4.4 show the histogram of the relative difference for the the sets S1, S2, and S3, respec-

tively. In these three figures, the lengths of the two trains are the same. The figures indicate the

overall advantage in scheduling time obtained by routing the two origin-destination pairs using

the proposed routing model. This improvement becomes more significant when the distance be-

tween origin and destination of each pair increases. The proportion of the instances in which the

two approaches have the same solution decreases from 0.5 to 0.4 as the distance between ori-

gin and destination of each pair increases, and this difference shows up in the larger percentage

range of the x-axis. Figure 4.5 shows the histogram of the relative difference for the set S2 when

the length of train 2 is fixed at 1000 units while the length of train 1 increases from 500 to 1500

units. The result shows no significant change in the performance of the proposed routing model

when the lengths of the trains are not equal.

When the penalty for the routes obtained by the single-train routing model increases, the

chance of the two approaches giving different solutions increases. In this case, there are two pos-

sibilities: (i) the penalty comes from the track segments that the two trains might not reach (and

traverse in the opposite direction) at the same time which means the penalty was not effective and
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Figure 4.3: Problem set S2
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Figure 4.4: Problem set S3
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Figure 4.5: Problem set S2

the solution of the single-train model would probably have less overall scheduling time; (ii) the

penalty comes from the track segments that the two trains might reach (and traverse in the oppo-

site direction) at the same time which means the penalty was actually effective and the solution of

the two-train model would probably have less overall scheduling time. Case two most probably

happens when the origin of one pair is located close to the destination of the other pair and vice

versa.

4.7 Conclusion

We investigated the routing of two trains in a yard network with the objective of indirectly

decreasing the overall time that two trains take to reach their destination. The purpose of devel-

oping a routing model for two trains is to generate a solution that can be scheduled in less time

in comparison to the solution of two individual single-train routing problems. The proposed two-

train routing model in this chapter accounts for the waiting times that the two trains might have

in their routes to their destinations. The model generates a routing plan by trading off between

the length of the routes and the waiting time that the trains might have. The model interprets the
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waiting time of two trains as the total length of the track segments that are used by trains in the

opposite direction. Therefore, the objective function of the proposed routing model is to mini-

mize the total length of the two trains’ routes and the length of the track segment traversed by the

trains in the opposite direction. The proposed two-train routing model generates the same routes

as the single-train routing model if the routes do not intersect any edges in the opposite direction.

We develop a model that schedules the output of the routing model with the objective of minimiz-

ing the overall time for the two trains to reach their destination. Using this scheduling model, the

computational experiments presents a comparison of the quality of the solutions obtained by the

proposed routing model and the single-yard routing model presented in Chapter 3. Results indi-

cate the overall advantage of the proposed model in routing origin-destination pairs that would

travel a set of yard track segments in the opposite direction in the same interval of time. This case

has application in the station area of the yard network when there are certain entering and exiting

points and the trains can pass the station area in the opposite direction.
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5. Conclusion and Future Work

In this dissertation, three different network-based optimization problems were studied that

contribute to the area of critical interdependent infrastructure systems and rail freight transporta-

tion systems.

Chapter 2 presented a model that optimizes the operation of interdependent infrastructure

systems. The model has the capability to capture many common interdependence classifications

and is able to incorporate the possibility of dependency between components within systems. The

model has a compact formulation and allows for non-uniform dependency requirements for sys-

tems’ component. Computational experiments demonstrated that failing to model nonuniform

dependency requirements may drastically reduce the quality of strategic restoration decisions de-

rived to restore a disrupted collection of infrastructure systems. We identified two sets of valid

inequalities which were utilized to develop a solution approach that exploits the effect of valid in-

equalities on the LP relaxation solution to expedite finding feasible solutions to the problem. This

chapter contributes a thorough analysis of the operations of interdependent networks in resource-

constrained environments. One of the directions to which this work can be extended is to incor-

porate the proposed operation model in restoration problems to enable better performance.

Chapter 3 presented a model to route a single train in a railyard subject to the geometry

of track segments and the fact that train occupies space in the railyard. The model finds a feasi-

ble route for an origin-destination pair that minimizes the total length traveled by train to reach

its destination. The proposed approach solves the defined yard routing problem in two stages,

preprocessing and routing. We presented complexity results for the preprocessing stage and de-

veloped a linear programming formulation that can solve the preprocessing in polynomial time

for an important special case that happens in practice. As the solution time to solve the problem

is of importance in railyard transportation system, our computational experiments pointed out the

quick computational time needed for the approach to identify the optimal solution for the special

case that happens in real yard networks.

The problem defined in Chapter 3 was extended to routing two trains in Chapter 4. The
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objective of the two-train routing model is to indirectly minimize the overall scheduling time of

the two routes chosen for the two train. We developed a scheduling model that takes as input the

solution of the two-train routing model and minimizes the total time needed for the two trains to

reach their destination. This scheduling model helped us to compare the quality of the solution

obtained by the two-train routing model and the solution obtained by solving the routing problem

as two separate single train yard routing problems. The computational experiments indicate a bet-

ter performance obtained by the proposed routing model when the routes use track segments in

the opposite direction in certain cases. One of the directions to which this work can be extended

is to incorporate acceleration and deceleration of train in calculating the overall scheduling time

as in practice trains do not have constant speed throughout the routes they traverse. The other

possible direction is to extend the problem to generate a routing plan for multiple trains with the

objective of minimizing the overall scheduling time.
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