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ABSTRACT 

This dissertation focusses on identifying different molecular markers that have impact on 

overall poultry production. Chapter one reviews microRNA (miRNA), copy number variation 

(CNV) and single nucleotide polymorphism (SNP) as markers suggested in different avian species 

by various studies. It reviews modern genomic approaches that are employed for next generation 

sequencing data analysis and verification. 

Chapter two seeks to identify and validate the muscle specific miRNAs in the breast muscle 

of modern broilers and its foundational chicken line. Small RNA sequencing was performed to 

identify differentially expressed mature miRNAs in the breast muscles of these two chicken lines. 

Results showed that nine different mature miRNAs were differentially expressed (DE) in the breast 

muscle of modern broilers compared to foundational chicken lines. Target genes of DE miRNAs 

were involved in MAP/ERK1/2, calcium signaling, axonal guidance signaling and NRF2-mediated 

oxidative response pathways suggesting their roles in muscle growth and development.    

Chapter three is focused on identifying and validating copy number variation in the whole 

genome of two divergently selected high and low stress quail lines. Whole genome sequencing 

was performed, and data were analyzed for copy number variation detection in genome of the quail 

lines. Results showed the unique sets of copy number variable regions and genes in the genomes 

of high stress and low stress birds. Importantly, these genes were involved in development of 

nervous/endocrine systems, and humoral/cell-mediated immune responses suggesting that they 

could be potential biomarkers for understanding effects of stress in the well-being and growth 

performance of avian species and other animals.  

Chapter four focuses on identifying SNPs in whole genome of Arkansas Progressor (AP) 

and Regressor (AR) chicken lines selected for tumor progression and tumor regression upon v-src 



 

 

oncogene induction. Whole genome sequencing was performed, SNPs were analyzed and 

validated using allele-specific PCR. Results showed the unique sets of SNPs in AP and AR lines. 

Based on the functional studies, the candidate SNPs were associated with ubiquitylation, and PI3K 

and NF-kB signaling pathways, suggesting their role in tumor regression in AR chickens.  
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CHAPTER 1 
Review of Literature 

1.1 INTRODUCTION 

The modern poultry industry has been successful to meet increasing global protein needs 

of consumers by providing good quality, affordable and safe meat products. Yet, there are many 

issues and obstacles in the industry to meet ever increasing consumer demands world-wide. 

Disease susceptibility, poor feed conversion rate and effect of stress on production have been major 

confronts among the list at present. Moreover, more challenging factors that affect poultry 

production are likely to evolve in years to come. 

Poultry production has been affected by various diseases (Ojok 1993) and more recently 

by muscle abnormalities or myopathies (Kuttappan et al. 2009; Sihvo et al. 2014). Incidence of 

diseases like avian influenza, Marek’s disease, inclusion body hepatitis, salmonellosis, 

campylobacteriosis, fowl cholera, coccidiosis and others have increased morbidity and mortality 

and thereby decreased public confidence for poultry products (Ojok 1993). Various factors are 

responsible for disease outbreaks in birds e.g. rearing of birds in a dense population, free-range 

rearing, low genetic diversity and restriction of prophylactics to control diseases. Currently, these 

problems have been alleviated to some extent by employing modern animal husbandry, 

vaccination programs and development of disease resistant chickens (Cheng et al. 2013). However, 

better control measures are always needed to impede upcoming threats to help the poultry industry 

flourish and promote sustainability. Additionally, in recent years muscle abnormalities or 

myopathies are commonly seen in modern commercial broilers due to intensive genetic selection 

for the improvement of feed conversion, growth rate, body size and breast yield (Petracci and 

Cavani 2011). The most common myopathies which include wooden breast and white striping, 
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though subclinical, have adversely affected poultry industries due to reduced aesthetic 

acceptability of the meat by consumers (Mudalal et al. 2015).   

The field of genomics in poultry has been established after the initial release of the 

chicken’s reference genome in 2004 (International Chicken Genome Sequencing Consortium 

2004). Since then genomics has provided exciting avenues to ameliorate and solve issues that exist 

in the industry today. Genomics has helped in identifying heritable traits of agricultural benefits 

and selecting birds with various important traits such as disease resistance, improved feed 

efficiency, and stress resistance through marker-assisted selection. The ultimate goal of modern 

genomics has been to address the long-standing question of how genetic variation of an organism 

can be connected to its observed phenotypic variation.   

This review provides information on how modern genomic approaches are being used to 

identify important traits in avian species and gives specific examples of the use of the next 

generation transcriptomics and whole genome re-sequencing data to identify candidate molecular 

markers associated with a particular trait of an organism. This review describes the recent gain of 

insights on three different genetic markers: microRNA (miRNA), single nucleotide 

polymorphisms (SNPs) and copy number variations (CNVs) focusing on their roles in growth and 

development of animals. A better understanding of their molecular functions can provide new 

knowledge and the markers that will contribute to the improvement of poultry production.  

1.2 MICRO RNA, TRANSCRIPTOMICS AND REGULATORY FUNCTIONS 

The transcriptome is a collection of all transcripts present in a cell and includes both coding 

and non-coding RNAs. These RNA species are essential to interpret functional elements of the 

genome and understand physiological conditions of an organism. Transcriptomics is performed to: 

a) profile all species of transcripts; b) know gene structure, its splicing pattern and other post-
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transcriptional modifications; as well as d) study expression levels of transcripts under different 

conditions (Wang et al. 2009). Among the RNA molecules, miRNAs are a relatively new discovery 

consisting of small non-coding regulatory RNAs of ~22 nucleotides long. They are involved in 

various biological processes and regulate expression of specific genes at the post-transcriptional 

levels by targeting mRNAs for cleavage, deadenylation or translation inhibition (Ha and Kim 

2014; Sharma et al. 2014). Initially, miRNAs are transcribed as long primary transcripts called pri-

miRNA from host genes by RNA polymerase II. In animals, the majority of miRNAs are encoded 

by introns of non-coding and coding transcripts and some by exonic regions (Denli, et al. 2004; 

Han et al. 2004).  The mature and active miRNAs are then subsequently generated from pri-

miRNAs after two endonuclease processing steps of Drosha and Dicer (Lee et al. 2006; 

Chendrimada et al. 2005). The mature miRNAs are then ultimately incorporated into RNA-

induced silencing complex (RISC) (Hammond 2015). The miRNA-RISC complex then moves to 

the target mRNAs that have a complementary sequence to the miRNA. In particular, a 

heptametrical sequence at position 2-7 from 5’ end of mature miRNA, called “seed” region is used 

for binding to 3’ untranslated region (UTR) of the target mRNA. The target mRNA is then 

exonucleolytically cleaved or inhibited for translation (Lai et al. 2005; Lewis et al. 2003). A 

miRNA can have a large number of target mRNA; and a specific mRNA can be targeted by more 

than one miRNAs (Brodersen and Voinnet 2009; Lewis et al. 2005).  

The latest lists of miRNAs are deposited in an online database (miRBase.org): 740 

precursors and 994 mature miRNAs have been identified in chicken. Many miRNAs are 

ubiquitously distributed in various tissues of animals; however, some are expressed in specific 

sites with particular functions (Lagos-Quintana, Mariana 2002; Horak, Martin 2016). For instance 
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miR-1, miR-133 and miR-206 are expressed in the skeletal muscles (Chen et al. 2006; Kim et al. 

2006; Van et al. 2008). 

1.3 MIRNA TARGETS PREDICTION  

Identification of targets of a specific miRNA is essential to understand its biological 

functions. A validated miRNA could be the best biomarker for determining a particular trait of an 

organism. Generally, three different approaches are used for miRNA targets prediction: 1) 

bioinformatic approach, 2) biochemical approach and 3) omics (transcriptomic/proteomic) 

approach (Hammond 2015). Online methods like TargetScan, miRanda, miRDB, and PicTar are 

the most popular miRNA target prediction tools that work within the context of a bioinformatics 

based approach. All of these methods use the seed sequences of miRNAs as important 

determinants for target binding. However, because they also predict a large number of mRNAs as 

targets for a particular miRNA, there may be false positives. Therefore, to improve the precision, 

the target prediction algorithms used in the tools limit target sites to 3’ untranslated regions of 

mRNAs because the best characterized targets are located in these regions (Peterson et al. 2014). 

The second general approach used for miRNA target prediction is a biochemical based method. 

This method uses physically associated complexes of miRNA/RISC and target mRNAs to identify 

miRNA targets. Anti-Argonaute antibodies are used to immunoprecipitate miRNA/RISC plus 

target mRNA complex and profiling of bound target mRNAs is performed using NGS or 

microarray methods (Karginov et al. 2007; Hafner et al. 2010). Alternatively, biotinylated 

miRNAs are also used to identify their corresponding target mRNAs (Lal et al. 2011). In the 

‘omics’ based method, proteome or transcriptome study of a cell or tissue in the presence and 

absence of a miRNA is conducted to identify its corresponding mRNA targets. The proteomic 

approach quantitatively measures effects of miRNA on it corresponding target proteins, and selects 
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targets set accurately (Eichhorn et al. 2014). However, the method is technically challenging. The 

validations of miRNA targets identified by all the methods outlined above are essential.  

1.4 MIRNA REGULATING MUSCLE GROWTH IN CHICKEN 

Since 2006 when the first miRNA discovered in chicken (Xu et al. 2006), many miRNAs 

have been identified and associated with embryo development (Hicks et al. 2008), lipogenesis and 

cell proliferation (Hicks et al. 2010), skeletal and breast muscle developments (Li et al. 2012; 

Ouyang et al. 2015), avian influenza virus infection in trachea and lungs (Wang et al. 2009) and 

Marek’s disease infection in embryo fibroblast (Burnside et al. 2008). This review will focus only 

on miRNAs associated with muscle growth and development in chickens. 

In a systemic analysis of breed specific miRNAs from skeletal muscle of chickens, gga-

miR-101, gga-miR-10a, miR-10b, gga-miR-1677, gga-let-7f and gga-miR-31were significantly 

up-regulated in layers while gga-let-7c, gga-miR-200b, gga-miR-16c, gga-miR-15b, gga-miR-15c, 

gga-miR-460, gga-miR-429 and gga-miR-2188 in broilers. Besides that list, muscle specific 

miRNAs: gga-miR-206, gga-miR-133 and miR-1 were found in skeletal muscles of both broilers 

and layers (Li et al. 2011). In miRNA expression analysis conducted by Ouyang et al. (2015), 22 

highly differentially expressed miRNAs were identified in breast muscles of fast-growing 

compared to slow-growing broilers. The gaa-miR-146b-3p was reported to regulate the expression 

of growth hormone receptor (GHR) by dual-luciferase assay (Ouyang et al. 2015). Similarly, gga-

let-7b was found to be associated with regulation of GHR in skeletal muscle of normal and dwarf 

chickens by genome-wide association study of growth trait and miRNAs (Xu et al. 2013). In study 

by Wang et al. (2013) reported that skeletal muscle specific miRNAs gga-miR-133a and gga-miR-

1a were demonstrated to be important for muscle development in old age (14 to 49 weeks) 

compared to in early age (0 to 14 day) in chickens (Xu et al. 2013).  
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The miR-1, miR-133 and miR-206 are involved in muscle growth and development across 

different animals (Fatima and Morris 2013). Their synthesis, regulation or stimulation and optimal 

functioning require expression of specific transcription factors, such as MyoD, SRF and MEF2 

(Liu et al. 2007). Transcription of miR-1, miR-133 and miR-206 is known to be regulated by the 

mammalian target of rapamycin (mTOR) signaling in Myo-dependent manner in animals. The 

expression of miR-1 is up-regulated with the help of MyoD that lies downstream of mTOR. MiR-

1 then degrades a follistatin suppressor, HDAC4, which affects fusion of myocyte (Sun et al. 2010). 

Similarly, miR-133 and miR-206 are down-regulated by inhibition of mTOR by rapamycin in 

animals (Ge and Chen 2011). Alternatively, miR-1 and miR-133 have been found to regulate 

muscle growth and development through phosphatidylinositol 3-kinase/AKT (PI3K/Akt) signaling 

pathway. The PI3K/Akt pathway is active through PI3K-dependent phosphorylation by binding of 

insulin growth factor (IGF-1) and its receptor (IGF-1R) during skeletal muscle cell differentiation 

in animals (Wang 2013). The activated Akt then phosphorylates and inhibits expression of 

forkhead box O3 (Foxo3a). Foxo3a is a negative regulator of muscle growth and down-regulates 

promoter activity of miR-1. Thus, down-regulation of miR-1 helps in expression of IGF-1 and 

IGF-1R. Up-regulation of miR-133 occurs in the presence of myogenin, a myogenic transcription 

factor, and exogenous IGF-1. The up-regulated miR-133 blocks the expression of IGF-1R, inhibits 

PI3K/Akt signaling pathway and thereby reduce regulation of Akt phosphorylation through 

modulation of IGF-1R signaling pathway during myogenesis (Huang et al. 2011).  

1.5 WHOLE GENOME RE-SEQUENCING AND GENETIC VARIATION IN CHICKENS                

Whole genome re-sequencing of an organism provides the most comprehensive genetic 

assessment of that organism. It helps in gaining all the important information about genes, genetic 

variation and gene functions (Bentley 2006). Before the development of next generation 
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sequencing (NGS) method in 2005, the Sanger sequencing method was used to sequence whole 

genome of an organism (Sanger et al. 1977). The automated Sanger’s method required a longer 

time and more cost to sequence whole genome of an organism. For example, this method required 

13 years and 2.7 billion US dollars to sequence the complete human genome (Gyles 2008). 

However, a NGS method can sequence 1 tera base (Tb) of DNA in 6 days with an error rate of as 

low as < 1% (Reuter et al. 2015). Therefore, since 2000s NGS method has become the most 

popular, fast, accurate, high-throughput and yet cost-effective method for sequencing of genomes 

of organisms (Shendure and Ji 2008).  

The NGS techniques are methods for massively parallel sequencing of short DNA 

fragments. Their basic workflow involves three steps (Shendure and Ji 2008; Metzker 2010). In 

the first step, libraries are prepared in which the input DNA molecules are randomly fragmented 

and ligated with common adapter sequences. The second step involves amplification of the 

libraries in which an individual library constructed in the first step is amplified such that original 

DNA molecules and their respective copies are clustered at the same position. The third step 

comprises the actual sequencing and imaging where sequencing is carried out in cycles with 

addition of fluorescent labeled nucleotides. The data presented in this thesis were generated by 

NGS method using chicken and Japanese quail whole genomes, and small RNA sequencing from 

breast muscles of broiler chickens.  

1.6 APPLICATIONS OF NEXT GENERATION SEQUENCING  

In animal genetics, NGS is mainly used to identify putative structural variants that can be 

linked with phenotypic traits of organisms. Whole genome, amplicon, and exome sequencings 

approaches are used for the purpose of detecting variants. The whole genome resequencing method 

is used for the global detection of genetic variations in a complete genome of an animal (DePristo 
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et al. 2011). The amplicon sequencing is used to study variants within individual genes or in small 

regions of a genome and often is conducted in multiple samples (Zhou et al. 2011). The exome 

sequencing is performed for the identification of novel genes associated with a phenotypic 

variation or if the list of putative variant genes is too long (Majewski et al. 2011). Several exome 

enrichment platforms under different sequencing companies including Agilent, Roche/Nimblegen 

and Illumina are available (Clark et al. 2011).  

The NGS method is also used for messenger RNAs (mRNA) sequencing (RNAseq) of an 

organism. The mRNA is captured by polyA enrichment and reverse transcribed into cDNA that is 

processed similar to genomic DNA, as described above. The RNAseq data obtained are used for 

differential expression analyses between groups of samples, similar to expression data from 

microarray. However, unlike microarray data, RNAseq data can also can also identify novel 

transcripts, alternative splicing and allele specific expression (Wang et al. 2009).  

The NGS method is also used to study epigenetics in model organisms. Chromatin 

immunoprecipitation (ChIP) followed by sequencing (ChIP-Seq) is used to identify genome-wide 

DNA binding positions for proteins of interest, e.g. transcription factors (Park 2009). Bisulfite 

treatment of DNA followed by bisulfite sequencing (BS-seq) has been a standard method for 

detection of methylation in genomic DNA (Laird 2010). Similarly, miRNA sequencing is another 

application of NGS approach as explained above.  

1.7 VARIANTS DETECTION IN WHOLE GENOME RESEQUENICNG DATA 

The detection of single nucleotide polymorphisms (SNPs) from raw whole genome 

resequencing data includes steps involving alignment, variants calling and annotation (Nielsen et 

al. 2011). The short reads obtained from NGS in the form of FASTQ files can be aligned in two 

different ways: de novo assembly and reference based assembly. In de novo assembly, the reads 
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are used to construct the genome without use of any information from the reference genome of the 

organism. Assemblers such as ABySS (Birol et al. 2009), Velvet (Zerbino and Birney 2008) or 

SOAPdenovo (Simpson and Durbin 2012) can be used for de novo assembly of sequenced reads. 

De novo assembly is useful when a full annotated reference genome is not available. In the 

reference based assembly, sequenced reads are directly aligned to the reference genome. Modern 

tools such as Bowtie (Langmead and Salzberg 2012) and Burrows-Wheeler Alignment tool 

(BWA) (Li and Durbin 2009) are commonly used in reference based assembly. The output files 

obtained from this alignment are then processed for variant calling. Variant calling is performed 

to identify positions in the genome that are different from the reference genome of the organism. 

In this process, a list of all sequenced bases aligned to the specific position is pileup, and the 

proportion of bases that are different to the reference genome is calculated. Various tools such as 

SAMtools (Li et al. 2009), GATK (McKenna et al. 2010) and Picard are used to call variants from 

the aligned files. After the variants calling step, variants are filtered based on different parameters 

such as minimum read depth or minimum average mapping quality of reads. SAMtools varFilter 

(Li and Durbin 2009) and GATK VarinatFiltration (McKenna et al. 2010) are used for variants 

filter. The filtered variants are then subsequently annotated based on additional information, such 

as variant with in a gene, accession number of variants or a conservation score of the affected 

position. ANNOVAR (Wang et al. 2010) and SnpEff (Cingolani et al. 2012) tools were used for 

this propose.    

1.8 GENETIC VARIATION IN CHICKENS 

Chickens are good animal models for genetic studies of their phenotypic traits because of 

the extensive diversity that have been selected for proposes of egg laying and meat production 

(International Chicken Polymorphism Map Consortium 2004; Rubin et al. 2010). Several 
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monogenic traits are well studied, but a large number of valuable traits are complex yet interesting 

and determined by many genes. The quantitative trait loci (QTLs) have been studied for a number 

of phenotypic traits, including for growth, meat quality, disease resistance, immune response, egg 

production, body composition and behavior (Abasht et al. 2006). However, linking of the putative 

causative genes for a trait is difficult because each locus usually controls only a small fraction of 

phenotypic variation (Atzmon et al. 2008). This review will focus on two important genetic 

variations: SNPs and CNVs associated with growth and development in chickens.   

1.9 SINGLE NUCLEOTIDE POLYMORPHISMS 

A number of SNPs located in different genes associated with growth and development 

traits in chickens have been identified. The SNP c.739 + 726T>C identified in growth hormone 

secretagogue receptor (GHSR) or ghrelin receptor was associated with chicken growth and carcass 

traits (Fang et al. 2010). Insulin-like growth factor-1 (IGF1) plays vital role in muscle growth and 

development in chickens. The SNP (g.570C>A) present in the promoter region of IGF1 is a 

putative marker for improved breast muscle yield in chickens (Sato et al. 2012). The chicken 

growth hormone (cGH) plays vital roles in regulating growth and metabolism. The SNP 

(G+1705A) found in intron of cGH gene is significantly associated with growth and carcass related 

traits (Nie et al. 2005). The SNP c.782G>A located in exon region of adipose triglyceride lipase 

(ATGL) gene was significantly associated with chicken growth and fat traits (Nie et al. 2010). A 

single nucleotide transversion adenine (A) to thymidine (T), producing a change from amino acid 

asparagine (Asn) to isoleucine (Ile), was found at position 980 of the open reading frame of 

pituitary-specific transcription factor gene (PIT1) in chickens. The PIT1 SNP was positively 

related with early growth rate (Jiang, R 2004). Similarly, three SNPs (rs13849241, rs15231472 
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and rs13849381) present in intron of high mobility group AT-hook 2 (HMGA2) gene of chicken 

have been found for their significant associations with body weight gain (Song et al. 2011).  

Several insertion-deletion (indel) events have been identified in genes that are related with 

growth in chickens. A 62-bp indel was found in 5’ untranslated region of transforming growth 

factor-beta 2 (TGFB2) gene that was associated with body weight in chickens (Tang et al. 2011). 

An 8-bp indel located in exon 1 of chicken Ghrelin (cGHRL) gene was significantly associated 

with body weight and composition trait (Fang et al. 2007). A 9-bp indel and SNPs (A197835978G 

and G197836086A) in thyroid hormone responsive spot 14α (THRSPα) gene in chickens were 

significantly associated with both growth and fat traits (D’Andre Hirwa et al. 2010).   

Various genome-wide association studies (GWAS) on chicken growth traits have found 

significant SNPs in several chromosomes. Five different SNPs were identified in 1.5 Mb 

karyopherin alpha 3 (KPNA3)-forkhead box O1 (FOXO1A) region of chromosome 1 that had 

highest significant effect for growth traits. The SNPs were located at 8.9 Kb upstream of KPNA3-

FOXO1A region, 1.9 Kb downstream of FOXO1A, 20.9 Kb downstream of 

ENSGALG0000002273, and in integrator complex subunit 6 (INTS6) and KPNA3 genes (Xie et 

al. 2012). A region of approximately 8.6 Mb in length in chromosome 4 had significant SNP effects 

on late growth in chicken F2 resource population. The SNP (GGaluGA266058) in the LIM 

domain-binding factor 2 (LDB2) gene had the strongest effect on daily body weight gain (Gu et 

al. 2011). The LDB2 is known to bind various transcription factors, and play role in brain 

development (Ostendorff, Heather P 2006) and blood vessel formation (Javerzat et al. 2009). 

1.10 COPY NUMBER VARIATION 

Copy number variation (CNV) basically involves deletion or duplication of nucleotide 

sequences, or it can be combination of both. It is defined as a loss or gain of genomic segments 
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that varies in size from 1 kb or larger and is present at variable copy numbers in comparison to the 

reference genome. The deletion of a DNA segment leads to loss while its duplication results in 

gain of copy number of that region of a genome (Redon, Richard 2006). The formation of CNVs 

occurs by four different mechanisms i.e. non-allelic homologous recombination (NAHR), non-

homologous end joining (NHEJ), Fork Stalling and Template Switching (FoSTeS) and 

Retrotransposition (Hastings et al. 2009). The CNVs potentially exert phenotypic diversity in 

animals through changes in gene structure, gene dosage, and gene expression by exposing 

recessive alleles (Bickhart and Liu 2014) or indirectly through the perturbation of regulatory region 

of genes (Zhang et al. 2009).  

Four different approaches are used to detect copy number variations (CNVs) from whole 

genome NGS data sets. The read-pair approach uses the distance between the mapped first and 

the second reads of a pair to detect CNVs. If the read pairs at the position of insert are significantly 

larger than the average insert size, then it is assumed that a deletion event rather than an insertion 

has occurred at that position. Tools such as BreakDancer, PEMer, and Hydra use read-pair method 

to detect CNVs. These tools can detect medium sized insertions or deletions and fail to detect small 

sized insertions or deletions (Medvedev et al. 2009; Pirooznia et al. 2015). 

The split-read method uses NGS pair end reads to find CNVs. In this approach only one 

read of the pair reliably maps while another read partially or completely fails to map to the 

reference genome. The unmapped reads provide potential start and end of breakpoints at one base 

pair level. The split read based approach including Pindel, SVseq2, and Prism fail to detect large 

CNVs (Zhang et al. 2011; Pirooznia et al. 2015). The read-depth approach uses depth of coverage 

of a region of genome to call deletion or duplication. In this method sliding window approach is 

used to detect CNVs from aligned files of NGS reads. In brief, the mapped reads to the reference 
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genome are divided into small regions called windows and average read depths are calculated for 

each window. Duplication or deletion is called if a window or its adjacent part has a significantly 

higher or lower read depth. Using this approach, large size CNVs can be detected which are 

otherwise difficult to identify using read-pair and split-pair methods. CNVnator, CNV-seq, ERDS, 

and Cn.MOPS tools use read-depth approach to detect CNVs from NGS data (Abyzov et al. 2011; 

Pirooznia et al. 2015). In this thesis, we have used CNVnator to detect CNVs in whole genome 

resequencing data of Japanese quail. The de novo assembly approach can theoretically detect all 

forms of CNVs if the reads are long and accurate. This method first generates contigs which are 

then compared with the reference genome to detect structural variants. Unfortunately, this method 

is rarely used in CNV detection because of high computational demands. In addition, due to 

presence of significant amounts of repeats and segmental duplications in eukaryotic genomes, de 

novo assembly approach can be less accurate and more complex to perform (Nijkamp et al. 2012; 

Xi et al. 2012). 

The first genomic CNV map in chicken was generated after developing an array 

comparative genomic hybridization (aCGH) assay. Wang et al. 2010, identified 96 CNVs that 

encompassed approximately 1.3% of the chicken genome, 27 were high confidence CNVs 

occurring in more than one individual (Wang et al. 2010). Since then several studies have reported 

CNVs in genomes of different chickens. A total of 3,154 CNVs grouped into 1556 CNV regions 

(CNVRs) were reported from 64 commercial and experimental lines of chickens. In their analysis, 

Crooijmans et al. 2013 reported CNVs covered 60 Mb that represented approximately 5.4% of the 

chicken genome (Crooijmans et al. 2013). The CNVs that are widely distributed in both macro and 

microchromosomes in chickens have been reported. In Gallus gallus chromosomes (GGA) from 

1 to 15, CNVRs covering 5-14% of DNA sequences have been reported. The coverages of DNA 
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sequence by CNVRs in microchromosomes were also found to be similar to macrochromosome. 

However, GGA16, GGA25, E64 and W are the exceptions (Wang et al. 2014).   

The association of CNV with the agricultural traits such as residual feed intake (Hou, Yali 

2012), growth rate and disease resistance (Hou, Yali 2012) have been reported in cattle. A very 

few efforts have been made to establish relationship between CNV and economic traits in chickens. 

In their study, Luo et al. 2013 reported a 50 kb deleted region on GGA19 as a high confident CNV 

responsible for Marek’s disease-resistance (Luo et al. 2013). They reported 83.5 kb CNVR 

associated with loss on uncharacterized chromosomal region encompassing a general transcription 

factor IIi (GTF2I) as a high confidence candidate responsible for Marek’s disease susceptibility.  

1.11 PHENOTYPIC VARIATION DUE TO CNV 

A CNV can affect the phenotypic properties of an individual by various mechanisms as 

explained previously. A CNV associated with protein coding genes can not only affect protein 

translation or function of encoded protein but can also influence the expression of genes in its 

vicinity and its effect can extend up to half a megabase distance (Henrichsen et al. 2009). However, 

it is also possible that CNV can have no or very little effect (Wang et al. 2014). Phenotypes 

including pea-comb (Wright et al. 2009), late-feathering (Elferink et al. 2008), dermal 

hyperpigmentation (Dorshorst et al. 2010), and dark brown plumage color (Gunnarsson et al. 2011) 

have been characterized to be associated with CNV in chickens.   

The pea-comb phenotype in chickens that exhibit showing reduced sizes of comb and 

wattles has been associated with duplication of intron 1 of sex determining region Y (SRY)-Box 

5 (SOX5) gene on GGA1. The massive amplification of the intron 1 interferes with the expression 

of SOX5 and regulates gene expression during cell differentiation required for comb and wattles 

development. SOX5 is a transcription factor that plays role in regulation of embryonic 
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development and cell fate determination. The protein encoded by SOX5 plays a role in 

chondrocyte formation. Pea-comb phenotype is found in chickens living in cold climate which is 

advantageous to reduce heat loss and susceptibility to frost lesions (Wright et al. 2009). 

The late feathering phenotype in chickens is associated with duplication of the prolactin 

receptor gene (PRLR) and the sperm flagellar protein 2 gene (SPEF2). This trait is linked with 

reduced fertility and late development of flight feathers. Beside increased PRLR gene expression, 

altered mRNA expression level was observed in many keratin-related genes during early 

development. A partially dominant sex-determined K locus on GGAZ is responsible for this trait 

(Elferink et al. 2008). 

The dermal hyperpigmentation or fibromelanosis (FM) trait in Chinese Silkie chicken is 

characterized by distinct phenotypes such as large feathers on head, fluffy plumage, black skin, 

and bones, blue ear lobes, feathered legs and feet, and five toes on each foot. The dark color in 

connective tissues is due to excessive pigmentation or unusual melanogenesis. The FM is due to 

inverted duplication and junction of the two genomic regions separated by more than 400 kb in 

wild birds. The duplicated region contains endothelin 3 (EDN3) gene that plays vital role in 

promoting the proliferation of melanoblasts (Dorshorst et al. 2010).  

Dark brown plumage color phenotype in chicken is determined by deletion of 8.3 kb region 

present upstream of SRY-Box 10 (SOX10) gene that plays role in melanocyte migration and 

survival. The deletion of this upstream region leads to decreased expression of SOX10 gene. This 

phenomenon in turn reduces the expression of key enzymes such as tyrosinase needed for pigment 

synthesis. Therefore, the reduced tyrosinase activity leads to development of pheomelanistic 

(reddish) plumage color, a characteristics of dark brown plumage trait (Gunnarsson et al. 2011).    
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In this dissertation, various genomic approaches were utilized to analyze genome wide 

copy number variations and single nucleotide polymorphisms in Japanese quail and chicken lines 

respectively to characterize economically traits in these avian species. We also performed small 

RNA transcriptome analysis to characterize muscle specific miRNAs in modern broilers and their 

foundational breeds to understand their regulatory roles that could play for rapid muscle growth 

and development in modern broilers. 
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1.12 OBJECTIVES 

Various genomic approaches have been used to decipher the entire genome of an organism 

and relate its economically important phenotypic trait to its genotypic character. Such approaches 

can provide insight into the modern methods used for animal production, improvement of their 

well-being and growth performances. In avian species, many traits have been defined at the 

molecular levels, yet very little information is available on how the defined biomarkers would be 

appropriate for animal selection in commercial poultry industry. The main hypothesis for this 

project is that there are many biomarkers yet to be discovered that could have an impact the 

betterment of poultry. Thus, the general objective of this dissertation is to characterize various 

muscle specific miRNAs, immobilization stress related copy number variable genes and regions, 

and tumor regression associated SNPs in different lines of birds.  

Specific objectives for this dissertation are as follows: 

1. To characterize breast muscle specific miRNAs in foundational Barred Plymouth Rock 

chickens, and modern broilers selected for high feed efficiency.  

2. To identify copy number variable regions and genes in Japanese Quail selected for 

susceptibility and resistance to immobilization stress. 

3. To characterize the SNPs in a) Arkansas Progressor and, b) Arkansas Regressor chickens 

selected for tumor regression property. 
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2.1 ABSTRACT 

Genetically selected modern broiler chickens have acquired outstanding production 

efficiency through rapid growth and improved feed efficiency compared to unselected chicken 

breeds. Recently, we analyzed transcriptome of breast muscle tissues obtained from modern 

pedigree male (PeM) broilers (rapid growth and higher efficiency) and foundational Barred 

Plymouth Rock (BPR) chickens (slow growth and poorer efficiency). In this study, in addition to 

mRNA expression, differential abundance of microRNA (miRNA) was analyzed from the same 

tissues and the results were integrated with differentially expressed (DE) mRNA of breast muscles 

of PeM and BPR. To investigate the expression level of miRNA, small RNA sequencing was 

performed with 6 muscle samples per group using 1×50 bp single end read method of Illumina 

sequencing. After quality assessment and adapter trimming of raw reads, the clean reads were 

aligned to chicken reference mature miRNA sequences and read counts were normalized by reads 

per millions. The miRNA showing average read counts >5 in each group, p-value <0.05 by t-test, 

and fold change >1.2 were considered as DE miRNAs between PeM and BPR. Differentially 

expressed miRNA were validated by quantitative PCR and were subjected to target-predictions 

with miRDB online software. A total of 994 miRNA were identified in PeM and BPR chicken 

lines. After initial filtering and statistical analyses, miR-2131-5p, miR-221-5p, miR-126-3p, miR-

146b-5p, miR-10a-5p, let-7b, miR-125b-5p, and miR-146c-5p were up-regulated whereas miR-

206 was down-regulated in PeM compared to BPR breast muscle. Based on inhibitory regulations 

of miRNAs on the mRNA abundance, our computational analysis predicated that 118 down-

regulated mRNAs may be targeted by the up-regulated miRNAs, while 35 up-regulated mRNAs 

appear to be due to a down-regulated miRNA (i.e., miR-206). This study may provide foundation 

data for elucidating molecular mechanisms that govern muscle growth in chickens. 



 

 28 

 

Key words: miRNA, pedigree male broiler, Barred Plymouth Rock, production efficiency, 

differential expression  



 

 29 

2.2 INTRODUCTION 

Genetically selected modern broiler chickens are characterized with rapid growth and 

improved feed efficiency compared to unselected counterparts. These traits are beneficial to meet 

the global protein needs for an ever increasing human population (Kong et al. 2016; Kong et al. 

2017). Understanding the mechanism behind rapid muscle growth and high feed efficiency in 

chickens will help in maintaining a sustainable protein source through improved animal production 

system.   

    MicroRNAs are short 18-24 nucleotides long non-coding regulatory RNAs that target 

mRNAs for cleavage, deadenylation or translational inhibition of gene expression at post-

transcriptional level (Bushati and Cohen 2007; Rana 2007). In recent years, many studies have 

shown the vital roles of miRNAs in various aspects of biological phenomenon associated with 

growth and development (Anderson et al. 2006; Gangaraju and Lin 2009; Li et al. 2011; Wienholds 

et al. 2005). Recently, a total of 921 miRNAs were identified from breast muscles of fast and slow 

growing broilers (Ouyang et al. 2015). Of note, let-7b was experimentally validated through 

genetic analyses in chickens to affect signaling pathways regulating skeletal muscle growth (Lin 

et al. 2012). The miR-1 was shown to promote myogenesis by targeting histone deacetylase 

(HDAC) 4, a transcriptional repressor protein of muscle gene expression. The miR-133 was proven 

to enhance myoblast proliferation by repressing serum response factor (SRF) (Chen et al. 2006). 

The miR-26a was reported to accelerate the process of myogenesis through induction of creatine 

kinase and up-regulation of myoD and myogenin (Wong and Tellam 2008). All these reports 

suggest that miRNAs are important regulators of muscle growth and development in vertebrate 

animals.  
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 Extensive genetic selection has led to rapid growth rate and large muscle mass in modern 

broilers compared to unselected chicken breeds (Lopez et al. 2007). Previously, we have identified 

differentially expressed genes associated with breast muscle myogenesis in pedigree male (PeM) 

broilers (rapidly growing, higher efficiency, and large muscle mass) compared with Barred 

Plymouth Rock (BPR) chickens (slowly growing, poorer efficiency, and small muscle mass) 

(Kong et al. 2017). This transcriptomic analysis indicated that rapid growth and large muscle mass 

shown in modern broilers may be due to altered mitochondrial functions, growth signaling 

pathways, oxidative stress pathway, and/or hormone receptor pathways. To elucidate regulatory 

roles of miRNAs on muscle growth and production efficiency, we profiled differentially expressed 

(DE) miRNAs using small RNA sequencing followed by prediction of potential target mRNAs; 

and eventually, miRNA profiling results were integrated with trasncriptomic data of DE genes 

obtained by previous mRNA sequencing study (Kong et al. 2017).  
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2.3 METHODS  

2.3.1 ETHICS STATEMENT  

The present study was conducted in accordance with the recommendations in the guide for 

the care and use of laboratory animals of the National Institutes of Health. All procedures for 

animal care complied with the University of Arkansas Institutional Animal Care and Use 

Committee (IACUC): Protocol #14012. 

2.3.2 SAMPLES  

Breast muscle tissues were obtained from pedigree male broilers (PeM), highly selected 

for growth and feed efficiency (Bottje et al. 2002; Kong et al. 2011), and Barred Plymouth Rock 

(BPR) as described elsewhere (Kong et al. 2017). Briefly, immature PeM and BPR chickens (≤8 

weeks old, n=6 per breed) were killed by an overdose of sodium pentobarbital (i.v.) and breast 

muscle tissue was obtained and flash frozen in liquid nitrogen. Total RNAs were extracted from 

the muscle tissue using TRIzol reagent (Thermo-Fisher Scientific, Carlsbad, CA) following 

manufacturer’s protocol. Extracted RNA samples were treated with DNase I (New England 

Biolabs Inc., Ipswich, MA) and purified again using TRIzol reagent. RNA quality was then 

assessed using Agilent 2200 TapeStation instrument (Santa Clara, CA). All RNA samples showed 

high enough quality and quantity (data not shown) and were subjected to miRNA sequencing.  

2.3.3 MICRORNA SEQUENCING AND DATA ANALYSIS 

Library preparation for individual samples and sequencing were performed by Research 

Technology Support Facility at Michigan State University (East Lansing, MI). Illumina TruSeq 

system 1×50 bp single end read method was used for miRNA sequencing. Quality of raw reads 

were determined using FastQC tool kit (Andrews 2010) and adapters were trimmed using bbduk.sh 

command line of BBMap toolkit (http://sourceforge.net/projects/bbmap/). The clean reads were 

http://sourceforge.net/projects/bbmap/


 

 32 

then aligned to reference mature miRNA sequences of Gallus gallus obtained from miRBase 

(http://mirbase.org/) using Arraystar program in Lasergene software package (DNAStar, Madison, 

WI) and read counts were normalized by reads per millions (RPM) to stabilize the variance. 

Differential expression with normalized read counts was further analyzed using JMP Genomics 9 

(SAS Institute Inc., Cary, NC). MicroRNAs with less than 5 average read counts in both 

comparison groups were not considered for further analysis. The t-statistics was used to compare 

abundances between PeM and BPR, and miRNAs showing fold change >1.2 and p-value <0.05 

were considered as DE.  

2.3.4 HIERARCHICAL CLUSTERING 

DE miRNAs of PeM and BPR were subjected to hierarchical cluster analysis using JMP 

Genomics Program. A matrix with as many columns as birds (12) and as many rows as DE miRNA 

(9) were imported in which each cell contained log2 transformed fold change value for that miRNA 

and bird into JMP Genomics Program, normalizing on rows. After, hierarchical clustering on both 

rows and columns were applied followed by dendrogram image production. 

2.3.5 TARGET PREDICTION OF DE MIRNA 

Online miRNA target prediction tool, miRDB (http://www.mirdb.org/) was used to predict 

the targets of DE miRNAs. The predicted targets of DE miRNA were then integrated with DE 

mRNA list obtained from same breast muscle tissue in earlier study (Kong et al. 2017). The mRNA 

showing opposite direction of expression to the corresponding miRNA were chosen as targets of 

DE miRNAs and used for subsequent bioinformatics analyses.  

2.3.6 INGENUITY PATHWAY ANALYSIS 

Ingenuity Pathway Analysis (IPA; Qiagen, Valencia, CA; http://www.ingenuity.com) 

software was used for construction of interaction network between DE miRNA and their candidate 

http://mirbase.org/
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targets. Since IPA is based on bioinformatics in humans, functionalities for DE miRNAs in the 

chicken datasets are principally based upon mammalian biological mechanisms. As investment in 

biomedical research biases the functional annotations towards human disease, we have attempted 

to draw plausible conclusions based on avian literature (Kong et al. 2017). All target genes of DE 

miRNAs were subjected to IPA analysis for functional annotation and canonical pathways 

mapping among which all target genes were identified by IPA. 

2.3.7 SMALL RNA PURIFICATION, CDNA SYNTHESIS AND QUANTITATIVE REAL 

TIME PCR (QPCR) 

Sixty micrograms of total RNA samples from 6 muscle samples each for PeM and BPR 

were used for small RNA enrichment and subsequent validation of miRNA sequencing results by 

qPCR. Small RNAs were enriched using mirVana miRNA isolation kit (Ambion, Carlsbad, CA) 

following manufacturer’s instructions. Enriched small RNAs were polyadenylated using Poly(A) 

Polymerase (Ambion) and re-purified using QIAquick Nucleotide Removal Kit (Qiagen). The 

polyadenylated small RNAs were then ligated with RNA oligonucleotide adapter (Table 1), treated 

with RNaseOUT and reverse transcribed to cDNA using adapter primer and SuperScript III reverse 

transcriptase (Thermo-Fisher Scientific). The cDNA samples were diluted to 1:10 ratio and a 

portion (2 µl) of cDNA was used for qPCR reaction using ABI prism 7500HT system (Thermo-

Fisher Scientific) with PowerUp SYBR Green Master Mix (Thermo-Fisher Scientific). Primers 

were synthesized by Integrated DNA Technologies (Coralville, IA), and are listed in Table 2.1. 

The qPCR condition was as follows: 1 cycle at 95 °C for 2 min, 40 cycles at 95 °C for 30 s, 60 °C 

for 30 s. The chicken 5S ribosomal RNA was used as internal control. Dissociation curves were 

generated at the end of amplification process for validating data quality. All qPCR reactions were 

conducted three times and values of average cycle threshold (Ct) were determined for each sample, 
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and 2-ΔΔCt values for the comparison of PeM and BPR were used for relative quantification by fold-

change and statistical significance. 

2.4 RESULTS 

2.4.1 MICRORNA PROFILING IN PEM AND BPR CHICKENS BY MIRNA SEQUENCING 

MicroRNA Sequencing of twelve samples yielded 33,727,148 and 51,310,328 raw 

sequence reads from PeM and BPR samples, respectively. After adapter trimming, 17,751,585 and 

22,922,027 clean reads remained in PeM and BPR, respectively (data not shown). After alignment 

of clean reads to chicken reference mature miRNA collections, a total of 994 mature miRNAs were 

identified in both PeM and BPR. Rarely expressed mature miRNAs (i.e., raw read count < 5) were 

filtered out, resulting in 38 miRNAs remained as meaningfully expressed and were used for 

subsequent analyses (Supplementary 2.1). 

2.4.2 DIFFERENTIALLY EXPRESSED MIRNAS IN PEM COMPARED TO BPR 

Nine DE miRNAs showing p-value <0.05 and fold change >1.2 were identified in PeM 

compared with BPR (Table 2.2). Among 9 DE miRNAs, 8 miRNAs including miR-2131-5p, miR-

221-5p, miR-126-3p, miR-146b-5p, miR-10a-5p, let-7b, miR-125b-5p, and miR-146c-5p were up-

regulated while miR-206 was down-regulated in PeM compared to BPR breast muscle (Table 2.2). 

All DE miRNAs were validated using qPCR (Table 2.2). Our qPCR results indicated that 

expression patterns of 8 out of 9 miRNAs were in good agreement with miRNA sequencing data 

in terms of their direction and magnitude of change. One (miR-126-3p) out of 9 miRNAs did not 

match with miRNA sequencing which may be due to different approaches for data normalization. 

Additionally, hierarchical clustering showed clear discrimination of 12 birds into correct group of 

origin (Figure 2.1). 
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2.4.3 TARGET PREDICTION AND NETWORK ANALYSIS 

In our recent study, DE mRNAs were identified by mRNA sequencing analysis in the same 

breast muscle tissues of PeM and BPR (Kong et al. 2017). To investigate potential interactions 

between miRNA and mRNA expression, miRDB (http://mirdb.org), an online tool for miRNA 

target prediction and functional annotations was used to predict target genes of validated, DE 

miRNAs. A total of 2,194 genes (mRNAs) were predicted as potential targets for 8 qPCR validated 

DE miRNAs (except miR-126-3p which showed inconsistent fold change values between 

miRNAseq and qPCR) (data not shown). Target mRNAs for DE miRNA were integrated with our 

DE mRNA dataset (retrieved from Kong et al., 2017). Expressions showing opposite direction to 

corresponding miRNA (e.g., down-regulated transcripts that are targets of up-regulated miRNA in 

PeM) were chosen for further pathway analysis using the IPA. According to the miRNA-mRNA 

interaction criteria, 153 candidate target genes for 8 miRNAs were identified (Supplementary 

Table 2.2) including 118 down-regulated transcripts potentially targeted by 7 up-regulated 

miRNAs (miR-2131-5p, miR-221-5p, miR-146b-5p, miR-10a-5p, let-7b, miR-125b-5p, and miR-

146c-5p). Similarly, it was predicted that 35 up-regulated transcripts might be modulated by down-

regulated miRNA (miR-206) in PeM muscle samples.  

As results of pathway analyses with DE miRNA and their target genes, the top biological 

functions of target genes were identified by the IPA using its features, “Top Canonical Pathways” 

and “Physiological System Development and Function” (Table 2.3). The most relevant biological 

functions of DE miRNA and their target DE mRNA in skeletal muscle included axonal guidance 

signaling, glycine degradation, calcium signaling, serine biosynthesis, zymosterol biosynthesis, 

endocrine system development and function, embryonic development, organismal development, 

skeletal and muscular system development and function, and tissue organismal development.  

http://mirdb.org/
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2.5 DISCUSSION 

In this study, an extensive set of miRNAs was identified by small RNA sequencing and 

their potential roles in muscle growth and feed efficiency were determined in PeM and BPR 

chickens. Among a total of 994 mature miRNAs identified, the 20 most abundant mature miRNAs 

were identified in this study. Of those, miR-21-5p was the most abundant with average read counts 

of 9,763 and 15,132 in PeM and BPR chickens, respectively (Supplementary Table 2.1). Previous 

studies have reported upregulated expression of miR-21 in breast muscle of low body weight 

chickens (Ouyang et al. 2015). In separate studies conducted in chickens and rats, miR-21 inhibited 

cell proliferation (Wang et al. 2016; Lin et al. 2014), suggesting that lowered expression of miR-

21 in PeM may be a factor responsible for rapid muscle growth compared to BPR. The other 

miRNA, miR-133c-3p, that was abundantly expressed in chicken breast muscle (Sweetman et al. 

2008), enhances skeletal muscle proliferation and differentiation by repressing serum response 

factor (Chen et al. 2006). In addition, miR-22-3p, miR-30a-5p, miR-30d, miR-10b, miR-148a, 

miR-146c-5p and miR-199 were also known as abundantly expressed in breast muscles (Ouyang 

et al. 2015). Altogether, evidences in literature suggest that abundant miRNAs identified in our 

samples may play role in enhanced growth and development of breast muscle of modern broilers.   

Of eight DE miRNAs validated with qPCR, expression of miR-146b-5p, miR-125b-5p, 

miR-2131-5p, let-7b, miR-221-5p miR-146c-5p, miR-126-3p, and miR-10a-5p were higher in 

PeM muscle while the miR-206 showed lowered expression in PeM. All DE miRNAs have been 

shown to be involved in muscle development in various animal species (Anderson at al. 2006; Hu 

et al. 2014; Huang et al. 2010; Khanna et al. 2014; Li et al. 2011; Ouyang et al. 2015). MiR-206 

is specifically expressed in skeletal muscle and functions in muscle differentiation and cell 

proliferation in chickens and human (Jia et al. 2016; Koutsoulidou et al. 2011; Kim at al. 2006). 
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Let-7b has been reported to be abundantly expressed in breast and skeletal muscle in chickens and 

to play roles in growth regulation via targeting growth hormone receptor (Lin et al. 2012). MiR-

10a is a well characterized miRNA and is known to implicate with muscle development and 

myogenesis regulation in various animals (Ørom et al. 2008; Huang et al. 2010; Hu et al. 2014; Li 

et al. 2011). MiR-146b is a known regulator of skeletal myoblast differentiation in vitro and muscle 

regeneration in mice (Khanna et al. 2014). MiR-126 mediates vascular integrity and angiogenesis. 

It also elicits direct effects on regulation of skeletal muscle growth and activation of insulin like 

growth factor 1(IGF-1) (Wang et al. 2008; Rivas et al. 2014). MiR-125b is known to regulate 

calcification of vascular smooth muscle cells. It targets IGF in both regenerating muscles and 

myoblasts (Goettsch et al. 2011). There is evidence of expression of miR-221 controlled by the 

Ras-MAPK pathway. It is involved in vascular smooth muscle proliferation and plays a role in 

progression from myoblasts to myocytes developing into fully differentiated phenotype (Cardinali 

et al. 2009; Liu et al. 2009). Therefore, all DE miRNAs identified in this study seem to be closely 

related with muscle growth and development in chickens to their mammalian counterparts.  

To understand cellular and physiological mechanisms in chickens muscle development, 

DE miRNA and their target DE mRNA were subjected to in silico pathway analysis using the IPA 

program. The network analysis of DE miRNA-DE mRNA pairs (showing opposite expression 

patterns between miRNA and DE mRNA) were shown to be interlinked with P38 MAPK, ERK1/2, 

PI3K, and insulin-signaling pathways (Figure 2.2). Further, functions associated with these genes 

include embryonic development, organ development, organismal development, and molecular 

transport. In the network, the up-regulation of annexin A2 (ANXA2), tropomycin 3 (TPM3) and 

eukaryotic translation initiation factor 2 alpha kinase 3 (EIF2AK3) genes seemed to be directly 

regulated by down-regulation of miR-206 and their close association with P38 MAPK, ERK1/2, 
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PI3K and insulin signaling cascades. ANXA2, lipocortin II or p36, which is a 36-kDa Ca2+-

dependent protein of the annexin superfamily play regulatory functions in proliferation, migration 

and cytoskeletal formation in muscle cells (Babiychuk et al. 1999; Chen et al. 2014). TPM3 binds 

to actin filaments in muscle cells. In association with troponin complex, TPM3 has central role in 

controlling contraction of striated muscle in vertebrates (Lawlor et al. 2010). EIF2AK3, a 

metabolic stress sensing protein kinase, phosphorylates eukaryotic translation initiation factor 2 

and is also involved in controlling mitochondrial morphology and function (Shi et al. 1999; De et 

al. 2017). Therefore, it is possible that the interaction between miR-206 and its target genes may 

reflect the rapid myogenesis shown in breast muscle of PeM chickens. Interestingly, the down-

regulated target genes of miR-146, miR-10a-5p, miR-125b-5p, miR-2131-5p and let-7b are also 

assigned to these signaling pathways.  

From the IPA canonical pathway analysis, we found that the targeted DE mRNAs were 

associated with calcium signaling (p-value 3.03E-02; Figure 2.3), axonal guidance signaling (p-

value 9.91E-03; Figure 2.4), and NRF2-mediated oxidative stress response (p-value 3.61E-02; 

Figure 2.5) pathways. The target genes involved in calcium signaling pathway include: HDAC 11 

gene (target of miR-10a-5p); a member of RAS oncogene family (RAP1B) and nuclear factor of 

activated T-cells 1 (NFATC1) genes (targets of miR-2131-5p); and TPM3 and bone 

morphogenetic protein 6 genes (targets of miR-206). It is well established that the homeostasis of 

intracellular calcium level is important for muscle growth and development. The increased 

intracellular level of Ca2+ can occur due to both poor Ca2+-ATPase activity and disturbance of 

sarcolemma integrity which results in hypercontraction of myofibers and degeneration of muscle 

mass (Mutryn et al. 2015; Oberc and Engel 1977; Byrd 1992; Emery and Burt 1980); the IPA 

suggests that this pathway might have been modulated by miR-10a-5p and miR-2131-5p thereby 
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leading to larger muscle mass observed in PeM compared to BPR chickens. We also found the 

involvement of target genes of miR-2131-5p in axonal guidance signaling pathway; the predicted 

target mRNAs of miR-2131-5p included RAP1B, leucyl and cystinyl aminopeptidase, CRK like 

proto-oncogene, adapter protein, Rho associated coiled-coil containing protein kinase 2, BMP7, 

and NFATC1. Interestingly, Mutryn et al. (2015) recently suggested possible roles of axonal 

guidance signaling pathway in the breast muscle myopathy in chickens (Mutryn et al. 2015). 

Hence, it is postulated that DE miR-2131-5p can play roles in regulation of axonal guidance 

signaling pathway in breast muscle of chickens. Further investigations and validation works might 

be warranted with regards to the implications of calcium metabolism and axonal guidance 

signaling in PeM samples and responsible physiological roles of DE miRNAs therein. 

Last, we identified EIF2AK3 and glutathione S-transferase theta 1 (GSTT1) genes (targets 

of miR-206) involved in NRF2-mediated oxidative stress response pathway. NRF2 is one of the 

main factors responding to both oxidative and xenobiotic stresses. It plays a critical role in 

neutralizing oxidative stress by activating the expression of antioxidants and detoxifying enzymes 

(Choi et al. 2017). The activation of EIF2AK3 and GSTT1 genes is associated with decreased 

reactive oxygen species levels (Ramnarayanan et al. 2016; Simic et al. 2009). Previously, the 

augmentation of the NRF2-mediated oxidative stress response pathway is observed in breast 

muscle of higher feed efficient and rapidly growing chickens (Zhou et al. 2015). Therefore, 

increased expression of EIF2AK3 and GSTT1 genes, as a result of down-regulation of miR-206, 

implied the activation of canonical NRF2-mediated response pathway for scavenging reactive 

oxygen species from breast muscle of rapidly growing PeM chickens. 
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2.6 CONCLUSION 

Using miRNA sequencing, integrated analyses of miRNA-mRNA data and IPA, we were 

able to identify breast muscle specific miRNAs and their target genes whose concerted actions can 

contribute to rapid growth and higher feed efficiency in modern broiler chickens. We believe our 

comprehensive analysis enables us to better understand miRNA and their physiological roles in 

breast muscle growth in chickens. Future validation studies are warranted in regard to interactions 

between miRNA and target genes (e.g., in vitro transfection studies) to characterize functions of 

miRNAs and their specific targets in the context of rapid muscle growth and development. 
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APPENDIX 

Table 2.1 Primers used for qPCR. The first column indicates primer names and the second 
column shows their sequences. 

Name Sequence 
RTQ_primer CGAATTCTAGAGCTCGAGGCAGGCGACATGGCTGGCTAGTTAAGCTTG 

GTACCGAGCTCGGATCCACTAGTCCTTTTTTTTTTTTTTTTTTTTTTTTTVN 
RTQ-UNIr CGAATTCTAGAGCTCGAGGCAGG 
miR-146c-5p TGAGAACTGAATTCCATGGACTG 
miR-146b-5p TGAGAACTGAATTCCATAGGCG 
miR-10a-5p TACCCTGTAGATCCGAATTTGT 
miR-2131-5p CTGTTACTGTTCTTCTGATGG 
miR-221-5p AACCTGGCATACAATGTAGATTTCTGT 
miR-10b-5p TACCCTGTAGAACCGAATTTGT 
let-7b TGAGGTAGTAGGTTGTGTGGTT 
miR-125b-5p TCCCTGAGACCCTAACTTGTGA 
miR-206 TGGAATGTAAGGAAGTGTGTGG 
5S_rRNA-F1 AAGCCTACAGCACCCGGTAT 

 
Table 2.2 Comparison of fold change between miRNAseq and qPCR in breast muscle tissue 
of PeM compared to BPR broilers. 

miRNA 
Sequence miRNAseq

* qPCR* 
miR-2131-5p AUGCAGAAGUGCACGGAAACAGCU 2.62 1.45 

miR-221-5p 
AACCUGGCAUACAAUGUAGAUUUCUG
U 2.42 1.43 

miR-126-3p** UCGUACCGUGAGUAAUAAUGCGC 1.49 -0.87** 
miR-146b-5p UGAGAACUGAAUUCCAUAGGCG 2.44 1.88 
miR-10a-5p UACCCUGUAGAUCCGAAUUUGU 1.96 1.17 
miR-206 UGGAAUGUAAGGAAGUGUGUGG -0.72 -0.62 
let-7b UGAGGUAGUAGGUUGUGUGGUU 1.20 1.20 
miR-125b-5p UCCCUGAGACCCUAACUUGUGA 1.51 1.17 
miR-146c-5p UGAGAACUGAAUUCCAUGGACUG 1.42 1.31 

* Values denote linear fold changes  
** Indicate inconsistent fold change between RNAseq and qPCR 
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Table 2.3 Top biological functions of target genes between PeM and BPR as presented by 
IPA. 

Top Canonical Pathways p-value 
Axonal Guidance Signaling 0.00991 
Glycine Degradation (Creatine Biosynthesis) 0.0131 
Calcium Signaling 0.0303 
Serine Biosynthesis 0.0325 
NRF2-mediated oxidative stress response 0.0361 
Zymosterol Biosynthesis 0.0389 
Physiological System Development and Function p-value range 
Endocrine System Development and Function 1.96E-02 - 2.56E-04 
Embryonic Development 2.86E-02 - 4.33E-04 
Organismal Development 2.92E-02 - 4.33E-04 
Skeletal and Muscular System Developmental and 
Function 2.61E-02 - 6.36E-04 
Tissue Development 2.86E-02 - 8.86E-04 
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Figure 2.1 Hierarchically clustered heat map of 9 DE miRNA. Red and blue represent up and 
down-regulated expression in PeM respectively. Color density indicated level of fold change. 
 

 
Figure 2.2 Network associated with P38 MAPK, ERK1/2, PI3K and insulin signaling pathways. 
Genes and miRNA filled with red are up-regulated while symbols in blue color are down-
regulated in PeM in comparison to BPR. 
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Figure 2.3 Pathway of calcium signaling predicted by IPA. Color symbols were indicated in the 
legend of Figure 2.2. 
 

 
Figure 2.4 Pathway of axonal guidance. Color symbols were indicated in the legend of Figure 
2.2. 
 

 
Figure 2.5 Pathway of NRF2-mediated oxidative stress response. Color symbols were indicated 
in the legend of Figure 2.2. 
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3.1 ABSTRACT 

Background: Copy number variation (CNV) is a major driving factor for genetic variation and 

phenotypic diversity in animals. Japanese quail is an important model for understanding effects of 

stress in well-being and growth performances of animals. To detect CNVs and understand genetic 

components underlying stress related traits, we performed whole genome re-sequencing analysis 

in High Stress (HS) and Low Stress (LS) birds.  

Results: We assembled Illumina HiSeq data using reference based assembly on the quail genome 

sequences and performed bioinformatics analyses. Our bioinformatics analyses were then 

complemented with experimental validation using real time quantitative PCR (qPCR). The depth 

of coverage for re-sequenced data using pooled DNA of each 12 HS and LS birds reached to 41.4x 

and 42.5x respectively. Using read-depth approach and CNVnator tool to detect CNVs in the 

aligned data sets, we found 262 (235 deletions and 27 duplications) and 168 (148 deletions and 20 

duplications) CNV regions (CNVRs) affecting 15.20 Mb (1.6%) and 18.17 Mb (1.9%) of reference 

genome in HS and LS birds respectively. Using BEDOPS tool and custom bash script, we extracted 

genes from CNVRs and found 454 unique genes in HS and 493 in LS birds associated with CNV. 

Results of Ingenuity Pathway Analysis (IPA) showed that the CNV genes were significantly 

enriched to phospholipase C signaling, neuregulin signaling, reelin signaling in neurons, CD27 

signaling in lymphocytes and associated with endocrine and nervous development, humoral 

immune response, and carbohydrate and amino acid metabolisms in HS birds compared to 

different sets of signaling pathways, cell-mediated immune response, protein and lipid 

metabolisms in LS birds. 

Conclusion: We identified different sets of genes affected by CNVs in HS and LS birds, most 

notably involved in nervous and endocrine systems development, humoral and cell-mediated 



 

 51 

immune response and different metabolisms, which may be suggested as candidate marker genes 

responsible for stress related traits.   

Keywords: whole genome re-sequencing, copy number variation, restraint stress, Japanese quail  
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3.2 BACKGROUND 

Understanding the evolutionary process that leads to divergence in animals requires study 

of their genetic variation. Genomic variation is a principal factor responsible for phenotypic 

diversity in animals (Pezer et al. 2015). Basically, genomic variation can encompass a wide range 

of alterations from small indels to large deletion or duplication of the entire genome. The deletion 

or duplication of a certain region of DNA causes change in copy number variation (CNV) (Redon 

et al. 2006). CNV is arbitrarily defined as DNA segment that is 1 kb or larger and present at 

variable copy number in comparison with a reference genome (Feuk et al. 2006). It is estimated 

that DNA region that have CNV can account for 4.8-9.5% of human genome and surpass the 

diversity caused by single nucleotide polymorphisms (Stankiewicz and Lupski 2010; Zarrei et al. 

2015).  

Due to their larger sizes and abundances, CNVs may have impact on functions of many 

genes and consequently fitness in animals (Schrider and Hahn 2010). To date, four different 

mechanisms have been proposed for the formation of CNVs including non-allelic homologous 

recombination (NAHR), non-homologous end joining (NHEJ), Fork Stalling and Template 

Switching (FoSTeS) and Retrotransposition (Hastings et al. 2009). CNVs potentially influence to 

gene structure, gene dosage, and gene expression by exposing recessive alleles (Bickhart and Liu 

2014) or indirectly through the perturbation of regulatory region of genes (Zhang et al. 2009).  

Several studies have identified CNVs associated with phenotypic variations and complex 

disorders in human, such as schizophrenia, developmental delay, mental retardation, autism, 

systemic lupus erythematosus, diabetes, obesity, psoriasis, neuroblastoma and susceptibility to 

HIV infection (Girirajan et al. 2011; Henrichsen et al. 2009; Diskin et al. 2009). Phenotypic 

diversity associated with CNV has also been characterized in various domestic animals. The pea-
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comb phenotype characterized by decrease in comb size in male and female chickens is due to 

duplication of the first intron of sex determining region Y (SRY)-box5 (Sox5) gene (Wright et al. 

2009). A late feathering phenotype in chicken is due to partial duplication of prolactin receptor 

(PRLR) and sperm flagella 2 (SPEF2) genes (Elferink et al. 2008). Similarly excessive black 

pigmentation phenotype in chickens is due to duplication of 130 kb locus containing endothelin 3 

(EDN3) gene (Shinomiya et al. 2012). White coat phenotypes in sheep and pigs are due to 

duplications of agouti signaling protein (ASIP) and KIT proto-oncogene receptor tyrosine kinase 

(KIT) genes, respectively (Fontanesi et al. 2009; Giuffra et al. 2002). The dorsal hair ridge in 

Rhodesian and Thai dogs and their susceptibility to dermoid sinus is caused by duplication of 

fibroblast growth factors (FGF3, FGF4, and FGF19) and oral cancer overexpressed 1 (ORAOV1) 

genes (Hillbertz et al. 2007). CNVs have also been reported to be associated with disease resistance 

and developmental disorders in animals. Loss of MHC class I antigen-presenting proteins are 

associated with Marek’s disease resistance in chicken (Luo et al. 2013). Gain of class II major 

histocompatibility complex transactivator (CIITA) is associated with nematode resistance in cattle 

(Liu, George E 2011). Likewise, cone-rod dystrophy 3 (Goldstein et al. 2010), startle diseases in 

dogs (Gill et al. 2011), and osteopetrosis, abortion and stillbirths in cattle have been linked to 

CNVs (Meyers et al. 2010; Flisikowski et al. 2010). From these findings, we hypothesize that 

CNVs can be important biomarkers for phenotypic traits or disease resistance in animals. 

Two genetically distinct line of Japanese quail named as high stress (HS) and low stress 

(LS) have been selected by divergent plasma corticosterone response to restraint stress during the 

1980s (Satterlee, DG 1988). Since then these two lines have been used as stress responding animal 

models in poultry. In LS line, the mean corticosterone level is approximately one-third lower 

compared to HS line. Compared to HS line, LS line is less fearful and more social, higher in body 
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weight, higher in egg production, and lower in heterophil/lymphocyte ratio. LS line shows lower 

stress-induced osteoporosis, accelerated onset of puberty, and heightened male sexual activity and 

efficiency compared to HS line (Satterlee and Johnson 1988; Huff et al. 2013). In this study, we 

have performed CNV analysis with whole genome re-sequencing data of high and low stress lines 

of Japanese quail particularly focusing on identifying full length genes within CNVs. These genes 

could be relevant for divergence and adaptation of the two lines of quail. 
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3.3 MATERIALS AND METHODS 

3.3.1 ETHICS AND STATEMENT 

This study was conducted following the recommended guidelines for the care and use of 

laboratory animals for the National Institutes of Health. All procedures for animal care were 

performed according to the animal use protocols that were reviewed and approved by the 

University of Arkansas Institutional Animal Care and Use Committee. 

3.3.2 BIRDS AND DNA SEQUENCING 

The early process of development and selection of HS and LS lines of Japanese quail for 

their plasma corticosterone response to immobilization for up to 12 generations was explained by 

Satterlee and Johnson (1988). Since then, an independent random mating condition has been used 

for their maintenance (Satterlee et al. 2000; Satterlee et al. 2002; Suhr et al. 2010). These research 

lines were shipped to University of Arkansas at generation 44 from Louisiana State University and 

maintained at Arkansas Agricultural Experimentation Station, Fayetteville, AR (Huff et al. 2013).  

We used adult male HS and LS birds for this study because of their stable physiology. We 

collected blood samples (3 mL) from 20 birds each from HS and LS lines. Genomic DNA was 

purified from each sample using QiaAmp DNA mini kit (Qiagen, Hilden, Germany) following 

manufacturer’s method. DNA quality was assessed using NanoDrop 1000 (Thermo Scientific, 

Waltham, MA) and agarose gel electrophoresis. Twelve samples showing highest DNA quality 

per line were pooled to represent each line. Library preparation and Illumina sequencing for the 

pooled DNA samples were performed by the Research Technology Support Facility at Michigan 

State University (East Lansing, MI) using Illumina HiSeq 2×150 bp paired end read technology.    
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3.3.3 DATA QUALITY ASSESSMENT AND SEQUENCE ASSEMBLY 

We used the FastQC tool (v0.11.6) to assess the quality of raw reads obtained after 

sequencing in form of FASTQ files (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). 

After quality assessment, the low-quality reads were trimmed out using Trimmomatic tool (v0.32) 

(Bolger et al. 2014). The clean reads were then mapped onto the Japanese quail reference genome 

obtained from NCBI (https://www.ncbi.nlm.nih.gov/genome/113) using Bowtie2 (v2.3.3.1) with 

the default settings for the parameters (Langmead, Ben 2012). We removed PCR duplicates using 

the rmdup command line of SAMtools (v0.1.19) and SAMtools was further used to convert SAM 

to BAM files and then to sorted BAM files to save run time in subsequent analysis (Li et al. 2009). 

3.3.4 CNV DETECTION AND COPY NUMBER ESTIMATION 

We used CNVnator software (v0.3.3) to predict CNV in sorted BAM files relative to 

reference quail genome (Abyzov et al. 2011). Optimal bin sizes of 1200 and 1500 were chosen for 

HS and LS respectively according to author’s recommendations, in which the ratio of average 

read-depth signal to its standard deviation was between 4 and 5 (Abyzov et al. 2011; Pezer et al. 

2015; Harr at al. 2016). All the CNV calls in both HS and LS samples were greater than 1 kb. CNV 

calls were filtered according to criteria recommended by (Abyzov et al. 2011). CNV showing P-

value <0.01 (e-val1 calculated using t-test statistics), size >1 kb, and q0 < 0.5 (q0: fraction of 

mapped reads with zero quality) were filtered and used for downstream analysis.  

We estimated gene copy number (CN) in HS and LS birds across genome length using the 

“-genotype” option of CNVnator. We wrote a custom bash script and retrieved CNV genes from 

CNV regions (CNVRs) of HS and LS lines using RefSeq genes from NCBI and BEDOPS tool 

(v2.4.30) (Neph et al. 2012). 

 

https://www.ncbi.nlm.nih.gov/genome/113
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3.3.5 REAL TIME QUANTITATIVE PCR FOR CNV VALIDATION 

Real time quantitative PCR (qPCR) was used to validate CNVs detected by CNVnator with 

HS and LS lines. A total of 9 genes showing CNV were randomly chosen and primers were 

designed using Primer3 software and listed in Table 3.1. Primer specificities were checked using 

Primer-BLAST tool of NCBI. A segment of the β-actin gene, which is present in two copies per 

diploid and showed no CNV in either line of quail, was chosen as control in all reactions.  Five 

nanogram of genomic DNA was subjected to qPCR (total volume of 25 µL) in triplicate reactions 

using ABI prism 7500HT system (ThermoFisher Scientific) with PowerUpTM SYBER® Green 

Master Mix (ThermoFisher Scientific). The conditions of real-time qPCR amplification were as 

follows: 1 cycle at 95°C (10 min), 40 cycles at 95°C (15 s each), followed by 60°C for 1 min. We 

used ΔΔCt method for calculating relative copy number of each gene. First, the cycle threshold 

(Ct) value of each gene was normalized against the control gene, and then ΔCt value was 

determined between test gene and reference gene predicted as normal copy number by CNVnator. 

Finally values around 3 or above were considered as duplications or gain and around 1 or less as 

deletion or loss.   

3.3.6 FUNCTIONAL ANNOTATION OF CNV GENES  

We analyzed genes retrieved from CNVRs in terms of gene ontology and molecular 

networks using Ingenuity Pathway Analysis (IPA; http://www.ingenuity.com; Qiagen, Valencia, 

CA). We imported lists of unique genes overlapped with CNVRs of HS and LS lines of quail into 

IPA separately and subsequently mapped to their corresponding annotations in the Ingenuity 

Pathway Knowledge Base. IPA identifies networks accommodating these unique genes in 

comparison with comprehensive global networks. IPA illustrates each molecular network with an 

assigned relevance score, the number of focus molecules, and top functions of the network. During 

http://www.ingenuity.com/
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analysis, we set each network to the limit of 35 molecules by default and only human was chosen 

for the species option. We used evidence of experimentally observed for the confidence level. 

Molecules in network are represented by nodes, distinguished by their shapes based on their 

functional category, and are connected by distinct edges based on interaction among molecules.  

3.4 RESULTS AND DISCUSSION 

3.4.1 GENOME RE-SEQUENCING AND DISTRIBUTION OF CNVS 

We performed whole genome resequencing of pooled DNA samples from 12 birds each 

from HS and LS lines of the quail and produced ~250 and ~257 million reads of 150 bp 

respectively and their respective depth of coverage reached to ~41x and ~42x for HS and LS, 

respectively (Table 3.2). Of four basic strategies for CNV analyses including as read pair, read-

depth, split-read and sequence assembly of next generation sequencing data, we used the software 

tool CNVnator (Abyzov et al. 2011) that works under read-depth approach as the most suitable 

method to detect CNVs in our data and address our hypothesis. CNVnator has several advantages 

over other methods with respect to accurate CNV detection, precise break point resolution, and 

detection of different sizes of CNVs, from a few hundred bases to several megabases in the whole 

genome. In addition, CNVnator has high sensitivity (86-96%), low false discovery rate (3-20%) 

and high genotyping accuracy (93-95%) (Abyzov et al. 2011; Medvedev et al. 2009; Zhao et al. 

2013). With analyzing data to call CNVs from the mapped data, we considered calls (deletions or 

duplications) ≥1 kb length in our analysis which makes more reliable to detect CNVs (Abyzov et 

al. 2011).   

A total of 262 and 168 CNVRs were identified in HS and LS lines, respectively. Among 

these, 235 and 27 were deletion and duplication CNVRs, respectively, in HS, while 148 and 20 

were deletion and duplication CNVRs, respectively, in LS lines (Table 3.3). The distribution of 
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deletions and duplications over each chromosome is shown in Figure 3.1. Interestingly, no CNVRs 

were detected in chromosome 6 and 16 of LS line but CNVRs were present in HS line. The number 

of CNVRs in each chromosome was proportional to its length. Replication and recombination 

mechanisms have been suggested as possible events for the CNV formation across genome. Since 

the recombination rate is generally higher in longer DNA, more CNVRs may present in large 

chromosomes in our study (Jia et al. 2013; Bickhart and Liu 2014). The chromosome 16 in 

chickens has the major histocompatibility complex (MHC) genes that encode key proteins 

regulating immune responses (Delany et al. 2009). A study by Huff et al. (2013) reported HS birds 

were more susceptible to infection of Salmonella species as compared to LS birds (Huff et al. 

2013). Therefore, the deletion event detected in chromosome 16 of HS birds might be the cause 

for more susceptibility of HS birds to diseases. 

We found fewer copy numbers with zero state deletions (e.g. genes completely deleted or 

homozygous deletion) compared to one state deletion (e.g. one copy deleted or hemizygous 

deletion) in both HS and LS lines of quail, which was similar to those observed in chickens (Locke 

et al. 2015). The deletions outnumber duplications by a ratio of 8.70:1 in HS and 7.4:1 in LS (Table 

3.4), which is consistent with previous studies where more deletion events were discovered than 

duplications (Crooijmans et al. 2013). The length of CNVRs ranged from 6.0-1341.6 kb in HS and 

7.5-1101 kb in LS lines (Figure 3.2). The total length of deletion CNVRs accounted for 13.8 Mb 

in HS and 17.02 Mb in LS lines. Similarly, the total lengths of CNVRs associated with duplication 

were 1.32 Mb in HS and 1.15 Mb in LS lines. The average lengths of CNVRs were ~50 kb in HS 

and ~100 kb in LS lines (Table 3.3). The CNVRs covered 1.6 and 1.9 % of quail genome in HS 

and LS, respectively. We found the amount of quail genome affected by CNVs similar to those 

reported for chickens (1.42%, 2.61%) (Jia et al. 2013; Zhou et al. 2014), dogs (1.08%) (Berglund 
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et al. 2012), and Holstein cattle (1.61%) (Jiang, Li 2013) but lower than in swine (4.23%) (Wang 

et al. 2012), mice (6.87% or 8.15%) (Locke et al. 2015) and human (5.9% and 12%) (Shaikh et al. 

2009; Redon et al. 2006). However, these values could be affected by sample size, diversity of 

samples, sequencing technology and CNV calling methods per each study (Locke et al. 2015). 

3.4.2 CNV VALIDATION USING QPCR 

In this study, we used pooled DNA samples from each line for whole genome re-

sequencing. We validated genes associated with CNV in 16 individual birds each from HS and LS 

lines using qPCR. We randomly selected 9 different genes retaining each CNVRs for their 

validation. We used ΔΔCt method for determining relative CN of the genes. We found ~80% (7 

out of 9) of our qPCR results agreed with the CN state predicted by CNVnator (Table 3.9). The 

result clearly showed that there is difference in CNV in 9 genes between HS and LS lines of quail. 

Thus, differential CNVs observed in genes between HS and LS lines can be causes for their 

phenotypic variations in stress responses.  

3.4.3 GENE CONTENT OF CNVRS AND BIOINFORMATICS ANALYSIS 

We used a custom bash script, BEDOPS tool and reference genome annotation file (in GFF 

format) of Japanese quail from NCBI to extract genes from CNVRs of both the lines. We retrieved 

a total of 948 genes completely overlapped within CNVRs in HS and 982 in LS lines. The total 

number of genes overlapped with deletion CNVRs was 895 in HS and 922 in LS lines while their 

respective number of genes overlapped with duplication CNVRs was 53 and 60. Among the genes 

overlapped with deletion CNVRs, 436 were unique in HS and 471 in LS lines (Table 3.4). 

Similarly, we found 18 unique genes overlapped with duplication CNVRs in HS and 22 in LS lines 

(Table 3.4). Structural genetic variations have been known to accumulate during inbreeding 

process in animals (Katju and Bergthorsson 2013). However, the effects of the inbreeding process 
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in accumulation of genetic variation in quail populations was not known to date. We have 

identified several hundred genes that were fully deleted in HS and LS lines of quail, which supports 

a phenomenon of perpetual gene turnover in the two quail populations and their genetic 

differences. Duplication of whole genes has been known to impact gene expression by altering 

gene dosage (Stingele et al. 2012; Veitia 2004). If a duplication of a gene is adaptive, it is usually 

favored and retained more frequently in a population (Pezer et al. 2015). We found 23 genes in HS 

and 32 in LS lines that, on average, had 10 or more copies and are considered as high copy number 

genes. These gene lists included both annotated and unannotated genes with 11 genes having 

compatible copy number between HS and LS lines. The high copy number annotated genes in HS 

included PCR11 cleavage and polyadenhylation factor (PCF11), ankyrin repeat domain 42 

(ANKRD42), obscurin, cytoskeletal calmodulin and titin-interacting RhoGEF (OBSCN), 

chromosome 2 H6orf52 homolog (C2H6orf52), nucleoporin 153 (NUP153), core-binding factor 

alpha subunit 2 (CBFA2T2), syntrophin alpha 1 (SNTA1), and dynein axonemal intermediate 

chain 1 (DNAI1). The high copy number annotated genes in LS lines were PCF11, ANKRD42, 

and hydroxysteroid dehydrogenase like 2 (HSDL2). The high copy number genes (i.e. duplication 

genes) in HS line were associated with cellular assembly and organization, cellular morphology, 

nervous system development and function.  

We used IPA to characterize the biological functions, describe molecular interaction 

networks and canonical pathways implicated by unique genes overlapped with deletion CNVRs in 

HS and LS lines. We identified five canonical pathways significantly enriched (p-value < 0.01) by 

the deletion genes in HS lines (Table 3.5). The pathways include Phospholipase C Signaling, 

Reelin Signaling in Neurons, ERK5 Signaling, CD27 Signaling in Lymphocytes and Neuregulin 

Signaling. Similarly, six canonical pathways were significantly enriched (p-value <0.01) by the 
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deletion genes in LS lines which include Type II Diabetes Mellitus Signaling, GP6 Signaling, 

nNOS Signaling in Skeletal Muscle Cells, Hepatic Fibrosis/Hepatic Stellate Cell Activation, and 

role of CHK Proteins in Cell Cycle Checkpoint Control (Table 3.5). We found the top diseases 

and biological functions of the deletion genes in HS line related to endocrine system disorders, 

organismal injury and abnormalities, neurological disease, and gastrointestinal disease. Similarly, 

the top diseases and bio functions of the deletion genes in LS line were related to endocrine system 

disorderorganismal injury and abnormalities, connective tissue disorders, and reproductive system 

disease (Table 3.6). The unique deletion genes in HS that are involved in endocrine system disorder 

are listed in Table 3.7. The deletion genes in LS line produced a network associated with lipid 

metabolism. Thus, in contrast to LS line, canonical signaling pathways in HS are related to 

regulation of immune response, stress and neurological diseases. Therefore, a higher level of mean 

corticosterone level seen in HS compared to LS lines may be associated with the genes with CNVs. 

These differences might implicate CNV as an adaptive change in response to restraint stress 

between HS and LS lines of Japanese quail. This type of adaptive variation at DNA level can 

improve the fitness of organisms to new and challenging environments (Hull et al. 2017).  

We identified a total of 17 gene networks in HS and 18 in LS lines with score not less than 

10 among which 4 different networks in HS and 5 in LS lines were significantly involved in 

nervous and endocrine systems development (Table 3.7). A score of 10 implies that there will be 

less than a 10-10 probability that the genes in the network are associated with each other by chance. 

The topmost network involving deletion genes in HS line was specifically associated with cell to 

cell signaling and interaction, cellular assembly and organization, nervous system development 

and function (Figure 3.3). The genes associated with loss in this network are involved in signaling 

pathways of ERK1/2 connected to CaMKII (Ca2+/calmodulin-dependent protein kinase II), 
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PPP1R9B (Protein phosphatase 1 regulatory subunit 9B), APH1A (Aph-1 homolog A), proinsulin 

and growth hormone. CaMKII, PPP1R96, and APH1A are involved in nervous system 

development and functions. CaMKII functions in various cells by phosphorylating proteins 

involved in synaptic plasticity, electrical excitability and neurotransmitter synthesis (Tsui,J. 2005). 

PPP1R9B gene is expressed in dendritic spines and plays a role in receiving signals from the 

central nervous system (Carnero 2012). This gene is switched off during chronic stress condition 

(Aalling et al. 2018). APH1A gene encodes a component of gamma secretase complex that is 

involved in proteolysis of amyloid precursor protein (Fortna et al. 2004). The deletion of APH1A 

gene impairs the function of secretase gamma that can render neurons susceptible to stress and 

normal functioning secretase gamma is essential for neuronal integrity (Kallhoff-Munoz et al. 

2008). The ERK1/2 signaling pathway activated by upstream mitogen-activated protein kinases 

regulates synaptogenesis, neuronal excitability and histone modification. It is found to be 

hypoactive in brain of stress-induced depressed individuals (Dwivedi and Zhang 2016). The 

connection in this network therefore suggests loss of CaMKII, PPP1R9B, APH1A and other genes 

in this pathway may impair functional interactions of ERK1/2 signaling pathway with growth 

hormones, proinsulin and secretase gamma. This may be a reason for high stress and therefore 

reduced growth rate and low basal weight observed in HS compared to LS birds.   

Reduced heterophil/lymphocyte ratio is observed in LS compared to HS line of Japanese 

quail (Huff et al. 2013). Interestingly, we found humoral immune response in HS and cell-mediated 

immune response in LS lines associated with gene deletion (Figure 3.4). In this network, the 

deletion genes are associated with signaling pathway of P38 MAPK connected to CDKN1A 

(cyclin dependent kinase inhibitor 1A), PRKCE (protein kinase C epsilon) and CSF3 (colony 

stimulating factor 3). The protein encoded by CDKN1A inhibits cyclin-dependent kinase 2 
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(CDK2) and function in regulation of cell cycle progression at the G1 phase (Cloonan et al. 2008). 

PRKCE is involved in lipopolysaccharide (LPS)-mediated signaling in activating macrophages 

and also functions in controlling anxiety-like behavior (Castrillo et al. 2001). The protein product 

of CSF3 is cytokine that controls production, differentiation and functions of granulocytes 

(Kowanetz et al. 2010). Therefore, molecular interactions of P38 MAPK with T-cell receptor 

(TCR), B-Cell Receptor (BCR) complex, and interferon gamma may be impaired due to deletion 

of CDKN1A, PRKCE, CSF3 and other CNV related genes. It might indicate for suppression of 

cellular response leading to reduced heterophil counts in LS birds of quail. 

3.5 CONCLUSIONS 

We identified sets of genes affected by CNVs in HS and LS lines of quail, most importantly 

involved in nervous/endocrine systems development and humoral/cell-mediated immune 

responses. This result supports our hypothesis that CNVs have impact in increasing genotypic 

diversity and thereby phenotypic traits observed in quail. The quail will continue to evolve as an 

important research animal model for understanding well-being and production performances in 

avian species and other animals.   
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APPENDIX 

Table 3.1 Primers used for validation of CNV by qPCR. β-actin was used as internal control 
for qPCR. 
Gene Forward Reverse Size 
NPTN TGTCTGCACTGCCTATCAAG ACGTTGTGTTTCCCATGGTA 158 bp 
UBA7 TTGAACTCATCACGAGCCCA TTTGGTGTCCCATCCCATCT 140 bp 
RPHA AACAGCAGGAAGCTGGGAAT TCTGCAGGTGCAGCAATGCT 140 bp 
CACNG2 TAGAGGAGGATCCACTCAGA ACAGGATGTGCCAGACCTGA 140 bp 
LRRC16B TCTGCTTGGGATTCCACTGA  AGACTGGGCAACCATCTCTA 160 bp 
PCF11 ACAGACCTCTTCCAGTCTAG ATACATCCACCACTGCCCTT 124 bp 
CBFA2T2 AGAGGATATCTGCTGGTAAC GAGCACGTACTTCAGGTAGA 142 bp 
PIH1D3 TGCTGCTGTGACGTGGAATT GAGACTTGCCAACGTTCTGA 140 bp 
FAM219A ACAGCAGAGATACAGCAGAG TTGTTGGAGCCCTGCTATTA 140 bp 
β-Actin CTCCTCCTCCCACCCATTTC GCAGGGACTTCCTTTGTCCC 121 bp 

 

Table 3.2 Sequencing and Mapping data of High and Low stress lines of Japanese quail. 

Line # of raw reads # of mapped reads Coverage 
HS 250,617,546  85,577,152 41.45x  
LS 257,535,422 88,195,797 42.59x  

 

Table 3.3 Summary of CNV in High and Low stress lines of Japanese quail. 

Line 
CNVnator 

bin size 
Average RD 

per bin ± StDev 
Total # of 
CNVRs 

# of 
Deletions 
CNVRs 

# of 
Duplications 

CNVRs 

Deletion 
CNVRs 

(Mb)  

Duplication 
CNVRs 

(Mb) 
Total 

CNVRs(Mb) 

Average 
CNVRs size 

(Mb) 

HS 1200 
78.1745± 
17.0184 262 235 27 13.80 1.32 15.20 0.05 

LS 1500 
55.9714 ± 
13.2859  168 148 20 17.02 1.15 18.17 1.08 

 

Table 3.4 Number of genes overlapped with CNVRs in High and Low stress lines of Japanese 
quail. 

Quail 
Lines 

Total # of Genes 
overlapped with 

CNVRs 
# of Deletion 

Genes  

# of 
Duplication 

Genes  

# of Unique 
Deletion 
Genes 

# of Unique 
Duplication Genes 

HS 948 895 53 436 18 
LS 982 922 60 471 22 
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Table 3.5 Unique genes overlapped with deletion CNVRs in HS and LS lines of Japanese 
quail associated with Canonical pathways.  
Canonical Pathways Molecules 
HS line: 
Phospholipase C Signaling ARHGEF11, ARKGEF12, BTK, HDAC5, ITGA3, 

ITPR1, MEF2B, MEF2D, MPRIP, PLA2G3, PLD6 
Neuregulin Signaling CDK5R1, ERBB2, GRB7, ITGA3, PIK3R2 
Reelin Signaling in Neurons ARHGEF11, ARKGEF12, CDK5R1, ITGA3, MAPT, 

PIK3R2 
ERK Signaling MAP2K5, MEF2B, MEF2D, NTRK1, SH2D2A 
CD27 Signaling in Lymphocytes CASP9, MAP2K5, MAP3K13, MAP3K14 
LS line: 
Type II Diabetes Mellitus Signaling ACSBG2, ADIPOR2, CACNA1G, CACNA2D4, 

CACNG3, PIK3C2B, PRKCB, SLC27A3 
GP6 Signaling Pathway COL16A1, COL18A1, COL5A1, COL6A1, COL6A2, 

COL9A2, PIK3C2B, PRKCB 
nNOS Signaling in Skeletal Muslce 
cells 

CACNA1G, CACNA2D4, CACNG3, NOS1 

Hepatic Fibrosis / Hepatic Stellate 
Cell Activation 

COL16A1, COL18A1, COL5A1, COL6A1, COL6A2, 
COL9A2, ECE1, SMAD7 

Role in CHK Proteins in Cell Cycle 
Checkpoint Control 

CDKN1A, RAD9A, RFC5, SLC19A1 

 

Table 3.6 Unique genes overlapped with deletion CNVRs in HS and LS lines of Japanese 
quail associated with Top Disease and Bio functions.  

Name  p-value #Molecules 
HS line: 
Neurological Disease  1.46E-02 - 2.11E-04 21 
Endocrine System Disorder 1.46E-02 - 2.84E-05 7 
Organismal injury and Abnormalities 1.46E-02 - 2.84E-05 76 
Gastrointestinal Disease 1.46E-02 - 2.84E-05 12 
LS line: 
Endocrine System Disorder 2.80E-02 - 5.63E-05 14 
Organismal Injury and 
Abnormalities 

2.80E-02 - 1.66E-05 130 

Connective Tissue Disorder 2.80E-02 - 1.66E-05 14 
Reproductive System Disease 2.09E-02 - 1.66E-05 32 
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Table 3.7 Unique genes overlapped with deletion CNVRs in HS and LS lines of Japanese quail associated with Endocrine System 
Disorder 

HS line: 
Symbol Entrez Gene Name Location Type(s) 
CDK5R1 cyclin dependent kinase 5 regulatory subunit 1 Nucleus kinase 
CSF3R colony stimulating factor 3 receptor Plasma Membrane transmembrane receptor 
ERBB2 erb-b2 receptor tyrosine kinase 2 Plasma Membrane kinase 
HSD11B2 hydroxysteroid 11-beta dehydrogenase 2 Cytoplasm enzyme 
POLE DNA polymerase epsilon, catalytic subunit Nucleus enzyme 
POLE3 DNA polymerase epsilon 3, accessory subunit Nucleus enzyme 
TRIM29 tripartite motif containing 29 Cytoplasm transcription regulator 
LS line: 
AMH anti-Mullerian hormone Extracellular Space growth factor 
CACNA2D4 calcium voltage-gated channel auxiliary subunit 

alpha2delta 4 
Plasma Membrane ion channel 

CDKN1A cyclin dependent kinase inhibitor 1A Nucleus kinase 
COL16A1 collagen type XVI alpha 1 chain Extracellular Space other 
COL18A1 collagen type XVIII alpha 1 chain Extracellular Space other 
COL5A1 collagen type V alpha 1 chain Extracellular Space other 
COL6A1 collagen type VI alpha 1 chain Extracellular Space other 
COL6A2 collagen type VI alpha 2 chain Extracellular Space other 
COL9A2 collagen type IX alpha 2 chain Extracellular Space other 
NCOA1 nuclear receptor coactivator 1 Nucleus transcription regulator 
PRKCB protein kinase C beta Cytoplasm kinase 
REN renin Extracellular Space peptidase 
THRA thyroid hormone receptor, alpha Nucleus ligand-dependent nuclear receptor 
TP73 tumor protein p73 Nucleus transcription regulator 
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Table 3.8 Significant interaction networks of unique genes overlapped with deletion CNVRs and involved in nervous system and 
endocrine development in HS and LS lines of quail  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SN Molecules in Network Score Focus 
Molecules 

Top Diseases and 
Functions 

HS line: 
1 14-3-3,APH1A,ATP6V0D1,ATP6V1A,ATP6V1G1,atypical 

protein kinase C,BSN,CAMK2N2,CaMKII,ERK1/2,Glycogen 
synthase, 
GPATCH8,Growth hormone,IBA57,IL1RAPL1,INSRR,LLGL1, 
LSG1,MIOX,MLXIPL,NECTIN1,PEBP4,PP1 protein complex 
group,PPP1R9B,Proinsulin,pyruvate 
kinase,RAB3A,RASD1,RPH3A, 
Secretase gamma,STX1A,STXBP1,TNFRSF13B,Vacuolar H+ 
ATPase,VWA5B2 

37 24 Cell-To-Cell Signaling 
and Interaction, Cellular 
Assembly and 
Organization, Nervous 
System Development and 
Function 

2 AGMAT,AMPK,BHLHE40,CDC25A,Cg,Ck2,Creb,DUSP23, 
FAM3D,FSH,GABPB2,Gsk3,HDL,Lh,NCAN,NCL,Nr1h,NUDT
15,NUP153,OSBPL2,p70 S6k,PDGF 
BB,PEPCK,phosphatase,PI3K 
(family),Pkc(s),POLE,POLE3,PRUNE1,RNA polymerase 
II,Rnr,SLC36A4,SREBF1,SUGP1,UBTF 

24 18 Cancer, Endocrine 
System Disorders, 
Gastrointestinal Disease 

3 1700030F18Rik,AKNA,APP,ARMC9,ATAT1,ATXN7L3,C16or
f78, 
C4orf46,CARMIL3,CBFA2T2,CD40,CSAG1,DBF4B,DNAJB7,
EPB41L4A,FAM212A,GLRA4,GPR6,GPR12,GPR15,GPR61,G
PR78,GPR85,JTB,LMF2,MARCH10,MED9,NUP62CL,OCEL1,
RXFP3,SLC13A3,SPEN,SRPK2,TMEM41A,VIPR2 

17 14 Cell-To-Cell Signaling 
and Interaction, 
Inflammatory Response, 
Nervous System 
Development and 
Function 

4 ADH7,B3GNT7,BAG6,CADM3,CTRC,Epsin,ESR2,FAM84B,F
GD2,HEBP1,KAZALD1,KLHL12,LSM12,Macf1,MRPL55,NA
A38,NBPF10 (includes 
others),OTP,PABPC5,PCMTD2,POU5F1,RALBP1,Rplp1 
(includes others),RUNDC3A,SDK1,SLC5A7,SLC6A1, 
SMAD4,SNRNP25,TBRG1,TCTA,Ubb,UBC,UBL7,ZFHX3 

11 10 Nervous System 
Development and 
Function, Neurological 
Disease, Organ 
Morphology 
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Table 3.8 (Contd.)  

 

 

 

 

 

 

 

 

 

 

SN Molecules in Network Score Focus 
Molecules 

Top Diseases and 
Functions 

LS line: 
1 ACSBG2,ADAMTS9,ADAMTS15,ARHGEF9,ASB18,ATRN,C

ACFD1,COPS5,CREB3,GCFC2,HSD11B1L,LSM12,MGST2,N
UDT1,PGAM5,PHRF1,PPP1CA,PPP1R15B,PRPF6,PRPF39,RE
LL2,RHEB,RIMS3,RNPC3,RRP7A,SF3A2,SNRNP35,SNRPE,T
FIP11,TMEM222,U4 snRNP,U5 snRNP,U6 
snRNP,VCAN,ZMAT5 

19 15 Developmental Disorder, 
Hereditary Disorder, 
Neurological Disease 
 

2 20s proteasome,26s Proteasome,Alpha 
tubulin,AMPK,Calcineurin protein(s),CDT1,CPEB1,Cyclin 
A,Cyclin D,cytochrome C, cytochrome-c 
oxidase,DFFB,EIF4G3,ELP3,ERK,HISTONE, 
Histone H1,MEAF6,Mitochondrial complex 
1,MRPL48,MTORC2, 
NFE2L1,Nos,NOS1,OAZ1,PARP,PCDH1,PDE3A,PP2A,PPME1
,Ppp2c,PRKAA,Rb,SURF1,TIP60 

17 14 Hereditary Disorder, 
Metabolic Disease, 
Neurological Disease 
 

3 AKT1,AMIGO2,ARHGAP33,C1orf174,CCL5,CIART,CREB1,C
SRNP1,ETNK2,GPR65,GPR83,IGSF9B,JPT1,MMP14,MMP23
B,NGF,NR3C1,NRBP2,NTSR1,P2RX3,PCOLCE,RAP1GAP2,S
LC17A6,SORCS3,SPATA20,SPOCK3,SRPK2,SRXN1,STON1,
TIPARP,VPS26B,VSTM2L,YPEL4,ZDHHC5,ZNF395 

11 10 Cell Morphology, 
Cellular Function and 
Maintenance, Nervous 
System Development and 
Function 
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Table 3.9 Experimental validation of 9 CN genes using qPCR in larger number of HS (16) 
and LS (16) birds. 

CNV Type Coordinates Gene 
Copy 

Number 
(CNVnator) 

Copy 
Number 
(qPCR) 

Deletion chr10:1573201-2205600 NPTN 1.53 1.27 

Deletion chr12:1348801-1467600 UBA7 1.42 0.72 

Deletion chr15:5568001-5653200 RPHA 1.38 1.19 

Deletion chr1:47198401-47250000 CACNG2 1.35 1.39 

Deletion chr1:6001-28800 LRRC16B 1.00 1.43 

Duplication chr1:169119601-169160400 PCF11 33.60 1.33* 

Duplication chr20:1994401-2090400 CBFA2T2 25.90 20.57 

Deletion chr4:1858801-2012400 PIH1D3 1.45 1.46 

Duplication chrZ:7086001-7182000 FAM219A 7.80 1.03* 

*Indicate inconsistency between CNVnator output and qPCR results 
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Figure 3.1 Genome-wide distribution of CNVRs in quail. CNVRs are represented in individual 
tracks as bars, where the outer track depicts CNVRs in HS and inner in LS line of quail. In the 
tracks, CNVRs indicated by blue bars are deletions and red bar are duplications with respect to 
the reference assembly. 

 
Figure 3.2 Size and Frequency distribution of CNVRs in HS and LS lines of quail. 
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Figure 3.3 Top-scoring multi-gene networks associated with Cell-To-Cell Signaling and 
Interaction, Cellular Assembly and Organization, Nervous System Development and Function 
in HS line of quail. The genes overlapped with deletion CNVRs are molecules in gray. 

 
Figure 3.4 Top-scoring multi-gene networks associated with Cell-mediated Immune 
Response, Cellular Development, Cellular Function and Maintenance in LS line of quail. The 
genes overlapped with deletion CNVRs are molecules in gray. 

 
 
 
 
 
 
 

 



 

 78 

CHAPTER 4 
 

Additional analyses of genome resequencing of Arkansas Progressor and Regressor line 
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4.1 ABSTRACT 

Background: Regression of v-src oncogene induced tumors is an important attribute in 

Arkansas Regressor (AR) chickens.  For understanding the genetic factors that are responsible 

for the tumor regression properties, whole genome resequencing was carried out in AR 

chickens with confirmed tumor regression property and compared with Arkansas Progressor 

(AP) chickens, which develop tumor upon v-src oncogene induction.  

Results: Pooled DNA samples from each 10 AR and 10 AP chickens were sequenced using 

Illumina Hi-Seq 2×100 paired end method and the sequences were aligned to the chicken 

reference genome for Red Jungle Fowl using NGen program. The sequences for AR and AP 

chickens reached the coverage of 11x and 14x respectively. A total of 7.1 and 7.3 million SNPs 

were present in the AR and AP genomes respectively. Through a series of filtration processes, 

a total of 12,242 SNPs were identified in AR chickens that were associated with induction of 

mutations such as non-synonymous, frameshift, nonsense, no-start and no-stop. Further 

filtering of the SNPs on the basis of read depth ≥ 10, SNP % ≥ 0.75 and non-synonymous 

SNPs, identified 63 reliable marker SNPs were chosen for gene network analysis by Ingenuity 

Pathway Analysis (IPA). The gene network analysis, which represents the intermolecular 

connections among interacting genes based on the functional knowledge inputs, revealed that 

the candidate genes identified in AR birds play roles in networks centered to UBC, PI3K and 

NF-kB complexes. Thereby, IPA suggested that the tumor regression property in AR chickens 

may be associated with ubiquitylation (UBC), PI3K and NF-kB pathways. 

Conclusion: Several candidate non-synonymous SNP markers encoding varying amino acids 

and likely to be associated with tumor regression trait were identified in AR chickens. Based 

on functional studies, the reliable candidate SNPs containing genes were associated with 

deubiquitylation, and PI3K and NF-kB signaling pathways, suggesting their role in the tumor 



 

 80 

regression in AR chickens. This study may provide an insight into genetic factors that may be 

responsible for tumor regression property.  

Key words: tumor regression, v-src, SNPs, resequencing, chicken 
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4.2 BACKGROUND   

Chickens are not only an important supply of proteins for human population but are 

also outstanding animal models in several fields of biology. They provide excellent 

opportunities for unraveling the genetic basis of phenotypic variations (Andersson 2001). A 

vast diversity of phenotypic breeds of chickens has been created by several years of extensive 

selective inbreeding for the development of beneficial agricultural traits. Their larger 

population size and increased longevity provide a greater chance of evolution of variants of 

chickens and then being selected for the important agronomic traits, providing exceptional 

opportunity to discover novel functions of the specific genes (Fan et al. 2013; Andersson 2004). 

There are a wide range of variants of chickens integrating various mutations that affect disease 

resistance and susceptibility, growth rate, body weight, muscle color, reproduction, behavior, 

feather color, structure and distribution, and comb shape (Li et al. 2013; Zhou et al. 2005; Kong 

et al. 2018; Ou et al. 2009; Dorshorst et al. 2011; Wright et al. 2009).  

 Arkansas Regressor (AR) and Arkansas Progressor (AP) chickens are important animal 

models for studying molecular basis of resistance and susceptibility for development of tumors. 

The AR and AP line chickens were developed in 1965 by inbreeding of White Leghorn 

(susceptible to Rous Sarcoma virus: RSV) and Giant Jungle Fowl strains (resistant to RSV) 

(Hayden 2016). The AR birds regress the tumor induced by v-src RSV oncogene unlike the AP 

birds which upon the v-src activation develop malignant tumor in connective tissue known as 

sarcoma. The tumor regression process in AR chickens may be due to suppression of cell 

division, induction of apoptosis, DNA damage repair or inhibition of metastasis by various 

tumor suppressor genes. In chicken models, tumor regression has been found to be strongly 

associated with both B complex haplotype that encodes major histocompatibility complex 

(MHC) molecules and non-MHC molecules which include T-lymphocytes and B-cell 

alloantigens (Devaney et al. 1982; Sun and Yang 2010; Taylor 2004). At the genetic level, this 
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difference may be due to the occurrence of two or more bases in the same position of the 

genomic DNA sequences. These single nucleotide polymorphisms (SNPs) are very common 

and occur at the rate of ~5 SNPs per kilobase (kb) in chicken (Rubin, Carl-Johan 2010) and ~1 

SNP per 1-2 kb in human (Sachidanandam et al. 2001). A SNP in the coding region of DNA 

may change the encoded amino acid (nonsynonymous) thereby altering the structure and 

function of an encoded protein or it can be silent (synonymous) or simply occurs in the 

noncoding region of DNA. The SNPs may influence gene expression, mRNA stability and 

localization of mRNAs/proteins in subcellular compartments and therefore may develop 

phenotypic traits (Shastry 2009). The SNPs have become important biomarkers and are utilized 

for the study of population genetic and evolutionary changes (Syvanen 2001; Sachidanandam 

et al. 2001).  

Several genetic variation analyses are performed to identify SNPs associated with 

disease resistance traits in chickens. Two SNPs, one on SPARC-related modular calcium-

binding 1 (SMOC1) gene on chicken chromosome 5 (GGA5) and the other on protein tyrosine 

phosphate, non-receptor type 3 (PTPN3) gene on GGA2, associated with Marek’s disease 

resistance trait were identified by genome-wide association study (GWAS) (Li et al. 2013). 

The genetic variations study in response to colonization of pathogenic Salmonella enteritidis 

identified SNPs in T-cell specific surface protein (CD28) and myeloid differentiation protein-

2 (MD-2) genes significantly associated with bacterial load in different organs and vaccine 

antibody response in chickens, suggesting roles of the SNPs in disease resistance (Malek et al. 

2004). Major quantitative loci associated with immune response to Newcastle disease (Zhang 

et al. 2015) and infectious disease (Luo et al. 2014) viruses have been identified in chicken by 

GWAS. However, there is limited information about genetic factors responsible for disease 

resistance mechanism against RSV in chickens. Therefore, in this study, whole genome 

resequencing of AR and AP chickens was performed with a rationale to genotype SNPs at 
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genome-wide level to detect genomic regions in which the frequencies of the SNP alleles differ 

between AR and AP, and with reference to Red Jungle Fowl. This study was aimed at 

identifying SNPs associated with resistance of tumor development by v-src oncogene in AR 

chicken, providing beneficial information for genetic disorder diagnosis and evolutionary 

study. Previously, genome wide SNPs in AP and AR lines were determined with the same 

genome sequencing data as used in this study and the thousands of SNPs were identified 

(Hayden 2016). In this study, we used the updated reference genome (galgal5) and another 

analytical method for more profound analysis, resulting in higher number of SNPs and more 

reliable variations were identified.  

We identified millions of SNPs in these two lines of chickens and this study is focused 

only in reliable candidate SNPs that are associated with non-synonymous mutations and 

capable of inducing amino acid changes in encoded proteins. We analyzed the genes containing 

SNPs for their biological functions and molecular interactions. The SNPs resources presented 

here can be useful for breeding in chickens and comparative genetic study in related species.  
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4.3 METHODS   

4.3.1 CHICKEN LINES AND DNA PREPARATION 

Adult Arkansas progressor (AP) and Arkansas regressor (AR) chickens that are 

maintained by Dr. N. Anthony at the University of Arkansas (Fayetteville, AR) were used for 

this study. A blood specimen (5 mL) was collected from 12 birds from each line following an 

animal use protocol approved by the University of Arkansas Institutional Animal Care and Use 

Committee (IACUC; approval number: 14012).  Genomic DNA was extracted from whole 

blood sample using QiaAmp DNA mini kit (Qiagen, Hilden, Germany) following 

manufacturer’s instructions. Quality of DNA was checked using NanoDrop 1000 

spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA) and agarose gel 

electrophoresis. The 10 samples having the best quality from each line were pooled to represent 

each chicken line. 

4.3.2 ILLUMINA SEQUENCING AND SEQUENCE ASSEMBLY 

Library construction and whole genome sequencing for the pooled DNA samples were 

done by the National Center for Genome Resources (NCGR; Santa Fe, NM). Illumina HiSeq 

2×100 bp paired end read method was used for genome sequencing. The quality of raw 

sequencing data was determined by using FastQC toolkit (Andrews 2010) and low-quality 

reads were removed using reformat.sh in BBMap (Bushnell 2016). The clean reads were then 

aligned to the chicken reference genome sequence for Red Jungle Fowl (galgal5) retrieved 

from NCBI. For the reference based genome alignment, the NGen genome sequence assembly 

program of the Lasergene software package (DNAStar, Madison, WI) was used. Assembly 

parameters were as follows: file format, BAM; mer Size, 21; mer skip query, 2; minimum 

match percentage, 93; maximum gap size, 6; minimum aligned length, 35; match score, 10; 

mismatch penalty, 20; gap penalty, 30; SNP calculation method, diploid Bayesian; minimum 

SNP percentage, 5; SNP confidence threshold, 10; minimum SNP count, 2; minimum base 
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quality score, 5. After assembly, the SeqMan Pro program of the Lasergene package 

(DNAStar) was used for further analyses (Jang et al. 2014). 

4.3.3 SNP DETECTION AND ANALYSIS 

The JMP genomics (SAS Institute, Inc., Cary, NC) program was used for filtering 

unique SNPs for tumor regression in the AR chickens. SNPs occurring in both AR and AP 

lines were filtered out, leaving behind the unique SNPs for each line. To identify highly fixed 

and homozygous SNPs, the SNPs were filtered based on SNP percentages (SNP%). The SNPs 

with a SNP% of ≥ 0.75 (for example, number of SNP = 3 of read depth = 4) were chosen. The 

75% cutoff for SNP selection was set by considering potential sequencing errors that can be 

generated by the massively parallel sequencing method. Potential causal tumor regressing 

SNPs that induce non-synonymous changes in CDS regions were chosen and unique SNPs in 

either AP or AR showing ≥10 read depths were selected as reliable SNPs. To reduce false 

positives, reliable SNPs chosen by criteria described above were confirmed by double-

checking the initial assembly results with alignment view in SeqMan Pro program of Lasergene 

package (DNAStar).  

4.3.4 VALIDATION OF SNPS 

For validation purposes, nine different SNPs associated with induction of amino acids 

changes in CDS regions were randomly selected and subjected to allele-specific PCR using a 

greater number of birds. For this, 96 phenotypically verified birds each from AR and AP lines 

were used for blood sampling and then genomic DNA isolation. Genomic DNA was purified 

from whole blood using Wizard SV 96 Genomic DNA Purification System (Promega; 

Madison, WI) following manufacturer’s instructions. Quality and quantity of isolated DNA 

was determined using Nanodrop 1000 spectrophotometer (Thermo Fisher Scientific) and 

agarose gel electrophoresis. DNAs from all samples were then diluted to 1 ng/µL in 96 well 

PCR formats. Allele-specific primers were designed corresponding to nine different SNPs 
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based on the RJF genome sequence (galgal5). Two sets of primers were designed with a 

common reverse primer for each SNP.  The forward primer designated as F1 is the reference 

type whose terminal nucleotide at the 3’ end matches with a base in the reference genome. The 

forward primer designated as F3 is the SNP type and terminal nucleotide at the 3’ end matches 

with a base in the SNP. The third nucleotides from 3’ end of both the forward primers (F1 and 

F3) were intentionally changed so that they mismatch with the genome in that position (Liu et 

al. 2012). All primers were commercially synthesized by Integrated DNA Technology (Ames, 

IA) (Table 4.1). Allele-specific PCR were conducted using F1 and F3 forward primers and a 

common reverse primer separately in 25 µL reaction volume in 96 well plates with cycles 

condition as follows: 95 0C for 1 min, 35 cycles of amplification (95oC for 30 s, 55 or 63oC for 

1 min, 72oC for 1min), and final extension 72oC for 10 min in Applied Biosystems 2720 

Thermal Cycler (Life Technologies, Carlsbad, CA).  Formation of allele-specific products was 

verified by running PCR products in 1% agarose gel electrophoresis.  

4.3.5 INGENUITY PATHWAYS ANALYSIS 

Candidate SNPs (n=63) associated with regression of tumor after the filtering process 

were analyzed using Ingenuity Pathways (IPA; Qiagen; www.ingenuity.com) for 

understanding the gene ontology and molecular networks. Since IPA is based on human, mouse 

and rat bioinformatics, functionalities for SNP containing genes in chicken were interpreted 

based primarily on mammalian biological mechanisms. The number of molecules in the 

network was set to the limit of 35, leaving only the most important ones based on the number 

of connections for each focus gene (a subset of uploaded significant genes having direct 

interactions with other genes in the database) to other significant genes (Kong et al. 2011) 
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4.4 RESULT AND DISCUSSION 

4.4.1 GENOME SEQUENCING AND ASSEMBLY 

The result of Illumina sequencing of pooled whole genome from 10 AR and AP 

chickens yielded approximately 55 and 69 million sequence reads of each 200 bp length, 

respectively. Among these reads approximately 80% were used for alignment while the 

remaining 20% were not aligned due to their lower sequence count scores. The genome 

coverage for AP and AR therefore reached to 14× and 11× respectively, of the Red Jungle Fowl 

(Table 4.2). A large number of SNPs, 7.1 and 7.3 million per examined AR and AP line genome 

respectively, were found which might be due to data based on 2 read coverage depths. Most of 

the SNPs were found to be localized in chromosomes 1 to 4 (data not shown). For identification 

of the signature genetic biomarkers that may be associated with the tumor regression trait in 

AR chicken lines, the unique SNPs that were present only in AR were selected removing the 

SNPs that were also present in AP birds. Further steps of SNP filtration were carried out as 

described elsewhere by Jang et al. (2014). In brief, the SNPs having SNP% ≥ 0.75, present in 

CDS (protein coding) region only, associated with non-synonymous mutations (such as 

frameshift, nonsense, no-start- and no-stop changes), and showing ≥ 10 read depths were 

considered as potential candidate SNPs thereby included in this study. However, the process 

used in this study did not involve a typical SNP calling and filtering method based on quality 

score. From the unique AR SNPs, filtration based on SNP % ≥ 0.75 resulted about 1.2 million 

SNPs identified throughout the AR chicken genome. Further grouping of SNPs based on 

feature type of chromosome regions showed that 24,868 SNPs were present in CDS region and 

about 50% were found in intergenic region (Figure 4.1).   The higher percentage of SNPs found 

to be present in intergenic or regulatory region in AR chicken genome was matching with a 

GWAS study in chickens (Pértille et al. 2016). About 42% of AR SNPs in the protein coding 

region were associated with synonymous mutations that did not lead to alternation of amino 
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acid changes. Since the main aim of this study was to identify the causal SNPs that are 

responsible for tumor regression in AR chickens, we focused on SNPs that were linked to 

changes in amino acid sequences after mutation. A total of 12,242 SNPs were identified to be 

linked with induction of mutations such as non-synonymous, frameshift, nonsense, no-start and 

no-stop. This suggests that these SNPs may play role in protein coding leading to tumor 

regression property in AR chickens. In order to consider more reliable SNP markers, the 

candidate 12,242 SNPs were further filtered on the basis of ≥ 10 read depth which yielded only 

63 SNPs (Table 4.3). These 63 candidate SNP markers were chosen for further study.  

4.4.2 SNP VALIDATION 

To verify the SNPs identified by genome resequencing, 9 SNPs were randomly chosen 

from the 63 reliable candidate SNPs and subjected to validation using allele-specific PCR in a 

greater number of birds (Figure 4.2); specifically, 96 AR chickens with confirmed tumor 

regression property whereas 96 AP chickens with confirmed tumor progression property were 

used. The results clearly showed the segregation of SNP genotypes that majority of AR and 

AP birds showed SNP type and reference type, respectively (Table 4.4). Thus, the 63 SNPs 

chosen this study may become potential genetic biomarkers for tumor regression in AR 

chickens.  

4.4.3 INGENUITY PATHWAY ANALYSIS OF CANDIDATE CAUSAL GENES 

The Ingenuity Pathway Analysis (IPA) program was used to generate the data sets 

which include functional groups and networks for gene containing amino acid changes in AR 

chicken. The 63 SNPs were found in 58 genes associated with chromosomal open reading 

frames, and hypothetical proteins (Table 4.5). The genes were further grouped into 89 

functional groups that are directly or indirectly related to tumor development.  
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4.4.4 GENE NETWORKS 

Using IPA, molecular networks were generated with the interacting genes associated 

with amino acid changes in AR chickens based on functional knowledge inputs. Summary of 

the associated network functions of candidate genes is presented in Table 4.6.  

The major functions of molecules associated with Network #1 are related to 

developmental, heredity and metabolic disorders. Similarly, the top functions of molecules in 

Network #2 include cell death and survival, hematological system development and function, 

and humoral immune response (Table 4.6). The molecules in Network #1 (Figure 4.3) and #2 

(Figure 4.4) are centrally linked to ubiquitin C (UBC). The UBC functions in protein 

degradation, DNA repair, cell cycle regulation, kinase modification, endocytosis, and 

regulation of other cell signaling pathways. Ub ligase, an important enzyme in ubiquitination 

process, which functions for ligating the substrate molecule to ubiquitin via lysine residue can 

have role for regulating the stability of oncogenes or tumor suppressors-proteins (Popovic et 

al. 2014). In AR chickens, the amino acid lysine was found to be changed to glutamic acid in 

FAM208B (family with sequence similarity 208, member B). Similarly, lysine residues in 

proteins LAMB4 (laminin, beta 4) and IFT140 (intraflagellar transport 140 homolog) were 

identified to be changed to arginine residues.  This might suggest that various cellular processes 

involving protein degradation by altered ubiquitinylation properties of proteins may play a 

significant role in the regression of tumors in AR chickens. 

The candidate genes in Network #3 (Figure 4.5) are associated with the signaling 

pathway of phosphoinositide 3-kinases (PI3K) and NF-kB (nuclear factor kappa-light-chain-

enhancer of activated B cells) connected to Arrestin Beta 1 (ARRB1) with insulin signaling in 

the center. The top functions of the genes are related to developmental, gastrointestinal and 

heredity disorders. It has been reported that PI3K signaling pathway is crucial for several 

aspects of cell growth and survival. Recent human cancer genomic studies have shown that 
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many components of this pathway are frequently targeted for the design of anticancer agents 

in human by many aberrations including mutation, amplification and rearrangement (Courtney 

et al. 2010; Hennessy et al. 2005; Liu et al. 2009). A study has also shown that the inhibition 

of PI3K pathway leads to partial tumor growth inhibition (Wee et al. 2009).  In this study, the 

SNPs identified in the genes PIK3R4 and PIK3C2G, which are the components of PI3k 

pathway may have a role in the down regulation of PI3K pathway and may be responsible for 

tumor regression trait in AR chickens. NF-kB signaling pathway also plays role in oncogenesis 

as it regulates the expression of genes involved in many processes that play role in the 

development and progression of cancer such as proliferation, migration and apoptosis (Ismail 

et al. 2004; Dolcet et al. 2005). It has been shown that blocking of PI3-kinase leads to a marked 

reduction of constitutive NF-kB activity and promotes p53-mediated transcription. The p53 is 

a crucial cellular protein that regulates the cell cycle and functions as a tumor suppressor, 

preventing oncogenesis (Levine et al. 2004; Grandage et al. 2005). Therefore, the dual down 

regulation of PI3K and NF-kB signaling pathways due to the SNPs present in the components 

of PI3K pathway might block the anti-apoptotic pathway and lead to apoptosis by p53 tumor 

suppressing properties in AR chickens. BMX (BMX Non-Receptor Tyrosine Kinase) which is 

present in the Network #3 is a TEC (Tyrosine-protein kinase Tec) family of kinase and is found 

to be expressed in endothelial lineages and some cancers such as breast and prostate. It has 

been shown to have anti-apoptotic properties in prostate cancer lines and regulate PI3K 

signaling pathway (Potter et al. 2014; Qiu and Kung 2000; Vogt and Hart 2011). Due to 

occurrence of a single nucleotide polymorphism in BMX gene, the oncogenic functions of the 

BMX gene may have been turned off and along with its regulatory action on PI3K signaling 

pathway. This may be another reason behind the tumor regression character of AR chickens. 
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4.5 CONCLUSION  

In this study, several candidate molecular markers encoding varying amino acids and 

likely to be associated with tumor regression trait in AR chickens were detected through high 

throughput genome re-sequencing. Based on functional studies, the reliable candidate SNPs 

containing genes were associated with ubiquitylation, and PI3K and NF-kB signaling 

pathways, suggesting their role in tumor regression in AR chickens. In future, further study 

focusing on allele specific expression of the marker genes with candidate SNPs in target tissues 

will be performed to gain better insight into the mechanism of tumor regression in AR chickens. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 92 

REFERENCES 

Andersson, L. 2001. Genetic dissection of phenotypic diversity in farm animals. Nature 
Reviews Genetics 2: 130. DOI: 10.1038/35052563. PMID: 11253052. 
Andersson, L., and Georges, M., 2004. Domestic-animal genomics: deciphering the genetics 
of complex traits. Nature Reviews Genetics 5, 202. DOI: 10.1038/nrg1294. PMID: 14970822. 
Andrews, S., 2010. FastQC: A quality control tool for high throughput sequence data. 
Reference Source. 
Bushnell, B., 2016. BBMap short read aligner. URL http://sourceforge.net/projects/bbmap. 
Courtney, K.D., Corcoran, R.B., and Engelman, J.A., 2010. The PI3K pathway as drug target 
in human cancer. J. Clin. Oncol. 28, 1075-1083. DOI: 10.1200/JCO.2009.25.3641. PMID: 
20085938. 
Devaney, J.A., Gyles, N.R., and Lancaster, J.L.,Jr, 1982. Evaluation of Arkansas Rous sarcoma 
regressor and progressor lines and giant jungle fowl for genetic resistance to the northern fowl 
mite. Poult. Sci. 61, 2327-2330. DOI: 10.3382/ps.0612327. PMID: 6298763. 
Dolcet, X., Llobet, D., Pallares, J., and Matias-Guiu, X., 2005. NF-kB in development and 
progression of human cancer. Virchows Arch. 446, 475-482. DOI: 10.1007/s00428-005-1264-
9. PMID: 15856292. 
Dorshorst, B., Molin, A., Rubin, C., Johansson, A.M., Strömstedt, L., Pham, M., et al. 2011. A 
complex genomic rearrangement involving the endothelin 3 locus causes dermal 
hyperpigmentation in the chicken. PLoS genetics 7, e1002412. DOI: 
10.1371/journal.pgen.1002412. PMID: 22216010. 
Fan, W., Ng, C.S., Chen, C., Lu, M.J., Chen, Y., Liu, C., et al. 2013. Genome-wide patterns of 
genetic variation in two domestic chickens. Genome biology and evolution 5, 1376-1392. DOI: 
10.1093/gbe/evt097. PMID: 23814129. 
Grandage, V.L., Gale, R.E., Linch, D.C., and Khwaja, A., 2005. PI3-kinase/Akt is 
constitutively active in primary acute myeloid leukaemia cells and regulates survival and 
chemoresistance via NF-kappaB, Mapkinase and p53 pathways. Leukemia 19, 586-594. DOI: 
10.1038/sj.leu.2403653. PMID: 15703783. 
Hayden, A., 2016. Identification of Biomarkers Associated with Rous Sarcoma Virus induced 
Tumors in Two Divergently Selected Chicken Lines. 
Hennessy, B.T., Smith, D.L., Ram, P.T., Lu, Y., and Mills, G.B., 2005. Exploiting the 
PI3K/AKT pathway for cancer drug discovery. Nat. Rev. Drug Discov. 4, 988-1004. DOI: 
10.1038/nrd1902. PMID: 16341064. 
Ismail, H.A., Lessard, L., Mes-Masson, A.M., and Saad, F., 2004. Expression of NF-kappaB 
in prostate cancer lymph node metastases. Prostate 58, 308-313. DOI: 10.1002/pros.10335. 
PMID: 14743471. 
Jang, H.M., Erf, G.F., Rowland, K.C., and Kong, B.W., 2014. Genome resequencing and 
bioinformatic analysis of SNP containing candidate genes in the autoimmune vitiligo Smyth 
line chicken model. BMC Genomics 15, 707-2164-15-707. DOI: 10.1186/1471-2164-15-707. 
PMID: 25151476. 
Kong, B.W., Lee, J.Y., Bottje, W.G., Lassiter, K., Lee, J., and Foster, D.N., 2011. Genome 
wide differential gene expression in immortalized DF-1 chicken embryo fibroblast cell line. 
BMC Genomics 12, 571-2164-12-571. DOI: 10.1186/1471-2164-12-571. PMID: 22111699. 

http://sourceforge.net/projects/bbmap


 

 93 

Kong, H.R., Anthony, N.B., Rowland, K.C., Khatri, B., and Kong, B.C., 2018. Genome re-
sequencing to identify single nucleotide polymorphism markers for muscle color traits in 
broiler chickens. Asian-Australas J. Anim. Sci. 31, 13-18. DOI: 10.5713/ajas.17.0479. PMID: 
28830129. 
Levine, A.J., Finlay, C.A., and Hinds, P.W., 2004. P53 is a tumor suppressor gene. Cell 116, 
S67-9, 1 p following S69. PMID: 15055586.  
Li, D., Lian, L., Qu, L., Chen, Y., Liu, W., Chen, S., et al. 2013. A genome‐wide SNP scan 
reveals two loci associated with the chicken resistance to Marek's disease. Anim. Genet. 44, 
217-222. DOI: 10.1111/j.1365-2052.2012.02395.x. PMID: 22812605. 
Liu, J., Huang, S., Sun, M., Liu, S., Liu, Y., Wang, W., et al. 2012. An improved allele specific 
PCR primer design method for SNP marker analysis and its application. Plant Methods 8, 1. 
DOI: 10.1186/1746-4811-8-34. PMID: 22920499.  
Liu, P., Cheng, H., Roberts, T.M., and Zhao, J.J., 2009. Targeting the phosphoinositide 3- 
kinase pathway in cancer. Nat. Rev. Drug Discov. 8, 627-644. DOI: 10.1038/nrd2926. PMID: 
19644473. 
Luo, C., Qu, H., Ma, J., Wang, J., Hu, X., Li, N., et al. 2014. A genome-wide association study 
identifies major loci affecting the immune response against infectious bronchitis virus in 
chicken. Infection, Genetics and Evolution 21, 351-358. DOI: 10.1016/j.meegid.2013.12.004. 
PMID: 24333371. 
Malek, M., Hasenstein, J., and Lamont, S., 2004. Analysis of chicken TLR4, CD28, MIF, MD-
2, and LITAF genes in a Salmonella enteritidis resource population. Poult. Sci. 83, 544-549. 
DOI: 10.1093/ps/83.4.544. PMID: 15109052. 
Ou, J., Tang, S., Sun, D., and Zhang, Y., 2009. Polymorphisms of three neuroendocrine 
correlated genes associated with growth and reproductive traits in the chicken. Poult. Sci. 88, 
722-727. DOI: 10.3382/ps.2008-00497. PMID: 19276414. 
Pértille, F., Guerrero-Bosagna, C., Da Silva, V.H., Boschiero, C., da Silva Nunes, José de 
Ribamar, Ledur, M.C., Jensen, P., et al. 2016. High-throughput and cost-effective chicken 
genotyping using next-generation sequencing. Scientific reports 6, 26929. DOI: 
10.1038/srep26929. PMID: 27220827. 
Popovic, D., Vucic, D., and Dikic, I., 2014. Ubiquitination in disease pathogenesis and 
treatment. Nat. Med. 20, 1242-1253. DOI: 10.1038/nm.3739. PMID: 25375928. 
Potter, D.S., Kelly, P., Denneny, O., Juvin, V., Stephens, L.R., Dive, C., et al. 2014. BMX acts 
downstream of PI3K to promote colorectal cancer cell survival and pathway inhibition 
sensitizes to the BH3 mimetic ABT-737. Neoplasia 16, 147-157. doi: 10.1593/neo.131376.  
Qiu, Y., and Kung, H.J., 2000. Signaling network of the Btk family kinases. Oncogene 19, 
5651-5661. DOI: 10.1038/sj.onc.120395. PMID: 11114746. 
Rubin, C., Zody, M.C., Eriksson, J., Meadows, J.R., Sherwood, E., Webster, M.T., et al. 2010. 
Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 
464, 587. DOI: 10.1038/nature08832. PMID: 20220755. 
Sachidanandam, R., Weissman, D., Schmidt, S.C., Kakol, J.M., Stein, L.D., Marth, G., et al. 
2001. A map of human genome sequence variation containing 1.42 million single nucleotide 
polymorphisms. Nature 409, 928-933. DOI: 10.1038/35057149. PMID: 11237013. 



 

 94 

Shastry, B.S., 2009. SNPs: impact on gene function and phenotype. Single Nucleotide 
Polymorphisms: Methods and Protocols, 3-22. DOI: 10.1007/978-1-60327-411-1_1. PMID: 
19768584. 
Sun, W., and Yang, J., 2010. Functional mechanisms for human tumor suppressors. J. Cancer. 
1, 136-140. PMID: 20922055. 
Syvanen, A.C., 2001. Accessing genetic variation: genotyping single nucleotide 
polymorphisms. Nat. Rev. Genet. 2, 930-942. DOI: 10.1038/35103535. PMID: 11733746. 
Taylor, R.L.,Jr, 2004. Major histocompatibility (B) complex control of responses against Rous 
sarcomas. Poult. Sci. 83, 638-649. DOI: 10.1093/ps/83.4.638. PMID: 15109061. 
Vogt, P.K., and Hart, J.R., 2011. PI3K and STAT3: a new alliance. Cancer. Discov. 1, 481- 
486. DOI: 10.1158/2159-8290.CD-11-0218. PMID: 22348200. 
Wee, S., Jagani, Z., Xiang, K.X., Loo, A., Dorsch, M., Yao, Y.M., et al. 2009. PI3K pathway 
activation mediates resistance to MEK inhibitors in KRAS mutant cancers. Cancer Res. 69, 
4286-4293. DOI: 10.1158/0008-5472.CAN-08-4765. PMID: 19401449. 
Wright, D., Boije, H., Meadows, J.R., Bed'Hom, B., Gourichon, D., Vieaud, A., et al. 2009. 
Copy number variation in intron 1 of SOX5 causes the Pea-comb phenotype in chickens. PLoS 
genetics 5, e1000512. DOI: 10.1371/journal.pgen.1000512. PMID: 19521496. 
Zhang, L., Li, P., Liu, R., Zheng, M., Sun, Y., Wu, D., et al. 2015. The identification of loci 
for immune traits in chickens using a genome-wide association study. PloS one 10, e0117269. 
doi:10.1371/journal.pone.0117269. PMID: 25822738. 
Zhou, H., Mitchell, A., McMurtry, J., Ashwell, C., and Lamont, S.J., 2005. Insulin-like growth 
factor-I gene polymorphism associations with growth, body composition, skeleton integrity, 
and metabolic traits in chickens. Poult. Sci. 84, 212-219. doi: 10.1093/ps/84.2.212. PMID: 
15742956. 
 

 

 

 

 

 

 

 

 

 

 



 

 95 

APPENDIX 

Table 4.1 Primers used for allele specific PCR 

Gene Primer Name Oligo Sequence (5'3') 

Annealing  
Temperature 
(0C) 

BMX 
  
  

BMX-F1 GAACTTACATACAGATCGTC 55 
BMX-F3 GAACTTACATACAGATCGTT  55 
BMX-R CTTCCAACCCAAGCCATTAC  55 

FAM208B 
  
  

FAM208B-F1 CCACTCCTTGGTGGAGTATT  55 
FAM208B-F3 CCACTCCTTGGTGGAGTATC  55 
FAM208B-R AGAAAGATGAGGATCGTGCG  55 

IFT140 
  
  

IFT140-F1 AAATCCATCAAGTTGATTAA  55 
IFT140-F3 AAATCCATCAAGTTGATTAG  55 
IFT140-R TCTTTCTGAGAACGAAAGGG  55 

IGSF 
  
  

IGSF-F1 CAATGGGACTGTGCTGAGTC  63 
IGSF-F2 CAATGGGACTGTGCTGAGTT  63 
IGSF-R TCTCAGGCAGAGGTGATGAT  63 

LAMB4 
  
  

LAMB4-F1 TCTCTTATTTGCGTTCAATT  55 
LAMB4-F3 TCTCTTATTTGCGTTCAATC  55 
LAMB4-R TTGCAGATGAGAGTGTGCCT  55 

PIK3R4 
  
  

PIK3R4-F1 ACTAGGGTGAGATGTTTAAT  55 
PIK3R4-F3 ACTAGGGTGAGATGTTTAAC  55 
PIK3R4-R GGGGATCATCAGAAGTCTGT  55 

THADA 
  
  

THADA-F1 ACAAACCATGCTGGCATACT  63 
THADA-F3 ACAAACCATGCTGGCATACC  63 
THADA-R CAGGACATGCTAACCTCTGT  63 

TOPAZ1 
  
  

TOPAZ1-F1 AAGCTCTGGTAGGCTACGGG  63 
TOPAZ1-F3 AAGCTCTGGTAGGCTACGGT  63 
TOPAZ1-R CAGGCCAGAATACTGCATCT  63 

 

Table 4.2 Data from HiSeq and sequence assembly 

Line # of reads 
# of reads 
aligned 

# of reads 
not aligned Coverage 

Total # of 
SNP 

AP 69,221,284 55,224,050 10,903,306 14× 7,372,778 
AR 55,368,344 44,328,649 8,551,173 11× 7,173,788 
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Table 4.3 The 63 reliable marker SNPs that induced amino acid changes showing ≥10 read depths 

Contig ID  C Ref Pos Ref 
Base 

Called 
Base Impact SNP 

% Feature Name DNA Change AA Change Depth A 
Cnt 

C 
Cnt 

G 
Cnt 

T 
Cnt Del 

NC_006088 1 1034107 T C N-syn 1 FAM208B [4] c.4777A>G p.K1593E 13 0 13 0 - 0 

NC_006088 1 14729572 T C N-syn 0.8 LAMB4 c.4640A>G p.K1547R 10 0 8 0 - 0 

NC_006088 1 64181733 G T N-syn 1 PIK3C2G c.1585G>T p.A529S 10 0 0 - 10 0 

NC_006088 1 65873551 C G N-syn 0.9 LOC101748372 c.960G>C p.R320S 11 0 - 10 0 0 

NC_006088 1 104629701 G A N-syn 1 IFNAR2 c.1099G>A p.A367T 11 11 0 - 0 0 

NC_006088 1 112303547 A C N-syn 0.8 RPGR c.2209A>C p.I737L 10 - 8 0 0 0 

NC_006088 1 121349181 C T|C N-syn 0.75 BMX c.[1549G>G] 
+[1549G>A] 

p.D517N, 
 p.D517D 12 0 - 0 9 0 

NC_006088 1 127837266 G T N-syn 0.89 ARSD c.449G>T p.W150L 10 0 0 - 9 0 

NC_006088 1 179358329 A T|A N-syn 0.76 DDX10 c.[1849T>T] 
+[1849T>A] 

p.Y617N,  
p.Y617Y 13 - 0 0 10 0 

NC_006088 1 185190031 T C N-syn 0.8 CCDC67 c.983A>G p.Q328R 10 0 8 0 - 0 

NC_006088 1 193338454 A T N-syn 1 ART7B c.590T>A p.L197Q 13 - 0 0 13 0 

NC_006089 2 19385973 C T N-syn 1 LOC420515 c.3400G>A p.V1134I 10 0 - 0 10 0 

NC_006089 2 41279450 G T N-syn 1 TOPAZ1 c.2924C>A p.T975N 10 0 0 - 10 0 

NC_006089 2 42201510 T T|C N-syn 0.75 PIK3R4 c.[1937A>G] 
+[1937A>A] 

p.D646D,  
p.D646G 12 0 9 0 - 0 

NC_006089 2 63518627 T C N-syn 0.89 LOC101751154 c.137T>C p.I46T 10 0 9 0 - 0 

NC_006089 2 96924595 G A N-syn 1 PTPN2 c.934G>A p.A312T 10 10 0 - 0 0 

NC_006089 2 105934067 G C N-syn 0.9 COPN5L1 c.17C>G p.A6G 11 1 10 - 0 0 

NC_006089 2 120829955 T C N-syn 0.91 LOC101751416 c.194T>C p.L65P 82 0 75 0 - 0 

NC_006090 3 24479109 T C N-syn 1 THADA c.859A>G p.S287G 10 0 10 0 - 0 

NC_006090 3 24515241 T C N-syn 1 PLEKHH2 c.1522T>C p.F508L 10 0 10 0 - 0 

NC_006090 3 37785831 A G N-syn 1 TARBP1 c.1321A>G p.I441V 10 - 0 10 0 0 

NC_006090 3 37785856 C T N-syn 1 TARBP1 c.1346C>T p.T449I 10 0 - 0 10 0 

NC_006090 3 38965704 G T N-syn 1 DISC1 c.1027C>A p.L343I 10 0 0 - 10 0 

NC_006090 3 104626700 C G N-syn 0.85 GVINP1 c.6146G>C p.R2049T 14 0 - 12 0 0 
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Table 4.3 (Contd.) 

 
 
 

Contig ID  C Ref Pos Ref 
Base 

Called 
Base 

Impact SNP 
% 

Feature Name DNA 
Change 

AA Change Depth A Cnt C 
Cnt 

G 
Cnt 

T 
Cnt 

De
l 

NC_006091 4 11530696 C T N-syn 0.8 LOC771752 c.62G>A p.R21Q 10 0 - 0 8 0 

NC_006091 4 31100937 A C N-syn 0.9 TTC29 c.903T>G p.D301E 11 - 10 0 0 0 

NC_006091 4 56709491 G G|A N-syn 0.76 C4H4ORF21 c.[631G>G] 
+[631G>A] 

p.D211N,  
p.D211D 

13 10 0 - 0 0 

NC_006091 4 60221486 C T N-syn 1 BANK1 c.934C>T p.P312S 12 0 - 0 12 0 

NC_006092 5 24297188 T C N-syn 1 MGA c.7214T>C p.M2405T 13 0 13 0 - 0 

NC_006092 5 45169641 T C N-syn 1 LOC100858625 c.2191A>G p.I731V 10 0 10 0 - 0 

NC_006092 5 57915337 A G N-syn 0.86 TMX1 c.230A>G p.D77G 15 - 0 13 0 0 

NC_006093 6 130323 G T N-syn 1 FAM13C c.1446G>T p.E482D 10 0 0 - 10 0 

NC_006093 6 23801282 T C N-syn 0.81 ITPRIP c.1528A>G p.I510V 11 0 9 0 - 0 

NC_006094 7 4260582 C T N-syn 0.8 ABCA12 c.2110G>A p.A704T 10 0 - 1 8 0 

NC_006094 7 4717753 G A N-syn 0.8 RAB17 c.601G>A p.V201I 10 8 0 - 0 0 

NC_006094 7 4717765 G A N-syn 0.9 RAB17 c.613G>A p.V205I 11 10 0 - 0 0 

NC_006094 7 14344085 A G N-syn 1 ZNF385B c.131A>G p.H44R 13 - 0 13 0 0 

NC_006094 7 15047308 A G N-syn 1 LOC770919 c.1253A>G p.Y418C 10 - 0 10 0 0 

NC_006094 7 15047322 A G N-syn 1 LOC770919 c.1267A>G p.K423E 10 - 0 10 0 0 

NC_006096 9 713606 G A N-syn 1 SAG c.151G>A p.V51M 13 13 0 - 0 0 

NC_006096 9 20652272 T C N-syn 1 SI c.2905T>C p.S969P 11 0 11 0 - 0 

NC_006096 9 21722478 G A N-syn 0.83 LOC425015 c.1352G>A p.G451D 12 10 0 - 0 0 

NC_006096 9 21722484 C T N-syn 0.8 LOC425015 c.1358C>T p.P453L 10 0 - 0 8 0 

NC_006096 9 22653344 T G N-syn 0.89 DHX36 c.333T>G p.Y111. 10 0 0 9 - 1 

NC_006097 10 11164703 C T N-syn 1 FAM154B c.287G>A p.R96K 11 0 - 0 11 0 

NC_006098 11 9564860 G A N-syn 1 LRP3 c.2206G>A p.G736R 10 10 0 - 0 0 

NC_006099 12 5208897 A G N-syn 1 LOC100857401 c.3511A>G p.K1171E 10 - 0 10 0 0 

NC_006100 13 14403319 C G N-syn 0.9 LOC101749661 c.260G>C p.G87A 11 0 - 10 0 0 
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Table 4.3 (Contd.) 
Contig ID  C Ref Pos Ref 

Base 
Called 
Base 

Impact SNP 
% 

Feature Name DNA Change AA 
Change 

Depth A 
Cnt 

C 
Cnt 

G 
Cnt 

T 
Cnt 

Del 

NC_006101 14 11909418 T C N-syn 1 KIAA0556 c.2794A>G p.N932D 10 0 10 0 - 0 

NC_006101 14 13770765 A G N-syn 0.89 IFT140 c.2372A>G p.K791R 10 - 0 9 0 0 

NC_006102 15 10822742 T C N-syn 0.89 CCDC157 c.1492A>G p.S498G 10 1 9 0 - 0 

NC_006104 17 6833124 C T N-syn 0.83 GBGT1 c.368G>A p.R123H 12 0 - 0 10 0 

NC_006104 17 7711131 A G N-syn 1 PPP1R26 c.637A>G p.I213V 11 - 0 11 0 0 

NC_006106 19 5656736 C T N-syn 0.8 SLC46A1 c.1174G>A p.G392S 10 0 - 0 8 0 

NC_006107 20 43121 C T N-syn 1 IGSF1 c.412C>T p.R138C 10 0 - 0 10 0 

NC_006107 20 478926 C T N-syn 0.8 GGT7 c.1472C>T p.S491F 10 0 - 0 8 0 

NC_006107 20 4706188 G T N-syn 0.89 LOC101750167 c.619G>T p.A207S 10 0 0 - 9 0 

NC_006108 21 1906952 T C N-syn 1 TMEM52 c.2T>C p.M1T 10 0 10 0 - 0 

NC_006108 21 1906991 G T N-syn 1 TMEM52 c.41G>T p.C14F 11 0 0 - 11 0 

NC_006108 21 2451062 T G N-syn 0.89 SCNN1D c.1912A>C p.I638L 10 0 0 9 - 0 

NC_006108 21 3241081 C T N-syn 1 SLC2A5 c.1246G>A p.A416T 11 0 - 0 11 0 

NC_006108 21 4662973 C A N-syn 0.89 EMC1 c.1070G>T p.S357I 10 9 - 0 0 0 

NC_006111 24 130579 C T|C N-syn 0.81 FEZ1 c.[1196C>T] 
+[1196C>C] 

p.P399P,  
p.P399L 

16 0 - 0 13 0 

Contig ID, chromosome (Chr) numbers, reference position (Ref Pos), reference base (Ref Base), called (SNP) base, impact (kinds of 
protein mutation), SNP %, feature name (gene name), DNA change, amino acid (AA) change, Depths, and five columns for SNP counts 
(cnts) are indicated. 
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Table 4.4 Validation of SNPs using allele-specific PCR in 96 AR and 96 AP line chickens 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 

Chr Ref Pos Genes Ref 
Base 

Called 
Base Impact SNP 

% 

Amino 
acid 
change 

Results of 96 birds each from AP and AR 
lines 

Homozygous 
RJF Heterozygote Homozygous 

SNP 
AR AP AR AP AR AP 

1 193338454 ART7B A T N-syn 1 p.L197Q 5 93 23 3 68 0 

1 121349181 BMX C T|C N-syn 0.75 p.D517N, 
p.D517D 16 96 26 0 54 0 

1 1034107 FAM208B T C N-syn 1 p.K1593E 0 94 0 1 96 1 
14 13770765 IFT140 A G N-syn 0.89 p.K791R 9 95 44 1 43 0 
20 43121 IGSF1 C T N-syn 1 p.R138C 0 63 0 28 96 5 
1 14729572 LAMB4 T C N-syn 0.8 p.K1547R 39 84 15 2 42 10 

2 42201510 PIK3R4 T T|C N-syn 0.75 p.D646D, 
p.D646G 16 71 4 16 76 9 

3 24479109 THADA T C N-syn 1 p.S287G 0 64 0 30 96 2 
2 41279450 TOPAZ1 G T N-syn 1 p.T975N 0 16 0 78 96 2 
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Tables 4.5 Gene name and functions of genes containing amino acid changes showing over 
10 depth counts in AR chickens 
ID Entrez Gene Name Location Type(s) 

ABCA12 
ATP-binding cassette, sub-family A (ABC1), 
member 12 

Plasma 
Membrane Transporter 

ARSD arylsulfatase D Cytoplasm Enzyme 

BANK1 B-cell scaffold protein with ankyrin repeats 1 
Extracellular 
Space Other 

BMX BMX non-receptor tyrosine kinase Cytoplasm Kinase 
CCDC157 coiled-coil domain containing 157 Other Other 
CCDC67 coiled-coil domain containing 67 Other Other 
DDX10 DEAD (Asp-Glu-Ala-Asp) box polypeptide 10 Nucleus Enzyme 
DHX36 DEAH (Asp-Glu-Ala-His) box polypeptide 36 Cytoplasm Enzyme 
DISC1 disrupted in schizophrenia 1 Cytoplasm Other 

EMC1 ER membrane protein complex subunit 1 
Plasma 
Membrane Other 

FAM13C family with sequence similarity 13, member C Other Other 
FAM154B family with sequence similarity 154, member B Other Other 
FAM208B family with sequence similarity 208, member B Other Other 

FEZ1 
fasciculation and elongation protein zeta 1 (zygin 
I) Cytoplasm Other 

GBGT1 
globoside alpha-1,3-N-
acetylgalactosaminyltransferase 1 Other Enzyme 

GGT7 gamma-glutamyltransferase 7 
Plasma 
Membrane Enzyme 

GVINP1 
GTPase, very large interferon inducible 
pseudogene 1 Other Other 

IFNAR2 interferon (alpha, beta and omega) receptor 2 
Plasma 
Membrane 

transmembrane 
receptor 

IFT140 intraflagellar transport 140 
Extracellular 
Space Other 

IGSF1 immunoglobulin superfamily, member 1 
Plasma 
Membrane Other 

ITPRIP 
inositol 1,4,5-trisphosphate receptor interacting 
protein 

Extracellular 
Space Other 

KIAA0556 KIAA0556 
Extracellular 
Space Other 

LAMB4 laminin, beta 4 Other Other 

LRP3 low density lipoprotein receptor-related protein 3 
Plasma 
Membrane 

transmembrane 
receptor 

MGA MGA, MAX dimerization protein Nucleus 
transcription 
regulator 
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Table 4.5 (Contd.) 

 

ID Entrez Gene Name Location Type(s) 

PIK3C2G 
phosphatidylinositol-4-phosphate 3-kinase, 
catalytic subunit type 2 gamma Cytoplasm Kinase 

PIK3R4 phosphoinositide-3-kinase, regulatory 
subunit 4 

Cytoplasm Kinase 

PLEKHH2 pleckstrin homology domain containing, 
family H (with MyTH4 domain) member 2 

Cytoplasm Other 

PPP1R26 protein phosphatase 1, regulatory subunit 26 Nucleus Other 
PTPN2 protein tyrosine phosphatase, non-receptor 

type 2 
Cytoplasm Phosphatase 

RAB17 RAB17, member RAS oncogene family Cytoplasm Enzyme 
RPGR retinitis pigmentosa GTPase regulator Cytoplasm Other 
SAG S-antigen; retina and pineal gland (arrestin) Cytoplasm Other 
SCNN1D sodium channel, non-voltage-gated 1, delta 

subunit 
Plasma 
Membrane 

ion channel 

SI sucrase-isomaltase (alpha-glucosidase) Cytoplasm Enzyme 
SLC2A5 solute carrier family 2 (facilitated 

glucose/fructose transporter), member 5 
Plasma 
Membrane 

Transporter 

SLC46A1 solute carrier family 46 (folate transporter), 
member 1 

Plasma 
Membrane 

Transporter 

TARBP1 TAR (HIV-1) RNA binding protein 1 Nucleus transcription 
regulator 

THADA thyroid adenoma associated Other Other 
TMEM52 transmembrane protein 52 Other Other 
TMX1 thioredoxin-related transmembrane protein 1 Cytoplasm Enzyme 
TOPAZ1 testis and ovary specific PAZ domain 

containing 1 
Other Other 

TTC29 tetratricopeptide repeat domain 29 Other Other 
ZNF385B zinc finger protein 385B Nucleus Other 
LOC101748372 Uncharacterized  N/A N/A 
ART7B Uncharacterized N/A N/A 
LOC420515 Uncharacterized N/A N/A 
LOC101751154 Uncharacterized N/A N/A 
COPN5L1 Uncharacterized N/A N/A 
LOC101751416 Uncharacterized N/A N/A 
LOC771752 Uncharacterized N/A N/A 
C4H4ORF21 Uncharacterized N/A N/A 
LOC100858625 Uncharacterized N/A N/A 
LOC770919 Uncharacterized N/A N/A 
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Table 4.6 Associated network functions of candidate genes 

ID Molecules in Network Score Top Diseases and Functions 
1 ABCA12, ACP6, ARSB, ARSD, ARSE, ARSF, ARSG, 

ARSI, ARSJ, CBWD2, DDX10, DHX36, EMC1, GGT7, 
GNS, IFT122, IFT140, IFT172, ITPRIP, LAMB4, MGA, 
PANK2, PLEC, SCNN1D, SGSH, SLC46A1, SRPX, 
SUMF1, SUMF2, TARBP1, THADA,TTBK2,  
TTC21B, UBC, WDR19 

30 Developmental Disorder, 
Hereditary Disorder, Metabolic 
Disease 

2 ANO10, BANK1, BCR (complex), CAPN15, CCDC67, 
CCDC141, CCDC85B, DISC1, FAM208B, FAS, FEZ1, 
GPR107, IGSF1, KMT2D, LYN, MARVELD1, NT5DC1, 
OARD1, P2RY8, PLEKHH2, PPP1R26,  
RELL1, RPGR,S LC13A3, SLC26A11, SLC35F5, SMC3, 
SYPL2, TGFB1, MEM184B, TMX1, TRMT2B, UBC, 
ZNF761, ZNF385B 

22 Cell Death and Survival, 
Hematological System 
Development and Function, 
Humoral Immune Response 

3 ARRB1, BMX, Cgm4/Psg16, CRK-CRKL-CBL, Erbb3 
dimer, FAM13C, FRY, GAB1/2, GHR dimer, GSN-PI3K-
PIP2-Src, Hcst dimer, IFNAR2, Insulin, IRS2-PI3K, 
LMNA, LRP, LRP3, LRP10, Met dimer, NFkB 
(complex), NUPR1, PI3K (complex), PIK3C2G, PIK3R4, 
Prl4a1, PTPN2, RAB17, SAG, Sh2b3, SHC-GRB2-
GAB1, SHP2-PI3K-GAB2, SI, SLC2A5, T3-TRbeta, 
Vegfr dimer 

22 Developmental Disorder, 
Gastrointestinal Disease, 
Hereditary Disorder 
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Figure 4.1 Distribution of SNPs in different regions of genome (1a) and SNPs associated with 
different types of mutations (1b). 

 

Figure 4.2 Nine candidate markers and different genotypes shown by allele-specific PCR in larger 
population of AR and AP chicken lines. 
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Figure 4.3 Gene network #1. Molecular interactions among the important focus molecules are 
displayed. Gray symbols show the genes found in the list of SNP while white symbols indicate 
neighboring genes that are functionally associated, but not included, in the gene list of SNP. 
Symbols for each molecule are presented according to molecular functions and type of 
interactions. 

 
Figure 4.4 Gene network #2. Molecular interaction and symbols are the same as the description 
in Figure 4.3. 
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Figure 4.5 Gene network #3. Molecular interaction and symbols are the same as the description 
in Figure 4.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 106 

5. CONCLUSION 
 In this dissertation, modern genomic approaches were used to identify the molecular 

markers in avian species maintained under different physiological and genetic environmental 

conditions. In this study, the biomarkers such as microRNA, copy number variation and single 

nucleotide polymorphism that were associated with different physiological phenomenon such as 

muscle growth and development, stress response and disease susceptibility which could impact 

overall growth and development of avian species were identified. More specifically, the main focus 

of the research in this dissertation was to characterize the breast muscle specific microRNAs in 

modern broilers and foundational chicken lines, to determine copy number variation in high and 

low stress quail lines, and to identify single nucleotide polymorphism markers in Rous sarcoma 

virus susceptible and resistant lines of chickens.  

 In chapter 2, we identified nine breast muscle specific mature miRNAs differentially 

expressed in modern broilers compared to the foundational chicken line. These miRNAs could be 

alternative markers for regulating muscle growth and development in chickens. The IPA predicted 

the involvement of these miRNAs in several canonical pathways such as P38 MAPK, ERK1/2, 

PI3K and insulin signaling, calcium signaling, axonal guidance signaling and NRF2-mediated 

oxidative stress signaling pathways suggesting their roles in muscle specific growth and 

development in chickens. In the present context of increasing global protein needs for human 

population, the miRNAs and their functions identified in this study could serve as foundation for 

understanding molecular basis of their regulatory roles for rapid growth and development of breast 

muscle in chickens required for human population.  

 In chapter 3, we identified different sets of genes and regions of DNA affected by 

CNVs in HS and LS lines of quail. Most importantly the CNV genes were involved in 

nervous/endocrine systems development and humoral/cell-mediated immune responses. The CNV 
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genes and CNV regions identified in this study could serve as molecular markers for understanding 

the effect of stress on overall growth and development of avian and other animal species. In this 

study, the result supported the hypothesis that CNVs could have impact in increasing genotypic 

diversity and thereby phenotypic traits observed in quail.  

 In chapter 4, we identified 63 different reliable SNP markers uniquely present in AR 

compared to AP chicken lines that could be associated with tumor regression property. The 

functional study using IPA showed that the SNP containing genes in AR were associated with 

ubiquitylation, and PI3K and NF-kB signaling pathways, suggesting their roles in tumor regression 

phenomenon in AR lines. The SNP markers presented in this study could serve as basis for 

understanding disease resistance and susceptibility in avian and other species.  
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APPENDIX 

Supplementary Table 2.1: Total read counts of abundant mature miRNA from breast muscle of 
PeM and BPR chickens 

  

 

 

SN Mature miRNA Total BPR Total PeM 
1 gga-miR-21-5p 15132 9763 
2 gga-miR-30d 8196 5217 
3 gga-miR-146b-5p 2570 1489 
4 gga-miR-199-5p 2102 2044 
5 gga-miR-193a-3p 1439 731 
6 gga-miR-20a-5p 1178 890 
7 gga-miR-148a-3p 1321 796 
8 gga-miR-30a-5p 513 530 
9 gga-let-7g-5p 466 334 
10 gga-miR-133c-3p 601 419 
11 gga-miR-10b-5p 712 420 
12 gga-miR-30c-5p 900 496 
13 gga-miR-146c-5p 351 352 
14 gga-miR-2954 218 240 
15 gga-miR-1a-3p 464 261 
16 gga-miR-222a 163 110 
17 gga-miR-103-3p 115 170 
18 gga-miR-1454 282 186 
19 gga-miR-22-3p 407 317 
20 gga-miR-301b-3p 351 190 
21 gga-miR-133a-5p 433 315 
22 gga-let-7f-5p 401 209 
23 gga-miR-26a-5p 281 179 
24 gga-miR-125b-5p 227 121 
25 gga-miR-16-5p 199 116 
26 gga-miR-24-3p 181 141 
27 gga-miR-2131-5p 122 77 
28 gga-miR-221-3p 141 103 
29 gga-miR-17-5p 85 72 
30 gga-miR-181a-5p 103 129 
31 gga-miR-126-3p 32 63 
32 gga-miR-451 133 96 
33 gga-let-7c-5p 42 66 
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Supplementary Table 2.1 (Contd.) 

SN Mature miRNA Total BPR Total PeM 
34 gga-miR-206 88 46 
35 gga-let-7b 145 99 
36 gga-miR-128-3p 69 45 
37 gga-miR-221-5p 223 79 
38 gga-miR-10a-5p 53 41 
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Supplementary Table 2.2: Target mRNAs of differentially expressed and qPCR validated miRNAs in PeM and BPR comparison 
Target  
Rank 

Target 
 Score 

miRNA 
Name 

Target 
Gene Gene Description FC(RNASeq) p-value 

5 100 gga-let-7b IGF2BP3 insulin-like growth factor 2 mRNA binding protein 3 -1.85 0.0014 
80 96 gga-let-7b ACER2 alkaline ceramidase 2 -1.74 0.00644 

139 94 gga-let-7b FGD6 FYVE, RhoGEF and PH domain containing 6 -1.5 0.0342 
163 93 gga-let-7b FOXP2 forkhead box P2 -1.88 0.00815 

271 88 gga-let-7b MGAT4A 
mannosyl (alpha-1,3-)-glycoprotein beta-1,4-N-
acetylglucosaminyltransferase, isozyme A -1.54 0.0102 

325 86 gga-let-7b SLC2A12 
solute carrier family 2 (facilitated glucose transporter), 
member 12 -1.34 0.00845 

403 83 gga-let-7b KLHL13 kelch-like 9 (Drosophila) -1.32 0.000988 

457 81 gga-let-7b GATM 
glycine amidinotransferase (L-arginine:glycine 
amidinotransferase) -3.81 0.0000822 

555 78 gga-let-7b PDP2 pyruvate dehyrogenase phosphatase catalytic subunit 2 -1.82 0.00558 
643 75 gga-let-7b KIAA1467 KIAA1467 -1.38 0.036 
645 75 gga-let-7b TMEM56 transmembrane protein 56 -2.81 0.00544 
676 74 gga-let-7b SNX16 sorting nexin 16 -1.32 0.0112 

1012 64 gga-let-7b WDR37 WD repeat domain 37 -1.57 0.0122 
1064 63 gga-let-7b PNAT10 N-acetyltransferase, pineal gland isozyme NAT-10 -4.47 0.0000827 
1153 61 gga-let-7b TMEM164 transmembrane protein 164 -1.93 0.00347 
1154 61 gga-let-7b NNT nicotinamide nucleotide transhydrogenase -1.75 0.00000402 
1196 60 gga-let-7b GTF3C6 general transcription factor IIIC, polypeptide 6, alpha 35kDa -1.56 0.00662 
1234 59 gga-let-7b SLC30A1 solute carrier family 30 (zinc transporter), member 1 1.46 0.0253 
1307 57 gga-let-7b AFF2 AF4/FMR2 family, member 2 -1.46 0.00434 
1394 55 gga-let-7b EEF2K eukaryotic elongation factor-2 kinase -1.87 0.0068 
1395 55 gga-let-7b AQP4 aquaporin 4 -2.97 0.0179 
1443 54 gga-let-7b SALL4 sal-like 4 (Drosophila) -2.59 0.0028 

415 83 
gga-miR-
10a-5p SLC35E1 solute carrier family 35, member E1 -1.33 0.000524 
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Supplementary Table 2.2 (Contd.)  
Target 
Rank 

Target 
 Score miRNA Name Target Gene Gene Description 

FC 
(RNASeq) p-value 

1041 64 gga-miR-10a-5p HDAC11 histone deacetylase 11 -1.37 0.00311 
1044 64 gga-miR-10a-5p NAA50 N(alpha)-acetyltransferase 50, NatE catalytic subunit -1.51 0.00299 
1140 62 gga-miR-10a-5p RNPC3 RNA-binding region (RNP1, RRM) containing 3 -1.3 0.00846 
1259 59 gga-miR-10a-5p MFAP3 microfibrillar-associated protein 3 -1.43 0.000123 
1475 

54 gga-miR-10a-5p SLC35D1 
solute carrier family 35 (UDP-glucuronic acid/UDP-N-
acetylgalactosamine dual transporter), member D1 -1.82 0.00041 

1532 53 gga-miR-10a-5p HSPA13 heat shock protein 70kDa family, member 13 -1.45 0.0028 
1637 51 gga-miR-10a-5p KLF11 Kruppel-like factor 11 -1.4 0.016 
113 95 gga-miR-125b-5p KLF13 Kruppel-like factor 13 -2.01 0.0000272 
167 93 gga-miR-125b-5p ZFYVE1 zinc finger, FYVE domain containing 1 -1.31 0.00351 
203 

91 gga-miR-125b-5p LRRC8B leucine rich repeat containing 8 family, member B -3.03 
0.00000028

7 
253 

89 gga-miR-125b-5p TLE3 
transducin-like enhancer of split 3 (E(sp1) homolog, 
Drosophila) -1.43 0.00136 

272 88 gga-miR-125b-5p ELOVL6 ELOVL fatty acid elongase 6 -2.13 0.0271 
304 87 gga-miR-125b-5p TMEM184B transmembrane protein 184B -1.59 0.00379 
460 81 gga-miR-125b-5p TMTC2 transmembrane and tetratricopeptide repeat containing 2 -1.35 0.00622 
490 80 gga-miR-125b-5p TTPA tocopherol (alpha) transfer protein -1.95 0.0393 
491 80 gga-miR-125b-5p ZNRF3 zinc and ring finger 3 -2.06 0.00299 
948 66 gga-miR-125b-5p TMEM161B transmembrane protein 161B -1.64 0.0381 

1454 54 gga-miR-125b-5p ATMIN ATM interactor -1.63 0.0151 
285 

88 gga-miR-146 PLEKHM3 
pleckstrin homology domain containing, family M, 
member 3 -1.64 0.00373 

286 88 gga-miR-146 ZBTB2 zinc finger and BTB domain containing 2 -1.37 0.0168 
411 83 gga-miR-146 GIN1 gypsy retrotransposon integrase 1 -1.66 0.0128 
699 74 gga-miR-146 GDNF glial cell derived neurotrophic factor -1.88 0.0157 
759 72 gga-miR-146 KBTBD2 kelch repeat and BTB (POZ) domain containing 2 -1.3 0.00809 
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Supplementary Table 2.2 (Contd.)  

Target 
Rank 

Target 
 Score miRNA Name Target Gene Gene Description 

FC 
(RNASeq) p-value 

818 70 gga-miR-146 PTPN21 protein tyrosine phosphatase, non-receptor type 21 -2.14 0.0206 
819 70 gga-miR-146 MYSM1 myb-like, SWIRM and MPN domains 1 -1.51 0.0469 

1258 59 gga-miR-146 TM7SF3 transmembrane 7 superfamily member 3 -1.57 0.000276 
1421 55 gga-miR-146 FAM168B family with sequence similarity 168, member B -1.52 0.045 
1685 50 gga-miR-146 ZNRF3 zinc and ring finger 3 -2.06 0.00299 

3 100 gga-miR-206 GLCCI1 glucocorticoid induced transcript 1 1.83 0.00000357 
72 96 gga-miR-206 CNN3 calponin 3, acidic 1.38 0.0109 
74 96 gga-miR-206 EIF2AK3 eukaryotic translation initiation factor 2-alpha kinase 3 1.39 0.0103 

103 95 gga-miR-206 SNAI2 snail homolog 2 (Drosophila) 1.66 0.0318 
215 90 gga-miR-206 RASSF2 Ras association (RalGDS/AF-6) domain family member 

2 1.92 0.000959 
222 90 gga-miR-206 MEOX2 mesenchyme homeobox 2 1.51 0.0294 
262 88 gga-miR-206 UTRN utrophin 1.36 0.0277 
295 87 gga-miR-206 RRBP1 ribosome binding protein 1 homolog 180kDa (dog) 1.74 0.000101 
320 86 gga-miR-206 SULF1 sulfatase 1 1.65 0.0117 
343 85 gga-miR-206 SPRED1 sprouty-related, EVH1 domain containing 1 1.32 0.00912 
344 85 gga-miR-206 EMP1 epithelial membrane protein 1 2.07 0.00638 
345 85 gga-miR-206 RSPO3 R-spondin 3 5.39 0.000156 
370 84 gga-miR-206 DAP death-associated protein 1.61 0.00932 
422 82 gga-miR-206 THBS1 thrombospondin 1 5.21 0.0000454 
638 75 gga-miR-206 SLC25A22 solute carrier family 25 (mitochondrial carrier: 

glutamate), member 22 1.8 0.0314 
639 75 gga-miR-206 ARAP2 ArfGAP with RhoGAP domain, ankyrin repeat and PH 

domain 2 2.35 0.00518 
670 74 gga-miR-206 FAM150B family with sequence similarity 150, member B 1.8 0.0344 
711 73 gga-miR-206 GSTT1 glutathione S-transferase theta 1 1.88 0.000829 

112 

 



 

 113 

Supplementary Table 2.2 (Contd.)  

Target 
Rank 

Target 
 Score miRNA Name Target Gene Gene Description 

FC 
(RNASeq) p-value 

794 70 gga-miR-206 CCBE1 collagen and calcium binding EGF domains 1 1.53 0.00467 
829 69 gga-miR-206 TPM3 tropomyosin 3 2.25 0.000142 
862 68 gga-miR-206 SYK spleen tyrosine kinase 2.62 0.00715 
866 68 gga-miR-206 ANXA2 annexin A2 4.11 0.0000643 
867 68 gga-miR-206 SNX4 sorting nexin 4 1.43 0.00052 
936 66 gga-miR-206 FAM126A family with sequence similarity 126, member A 1.36 0.00702 
976 65 gga-miR-206 SOWAHC sosondowah ankyrin repeat domain family member C 1.51 0.0279 

1052 63 gga-miR-206 CORO1C coronin, actin binding protein, 1C 1.83 0.000261 
1144 61 gga-miR-206 PSAT1 phosphoserine aminotransferase 1 1.64 0.000216 
1226 59 gga-miR-206 HTRA1 HtrA serine peptidase 1 2.27 0.00758 
1227 59 gga-miR-206 OGN osteoglycin 2.28 0.000403 
1389 55 gga-miR-206 PDIA5 protein disulfide isomerase family A, member 5 1.32 0.00909 
1429 54 gga-miR-206 GPR137B G protein-coupled receptor 137B 1.77 0.000358 
1430 54 gga-miR-206 OSBPL5 oxysterol binding protein-like 5 1.46 0.0156 
1433 54 gga-miR-206 ARSJ arylsulfatase family, member J 5.21 0.00000147 
1490 53 gga-miR-206 BMP6 bone morphogenetic protein 6 1.53 0.0127 
1647 50 gga-miR-206 SVEP1 sushi, von Willebrand factor type A, EGF and pentraxin 

domain containing 1 1.73 0.00134 
91 96 gga-miR-2131-5p H2AFZ H2A histone family, member Z -1.34 0.00621 
92 96 gga-miR-2131-5p NCOR1 nuclear receptor corepressor 1 -1.66 0.000706 

117 95 gga-miR-2131-5p KBTBD8 kelch repeat and BTB (POZ) domain containing 8 -1.72 0.0027 
171 93 gga-miR-2131-5p LAPTM4B lysosomal protein transmembrane 4 beta -1.77 0.0015 
187 92 gga-miR-2131-5p LIG4 ligase IV, DNA, ATP-dependent -1.54 0.00213 
205 91 gga-miR-2131-5p EPG5 ectopic P-granules autophagy protein 5 homolog (C. 

elegans) -1.47 0.0367 
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Supplementary Table 2.2 (Contd.)  

Target 
Rank 

Target 
 Score miRNA Name Target Gene Gene Description 

FC 
(RNASeq) p-value 

210 91 gga-miR-2131-5p ISOC1 isochorismatase domain containing 1 -1.32 0.0229 
277 88 gga-miR-2131-5p HSPA13 heat shock protein 70kDa family, member 13 -1.45 0.0028 
284 88 gga-miR-2131-5p RAP1B RAP1B, member of RAS oncogene family 1.34 0.0000165 
313 87 gga-miR-2131-5p CHN2 chimerin (chimaerin) 2 -1.78 0.0404 
334 86 gga-miR-2131-5p GTF2A1 general transcription factor IIA, 1, 19/37kDa -1.6 0.0000302 
354 85 gga-miR-2131-5p NR3C2 nuclear receptor subfamily 3, group C, member 2 -1.5 0.00419 
429 82 gga-miR-2131-5p RNGTT RNA guanylyltransferase and 5'-phosphatase -1.54 0.00655 
432 82 gga-miR-2131-5p LNPEP leucyl/cystinyl aminopeptidase -2 0.0286 
468 81 gga-miR-2131-5p SP4 Sp4 transcription factor -1.35 0.00323 
470 81 gga-miR-2131-5p SNX2 sorting nexin 2 -1.3 0.0057 
494 80 gga-miR-2131-5p SLC19A2 solute carrier family 19 (thiamine transporter), member 2 -1.84 0.00804 
498 80 gga-miR-2131-5p MSMO1 methylsterol monooxygenase 1 -1.61 0.00916 
520 79 gga-miR-2131-5p WDR51B WD repeat domain 51B -1.87 0.000903 
527 79 gga-miR-2131-5p MTMR7 myotubularin related protein 7 -2.06 0.00172 
560 78 gga-miR-2131-5p RRP1B ribosomal RNA processing 1 homolog B (S. cerevisiae) -1.41 0.0014 
562 78 gga-miR-2131-5p ZNF770 zinc finger protein 770 -1.53 0.0167 
563 78 gga-miR-2131-5p LGALSL lectin, galactoside-binding-like -1.4 0.00442 
598 77 gga-miR-2131-5p PDP2 pyruvate dehyrogenase phosphatase catalytic subunit 2 -1.82 0.00558 
620 76 gga-miR-2131-5p RHOBTB3 Rho-related BTB domain containing 3 -2.31 0.00644 
654 75 gga-miR-2131-5p CHAF1B chromatin assembly factor 1, subunit B (p60) -1.4 0.00467 
694 74 gga-miR-2131-5p NUDT6 nudix (nucleoside diphosphate linked moiety X)-type 

motif 6 -1.4 0.0126 
721 73 gga-miR-2131-5p PKNOX1 PBX/knotted 1 homeobox 1 -1.79 0.00799 
725 73 gga-miR-2131-5p TECPR1 tectonin beta-propeller repeat containing 1 -1.4 0.0294 
757 72 gga-miR-2131-5p PDS5A PDS5, regulator of cohesion maintenance, homolog A (S. 

cerevisiae) -1.36 0.00167 
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Supplementary Table 2.2 (Contd.)  

 
 

Target 
Rank 

Target 
 Score miRNA Name Target Gene Gene Description 

FC 
(RNASeq) p-value 

775 71 gga-miR-2131-5p FOXP2 forkhead box P2 -1.88 0.00815 
808 70 gga-miR-2131-5p FAM98B family with sequence similarity 98, member B -1.38 0.0000781 
815 

70 gga-miR-2131-5p MLLT10 
myeloid/lymphoid or mixed-lineage leukemia (trithorax 
homolog, Drosophila); translocated to, 10 -1.38 0.0000451 

851 69 gga-miR-2131-5p GFOD1 glucose-fructose oxidoreductase domain containing 1 -1.45 0.0374 
921 67 gga-miR-2131-5p ROCK2 Rho-associated, coiled-coil containing protein kinase 2 -2.07 0.00366 
960 66 gga-miR-2131-5p TRIM23 tripartite motif containing 23 -1.3 0.0189 
989 65 gga-miR-2131-5p AQP9 aquaporin 9 -3.41 0.00566 
1074 63 gga-miR-2131-5p CASC4 cancer susceptibility candidate 4 -1.4 0.000071 
1086 63 gga-miR-2131-5p ADAMTS20 ADAM metallopeptidase with thrombospondin type 1 

motif, 20 -1.65 0.0187 
1119 62 gga-miR-2131-5p ZBTB24 zinc finger and BTB domain containing 24 -1.49 0.0012 
1128 62 gga-miR-2131-5p DENND1B DENN/MADD domain containing 1B -1.41 0.0271 
1164 61 gga-miR-2131-5p B9D1 B9 protein domain 1 -1.61 0.0418 
1169 61 gga-miR-2131-5p CLOCK clock homolog (mouse) -1.77 0.0419 
1175 61 gga-miR-2131-5p SLC44A5 solute carrier family 44, member 5 -1.89 0.0092 
1207 60 gga-miR-2131-5p ARV1 ARV1 homolog (S. cerevisiae) -1.56 0.00033 
1248 59 gga-miR-2131-5p LATS2 LATS, large tumor suppressor, homolog 2 (Drosophila) -1.32 0.0101 
1286 58 gga-miR-2131-5p BMP7 bone morphogenetic protein 7 -1.95 0.0177 
1328 57 gga-miR-2131-5p BTBD3 BTB (POZ) domain containing 3 -2.13 0.00123 
1330 57 gga-miR-2131-5p PFKFB2 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 -1.57 0.0431 
1362 56 gga-miR-2131-5p COL9A3 collagen, type IX, alpha 3 -3.23 0.00067 
1407 55 gga-miR-2131-5p CRKL v-crk sarcoma virus CT10 oncogene homolog-like -1.32 0.0137 
1412 55 gga-miR-2131-5p CLSPN claspin -1.41 0.0389 
1415 55 gga-miR-2131-5p KNTC1 kinetochore associated 1 -2.06 0.00333 
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Supplementary Table 2.2 (Contd.)  

Target 
Rank 

Target 
 Score miRNA Name Target Gene Gene Description 

FC 
(RNASeq) p-value 

1461 54 gga-miR-2131-5p MOB4 MOB family member 4, phocein -1.31 0.0000548 
1563 52 gga-miR-2131-5p USP24 ubiquitin specific peptidase 24 -1.82 0.0362 
1564 52 gga-miR-2131-5p SNX16 sorting nexin 16 -1.32 0.0112 
1570 52 gga-miR-2131-5p PDXK pyridoxal (pyridoxine, vitamin B6) kinase -2.13 0.00621 
1633 51 gga-miR-2131-5p NFATC1 nuclear factor of activated T-cells, cytoplasmic, 

calcineurin-dependent 1 -1.67 0.012 
1673 50 gga-miR-2131-5p MBP myelin basic protein -2.62 0.000196 
264 88 gga-miR-221-5p SLC7A2 solute carrier family 7 (cationic amino acid transporter, 

y+ system), member 2 -2.03 0.000519 
613 76 gga-miR-221-5p CRIPT cysteine-rich PDZ-binding protein -1.33 0.000371 
836 69 gga-miR-221-5p AFF4 AF4/FMR2 family, member 4 -1.43 0.0396 
872 68 gga-miR-221-5p TK2 thymidine kinase 2, mitochondrial -1.45 0.000463 
1306 57 gga-miR-221-5p RGMB RGM domain family, member B -1.35 0.0301 
1392 55 gga-miR-221-5p SLC12A2 solute carrier family 12 (sodium/potassium/chloride 

transporters), member 2 -1.8 0.00288 
1393 55 gga-miR-221-5p PDS5A PDS5, regulator of cohesion maintenance, homolog A (S. 

cerevisiae) -1.36 0.00167 
1655 50 gga-miR-221-5p CLOCK clock homolog (mouse) -1.77 0.0419 
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1. IACUC protocol for miRNA, CNV and SNP studies.  
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2. IBC protocol for miRNA study. 
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