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notching on the local stress-state near the connection weld region.  Figure 21 compares the pre- 

and post-notch stresses within the connection region of specimen C1-1 which indicates that the 

notching increases the local stress state by more than 4.5 times. Note that the gauge results 

presented in Figure 21 are averages between gauges on the top and bottom plate sides (to isolate 

axial strains).  By comparing the top and bottom longitudinal gauges in Figure 21(a), It can be 

observed that the experimental loading induced slight lateral bending in the specimen (note that 

the solid line from the top gauge is larger than the dashed line from bottom gauge). 

Following notching of specimen C1-1, a total of 13,730,163 fatigue cycles were applied at 

a force range of 50kips with no observable fatigue cracking near the notch. Strain measurements 

near the notch remained stable throughout the test and resembled those shown in Figure 21(b) 

indicating no fatigue cracking.  Additional dye-penetrant testing near the notch helped confirm no 

fatigue cracking by visual inspection. Due to the significant time required to generate a fatigue 

crack, it was decided to conclude the axial loading fatigue test and focus on the three-point bending 

specimen configuration capable of producing higher stresses within the gate specimens.  

 

Figure 21. Recorded strains, a) pre-notch; b) post-notch 

The goal of the initial fatigue testing with specimens C1-1 and C2-1 was to induce a sharp 

fatigue pre-crack to investigate retrofit effectiveness; however, similar to specimen C1-1, 

   (a)                                  (b) 
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specimen C2-1 (loaded in three-point bending at a force range of 80kips) was subjected to 

4,598,234 fatigue cycles with no observable fatigue crack forming at the notch. Rather than 

continue with the fatigue crack initiation experiments, it was decided to use the local stress 

concentration from the induced notch to investigate the local stress effects of the prestressed 

retrofit.  Table 4 shows the additional cyclic tests conducted (C2-2, C3-1, and C3-2) to provide 

comparison between local notch stress states without and with various levels of CFRP prestress.  

Tests C3-3 and C3-4 were added half-scale fatigue tests to measure resulting fatigue-life 

improvements and will be discussed in a later section. 

Table 4. Experimental test matrix and resulting fatigue cycles applied 

Experimental 

test No. 

Retrofit 

(Y/N) 

Loading 

type 

Retrofit 

prestress 

level (ksi) 

Number of 

applied fatigue 

cycles 

C1-1 N Axial -- 13,730,163 

C2-1 N 3-point -- 4,598,234 

C2-2 Y 3-point 7.3-17.3 N/A 

C3-1 N Axial -- N/A 

C3-2 Y Axial 7.2-18.0 N/A 

C3-3 N Axial -- 989,235 

C3-4 Y Axial 13.65 2,911,198 

4.5.2. Effect of Retrofit Prestress Levels on Specimen Local Stresses 

The applied CFRP prestress is capable of reducing the local stress felt at the notch of both 

the full-scale and half-scale specimens. Table 5 presents the three full-scale and four half-scale 

experiments having varied levels of CFRP prestress.  In Table 5, prestress levels ranging between 

7.3 and 17.3ksi were able to reduce the full-scale component mean stress by between 4 and 8.3ksi.  

Additionally, the prestress was able to reduce the stress-amplitude of the full-scale notch stress by 

between 1.6 and 2.3ksi.  Similar results were observed for the half-scale experiments, with 

prestress levels between 7.2 and 18ksi reducing the component mean stress by between 2.5 and 

5.4ksi respectively.  The reduction in mean stress and stress-amplitude at the notch directly 
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translates to increased fatigue life.  Figure 22 shows the effect of prestress level on stress-range 

and mean stress for the full-scale experiments.  In Figure 22, a noticeable downward shift can be 

seen as the prestress level in the CFRP is increased. 

Table 5. Mean and amplitude stress shift due to CFRP prestress level 

Specimen 

Type 

Applied 

force range 

(kips) 

Retrofit 

prestress 

level (ksi) 

Reduction in 

component mean 

stress (ksi) 

Reduction in 

component stress 

amplitude (ksi) 

Full-Scale 80 7.30 4.0 1.6 

Full-Scale 80 14.8 7.7 2.2 

Full-Scale 80 17.3 8.3 2.3 

Half-Scale 19.6 7.20 2.5 0.7 

Half-Scale 19.6 10.6 3.4 1.2 

Half-Scale 19.6 12.5 4.0 1.5 

Half-Scale 19.6 18.0 5.4 2.3 

 

Figure 22. Effect of CFRP prestress on local notch stress state. 

As the specimen notch stress is reduced, the stress-state moves closer to the infinite life 

region.  For the full-scale and half-scale experiment, the resulting shift in notch stress state relative 

to the notched Goodman criterion is shown in Figure 23 and Figure 24 respectively.  As shown in 

Figure 23, the 8.3ksi reduction in mean stress at a prestress of 17.3ksi shifts the notch stress-state 

near the border of the fatigue threshold line, but remains within the finite life region.  This indicates 
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that a fatigue life improvement is likely made; however, the component will eventually be subject 

to fatigue cracking.  Similar results were noticed for the half-scale specimens which remained 

within the finite life region after achieving a mean-stress shift of 5.4ksi at 18ksi prestress.  The 

following section quantifies the effect of this mean stress shift on the resulting half-scale 

component fatigue life. 

 

Figure 23. Effect of CFRP prestress level on full-scale component stress state 
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Figure 24. Effect of CFRP prestress level on small-scale component stress state 

4.5.3. Effect of Prestressed Retrofit on Fatigue Life  

The effect of the developed retrofit on resulting fatigue life is determined by comparing 

the fatigue performance of specimen C3-3 (having no retrofit) and C3-4 (having a retrofit and 

13.65ksi prestress).  Specimen C3-3 with no retrofit experienced fatigue cracking at the notch 

which resulted in complete cross-section fracture after 989,235 cycles. Considering a fatigue 

category E’ detail, a notched weld, specimen C3-3 would be calculated to fail after 969,165 cycles 

which is fairly close to the experimental observation.  Figure 25 shows the resulting fatigue fracture 

emanating from the induced notch. Application of the retrofit in specimen C3-4 increased the 

number of cycles to failure for the half-scale gate specimen to 2,911,198 cycles (a fatigue life 

increase of nearly 3 times over the un-retrofitted specimen).  Figure 26 shows a comparison of the 

stress within the notch for the specimens C3-3 (un-retrofitted) and C3-4 (retrofitted), with the 

reduced notch stress resulting in increased fatigue life.  In Figure 26, application of the retrofit 
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initially decreased the notch stress by 20.5ksi as compared to the unretrofitted specimen C3-3.  

Note however that the retrofit did not perform as well as intended, due to a prestress loss that was 

observed at 50,000 cycles which resulted in an increase in notch stress (see Figure 26).  This 

prestress loss was due to a debonding failure between the friction clamps and half-scale specimen 

and was corrected at 1,000,000 cycles during testing but eventually was lost again at 1,690,000 

cycles.  This prestress loss will be discussed further in the following section; however, it should 

be noted that even with prestress losses, the CFRP continued to take load resulting in a reduced 

notch stress of nearly 4.8 ksi (see Figure 26). 

 

Figure 25. Fatigue fracture at the notch of specimen C3-3 following 989,235 cycles. 
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Figure 26. Measured stress at the notch of specimen C3-3 (no retrofit) and specimen C3-4 

(retrofit) 

4.5.4. Performance of Half-Scale Retrofit Clamping Mechanisms during Cyclic Loading 

While the static retrofit bonding experiments were promising for inducing CFRP prestress 

levels up to 50ksi, vibrations during rapid cyclic loading ultimately affected the retrofit bond and 

resulting CFRP prestress within the retrofit system.  Epoxy debonding between the retrofit and 

gate specimen was observed in each high-cycle fatigue test. As an example, Figure 27 shows the 

CFRP prestress levels during the half-scale test C3-4 (discussed previously), where the initial 

prestress of 13.7ksi was reduced by 11.8ksi following approximately 50,000 cycles at 20Hz (41 

minutes of loading) due to debonding of the retrofit clamps from the specimen surface.  Following 

1,000,000 cycles, an additional prestress was performed to 10.15ksi by allowing the debonded 

retrofit clamp to bear on the specimen weld profile, which resulted in the other retrofit clamp to 

debond after an additional 690,000 cycles (9 hours and 35 minutes of testing in Figure 27).  Note 

that even though the retrofit clamps debonded, the CFRP material continued to take some of the 

applied axial load (equal to the applied clamping friction force).  Given the results of the epoxy 
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performance during fatigue loading, future retrofit performance may be improved by using the 

SlipnotTM surface which had similar static prestress results but relies on friction over adhesion to 

maintain CFRP prestress levels. 

 

Figure 27. Measured CFRP prestress during rapid cyclic loading. 

5. Summary and Conclusions 

In this study, a prestressed CFRP retrofit was developed for controlling local stress states 

within lock gate structures. The study retrofit development involved CFRP prestressing strategies, 

bonding mechanisms, long-term prestress performance and large-scale experimental fatigue 

testing.  In addition to various bonding experiments, a total of seven large-scale cyclic tests were 

conducted on lock gate components (with and without applied retrofits) to gauge the effectiveness 
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of the developed prestressing strategies.  The following conclusions were found from the 

experimental testing:   

• Application of the prestressed retrofit on the notched half-scale specimen increased 

the fatigue life by more than 1.9 million cycles (a fatigue life increase of nearly 3 

times over the un-retrofitted specimen).  

• Prestressing strategies considering friction alone can achieve CFRP prestress levels 

similar to those with epoxy adhesives.  The SlipnotTM high friction coating and 

epoxy bonded CFRP both achieved similar prestress levels prior to slip at slightly 

more than 50ksi of CFRP prestress. 

• Creep and relaxation within the prestressing system contributed to minor prestress 

losses.  The full-scale epoxy-bonded CFRP specimen converged to approximately 

10% prestress loss after 14 days.   

• The applied CFRP prestress is capable of reducing the local stress felt at the notch 

of both the full-scale and half-scale specimens; however, prestress loss did occur 

due to epoxy adhesive debonding during rapid cyclic loading. 

• Load shedding into the CFRP, even without significant prestress applied, 

contributed to reductions in component notch stresses. Even after debonding, the 

applied CFRP clamping force was able to provide enough force transfer to the 

CFRP to reduce the notch local stresses (see again Figure 26). 
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