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Abstract

The Lasso and the Horseshoe, gold-standards in the frequentist and Bayesian paradigms,
critically depend on learning the error variance. This causes a lack of scale invariance and
adaptability to heavy-tailed data. The v/Lasso [Belloni et al., 2011] attempt to correct this by
using the ¢; norm on both the likelihood and the penalty for the objective function. In contrast,
there is essentially no methods for uncertainty quantification or automatic parameter tuning via a
formal Bayesian treatment of an unknown error distribution. On the other hand, Bayesian
shrinkage priors lacking a local shrinkage term fails to adapt to the large signals embedded in
noise. In this thesis, I propose to build a fully Bayesian method called v/DL that achieves scale
invariance and robustness to heavy tails while maintaining computational efficiency. The classical
vLasso estimate is then recovered as the posterior mode with an appropriate modification of the
local shrinkage prior. The Bayesian /DL leads to uncertainty quantification by yielding standard
error estimates and credible sets for the underlying parameters. Furthermore, the hierarchical
model leads to an automatic tuning of the penalty parameter using a full Bayes or empirical Bayes
approach, avoiding any ad-hoc choice over a grid. We provide an efficient Gibbs sampling
scheme based on Normal scale mixture representation of Laplace densities. Performance on real
and simulated data exhibit excellent small sample properties and we establish some theoretical

guarantees.
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Chapter 1
Introduction
Global-local shrinkage priors have been established as the current state-of-the art inferential tool
for sparse signal detection and recovery as well as the default choice for handling non-linearity in
what have hitherto been paradoxical problems without a Bayesian answer. Despite these success
stories, certain aspects of their behavior, such as performance in presence of correlated errors or
adapting to unknown error distribution, remain unexplored. The aim of this thesis is to offer
insightful solutions to these open problems motivated by the changing landscape of modern
applications. The tools developed here aim at achieving scalability and strong theoretical support
while focusing on their usefulness in current applications.

Feature selection, or selecting a subset of covariates, is pervasive in countless modern
applications, specially those involving a ‘wide’ data set, where number of features (p) far exceed
the number of samples (n). The most popular inferential problems are the sparse normal means

problem: (Y; | 5;) b

N(Bi,1),i =1,...,n, and the sparse linear regression: Y = X3 + €,
p>n, e~ N(0,I), where 3 is a ‘nearly black object’, that is,

B € lolp.] = {8 : #(6; #0) < p,}, where p,, = o(n). Current literature provides a rich variety
of methodologies for high-dimensional inference based on regularization which implicitly or
explicitly penalizes models based on their dimensionality. Convex penalties, such as the Lasso
[Tibshirani, 1996], the elastic net [Zou and Hastie, 2005], or their variants, enjoy a number of
advantages, such as uniqueness of solution, efficient computation and relatively straightforward
theoretical analysis. The gold standard is Lasso (Least Absolute Shrinkage and Selection
Operator) that produces a sparse point estimate by constraining the /; norm of the parameter
vector.

The reason behind the popularity of Lasso [Tibshirani, 1996] and many of its variants

[Tibshirani, 2014] as inferential tool in high-dimensional data is due to factors such as:

1. Computational efficiency of Least Angle Regression (LARS) method [Efron et al., 2004]

and coordinate descent [Friedman et al., 2007],
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2. Optimality (oracle) properties for both estimation and variable selection [vide Biihlmann

and van de Geer, 2011, James et al., 2013, Hastie et al., 2015].

Regularized methods prevent over-fitting by implicitly or explicitly penalizing model
dimensionality. This amounts to controlling the bias-variance trade-off and are particularly useful
for sparse learning, when the number of variables (p) exceed the number of observations (n). In
the context of linear regression Y = X3 + €, a regularized estimate of 3 is obtained by

minimizing the penalized likelihood:

B = argmin{|[Y — XB|[* + X'Q(B)}, (L.1)
BeRP
p
where, Q(83) = Z w(pB;) is a separable penalty.
j=1

The gold-standard for regularized method is Lasso that simultaneously performs estimation and

model selection by constraining the ¢; norm of the underlying parameter vector, i.e. w(3;) = |3;|.
e = axgmin{[[Y — XB|I* + X15]1) (12)
cRP

As discussed above, Lasso enjoys both computational efficiency, due to LARS [Efron et al.,
2004] and coordinate descent [Friedman et al., 2007], as well as theoretical optimality properties
[Biihlmann and van de Geer, 2011]. Bickel et al. [2009] have shown that the Lasso estimator
achieves near-orcale property in recovering the true 3, under Gaussianity and certain design
matrix conditions, up to a factor of \/log(2p): yielding a \/Togn rate when p grown polynomially
as n.

Bayesian Duality

The penalization approaches can be also explained from a Bayesian framework by



interpreting the penalty as the logarithm of a suitable prior as follows:

[‘131611%% {I(y | B) + pen,(B)} = argglaxp(ﬁ | y) =p(y | B)pa(B)

where p(y | 5) x exp{—I(y | B)}, pr(B) x exp{—pen,(5)}.

The Bayesian correspondence leads to uncertainty quantification by yielding standard error
estimates and credible sets for the underlying parameters and automatic tuning of the penalty
parameter using a full Bayes or empirical Bayes approach, avoiding any ad-hoc choice over a
grid. However, convex penalties such as Lasso yield a posterior that is ‘useless for uncertainty
quantification’ [Castillo et al., 2015] and equivalent Bayesian hierarchical models are notably
absent for the non-convex methods.

The popularity of global-local (G-L) shrinkage priors in the ‘nearly-black’ or ‘ultra-sparse’
regime, marked by parameter [ € {y[p,], with p,, — 0, is largely due their optimal theoretical and
empirical performance. The key idea behind G-L priors is to use global shrinkage to adjust to the
overall sparsity and local shrinkage to identify the strong signals. These priors avoid the
computational bottle-neck of searching over an exponentially growing model space, which
obstructs the spike-and-slab prior [Mitchell and Beauchamp, 1988] on ultra-high dimensions. For
the sparse normal means model (y; | 5;) SN (B;,1) fori =1,..., n, the horseshoe prior

[Carvalho et al., 2010] is given by the hierarchical model:
(yi | B;) ~ N (Bs, ), (Bi | wi, 7) ~ N(0,u27?), ui ~ CT(0,1), i=1,...,n.

Horseshoe prior operates by directly modeling the posterior inclusion probability P(5; # 0 | ;)
such that the probability concentrates near 0 or 1 for noise and signals, respectively. This follows
from the linearity of posterior mean under the horseshoe prior that mimics a spike-and-slab

model:

E(Bi | yi) = {1 — E(xi | yi) }ys where s; = 1/(1 + U?TQ) (1.3)



The U-shaped posterior is a direct outcome of putting a Be(1/2,1/2) prior on the shrinkage
coefficient x;, lending horseshoe its name. Since the inception of the horseshoe prior, many G-L
priors have been proposed, focusing on the sparse normal means and regression problem. Some
of the popular G-L priors include the Normal Exponential Gamma [Griffin and Brown, 2010],
generalized double Pareto (GDP) [Armagan et al., 2013], the three-parameter beta [Armagan
et al., 2011], the Dirichlet-Laplace [Bhattacharya et al., 2015] and the more recent spike-and-slab
Lasso [Rovckovd and George, 2016], horseshoe+ [Bhadra et al., 2016] and the R2-D2 [Zhang
et al., 2016] priors.
Square-root Lasso

Despite the attractive features of Lasso, its performance in high-dimensional data is critically
dependent on estimating the standard deviation o of the noise €, which remains a non-trivial
problem in p > n situation. The square-root Lasso, proposed by Belloni et al. [2011], is a
modification of Lasso that eliminates the need for knowing o, or pre-estimating it. The
square-root Lasso is also independent of the Gaussianity or sub-gaussianity of noise. In fact, as
Giraud [2014] points out, the Lasso estimate with /; penalty is not scale-invariant in the sense that
the invariance relation B(cY, X) = 0 3(Y, X) does not hold for all ¢ > 0. Since the standard
deviation of noise € is o, one way of obtaining a scale-invariant penalized estimator is to set

A* = Ao in (1.1), yielding:
B™ = oY — XB||* + AQ(B), where, o = sdev(e) (1.4)

Estimating o by ||Y — X3|| /4/n and using the ¢; penalty Q(3) = ||3||: leads to the v/Lasso

estimator:

By = argmin{ i [[Y — XBl, + N1} (1)
cRP

Clearly, the square-root Lasso estimator is scale-invariant and hence independent of the
knowledge of o, and still enjoys computational efficiency as the objective function is convex. The

resulting estimator also enjoys near-oracle convergence rate, similar to Lasso, when supp(/3,) has
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only s elements, s < n [Belloni et al., 2011].

The square-root Lasso admits an alternative representation / algorithm, as another variant of
Lasso called Scaled Lasso [Sun and Zhang, 2012], that establishes the connection between the
original Lasso and the square-root Lasso. Following Giraud [2014], the square-root Lasso

estimator in (2.1) and 6 = ||Y — X 3|| //n can be written as solution to the convex system:

2
(B.6) = argmin {%NY;—””?HHBHl} (1.6)
o

BeERP oceRt

Hence, we have the following relationship between Lasso and the square-root Lasso estimators:
By = g where 6 =|[Y — X8|/ /vn

This implies that the square-root Lasso (or, scaled Lasso) can be efficiently calculated by a
scheme that alternately finds a Lasso estimate B and o, resulting in the scaled-Lasso algorithm
[Sun and Zhang, 2012].

Despite the attractive properties of these methods, there is a common caveat: the choice of
tuning parameter \. For Lasso, the tuning can be done either via a k-fold cross-validation or a
complexity selection technique [Giraud et al., 2012]. However, these methods come with some
concerns: while the £-fold CV works well empirically, it lacks theoretical support and the
complexity selection is only guaranteed to work under Gaussianity of the data. The
scale-invariant methods improve this situation slightly by making the tuning parameter free of o,
but it still requires tuning by adapting to the data.

Furthermore, it has been noted by some authors [Chatterjee and Lahiri, 2011] that the
Lasso-based estimates do not yield meaningful standard errors for the parameter estimates,
motivating full Bayesian treatment that produces reliable uncertainty quantification without extra
effort. The Bayesian treatments of penalized regression depend on the useful duality of penalty

and log-prior, and (Normal) scale mixture representation of the prior (e.g. Laplace as



Normal-Gamma) that leads to efficient computation via EM/ECME or MCMC algorithms.

My main contribution in this thesis is twofold. First, we provide a Bayesian interpretation of
the square-root Lasso estimator based on the scale mixture representation of the Laplace density.
Apart from quantifying uncertainty, this representation provides at least two alternative
computational tools: via MCMC and via proximal algorithm [Polson et al., 2015]. We also offer
new insights into the estimators behavior by investigating the resulting posterior distribution and
the shrinkage weights. Next, we extend and generalize the Bayesian v/Lasso estimator with an
appropriate local shrinkage term to the Bayesin v/DL estimator. The proposed estimator achieves
better robustness compared to the popular G-L priors such as horseshoe in terms of (1) adapting
to strong covariate dependence and (2) adapting to the level of sparsity in the data.

The rest of the thesis is organized as follows: Chapter 2 describes the Bayesian square-root
Lasso and the Bayesian square-root Dirichlet-Laplace estimator, Chapter provides some
numerical examples to illustrate how the proposed method outperforms the existing G-L priors.

Chapter 4 provides concludes with future directions.



Chapter 2

Methodology: Bayesian /Lasso and v/DL

Penalized regression methods such as Lasso are critically dependent on estimating the error
variance o , which remains a non-trivial problem in high-dimensional p > n situation. The
square-root Lasso [Belloni et al., 2011] is a variant of Lasso that eliminates the need for knowing
or pre-estimating ¢ and adapts to sub-Gaussian noise. The v/Lasso method uses a plug-in

estimate of & = ||Y — X3|| /4/n in the Lasso optimization (??) to obtain :

By = axgmin{/n [Y = X8l + 71|61} @
cRP

The resulting estimator enjoys near-oracle convergence rate, similar to Lasso, when supp(3y)
has only s elements, s < n as well as computational speed by dint of its convexity [Belloni et al.,
2011]. Moreover, unlike Lasso, the V/Lasso estimator is also scale invariant, i.e.,

B(UY, X) = o3 (Y, X), Vo > 0 [Giraud, 2014]. It turns out that the resulting estimator is
identical to another regularization method, called the scaled Lasso [Sun and Zhang, 2012], which

jointly optimizes 3 and o.

(8,0) = Bgégmeié {n/2+1]Y = XBll;/(20) +7(|8]: }

Hence, we have the following relationship between Lasso and the square-root Lasso estimators:
Byl = g0 where 6 =||Y — X8| /vn

This implies that the square-root Lasso (or, scaled Lasso) can be efficiently calculated by a
scheme that alternately finds a Lasso estimate B and &, resulting in the scaled-Lasso algorithm
[Sun and Zhang, 2012].

Despite the attractive properties of these methods, there is a common caveat: the choice of

tuning parameter \. For Lasso, the tuning can be done either via a k-fold cross-validation or a



complexity selection technique [Giraud et al., 2012]. However, these methods come with some
concerns: while the £-fold CV works well empirically, it lacks theoretical support and the
complexity selection is only guaranteed to work under Gaussianity of the data. The
scale-invariant methods improve this situation slightly by making the tuning parameter free of o,
but it still requires tuning by adapting to the data.

Despite their desirable characteristics, v/Lasso has two major concerns. First, the choice of
tuning parameter 7: one can use either a k-fold cross-validation or a complexity selection, but the
former lacks theoretical support and the latter is restricted to Gaussian data [Giraud et al., 2012].
Second, inability to yield meaningful error estimates for the parameters by Lasso-based methods
[Chatterjee and Lahiri, 2011]. To solve these issues, we propose a Bayesian v/Lasso that fully

quantifies uncertainty and leads to efficient computation via MCMC.

2.1 Hierarchical Model

Here we derive the Bayesian hierarchical model corresponding to the v/Lasso in (2.1). Since the
likelihood-prior decompsoition of (2.1) yield a Laplace density for both the observation and the
prior model, we use a Gaussian scale mixture representation of Laplace to write the Bayesian
hierarchy. The key steps in the Bayesian hierarchy for v/Lasso follows from the well-known

identity due to Lévy [1940] given by:

| i ool 20} exp{=Aehat = exp{ a2} 22)

The Levy identity (2.2) leads to the well-known normal scale mixture representation of Laplace
density [Andrews and Mallows, 1974]. Let Q(8) = |ly — XB)3. Using a = 1, and 2\ = Q(B3)

yields:

sl IV = X8l = [ i el L0} en{-QB2d @)



Alternatively, we can use ¢ = Q(3) and A\ = 1/2 to obtain an equivalent decomposition:

o 1
exp {_ HY - Xﬁ| |2] - /0 (27T)—1/2U eXp{—U2/2} eXp{—Q(B)/ZUQ}dU2 2.4)
To complete the hierarchy we use the normal scale mixture of Laplace prior on 3 as follows:

—B2/(2)2) 7 —A272/2 1y2
SN —em TN =1,

< 1
| _ L . P
/0 \/271')\1' 2 P

m(B;) oc e

The hyper-parameter 7 serves the role of the tuning parameter in square-root Lasso. There are
several different ways of treating 7. We can treat it as a fixed tuning parameter and use
pre-specified values on a grid to choose one. We can also either estimate 7 via an empirical Bayes
marginal maximum likelihood or use a suitable hyperprior on 7 to learn via full Bayes. For the
Bayesian Lasso, Park and Casella [2008] used a Gamma hyper-prior to make the tuning
parameter a part of the Gibbs sampler.

5'!'
L(r)

m(1?) = (TQ)T_IG_(STZ, >0, (r>0,0>0). (2.5)

Under the scale-mixture decomposition , and the Gamma hyper-prior on 72, the joint distribution

of y; and all the hyperparameters in the model is :

1
F(y, B, 0% A, 72 | 1,0) e/ exp{—Iv-Xal/2}

1
2n)17%0
72 N272/2/ 2\r—1 —§72
?e_ i/ (%) e (2.6)

(A2)7% exp{—2/(2)2)}

1

p
1=



The joint distribution in (2.6) provides the full hierarchical model for a Bayesian treatment.

[y | B,v°] ~ N(XB,v"T) 2.7)
(81 A] ~N(0,Dy), Dx=Diag()],...,\}) (2.8)
p 2
PO CARE PN | S %e*A?TQ/Zd/\i, A2 >0, (2.9)
j=1
[v?] ~ Gamma((n +1)/2,1/2), (2.10)
[7%] ~ p(r?)d7?, 72 > 0. [° ~ G(r,8), or 7° ~ C(0,1).] (2.11)

2.2 Gibbs Sampler
Let Dy = Diag()\?,. .., )\]23) be the diagonal matrix of local shrinkage parameters. Using the
equivalent decomposition (2.3), and collecting the terms for 3, the joint distribution can be

re-written as follows with ¢ = 1/v%:

1 1 _
fly,B,t, A, 7% | r,0) VTG exp{—1/(2t)} exp [—§{BT(XTX15 +D, "B -28"X"yt}
P _1 7'2 2,2 2
(A2 55@%”2(72)’"*1557 (2.12)
=1

7

The full conditional distributions of 3 and 7 are easy to derive: The full conditional of 3 is
multivariate normal and 7 is Gamma, exploiting the conjugacy. The parameters ¢ and \? follow
inverse Gaussian distribution, where we assume the following parametric form of the inverse

Gaussian density:

[N - Nz —p')?
f(ZL")\/,,u/): %Qj S/ZGXP{_W , z >0
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The full conditional distributions needed for implementing a Gibbs sampler are:

IB | yjA’tNN(A_:LXTyt7A_1) 7/]: — 17-.‘7p7
where A = XTXt + D;l
1y B~ Tav-Gauss (1 = [y = XBlly ™" N = 1)

A 2| Bi, T ~ Inv-Gauss(u' = |BL"X =72

%

p
2| A7, 6 ~ Gamma(p+7“,5+z}\?/2)

=1

A special case of the linear regression model is the sparse normal means model: y; = (; + ¢;,
i ~ N(0,0?), which results when the design matrix is equal to the identity matrix of appropriate
dimension. The Gibbs sampler for the normal means model is identical to that for the linear
regression, but faster as the full conditional distribution of 3;’s are univariate Gaussian, and hence

more efficient than the multivariate sampling.

Nt A .

2.3 Posterior Properties

2.3.1 SHRINKAGE PROFILE

Here compare the shrinkage profiles for the Bayesian v/Lasso with that of the Horseshoe prior.
Figure 2.1 shows the posterior mean and median for the Bayesian y/Lasso and Horseshoe prior
plotted against the observations y. It appears from Fig. 2.1 that the posterior mean estimator
under the two methods behave almost identically, while the posterior median for Bayes-v/Lasso

offers a somewhat stronger shrinkage, resembling a hard-thresholding rule.

2.3.2 DEPENDENCE ON ERROR VARIANCE o

The key advantage of v/Lasso , as pointed out by its authors [Belloni et al., 2011], is its

2

ambivalence towards the error variance o, resulting in an invariant estimator. It seems that these
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Figure 2.1: Shrinkage profile for the horseshoe posterior mean and Bayesian v/Lasso posterior
mean and median estimators.
advantages would carry over to the Bayesian hierarchy as well. We illustrate this feature with a
toy example borrowed from Polson and Scott [2010], created to warn against ignoring the
dependence between 7 and o2. The original example in Polson and Scott [2010] generated two
observations with true mean 20, and considered the posterior under two different prior choices
7 ~ C*(0, 1) (absolute scaling) and 7 ~ C*(0, o) (relative scaling) and showed that the posterior
becomes bimodal under the absolute scaling prior. The authors argued that “the issue is one of
averaging over uncertainty about o in estimating the signal-to-noise ratio” — precisely what the
v/Lasso aims to protect from.

We recreate this example in Fig. 2.2, with four different choices for handling the

hyper-parameters o and 72:
1. 7~ C*(0,1) (absolute scaling), o ~ 1/0? (Jeffreys’s).
2. 7~ C%(0,0) (relative scaling), o ~ 1/0? (Jeffreys’s).

3. 7 fixed, 0 ~ 1/0? (Jeffreys’s), and

12



4. 7, o fixed,

where, ‘fixed’ hyperparameters are estimated using an Empirical Bayes approach. The final
candidate is the Bayesian v/Lasso , which is free of o, and we put a standard half-Cauchy prior on
its global shrinkage term 72. Fig. 2.2 shows the posterior mode of p(3 | ) for the five different
candidates. As expected, the horseshoe posterior concentrates near the true value for both the
empirical Bayes approach and the relative scaling prior on 7, but shows bimodality for other
choices. The Bayesian v/Lasso does not have a scale parameter o to worry about, and it

concentrates near 5 = 20 for the half-Cauchy prior on 7.

Effect of Scaling Parameters

Bayesian Square-root Lasso Horseshoe Horseshoe
Tau ~ half-Cauchy (abs) Tau ~ E-Bayes Tau ~ E-Bayes
Sigma ~ N/A Sigma ~ E-Bayes Sigma ~ Jeffreys
04 0.4 0.100-
03' 03' 0075_
0.2- 0.2- 0.050 -
0.1- 0.1- 0.025 -
0.0- 0.0- 0.000 -
-1 1 2
2 Horseshoe Horseshoe 0 0 0 0 30
7}
uC) Tau ~ half-Cauchy (abs) Tau ~ half-Cauchy (rel)
°
Sigma ~ Jeffreys Sigma ~ Jeffreys
0.08 - 0.3-
0.06-
0.2-
0.04 -
0.1-
0.02-
0.00- 0.0-
-10 0 10 20 30 -10 0 10 20 30

Figure 2.2: Behavior of the posterior density under different methods of handling the hyper-
parameters o2 and 7 for the Horseshoe prior as well as the Bayesian v/Lasso for a half-Cauchy
prior on its global shrinkage parameter.

It should be epmphasized that the argument in the above example is not to establish the

13



superiority of v/Lasso over horseshoe, but rather to point out the importance of hyper-parameters
in a Bayesian hierarchical model to scale to the unknown error variance. Admittedly, one can
simply use an empirical Bayes approach to get rid of such undesired situations. However, the
striking difference in the behaviour of the posterior densities in Fig. 2.2 suggests that the scaling
of global parameters is a delicate issue, likely to be pervasive in all global-local shrinakge prior.

The Bayesian v/Lasso escapes unharmed by its design to ignore o.

2.4 Adding a Global Component /DL
The use of local shrinkage priors in sparse models and high dimensional data settings has been
investigated thoroughly by several authors. For example [Castillo et al., 2015] , have proved that
local shrinkage priors do not achieve posterior contraction around the true model. Moreover, in
Castillo et al. [2015] , the authors explained that from a Bayesian perspective, this lack of
concentration property, renders these priors useless. They defend their point of view by saying
that poor concentration around true model values yields dishonest Credible Intervals. Hence poor
uncertainty quantification. In this section, we will try to incorporate a global component into our
model in order to improve it’s performance.

In the hierarchical model given by 2.7, we are placing the following prior on the regression
coefficients.

B MNO.7)

72 % Eexp(A2/2)

J

= B~ DE(\) and \* ~ 7 ()). (2.14)

The above parametrization clearly shows the lack of a local parameter that could adjust with
signal strength. In fact, Global-local shrinkage priors usually have the following Gaussian scale

mixture representation:

B; % N(0,722), 9 ~ fand T ~ g,

where 7 is a global standard deviation parameter, controlling how large the 3; parameters are in
general (i.e. a global shrinkage parameter ), while the local standard deviation parameters 1);

control how big the parameter is allowed to be locally. The priors for 7 and the 1); are typically
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set to be independent. Also some works just treats 7 as fixed or tune it using Empirical Bayes
procedures. A better parametrization would constrain the v; to lie on a simplex. This would then
give us the interpretation that 7 is the overall standard deviation if the covariates are properly
scaled and the local parameters control how the individual parameters contribute to this
variability. The standard parameterisation leads to some confounding between the scales of the
local and global parameters, which can lead to both an interpretational and computational
problems. Interesting Bhattacharya et al. showed that in some specific cases you can go from a
model where the local parameters are constrained to the simplex to the unconstrained case.

Moreover, it is easy to see from (2.14) that the joint prior distribution of the parameter vector
while easily tractable due to independence does not place sufficient prior mass on sparse regions,
since the double exponential density is bounded at zero. Recent choices of priors were motivated
by this basic assessment. For example, the horseshoe prior was carefully formulated to yield a
spike at zero accounting for sparsity as well as heavy tail property in order to recover strong
signals. Here however, we chose to follow the ideas of [Bhattacharya et al., 2015], and model the
full joint prior distribution of 3 on RP.

In what follows let DE(7) denote a double exponential distribution where 7 is the scale
parameter, i.e. with density f(z) = (27)"'e~*l/7. Also, we use the following form for the giG
generalized inverse gamma distribution: Y ~ giG (), p, x) if f(y) oc y* e 0y Hx/v) for y > 0.

In Bhattacharya et al. [2015] proposed a completely different class of shrinkage priors.
Instead of modeling the marginal distribution of the regression coefficients, they looked at the
joint distribution. Recall that in 2.14, the joint prior distribution is p-dimensional DE with a single
global scale 7. Bhattacharya et al. [2015] instead, introduced a vector of scales (¢17, ..., ¢,7),
where (¢1, ..., ¢,) is constrained to lie in the (p — 1) dimensional simplex
St ={p=1(¢1,...,¢p) : ¢ >0, 3%_, ¢; = 1} and is assigned a Dir(a, .. ., a) prior. This

prior choice under adequate values of a helps force a large subset of 3 to be simultaneously close
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to zero with high probability. The corresponding prior is hence :

B; | ¢, 7 ~ DE(¢;T), ¢ ~ Dir(a,...,a), T~ g,

and is referred to as a Dirichlet-Laplace prior on 3, and denoted as 3 | 7 ~ DL, (7).
In [Bhattacharya et al., 2015], the authors extensively studied the marginal properties of

B; | 7, integrating out ¢b. The following proposition summarizes their findings.

Proposition 2.4.1. If 3 | T ~ DL,(7), then the marginal distribution of [3; given T is unbounded

with a singularity at zero for any a < 1.

Comparsion of priors: central region
0.8

[ Laplace

Comparsion of priors: tails

ke = Laplace

0031, e Cauchy
- Horseshoe

3 —DL,
0.027 ™3
0.01

o
3 4 5 6 7 8

Figure 2.3: Marginal density of the DL, with @ = 1/2 in comparison to the Horseshoe, the Laplace
prior induced by the Bayesian-/Lasso and the Cauchy prior.

This property ensures that the Dirichlet-Laplace prior places enough mass around sparse
vectors. Furthermore Bhattacharya et al. claimed that 7 plays a critical role in determining the

tails of the marginal distribution of 3;’s. In a full Bayesian framework they recommend placing
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Gamma(pa, 1/2) prior on 7. Furthermore, using the representation of the DE distribution as a

scale mixture of Gaussians:

Bi ~ N(0,¢;¢37°);
v o~ Exp(1/2),

Bj | ¢,7 ~ DE(¢;7) =

we get the augmented full hierarchical model :

v | B,0%] ~ N(XB, v°1,), (2.15)
181 ¢, 7,9] ~ N(0,Dyg.), Dygr = Diag(ir®, ..., ¢pr°), (2.16)
vy Exp(1/2), (2.17)

¢ ~ Dir(a, ..., a), (2.18)

% ~ Gamma(pa, 1/2), (2.19)

[v?] ~ Gammal( ; 1, 1/2). (2.20)

As we can see from Fig. 2.3, both the Horseshoe and the DL, exhibit a singularity near zero.
This marginal behavior at the origin guarantees sufficient prior mass near zero in order to
accommodate for nearly black vectors. Furthermore, in the lower panel of Figure 2.3, we see a
comparison of the tails of the different shrinkage priors. Unlike horseshoe and DL, the Laplace
prior does not have heavy tails that leave room for prior mass on possible high signal values.
Hence we would expect the two former shrinkage priors to outperform the latter in both signal

recovery and noise shrinkage.

2.5 Posterior Computation
The above hierarchical model, exploits the Laplace Gaussian scale mixture and leads to
straightforward posterior computations. To reduce autocorrelation, we rely on a blocked gibbs

sampler scheme. The sampler moves from the following blocks (i) [3 | v, ¢, 7, v2, y], (ii)
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[ | ¢, 7, 0], (i) [@ | B], Gv) [T | &, 3, v?], and (v) [v? | B, 7,y]. Computing the full conditional
distribution of the above blocks is standard and straightforward due to conjugacy except for the
third block [¢ | 3]. In their paper Bhattacharya et al. [2015], developed a very efficient sampling
scheme for this non-trivial step. We state the following result from their paper, for a complete

proof see [Bhattacharya et al., 2015].

Theorem 2.5.1. The joint posterior of [¢ | B] has the same distribution as (T, /T,...T,/T),
cand T = 70| Tj.

where T}’s are independently distributed according to a glGa — 1,1, 2|5;
Using 2.5.1, we get the following blocked Gibbs sampler:
(i) Sample [B | ¥, ¢, 7,v?,y| from N (£X"y/v?, ), with

-1
_ XXT . DL

V2 T2

271

(ii) Conditional posterior of [¢) | ¢, T, 3] can sampled in block by independently drawing

;| ¢;, 7, B; from inv—Gaussian(%—'_T', 1)
J

(iii) Sample the conditional posterior of [¢ | B] by drawing 77, ... T, independently from
glGa — 1,1,2|;| and set ¢; = T;/T, with T' = > ¥, T.

(iv) Sample [7 | ¢, 3,v?] from a glG(pa — p,1,23°%_,[B;]/¢;) distribution.
(v) Sample [v* | 3, 7,y] by drawing — from inv-Gaussian([|ly — X8| +7]*, 1).
2.6 Effect of Hyper-parameters
Handling the treatment of hyper-parameters can prove to dramatically affect the performance of

Bayesian methods. For example in Figure 2.2, we showed how in a very simple setting the

horseshoe estimator behaves very differently based on the method used to handle and estimate the
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global shrinkage parameter 7. Whether to use Empirical Bayes, Full Bayes and relative scaling or
not are question we should address and discuss.

In addition, there has been a great amount of interest in the theoretical properties of the
blocked Gibbs sampler and their convergence properties. In fact, Bayesian shrinkage methods
almost all rely on a blocked Gibbs sampler scheme to explore the parameter spaces. Rajaratnam
et al. [2017] and Pal and Khare [2014] studied the performance of and properties of Gibbs
samplers in the context of Bayesian shrinkage for regression. While they proved geometric
ergodicity, they pointed out that more often than not the samples obtained from these samplers
usually present high auto-correlation and the chain suffers from slow convergence, and proposed

ways to overcome these problems.

2.6.1 COMPUTATIONAL ISSUES
As we have seen in the previous sections, the use of scale mixtures of normals to represent
otherwise non-conjugate priors on the regression coefficients is a common feature of Bayesian
shrinkage models. Usually, this data augmentation procedure leads to a three step Gibbs sampler
to sample from the intractable joint posterior. A first step for the regression coefficients 3, a
second for the variance parameter o, and a last step for the augmented parameter (here we
regroup the augmented as well as hyper-parameters of the model). Although, Khare and Hobert
[2013] and Pal and Khare [2014] proved geometric ergodicity of the three step Gibbs sampler for
the Bayesian Lasso and the Dirichlet-Laplace prior. It has been pointed out in Rajaratnam et al.
[2017], that convergence of these sampler can be rather slow specially in high-dimensional
settings. Given that the "large p small n”, is precisely the setting where these methods are used to
overcome model complexity, computational issues in such settings would present a problematic
drawback.

To address this bottleneck, Rajaratnam et al. [2017] rely on blocking and collapsing. A Gibbs
sampler is said to be collapsed if the joint posterior is marginalized over one or more parameters

to reduce sampling steps. This often increases convergence rate, but the new posterior might not
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be tractable and any gain would then be lost in a more complicated scheme. Blocking, requires
grouping multiple parameters together and jointly sampling them in one step. Grouping highly
correlated parameters, is generally expected to improve the convergence rate of the MCMC.

In their paper, Rajaratnam et al. [2017] consider the case of the Bayesian Lasso, where the
prior distribution on the parameters is exactly the same as in (2.14), except for the prior placed on

the precision parameter. The hierarchical model is given by :

[y | B,0°] ~ N(XB,0°T)

B|T,0°] ~N(0,0°D,), D, =Diag(7{,...,77)

’p

P
)\2 232
[, T | NP~ H ~ ?e*Tj’\ /QdeQ, >0, (2.21)
=1
2 1 2
[o°] ~ o 7> 0,

V] ~ p(A)dN?, A > 0. [\~ G(r,0), or A* ~ C(0,1)].

The corresponding Gibbs sampler is :

B|7,y,0% ~N(A'X'y,0”A;"), where A, = X'X + D!

1 \2g2
[? | B,0, )] ~ Inv — Gaussian <1 / ﬁg ,)\2> (2.22)
J j

— — X 2 D!
[UQIy,ﬁ,r]Nzg("“Q’ Llly B\Iyﬁ Tﬁ)

The above three-step Gibbs sampler, while straight-forward and easy to implement, converges
very slowly in high-dimensional settings. Rajaratnam et al. [2017] demonstrated that this problem
arises mainly due to the high a posteriori dependence between (3 and . And following this, they
were able to group these parameters in one step through the following result. For the proof see

Rajaratnam et al. [2017].
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Lemma 2.6.1. In model (2.21) [0? | y, 7| has the inverse gamma distribution with shape

(n — 1)/2 and scale parameter y* (I, — XA 'X") y /2.

Using the above result they constructed a sampler in only two steps, first (3, 0%) | 7 and then
7 | (B, 0?). The new collapsed Gibbs sampler is ergodic and as tractable as the original one.
Convergence is considerably faster and they also observe low samples auto-correlation in their

numerical comparisons.

2.6.2 HANDLING THE GLOBAL SHRINKAGE PARAMETER

As we have discussed in subsection 2.3.2 and particularly through the example borrowed from
Polson and Scott [2010] the dependence between T and o2 if not addressed properly might lead to
unsatisfactory results. This problem, is expected to prevail in all global-local shrinkage priors, and
in our case adding a global component to the model we observed the same behavior with absolute
scaling.The golden rule here is to always scale global precision parameters. This is only one of
the many questions that are often ignored, although greatly affect the performance of Bayesian
hierarchical models. van der Pas et al. [2017] studied in depth the performance of the horseshoe
prior and how different treatments for 7 affect the theoretical properties of the estimators in the
sparse normal means problem. They determined that the global shrinkage parameter T is very
important towards the minimax contraction rate. Also, van der Pas et al. [2014] showed that 7 can
be interpreted as the proportion of non-zero parameters up to a logarithmic factor.

In the full Bayes approach case, van der Pas et al. [2017] specified conditions under which the
prior choice on 7 results in near minimax contraction rate. Under their conditions, the prior must
be truncated to the left by 1/p among other conditions. This led to a wide use of a truncated
Cauchy distribution on this hyper-parameter. They also show that the posterior credible set are
honest, in the sense that they concentrate around nearly black balls in case of a sparse normal
means problem. One immediate application of this later result, is to use these sets not only as a
tool of uncertainty quantification, but also an ad-hoc variable selection or hypothesis testing

procedure. In fact, one could just look at the (1 — «) CI for each parameter and decide whether
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it’s a signal or noise. They also point out that any non zero parameter has to exceed a certain
threshold magnitude in order to be recovered. That is, for any J < \/m , where p,, is the
number of true non-zero parameters, the CI are not useful in a Bayesian sense.

Moreover, one could argue that with an emipirical Bayes procedure for the global shrinkage
parameter, there would be no need to worry about scaling or hyper-prior distribution choice.
However, as van der Pas et al. [2017] and Datta and Ghosh [2013] point out, an empirical Bayes
estimate of 7 might possibly degenerate to zero, yielding improper parameter posterior
distributions. This happens mostly when the model fails to identify the level of sparsity. With
some conditions on sparsity level and signal magnitude, van der Pas et al. [2014] and van der Pas
et al. [2016] showed the plug-in MMLE (Marginal Maximum Likelihood Estimate) of 7
guarantees near minimax concentration rate.

On the other hand, Datta and Ghosh [2013] studied, the oracle properties of another decision
rule. In their paper they considered the shrinkage weight 1 — () = 5;(7)/y: and proved that
this multiple testing rule is Bayes Optimal, under similar conditions to van der Pas et al. [2014] in
both a full Bayes or an empirical Bayes procedure on 7. They also emphasize the risk of possible

degeneracy of the empirical Bayes estimate.
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Chapter 3

Simulation Studies

In this chapter, we investigate the performance of the methods developed in Chapter 2. The goal
is to test the finite sample properties of our methods and compare them with the common
procedures available. First, we will start with the Normal Means problem, then we will look at the
more complex scenario of high dimensional regression. In the later case, we study the effect of
certain conditions on the design matrix that have been proven to affect model selection

consistency in some methods.

3.1 Sparse Normal Means
In the normal means problem, the goal is usually to estimate a sparse vector 8 based on a vector

Y = (V3,...,Y,) generated according to the model:

where ¢;’s are independent standard normal variables and the means vector € is assumed to be
sparse, that is most of its entries are zero. We want to recover the signals (non-zero) entries from
the noise (zero means). This model has wide applications such as image reconstruction, multiple
testing, and wavelet function estimation. Furthermore, the sparse normal means model has been
widely used as a test case for the behavior of sparsity methods, both in the Bayesian and
frequentist paradigm. From a Bayesian point of view, we would like to recover the underlying
mean vector and get some uncertainty quantification.

The Bayesian square-root Lasso method described above has sharpened ability to detect
signals in a sparse regime. We demonstrate the sparse signal recovery of the Bayesian v/Lasso

through a simulation study for estimating a sparse normal mean vector for two different choices

of 3:
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Figure 3.1: Comparison of posterior mean estimates for two different sparse normal means, 3; ~
0.80¢7y + 0.1¢3y + 0.1d40y and 3; ~ 0.9d47) + 0.160y under the Bayesian v/Lasso .

n—qn=90
1. 3=(7,...,7,0,...,0) and
qn=10
n—qn—rn=80
2. 8=(7,...,7,3,...,3 0,...,0 ).
——
qn=10 rn=10

We generate observations from a Gaussian model (y; | 3;) ~ N (B;,0?%) for 02 = 1 and 0% = 1.

()

Figure 3.1 shows the posterior mean estimates for the four possible scenarios described above.
Clearly, the method recovers the signal entries of the mean vector, unless the signal strength is too

weak and is thus lost among the noise and shrunk to zero.
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3.2 High Dimensional regression
Another important area of application of shrinkage priors, is high dimensional regression and
particularly model selection. In this section we generate our data following the linear regression

model:

y=XB+e¢€, withe~N(0,0°L,)

where (3 is a p X 1 vector of model coefficients and is assumed to be sparse, y isann x 1
response vector, and X is an n X p design matrix. Hence some of the regression coefficients are
exactly zero and they correspond to irrelevant predictors (columns of X). In our simulations, we
compare the performance of the Bayesian v/Lasso, to the frequentist Lasso and the Horseshoe. In
terms of penalized regression Lasso has been extensively studied and proven consistent under
some conditions, also it is the most widely method in penalized regression. Likewise, the
horseshoe prior has received much attention from Bayesian practitioners and has also been proven
to yield consistent results under mild assumptions. In comparing our methods with these two
known and commonly used procedures, we will be able to judge their performances as well as
notice their particular shortcomings and advantages. Moreover, simulation studies give a rather
deep insight about the behavior of new methods, and allow us to investigate both favorable
settings and scenarios where poor and unsatisfactory results arise. Often, it is with the study of
these simulation that the first theoretical aspect are noticed, hence they give valuable directions
and information both for theoretical and practical purposes.

Recall that the advantage of y/Lasso is its ambivalence to the error variance o2, and since our
hierarchical model given by (2.1) is but a representation of the v/Lasso penalty, we would expect
our proposed Bayesian representation to work under large values of o, hence accommodating

sub-gaussian errors and heavy tailed data.

3.2.1 VARIABLE SELECTION FOR SHRINKAGE PRIORS
The problem of variable selection and particularly in a ”small n, large p” setting has received

quite some attention both from the frequentist an Bayesian perspective. The Lasse, v/Lasso,
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horseshoe, Dirichlet-Laplace and numerous other methods were in part developed to tackle this
problem. While the frequentist methods usually yield a sparse estimate, that is the estimated B
vector has entries that are exactly zero, their Bayesian counterparts always require a decision rule
to classify an estimated coefficient as either zero or not. As we discussed in section 2.6.2,
decision rules for the horseshoe have already been studied, and shown to be optimal under some
conditions for the normal means problem and regression settings where the design matrix is
orthogonal. Likewise, for the Bayesian shrinkage priors considered in this work, we need a
method to decide whether a coefficient should be classified as signal or noise. Such decision rule,
can also be viewed as a variable selection step, given that any covariate for which the coefficient
has been classified as zero is thrown out of the model. In this work, we decided to look at the
posterior sample means of the ,é vector, and apply a k-means clustering on | BJ| with only two
cluster centers. We expect two clusters centers, one concentrated around zero for the noise signals
and one away from zero. This method is motivated by the assumption that the true parameter

vector is generated according to a two groups model. That is, each f; is generated from :

p—q
Bi~ 104+ 215y, sothat 3 = (A,...,A,0,...0)
p p \— e’
q

After clustering the posterior mean vector, we classify the 3’s according to the following

steps :

1- We look first at the two cluster centers {c;, 2}, and compare them in absolute value. Let
C; = maz {cy,c2} and ¢c,, = min{cy, co}. So that the c; is the cluster center of the signals

while c,, for the noise.

2- For all Bj, look at the corresponding cluster, if | 6}| € c,, then B;lec = 0. Otherwise,

Bec = ;.

3- Our final estimated coefficient vector is Bdec = { A;lec} .
1<5<p
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Clearly, unlike B which will never have exactly zero entries, the new ,édec given by the above
described decision rule shrinks the noise coefficients to exactly zero, hence performing a variable
selection.

In this work, we stick to the case of the two groups model. However, the k-means method can
be extended to a wider class of models. In fact, Li et. al [2015], suggested a sequential 2-means
clustering algorithm in case the model presents signals of varying strength level.

One of the many interesting questions that arise with variable selection, is Model selection
consistency. This property essentially means that the method used consistently selects the true
model. It should be emphasized that model selection consistency and estimator consistency are

entirely two different properties. Recall that estimator consistency holds if and only if:
B”—BLO, asn — 00,
while model selection consistency requires:
P[{i:ﬁ’f#O}:{z’:@;ﬁO} — 1, asn —» oc.

Some authors have also considered sign consistency which is a stronger version of the later
requirement, where not only the zeros have to be matched but also the sign of each component
estimate. Also, an estimate with wrong signs could be misleading.

Characterizing a method model selection performance has proven to be a daunting task, since
it is very hard to identify conditions that would guarantee or affect this property. However, in the
case of the Lasso, properties which have received considerable attention, some authors have
found that there a exist one simple necessary and sufficient condition for the Lasso to select the

true model.
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3.2.2 EFFECT OF IRREPRESENTABILITY CONDITION
The optimality properties of Lasso are well-known and they depend on “’neighbourhood stability”
or ’irrepresentability” condition and “beta-min” condition. Informally, these conditions guarantee
against ill-posed design matrix and separability of signal and noise parameters. We show here a
small simulation study inspired from Zhao et al.[2006] to show that the effect of
“irrepresentability condition’ is not as strong on our methods as it is on the Lasso.

We describe the “irrepresentable” condition below:

Suppose, the sample covariance matrix is denoted by S = nX7TX and the active-set

So = Jj : B; # 0 consists of first s, elements of 3. One can partition the 3 matrix as

250, S0 280, — So

™M»
Il

Xp — 80,50 2P — 50,0 — So

where X, 5, 18 a 59 X s matrix corresponding to the active variables and so on. The

irrepresentable condition for variable selection consistency of Lasso is:

15D — s0, 50550, 50 sign(Bs,)||se < 6  forsome 0 < 6 < 1.

This condition is sufficient and almost necessary in the sense that the necessary condition is
only slightly weaker than the sufficient condition. The necssary condition requires < 1°, while
the sufficient condition involves < 6 for some 0 < 6 < 1. The irrepresentable condition fails to
hold if the design matrix is too ill-posed, i.e. has multi-collinearity.

[Biihlmann and van de Geer, 2011] warn the readers that the irrepresentable condition may
fail even though the design matrix is not ill-posed and it might restrict what can be done in
high-dimensional problems. Zhao et al. (2006) provide numerical example to show the effect of
the irrepresentable condition on the variable selection performance of Lasso. They showed that

the probability of selecting the true sparse model is an increasing function of the irrepresentability
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condition number, defined as

Noo = 1 — ||§A3p — S0, 502507 50~ ' 5ig1(Bs,)|]oo-

In particular, the probability of Lasso selecting the true model is almost 1 when n,, > 0.2 and it is
almost zero when 7)., < —0.3.

We simulated data with n = 100, p = 60 and ¢ = 7 with the sparse coefficient vector
By = (7,5,5,4,4,3,3)T, 0 was set to 5 to allow for heavy tailed data. Like Zhao et al. (2006) we
first draw the covariance matrix X from Wishart(p, I,) and then generate design matrix X from
N(0,X). This design is repeated a 100 times, and at each iteration we apply the Lasso, horseshoe,
Bayesian-y/Lasso and the v/DL 100 times to each of the 100 generated models. For the three
Bayesian methods we run the Markov Chain for 9000 samples, discarding the first 1000 thousand
as a burn-in step and finally thinning every two samples. We select the posterior median and then
apply a variable selection step. For the horseshoe, we take advantage of the credible set properties
and use them to classify the 3;’s. For the other two methods discussed in this work, we implement
the k-means clustering procedure discussed in Subsection 3.2.1. The Lasso automatically yields
sparse vector estimates, we only need to select the tuning parameter )\, which represents the
penalty level, we set A to the value that minimizes the MSE based on a 10 fold cross validation.

The goal of this simulation study is to observe the effect of the irrepresentability condition on
our proposed methods and compare them to the Lasso and horseshoe. We are particularly
interested in model selection consistency, so we look at the proportion of correctly selected
models out of the 100 replicates for each design.

Zhao et al. (2006) showed that the irrepresentability condition may not hold for such a design
matrix. In fact, in our simulation studies the 7),.’s for the 100 simulated designs were between
[—1.02,0.36]. We expect the Lasso to perform well when 7, > 0 and poorly when 7, < 0. We
generate n = 100 design matrices and for each design, 100 simulations were conducted by

generating the noise vector from N (0, o%1).
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Figure 3.2 below shows the percentage of correctly selected model as a function of the
irrepresentable condition number, 7, for Lasso,the Horseshoe prior, the Bayesian-m and
the \/ﬁ

As expected, Lasso’s variable selection performance is crucially dependent on the
irrepresentability condition but the Horseshoe prior almost always recovers the true sparse 3
vector irrespective of 7).,. Strikingly, both our methods succeed in always recovering the true
model. This strong performance independently of 7)., clearly presents an advantage and is worth

studying from a theoretical view point.
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Figure 3.2: Effect of Irrepresentability Condition on model selection

Given that the values of the non-zero entries of the true 3, do not differ much in magnitude,
we think that this excellent performance in terms of variable selection, is in part due to the
2-means clustering procedure.

In figure 3.3, we see the evolution of the MSE calculated over the replicated samples for each

design matrix. A surprising results, that we observe, is the pronounced difference from the model
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selection summary in figure 3.2. Note, however that the MSE computed here is for the posterior

median before any decision rule has been applied. Since the Bayesian methods do not provide

exact sparse estimates, there will be an added error component wise across the whole 3 vector.

Having a moderately large p, thus increases this error proportionally. Interestingly, the lasso

despite not selecting the true model in approximately all designs, shows a very low MSE. This

can be explained in part by the exact zero estimator yielded by this method, coupled with the

sparse nature of the underlying true vector. Horseshoe, remarkably performs very well in terms of

both true model selection and low MSE. Given that it is a Bayesian method, hence returning no

exact zero entries, its impressive performance indicates both a very low bias for all components as

well as small empirical variance of the posterior median.
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It is also important to note how this simulation study provides a clear separation and points

out the difference between model selection consistency and estimation consistency. As pointed

out in the beginning of this section, the two properties are different and somehow
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counter-intuitively none of them implies the other. In Fig. 3.3 we see how lasso has very low
MSE, which suggest estimator consistency, while Fig. 3.2 clearly shows that lasso does not enjoy
model selection consistency. Conversely, both v/Lasso and v/ DL successfully capture the true

model independently from 7)., but at the same time shows high values of MSE.

3.2.3 ADAPTING TO SPARSITY LEVELS
Most penalized regression methods, and shrinkage priors operate under the assumption that the
parameter of interest is sparse in some sense. In addition, the widespread attention that these
methods have received in the past decade was mostly focused on theoretical properties in the case
of sparse models. Although, sparsity or parsimony of statistical models is crucial for their proper
interpretations, as in sciences and social sciences, we should address the cases where true
coefficient vectors, have zero entries but are not completely sparse. Furthermore, the case of
nearly black vectors has been investigated thoroughly, yet little attention has been given to
adaptability to varying degrees of sparsity. In this section, we try to address this issue by running
simulations on model designs with varying underlying levels of sparsity. Like the previous
section, we will compare our methods to Lasso the gold standard for best subset selection of
predictors, and the horseshoe prior which is a state-of-the-art Bayesian estimator for sparse
signals. We will focus on misclassification probality and MSE as indicators of method
performance. We limit ourselves to the case of two group generating model for model parameters.
We simulated data with n = p = 100, the design matrix X rows were simulated from a
univariate normal distribution N'(0, 2), the errors variance was set to o> = 5. We sampled 100
different design matrices, and for each of these design matrices, we applied the four different
methods with varying degrees of sparsity. That is for each of the 100 designs, say X, we have

nine different response vectors obeying the following equation:

k_ ~cak ko f \ _
y" = XB" + €, where 8" = (5,...,5,0,...0)fork=1,...,9. (3.2)
o/
q=kpP/10
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Hence for each sparsity level, we have a 100 replicates, from which we compute the
misclassification proportion, that is the number of times a given method does not select the true
model, and the MSE. Here we also compute for the Bayesian methods, the MSE after the decision
rule was performed MSE(34c).

The below tables and graphs summarize the numerical results.

Table 3.1: Misclassification proportion
according to sparsity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Lasso | 0.2306 | 0.2786 | 0.2481 | 0.2250 | 0.2241 | 0.2225 | 0.2087 | 0.1829 | 0.1782

Horseshoe | 0.0013 | 0.0041 | 0.0094 | 0.0077 | 0.0011 | 0.1015 | 0.5747 | 0.7140 | 0.8210

B-v/Lasso | 0.0000 | 0.0006 | 0.0040 | 0.0201 | 0.0569 | 0.1261 | 0.2054 | 0.3124 | 0.4414

VDL | 0.0000 | 0.0004 | 0.0008 | 0.0022 | 0.0043 | 0.0091 | 0.0134 | 0.0201 | 0.0577

From table 3.1, we see that Lasso never selects the true model, and on average misses 20% of
the coefficients. The horseshoe does well when the sparsity level is very low, this is well in
accordance with the theoretical results for horseshoe’s performance in the case of nearly black
vectors. The Bayesian VLasso , does almost as well as the horseshoe in terms of misclassification
probability in the case of sparse parameters. However, both methods seem to breakdown when the
proportion of non-zero parameters increases. The v/DL escapes this problem and seems totally
oblivious to sparsity level. This method almost pinpoints the true model in all cases. Figure 3.4,
gives a better comparison than the above table, we can see clearly how the misclassification
proportion for the horseshoe and Bayesian v/Lasso are affected by sparsity levels, and how
/DL adapts easily to that level. This suggests that the added global shrinkage parameter in
/DL successfully adapts to the sparsity level of the 3 vector.

Likewise, from tables 3.3 and 3.2, we ca see how MSE for all four methods is affected by
sparsity level. In the later table the MSE was computed after a classification step was applied to
the original Bayesian estimates. Lasso and horseshoe have a better MSE in sparse settings. But

their MSE drastically increases, whenever the number of non-zero parameters increases. The
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Figure 3.4: Misclassification proportion as a function of sparsity level.

Bayesian-v/Lasso , and the /DL have higher MSE values, however after classifying the

parameters the MSE decreases significantly.

Table 3.2: MSE according to sparsity
with decision rule

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Lasso | 1.29 | 2.69 | 6.18 | 17.07 | 66.76 | 241.71 | 472.8 679.67 | 922.11

Horseshoe | 0.33 | 0.95 | 2.31 3.83 5.27 | 268.69 | 1509.02 | 1883.04 | 2177.61

B-v/Lasso | 8.68 | 20.95 | 47.49 | 101.59 | 203.84 | 378.51 | 579.83 856.5 | 1193.86

VDL | 4.1 | 997 | 17.5 | 282 | 40.83 | 63.65 81.59 107.83 | 201.22

Table 3.3: MSE according to sparsity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Lasso | 1.29 | 2.69 | 6.18 | 17.07 | 66.76 | 241.71 | 472.8 | 679.67 | 922.11

Horseshoe | 0.5 1.49 | 3.55 | 5.56 6.96 90.73 | 782.25 | 1076.87 | 1313.92

B-v/Lasso | 10.74 | 26 | 54.59 | 92.16 | 149.51 | 223.96 | 298.3 | 387.07 | 481.41

VDL | 27.63 | 35.65 | 42.76 | 50.06 | 58.48 | 69.78 | 76.6 84.56 91.42
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Chapter 4

Discussion and Future Directions

In this work, we first developed a Bayesian representation of the v/Lasso , taking advantage of
normal scale mixture representation of the Laplace prior, we were able to develop a Gibbs
sampler for the parameters of the model. Numerical results showed satisfactory performance in
the case of sparse normal means and high dimensional regression. Furthermore, unlike the
horseshoe and other global local shrinkage priors, this method obviates the need to learn, scale or
estimate the precision parameter c. We also found that a k-means classification step on the
posterior estimates of the parameter vector outperforms other decision rules like the use of
credible intervals for horseshoe.

Motivated by the strong properties of global local shrinkage priors, specifically, their
singularities at zero and their ability to concentrate at near minimax rate, we added a global
component to our model. This ensured, that the new prior placed sufficient mass around the
origin, thus a priori favoring nearly black sets, yet we did not observe any improvement in
concentration coverage, as the MSE stayed quite high in our empirical investigation. Surprisingly,
the effect of the added global parameter was a nice adaptability to sparsity levels. This new
interesting property requires more theoretical investigation. To show how the global parameter
adapts to sparsity level, we conducted a small experiment, where models with different
proportions of non-zero parameters were constructed, and we implemented both the v/DL and the
horseshoe. Here we are only interested in the effect of different sparsity levels on 7. In Fig. 4.1,
we see how in the case of the horseshoe the boxplots for the T samples continue to increase until
we reach level of approximately .5 where a dramatic breakdown happens. Clearly, in the left side
of the figure, we can say that T follows the monotone increase in the proportion of non-zero
parameters, but when this proportion approaches and exceeds the .5 threshold, the method is no
longer able to follow and adapt the sparsity level. This behavior also explains why the MSE and
the proportion of misclassified 3’s exploded whenever the proportion of non-zero 5’s exceeded

the threshold of 0.5, as shown in Fig 3.4 and Fig. 3.5.
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Figure 4.1: Evolution of 7 on terms of sparsity level for the Horseshoe method

On the other hand, we also saw in Fig 3.4 and Fig. 3.5, how the v/DL performance remained
satisfactory and was in no way affected by changes in the sparsity level. The boxplots of T
samples in Fig. 4.2, back up our conjecture, unlike the horseshoe, here the global shrinkage
parameter follows and learns correctly the degree of sparsity. In the future, we would like to
theoretically investigate this claim and try to prove it.

The methods developed in this work, only addressed the case where data can be modeled
through a gaussian likelihood. While any continuous type response variable can be somehow
transformed to fit this class, the same cannot be said of count or categorical type data. In [Datta
and Dunson, 2016], the authors developed a new class of continuous local-global shrinkage priors
tailored for sparse counts. One of the future aims of this work, is to extend our methods in order

to accommodate discrete data structures.

39



'
0.40
)t !
L] ' I
| :
. l i
]
{ 1 i
.
%]
3 2
& 0.391 o
038
01 02 03 04 05 06 07 08 09
Sparsity

Figure 4.2: Evolution of 7 on terms of sparsity level for the v/ DL method

40



Bibliography

D.F. Andrews and C.L. Mallows. Scale mixtures of normal distributions. Journal of the Royal
Statistical Society. Series B: Statistical Methodology, 36(1):99-102, 1974. ISSN 00359246.
doi: 10.2307/2984774.

Artin Armagan, Merlise Clyde, and David B Dunson. Generalized beta mixtures of Gaussians. In
Advances in Neural Information Processing Systems, pages 523-531, 2011.

Artin Armagan, David B Dunson, and Jaeyong Lee. Generalized double Pareto shrinkage.
Statistica Sinica, 23(1):119-143, 2013.

Alexandre Belloni, Victor Chernozhukov, and Lie Wang. Square-root lasso: Pivotal recovery of
sparse signals via conic programming. Biometrika, 98(4):791-806, 2011.

Anindya Bhadra, Jyotishka Datta, Nicholas G Polson, and Brandon Willard. The Horseshoe+
Estimator of Ultra-Sparse Signals. Bayesian Analysis, to appear, 2016.

Anirban Bhattacharya, Debdeep Pati, Natesh S. Pillai, and David B. Dunson. Dirichlet-Laplace
priors for optimal shrinkage. Journal of the American Statistical Association, 110:1479-1490,
2015.

Peter J Bickel, Ya’acov Ritov, and Alexandre B Tsybakov. Simultaneous analysis of lasso and
dantzig selector. The Annals of Statistics, pages 1705-1732, 2009.

Peter Biihlmann and Sara van de Geer. Statistics for High-Dimensional Data. Springer-Verlag
Berlin Heidelberg, 2011.

Carlos M Carvalho, Nicholas G Polson, and James G Scott. The horseshoe estimator for sparse
signals. Biometrika, 97:465-480, 2010.

Ismail Castillo, Johannes Schmidt-Hieber, and Aad van der Vaart. Bayesian linear regression with
sparse priors. The Annals of Statistics, 43(5):1986-2018, October 2015. URL
http://dx.doi.org/10.1214/15-A0S1334.

A. Chatterjee and S. N. Lahiri. Bootstrapping lasso estimators. Journal of the American
Statistical Association, 106(494):608-625, 2011. doi: 10.1198/jasa.2011.tm10159. URL
http://dx.doi.org/10.1198/Jjasa.2011.tml10159.

Jyotishka Datta and David B Dunson. Bayesian inference on quasi-sparse count data. Biometrika,
103(4):971-983, 2016.

Jyotishka Datta and Jayanta K Ghosh. Asymptotic properties of Bayes risk for the horseshoe
prior. Bayesian Analysis, 8(1):111-132, 2013.

Bradley Efron, Trevor Hastie, [ain Johnstone, and Robert Tibshirani. Least angle regression. The
Annals of statistics, 32(2):407-499, 2004. URL
http://projecteuclid.org/euclid.aos/1083178935.

41



Jerome Friedman, Trevor Hastie, Holger Hofling, Robert Tibshirani, and others. Pathwise
coordinate optimization. The Annals of Applied Statistics, 1(2):302-332, 2007. URL
http://projecteuclid.org/euclid.aoas/1196438020.

Christophe Giraud. Introduction to high-dimensional statistics, volume 138. CRC Press, 2014.

Christophe Giraud, Sylvie Huet, Nicolas Verzelen, et al. High-dimensional regression with
unknown variance. Statistical Science, 27(4):500-518, 2012.

Jim E Griffin and Philip J Brown. Inference with normal-gamma prior distributions in regression
problems. Bayesian Analysis, 5(1):171-188, 2010.

Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical Learning with Sparsity.
CRC press, 2015.

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduction to
Statistical Learning, volume 6. Springer, 2013.

Kshitij Khare and James P. Hobert. Geometric ergodicity of the bayesian lasso. Electronic
Journal of Statistics, 7:2150-2163, 2013.

Paul Lévy. Sur certains processus stochastiques homogenes. Compositio mathematica, 7:
283-339, 1940.

T. J. Mitchell and J. J. Beauchamp. Bayesian Variable Selection in Linear Regression. Journal of
the American Statistical Association, 83(404):1023—-1032, December 1988. ISSN 01621459.
URL http://dx.doi.org/10.2307/2290129.

Subhadip Pal and Kshitij Khare. Geometric ergodicity for bayesian shrinkage models. Electronic
Journal of Statistics, 8(1):640-645, 2014.

Trevor Park and George Casella. The bayesian lasso. Journal of the American Statistical
Association, 103(482):681-686, 2008. URL
http://amstat.tandfonline.com/doi/abs/10.1198/016214508000000337.

Nicholas G Polson and James G Scott. Shrink globally, act locally: Sparse Bayesian
regularization and prediction. Bayesian Statistics, 9:501-538, 2010.

Nicholas G Polson, James G Scott, and Brandon T Willard. Proximal algorithms in statistics and
machine learning. Statistical Science, 30(4):559-581, 2015.

Bala Rajaratnam, Doug Sparks, Kshitij Khare, and Liyuan Zhang. Scalable bayesian shrinkage
and uncertainty quantification in high-dimensional regression. 2017.

Veronika Rovckova and Edward I George. The spike-and-slab lasso. Journal of the American
Statistical Association, (just-accepted), 2016.

Tingni Sun and Cun-Hui Zhang. Scaled sparse linear regression. Biometrika, 99(4):879-898,
2012.

42



R. Tibshirani. Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical
Society. Series B, 58:267-288, 1996.

Robert J Tibshirani. In praise of sparsity and convexity. Past, Present, and Future of Statistical
Science, pages 497-505, 2014.

SL van der Pas, BJK Kleijn, and AW van der Vaart. The horseshoe estimator: Posterior
concentration around nearly black vectors. Electronic Journal of Statistics, 8:2585-2618, 2014.

Stéphanie van der Pas, Jean-Bernard Salomond, and Johannes Schmidt-Hieber. Conditions for
Posterior Contraction in the Sparse Normal Means Problem. Electronic Journal of Statistics,
10:976-1000, 2016.

Stéphanie van der Pas, Botond Szabd, van der Vaart, and Aad. Adaptive posterior contraction
rates for the horseshoe. arXiv:1702.03698, 2017.

Yan Zhang, Brian J Reich, and Howard D Bondell. High Dimensional Linear Regression via the
R2-D2 Shrinkage Prior. arXiv preprint arXiv:1609.00046, 2016.

Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 67(2):301-320, 2005.

43



	Adapting to Sparsity and Heavy Tailed Data
	Citation

	tmp.1534883047.pdf.6iLKm

