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ABSTRACT 

The natural flow regime exerts primacy over lotic ecosystem patterns and processes. 

However, little work has examined the influence of flow regime on instream and riparian carbon 

(C) dynamics in minimally-impacted, temperate forested systems. To date, most research efforts 

have focused on characterizing C movement and transformations across biomes and land use 

categories; however, flow regime represents an overlooked, finer level of detail that may drive 

differences in ecosystem function. My dissertation objective was to measure C fixation and 

movement within and across multiple environmental spheres (e.g. within stream channels, 

between stream surfaces and the atmosphere, and from riparian soils to the atmosphere) to 

determine whether estimated differences in hydrologic characteristics may give rise to natural 

variation in ecosystem function. I measured  stream C gross primary production (GPP) and 

ecosystem respiration (ER), stream carbon dioxide (CO2) and methane (CH4) flux rates and 

sources to the atmosphere, and riparian soil C respiration for study sites classified into  the two 

dominant natural flow regimes in northern Arkansas: Groundwater Flashy (i.e. Groundwater) 

and Runoff Flashy (i.e. Runoff). Groundwater streams tended to exhibit greater and more 

variable GPP, ER, and CO2 -evasion and CH4 -evasion across sites than Runoff streams, though 

no differences between flow categories were statistically significant. Soil respiration differed 

across seasons and differed between flow regimes during spring (p= 0.01). Runoff sites tended to 

have greater rates of soil respiration over the year.  Hydrologic variables explained up to 88% 

variation in stream processes even though categorical comparisons between natural flow regimes 

often did not differ.  Field-estimated annual GPP was negatively impacted by the number of no-

flow days across flow regimes (ρ= -0.88, p= 0.02), and annual net metabolism became more 

heterotrophic with increasing average annual discharge across sites (ρ= -0.74, p= 0.002). In 



 
 

addition, source composition of C fluxes to the atmosphere depended upon hydrology; isotopic 

data revealed both biogenic and thermogenic CH4 in Groundwater streams while Runoff streams 

only evaded thermogenic CH4.   My efforts provide evidence that instream and riparian soil 

processes, such as GPP, ER, and C gas fluxes, are influenced by variation in hydrology within a 

forested biome. 
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INTRODUCTION 

Anthropogenic climate change presents a pressing problem that requires a detailed and 

nuanced understanding of the carbon (C) cycle to address current problems and mitigate future 

impacts. Human impacts such as the conversion of forest to agricultural and urban land decrease 

the size of terrestrial biomass and soil organic matter, which serve as important sinks of C, while 

the extraction and combustion of fossil fuels release C into the atmospheric sink (Bala et al. 

2007, Gurney et al. 2009). These activities have led to a shift in global C dynamics characterized 

by movement of C from historic pools, such as burial in deep ocean and terrestrial sediments, to 

the atmosphere.  Coupled models of atmospheric C gas concentrations and global temperature 

clearly illustrate that increasing greenhouse gas emissions from human activities are raising the 

average global temperature. Future climate scenarios predict a suite of environmental 

consequences of continued rapid movement of C to the atmospheric gas pool and warmer 

average global temperatures: changes in precipitation patterns, sea level rise, ocean warming, 

melting glaciers and decreased snowpack, and changes in community structure and function of 

plants and animals (Parmesan and Yohe 2003, IPCC 2013, McNutt 2013). Further, changing 

precipitation patterns have the distinct possibility of altering C dynamics in streams and rivers, as 

C is a primary nutrient in these systems that spirals down the river continuum, is taken up by 

organisms, and moves into the floodplain at various points depending upon streamflow 

(Newbold et al. 1982, Hall et al. 2016).  

Carbon enters streams through various sources in both organic and inorganic forms. 

Lateral inputs of organic matter from the landscape via abscission and flooding represent an 

important subsidy of particulate and dissolved organic C as well as microbially-derived inorganic 

C in forested streams (Nakano and Murakami 2001, Marcarelli et al. 2011). Instream gross 

primary production (GPP) provides another component of the stream C budget as light energy is 
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fixed into algal biomass and later can be respired as CO2 (Odum 1956). Inorganic C also enters 

streams by groundwater intrusion and diffusion of atmospheric CO2 directly into the stream or 

via precipitation (Hall and Tank 2005, Doctor et al. 2007).  Carbon is ultimately transported 

downstream or evaded to the atmosphere as CO2 or CH4 (Cole et al. 2007, Battin et al. 2009). 

These inputs and exports of C can be largely dependent on a number of flow-related variables, 

such as water velocity, flow magnitude, groundwater intrusion, and air-water gas exchange 

(Finlay 2003).  

The natural flow regime is considered “the master variable” in streams and rivers, 

controlling ecosystem processes and functions at hierarchical temporal and spatial scales (Power 

et al. 1995, Allan and Castillo 2007). Flow regime is comprised of the magnitude, timing, 

duration, frequency (or predictability), and rate of change of water moving through a channel 

(Poff et al. 1997). The dynamic movement of water and sediment within a channel as a function 

of a system’s typical flow characteristics organizes the habitat in a way that provides a template 

upon which life history strategies and morphological characteristics are forged. Indeed, flow 

regime dictates the habitat template (Southwood 1977) and, in turn, the species that reside there. 

Further, natural flow variability through the river continuum over time provides a mosaic of 

habitat patches at differing stages of succession following disturbances such as flooding and 

drying (Pringle et al. 1988, Townsend 1989, Winemiller et al. 2010). Hence, flow regime can 

exert strong controls on species distributions and abundances and, in turn, ecosystem function 

and services (Poff et al. 1997, Hart and Finelli 1999).  

Human-altered flow regimes can influence both the ecology and biogeochemistry of lotic 

ecosystems. The science of environmental flows investigates the quantity, timing, and magnitude 

of water needed to preserve freshwater ecosystems and the human well-being that depends on 
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these ecosystems. Aquatic systems rely on environmental flows to sustain ecosystem functions 

and services (IPCC 2013, Stocker et al. 2013). Disruption of or long-term shifts in natural flow 

characteristics from land use alteration or changes in precipitation patterns can result in a system 

taking decades to even centuries to reach a new dynamic equilibrium as the physical 

environment and biota adjust to the new flow regime (Poff et al. 1997).  Clear management 

guidance is critical to preserving flow-ecology relationships under the continued pressures of 

climate change and conversion of land to urban or agricultural uses to accommodate the needs of 

the expanding human population. Altered weather patterns marked by more intense droughts 

punctuated by more frequent, intense storm events are expected to impact aquatic communities, 

making it necessary to quantify current flow-ecology relationships as soon as possible to provide 

data to inform management and policy decisions (Gleick 1989, Vörösmarty et al. 2000).  

One framework for determining and implementing environmental flow standards is the 

ecological limits of hydrologic alteration (ELOHA).  ELOHA is a synthesis of methods and 

techniques for assessing environmental flows and hydrologic characteristics. The goal of the 

framework is to provide quantitative information to create ecologically sound and socially 

agreeable policies and management decisions. ELOHA consists of four steps that can be 

undertaken to develop regional flow standards. First, long-term hydrologic data can be used to 

build a “hydrologic foundation” consisting of hydrographs through time and across various high 

or low flow events. Then, streams are classified into distinct flow regimes using ecologically-

relevant flow variables. Third, hydrologic alteration based on comparisons between historic 

baseline and current flows is determined. Finally, flow-response relationships are quantified 

using the literature and field studies. ELOHA can be used to inform the public, stakeholders, and 

policymakers of the ecological consequences of altering streamflow while providing a tangible 
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path by which to implement sound, ecologically-relevant environmental flow standards 

(Arthington 2006, Poff et al. 2010).  

There is currently a paucity of research directly linking ecosystem-level metrics, and 

specifically C fixation, release, and evasion, to flow regime. This lack of data is surprising given 

the urgency of climate change and the need for flow-ecology relationships at multiple levels of 

ecological organization (Poff et al. 2010, Poff and Zimmerman 2010). In this dissertation, the 

natural flow regime paradigm was utilized to investigate how carbon dynamics may vary 

between two modeled flow regimes with regard to instream C fixation and release (i.e. gross 

primary production + ecosystem respiration), stream surface CO2 and CH4 evasion to the 

atmosphere, and the return of CO2 from soil and terrestrial organic matter to the atmosphere via 

riparian soil respiration. Respective flow sources predicted to dominate two of the seven natural 

flow regimes modeled by Leasure et al. (2016) were also determined to test and validate flow 

classifications soil respiration. This work represents a characterization of C movement across 

three environmental spheres within streams nested in a temperate forested biome. Here, I present 

evidence that factors related to C movement as well as certain aspects of C transport may differ 

by flow regime.  

Flow classification using long-term hydrologic data is an important step toward 

developing environmental flow standards that fully account for the flow-ecology relationships 

present in a system, and marks the second step within the ELOHA framework. Flow regime 

classification ultimately provides a context for determining flow-ecology relationships within 

different stream types that can be used to inform management and policy (Arthington et al. 2006, 

Poff et al. 2010). Natural flow regimes of the Ozark and Ouachita Interior Highlands were 

recently modeled by Leasure et al. (2016). The two dominant flow regimes in the Ozark 
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Highlands and Boston Mountains ecoregions of northern Arkansas consist of Groundwater 

Flashy and Runoff Flashy systems (hereafter Groundwater and Runoff, respectively), and 

characterized by differences in drying, flooding, and flow sources.  

Whole-stream metabolism is an ecosystem-level metric that may be susceptible to 

changes in flow (Acuña et al. 2004). Flow extremes, such as drought or large floods, depress 

primary production and respiration while lack of flow variation due to upstream dams also 

hinders metabolism by reducing the sloughing of senescent algal cells (Uehlinger et al. 2003, 

Chester and Norris 2006). Flow regime-related differences in the number of dry days or flood 

events may, in turn, give rise to flow type-specific differences in ecosystem function within a 

biome and land-use category.  Additionally, understanding how differences in streamflow 

influence GPP and respiration in minimally-impacted systems can provide a baseline for future 

work evaluating potential interactions between land use, flow regime, and stream C dynamics. 

Chapter 1 consists of a 422-day field experiment to test the effect of modeled flow regime on 

stream gross primary production and ecosystem respiration, the net balance of which may affect 

net C emissions, in Groundwater and Runoff streams within temperate deciduous forests. A 

simulated dataset was also constructed from field measurements to evaluate potential outcomes 

with increased sample size.   

Carbon budgets have only recently begun to include greenhouse gas emissions from 

streams (Cole et al. 2007). Streams were historically cast as “pipes”, transporting C and nutrients 

down the river continuum and ultimately to the ocean. However, recent efforts have revealed that 

streams are also active reactors of carbon (Battin et al. 2009, Casas-Ruiz et al. 2017). Carbon in 

the stream is not only transformed between organic and inorganic forms within the water 

column, but is also actively evaded to the atmosphere in the form of CO2 and CH4.  Other studies 
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have elucidated patterns and controls on stream C fluxes, such as stream size, instream 

processes, landscape position, and biome (Dawson et al. 2001, Guerin et al. 2006, Hotchkiss et 

al. 2015). However, no studies to date have quantified CO2 and CH4 fluxes within the context of 

flow classification within a biome and land use category. In Chapter 2, I employed a floating 

chamber method in a summer field study in which I sampled gas evading from the stream surface 

over a range of discharges to investigate the influence of flow regime on gas evasion rates, 

sources, and factors related to C gas evasion rates.  

Soil respiration represents the primary pathway by which CO2 once held in terrestrial 

biomass returns to the atmosphere (Schlesinger and Andrews 2000). The primary drivers of 

respiration are soil temperature and moisture (Raich and Tufekciogul 2000, Raich and 

Schlesinger 2002), and agricultural and urban land use increase C flux rates from soil 

(Schlesinger and Andrews 2000, Lohila et al. 2003, Kaye et al. 2005). Additionally, greater 

respiration rates have been found in the riparian areas of forested streams than adjacent hillslope 

soils (Pacific et al. 2008, Pacific et al. 2011). However, no work has investigated whether stream 

flow regime may give rise to differences in riparian soil respiration rates. Further, relationships 

between soil C flux, temperature, and moisture may also differ between flow regimes. In Chapter 

3, I report findings from a field study in the riparian zones of Runoff and Groundwater flow 

regimes in the same six streams within the Ozark Highlands and Boston Mountains utilized in 

Chapters 1 and 2. This study provides insight into potential flow classification influences on 

riparian CO2 flux rates as well as how factors related to soil CO2 flux rates may vary between 

due to adjacent stream flow regimes.  
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ABSTRACT 

The natural flow regime is considered the “master variable” in lotic systems, controlling every 

aspect of structure and function at organism, population, community, and ecosystem levels. 

however, few studies have compared ecosystem-level metrics across multiple flow regimes 

within a biome or land use category. I sought to estimate forested stream metabolism across the 

two dominant flow regimes in northern Arkansas, Runoff Flashy (Runoff) and Groundwater 

Flashy (Groundwater) streams. Flow regimes differed in intermittency, turbidity, and water 

temperature, which I expected to result in differences in annual production and respiration. I 

tested these hypotheses using three main approaches: 1) I measured annual metabolism (i.e. 

gross primary production, ecosystem respiration, and net ecosystem production) as well as a 

suite of  biological, physical, and chemical variables in three runoff and three groundwater-

dominated primarily deciduous-forested stream reaches, 2) I evaluated potential relationships 

between metabolism metrics and environmental characteristics, including flow-ecology 

relationships, and 3) I used field data to create a larger, simulated stream-hydrologic and -

metabolism dataset (n=15 per stream type) to estimate the statistical power needed to ascertain 

potential differences in future studies. Annual gross primary production (GPP) and annual 

ecosystem respiration (ER) estimated from continuous field data collected from June 2015-16 

did not differ over the study period, though both tended to be numerically greater in 

Groundwater streams (p= 0.25, p= 0.22, respectively). GPP averaged 327.8 (standard error= + 

131.1) g O2 m-2 y-1 in Runoff streams and 533.1 (standard error= + 57.9) g O2 m-2 y-1 in 

Groundwater streams, while ER averaged 556.7 (standard error= + 261.0) g O2 m-2 y-1in Runoff 

streams and 1,402.1 (standard error= + 480.0) in Groundwater streams. Field-estimated GPP was 

negatively impacted by the number of no flow days across flow regimes (ρ= -0.88, p= 0.02), and 
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net metabolism became more heterotrophic with increasing average annual discharge across sites 

(ρ= -0.74, p= 0.002). Simulated Groundwater streams exhibited 44% greater primary production 

(p= 0.04) and 124% greater respiration rates (p= 0.007) than simulated Runoff streams. 

Computer-simulated stream data revealed that Groundwater streams may be more autotrophic 

with increasing numbers of high-flow days, while Runoff stream annual GPP was suppressed by 

high-flow days (GPP: ρ= -0.57, p= 0.03), suggesting climate-change or human-driven changes in 

stream flow could change annual processes. Characterizing ecosystem-level responses to 

differences in flow can reveal mechanisms governing stream metabolism and, in turn, provide 

information regarding trophic state and energy inputs. This work highlights the importance of 

variation in flow within a biome and land use category to ecosystem function.  

INTRODUCTION 

The natural flow regime exerts primacy over water quality and quantity, habitat structure, 

disturbance regime, and, in turn, ecological processes and functions in lotic systems. Flow 

regime is characterized by the timing, duration, magnitude, frequency, and rate of change of 

water flowing through a channel over various temporal scales (Poff et al. 1997), arranging 

habitat space and thereby creating a unique template for life history strategies and community 

interactions (Southwood 1977, Poff and Ward 1990).  Natural disturbances, such as flooding and 

drought, serve as life cycle prompts for many fishes and macroinvertebrates, whose reproductive 

cues are intimately linked with predictable, seasonal changes in flow (Poff and Ward 1989, 

Huryn and Wallace 2000, Humphries and Baldwin 2003, Lytle and Poff 2004). Flow regime is 

ultimately a byproduct of landscape-level processes and variation, as climate, topography, 

geology, vegetation, and soils interact to determine primary water sources (e.g. groundwater vs. 

runoff), quantity of within-channel flow, and geomorphology. Indeed, flow regime is typically a 
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region and land cover-specific phenomenon; streams reflect the diverse biomes that generate and 

sustain their flows as well as the relative contributions of groundwater, surface water, soil water, 

and precipitation (Hynes 1975).  

Even though the importance of naturally variable flow has become widely accepted by 

freshwater scientists over recent decades, water resource management has been slow to 

implement this model into policy goals (Poff et al. 1997, Bunn and Arthington 2002, Biggs et al. 

2005, Poff et al. 2010). This natural variation in quantity, quality, and timing of flows that is 

necessary to support a system’s physical, chemical, and biological integrity while also providing 

ecosystem services to humans defines a stream’s environmental flows (Dyson et al. 2003, Poff 

and Zimmerman 2010). Static measures of hydrology, primarily minimum daily flows, are still 

the norm across thousands of river miles, and environmental flows remain threatened by overuse 

of water for human uses such as agriculture and industrial ends (Richter 2003). Environmental 

flow protection is critical to preserve many of the services streams provide to humans, such as 

natural regular floodplain inundation that supplies water, nutrients, and organic matter to 

agricultural fields and wildlife as well as variable instream flows that preserve water quality, 

habitat heterogeneity, and biodiversity (Postel and Richter 2003, Richter 2003). The natural flow 

regime requires greater attention from management to develop benchmarks that are tailored to an 

area’s distinct environmental flows, as biota in differing flow regimes are likely adapted to 

different habitat and flow templates. This has remained largely untouched even with existing 

literature that provides suggestions and frameworks for the synthesis of environmental flows and 

current flow assessment techniques (Richter and Thomas 2007, Poff et al. 2010, Merritt et al. 

2010, Olden and Naiman 2010).  
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Humans continue to alter flow regimes directly and indirectly with devastating 

consequences to biodiversity and supplies of potable water.  Direct amendments to channel flow, 

such as channelization and dredging, reduce habitat heterogeneity and biodiversity. Damming 

also negatively impacts biotic interactions and ecosystem function by preventing immigration 

and emigration through the river continuum (Ligon et al. 1995, Lajoie et al. 2007, Dugan et al. 

2010). Landscape changes such as construction of impervious surfaces, cultivation of fields for 

row crop or pastoral agriculture, and removal of native vegetation indirectly alter the physical 

and chemical characteristics of streams as water moving over the landscape is not sequestered by 

vegetation and thus enters streams in increased amounts at higher velocities, resulting in flash 

flooding that introduces sediments, nutrients, or other pollutants into the channel (Jones et al. 

2000, Paul and Meyer 2001, Walsh et al. 2005). In addition to increased flow flashiness, the 

magnitude of flooding is often more severe adjacent to anthropogenic activities. Urban and 

agricultural land use modify natural disturbance regimes (e.g. flooding and drying), disrupting 

critical cues in the life cycles of many aquatic biota (Allan 2004, Paul and Meyer 2001, Poff et 

al. 2006). Further, climate change is also altering weather patterns, increasing storm intensity, 

and contributing to increased stream intermittency as average global temperatures continue to 

rise (Stocker et al. 2013).   Given these widespread hydrologic impacts and the potential for flow 

regimes to continue to change drastically as the human exerts increasing pressure on water 

resources and global climate, recent efforts have focused on characterizing ecological flow-

response relationships to ascertain environmental flows necessary to maintain biodiversity and 

ecosystem function that can, in turn, inform management decisions.  

The ecological limits of hydrologic alteration (ELOHA) framework synthesizes existing 

methods and provides a clear, stepwise outline for determining environmental flow standards. 
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The goal of ELOHA is to catalyze development of regional flow standards based on flow-

ecology relationships within minimally-impacted as well as altered systems to establish 

thresholds past which biodiversity and ecosystem function decline.  The framework consists of 

scientific and social processes that integrate empirical findings with societal needs and values, 

with an ultimate objective of maintaining ecological function while providing for human needs. 

The scientific process consists of establishing a hydrologic foundation utilizing hydrograph data 

from reference and impacted streams, classifying stream flow types based on hydrology and 

geomorphology, assessing flow alteration, and establishing flow-ecology relationships from 

biological data, which provide a scientific basis for environmental flow standards that can then 

be developed based on management needs and social objectives (Poff et al. 2010).  

Flow-ecology relationships are needed to determine whether flow alteration may have 

differing consequences across multiple flow regimes (Poff et al. 2010, Arthington et al 2012). 

Several natural flow categories exist for streams within the Ozark and Ouachita Interior 

Highlands in Arkansas, eastern Oklahoma, and southern Missouri (Leasure et al. 2016), but 

efforts to characterize these systems based on their unique hydrologies in the field have only 

recently begun. Leasure et al. (2016) revealed distinct geographic areas demarcated by dominant 

flow types which are likely functionally unique. Key differences between flow regimes are 

frequency and duration of low flow days and floods as well as dominant water sources.  Detailed 

field measurements are needed to confirm modeled flow classifications, especially in headwater 

systems where the resolution of data used to construct flow class models is low.  Additionally, 

recent efforts in Arkansas have begun to establish ecological flow-response relationships at the 

population and community levels (Bruckerhoff  and Magoulick 2017, Yarra and Magoulick 

2017, Lynch et al. 2018) but to date no ecosystem-level metrics have been employed to establish 
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relationships between flow regime and aquatic primary producers, which are foundational 

players in stream food webs. Further, it is imperative to ascertain the extent of variation in 

ecosystem function explained by flow classification within reference forested streams before 

examining anthropogenic alteration of water quality and quantity.  

Stream metabolism is an indicator of nutrient cycling, carbon (C) dynamics, and trophic 

status that is sensitive to natural and anthropogenic disturbances, revealing ecosystem-level 

responses to changes in hydrology and geomorphology. Net ecosystem metabolism (NEM) is 

defined as the difference between gross primary production (GPP) and ecosystem respiration 

(ER) (e.g. NEM= GPP-ER) (Izagirre et al. 2008, Williamson et al. 2008). Metabolism can reveal 

whole-stream responses to landscape changes as well as predict potential bottom up effects on 

higher trophic levels.  

Ecosystem metabolism is driven by proximal factors such as light and nutrients, which 

are influenced by distal influences from the surrounding watershed (Bernot et al. 2010). The 

indirect and direct susceptibility of primary production and respiration to landscape-level 

variation makes it a good metric for assessing impacts at the ecosystem level. Additionally, daily 

metabolism can vary temporally due to changes in light levels, organic matter inputs, algal 

biomass, and hydrology.  Annual metabolism integrates this variability and estimates are greatly 

dependent upon the frequency of daily measurements; less frequent measurements can result in 

erroneous annual metabolism budgets for a given stream (Roberts et al. 2007).  While others 

have examined daily metabolism in Ozark streams, these studies were short in duration, likely 

missing patterns or variation in metabolism that would be useful in characterizing natural Ozark 

forested stream function. I sought to remedy the issue of low temporal resolution by collecting 

continuous measurements through an annual time step. 



18 
 

Previous work assessing annual metabolism across multiple streams has focused 

primarily on the effects of biome and land use (Bott et al. 1985, Mulholland 2001, Bernot et al. 

2010). The large dependence of other annual metabolism budgets on flow timing and magnitude 

(e.g. Roberts et al. 2007) suggests they will vary significantly across differing flow regimes 

within the same biome.  Further, comparing variation in function within and among flow classes 

provides greater insight into processes and variables controlling metabolism. A stark paucity of 

work has addressed whether streams of comparable size but distinct hydrologic regimes exhibit 

similar metabolism and associated mechanisms such as light and nutrient regimes. Addressing 

this lack of data will reveal how flow-ecology relationships vary over the landscape. Further, 

such efforts yield a more complete portrait of natural ecosystem production in the absence of 

anthropogenic pressures that will reveal to what extent landscape alteration is affecting regional 

C cycles. 

Primary production and respiration provide an ecosystem-level portrait of organic matter 

movement and transformation, biomass at multiple trophic levels, trophic structure, and potential 

drivers of other ecosystem processes. Primary production consists of the amount of C fixed into 

autotrophic biomass, which represents the energetic foundation for consumers across trophic 

levels. Respiration represents the release of inorganic C from organisms, revealing a complete 

picture of instream organic matter consumption supported by both allocthonous and 

autochthonous production (Mulholland et al. 2001).  Importantly, metabolism reveals C 

movement through a whole system; given that C cycling is coupled with other nutrient cycles 

and forms the basis of both autochthonous and allochthonous production, drivers of stream 

metabolism likely control other ecosystem-level rates such as nutrient uptake and processing and 

secondary production (Meyer et al. 2007, Izagirre et al. 2008, Bernot et al. 2009) 
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Existing conceptual models of headwater stream metabolism have posited that factors 

controlling metabolism differ by biome (Mulholland et al. 2001), land use category (Bernot et al. 

2009), and season (Roberts et al. 2007) (Figure 1a). In reference systems, biome and season are 

considered the primary drivers of differences across streams. However, others have shown 

distinct hydroecological regions at hierarchical spatial scales characterized by significant 

variation in flow dynamics within a biome (Poff et al. 2006, Leasure et al. 2016). This intra-

biome variation arises from changes in climate and geology down the stream continuum and 

across sub-basins (Thoms and Parsons 2003). Differences in metabolism within a biome would 

represent a departure from existing models, which have until now not explored finer resolution in 

annual estimates of C production and release based solely on flow regime.  

Flow variability within a stream can be a determinant of annual metabolism, as flow 

extremes can exert a strong influence on organic matter movement through the system (Acuna et 

al. 2004, Roberts et al. 2007). High flows can depress primary production during while 

increasing production rates in autumn by removing leaves shading the stream. Storms can also 

influence respiration rates by reducing respiration initially due to loss of autotrophic biomass, 

then increasing rates as the autotrophic community recovers from scouring (Roberts et al. 2007, 

Izagirre et al. 2008). Consistently higher discharge, or higher discharge in one year compared to 

another, can depress metabolism rates by preventing regrowth of algal biomass. Further, others 

have found clear relationships between hydrologic regime and benthic organic matter that 

supports respiration (Acuna et al. 2007). Hot, dry summers that increase water temperature but 

reduce depth can support extensive algal production may lead to an overall reduction in 

metabolic rates over summer in the absence of scouring floods (Izagirre et al. 2008).  
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I propose a conceptual model of ecosystem metabolism informed by the natural flow 

regime paradigm (Poff et al. 1997) (Fig. 1b). Similar to existing models, climate and geology 

give rise to differences across biomes. However, I suggest that changes in geology and benthic 

substrate, dominant water source, and local weather across a landscape can also result in 

differences in flow within a biome.  In turn, flow regime differences may interact with 

hydrologic alteration from land use change as well as season to control trends in annual 

production and respiration. This model not only refines and strengthens the predictive power of 

existing knowledge of factors controlling stream metabolism, but also provides a framework for 

developing flow-ecosystem relationships that are still rare in the literature.   

Leasure et al. (2016) utilized daily records from 64 reference streams and mixture model 

cluster analysis to identify seven natural flow regimes in the Ozark and Ouachita Interior 

Highlands region of Arkansas, Missouri, and Oklahoma: Groundwater Stable, Groundwater, 

Groundwater Flashy, Perennial Runoff, Runoff Flashy, Intermittent Runoff and Intermittent 

Flashy. Two flow classifications, Groundwater Flashy and Runoff Flashy, represent the 

dominant flow types in northern Arkansas and southern Missouri. These flow regimes were 

demarcated by ecoregion, representing distinct hydroecological regions that may give rise to 

differences in stream ecosystem function. 

Several key variables that define the natural flow regime of an area are likely related to 

annual metabolism. Drying and flooding can both temporarily depress primary production and 

respiration, while the weeks following these disturbances are typically marked by high rates of 

production and respiration as algae recolonize the benthos (Uehlinger 2000, Uehlinger 2006).  

Specifically, the number of dry days, number of days experiencing high flows (defined as >75% 

average daily flow), and number of flood events affect production and respiration; the strength of 
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this effect would be dependent upon on the magnitude, frequency, and duration of the 

disturbance. My primary objective was to determine whether differences exist in stream total 

annual gross primary production, total annual ecosystem respiration, and total annual net 

ecosystem production between two flow regimes in northern Arkansas to characterize natural 

variation in ecological-flow responses. These flow regimes, Runoff Flashy and Groundwater 

Flashy (hereafter Runoff and Groundwater), comprise the majority of stream length in the Ozark 

and Boston Mountains ecoregions.  I also sought to determine whether differences exist in 

variables such as stream discharge and geomorphology, light, periphyton biomass, 

physicochemical variables (e.g. total nitrogen, total phosphorus, turbidity), and flow metrics. I 

predicted that both stream types would be net heterotrophic, with ecosystem respiration 

outpacing primary production, given that all streams in the proposed study are forested and thus 

receive annual subsidies of leaf litter every autumn. I expected total annual gross primary 

production to be higher in Groundwater streams, as these streams tend to exhibit perennial flow, 

have relatively stable hydrology over the year (albeit greater numbers of floods, which may 

encourage algal growth by reducing competition), and exhibit low turbidity.  Further, Runoff 

streams dry several days to weeks of the year, leading to the demise of the algal community in 

areas of no flow. I expected ecosystem respiration to be greater in Groundwater systems as well 

given that more primary production would in turn result in higher rates of respiration, and 

predicted that algal biomass would be higher in Groundwater streams. I expected streams to 

yield similar concentrations of total nitrogen (TN), total phosphorus (TP), and turbidity. I 

expected streams to differ in number of no flow days, number of high flow days (defined as the 

number of days above 75% of maximum annual flow), and number of flood events owing to the 

spatial separation of flow regimes by ecoregion.  
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METHODS 

This study was conducted in six temperate, deciduous-forested, minimally-impacted 

headwater streams [forested land cover ranging from 84 to 97% of total watershed area (CAST 

2007)] in Arkansas (Figure 2). I chose three Groundwater streams and three Runoff streams 

categorized based on an existing model (Leasure et al. 2016).   

Streams were of similar size and discharge, and four were located upstream of USGS 

gauging stations.  Two streams, Roasting Ear and Spring, were not located upstream of USGS 

gauging stations, but were located near streams of the same order and similar size with gauges. 

There were significant relationships between measurements made in those two stream reaches 

and two “proxy gauges” within the same watershed, allowing for quantification of flow metrics 

for all six streams over the year. I quantified high flow days, number of floods, and number of 

days with no flow by establishing upstream-downstream discharge relationships between study 

reaches and downstream gauges. High flow days were defined as exceeding the 75th percentile of 

mean annual discharge. Floods were defined as discrete hydrograph peaks exceeding the 100th 

percentile of mean annual flow.  

I calculated reach-scale metabolism for a 200-meter length of each stream using data 

collected via the open-channel single-station method (Odum 1956, Riley and Dodds 2012). 

Others have compared the single- and dual-station methods and have shown similar estimates in 

streams with high air-water gas exchange velocities (Roberts et al. 2007, Bernot et al. 2010). 

Dissolved oxygen (DO) and temperature were measured every 15 minutes by Hydrolab DS5X 

multiparameter sondes (Hach Company, Loveland, CO) from May 2015 to June 2016 in a well-

mixed area at the bottom of each study reach. Sondes were calibrated monthly and data were 

corrected when necessary by comparing with DO concentrations determined via Winkler 

titrations (Dodds et al. 2018). Reaeration coefficients as estimates of air-water gas exchange 



23 
 

were determined via propane release in five out of six streams, while nighttime regression was 

utilized in one Runoff stream, Murray Creek. Propane release was necessary in five streams 

because nighttime regressions yielded significant relationships between ER and K600, whereas no 

such relationship was present at Murray Creek.  Corrections for groundwater contributions to 

reaches receiving appreciable inputs were made according to Hall and Tank (2005) by measuring 

DO in water at discernible upwellings as well as discharge down the reach to determine 

groundwater gains and losses down the study reach. Photosynethetically-active radiation (PAR) 

measurements were logged concurrently with metabolism parameters using an Odyssey light 

meter positioned in an area near the stream with open canopy. Stream metabolism was estimated 

based on diel changes in DO, temperature, depth, and light measurements; I used R package 

StreamMetabolizer to solve for GPP and ER utilizing a general single-station metabolism 

maximum likelihood model: 

�2(�) = �2(� − ∆�) + (
���
����

�
×

���(�)

∑���24
) + (

��
����

�
× ��) + �(�)(�2���(�) − �2(�))�� [1]  

where t is time and Δt is the time step between measurements (15 minutes), � is mean 

reach depth, ∑���24  is daily photosynthetically-active radiation, and K(t) is air-water gas 

exchange corrected for temperature. Solving this equation for GPPTotal and ERTotal yielded daily 

metabolism estimates for every day that a sonde was deployed at each stream (from 158 to 215 

days). Data were not collected every day of the 422-day study due to flash floods, drying, and/or 

equipment failure. I estimated daily metabolism on days no measurements were available to 

ensure comparability among sites and flow regimes. This was accomplished by calculating daily 

GPP using an exponential model based on significant relationships between measured daily GPP 

and daily temperature at all Runoff streams and one Groundwater stream, Sylamore Creek. Daily 

GPP was modeled based on relationships between daily discharge and metabolism at the two 
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Groundwater sites due to the absence of a significant link between daily GPP and temperature at 

the other two Groundwater sites (Spring and Roasting Ear creeks). Daily ER was modeled based 

on significant linear relationships between GPP and ER on days for which data were available at 

each site. I assumed GPP and ER values of 0 g O2 m-2 d-1 on days in which streams dried as well 

as when sites experienced flash flooding and for seven days after peak flows when flows were 

still elevated (Fisher et al. 1982, Austin 2015). Seasonal metabolism was calculated by averaging 

daily rates from the beginning of the respective season (e.g. equinox or solstice). This 

approached was used due to there being fewer dates sampled in Spring 2015 (the study began in 

mid-spring) and Summer 2016 (the study ended in mid-summer) compared to other seasons. 

Summing daily rates by season would hinder comparisons, so averages of daily rates over the 

season were used. However, annual metabolism was always estimated by addition of daily 

estimates since the number of days across streams was equal and, thus, comparable.  

Persulfate digests of unfiltered water samples were followed by colorimetric analyses to 

determine nutrient concentrations. Total nitrogen (TN) was measured monthly by automated 

cadmium reduction on a Lachat Quikchem 8500 (Hach Company, Loveland, CO). Total 

phosphorus (TP) was measured monthly using the ascorbic acid method (APHA 2005). For algal 

biomass, I collected six cobbles per reach at six equidistant transects down the stream reach. 

Monthly algal biomass was calculated based on chlorophyll a concentration per unit rock area as 

well as ash-free dry mass (Steinman et al. 2006). Canopy cover was determined for each stream 

channel once in summer and once following abscission using a densiometer to calculate percent 

coverage. Discharge was measured monthly using the mid-section method along with stream 

dimension measurements and dominant benthic substrate (Gore 2006). I conducted chloride drips 
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to validate the accuracy of depth measurements in Groundwater streams due to the gravel- and 

pebble-dominated benthos at those sites.  

To double statistical power and explore flow-metabolism relationships within each flow 

regime, I  simulated a dataset with 15 streams from each flow class (N=30) sample from a 

random distribution using each variable in the field data set from three streams to set mean and 

standard deviation parameters for each flow class. Homogeneity of variances was tested using an 

F-test. Student’s t-tests were utilized to determine differences in monthly measurements of 

geomorphology, nutrients, turbidity, chlorophyll a, and ash-free dry mass, as well as daily 

discharge and other flow metrics, daily primary production, respiration, and metabolism between 

flow classes in experimental and simulated streams. Spearman’s correlations were employed to 

examine relationships between daily metabolism variables (GPP, ER, and NEP) and monthly 

physicochemical parameters (e.g. total nitrogen and phosphorus, temperature), monthly 

biological metrics (e.g. chlorophyll a, algal ash-free dry mass), and daily flow metrics (e.g. 

discharge, number of low flow days, number of high flow days) in experimental and simulated 

streams. All statistical analyses were performed in R version 3.4.3. The statistical significance 

threshold was p < 0.05. Variation in all metrics is reported in + 1 standard error.  

RESULTS 

METABOLISM 

Daily GPP in Runoff streams averaged 0.81 (+ 0.34) g O2 m-2 d-1,  while Groundwater 

streams averaged 1.3 (+ 0.14 ) g O2 m-2 d-1.  Daily ER in Runoff streams averaged -1.4 (+ 0.66) g 

O2 m-2 d-1 and -3.3 (+ 1.1) g O2 m-2 d-1 in Groundwater streams. Variances in both average daily 

GPP was six times greater in Runoff streams, while and average daily ER tended to be three 

times numerically greater in Groundwater sites, though all variances were statistically similar 
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(GPP: p= 0.28, ER: p= 0.50).  Daily rates of GPP and ER for each stream are shown in Figure 5. 

Floods denoted in Figure 5 only correspond to events that were large enough to cause more than 

one to two-day gaps in the dataset; thus, the number of flood events counted in the study (defined 

as a discrete hydrograph peak exceeding the 100th percentile of average annual flow) is greater 

than the number of flood events shown.  

Average daily GPP was largest in summer 2016 in Groundwater streams (0.94 + 0.15 g 

O2 m-2 d-1), while Runoff streams exhibited the greatest average daily GPP in summer 2015 (1.80 

+ 0.97 g O2 m-2 d-1) (Figure 4). Average daily GPP tended to be greater in Groundwater streams 

throughout the year. Average daily ER was greatest in spring 2016 across streams. Ecosystem 

respiration also tended to be numerically greater in Groundwater streams throughout the year. 

Variation in GPP across both flow classes was largest in summer 2015. Groundwater stream ER 

varied most in summer 2016 at + 2.32 g O2 m-2 d-1, while spring 2016 yielded the greatest 

measure of variation across Runoff streams over the study period at + 1.53 g O2 m-2 d-1.  

Annual GPP ranged from 122.8 to 571.8 g O2 m-2 y-1 in Runoff streams, and 446.3 to 

643.0 g O2 m-2 y-1 in Groundwater streams. Annual ER in Runoff streams ranged from -225.8 to -

1071.9 g O2 m-2 y-1 and -494.0 to -2,125.9 g O2 m-2 y-1 in Groundwater streams.  Annual GPP 

and ER did not differ over the study period, though both tended to be numerically greater in 

Groundwater streams (p= 0.26, p= 0.22 (Figure 3). Variance in annual GPP was five times 

higher across Runoff streams, while variance for annual ER estimates was three times greater in 

Groundwater streams; however, variances in annual metabolism metrics were not statistically 

different (GPP: p= 0.33, ER: p=0.46).   

Streams tended to become more heterotrophic with increasing annual GPP (ρ= -0.49, p= 

0.36), while annual ER tended to vary positively with annual net ecosystem metabolism (NEM) 
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(ρ= 0.77, p= 0.10). Annual GPP tended to exhibit an inverse relationship with annual respiration 

(ρ = -0.83, p= 0.06). Daily GPP and ER were negatively related in each stream; these 

relationships were more significant and exhibited more linear correlations in Groundwater 

streams compared to Runoff streams (Table 1). Daily GPP was positively correlated with daily 

NEP in all Runoff streams as well as one Groundwater stream, but was negatively correlated 

with NEP in Roasting Ear Creek and Sylamore Creek. Daily ER was positively correlated to 

daily NEP across all streams; these relationships were most linear and most significant in 

Roasting Ear Creek and Sylamore Creek.  

METABOLISM AND LIGHT 

Mean daily PAR ranged from 149 to 1,284 umol m-2 s-1 at Groundwater sites and 105 to 

1,300 umol m-2 s-1 at Runoff sites. Maximum daily PAR was greatest in summer, decreasing 

gradually across sites beginning in late August 2015. Daily PAR gradually declined through 

autumn, stabilizing in early November. Light availability began to slowly increase in mid-

January 2016, though minima were not observed until February at both Groundwater and Runoff 

sites. However, PAR tended to increase overall, exhibiting greatest variation in daily 

measurements in spring 2016. Light availability varied up to 922 umol m-2 s-1 at Groundwater 

sites between March and April; PAR varied up to 928 umol m-2 s-1 at Runoff sites during the 

same period. Daily PAR stabilized once again in late April at Runoff sites and early May at 

Groundwater sites. While minimum daily PAR measurements were recorded for similar dates, 

maxima occurred at differing times of year. Maximum daily PAR at Groundwater sites was 

recorded in July 2015, while maximum PAR at Runoff sites was recorded in April 2016.  

Average annual GPP over the year was marginally negatively correlated with average 

annual PAR across streams (ρ= -0.83, p= 0.06). Daily GPP exhibited a positive correlation with 
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daily PAR at all Runoff sites and one Groundwater site, Sylamore Creek. The two Groundwater 

streams that did not yield significant correlations between daily GPP and daily PAR did exhibit 

clear positive trends. I found a saturating trend between daily PAR and daily GPP in Roasting 

Ear Creek, with GPP dropping off at approximately 490 umol m-2 s-1.  

Canopy cover averaged over the two dates when coverage was measured (i.e. summer 

and following abscission) varied across Runoff sites from 42 to 57%; Groundwater streams 

varied from 38% to 90% cover.  Average canopy cover after leaf-out was 52% at Runoff sites 

and 65% at Groundwater sites.  Cover was similar between flow regimes (p= 0.75).  Canopy 

cover was not related to annual GPP (ρ= 0.09, p=0.92), annual ER (ρ=-0.26, p=0.66), or annual 

NEM (ρ= 0.60, p=0.24).  

Annual GPP showed no clear relationship with annual discharge across sites (ρ=0.20, p= 

0.71) (Figure 6). Two Runoff streams tended to exhibit lower discharge and GPP compared to 

Groundwater streams, while I found Little Piney Creek to have greater GPP compared to 

Groundwater sites with similar annual discharge. Greater discharge tended to depress respiration 

(ρ= -0.50, p= 0.37) and drive streams to be more heterotrophic over the year (ρ= -0.74, p= 0.002) 

(Figure 7).  Annual GPP was not correlated with the number of no flow days across streams (ρ= 

-0.15 , p= 0.77). As with GPP and ER, data points were not grouped by flow regime, as sites 

experienced perennial flow in one Runoff stream (Murray Creek) and two Groundwater streams 

(Sylamore and Spring creeks).  

METABOLISM AND FLOW METRICS 

Daily discharge was negatively correlated to daily GPP in three streams that spanned 

both flow regimes (Table 1). Daily discharge in one Groundwater stream, Sylamore Creek, was 

positively related to daily GPP. Daily ER was related to discharge in all Groundwater streams, 
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though the direction of the relationship differed by stream; two sites displayed negative 

relationships between daily ER and discharge, while a positive relationship between these two 

metrics was shown at Sylamore Creek. Respiration in two out of three Runoff streams was not 

related to discharge, though a positive relationship was shown between ER and discharge at 

Murray Creek.  

Runoff streams experienced two moderate storm events during summer 2015, while 

Groundwater streams experienced three smaller events during the same period. Variation in 

precipitation across flow types is due to the location of study sites, as Runoff streams are 

positioned southwest of Groundwater sites. Little to no rain fell across Arkansas from early 

August to November 7, 2015, causing two Runoff streams and one Groundwater stream to dry 

and leaving two Groundwater streams and one Runoff stream with markedly reduced flows. 

However, Runoff streams that dried experienced longer drought periods, as Little Piney and Big 

Piney dried for 47 and 33 days, respectively, whereas Roasting Ear dried for 9 days. Runoff 

streams dried around the end of September and beginning of October while Roasting Ear dried 

only at the end of October. Regular rain events returned on November 5th, 2015, with four 

significant rain events depositing 21.89 centimeters across Groundwater sites and 27.99 

centimeters at Runoff sites through the end of the month.  A large flood event in late December 

2015 required approximately 10 days for sites to return to near winter base-flow conditions. 

Between March and June 2016, regular rains briefly increased flows every one to three weeks. 

Groundwater streams experienced one to two more high-flow events than Runoff streams during 

this time. Flow metrics at each site are listed in Table 2. 

Annual GPP showed no clear relationship with mean annual discharge across sites 

(ρ=0.20, p= 0.71) (Figure 6). Two Runoff streams tended to exhibit lower discharge and GPP 
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compared to Groundwater streams, while Little Piney Creek was shown to have greater GPP 

compared to Groundwater sites with similar annual discharge. Greater discharge tended to 

numerically depress respiration (ρ= -0.50, p= 0.37) and drive streams to be more heterotrophic 

over the year (ρ= -0.74, p= 0.002 ) (Figure 7).  Annual GPP was negatively correlated with the 

number of no flow days across streams (ρ= -0.88 , p=0.02) (Figure 8). As with GPP and ER, data 

points were not grouped by flow regime, as sites experienced perennial flow in one Runoff 

stream (Murray) and two Groundwater streams (Spring and Sylamore).  

BIOLOGICAL DRIVERS OF METABOLISM 

Neither annual GPP nor annual ER were significantly correlated to chlorophyll a or ash-

free dry mass (AFDM) across sites during the study (Figure 9).  Annual metabolism metrics were 

also not related to annual averages of TN or TP over the year. However, both chlorophyll a and 

AFDM were greater in Groundwater streams (chl a: p= 0.001, AFDM: p= 0.02), even with 

similarly low nutrient concentrations (Total N: p= 0.2, Total P: p= 0.21). Annual TN was low in 

all streams, averaging 0.10 + 0.03 mg/L in Runoff streams and 0.56 + 0.26 mg/L in Groundwater 

streams. Total phosphorus averaged 6.21 + 0.63 µg/L annually in Runoff streams and 8.70 + 1.38 

µg/L in Groundwater streams.  

PHYSICAL AND CHEMICAL PARAMETERS 

Annual GPP was not related to turbidity (ρ= -0.26, p= 0.66), though our data suggested a 

potential negative influence of turbidity on AFDM (ρ= -0.77, p= 0.10). Turbidity was similar 

across flow regimes (p= 0.40), though Runoff streams tended to be more turbid overall and have 

more variable turbidity (29 + 22 Nephelometric Turbidity Units (NTU)) than Groundwater 

streams (6 + 0.9 NTU).    
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Runoff stream substrate types were primarily bedrock and cobble, while Groundwater 

streams were dominated by pebbles. Mean particle size was 364 + 88.2 mm2 in Runoff streams 

and 162 + 34 mm2 in Groundwater streams, though there was no difference between flow 

regimes (p=  0.14). Mean particle size was not related to annual GPP (ρ= -0.09, p= 0.92) or 

annual ER (ρ= -0.26, p= 0.66).  

Average annual water temperature was greater in Runoff streams (p= 0.02). Water 

temperature in Runoff streams averaged 16.7 + 0.07 oC over the year, while average annual 

temperature in Groundwater streams was 15.2 + 0.3 oC. There were no significant correlations 

between annual water temperature and annual GPP (ρ= -0.14, p= 0.80), annual ER (ρ= -0.31, p= 

0.56), or annual NEM (ρ= -0.14, p= 0.80). A negative, though not significant, trend with 

chlorophyll a decreasing with greater average water temperature was observed (ρ= -0.77, p= 

0.10); this negative relationship was significant when AFDM was compared with average annual 

water temperature across streams (ρ= -0.88, p= 0.03).  

Daily temperature drove daily GPP in all Runoff streams, but only one Groundwater 

stream. Conversely, daily water temperature was related to daily ER only in Sylamore Creek 

(Table 1).  

SIMULATIONS 

Data simulations to double statistical power revealed greater annual GPP (p= 0.04), ER 

(p= 0.007) and more heterotrophic NEM (p= 0.01) in Groundwater streams. (Figure 9). Average 

annual PAR (p= 0.3) and canopy cover were similar across flow regimes (p= 0.10). Annual 

discharge was similar between flow regimes (p= 0.25). Simulated Runoff streams experienced 

more no flow days (p= 0.001), though high flow days were similar in both flow regimes 

(p=0.07). Similar to my field results, chlorophyll a (p<0.0001) and AFDM (p<0.0001) were 
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greater in Groundwater streams. Total nitrogen was greater in Groundwater streams (p= 0.0004), 

and total phosphorus also tended to be greater in Groundwater streams (p= 0.06). Simulated 

Runoff streams were more turbid (p= 0.01) and warmer (p <0.0001) than Groundwater streams. 

Benthic substrate sizes were larger in Runoff streams (p=0.0006). 

Simulated annual GPP was not related to annual ER in Groundwater streams (ρ= 0.42, 

p=0.12) or Runoff streams (ρ= 0.41, p=0.13) (Figure 10). ER was the primary driver of net NEP 

across flow regimes (Runoff: ρ= -0.83, p=0.0002; Groundwater: ρ= -0.97, p<0.0001). GPP 

responded positively to TN in Runoff streams (ρ= 0.63, p=0.01), while Groundwater stream 

respiration exhibited a negative response to TN (ρ= 0.68, p=0.007). Overall, simulated 

Groundwater streams were more autotrophic with increasing nitrogen concentrations (ρ= 0.66, 

p=0.009). GPP responded negatively to canopy cover in both flow classes (Runoff: ρ= -0.53, 

p=0.04; Groundwater: ρ= -0.67, p=0.01).  Flow regimes exhibited differing responses of primary 

production to changes in benthic substrate size. Runoff stream GPP rates were greater in the 

presence of larger substrate (ρ= 0.63, p=0.01), while Groundwater stream GPP rates were 

reduced with increasing substrate size (ρ= -0.54, p=0.04). Groundwater streams exhibited a 

positive relationship between production rates and AFDM  (ρ= 0.54, p=0.04) and streams with 

greater algal biomass were more heterotrophic (ρ= -0.53, p=0.04) (Figure 11).  

Simulated annual GPP exhibited a negative relationship with Runoff streams’ number of 

high-flow days (GPP: ρ= -0.57, p= 0.03). . The number of no-flow days at Runoff sites tended to 

depress GPP and ER (GPP: ρ= -0.52, p=0.05; ER: ρ= -0.49, p=0.06). Runoff annual GPP also 

tended to decrease with greater annual discharge (GPP: ρ= -0.52, p= 0.05).  High-flow days 

tended to depress Groundwater stream respiration rates (ρ= -0.50, p=0.06), driving streams to be 
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more autotrophic in streams with more high-flow days over the year (ρ= 0.53, p=0.04) (Figure 

11). 

DISCUSSION 

METABOLISM 

These data provide insight into intra-biome variation in metabolism within a land-use 

category across two hydrologic regimes. The rates reported for metabolism are well within range 

for forested stream daily GPP (0.05 to 16.2 g O2 m-2 day-1) (Mulholland et al. 2001, Acuña et al. 

2004, Uehlinger 2006, Bernot et al. 2010) reported in studies conducted in single streams as well 

as in multiple streams across biomes. Headwater streams are notoriously variable in their 

metabolic regimes, and elucidating regional predictors of drivers continues to be an elusive goal 

(Bernhardt et al. 2017). Although annual comparisons of GPP and ER did not yield statistically 

significant differences by flow regime, these results provide a glimpse of potential differences in 

rates of annual metabolism. Additionally, the simulated dataset results suggest that the lack of 

statistically significant differences may be an artifact of low sample size. This lack of statistical 

power in my field data underscores the need for continued work in a greater number of streams 

across flow regimes. Few published metabolism studies have examined annual trends in more 

than one stream; the data presented here provide both spatial and temporal replication, but three 

replicate reaches may not be enough to draw strong conclusions regarding flow regime 

differences and trends. Greater GPP in Groundwater streams is likely a byproduct of the high 

light and shallow channels coupled with low turbidity; the benthos of a Runoff stream is difficult 

to observe due to the presence of minerals common to the Boston Mountains ecoregion, where 

Runoff streams are the dominant flow type. While Runoff streams were warmer than 

Groundwater streams, the amount of light reaching the streambed and greater turbidity may have 
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restricted primary production potential. Lower primary production would, in turn, produce lower 

rates of respiration. Overall, trends suggesting greater GPP and ER in groundwater-dominated 

streams may indicate more abundant biological communities. Further work at the community 

level would allow for a better understanding of the relative contributions of consumers and 

producers to metabolism in these systems.  

Runoff streams exhibited greater variation in annual GPP. This may have resulted from 

flow regime differences in biological responses to flow metrics. While Groundwater streams 

exhibited greater variability in annual discharge, Runoff streams were more variable in the 

number of no-flow and high-flow days they experienced over the study year. Simulated 

Groundwater stream metabolism was related to only one flow metric, high-flow days. Simulated 

Runoff stream GPP was significantly related to high-flow days and marginally related to 

discharge and no-flow days. Runoff streams exhibited greater variation than Groundwater 

streams in a few other variables, such as turbidity and annual PAR, but no such variables were 

related to GPP.  The tendency of multiple flow metrics to influence Runoff stream production 

suggests that variation in annual flow may be influencing variation in metabolism more in Runoff 

than in Groundwater streams.  

Flow regimes were similar in what season they exhibited minimum and maximum daily 

average GPP. Similar to patterns reported in other forested systems and larger rivers, daily 

Groundwater stream GPP was greatest in summer 2016, while summer 2015 had the greatest 

average GPP for Runoff streams (Mulholland et al. 2001, Acuña et al. 2004, Genzoli and Hall 

2016). These trends differ from Roberts et al. (2007) in that GPP at Walker Branch was greatest 

during the spring and comparatively low during two consecutive summers. Uehlinger (2006) also 

reported GPP to be greatest in May over a 15-year period and lower in summers. The canopies 
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over study streams were not closed (cover averaged 52% in Runoff streams and 58% in 

Groundwater streams), allowing light to reach the benthos in summer despite high leaf cover. 

Groundwater streams experienced four storm events in May and June 2016, which may have 

stimulated production. Runoff streams experienced five storm events during this time, but GPP 

remained significantly lower in Runoff than in Groundwater streams potentially due to the 

differential impacts of high flow on each flow regime. Simulated Runoff stream GPP responded 

negatively to high flow, while high flows elicited a negative response from Groundwater stream 

GPP. Runoff stream GPP reached its minimum in spring 2015, coinciding with maximum algal 

biomass that may have reduced production rates. Daily Groundwater stream GPP was lowest in 

autumn 2015, which may have arisen from competition between benthic producers and microbes 

for resources. Benthic periphyton AFDM was greatest in autumn 2015 across Groundwater 

streams, while chlorophyll a peaked in spring and summer, suggesting that reduced production 

rates were not due to large algal biomass alone. These results differ from other metabolism 

studies that have shown lower production in other seasons (e.g. winter and summer), though 

these studies also present no clear trends that might yield predictable patterns (Uehlinger 2006, 

Roberts et al. 2007). Respiration peaked in spring 2016 in Runoff streams and in summer 2015 in 

Groundwater streams; Groundwater stream respiration was twice as large in both summers 

compared to the rest of the year, and respiration rates were fairly consistent from autumn to 

spring, maintaining rates around 2.6 g O2 m-2 d-1 over most of the year. In contrast, Runoff 

streams exhibited consistently low respiration (<2 g O2 m-2 d-1), increasing in average daily rates 

as well as variation in these rates in spring 2016. These results reflect seasonal trends in ER 

similar to other small streams (Roberts et al. 2007). Patterns of seasonal metabolism may reflect 

an interaction between season and flow regime in which flow regimes respond differently to 
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changes in drivers of metabolism such as water temperature, PAR, and nutrient concentrations 

(Mulholland et al. 2001). This may have impacted my investigation of drivers of metabolism. 

Given my small sample size and, in turn, the necessity of examining mechanisms across both 

flow regimes together, I was unable to ascertain potential relationships between metabolism and 

associated drivers that may exist seasonally, but differ by flow regime.  

Variation in daily metabolism tended to differ seasonally and by flow regime. Variation 

in daily GPP was largest in summer 2015 for all streams, and ER was likewise most variable in 

Groundwater streams during the summer of 2015. Daily variation in ER did not track GPP at 

Runoff sites; rather, ER was more variable over the spring of 2016. Day-to-day variation in GPP 

was not related to variation in PAR or discharge. Ecosystem respiration responded similarly to 

PAR and discharge. However, Murray Creek exhibited the greatest variability in respiration 

across streams even with comparable changes in incident PAR, and removing Murray Creek 

revealed that variation in respiration was related to variation in light from either weather or 

changes in canopy cover over the year. This highlights an important point: the seasonality of 

variation in metabolism may be a function of landscape differences that give rise to differing 

flow regimes as well as changes in light availability over a year. Additionally, these results 

support the necessity of continuous metabolism measurements over shorter sampling periods 

scaled to annual timesteps, particularly because metabolism calculated from field measurements 

varied most during seasons that accounted for a significant portion of annual GPP and ER.  

Respiration drove overall annual rates of stream metabolism, dominating net ecosystem 

production in all but one stream. Five out of six sites, while forested, had open canopies that 

allowed light to reach the channel, supporting production and providing conditions for 

respiration to outpace production (e.g. shallow depths and high light reaching the channel 
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yielded potential for streams to warm). Spring Creek, a Groundwater stream, was the only 

system that was autotrophic over the study period. This was likely due to the stream’s closed 

canopy (90%) and low temperature, as Spring Creek had the lowest annual temperature of any 

stream in the study.   

METABOLISM AND LIGHT 

Daily light drove daily GPP in Runoff streams and one Groundwater stream, but annual 

PAR did not drive annual GPP, providing further credence to the influence of different factors at 

hierarchical temporal scales (Roberts et al. 2007). Daily light has been shown as the primary 

driver of GPP in streams across biomes (Mulholland et al. 2001), and others have inferred light 

as a driver of GPP by measuring canopy cover as a proxy indicator (Naiman 1983, Webster et al. 

1995, Young and Huryn 1999). Study streams exhibited no significant relationship with canopy 

cover, though the simulated dataset revealed that canopy cover negatively influenced annual 

GPP across flow regimes. Even with similar amounts of canopy cover, simulated Runoff stream 

production was still significantly lower than Groundwater streams. Rather than canopy 

influence, incident light in Runoff streams may have been mitigated by their greater turbidity 

from a natural precipitate associated with the karst in the Boston Mountains ecoregion where 

Runoff streams were located. The benthos was difficult to see in Runoff streams if the water was 

more than approximately 0.5 meters deep, whereas Groundwater streams were impeccably clear. 

Alternately, the temporal disparity in maximum PAR measurements (e.g. April in Runoff streams 

and July in Groundwater streams) may have interacted with seasonal differences in water 

temperature to increase Groundwater GPP compared to Runoff GPP, which may have been 

constrained by cooler temperature at times of high light This disparity further highlights the 

importance of flow regime as an ultimate control on mechanisms governing metabolism, as 
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landscape geology, vegetation, and dominant water source can interact to influence, for instance, 

the light regime of an entire group of streams.  

Others have reported PAR to be the primary driver of metabolism at low temporal scales 

(i.e. minutes) (Mulholland et al. 2001) while not finding any relationships between metabolism 

and flow, though others have shown that light and discharge can both control metabolism 

(Roberts et al. 2007, Beaulieu et al. 2013). However, this study took place in one biome across 

streams with similar light regimes, which may explain the lack of relationships between daily 

light and daily metabolism. I also did not always find clear flow-ecology relationships in all 

streams, particularly when data were simulated expand statistical capability to explore 

relationships within each flow type. Others have asserted that metabolism is influenced by 

various factors at differing temporal (Uehlinger 2006, Roberts et al. 2007) and spatial scales 

(Bott et al. 1985, Mulholland et al. 2001, Bernot et al 2010). It may be that the identity and 

strength of these relationships are, at least in part, a function of flow regime, as no previous 

studies examined the influence of flow classification within a land use type or biome, though 

flow variables were included in their analyses. Other studies undertaken in a single stream may 

have been better able to discern potential flow class-specific relationships since there was no 

grouping of streams. Thus, there could be no potential grouping of disparate flow regimes that 

could create noise in flow-ecology data, but most studies do not take flow regime into 

consideration since many areas still do not have mapped flow classifications.  

METABOLISM AND FLOW METRICS  

Results from the field campaign indicate a negative trend between discharge and NEM in 

these systems; this negative trend appears to have been driven in part by the interplay between 

flow and respiration. Greater annual discharge over the year may drive streams toward 

heterotrophy by directly affecting the algal community composition. Another possibility may be 
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that grazers are mediating this relationship; herbivores may be more active in streams with lower 

annual discharge, thinning algal mats and driving up P:R ratios by ameliorating competition 

among periphyton, removing senescent cells, and ingesting microbes in the mat. It is worth 

noting that the observed relationships between discharge and metabolism appear to be driven 

more by Groundwater than Runoff streams Additionally, Runoff streams increased in respiration 

then decreased at greater discharge. This could reflect potential flow type-specific differences in 

algal community composition, in which Runoff stream communities respond more variably to 

increases in discharge, though data from a greater number of streams would be needed to support 

this with any certainty.  

My simulated dataset revealed that low sample size may have obscured important 

distinctions in metabolic responses to flow. Specifically, Groundwater stream ER and NEM 

were influenced by high flow while Runoff stream GPP was influenced by high flow, drying, and 

discharge across sites. This has significant management implications if flow regime mediates 

whether or not stream production rates are responsive to flow. Environmental flow standards for 

specific metrics may be more critical for some stream communities within one flow regime than 

they are for others. Another possibility is that Groundwater stream metabolism is simply 

responsive to other flow metrics not addressed in this study. Streams in different flow 

classifications may merit more individualized management strategies to maximize community 

health and ecosystem services.  

While data analyzed across both flow regimes revealed no significant relationships with 

high-flow days, simulated streams revealed that large flows resulting from flood events may 

have differential impacts on metabolism depending on flow class; specifically, GPP was affected 

moreso in Runoff streams while ER and NEM were influenced in Groundwater streams. Similar 
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to field data, simulated data also showed a negative response of Runoff stream GPP and ER with 

number of no flow days. Stream drying can depress annual metabolism by increasing 

competition for diminishing space and resources or, in some cases, completely eliminate 

production and respiration for days to months of the year in channels that experience total 

drying.  This abrupt shift in C dynamics may impact riparian communities that utilize streams for 

nursery habitat or that depend upon subsidies of stream insects as a food source. In systems with 

communities that have adapted to drying, community structure may differ from perennial (e.g. 

groundwater-dominated) streams. Community-level data in these flow regimes would allow me 

to evaluate this hypothesis, and I wish to highlight that metabolism data can be well-

complemented by community data that may explain differences and trends I am unable to 

address with the current study.  

As stream flow is altered by climate change-induced modification of weather patterns, 

ecosystem function (including metabolism) and community structure will also change. Greater 

magnitude and frequency of floods in some areas may negatively impact production and 

respiration rates in certain systems, but not others. More extreme droughts will make more 

systems susceptible to drying, also suppressing production and respiration in some streams. For 

communities not historically adapted to such flow extremes, the consequences for 

macroinvertebrate and fish communities could be dire. Even if streams do not completely dry, 

suppression of primary productivity below levels needed to support a diverse consumer 

community could negatively impact ecosystem function and services. Reference flow-ecology 

relationships within the framework of flow regime will allow scientists and policymakers to 

better understand streams as sentinels of climate change (Williamson et al. 2008).    
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BIOLOGICAL DRIVERS OF METABOLISM 

Even though algal biomass and total AFDM were greater in Groundwater streams, 

neither of these were significant drivers of GPP or ER across flow regimes. However, AFDM 

was positively related to respiration in simulated Groundwater streams, indicating that 

heterotrophic respiration may have been a key factor in Groundwater stream metabolism that 

was not shown in experimental streams due to low sample size. Ecosystem respiration drove 

trends in net metabolism in all streams, but microbial activity may yield a stronger influence in 

groundwater-dominated systems.  I explored potential environmental and flow variables whose 

influence AFDM may be mediating and identified no relationships. However, I did not measure 

variables that may have also influenced heterotrophic activity, such as benthic organic matter 

standing stocks or decomposition, and further exploration of these metrics would provide a more 

complete portrait of C dynamics in these systems. 

PHYSICAL AND CHEMICAL PARAMETERS 

Total N was not related to GPP or ER in experimental streams, though nitrogen was a 

positive predictor of GPP in simulated Runoff streams. Additionally, nitrogen concentrations 

depressed respiration in simulated Groundwater streams. Others have also found N to be a 

significant predictor of GPP (Bernot et al. 2010). Total nitrogen was low at all sites, and nitrogen 

is often a limiting nutrient in streams (Elser et al. 2008).  Total nitrogen tended to be lower in 

Runoff streams, and this trend was significant within the simulated dataset, indicating that 

nitrogen may be limiting in Runoff, but not Groundwater streams. Streams were all nested within 

heavily forested catchments (>84% forest), and streams with the largest N concentrations were 

actually situated within the most heavily forested catchments with very little to no agricultural or 

residential land use immediately upstream of my study reaches. Given that land use was not 

controlling N levels, as in other studies (Mulholland et al. 2008), I suggest that nitrogen from 
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pastoral land use outside of experimental Groundwater stream watersheds percolated through 

soil and dissolved in groundwater that eventually became part of those streams’ base flows.  

Similar to Bernot et al. (2010), I identified no relationships between phosphorus and 

GPP. However, other inter-regional studies have determined P to be a driver of GPP, and P 

concentrations were similar to those reported by others in forested systems (Lamberti and 

Steinman 1997, Mulholland et al. 2001). Both experimental and simulated streams exhibited 

similarly low P concentrations. It should be noted that there was not a large gradient in TP 

concentrations, as these streams were minimally-impacted reference systems. Phosphorus may 

not have been a limiting nutrient in these systems, though it is difficult to say, because while TN 

drove modeled Runoff GPP, neither potentially limiting nutrient drove metabolism in 

experimental or simulated Groundwater streams. Additionally, temporal variation in P and N 

concentrations may have influenced relationships, as I estimated GPP from continuous data, 

whereas P and N measurements were taken only once per month. These more infrequent 

measurements of TP and TN, and the measurement of nutrient concentrations rather than uptake 

rates (and, in turn, the comparison of a state to a production rate) may have failed to provide a 

sound estimate of nutrient availability to primary producers. Further, streams used in this study 

were all considered minimally-impacted, so there was not a large gradient of nutrient 

concentrations that could have impacted metabolism rates. 

Physical habitat heterogeneity has been shown to influence ecosystem processes 

(Cardinale et al. 2002). Experimental streams did not exhibit significant differences in substrate 

size, but I argue that this was due to one Runoff stream, Big Piney Creek, being dominated by 

bedrock and cobble. Big Piney had fewer boulders than the other two Runoff streams, increasing 

variation in substrate size for that flow class, which also had more variation in GPP than Runoff 
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streams. Importantly, all Runoff streams consisted of cobble or boulder substrates on top of 

bedrock while Groundwater streams were predominantly gravel and pebble that, beneath the 

immediate surface, provided a hyporheic corridor. Creating an expanded dataset revealed clear 

differences in substrate size as well as flow-type impacts of substrate size on GPP. There were 

contrasting trends in the data; Groundwater streams exhibited a negative trend between 

production and substrate size, while Runoff streams showed a positive trend. Other factors likely 

exert a larger influence on metabolism. For instance, the more stable substrate in Runoff streams 

might be expected to support more primary production, but the greater turbidity and more 

unstable annual flow of these streams may prevent algae from maximizing potential 

colonization. Thus, even though the smaller, more easily disturbed substrate in Groundwater 

streams tends to limit production, substrate size is not small enough to reduce primary 

production to Runoff stream levels. Additionally, hyporheic metabolism may be contributing to 

these trends (Mulholland et al. 1997), and greater attention to the influence of this habitat to 

instream C production and utilization may explain some of the trends in these streams.  

Temperature has been shown to synergistically increase production with light to enhance 

the photosynthetic capacity of primary producers. Temperature can also be predictive of 

respiration, as it exerts control on the speed of organismal metabolism (Hill et al. 2000, 

Mulholland et al. 2001, Acuña et al. 2008, Beaulieu et al. 2013). However, it can be difficult to 

consistently predict under what conditions temperature is a dominant control. It may be that the 

low range of annual temperatures in this study compared to other variables may have led to 

reduced capability to discern temperature-driven trends in both experimental and simulated data.  

Daily temperature drove daily GPP in all Runoff streams, but only one Groundwater 

stream. The lack of relationship between daily ER and water temperature at most study sites was 
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unexpected; daily water temperature was related to daily ER only in Sylamore Creek. Others 

have postulated that the effect of temperature on respiration is small, and others who have not 

shown relationships between ER and water temperature have attributed the lack of relationship to 

seasonal rather than annual measurements.  This lack of relationship in daily data, for which I 

only used temperature measured in the field, may have stemmed from the fact that estimates of 

GPP and ER, along with temperature measurements, were taken predominantly in the spring and 

summer, as probe malfunctions in the autumn and winter reduced the temporal resolution of 

estimates in some streams during those seasons. For annual temperature estimates, I filled in 

these gaps in temperature based on established relationships to gauge-measured temperatures. 

Similar to others, even the significant relationship between respiration and temperature at 

Sylamore Creek only explained a small percentage (15%) of the variation in metabolism rates 

(Sinsabaugh 1997, Uehlinger 2006).  

I recognize the limitations of this study given that only three streams per flow regime 

were included; however, the tendency for GPP to vary more in Runoff streams, while ER varies 

more in Groundwater streams is worthy of note and merits further attention.  Clear differences in 

the range of metabolism values between flow regimes reveals that identical management 

schemes may not work well for both flow regimes, and variation in flow metrics needed to 

sustain biological communities may indicate the need for close monitoring of a greater number 

of Groundwater streams. Though the spatial scope of this work is restricted, the temporal 

resolution of these data allows for deeper understanding of drivers and trends in metabolism 

within streams of the same flow classification.  

It is important to note that flow regimes are spatially clustered within established 

ecoregions, and dominant hydrology across northern Arkansas appears to be demarcated by these 
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ecoregion distinctions. Runoff streams are dominant in the Boston Mountains ecoregion of 

Arkansas, while Groundwater streams account for the majority of streams in the Ozark 

Highlands. Ecoregions represent areas of distinct habitat and are themselves nested within 

biomes (Dasmann 1973, Olson et al. 2001). Given the variation of landscape characteristics 

across ecoregions, they likely play an important role in shaping the mosaic of natural flow 

regimes within a biome. These findings are not simply a story of flow influences on stream C 

dynamics, but of landscape-level variables such as geological and soil characteristics, 

topography, and local climate that affect both terrestrial as well as aquatic production. A greater 

focus on ecoregion-level differences may reveal a more detailed portrait of controls and drivers 

of stream production and respiration.  

This comparison of forested systems across flow types provides a foundation for refining 

comparisons of stream metabolism across systems that may be similar in surrounding land use, 

but differ in flow regime metrics, such as intermittency, flood regime, and dominant water 

source. This is crucial for ensuring scientists and managers do not conflate natural variation 

based on differences in flow versus anthropogenic impacts and hydrologic alteration. Further, 

others have highlighted differences in metabolism across biomes (Mulholland et al. 2001) and 

land use categories (Bernot et al. 2010). My efforts reveal that metabolism may exhibit 

differences in functional variation even within a single biome, land cover classification, and even 

within a single flow regime. While biome and land use certainly play key roles in determining 

stream metabolism, I urge others to consider and incorporate flow regime into experimental 

designs and management decisions whenever possible. If the valley rules the stream (Hynes 

1975), landscape variation across a single biome or land use category likely gives rise to various 

stream characters and flow types, and even variation in hydrology within a flow type, which 
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exert their own unique influence on ecosystem function. These variable controls and flow-

metabolism relationships must not be overlooked as freshwater scientists seek to characterize 

patterns in productivity that have thus far proven elusive (Bernhardt et al. 2017).  
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APPENDIX 

TABLES 

Table 1. Spearman’s rank correlations between daily metabolism metrics (GPP= gross 
primary production, ER= ecosystem respiration) and daily discharge, temperature, and 
light (PAR). Significant correlations are marked with an asterisk (*). BPC (Big Piney 

Creek), LPC (Little Piney Creek) and Murray are Runoff sites. Roasting Ear, Spring, and 
Sylamore are Groundwater sites. 

 

 

Site Variable 1 Variable 2 r p-value

BPC GPP Discharge -0.49 <0.0001*

ER Discharge -0.03 0.64

GPP Temperature 0.28 <0.0001*

ER Temperature 0.04 0.04

GPP PAR 0.33 <0.0001*

LPC GPP Discharge -0.49 <0.0001*

ER Discharge -0.03 0.64

GPP Temperature 0.46 <0.0001*

ER Temperature 0.01 0.13

GPP PAR 0.33 <0.0001*

Murray GPP Discharge -0.10 0.19

ER Discharge -0.24 0.002*

GPP Temperature 0.23 <0.0001*

ER Temperature 0.05 0.83

GPP PAR 0.19 0.01*

Roasting Ear GPP Discharge -0.56 <0.0001*

ER Discharge 0.70 <0.0001*

GPP Temperature 0.003 0.44

ER Temperature 0.001 0.62

GPP PAR -0.01 0.86

Spring GPP Discharge 0.01 0.88

ER Discharge 0.35 <0.0001*

GPP Temperature 0.004 0.44

ER Temperature 0.01 0.21

GPP PAR 0.04 0.56

Sylamore GPP Discharge 0.35 <0.0001*

ER Discharge -0.59 <0.0001*

GPP Temperature 0.44 <0.0001*

ER Temperature 0.15 <0.0001*

GPP PAR 0.47 <0.0001*
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FIGURES 

 

Figure 1. Conceptual diagram illustrating existing model of factors controlling stream 
metabolism (A) and the model proposed in the current study (B), which incorporates the natural 

flow regime. GPP and ER denote gross primary production and ecosystem respiration, 
respectively. 
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Figure 2. Map of flow regimes in the Ozark and Ouachita Interior Highlands based on Leasure et 
al. (2016). Highlighted area shows individual study sites sampled from 2015-2016 across 

northern Arkansas. Teal streams in map represent Groundwater streams. Light green streams in 
map represent Runoff streams.  
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Figure 3. Annual gross primary production (GPP), ecosystem respiration (ER) (A), and net 

ecosystem metabolism (NEM) (B) in Runoff (white) and Groundwater (gray) streams. Error bars 
denote + 1 standard error. n= 3 per flow regime. 
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Figure 4. Seasonal average gross primary production (A) and respiration (B) in Runoff (white) 
and Groundwater (gray) streams. Error bars denote + 1 standard error. n= 3 per flow regime. 
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Figure 5. Daily rates of production (black) and respiration (gray) in Big Piney, Little Piney, 
Murray, Roasting Ear, Spring, and Sylamore from May 2015 to June 2016. Runoff streams are 

shown in panels on the left, Groundwater streams are represented in panels on the right. Gaps in 
data points not marked as “dry” show storm events and seven days of recovery under which GPP 

and ER were assumed to be close to zero. 
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Figure 6. Spearman’s rank correlations between annual metabolism metrics and flow variables 
across Runoff and Groundwater streams. Significant relationships between metabolism and flow 

metrics are highlighted with a red rectangle. GPP, ER, and NEM denote gross primary 
production, ecosystem respiration, and net ecosystem metabolism, respectively. Average 

discharge was flow averaged over the study year. Floods were defined as discrete hydrograph 
peaks exceeding the 100th percentile of mean annual flow. High flow days were defined as flows 

exceeding the 75th percentile of mean annual flow.  
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Figure 7. Ecosystem respiration (A) and net ecosystem production (B) compared 
with discharge across flow regimes. 
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Figure 8. Spearman’s rank correlations for biological, physical, and chemical parameters across 
Runoff and Groundwater streams. n= 3 per flow regime. Gross primary production, ecosystem 
respiration, and net ecosystem metabolism are denoted by GPP, ER, and NEM, respectively. 
Instream variable abbreviations are: Light as photosynthetically active radiation = PAR, algal 

biomass measured as chlorophyll a= Chl a, periphyton ash-free dry mass= AFDM, total 
phosphorus= Total P, total nitrogen= Total N, water temperature= H2O Temp, canopy cover= 

Canopy, substrate size= Substrate.  
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Figure 9. Gross primary production (GPP) and ecosystem respiration (ER) in simulated Runoff 

(white) and Groundwater streams (A). Panel (B) shows net ecosystem metabolism (NEM) 
between modeled flow regimes. Error bars denote + 1 standard error. n= 15 per flow regime. 
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Figure 10. Spearman’s rank correlations between modeled metabolism and environmental 
variables in simulated Runoff (A) and Groundwater  (B) streams. Correlations evaluated 

relationships within each individual flow regime. Significant correlations are highlighted in red 
rectangles. n= 15 per flow regime. Gross primary production, ecosystem respiration, and net 
ecosystem metabolism are denoted by GPP, ER, and NEM, respectively. Instream variable 

abbreviations are: Light as photosynthetically active radiation = PAR, algal biomass measured as 
chlorophyll a= Chl a, periphyton ash-free dry mass= AFDM, total phosphorus= Total P, total 
nitrogen= Total N, water temperature= H2O Temp, canopy cover= Canopy, substrate size= 

Substrate. 
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Figure 11. Spearman’s rank correlations between modeled metabolism and flow metrics in 
simulated Runoff (A) and Groundwater (B) streams. Correlations evaluated relationships within 
each individual flow regime. Significant correlations between metabolism and flow metrics are 
highlighted in red rectangles. n= 15 per flow regime. GPP, ER, and NEM denote gross primary 

production, ecosystem respiration, and net ecosystem metabolism, respectively. Average 
discharge was flow averaged over the study year. Floods were defined as discrete hydrograph 

peaks exceeding the 100th percentile of mean annual flow. High flow days were defined as flows 
exceeding the 75th percentile of mean annual flow. 
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The influence of flow regime on sources and factors related to greenhouse gas emissions from 

Ozark streams 
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ABSTRACT 

Streams are significant contributors of carbon dioxide (CO2) and methane (CH4) to the 

atmospheric carbon (C) sink. The effects of land use and biome on the magnitude of these 

emissions have been the subject of a small number of studies. However, flow regime may 

account for a portion of the variation in C gas emissions within a biome or land use category. 

Flow regime is comprised of the magnitude, timing, duration, predictability, and rate of change 

of streamflow. No studies to date have examined how flow regime within a biome and land 

cover category may influence CO2 and CH4 emissions, as well as factors related to C emissions. 

Two dominant flow regimes, Runoff Flashy (Runoff) and Groundwater Flashy (Groundwater) 

systems, exist within northern Arkansas. These flow regimes differ in dominant water source, 

intermittency, and flood frequency. Carbon dioxide and CH4 fluxes and δ13C values were 

measured to estimate relative source contributions in six temperate, forested-headwater streams 

on six dates from May 30- September 2, 2017. I also quantified instream biological, physical, 

and chemical variables that were hypothesized to be related to C gas emissions. Field data were 

used to produce a dataset of 15 simulated streams per flow regime (N=30 modeled streams) to 

determine whether increased sample size may affect results and to explore variables that may 

explain variation in C gas fluxes. Runoff stream CO2 fluxes averaged 0.12 (+ 0.02 SE) mol m-2 d-

1 over the study period while Groundwater streams emitted 0.18 (+ 0.12 SE) mol m-2 d-1. Runoff 

stream CH4 flux rates averaged 0.22 (+ 0.10 SE) mmol m-2 d-1 while Groundwater stream CH4 

fluxes averaged 0.46 (+ 0.25 SE) mmol m-2 d-1. Carbon dioxide and CH4 fluxes did not differ 

across flow regimes in the six field sites (CO2: p= 0.63 CH4: p= 0.42). Sources of CO2 across 

flow regimes based on δ13C data were the product of mixing between soil-respired and 

atmospheric CO2 (δ13C= -17.6 to -22.0 per mil ). Thermogenic CH4 was also found in streams of 
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both flow regimes, but Groundwater streams also revealed areas evading biogenic CH4 (Runoff  

δ13C = -38.8 to -43.7 per mil, Groundwater δ13C = -32.5- 60.0 per mil). Negative relationships 

were identified between dissolved organic carbon (DOC) and CO2 flux during two of the 

sampling events (July: R2= 0.70, p= 0.04, mid-August: R2= 0.85, p= 0.03). On the July date, total 

organic carbon (TOC) was also negatively related to CO2 flux (R2= 0.76, p= 0.02), while on the 

other sampling date, ER exhibited a negative relationship with CO2 along with DOC (R2= 0.92, 

p= 0.04). Dissolved organic carbon was positively related to CH4 flux in mid-August (R2= 0.50, 

p= 0.03). Modeled streams exhibited no difference between CO2 or CH4 fluxes, but multiple 

linear regressions revealed that global models explained the most variation in CO2 fluxes (97% 

in Runoff streams, 83% in Groundwaters treams), with different variables of greatest significance 

within each natural flow regime. The global model also explained the 95% of the variation in 

CH4 emissions in Runoff streams, but no candidate models explained variation in Groundwater 

CH4. These results provide a case for assessing sources and controls on C gas dynamics within 

the context of flow regime by revealing different sources and drivers of CH4 fluxes from stream 

surfaces.  

INTRODUCTION 

Inland freshwaters are integral components of the global carbon (C) cycle, as streams and 

rivers act as conduits through which carbon moves from terrestrial ecosystems to oceans. A 

growing body of research has revealed that streams are not merely passive pipes transporting C 

to marine environments, but rather reactors that transform organic carbon and emit excess in the 

form of CO2 and CH4 (Battin et al. 2009, Butman and Raymond 2011) (Figure 1). Terrestrial C 

budgets have likely grossly overestimated the size of the terrestrial C sink by attributing C that 

enters the aquatic pool to terrestrial storage or uptake (Cole et al. 2007, Battin et al. 2008). 
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Carbon is then utilized by aquatic biota to meet energetic demands, transported down the river 

network to adjacent streams, wetlands, and lakes, and/or evaded to the atmosphere. Carbon 

dioxide and methane emitted from streams also come from microbial metabolism and biological 

activity in the stream and surrounding watershed soil. Carbon dioxide is a byproduct of aerobic 

respiration, while methane originates from anaerobic methanogenesis (Hotchkiss et al. 2015, 

Stanley et al. 2016). Abiotic processes can also introduce C species into a stream. Carbon 

dioxide as well as methane may diffuse into the water column (Figure 1, Flux A) or seep through 

groundwater upwellings in the stream bottom (Figure 1 Flux H); CH4 also moves from sediments 

through the water column (Figure 1; Flux I). Although streams make up a small percentage of 

the landscape area, they are hot spots for CO2 and CH4 emissions as byproducts of a number of 

biotic and abiotic processes, and thus must be included in C budgets to fully characterize 

landscape C dynamics (Raymond et al. 2013).  

Methane was once thought to be negligible in streams due to aerated conditions (Dahm et 

al. 1991). However, streams are indeed significant sources of this potent greenhouse gas; while 

CH4 comprises a small portion of watershed C budgets, streams are significant sources of CH4 to 

the atmosphere at the watershed-scale (Stanley et al. 2016). Methane has received less attention 

than CO2 with regard to stream C gas footprints, an unfortunate oversight given that CH4 is 

nearly four times as potent as CO2 with respect to atmospheric warming potential (Lashof and 

Ahuja 1990).  

Climate change as a result of anthropogenic greenhouse gas emissions is an urgent 

problem that requires a detailed understanding of global C sources and sinks to develop 

mitigation strategies and potential solutions (King 2004, Palmer et al. 2008). Carbon budgets 

provide an estimate of natural and anthropogenic variation in CO2 and CH4 across the landscape, 
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and are of paramount importance in mitigating the effects of climate change by quantifying 

anthropogenic and natural C sources and sinks. However, few studies have addressed the flux of 

CO2 between inland freshwaters and the atmosphere using direct measurements (Cole et al. 

2007), which is likely significant enough to affect the global C budget (Butman and Raymond 

2011). Further, data characterizing CH4 emissions are extremely limited in spatial and temporal 

coverage, underscoring the need for further investigation to reveal potential landscape-level 

patterns in stream CH4 loss over time.  

No work has quantified CO2 flux within the context of hydrologic regime, which can 

exert control over C emissions via differences in water sources (e.g. groundwater versus runoff-

dominated systems) as well as geomorphology, intermittency, and frequency of flood events 

(Striegl and Michmerhuizen 1998) over the seasonal or annual time scales used to categorize 

natural flow regimes within biomes (Leasure et al. 2016).  For example, streams with significant 

contributions from CO2-saturated groundwater may emit more greenhouse gases to the 

atmosphere, while drying should reduce emissions, though dry streambeds should still produce 

CO2. Rewetting of the dry channel and flooding should both increase C gas flux rates (Gomez-

Gener et al. 2016). Additionally, there is a paucity of data investigating the relationship between 

instream metabolism and greenhouse gas emissions (Hotchkiss et al. 2015). Further, measuring 

greenhouse gas fluxes across flow regimes will aid in model parameterization across six 

ecoregions (e.g. the Ozark Highlands, Boston Mountains, South Central Plains, Arkansas River 

Valley, Ouachita Mountains, and High Plains) (Woods et al. 2004, Woods et al. 2005), allowing 

for model development needed to provide regional predictions regarding CO2 and CH4 dynamics 

in streams and changes to watershed C budgets as the effects of climate change become more 

pronounced. 



70 
 

Recent work has revealed temperate streams to be significant C sources, emitting an 

estimated 0.5 petagrams of C to the atmosphere each year.  However, this prediction was 

generated with uncertainties regarding three controls on C gas evasion: variation in gas transfer 

velocities across streams, no information regarding the actual concentration of CO2 in water, and 

high resolution with respect to the global surface area of streams and rivers (Butman et al. 2013). 

While the importance of these systems to atmospheric greenhouse gas concentrations is 

becoming more apparent, data quantifying variation across systems is scarce (Cole et al. 2007, 

Battin et al. 2009, Wallin et al. 2012), leading to an inadequate understanding of how gas transfer 

may vary among headwater systems. Spatial coverage of greenhouse gas evasion is lacking as 

well, likely resulting in continued underestimation of the role of streams in landscape C cycling. 

While others have provided estimates of C emissions in the United States, (Butman and 

Raymond 2011, Raymond et al. 2013, Hotchkiss et al. 2015), the focus of these efforts was on 

river size. These studies relied on proxy measurements (e.g. alkalinity, temperature, and pH) 

rather than direct measurements of greenhouse gas evasion, and most direct measurements of C 

gas emissions are recorded in lakes. Alkalinity, pH, and temperature each exhibit a positive 

relationship with dissolved CO2; fluxes are then calculated from dissolved measurements by 

utilizing the gas exchange coefficient of CO2 along with the concentration of CO2 in the 

atmosphere (Butman and Raymond 2011).  

Direct measurements are preferable to proxy measurements because C gas flux may be 

affected by certain parameters that do not alter physicochemical variables, thereby leading to 

measurement inaccuracy. For example, CO2 exchange with the atmosphere and photosynthesis 

both affect CO2 emissions from streams, but have no effect on alkalinity, and while calcification 

(i.e. removal of calcium and bicarbonate from water by organisms to create shells) can affect 
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both CO2 and alkalinity, it does not affect pH (Libes 2009). Methane has been directly 

quantified, but efforts have been primarily focused on boreal streams, and more data 

characterizing CH4 emissions are needed throughout the United States since organic matter 

contributions to streams, and therefore CO2 and CH4 production, will likely differ at least by 

biome. Data focused on boreal networks may yield higher estimates for CH4 emissions given the 

greater amount of soil organic matter found in northern systems. Thus, anaerobic hotspots of 

CH4 production may occur with greater temporal or spatial extent in boreal systems than in 

temperate streams (Crawford et al. 2013, Crawford et al. 2014). A striking paucity of work has 

directly measured emissions of CO2 and CH4 from temperate streams in particular, and I 

hypothesize that work focused on C gas emissions has ignored the primary driver of all stream 

patterns and processes: flow regime.  

Greenhouse gas evasion and flow regime 

The natural flow regime is characterized by the timing, quantity, and variability of stream 

flow, governing spatiotemporal variation in water quality and quantity (Poff et al. 1997). Flow 

within the channel may vary based on the water source (e.g. groundwater versus runoff). Flow 

regime likely governs stream CO2 and CH4 fluxes as well. However, current management and 

policy makers overlook the primacy of flow regime when making regulatory decisions (Poff et 

al. 2010). This is problematic given that the flow regime directly influences ecosystem services 

such as providing adequate amounts of clean water for human consumption, serving as habitat 

for an abundance of wild and game freshwater species, and providing basal resources for 

downstream and surrounding terrestrial habitats (Millenium Ecosystem Assessment 2005, 

Palmer et al. 2014). Additionally, flow alteration from anthropogenic activities negatively 

impacts stream ecosystems by altering stream temperature and dissolved oxygen (DO) 
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concentrations (Nelson and Palmer 2007), changing or removing habitat, and disrupting natural 

flow variation that is critical to many aquatic animals’ life cycles (Poff et al. 2010, Poff and 

Zimmerman 2010). These changes are likely associated with changes in C emissions from the 

stream channel to the atmosphere.  It is imperative to ascertain how C storage and flux is 

influenced by hydrologic regime, as such data would provide a baseline by which to compare 

streams that have been disturbed by land use and climate change.   

Headwater streams comprise the majority of streams within a network and half of all 

river miles in the United States (Leopold et al. 1964), exerting a profound influence over 

downstream water quality and quantity as well as carbon cycling throughout watersheds and 

ecoregions (Alexander et al. 2007).  Importantly, these small, high gradient streams emit more 

CO2 per meter to the atmosphere than large rivers, and spatial coverage of direct measurements 

of CO2 evasion is exceedingly poor. Even less work has focused on CH4 emissions. Further, 

forested streams emit more CO2 than row-crop agricultural systems, underscoring the need to 

account for specifically forested headwater streams, which account for the largest fraction of 

stream contributions to regional greenhouse gas budgets per unit area (Butman and Raymond 

2011). Others have pointed out that CO2 emitted from streams could account for up to 10% of all 

natural CO2 emissions in Sweden (Butman et al. 2016) emphasizing the importance of streams as 

integral components of the C balance of whole landscapes, and understanding the role of high 

gradient, temperate forested headwater systems is especially needed given their high gas transfer 

velocities and terrestrial C inputs (Cole et al. 2007, Butman and Raymond 2011, Raymond et al. 

2012).  

Recent efforts in the Ozark and Ouachita Interior Highlands, which encompasses much of 

Arkansas as well as eastern Oklahoma and southern Missouri, have successfully mapped natural 
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flow regimes based upon flow metrics gleaned from reference gauge data along with landscape-

level GIS-based variables (Leasure et al. 2016). These flow regime designations provide ample 

opportunity for questions regarding how hydrologic regime may influence ecosystem function 

and community dynamics. While others have begun the important work of exploring flow- 

ecology relationships within these mapped flow types (Bruckerhoff and Magoulick 2017, Lynch 

et al. 2018), little to no inquiries into ecosystem-level metrics have been undertaken based on 

these designations, and addressing greenhouse gas emissions represents a further step to explore 

possible ecohydrological distinctions that may influence C biogeochemistry and thus link 

hydrology-biology relationships with CO2 and CH4 emissions. I sought to determine potential 

differences and relationships between and across the two dominant flow regimes in northern 

Arkansas: Groundwater Flashy streams and Runoff Flashy streams (hereafter Groundwater and 

Runoff).  

The first objective of this study was to determine whether differences existed in CO2 and 

CH4 fluxes as well as C gas sources between Groundwater and Runoff streams. I expected CO2 

and CH4 fluxes to be greater in groundwater-dominated streams due to the influx of CO2-rich 

groundwater, greater community respiration (Chapter 1), and gravel-dominated substrate (as 

opposed to bedrock in Runoff streams) that may support small anaerobic pockets within the 

hyporheic zone (Figure 2). The second objective was to determine whether relationships existed 

between C gas fluxes and selected biological, physical, and chemical parameters across both 

flow regimes (Table 1). I expected CO2 flux to be related to daily gross primary production and 

respiration, pH, and alkalinity given that the latter two metrics can be used to model CO2 

dynamics. The third objective was to use the data from six streams to simulate a larger number of 

streams to determine potential relationships between factors and gas fluxes within each flow 
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regime that may have been indiscernible with a sample size of three streams per flow regime.  

Small sample sizes are typical of ecosystem-scale studies (e.g. Bormann et al. 1974, Schindler 

1977), but do not have the statistical power of smaller-scale manipulations with greater 

replication (Quinn and Keough 2002).  

METHODS 

Study Sites 

This study was conducted in six minimally impacted headwater streams with deciduous- 

forested land cover ranging from 84.8 to 97% of total watershed area (CAST 2007) (Figure 3). I 

chose three Groundwater streams and three Runoff streams of similar size and discharge. These 

two natural flow regimes are spatially clustered within the Ozark Highlands and Boston 

Mountains ecoregions, respectively, and comprise the two dominant flow regimes in northern 

Arkansas, southern Missouri, and eastern Oklahoma (Leasure et al. 2016).   

Four streams were located upstream of United State Geological Survey gauging stations. 

Two Groundwater streams (Roasting Ear and Spring) were not located directly upstream from 

gauges; however, these streams were located near streams (within the same watershed) of the 

same order and similar size with gauges. There were significant relationships between 

measurements made in those two stream reaches and two “proxy gauges” within the same 

watershed (one of which was Sylamore Creek, a Groundwater stream in this study), allowing for 

quantification of flow metrics for all six streams over the year. Watershed areas ranged from 

20.99 to 38.77 km2 (Table 1). Both flow types exhibit flashy hydrology marked by floods of 

large discharge in short duration. The majority of flow in Runoff streams originates from 

overland runoff and precipitation, and Runoff streams typically dry for several days to weeks 

each year. Groundwater streams are heavily influenced by spring water inputs and tend to flow 

year-round.  
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Experimental Design 

I sampled each stream six times over a range of discharges (0.70-7.92 m3/s) from May 

30th, 2017 to September 2nd, 2017. I did not sample Murray Creek, a Runoff stream, during the 

mid-August sampling event due to a large flood that prevented access to the site. Measurements 

of CO2 and CH4 exchange with the atmosphere were collected using a floating chamber 

constructed from an inverted bucket attached to a sheet of foam approximately 4 centimeters 

from the edge of the bucket so as to ensure the chamber was completely sealed to the stream 

surface. I inserted tubing into the top of the chamber that could be clamped shut between 

samples. The chamber was attached to small weights to anchor it in place in the stream channel. I 

collected discrete 150 mL gas samples with a 50 mL syringe from the sealed chamber every 10 

minutes from 0 to 30 minutes (i.e. four samples in each location) at the top and bottom of each 

200-meter stream reach. Air samples were injected into pre-evacuated gas bags. I determined C 

gas concentrations and C isotopic signatures in each sample by running gas samples into a 

Picarro G2201-i carbon isotope analyzer (Picarro Inc., Santa Clara, CA). I calculated CO2 and 

CH4 fluxes based on the gas concentration change within the sealed chamber over time (i.e. over 

10 minutes) according to the equation 

                                                               JCO2= dc/dt * h       [1] 

where dc/dt is the change in gas concentration in the chamber air in parts per million (ppm) over 

time in minutes multiplied by the height (h) of the chamber in meters minus the submerged 

portion (Crawford et al. 2013). I converted fluxes using the ideal gas law and reported 

measurements in moles meter-2 day-1 for CO2 and millimoles meter-2 day-1 for CH4.  

 Continuous DO and temperature were recorded using a MiniDOT logger at the bottom of 

four of the six reaches per sampling event. Each probe was set to log every 15 minutes for 24 
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hours, from the evening on the day of chamber deployment until midnight of the following day. 

Photosynethetically-active radiation (PAR) measurements were logged concurrently with 

metabolism parameters using an Odyssey PAR light meter (Dataflow Systems Ltd., 

Christchurch, NZ) positioned in an area near the stream with open canopy. Reaeration 

coefficients as estimates of air-water gas exchange were determined via a propane and salt 

release at each stream. Corrections for groundwater contributions to reaches receiving 

appreciable inputs were made according to Hall and Tank (2005) by measuring DO in water at 

upwellings as well as discharge down the reach to determine springwater gains and losses from 

springs to the sonde within the 200-meter study reach. I calculated reach-scale metabolism based 

on changes in DO, temperature, depth, and light measured over the 24-hour period using the 

StreamMetabolizer package in R (version 3.4.3) to determine gross primary production and 

respiration according to a single-station, open-channel metabolism model within a maximum 

likelihood framework:  

�2(�) = �2(� − ∆�) + (
���
����

�
×

���(�)

∑���24
) + (

��
����

�
× ��) + �(�)(�2���(�) − �2(�))��  [2] 

where t is time and Δt is the time step between measurements (15 minutes), � is mean reach 

depth, ∑���24  is daily photosynthetically active radiation, and K(t) is air-water gas exchange 

corrected for temperature. Solving this equation for GPPTotal and ERTotal yielded daily rates of 

production and respiration for each sampling date at each stream that were regressed with CO2 

and CH4 gas flux measurements across streams on each sampling date to determine whether 

metabolic parameters were driving C gas evasion on those dates.  

I collected triplicate water samples in each reach to determine concentrations of total 

organic carbon (TOC), dissolved organic carbon (DOC), and dissolved inorganic carbon (DIC). 

Samples were analyzed on a Shimadzu TOC-Vcsh analyzer (Shimadzu Corporation, Kyoto, 
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Japan). I also retrieved triplicate samples to determine pH with a Thermo Scientific handheld 

meter and total alkalinity via acid titration in the laboratory. I collected six cobbles per stream 

per sampling event to estimate algal biomass as chlorophyll a by ethanol extraction (Sartory and 

Grobbelaar 1984). I measured discharge using the mid-section method (Gore 2006).  

Factors related to CO2 and CH4 fluxes across streams were determined by analyzing 

potential relationships averaging factors across sampling dates as well as on each sampling date. 

To do this, data were first visually inspected to explore whether potential linear or non-linear 

relationships existed between fluxes and instream variables (e.g. water chemistry, discharge, and 

algal biomass). Subsequently, linear regressions were employed to test for significant 

relationships between C gas fluxes and instream variables. T-tests were used to determine 

whether differences exist in C gas fluxes and stream variables between Groundwater and Runoff 

streams. Variation in data is reported as + 1 standard error.  

To increase statistical power and explore potential relationships between C gas flux and 

stream variables within each flow class, I simulated a dataset with 15 streams from each flow 

regime (N=30). Each set of five simulated streams within a flow class was sampled from a 

normal distribution using each variable in the field data set from each stream to set minimum, 

maximum, mean, and standard deviation parameters within each flow class to conserve possible 

relationships across variables. I again ran t-tests to determine whether differences exist between 

Groundwater and Runoff stream gas fluxes and stream variables. I then separated the dataset by 

flow regime and utilized an information theoretic approach to determine what set of variables 

best explained variation in CO2 and CH4 fluxes, respectively, in Runoff and Groundwater 

streams. 
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RESULTS 

All streams in this study were net sources of CO2 and CH4 to the atmosphere (Figure 4). 

Methane fluxes in individual Runoff streams ranged from 0.03 to 1.45 (+ 0.08) mmol m-2 d-1 and 

from 0.05 to 2.04 (+ 0.14) mmol m-2 d-1 in individual Groundwater streams over the study 

duration (Figure 5). Runoff stream CO2 fluxes ranged from 0.03 to 0.23 (+ 0.015) mol m-2 d-1 

over the study period while Groundwater streams emitted 0.02 to 0.58 (+ 0.034) mol m-2 d-1. 

There was no significant difference between CO2 fluxes measured across sites during storms 

versus during base flow (p= 0.14). Methane fluxes were also similar regardless of whether 

measurements were made during storms or not (p= 0.75). Separating sites by flow regime also 

made no difference; CO2 fluxes at base flow (p= 0.57) and storm flow (p= 0.24) did not differ 

between flow regimes. Methane fluxes at base flow (p= 0.66) and storm flow (p= 0.39) also did 

not differ between flow regimes.  

Carbon dioxide fluxes did not differ over the study period between flow regimes (p= 

0.63), though Groundwater streams tended to emit more CO2 and were more variable in CO2 

fluxes than Runoff streams (Figure 5). Methane fluxes also did not differ between flow regimes 

(p= 0.42); however, Groundwater streams tended to emit more CH4 and were more variable in 

the amount of CH4 produced than Runoff streams.  

Carbon dioxide δ13C isotope values ranged from -25.16 to -13.10 per mil in Runoff 

streams and from -23.22 to -14.6 per mil in Groundwater streams from May through September 

(Figure 6). Sources of CO2 across streams were a mixture of riparian soil respiration and 

atmospheric CO2.  Methane in Runoff streams originated from natural gas (δ13CH4= -34.29 to -

45.42 per mil), while both thermogenic and biogenic CH4 were measured in Groundwater 

streams (δ13CH4= -26.35 to -59.8 per mil) (Figure 6).   
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Groundwater streams tended to yield numerically greater rates of gross primary 

production (p= 0.09) and respiration (p=0.36), though differences were not significant. Gross 

primary production ranged from 1.76 to 4.31 g O2 m2 day-1 over the summer in Groundwater 

streams and from 0.28 to 0.78 g O2 m2 day-1 in Runoff streams. Gross primary production 

averaged 2.83 (+ 0.76) g O2 m2 day-1 in Groundwater streams and 0.57 (+ 0.15) g O2 m2 day-1 in 

Runoff streams. Ecosystem respiration varied from -1.95 to -7.35 in Groundwater streams and 

from -1.65 to -4.16 in Runoff streams. Groundwater stream mean ER over the summer was -4.75 

(+ 1.56) g O2 m2 day-1 while Runoff stream ER averaged -2.89 (+ 0.73) g O2 m2 day-1.  

Algal biomass was greater and more variable at Groundwater sites over the summer (p= 

0.02) (Figure 7a). Runoff chlorophyll a concentrations at each site over the study varied from 

13.8 to 27.7 mg cm-2. Groundwater site algal biomass varied from 144.5 to 210.6 mg cm-2. 

Runoff sites averaged 22.36 (+4.3) mg chlorophyll a cm-2, while chlorophyll a at Groundwater 

sites averaged 199.1 (+ 28.79) mg cm-2. Algal biomass consistently tended to be greater in 

Groundwater streams on individual sampling dates. All streams experienced reduced algal 

biomass following a large flood event on August 15th. Two Runoff streams exhibited increasing 

biomass until the flood, while the third Runoff stream, Little Piney Creek, exhibited a reduction 

in biomass before the storm. Runoff stream responses in the flood recovery period were variable; 

one stream yielded consistent chlorophyll a levels, while algal biomass increased at Little Piney 

Creek and decreased at Murray Creek. Groundwater streams each differed in algal biomass over 

the summer; Spring Creek was consistent until the large flood, while chlorophyll a in Sylamore 

and Roasting Ear Creeks increased prior to the flood. Afterward, the Roasting Ear algal 

community appeared to consistently recover, but the communities at Spring and Sylamore 

continued to decline through the last sampling date.  
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Groundwater streams held numerically greater and more variable concentrations of TOC 

(p= 0.097) and DOC (p= 0.22), averaging 31.3 (+ 9.2) mg L-1 TOC and 23.6 (+ 12.1) mg L-1 

DOC over the study period (Figure 7b and 7c). Groundwater stream TOC at each site ranged 

from 20.3 to 49.5 mg L-1 while DOC ranged from 4.1 to 47.0 mg L-1. Runoff stream TOC 

concentrations were 4.0 (+ 0.5) mg L-1 while DOC averaged 1.9 (+ 0.7) mg L-1. Total organic C 

concentrations at Runoff sites varied from 3.0 to 4.6 mg L-1; DOC varied from 0.9 to 3.1 mg L-1. 

Total organic C concentrations increased two-to-tenfold across streams during and following the 

August 15th flood. However, three streams, Murray (Runoff), Spring (Groundwater), and 

Roasting Ear (Groundwater), dropped to below-flood concentrations in the following weeks as 

discharge returned to base flow.  

Groundwater streams had larger DIC concentrations (p= 0.004) and alkalinity (p= 0.003) 

(Figure 7d). Dissolved inorganic C values ranged from 31.3 to 36.8 mg L-1 in Groundwater 

streams and from 4.9 to 5.0 mg L-1 in Runoff streams. Alkalinity varied from 153.7 to 182.5 mg 

CaCO3 L-1 at Groundwater sites and from 10.7 to 15.4 CaCO3 L-1 at Runoff sites. Dissolved 

inorganic C concentrations averaged 33.3 mg L-1 compared to 4.9 mg L-1 in Runoff streams; 

mean alkalinity in Groundwater streams over the summer was 165.5 mg CaCO3 L-1 compared to 

Runoff streams’ 12.8 mg CaCO3 L-1 (Figure 7e). The pH across flow regimes was similar (p= 

0.60), ranging from 7.09 to 7.24 in Runoff streams and 7.13 to 7.32 at Groundwater sites (Figure 

7f). DIC concentrations at Runoff sites varied between 6-8 mg L-1 across sites during the early 

portion of the summer, then dropped to 2-5 mg L-1 after the August 15th flood event at each site. 

Groundwater streams exhibited an opposite pattern, with DIC concentrations increasing 

consistently over the summer; values ranged from 28.8 to 34.5 earlier in the summer, then 

jumped to 32.5 to 38.5 following the flood and continued to steadily increase at all sites but 
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Spring Creek, which experienced a drop to pre-flood DIC levels by September 6th. Alkalinity in 

Runoff streams was consistent over the study period, albeit more variable following the August 

15th flood, while Groundwater streams exhibited consistent alkalinity over the entire study. All 

sites experienced a slight (<0.5) drop in pH following the flood, though Little Piney Creek 

recovered by the following week, while  other sites were consistently lower than pre-flood levels 

for the remaining two weeks of the study.  

Average discharge tended to be greater at Runoff streams over the study period (p=0.10); 

average Runoff stream discharge was nearly two times greater than Groundwater discharge even 

after removing the August 15th flood event (0.97 vs. 0.49 m3s-1). Average summer discharge 

measured during the six sampling events varied from 2.50 to 7.92 m3s-1 at Runoff sites; removing 

the August 15th flood reduces these values from 0.70 m3s-1 to 1.28 m3s-1.  Groundwater site 

discharge varied from 0.30 to 0.90 m3s-1 for the summer.Runoff discharge varied over the 

summer with incident rainfall while Groundwater streams exhibited consistently reduced 

discharge at all sampling events over the summer. Average summer discharge measured during 

the six sampling events varied from 2.50 to 7.92 m3s-1 at Runoff sites; removing the August 15th 

flood reduces these values from 0.70 m3s-1 to 1.28 m3s-1.  Groundwater site discharge varied 

from 0.30 to 0.90 m3s-1 for the summer. 

Linear regressions were used to evaluate relationships since visual inspection of data 

suggested this approach. Additionally, Pearson’s correlation coefficients were greater than 

Spearman’s rank coefficients, suggesting more linear relationships. No significant relationships 

were identified between CO2 or CH4 fluxes and any stream variable averaged over the summer 

(Table 2).  Further, no significant relationships were identified between CO2 or CH4 fluxes and 

discharge on each sampling date at the individual site level. I also explored potential 
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relationships between C gas fluxes and stream metrics on each sampling date, as changes in 

discharge over the sampling period as well as storm events may have influenced results (Figure 

8).   

Carbon dioxide flux was negatively related to TOC (R2= 0.70 p= 0.02) and DOC (R2= 

0.62 p= 0.04) on the July 1st sampling event. Dissolved organic C was also negatively related to 

CO2 flux measured in mid-August (R2= 0.80 p= 0.03). Ecosystem respiration measured during 

the mid-August sampling event was also negatively related to CO2 flux (R2= 0.88 p= 0.04). 

Dissolved organic C was positively related to CH4 flux measured during mid-August sampling 

(R2= 0.80 p= 0.03) (Figure 9).  

SIMULATIONS 

The simulated dataset yielded no significant differences between CO2 flux (p=0.19) or 

CH4 flux (p= 0.15) by flow regime (Figure 10). Similar to my field sites, modeled Groundwater 

sites exhibited greater TOC (p= 0.0001), DIC (p< 0.0001), alkalinity (p< 0.0001) and GPP (p< 

0.0001). The expanded dataset also revealed greater algal biomass (p< 0.0001) and DOC (p= 

0.009) in modeled Groundwater streams. Discharge was greater in modeled Runoff streams (p< 

0.0001).  

Variation in simulated Runoff stream CO2 flux was best explained by a global model 

modified to exclude one outlier in the model, as well as a second data point to improve 

homoscedasticity (R2=0.97, p= 0.04) (Table 3). Within the global model, TOC (p= 0.02) and 

GPP (p= 0.02) were significant variables. A global model also explained the most variation in 

modeled Runoff stream CH4 flux (R2=0.95, p= 0.002) (Table 4); algal biomass was the sole 

significant variable in the global model (p= 0.0009). Simulated Groundwater stream CO2 flux 

variation was best explained by a global model (R2=0.83, p= 0.009, Table 5) in which discharge 
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was significant (p= 0.009). None of the candidate models explained a significant amount of 

variation in CH4 flux (Table 6). 

DISCUSSION 

All streams in this study were consistent C gas sources to the atmosphere, as others have 

reported (Butman and Raymond 2011, Crawford et al. 2013, Crawford et al. 2014, Stanley et al. 

2016). Carbon dioxide fluxes measured in these streams across flow regimes were within range 

of those reported in the conterminous United States as well as Alaskan streams (Butman and 

Raymond 2011, Crawford et al. 2014) (Table 7). However, streams in the present study evaded 

nearly twice as much CO2 as boreal systems outside the United States (Jonnson et al. 2007, 

Teodoru et al. 2009, Kaprivnjak et al. 2010), suggesting that temperate streams are likely 

significantly greater sources of C to the atmosphere than boreal streams. I compared my CH4 

flux rates to those reported as total fluxes since I did not separate diffusive and ebullitive 

contributions in these systems. Methane emissions across streams tended to be lower than the 

mean of published total CH4 fluxes, though all sites were well within range of published values 

(Crawford et al. 2014, Stanley et al. 2016).  

Given that groundwater is typically supersaturated in CO2, I initially hypothesized that 

greater flux rates due to the attribution of carbonate weathering in addition to biological 

processes. However, even though Groundwater streams hold more dissolved organic and 

inorganic C, they do not emit significantly more CO2 than Runoff streams. Further, while 

Groundwater streams respire more on average than Runoff streams, respiration also does not 

appear to drive up flux rates. In fact, the greatest CO2 flux rates from this study came from 

Roasting Ear Creek, a Groundwater stream, but CO2 flux rates at other Groundwater sites on 

most of my sampling dates were similar to Runoff stream fluxes. It may be that Groundwater 
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streams’ greater primary production rates and algal biomass may be responsible for similar flux 

rates, as algae may be incorporating a significant fraction of DIC into biomass, serving as an 

instream biogenic C sink during the growing season.  

These findings support the assertion that flow regime influences CH4 sources and 

dynamics. Runoff streams exhibited markedly depressed CH4 emissions following the mid-

August flood that remained low through the final two sampling events; this same pattern was not 

observed in CO2 flux. This contrasts with other studies that have found CH4 emissions to spike 

during floods. The primary source of CH4 in Runoff streams is from subsurface shale gas, and 

high flows may have exported dissolved CH4 that built up during the declining flows of the hot 

summer out of the reach. Conversely, Groundwater CH4 fluxes were highest on the sampling 

date immediately following the flood and declined thereafter, having been increasing since the 

June sampling date. Methane in Groundwater streams originated from biogenic as well as 

thermogenic sources, leaving me to speculate that perhaps changes in water temperature over the 

summer (e.g. heating then cooling toward the end of the study) may have influenced 

methanogenic organisms. However, I found no such association; CH4 emissions actually 

decreased from late May to mid-June. It is possible that temperature played a role, but other 

factors unaccounted for in this study led to the decrease in CH4 flux between those first two 

sampling events.  Nonetheless, my data reveal that unlike boreal systems (Crawford et al. 2013) 

temperate streams are likely consistent CH4 sources across flow regimes. Differing sources of 

CH4 in this study reveal that flow regime is an important determinant of instream anaerobic 

processes, and more research is needed to characterize physical, chemical, and biological 

controls on CH4 production and emissions in streams and rivers.  
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I expected to find relationships between C gas fluxes and instream biological and 

chemical metrics. Specifically, I predicted that CO2 flux would be related to GPP, ER, pH and 

alkalinity given that GPP and ER exert significant influence over instream C dynamics while pH 

and alkalinity can be used to calculate modeled CO2 fluxes. No relationships were found when 

variables were averaged over the study duration, likely due to low sample size and the dynamic 

nature of instream processes, particularly during the warmer growing season. Temporal variation 

in processes influencing C dynamics led to inconsistent trends in data averaged over the summer.  

 Evaluating relationships for each discrete sampling event revealed DOC to be a 

significant predictor of CO2 flux on two occasions, albeit inconsistently. The direction of the 

relationship between DOC and CO2 flux differed over the summer as well- DOC may have 

differential impacts on C uptake and release depending on instream conditions at the time of 

sampling. DOC concentrations were negatively related to CO2 emissions for most of the 

summer, while the opposite was true in June, when a positive relationship between DOC and 

CO2 flux was marginally significant.  The difference in the direction of the relationships may 

reveal how the relative influence of ecosystem processes such as decomposition and respiration 

(i.e. C release) and primary production (i.e. C uptake) changes temporally.  While neither GPP or 

ER were correlated  with DOC on most days in this study, decreasing CO2 flux in the presence of 

greater DOC concentrations may indicate that more C was being incorporated into biomass, 

while greater DOC concentrations with greater CO2 fluxes may result from oxidative processes 

such as decomposition and respiration dominating in the channel. Further, ER was also 

negatively related to CO2 flux on one of the dates that there was an observed a negative 

relationship with DOC, supporting the assertion that biological C uptake drove down flux rates.  
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Interestingly, there was a positive relationship between DOC and CH4 emissions on the 

same day that DOC was shown to be negatively related to CO2. A greater amount of DOC 

enhances microbial respiration which, in turn, can lead to the development of transient anaerobic 

pockets supporting CH4 production, though more data to support this hypothesis are needed. This 

would only be applicable to Groundwater streams, however, as Runoff streams only produced 

CH4 from natural gas sources- the nature of the relationship between DOC and thermogenic CH4 

ebullition is unclear.  

Simulating additional Runoff and Groundwater streams to improve statistical power 

allowed me to determine whether potential relationships may exist that may have been difficult 

to visualize due to low sample size. When divided by flow regime, multivariate models revealed 

differing controls on stream CO2 emissions, even while models containing the greatest number of 

variables for each analysis explained the greatest variation. This is unsurprising given that 

instream characteristics interact to give rise to patterns and variation in ecosystem function. 

Simulated Groundwater stream discharge was the most important variable for predicting CO2 

emissions. Similarly, other studies have shown discharge to control CO2 dynamics due to 

changes in gas transfer velocities and CO2 partial pressures (Jones and Mulholland 1998, 

Dinsmore et al. 2013). However, biological rather than physical parameters were most important 

for explaining variation in simulated Runoff streams, as TOC and GPP were the most significant 

variables in the global CO2 flux model. Gross primary production in Runoff streams is 

constrained by lower light reaching the benthos due to a natural precipitate (sandstone), and this 

lower GPP yields less dissolved CO2 from respiration than what was observed in Groundwater 

streams. Greater TOC may have interacted with production to yield even lower rates of CO2 

emissions, as TOC was taken up by autotrophs and heterotrophs.  
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Flow regimes differed in controls on CH4 evasion. The global model best explained CH4 

emissions in Runoff streams, with algal biomass being the most significant variable in the model. 

This was unexpected given that Runoff stream CH4 likely originated from thermogenic processes 

in the shale rock below the channels’ bedrock bottoms.  The second best explanatory model 

consisted of biological metrics- algal biomass, GPP, and ER. Gross primary production has been 

shown to positively effect methanogenesis rates (West et al. 2015); however, West et al. (2015) 

took place in lake systems, which are more susceptible to anaerobic conditions in benthic 

sediments. Further, CH4 from Runoff streams was not biogenically produced.  

Conversely, no candidate model explained variation in simulated Groundwater stream 

CH4 evasion, even though methanogenic organisms were responsible for some of the CH4 

evading from the water’s surface. Methanogenesis has been linked to productivity in lentic 

systems (West et al. 2015), and even though productivity was greater in Groundwater streams, I 

found no such association. Biogenic sources comprised a minority of gas samples, and I 

averaged measured flux rates together regardless of source to address my study objectives. The 

dual sources of CH4 in the field may each be related to different factors, and thus more work 

could be done to parse out sources and quantify potential mechanisms near biogenic hotspots. 

Another possibility is that instream processes are not as important as soil and groundwater 

conditions for controlling CH4 emissions in groundwater-dominated systems. 

While I did not find differences in flux rates, it is clear that more research is needed in 

order to understand the instream processes giving rise to patterns in CO2 and CH4 fluxes and 

how these may differ based on flow characteristics. To date, few studies have addressed how 

flow source and dynamics influence greenhouse gas evasion rates. Some studies have shown 

differences in CO2 and CH4 fluxes across streams to be directly related to variation in 



88 
 

groundwater inputs (Jones and Mulholland 1998). Carbon dioxide flux rates from the forested 

headwater streams in this study across flow regimes were greater than reports for forested and 

agricultural soils as well as large rivers (Raich et al. 1995, Butman and Raymond 2011), 

illustrating the importance of low-order systems to C transport from the terrestrial sink to the 

atmosphere at broad spatial scales (Kling et al. 1991, Billett et al. 2004, Cole et al. 2007). 

Stream gas emissions, even from small headwater systems, are large enough to affect regional C 

balances (Crawford et al. 2013), and it is imperative that CO2 originating from terrestrial 

respiration that may reach stream channels through groundwater or soil water be accounted for 

to ensure accurate C budgets in the face of a changing climate (Richey et al. 2002, Johnson et 

al. 2008, Wallin et al. 2013).  

Given the influences of CO2 and CH4 on atmospheric warming, more work is needed to 

clearly define factors influencing emissions from headwater streams, as these data show that 

differing flow classifications support conditions that lead to variability in controls on CH4 

fluxes within a biome and land use category. This finer scale of resolution- flow regime- 

appears promising for headwater streams, which tend to be more variable with respect to C 

dynamics than larger systems (Jones and Mulholland 1998, Teodoru et al. 2009, Butman and 

Raymond 2011). This high variability and potential for greater explanatory power by classifying 

streams  by flow regime or, at the very least, flow source, underscores the need for spatially as 

well as temporally comprehensive datasets. Other studies have addressed the effects of land use 

(Beaulieu et al. 2013) and biome (Raymond et al. 2013). Future work exploring the relative 

influences of biome, land use, and flow regime, as well as how these three interact, may be 

especially helpful to our understanding of sources and processes controlling emissions, 

especially given headwater streams’ close connectivity to the surrounding landscape.  
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Recent efforts have yielded useful frameworks of CO2 and CH4 emissions from streams 

and rivers (Hotchkiss et al. 2015, Stanley et al. 2016).  The majority of my data falls within and 

supports these conceptual models. However, some of my results appear to contradict the 

predicted influence of DOC on CO2 emissions. Dissolved organic carbon is predicted to be a 

substrate for ER, increasing CO2 loss to the atmosphere. The opposite was true in these streams, 

with lower CO2 evasion measured with increasing DOC. My finding that ER was negatively 

related to CO2 flux during mid-August also contrasts with conceptual model predictions that ER 

directly contributes, and thus directly increases, CO2 flux rates. This underscores the high 

variability in headwater streams, and the need for more direct measurements of CO2 evasion in 

small systems is needed to determine why some systems emit more or less CO2 in the presence 

of more DOC and greater rates of respiration. 

Work by Stanley et al. (2016) set forth a framework for CH4 dynamics within streams for 

which this work provides further support. I identified a positive relationship between organic C 

and CH4 flux in the field across flow regimes on one sampling date, and a near-significant 

relationship on a second date, even though DOC did not explain a significant amount of 

variation in simulated stream candidate models. However, this does not mean that DOC is not 

influencing CH4 dynamics, but rather that there is temporal variation in this relationship. 

Additionally, other instream processes may be mediating the effect of DOC concentrations on 

CH4 fluxes through variation in discharge, biological uptake and release, or a combination of 

the two.  

Stanley et al. (2016) also point out that hydrology has a large impact on instream CH4, 

while also influencing nutrient concentrations, which may further affect CH4 dynamics. The 

present study was conducted in forested headwater streams in an attempt to control for 
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differences in nutrient concentrations that may arise from anthropogenic land use, and thus did 

not address that in this work. Additional work to discern the influence of changing nutrient 

concentrations on greenhouse gas fluxes would be useful. I also did not address other terminal 

electron acceptors or delve into how differences in specific aspects of geomorphology play a 

role, though I assert that this was addressed in a broad sense with the flow regime approach. 

Stream flow classifications include differences in geomorphological variables, such as substrate 

size and geological parent materials that can influence instream C uptake, release, and 

processing.  

The relationship between stream metabolism and greenhouse gas fluxes from streams 

cannot be overlooked. This work shows that metabolic parameters do indeed explain CO2 fluxes 

in one flow regime, and instream metabolism has been shown to contribute substantially to CO2 

off-gassing, accounting for greater portions of emitted CO2 as streams move from mouth to 

headwaters. Most studies into lotic-atmospheric CO2 dynamics address the influence of aerobic 

metabolism (Cole et al. 2001, Crawford et al. 2014, Hotchkiss et al. 2015). However, the same 

attention has not been given to CH4. Given that streams are consistent CH4 sources, adding 

defined and quantified anaerobic processes such as methanogenesis and methanotrophy to our 

understanding of whole-stream metabolism is clearly necessary.  To date, a stark paucity of 

research has sought to quantify these processes- perhaps this area signifies another frontier in 

our quest to fully elucidate stream C budgets.   

These results reveal that flow regime and one of the factors responsible for distinct flow 

characteristics, water source, influence not only where a sizeable portion of greenhouse gases 

originate (i.e. groundwater, soil water, precipitation), but also what instream variables control 

rates of gas evasion. It is imperative to account for reach and landscape-level controls of 
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greenhouse gas fluxes as I have done here to construct C budgets that integrate fluxes from the 

terrestrial sink to streams and rivers and to gain a more detailed picture of sources controlling C 

movement in headwater streams, which are notoriously both spatially and temporally variable 

with respect to ecosystem processes and functions (Gomi et al. 2002). Increased warming and 

changes in storm magnitude and frequency are already shifting hydrologic regimes (Palmer et 

al. 2008) by increasing droughts and enhancing the magnitude and frequency of large flood 

events, in turn altering rates of C production, processing, and emissions. Understanding the 

interplay between rivers and their catchments will increase our predictive power as ecosystems 

continue to be altered at a rapid pace from land use and climate change (Allan et al. 2004, 

Palmer et al. 2008, Hotchkiss et al. 2015). Additionally, environmental flow management to 

meet biological and human needs in an age of increased climate volatility requires a detailed 

understanding of how flow regime as well as changes in flow (e.g. from perennial to 

intermittent flow, or fewer/more major floods) may influence instream C dynamics and, in turn, 

regional C balances.  
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APPENDIX 

TABLES 

Table 1. Flow classifications, watershed areas and percent forested land cover for study sites. 

 

 

Table 2. Results of linear regressions between overall means in C gas fluxes and instream 
variables in the six study streams. GPP and ER denote gross primary production and ecosystem 
respiration, respectively. TOC and DOC are total organic carbon and dissolved organic carbon, 

respectively. DIC is dissolved inorganic carbon.  

 

 

Flow Regime Site Watershed Area (km
2
) Forested Land Cover (%)

Runoff Flashy Big Piney 20.99 97.0

Runoff Flashy Little Piney 25.35 95.4

Runoff Flashy Murray 25.35 95.4

Groundwater Flashy Roasting Ear 34.87 86.1

Groundwater Flashy Spring 38.77 84.8

Groundwater Flashy Sylamore 30.15 95.5

Predictor Response R
2

p-value

logGPP logCO2 flux 0.008 0.86

logGPP logCH4 flux 0.25 0.31

logER logCO2 flux 0.46 0.14

logER logCH4 flux 0.05 0.68

logChlorophyll a logCO2 flux 0.018 0.78

logChlorophyll a logCH4 flux 0.13 0.48

logTOC logCO2 flux 0.002 0.93

logTOC logCH4 flux 0.28 0.28

logDOC logCO2 flux 0.23 0.33

logDOC logCH4 flux 0.48 0.13

logDIC logCO2 flux 0.01 0.85

logDIC logCH4 flux 0.13 0.49

logpH logCO2 flux 0.19 0.38

logpH logCH4 flux 0.28 0.28

logAlkalinity logCO2 flux 0.005 0.89

logAlkalinity logCH4 flux 0.13 0.49

logDischarge logCO2 flux 0.07 0.61

logDischarge logCH4 flux 0.03 0.74
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Table 3. Results of multiple linear regression models in simulated Runoff streams with CO2 flux 
as the response variable. GPP and ER denote gross primary production and ecosystem 

respiration, respectively. TOC and DOC are total organic carbon and dissolved organic carbon, 
respectively. DIC is dissolved inorganic carbon. δ13C represents CO2-carbon’s isotopic signature. 

 

 

Table 4. Results of multiple linear regression models in simulated Groundwater streams with 
CO2 flux as the response variable. GPP and ER denote gross primary production and ecosystem 
respiration, respectively. TOC and DOC are total organic carbon and dissolved organic carbon, 

respectively. DIC is dissolved inorganic carbon. δ13C represents CO2-carbon’s isotopic signature. 

 

 
 
 
 
 
 
 
 
 
 
 

Response Predictors Multiple R2 p-value AIC Model Notes

logCO2 flux

logTOC + logDOC + logDIC + 
logChlorophyll a + logDischarge + logGPP 

+ logER + δ13C + logpH

0.97 0.04 -36.25
Global model: Removed one outlier, 

removed second data point to 
improve homoscedasticity

logCO2 flux

logTOC + logDOC + logDIC + 
logChlorophyll a + logDischarge + logGPP 

+ logER + δ13C + logpH

0.87 0.16 -22.32 Global model: Removed one outlier

logCO2 flux logDischarge +δ13
C 0.47 0.02 -19.34 NA

logCO2 flux logDOC + logTOC 0.32 0.1 -15.42 NA

logCO2 flux logChlorophyll a + logGPP + logER 0.34 0.19 -13.95 NA

logCO2 flux

logTOC + logDOC + logDIC + 
logChlorophyll a + logDischarge + logGPP 

+ logER + δ13C + logpH

0.67 0.47 -12.41 Global model with all data

logCO2 flux logDIC + logpH 0.01 0.94 -9.84 NA

Response Predictors Multiple R
2 p-value AIC

logCO2 flux
logDOC + logDIC + logDischarge + logGPP 

+ logER + logAlkalinity
0.83 0.009 6.08

logCO2 flux logDOC 0.35 0.02 16.04

logCO2 flux logDIC + logAlkalinity 0.01 0.94 16.14

logCO2 flux logGPP + logER 0.27 0.15 19.71

logCO2 flux logDischarge 0.43 0.31 21.22
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Table 5. Results of multiple linear regression models in simulated Runoff streams with CH4 flux 
as the response variable. GPP and ER denote gross primary production and ecosystem 

respiration, respectively. TOC and DOC are total organic carbon and dissolved organic carbon, 
respectively. DIC is dissolved inorganic carbon. δ13C represents CH4-carbon’s isotopic signature. 

 

Table 6. Results of multiple linear regression models in simulated Groundwater streams with 
CH4 flux as the response variable. GPP and ER denote gross primary production and ecosystem 
respiration, respectively. TOC and DOC are total organic carbon and dissolved organic carbon, 

respectively. DIC is dissolved inorganic carbon. δ13C represents CH4-carbon’s isotopic signature. 
 

 

Table 7. Summary of means and ranges from this study and other published values of CO2 and 
CH4 fluxes. 

 

*Listed mean and range represent summer values from Kaprivnjak et al. (2010). 
**Butman & Raymond calculated fluxes based on U.S. stream surface 
 area of 230,000 km2. Listed mean represents average over all stream miles. 

Response Predictors Multiple R
2

p-value AIC

logCH4 flux
logTOC + DOC + logDIC + logChlorophyll a 

+ logDischarge + logGPP + ER +  logpH
0.95 0.002 -7.00

logCH4 flux logChlorophyll a + logGPP + ER 0.88 0.00002 -2.21

logCH4 flux logDischarge 0.48 0.004 15.51

logCH4 flux DOC + log TOC 0.3 0.12 22.11

logCH4 flux logDIC + logpH 0.14 0.42 25.22

Response Predictors Multiple R
2

p-value AIC

logCH4 flux logDOC 0.007 0.77 42.41

logCH4 flux logDischarge 0.0007 0.93 42.50

logCH4 flux logDIC + logAlkalinity 0.05 0.73 43.73

logCH4 flux logGPP + logER 0.04 0.80 43.94

logCH4 flux
logDOC + logDIC + logDischarge + logGPP 

+ logER + logAlkalinity
0.11 0.99 52.75

Variable Study Sample Size Mean (mol m-2 d-1) Range (mol m-2 d-1)

CO2 Flux This study 6 0.15 0.02-0.58 

CO2 Flux Jonsson et al. (2007) 7 0.03 0.01-0.05

CO2 Flux Teodoru et al. (2009) 790 0.07 0.02-0.07

CO2 Flux Kaprivnjak et al. (2010) 18 0.04 0.02-0.09*

CO2 Flux Butman & Raymond (2011) ** 0.15 -

CO2 Flux Crawford et al. (2014) 93 0.51 0-2.03

(mmol m-2 d-1) (mmol m-2 d-1)

CH4 Flux This study 6 0.35 0.03-2.04

CH4 Flux Crawford et al. (2014) 42 8.46 0-60.1

CH4 Flux Stanley et al. (2016) 26 4.23 <0.0001-40.49
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FIGURES 

 

Figure 1. Sources and fates of carbon in streams. Carbon enters streams through (A) diffusion of 
atmospheric CO2 directly into the stream or via rainwater and (B) as particulate or dissolved 

organic matter from terrestrial organic matter as well as dissolved inorganic carbon in soil water. 
CO2 in stream water is then used to support instream carbon production (C) in the form of 

primary production. These primary producers along with microbial heterotrophs utilizing organic 
substrates (D) and other biota respire CO2 (E), which is then either transported downstream 

along with particulate and dissolved organic carbon (G) or evaded to the atmosphere (F). CO2 
may also enter from groundwater seepage (H). CH4 enters the stream from anoxic pockets in 
sediments on the channel bottom from biogenic and/or thermogenic sources (I), which is then 

evaded to the atmosphere (J). 
 

Figure 2. Conceptual model of hypothesized primary influences driving predicted differences in 
carbon gas fluxes in Runoff and Groundwater streams. Groundwater streams have greater 

groundwater inputs and community respiration and less bedrock than Runoff streams, which 
should result in greater CO2 and CH4 emissions from Groundwater streams. 
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Figure 3. Map of flow regimes in the Ozark and Ouachita Interior Highlands based on Leasure et 
al. (2016). Highlighted area shows individual study sites sampled in summer 2017 across 

northern Arkansas. 
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Figure 4. Carbon dioxide and methane fluxes in each study stream over the study duration in (a) 
Runoff and (b) Groundwater streams. Error bars denote + 1 standard error. N=6 dates per stream. 

 
Figure 5. CO2 and CH4 fluxes from field sites averaged over 

summer 2017. Error bars denote + 1 standard error. n=3 per flow regime. 
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Figure 6. δ13C signatures for C found in CO2 and CH4 gas samples across Groundwater and 

Runoff streams. Error bars denote full range of isotope values. n=3 per flow regime. 
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Figure 7. Average chlorophyll a (a), TOC (b), DOC (c), DIC (d), alkalinity (e), and pH (f) values 
on each sampling date over the study period. Dates denote first day of sampling event. Error bars 

denote + 1 standard error. n=3 per flow regime. 
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Figure 8. USGS gauge discharge data for Big Piney and Sylamore creeks over the study period. 
Note that hydrograph data are for downstream gauges with established relationships to upstream 
study reaches. Hydrographs are representative of flow over the summer within each flow class. 
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Figure 9. Results of significant linear regression models comparing C gas fluxes and instream 

variables across flow regimes on individual sampling dates. Panels (a) and (b) show significant 
relationships found during July sampling event. Panels (c), (d), and (e) represent significant 

relationships from mid-August sampling. TOC= total organic carbon, DOC= dissolved organic 
carbon.  
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Figure 10. Average CO2 and CH4 fluxes from simulated streams. Error bars denote + 1 standard 

error. n=15 per flow regime. 
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CHAPTER THREE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Soil carbon dioxide fluxes from riparian areas in two distinct hydrogeomorphic settings 
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ABSTRACT 

Riparian buffers serve as a conduit through which carbon (C) can move from the 

terrestrial landscape to aquatic systems and, ultimately, to oceanic or atmospheric sinks. Riparian 

areas have also been identified as zones of concentrated biogeochemical activity in the terrestrial 

landscape that often produce greater amounts of greenhouse gases than neighboring more upland 

terrestrial and adjacent aquatic systems. Little work has explored how ecoregion and hydrologic 

classification of a stream may influence the magnitude of riparian soil processes. A three-way 

factorial field study examined soil carbon dioxide (CO2) fluxes across flow regime 

(Groundwater and Runoff streams), season (autumn, winter, spring, and summer), and 

perpendicular distance from stream edge (0, 10, and 20 m). Stream-surface CO2 fluxes were also 

measured and compared to soil fluxes in June.  Relationships between CO2 flux and soil 

temperature and moisture at seasonal temporal scales at the site level were examined. Soil CO2 

flux differed between flow regimes among seasons (F(3,40)= 3.95,  p= 0.01). Post-hoc tests 

revealed that Runoff sites had greater spring soil surface CO2 flux (i.e., soil respiration mean +1 

SE= 2.98 + 0.29 µmol CO2 m-2 s-1) than did Groundwater sites (1.40 + 0.30 µmol CO2 m-2 s-1 ) 

(p= 0.01).  Soil moisture was positively related to autumn soil CO2 flux across all sites (ρ= 0.94, 

p= 0.005). Soil CO2 fluxes at each Runoff site were related to soil temperature and moisture, but 

fluxes were only related to soil temperature at each Groundwater   site. Summer soil respiration 

rates were greater (mean +1SE = 7.82 + 1.42 µmol CO2 m-2 s-1) than summer stream CO2 fluxes 

across all sites (1.74 + 0.64 µmol CO2 m-2 s-1) (p= 0.005). Results suggest the addition of the 

riparian zone and demonstrated differences in flow regime are needed to understand stream C 

budgets and to evaluate flow-ecology relationships.  Anthropogenic landscape alteration and 
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climate change can alter the natural flow regime which, in turn, may have consequences for 

aquatic C dynamics in streams draining altered riparian zones.  

INTRODUCTION 

Soil surface carbon dioxide (CO2) flux from biological respiration forms an important 

component of the C cycle in terrestrial as well as adjacent aquatic systems. A significant portion 

of the CO2 that is emitted from streams is terrestrially-derived, as terrestrial organic matter is 

broken down by respiring soil microbes. Characterizing patterns and drivers of riparian soil C 

flux will enhance the capacity to predict greenhouse gas emission rates in adjacent and 

downstream systems, and comparing soil and stream C gas dynamics can provide a more holistic 

view of local biogeochemical processes at the aquatic-terrestrial interface. Though often 

overlooked, it is critical to integrate measures of aquatic and terrestrial C cycling to construct 

accurate and mechanistically-based C budgets (Cole et al. 2007, Buffam et al. 2011).   

Biological activity, specifically plant root respiration and microbial decomposition of 

organic matter, are the primary drivers of soil CO2 flux (Hogberg et al. 2001, Risk et al. 2002). 

Soil temperature is considered the primary control on fluxes, while precipitation and, in turn, soil 

water content are secondary influences (Rustad et al. 2000, Davidson et al. 2002). Temperature 

and water content influence soil C fluxes by increasing microbial activity in warm, moist soil 

conditions, but depresses microbial activity in cold, dry or extremely wet soil conditions, 

resulting in seasonal patterns of soil respiration (Raich and Potter 1995, Davidson et al. 1998, 

Chen et al. 2002, Xu and Qi 2008). The soil temperature, moisture, soil CO2 flux interactions are 

typically described by exponential equations between soil temperature and soil CO2 flux, but soil 

moisture and soil CO2 flux have often exhibited linear, parabolic, quadratic, and logarithmic 

relationships depending on the specific soil water content variable measured (e.g., matric 

potential, water-holding capacity, and gravimetric or volumetric water content) (Davidson et al. 



110 
 

2000). Soil conditions are known to be heterogeneous (Raich and Schlesinger 1992, Raich and 

Potter 1995, Fang et al. 1998, Rayment and Jarvis 2000, Epron et al. 2004). Proximity to a 

wetted channel and differences in surrounding topography, such as in the case of differing 

ecoregions, may result in distinct temporal (i.e., seasonal and/or annual) and spatial patterns in 

soil conditions within a riparian corridor. However, spatial heterogeneity of plant root and soil 

microbial activity, along with the tendency for factors such as soil moisture and temperature to 

covary, makes it difficult to construct models that accurately capture the extent of spatial and 

temporal variation in soil respiration (Davidson et al. 2002). Additionally, areas where aquatic 

and terrestrial systems adjoin have been shown to produce concentrated biogeochemical activity 

in time and space [i.e. hot moments and hot spots, respectively (McClain et al. 2002, Scott et al. 

2004)], though the specific mechanisms responsible for up-regulation of aerobic respiration in 

these areas still requires further study. 

Riparian areas are distinct from upland soils with respect to hydrologic characteristics, 

and riparian areas adjacent to streams with differing flow characteristics and geomorphology 

may have even further unique soil characteristics, microbial communities, and, in turn, soil 

respiration. Little work has been conducted specifically within the riparian areas of minimally-

disturbed systems (Griffiths et al. 1997, Tufekcioglu et al. 1998), and, to my knowledge, no 

studies have sought to ascertain natural variation in biological activity that may exist within a 

biome as a result of a neighboring stream with a distinct flow regime.  Additionally, few studies 

have evaluated soil respiration within clearly-defined, longitudinal transects at various distances 

from the stream, even though soil conditions likely change from the immediate stream bank back 

into the zone of riparian soil and vegetation. Previous studies have sought to predict in-stream 

organic C fluxes using soil metrics (Aitkenhead and McDowell 2000), but there is a clear lack of 
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data revealing patterns in riparian soil respiration, as well as linking respiration to stream CO2 

off-gassing.  

Climate change has already begun to alter air temperature and precipitation patterns, with 

consequences to soil conditions and, in turn, terrestrial C storage and loss (Heimann and 

Reichstein 2008). Field measurements of soil respiration, soil temperature, and soil water content 

thus far have revealed few broad-scale patterns, as most relationships are site-specific (Davidson 

et al. 2005). However, riparian soils have been shown to produce greater respiration rates than 

adjacent upland hillslope positions due to greater soil moisture in the riparian, signaling the 

importance of these areas to watershed and regional C balances (Pacific et al. 2008, 2010). 

Furthermore, riparian areas affected by flooding have been shown to be even more spatially 

variable in C efflux rates, implying that differences in flood regime can affect local atmospheric 

and terrestrial C dynamics (Samaritani et al. 2011). However, these trends may be altered, as 

some areas experience greater air temperatures and increasing flood and drought intensities 

(Rosenzweig et al. 2001, Barnett et al. 2004), but these changes may be overlooked in the 

absence of adequate data to provide a foundation for assessing climate change impacts on soil C 

fluxes. Further, characterizing riparian soil respiration and potential correlative soil 

characteristics, such as soil temperature and moisture, can reveal areas that may be better- or 

less-suited as sinks for potential stream pollutants, such as nutrients, sediments, and pesticides, 

while also providing an index of stream susceptibility to pollutant enrichment (Jacinthe et al. 

2003, Vidon and Hill 2007).   

The objective of this study was to evaluate riparian soil CO2 fluxes between two 

dominant flow regimes in northern Arkansas. The two flow regimes, Runoff Flashy and 

Groundwater Flashy (hereafter Runoff and Groundwater), form distinct hydroecological areas 
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that are demarcated by ecoregion. Flow regime is comprised of the timing, duration, magnitude, 

frequency, and rate of change of flow in a system, and is influenced by factors that also influence 

soil microbial activity, such as climate and geology (Poff et al. 1997, Allan and Castillo 2007). It 

may be that differences in soil C dynamics are influencing C uptake and transport within these 

systems. It was hypothesized that the alluvial soils adjacent to Groundwater streams will have 

greater soil respiration based on previous work that revealed the tendency for greater instream 

respiration in Groundwater compared to Runoff streams (Chapter 1). Further, Groundwater 

streams have also been found to off-gas more CO2 to the atmosphere than Runoff sites. δ13C data 

revealed that CO2 coming from Groundwater streams contained more C from soil respiration 

than Runoff sites (Chapter 2). In sum, these trends provide a glimpse of biological activity at 

Groundwater and Runoff sites, and the greater amounts of CO2 coming from Groundwater sites 

may be partially driven by a more active soil microbial community. Therefore, greater soil 

respiration was expected in Groundwater versus Runoff stream riparian zones. Additionally, 

Groundwater sites in the region tend to be flanked by open-canopy, alluvial gravel and pebble 

bars, whereas Runoff sites within the region generally have smaller portions of open-canopy 

areas adjacent  to the stream with cobble and boulder substrate, providing fewer potential 

interstitial spaces for microbial activity. Soil respiration rates were predicted to be greatest in 

spring due to greater soil moisture and warming temperatures, but lowest in winter due to cold 

soil temperatures. Soil respiration, temperature, and moisture were all expected to decrease from 

the stream bank moving away from the channel (Figure 1).  

METHODS 

This field study was conducted within the riparian area of six minimally impacted 

streams with forested land cover ranging from 84.8 to 97.0% of total watershed area (CAST 
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2007). Three streams were located within the Boston Mountains ecoregion (Woods et al. 2004) 

and were classified as Runoff systems according to Leasure et al. (2016). Runoff streams are fed 

primarily from overland flow and subsurface runoff and dry for up to several weeks each year.  

The land surrounding the Runoff streams was dominated by sycamore (Platanus occidentalis) 

trees. Three additional streams were located within the Ozark Highlands ecoregion (Woods et al. 

2004) and were classified as Groundwater flow (Leasure et al. 2016), which is characterized by 

groundwater-dominated and perennial flows. Dominant vegetation in the riparian zone adjacent 

to Groundwater streams was oak (Quercus spp.) trees. Site locations and soil taxonomy can be 

found in Table 1. 

Lateral transects across both banks of each stream reach were established at the bottom, 

middle, and top an approximate 200-m reach representing each flow-regime site. Plastic collars, 

10 cm in diameter, were inserted directly adjacent to the stream channel to a depth of 

approximately 2 cm, then 10 and 20 m away from the channel. There was a total of nine sample 

collars on the bottom left, middle left, and top left banks and nine additional collars on the 

bottom right, middle right, and top right banks (n= 18 per stream) to allow for analysis of 

respiration trends along the stream continuum, as well as from the channel into the riparian area.  

Live vegetation was removed from inside each collar and allowed to equilibrate for 

approximately one hour before measurements were conducted. Soil measurements were made 

inside collars at each stream once per season for a total of four sampling events associated with 

each stream. Sampling events took place in October of 2015 (autumn) and January (winter), 

March (spring), and June (summer) of 2016 (Table 2).  Soil surface CO2 flux was measured 

across three lateral transects within each riparian area using a Li-Cor LI-6400 XT Portable 

Photosynthesis System (Lincoln, NE) equipped with a 10-cm-diameter soil respiration chamber 
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(model LI-6400-09, Li-Cor), similar to procedures described in Brye et al. (2006). Soil 

temperature was measured at the 2-cm depth with a standard probe thermometer adjacent to each 

collar during respiration measurements. Soil moisture in the top 6 cm was recorded inside each 

collar after the respiration measurement was conducted using a Dynamax SM 150 soil moisture 

probe (Houston, TX). 

Stream-surface CO2 flux was measured in June 2017 (Table 3). Measurements of CO2 

exchange with the atmosphere were collected using a floating chamber constructed from an 

inverted bucket attached to a sheet of foam approximately 4 centimeters from the edge of the 

bucket so as to ensure the chamber was completely sealed to the stream surface. Tubing was 

inserted into the top of the chamber and was clamped shut between samples. The chamber was 

attached to small weights to anchor it in place in the stream channel. Discrete gas samples were 

collected with a syringe from the sealed chamber every ten minutes from zero to thirty minutes 

(i.e. four samples in each location) at the top and bottom of each 200-meter stream reach. Air 

samples were injected into pre-evacuated gas bags. Carbon dioxide gas concentrations in each 

sample were determined by running gas samples into a Picarro G2201-i carbon isotope analyzer 

(Picarro Inc., Santa Clara, CA). CO2 fluxes were calculated based on the gas concentration 

change within the sealed chamber over time (i.e. over ten minutes) according to the equation 

                                                               JCO2= dc/dt * h   [1] 

where dc/dt is the change in gas concentration in the chamber air in parts per million (ppm) over 

time in minutes multiplied by the height (h) of the chamber in meters minus the submerged 

portion (Crawford et al. 2013). Fluxes were converted using the Ideal Gas Law and are reported 

in µmillimoles meter-2 second-1 to allow for comparison of soil and stream surface C fluxes.  
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Two-way repeated-measures analysis of variance (RM-ANOVA) was used to test for 

differences in soil respiration, temperature, and moisture across seasons by flow regime. Post 

hoc Tukey’s HSD was used to determine significant pairwise differences within and across 

treatments and seasons. Pearson’s and Spearman’s rank correlations were conducted to explore 

relationships among soil temperature, soil moisture, and soil CO2 flux to determine potential 

drivers of soil respiration at annual, seasonal, and single-measurement scales. The statistical 

significance threshold was p < 0.05. All statistics were performed in R version 3.4.3. 

RESULTS 

Differences in soil respiration between flow regimes emerged across seasons, but not by 

distance from the stream. There was no significant 3-way interaction between flow regime, 

distance from the stream, and season (F(6,40)= 1.02, p= 0.42) (Table 4). There was a significant 2-

way interaction between flow regime and season (F(3,40)= 3.95, p= 0.01).  There was also a 

significant interaction between season and transect distance from the stream (F(6,40)= 8.46, 

p<0.0001). Measured soil CO2 fluxes across flow regimes were greatest in the summer and 

lowest in winter across sites. Soil surface CO2 fluxes tended to be most variable in the summer 

across flow regimes, while fluxes tended to be least variable in fall.  Soil respiration appeared to 

be similar between flow regimes across seasons except during spring, when soil CO2 flux was 

47% greater (p= 0.01) at Runoff than at Groundwater sites. Runoff sites also tended to emit more 

CO2 from the soil in the summer as well, but the magnitudes of soil CO2 flux were much greater 

during the summer than during any other season for both flow regimes (Figure 2). Consequently, 

differences in soil CO2 flux between flow regimes during summer were not statistically 

significant (p= 0.24).  
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Soil surface CO2 fluxes ranged from 3.14 to 5.01 µmol CO2 m-2 s-1 at Runoff sites and 

from 2.36 to 3.82 µmol CO2 m-2 s-1 at Groundwater sites over the sampling year. Soil 

temperature at the 2-cm depth ranged from 14.5 to 16.2 oC at Runoff sites and from 15.9 to 18.4 

oC at Groundwater sites, whereas soil water content in the top 6 cm ranged from 8.0 to 10.0% 

(v/v) at Runoff sites and from 6.0 to 18.5% (v/v) at Groundwater sites over the sampling year. 

Near-surface soil moisture and temperature tended to be numerically greater and more variable 

among Groundwater than Runoff sites, though soil surface CO2 flux tended to be greater at 

Runoff sites over the year.  

Soil surface CO2 flux and soil temperature and moisture differences were examined 

across sites within the longitudinal transects. No differences in soil CO2 flux, soil temperature, or 

soil moisture content occurred between flow regimes at any position along the longitudinal 

transects (i.e., immediate bank, 10 m from bank, and 20 m from bank) Though soil CO2 flux was 

numerically largest at the immediate bank position for Runoff sites among across both flow 

regime and transect position combinations, the large variability at this measurement position 

along the transect resulted in no significant spatial trend in soil CO2 flux along the transect for 

the Runoff sites.  Similarly, there was no spatial trend in soil CO2 flux across transects for the 

Groundwater sites.  Trends were only significant across transects by season when flow regime 

measurements were considered together (Figure 4). 

At the site-level, soil CO2 fluxes across sampling dates were positively correlated with 

soil temperature at five of the six sites, while one Runoff site (Big Piney Creek) exhibited a 

negative correlation between soil CO2 flux and soil temperature (ρ= -0.63, p< 0.0001). Soil CO2 

fluxes across sampling dates were negatively correlated with soil moisture at the other two 

Runoff sites, Little Piney Creek (ρ= -0.31, p= 0.03) and Murray Creek (ρ= -0.35, p= 0.02). Soil 
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CO2 flux was negatively correlated with soil temperature (ρ= -0.58, p= 0.01). Soil CO2 flux was 

also negatively correlated with soil moisture at Murray Creek on the summer sampling date (ρ= -

0.66, p= 0.007 (Figure 5). No other sites yielded significant correlations between measured 

variables on other sampling dates. However, soil moisture content data during spring at Murray 

Creek were unobtainable due to equipment malfunction and soil fluxes were not measured at 

Roasting Ear Creek during spring.  

Soil temperatures differed across flow regimes across seasons (F(3,40)= 9.10, p= 0.0001), 

though not by distance across seasons (F(6,40)= 0.04, p= 0.99) (Table 4). There was no interaction 

between season, flow regime, and distance from the stream (F(6,40)= 0.04, p= 0.99). Soil 

temperatures during spring across flow classes tended to be numerically greater in Groundwater 

sites, while soil temperatures were more similar between flow regimes during the other three 

seasons and tended to be numerically lowest during winter (Figure 3). Summer soil temperatures 

at Runoff sites averaged 25.8 (+ 0.5) oC, while average soil temperature at Groundwater sites was 

only slightly greater at 26.9 (+ 1.3) oC. Winter soil temperatures averaged 5.0 (+ 2.2) oC at 

Runoff sites and 3.3 (+ 0.3) oC at Groundwater sites. Soil temperatures across Groundwater sites 

tended to be more variable in the autumn and least variable in winter, while soil temperatures 

across Runoff sites tended to vary the most during winter and were most similar during spring.  

2-way RM-ANOVA revealed that soil moisture content differed across seasons (F(3,37)= 

24.82,    p< 0.0001) as well as between flow classes (F(1,37)= 4.44, p= 0.04) (Table 4) (Figure 5b). 

There was a marginally significant interaction between flow regime and season (F(3,37)= 2.92, p= 

0.05). No three-way interaction was observed between flow regime, distance from the stream, 

and season (F(6, 37)= 0.69,  p= 0.66). No interactions were observed between flow regime and 

distance from the stream (F(2,37)= 0.34, p= 0.71) nor between distance from the stream and season 
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(F(6,37)= 0.66, p= 0.68). Soil water content was two to four orders of magnitude lower in the 

autumn than during any other season. During autumn, soil moisture content was less than 0.5% 

(v/v) across both flow regimes. Soil moisture content among sites for the rest of year was similar 

across flow regimes as well as seasons. Soil moisture content at Runoff sites ranged from 10.5 (+ 

0.4) % (v/v) in summer to 15.0 (+ 1.9) % (v/v) in spring. Similar to Runoff sites, soil moisture 

content at Groundwater sites peaked in spring at 17.2 (+ 7.2) % (v/v) and remained relatively 

consistent throughout the remainder of the year.   

There was no association between soil temperature and soil moisture content across sites 

at annual or seasonal temporal scales. Carbon dioxide fluxes tended to be numerically greater 

from the soil than from the stream surface at Runoff (p= 0.07) and Groundwater sites (p= 0.08). 

Overall, the riparian soils emitted more CO2 than the streams themselves (p= 0.005), where, 

averaged across sites, soil CO2 fluxes ranged from 4.2 to 13.7 µmol m-2 s-1 and averaged 7.82 

µmol m-2 s-1, while stream CO2 fluxes ranged from 0.7 to 4.8 µmol m-2 s-1 and averaged 1.74 

µmol m-2 s-1 (Figure 6).  

DISCUSSION 

Soil respiration rates averaged over the study year did not support the prediction that 

Groundwater sites would have greater soil CO2 emissions than Runoff sites. This result was 

particularly interesting given that Groundwater sites tended to exhibit numerically greater soil 

temperatures and water contents. While soil CO2 fluxes tended to respond positively to 

increasing soil temperature and moisture, it may be that site-specific factors aside from soil 

temperature and moisture variations alone may have elevated soil respiration at Runoff sites. For 

example, it may have been that there was little difference in overall respiration rates over the 

year due to similarities in canopy cover and vegetation at the sites, as all sites were heavily 
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forested in the riparian zone. However, Runoff streams may have encompassed soil conditions 

that favored greater transport of subsurface soil CO2 to the soil surface. Work in agricultural 

systems has revealed that vegetation at a site can be an important factor in driving differences in 

soil C efflux (Wagai et al. 1998).  

Previous research has indicated soil temperature to be the main influence on soil 

respiration rates, with warmer soil temperatures enhancing soil microbial activity (Mellilo et al. 

2002). Soil water content exerts a secondary influence on soil respiration at intermediate levels, 

where extremes in soil moisture conditions (i.e., extremely wet and extremely dry) attenuate CO2 

production by limiting aerobic microbial oxidation of soil organic matter. In this study, the 

annual data exhibited these overall trends, where- soil moisture averaged over the year tended to 

increase soil respiration and soil respiration tended to increase when the soil water content 

ranged from 5 to 10% (v/v), but soil respiration tended to decline at approximately 20% 

volumetric water content.  

When evaluated by season, soil CO2 fluxes were significantly greater at Runoff sites 

during the spring and this trend continued into the summer, though differences were non-

significant.  Soil CO2 fluxes were otherwise similar across flow regimes and were low during the 

autumn and winter seasons. Differences in surrounding riparian soil respiration based on 

ecoregion or hydroecological classification appear to be a seasonal phenomenon that can have 

direct consequences on C transport between the riparian zone and stream channel, as well as the 

processing and fate of terrestrial C. Soil CO2 fluxes, temperature, and moisture all exhibited a 

pronounced seasonal trend across sites. The seasonality observed in this study should not be 

overlooked, as streams of different flow regimes may receive more or less C depending on 

landscape characteristics that also contribute to determining flow regime. Additionally, the 
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interactive effect of flow regime and season on soil temperature and soil moisture is very likely 

playing a significant role in C fluxes.  Seasonal differences in C cycling have potential 

consequences for stream processes, such primary and secondary production, that may be 

exhibiting previously overlooked patterns in riparian processes or a combination of riparian and 

stream characteristics unique to a flow regime. Soil CO2 fluxes were greatest during summer, 

concurrent with peak primary production, while soil CO2 fluxes were lowest during winter when 

plants were not actively growing and soil temperatures were low (Raich and Potter 1995, 

Hogberg et al. 2001). However, while Runoff site soil respiration rates successively increased 

over the spring and summer seasons, soil respiration at the Groundwater sites was similar across 

winter and spring and only increasing during summer. Even then, the increase in soil respiration 

among Groundwater sites was not as great as was observed at Runoff sites. Soil respiration at 

Groundwater sites appeared to vary less than at Runoff sites across seasons. Others have reported 

that, even when soil temperature is similar across treatments, seasonal differences in soil water 

content can affect variation in soil CO2 flux (Epron et al. 1999, Davidson et al. 2002). However, 

both soil moisture and temperature varied in similar ways regardless of site flow regime 

classification, so it was unlikely that soil moisture and temperature alone were responsible for 

variation in soil CO2 flux.  

Spring soil respiration responses to increased soil temperature and moisture tended to be 

negative, contrary to what others have reported (Mellilo et al. 2001), but this trend continued into 

the summer with respect to soil temperature, but not soil moisture. Within each site during each 

season, soil temperature and soil CO2 flux exhibited positive exponential functions across all 

sites. These two differing responses merit consideration. Overall, sites with lower soil 

temperatures tended to exhibit greater soil respiration, particularly during spring and summer 
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seasons when soil temperatures were overall greater and soil respiration was greatest among all 

seasons. Soil microbial communities are likely heterogeneous enough across sites, such that, 

while microbes respond positively to warmer soil temperatures at a particular site, other soil 

conditions (e.g. waterlogged or excessively dry soil) at other sites that happen to have warmer 

soil temperatures are less optimal for microbial activity.  

Soil moisture positively influenced soil respiration during the autumn, and soil respiration 

rates across sites tended to respond positively during the winter and summer seasons, but 

negatively during spring. Soil moisture conditions during the autumn were the lowest of the 

entire study period, likely leaving parched microbes to scavenge for whatever little soil moisture 

was available to support minimal metabolism and basic functioning. Conversely, wet spring soils 

may have reduced soil diffusivity and depressed soil respiration, particularly at the Groundwater 

sites.   

 There was no interactive effect of flow regime, transect distance from stream, and season 

on soil respiration. However, clear trends were observed across seasons. Others have shown a 

clear shift in soil respiration rates when transitioning from riparian to hillslopes positions, 

suggesting that greater soil respiration typically occurs in the riparian zone and respiration tends 

to decrease upslope away from the channel (Pacific et al. 2008). While the transects in this study 

were not great enough to move into more upland hillslope positions surrounding the riparian 

zones, respiration rates did tend to decrease moving away from the stream in winter and summer. 

Similar to summer measurements in this study, Pacific et al. (2008) reported a large amount of 

variability in CO2 gas fluxes measured in the riparian zone, while the variability in soil 

respiration during the other seasons was low. The low variation in soil respiration may be due to 

more homogeneous conditions in the measurement areas during those seasons. With respect to 
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the 2-way interaction between season and transect distance it is clear that across flow regimes, 

trends are more evident. While respiration was similar across transects in autumn and spring, 

there were interesting trends in winter and summer. Specifically, respiration decreased moving 

away from the stream in winter. In summer, respiration tended to also be greatest closest to the 

stream. Then, there was a marked decrease then a slight increase at the farthest transect. Summer 

measurements were also the most variable (especially close to streams).  

Correlations between soil CO2 flux and soil temperature and moisture indicated that, 

while the environmental factors measured did not vary much themselves, they also did not 

typically covary with soil CO2 flux across sites and transects for much of the study, suggesting 

that perhaps other soil characteristics might have greater explanatory power than soil temperature 

and moisture. Soil characteristics not addressed in this study may be more influential espcially in 

the area closest to the wetted channel, where no clear relationships were observed. However, soil 

temperature and moisture both covaried with soil CO2 flux on two occasions at the 10- and 20-m 

transect locations during respective summer and spring sampling events. Soil conditions are 

certainly subject to seasonal changes and, in turn, variables related to soil respiration may shift 

over the year, but results of this study also underscore the spatial heterogeneity of soil conditions 

that influence soil surface CO2 flux.  Additional research is needed in the soil and gravel bar 

areas directly adjacent to stream channels to more fully understand the drivers of CO2 fluxes 

where terrestrial and aquatic systems intersect. 

While few significant relationships occurred between soil respiration and soil temperature 

and moisture at the annual or seasonal scale across sites, more relationships between 

environmental factors and soil respiration occurred at the site level. Some sites had different or 

no relationships between variables at various times throughout the sampling year. For example, a 
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positive correlation between soil respiration and soil temperature occurred at Big Piney Creek in 

the autumn, while soil respiration was inversely correlated with soil moisture at Murray Creek. 

Since some measurements were unable to be made at Roasting Ear Creek during spring and soil 

moisture was lacking for Murray Creek during spring, it was not possible to ascertain a definite 

relationship among soil CO2 flux and soil temperature and/or moisture during the spring season. 

However, when plotted across seasons at each site, soil temperature clearly covaried with soil 

CO2 flux at each site. All sites revealed positive exponential relationships between soil 

temperature and soil respiration across seasons. Soil respiration and moisture were only related at 

Runoff sites, and the direction of these relationships was roughly positive. These results warrant 

further study, as it appears site-level differences may be demarcated by hydroecological 

classification given that none of the Groundwater streams exhibited the dual relationship 

between soil CO2 flux and soil temperature and moisture at the site level. The observed 

differences in relationships between soil temperature, moisture, and CO2 flux based on 

hydroecological regime also underscores the often site-specific nature of conditions that control 

biogeochemical cycles.   

Ecoregion and stream size have been shown to affect organic matter decomposition, C-

use efficiency, and aquatic microbial respiration rates (Hill et al. 2017), underscoring the need to 

develop more integrated models of C transport and use from terrestrial through riparian systems 

into adjacent waterways. Understanding the interplay between soil and stream C fluxes will be 

important for determining C mitigation and sequestration strategies in the face of climate change 

and ecosystem disturbance. While soils are a greater source of atmospheric CO2 relative to small 

headwater streams (Hope et al. 2004), waterways represent an important and, until recently, 

largely overlooked conduit of C flux from the terrestrial sink to the atmosphere. Studies of C 
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dynamics need, where possible, a multi-system approach to fully understand and elucidate 

patterns of C uptake, release, and transport within local and regional land-stream-atmosphere 

continua.  

It is important to note that this study only addressed C as CO2, while streams and soils are 

also conduits of methane (CH4) and nitrous oxide (N2O) to the atmosphere, which have 34 and 

298 times the 100-year global warming potential of CO2, respectively (Myhre et al. 2013). 

Similar efforts undertaken in Arkansas agricultural systems have shown clear trends in CH4 

production in response to differing hydrologic regimes (Brye et al. 2013, Rogers et al. 2014), but, 

similar to the results of this study with CO2, fluxes of N2O showed few consistent patterns over 

the growing season (Rector 2018). More work is needed to adequately characterize how 

hydrology and land cover influence greenhouse gas dynamics in areas where land is subject to 

variations in flood regime and water-table depth.   

This study was designed to address a gap in soil respiration studies with respect to 

surface water flow regime/ecoregion, as well as proximity to stream channel, though several 

caveats must be acknowledged. While soil temperature and moisture are known to account for a 

large amount of the variation in soil respiration rates, other factors may interact with or confound 

the known relationships. Soil diffusivity (Davidson and Trumbore 1995) as well as the 

assimilation rate of C into soil (Trumbore et al. 1995) can also affect soil CO2 fluxes. However, 

these additional soil properties and processes were not measured in this study and they may very 

well have accounted directly for additional variations in C fluxes or, perhaps, influenced the 

other soil characteristics that were measured. Additionally, the frequency of soil respiration 

measurement was only once per season; more measurement events would likely have captured 

greater variations in soil surface CO2 fluxes and more accurately portrayed relationships that 
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may have been obscured by the low temporal resolution of the dataset generated in this study 

(Pacific et al. 2008). Nonetheless, the results of this study clearly point to a need to further study 

stream-associated C dynamics by expanding spatial measurements to adjacent riparian zones.  

Results of this study support and extend the current understanding of stream-corridor C 

fluxes by drawing upon hydroecological classifications that are likely influenced in some way by 

riparian soil processes. Conducted entirely within minimally disturbed sites, this study provides a 

basis for comparison among riparian CO2 fluxes at disturbed sites, which is especially important 

given that stream corridors and riparian buffers are particularly susceptible to anthropogenic 

landscape alteration. These results suggest that riparian CO2 fluxes are highly temporally and 

spatially variable, highlighting the need for more studies of riparian soils within and across 

ecoregions and flow regimes to enhance predictions of changes in soil CO2 dynamics as climate 

change and human landscape alteration modify soil conditions on a global scale.  
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APPENDIX 

TABLES 

Table 1. Site information with reach UTM coordinates and soil taxonomic (Order, Subgroup, Family, and Series) information by bank. 
Bank side corresponds to direction when facing upstream.  Flow regime is defined based on Leasure et al. (2016). Soil data from Web 

Soil Survey (Soil Survey Staff 2018).  

 

Table 2. Sampling dates within each season at each site and flow regime (Leasure et al. 2016) over the study duration. 

 

               

Site Flow Regime Coordinates Bank Soil Order Soil Subgroup Soil Family Soil Series

Big Piney Runoff Flashy 35.770726, -93.394299 Left  Ultisols Typic Hapludults Loam Spadra
Right Entisols Typic Udifluvents Cobbly Fine Sandy Loam Ceda

Little Piney Runoff Flashy 35.669063, -93.372059 Left and Right Entisols Typic Udifluvents Cobbly Fine Sandy Loam Ceda
Murray Runoff Flashy 35.616035, -93.367468 Left and Right Ultisols Typic Hapludults Fine Sandy Loam Spadra

Roasting Ear Groundwater Flashy 35.951412, -92.287885 Left and Right Entisols Typic Udifluvents Gravelly Loam Elsah
Spring Groundwater Flashy 36.018415, -92.586139 Alfisols Typic Paleudalfs Fine Sandy Loam Portia

Sylamore Groundwater Flashy 36.014068, -92.247944 Left Alfisols Mollic Hapludalfs Fine Sandy Loam Razort
Right Mollisols Lithic Hapludolls Moko: Stony Loam Moko-Estate Complex

Alfisols Typic Hapludalfs Estate: Fine Sandy Loam

Flow Regime Site Fall  Winter Spring Summer

Runoff Big Piney 10/20/2015 1/11/2016 3/24/2016 6/9/2016
Runoff Little Piney 10/12/2015 1/8/2016 3/24/2016 6/9/2016
Runoff Murray 10/18/2015 1/6/2016 3/24/2016 6/9/2016

Groundwater Roasting Ear 10/19/2015 1/4/2016 No Sample 6/6/2016
Groundwater Spring 10/19/2015 1/5/2016 3/21/2016 6/7/2016
Groundwater Sylamore 10/20/2015 1/4/2016 3/20/2016 6/6/2016

 

13
0 
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Table 3. Stream and soil summer sampling dates at each site and flow regime (Leasure et al. 
2016). 

 

 

Table 4. Results of Repeated-Measures ANOVA analyses for riparian soil respiration, soil 
temperature, and soil moisture. 

 

 

 

 

 

 

 

 

Flow Regime Site Soil Sampling Date Stream Sampling Date

Runoff Flashy Big Piney 6/9/2016 6/15/2017
Runoff Flashy Little Piney 6/9/2016 6/15/2017
Runoff Flashy Murray 6/9/2016 6/15/2017

Groundwater Flashy Roasting Ear 6/6/2016 6/13/2017
Groundwater Flashy Spring 6/7/2016 6/13/2017
Groundwater Flashy Sylamore 6/6/2016 6/13/2017

Dependent Variable

Source of Variation            

(Between Groups) F-statistic p -value

Source of Varation                       

(Within Groups) F-statistic p -value

Soil Respiration Flow Regime (Flow) 11.87 0.001 Season 62.35 <0.0001
Distance From Stream (Distance) 1.50 0.23 Season * Flow 3.95 0.01

Flow * Distance 2.80 0.07 Season * Distance 8.46 <0.0001
Season * Flow * Distance 1.02 0.42

Soil Temperature Flow Regime (Flow) 0.61 0.44 Season 292.52 <0.0001
Distance From Stream (Distance) 0.01 0.99 Season * Flow 9.10 0.0001

Flow * Distance 0.055 0.95 Season * Distance 0.04 0.99
Season * Flow * Distance 0.016 0.99

Soil Moisture Flow Regime (Flow) 4.44 0.04 Season 24.82 <0.0001
Distance From Stream (Distance) 1.03 0.37 Season * Flow 2.92 0.05

Flow * Distance 0.34 0.71 Season * Distance 0.66 0.68
Season * Flow * Distance 0.69 0.66
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FIGURES 

 

Figure 1. Conceptual model showing predicted trends in soil respiration, temperature, and 
moisture moving from the immediate stream bank into the riparian area.  

 

Figure 2. Soil surface carbon dioxide (CO2) fluxes from longitudinal transects parallel to Runoff 
and Groundwater sites by season over the study year. Error bars represent + 1 standard 

error. Letters indicate significant differences based on Tukey’s HSD test comparing 
seasons; asterisk denotes significant difference between flow regimes within one season. 
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Figure 3. Soil temperature (2 cm; a) and moisture content (0-6 cm; b) from longitudinal transects 
parallel to Runoff and Groundwater sites by season . Error bars represent + 1 standard error. 

Letters denote significant differences in values across seasons.  
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Figure 4. Soil surface carbon dioxide (CO2) fluxes from longitudinal transects parallel to 

Runoff and Groundwater sites by distance along transect away from the stream bank 
across seasons. Error bars represent + 1 standard error. Letters indicate significant 

differences based on post hoc tests comparing transects across seasons; asterisk denotes 
significant difference between transects within one season. 
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Figure 5. Correlation matrices between measured soil variables at three longitudinal transects in 
spring (a) and summer (b). Significant correlations (p< 0.05) are highlighted in red boxes around 

correlation plot. CO2 0m, CO2 10m, CO2 20m= CO2 flux at transects zero, ten, and twenty 
meters from stream channel, respectively. Temp 0m, Temp 10m, Temp 20m= soil temperature at 

transects zero, ten, and twenty meters from stream channel, respectively. H2O 0m, H2O 10m, 
and H2O 20m= Soil moisture at transects zero, ten, and twenty meters from stream channel, 

respectively. All transects were parallel to stream channel on left and right banks. 
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Figure 6. Comparison of soil and stream carbon dioxide (CO2) fluxes during June at Runoff and 
Groundwater sites. Error bars represent + 1 standard error. 
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CONCLUSIONS 

Understanding the dynamic sources, patterns, and processes driving local, regional, and 

global C dynamics is an urgent task given that consequences of anthropogenic climate change 

and human perturbation of the C cycle are already impacting terrestrial and aquatic ecosystems 

(Parmesan and Yohe 2003, IPCC 2013, McNutt 2013). Ascertaining natural sources of variation 

in C fixation, release, and transport in forested, minimally-impacted systems is an important first 

step in evaluating how and by what mechanisms climate change and landscape alteration are 

modifying C balances. In lotic systems, climate-driven changes in precipitation patterns and 

reductions in groundwater intrusion from human extraction will alter the natural flow regime, 

which is the major conduit through which C fixed and dissolved into the stream is transported 

downstream, to the riparian, and to the atmosphere (Newbold et al. 1982, Wallin et al. 2013).  In 

this dissertation, I utilized field studies and data simulation models to evaluate C dynamics in 

streams classified into the two dominant hydroecological types in this region based on a spatial 

model (Leasure et al. 2016), Groundwater Flashy compared to Runoff Flashy streams, to confirm 

flow class characteristics and explore ecosystem-level flow-ecology responses both within and 

adjacent to six forested headwater streams.  

The impacts of natural variation in flow characteristics were investigated with respect to 

instream C fluxes as well as C gas fluxes between the stream surface and the atmosphere as well 

as riparian soil surface and the atmosphere. Flow regimes differed in a number of parameters that 

may have implications for community and ecosystem dynamics and, in turn, management 

applications. Metrics such as dissolved inorganic carbon (DIC), alkalinity, and conductivity were 

greater in Groundwater streams owing to the ion-rich groundwater that is predicted to make up 

the bulk of base flow in those systems. Groundwater streams were also colder and less turbid 

than Runoff streams. Unexpectedly, Runoff streams dried for a portion of each year, but they also 
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experienced fewer large flood events, likely due to the lack of groundwater influence. While 

there were no significant differences in annual GPP and ER between categories, both tended to 

be greater in Groundwater streams. Importantly, data simulations revealed that flow regime may 

mediate the responses of production and respiration to high flows. Additionally, Groundwater 

streams emitted nearly twice as much CH4 as Runoff streams, though the riparian soils of Runoff 

streams tended to emit more CO2. Overall, field measurements and data simulations suggested 

that hydrology plays a role in stream and riparian C fluxes and exerts control on factors driving 

C fluxes within streams as well as between streams, soils, and the atmosphere.  

Stream metabolism is sensitive to both natural and anthropogenic disturbances, revealing 

ecosystem-level responses to changes in hydrology and geomorphology (Izagirre et al. 2008, 

Williamson et al. 2008). While no significant differences in GPP and ER were found between 

flow regimes, there were clear trends showing greater biological activity (e.g. GPP and ER) in 

Groundwater streams. Importantly, significant differences may have been undetectable due to 

low sample size; simulations to increase statistical power showed significantly greater GPP and 

ER in Groundwater streams. Across streams, results showed that drying negatively influenced 

annual GPP and more heterotrophic streams exhibited greater annual discharge. Simulations also 

revealed differential impacts of high flows on metabolism based on flow regime. Groundwater 

stream GPP responded positively to high flow, but simulated Runoff stream GPP responded 

negatively to high flows. These results suggest that as climate change and human impacts alter 

flows, GPP may become more variable across flow regimes and, perhaps, Groundwater and 

Runoff streams may exhibit distinct metabolic regimes. 

In Chapter 2, I showed that both Runoff and Groundwater streams are appreciable 

sources of CO2 and CH4 to the atmosphere and that DOC may reduce stream CO2 gas fluxes. 
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Importantly, my data suggest that the role of flow regime in greenhouse gas evasion may be 

dependent on the gas species under consideration. Field and simulation data revealed that CO2 

fluxes, sources, and drivers were similar between Runoff and Groundwater flow regimes. 

However, flow classifications had differing sources and drivers of CH4 fluxes, which are being 

produced by anaerobes either within or immediately adjacent to Groundwater streams. This may 

be linked to the dominant flow source and other characteristics that define Runoff and 

Groundwater streams, such as substrate size. The streambeds of Groundwater systems are 

comprised of gravel and pebble through most of the benthos, and Groundwater streams have 

observable hyporheic zones, whereas Runoff streams are bedrock-bottomed with cobble and 

boulder resting over the consolidated rock. Though all streams were highly aerated, it may be 

that anaerobic pockets occur within Groundwater stream hyporheic zones, especially during late 

summer when base flow was reduced to its annual minimum. Groundwater streams also house 

upwellings that provide a potential pathway for deep soil-derived CH4 to enter the stream.  

Field data in Chapter 3 provided evidence that riparian areas merit consideration and 

inclusion when establishing flow-ecology relationships and environmental flow standards. 

Riparian soil respiration in this study varied more over the year than by flow regime. However, 

Runoff sites emitted significantly more CO2 than Groundwater sites during the spring. 

Additionally, factors related to respiration rates differed between flow regimes. Specifically, soil 

respiration at each Runoff site was related to both soil temperature and moisture, but fluxes were 

only related to soil temperature at each Groundwater site. During the summer, soils emitted more 

CO2 to the atmosphere than adjacent streams, emphasizing the importance of riparian soils to 

watershed C cycles. Further, the greater soil C flux compared to stream C fluxes underscores the 

importance of protecting riparian buffers around streams.  
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Given that several of the streams within this study deviated from model-predicted 

characteristics- specifically, streams were expected to be perennial- variation in hydrology within 

a flow regime and the potential influence of this variation within my study designs and statistical 

analyses is worth considering. One way to address this in future work would be to attempt to 

select study sites that would behave more similarly within a flow class over a defined time 

frame. It is certainly likely that on broad temporal scales, the streams in this study are 

hydrologically similar, as long-term data were used to model flow classifications (Leasure et al. 

2016). Addressing ecosystem functions at shorter temporal scales- such as annually or 

seasonally- may require refining hydrologic characteristics even within a flow classification to 

reduce variation. Additionally, future studies designs may need to weigh the benefits of grouped 

versus continuous explanatory variables. In this dissertation, regression and correlation results 

between flow metrics and ecosystem functions tended to provide a better explanation of what 

specifically is influencing C dynamics than t-test/ANOVA designs that simply grouped flow 

regimes together.  That is, regression and correlation approaches tended to yield a greater 

number of significant trends that explained variation in C fluxes. My contribution here is 

twofold: I presented evidence of the importance of hydrology to stream and adjacent riparian C 

fluxes, and provided an example of multiple approaches (i.e. continuous flow variables and 

grouped flow classes) for exploring flow-ecology relationships. The mapped natural flow 

regimes of northern Arkansas have certainly proven useful for exploring flow-ecology 

relationships in the region (Bruckerhoff and Magoulick 2017, Yarra and Magoulick 2018, Lynch 

et al. 2018), but studies of ecosystem processes may require a more careful approach with 

respect to characterizing flow and flow-dependent variables driving variation in function . Flow 

regime is an important determinant of community and ecosystem processes and functions (Bunn 
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and Arthington 2002, Poff et al. 2009, Poff and Zimmerman 2010, Lynch et al. 2018). This 

dissertation presents evidence that natural variation in hydrology within a temperate forested 

biome can influence whole-stream metabolism, stream greenhouse gas fluxes, sources, and 

drivers, and riparian soil respiration.  
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