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Abstract 

Supplemental dietary yeast products are beneficial during times of stress. Calves experience 

increased levels of stress during birth, weaning, and the post-weaning receiving period. 

Therefore, 3 experiments were conducted to determine how yeast supplementation affects 

growth performance and health during this time. In experiment 1, 2 truckloads of highly stressed 

calves (n = 175; initial body weight [BW] = 226 ± 24.5 kg) were assigned randomly to 1 of 3 

treatments; unsupplemented control, or supplementation with 2 commercial yeast products (Y1 

and Y2). Average daily gain (ADG) was not different (P = 0.99) during the 28 d receiving 

period; nor was there any difference (P = 0.29) in the percentage of calves treated for bovine 

respiratory disease. In experiment 2, heifer calves (n = 95; initial BW = 165 ± 27 kg) were 

randomly assigned to pastures and pastures were randomly assigned to treatment: 1) no yeast 

(CON), or 2) addition of yeast product (YP). Heifers were supplied treatments for 35 d prior to 

weaning and through a 42-d backgrounding period.  Average daily gain prior to weaning was not 

different (P ≥ 0.45) between treatments. However, CON had increased (P = 0.01) ADG 

compared to YP from weaning to the end of the backgrounding period. Microbiome analysis 

found that supplemental yeast did not dramatically change α or β diversity nor was there a 

difference in community structure for rumen bacteria; fecal α or β diversity were different on d 

34. In experiment 3, late gestation cows (n = 97) were supplemented YP approximately 45 d 

prior to parturition. At parturition colostrum and blood samples (n = 30) were collected to 

determine the effect on passive transfer. Supplementation ended 22 d after the last calf was born 

(d 85). Body weight on d 85 was greater (P = 0.01) for YP calves compared with CON. Cows 

that were supplemented YP had a lower (P = 0.03) neutrophil:lymphocyte at hour 0 and 48 after 

parturition. Similarly, calves on YP treatment had a lower (P = 0.02) neutrophil:lymphocyte at 

hour 48. Overall, effects of yeast supplementation have been variable between the 3 experiments.   
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Antibiotic use in animal agriculture has become a concern among the American 

population. Antibiotics are used in animals for the treatment and prevention of disease and as 

growth promoters. In 2017, the United States Food and Drug Administration (FDA) increased 

regulation regarding the use of antibiotics in animal agriculture that are classified as medically 

important to humans. Both consumer preference and government regulation has increased 

interest in a more natural livestock production. Therefore, greater importance has been placed on 

maintaining both animal health and production in order to reduce the amount of antibiotics 

administered.  

 Probiotics are naturally occurring additives that have gained popularity in the livestock 

industry to promote health and growth performance. Probiotics are defined as live 

microorganisms that provide health benefits to the host when consumed in adequate amounts and 

frequency (FAO-WHO, 2002). Probiotics can refer to microbial cultures, enzyme preparations, 

culture extracts, or any combination of the 3 (Yoon and Stern, 1995). In ruminants, the most 

common probiotic used is Saccharomyces cerevisiae, a live yeast to target the rumen, whereas 

the yeast, Sacchromyces boulardii and bacterial strains (Lactobacillus spp., Enterococcus spp., 

Pendiococcus spp., Bacillus spp.) are more popular in monogastrics to target the hindgut 

(Chaucheyras-Durand and Durand, 2010).  

Prebiotics are an additional feed additive that can modify the microbial population in the 

gastrointestinal tract. Prebiotics are non-digestible feed ingredients that support the growth of gut 

microorganisms that are beneficial to the host (Gibson and Roberfroid, 1995). In order to be 

classified as a prebiotic, a feedstuff must meet certain criteria; 1) must be resistant to 

gastrointestinal absorption, 2) fermentable by microbes in the intestine, and 3) promote growth 
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of bacteria that are beneficial to the health of the individual (Gibson et al., 2004). Using pre- and 

probiotics in combination is known as synbiotics. 

The FDA requires feed manufacturers to use the term direct-fed microbial (DFM), which 

is defined as a feed product that contains live microorganisms and is typically of fungal or 

bacterial origin (Miles and Bootwalla, 1991). Direct-fed microbials are added to the diet to 

modify the microbial population in the gut. In a survey done by New Mexico State University 

and Texas Tech University, feedlot consulting nutritionists reported that 62.5% of clients use 

DFM in receiving diets and 59.6% in finishing diets for beef cattle (Samuelson et al., 2016).  

Yeast is a eukaryote, single-celled microorganism, and member of the fungi family with 

approximately 1,500 species identified. Yeast exhibits properties of both pro- and prebiotics. 

Yeast can survive in the rumen and remain metabolically active (Kung et al., 1997) therefore 

demonstrating a probiotic effect. Yeast products could also be classified as a prebiotic due to the 

growth factors and vitamins that they provide for the rumen microbes (Opsi et al., 2012). The 

utilization of yeast in animal nutrition is not a new concept and has been practiced for years, yet 

there is a lack of understanding of the mechanisms and benefits in beef production.  
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Overview of yeast products 

 The most common specie of yeast used in animal diets is Saccharomyces cerevisiae 

which is commonly referred to as baker’s or brewer’s yeast. Saccharomyces cerevisiae is most 

often used in the food and beverage industries due to its role in the fermentation process. 

Saccharomyces cerevisiae is found throughout nature and is also naturally occurring in the 

gastrointestinal tract. While S. cerevisiae is the most common, other species and strains of yeast 

are being utilized in livestock nutrition (Chaucheyras-Durand and Durand, 2010). The influence 

of yeast in the diet can change depending on yeast strain and the components of yeast fed. 

 There are many varieties of commercially available yeast products used in animal 

nutrition including but not limited to live yeast, yeast cell wall (YCW), brewer’s yeast (spent 

yeast), yeast cultures, and yeast extracts. Live yeast is a dried product that contains a high 

concentration of viable cells (AAFCO, 2013). Inclusion rate of live yeast is often lower 

compared to other yeast products because it contains pure, metabolically active yeast. Yeast cell 

wall, also referred to as mannan oligosaccharides (MOS), is the outer layer of the yeast cell and 

is derived after lysis of the cell. The cell wall of yeast is composed primarily of polysaccharides 

such as glucans and mannans. Brewer’s yeast is killed yeast that is a by-product from the 

beverage industry (AAFCO, 2013). Yeast cultures are products of yeast fermentation and include 

growth media that they are grown in (AAFCO, 2013). Yeast cultures are included in the diet at a 

higher rate because the number of live cells is not guaranteed. Yeast extract refers to the contents 

within the cell and excludes the yeast cell wall components (AAFCO, 2013).  

It is also critical to consider the length of time that yeast products are fed. Live yeast can 

take up to 14 days to propagate in the rumen while YCW will start to take effect immediately 

after feeding. Commercial products can also be a blended mix of yeast products to capture the 

different benefits that each provide. Most of the research conducted with yeast products has been 
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highly variable which can be attributed to differences in management, diet types, and the health 

and production stage of the animal (Desnoyers et al., 2009). There is much yet to understand 

about the interaction of these factors.  

Production in cattle  

Feedlot receiving period 

 Calves new to the feedlot environment are stressed prior to arrival due to weaning, 

commingling, and transportation (Duff and Galyean, 2007). Stress can have a negative impact on 

feed intake (Cole, 1996) and reduces gain during the receiving period. Therefore, it is vital to 

properly manage receiving calves to minimize the decreased intake and gain. Use of yeast in 

receiving diets has been heavily studied intensively however the outcomes have been highly 

variable. The most consistent finding is the positive influence that yeast has on dry matter intake 

(DMI) during the receiving period (Finck et al., 2014; Ponce et al., 2012; Young et al., 2017). 

The improvement in DMI has been suggested to be the cause of increased average daily gain 

(ADG; Ponce et al., 2012). However, greater ADG is not always observed during this period 

(Finck et al., 2014; Vendramini and Arthington, 2007).  

Finishing period 

 Yeast has been utilized in feedlots as a natural feed additive to improve both feed 

efficiency and rumen fermentation characteristics. As with the receiving period, performance 

results have been highly variable during finishing. Hinman et al. (1998) saw an advantage to 

feeding yeast culture in ADG and feed efficiency (FE). Contrasting results have found that yeast 

did not affect gain or FE (Swyers et al., 2009; Ovinge et al., 2018). Furthermore, carcass 

characteristics have been altered with inclusion of yeast in finishing diets. Yeast improved 

carcass quality by increasing the percentage of steers grading premium choice and choice along 
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with yield grades of 1 and 2 (Swyers et al., 2009). While carcass quality was improved, hot 

carcass weight (HCW) was less in steers fed yeast compared to control. In agreement, Ovinge et 

al. (2018) saw a linear increase in carcasses grading premium choice as the inclusion rate of 

yeast increased in the diet. Carcass quality was improved with yeast, however, cost of gain in the 

feedlot was greater for supplemented calves compared to control (Swyers et al., 2009). As the 

natural market grows in the United States producers could demand a greater price for their 

product which could offset the increased cost in the feed yard. 

Milk production 

 Similar to finishing beef cattle, the effects of yeast products are variable in dairy cows. 

Yeast has been shown to improve milk yield (Moallem et al., 2009; Nocek et al., 2011; Jiang et 

al., 2017a) but these findings have not been consistent (Robinson and Garrett, 1999; Shwartz et 

al., 2009). Not only is there variability among studies, but Jiang et al. (2017a) found that a low 

dose of live yeast improved milk yield but a high dose of live yeast had no effect. Milk fat and 

protein yield increased with enzymatically hydrolyzed yeast (Nocek et al., 2011) although milk 

fat was the only component to improve as a percentage of milk composition. Similarly, Moallem 

et al. (2009) reported an increase in milk fat yield but percentage of milk fat and protein were not 

different. Similar conclusions have been made regarding DMI in primiparous and multiparous 

lactating cows (Robinson and Garrett, 1999). 

Effect on digestibility  

  Yeast products exhibit beneficial effects on total tract digestibility of dry matter (DM) 

and dietary fiber components including neutral detergent fiber (NDF), acid detergent fiber 

(ADF), and hemicellulose (Jiang et al., 2017a; Ovinge et al., 2018). Crude protein (CP) 

digestibility has been improved in steers (Ovinge et al., 2018) but the same affect has not been 
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found in lactating dairy cows (Jiang et al., 2017a; Moallem et al., 2009). Improvement in 

digestibility is likely due to the increase in the concentration of total bacteria present in the 

rumen (Newbold et al., 1995; Kumar et al., 1994). Along with a greater abundance of bacteria, 

the presence of specific bacterial species vital to rumen function also increase with yeast 

supplementation such as cellulolytic (Newbold et al., 1995; Kumar et al., 1994; Harrison et al., 

1988) and fibrolytic bacteria (Chaucheyras-Durand and Fonty, 2006).  

 More recent studies have evaluated the influence of yeast on rumen microbial species by 

sequencing the V4 region of the 16S rRNA region. Jiang et al. (2017b) identified an increase in 

Ruminococcus and Bifidobacterium species which are associated with fiber and starch 

digestibility when yeast was fed. Additionally, Jiang et al. (2017b) reported a decrease in 

bacterial species Coprococcus and an unknown species in the Lachnospiraceae family. In a 

companion paper, Jiang et al. (2017a) found that an unknown species in the family 

Lachnospiraceae correlated negatively to DM and NDF digestibility. Not surprising, 

Ruminococcus correlated positively to ADF digestibility (Jiang et al., 2017a), indicating that 

yeast stimulated the growth of favorable bacteria and limited the production of undesirable 

bacteria. Yeast did not affect the inter- or intra-diversity of rumen samples nor did it change the 

microbial structure (AlZahal et al., 2017), or have noticeable differences in the abundance of 

certain observational taxonomy units (OTU) within the rumen microbiome. AlZahal et al. (2017) 

saw that active dry yeast increased the relative abundance of F. succinogenes and SR1 when 

cows were switched from a high fiber to high grain diet which was accompanied by a reduction 

in Provetella in yeast supplemented cows compared to the control. 

 Yeast products influence the profile of volatile fatty acid (VFA) within the rumen. In 

buffalo (Bubalus bubalis), Saccharomyces cerevisiae increased total VFA, acetate, propionate, 
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and the acetate to propionate ratio (Kumar et al., 1994). Conflicting results described a reduced 

acetate:propionate ratio due to a reduction in acetate and an increase in propionate (Harrison et 

al., 1988). A lower acetate to propionate ratio is desirable energetically. As the acetate to 

propionate ratio decreases the amount of methane emitted into the environment is reduced 

(Russell, 1998). As acetate is produced, H2 is produced and converted to methane (Ferry, 1992). 

In vitro studies suggest that yeast could be a potential tool to mitigate methane production by 

decreasing acetate production by acetogenic bacteria (Chaucheyras-Durand et al., 1997) and 

stimulating the growth of H2-utilizing bacteria (Chaucheyras et al., 1995). Similar to other 

variables, the effect of yeast on methane emissions has been extremely variable. One in vitro 

study found that yeast reduced methane production by 20% (Lynch and Martin, 2002) while 

others saw an increase (Ando et al., 2004). The same mixed effects have been observed in vivo, 

some having found no reduction on methane emissions when providing supplemental yeast 

(McGinn et al., 2004) while others have reported that methane can be reduced but it is dependent 

on the strain of yeast used (Hristov et al., 2010).  

 Live yeast survive and remain metabolically active in the rumen and positively influence 

pH in high producing dairy cows and finishing steers. Rumen pH decreases as calves are 

switched from a diet consisting primarily of forage to one predominantly consisting of grain 

(Russell, 1998). A decrease in ruminal pH below 5.8 could lead to subacute ruminal acidosis 

(SARA; Beauchemin et al., 2003). Subacute ruminal acidosis has substantial consequences 

including a reduced fiber digestibility, lameness, and liver abscesses (Plaizier et al., 2001; 

Nocek, 1997). Active as well as killed dried yeast improve minimum pH and decrease the length 

of time that the rumen remains in an acidotic state (Vyas et al., 2014). Vyas et al. (2014) saw an 

increase in Ruminococcus flavefaciens, a fiber-digesting bacterium, when killed dried yeast was 
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included in the diet but there was no difference in the level of lactic acid producing bacteria. In 

high producing Holstein cows, the amount of lactic acid was reduced with yeast culture 

supplementation, which resulted in an increase in rumen pH (Willams et al., 1991). After 

evaluating the effect of yeast on rumen microbiota, supplemented cows have a lower abundance 

of lactate-utilzing bacteria such as Megasphaera and Selenomas accompanied by an increase in 

fibrolytic groups including Fibrobacter and Ruminococcus (Pinloche et al., 2013). Therefore, the 

change in microbial species is believed to influence the beneficial effects of yeast on rumen pH.  

 The rumen is anaerobic in nature and has a high reducing potential. Under normal 

conditions, the average redox potential (Eh) in the rumen of sheep is between -150 to -260 mV 

(Broberg, 1957; Barry et al., 1977) and -88 to -134 mV in lactating Holsteins (Marden et al., 

2008). A lower Eh is indicative of favorable reducing conditions. Chaucheyras-Durand and Fonty 

(2002) found that live yeast reduced the Eh in lambs. A decrease in Eh has further been observed 

in dairy cows (Marden et al., 2008; Křížová et al., 2011; Pinloche et al., 2013) after consuming 

yeast products; providing evidence that yeast has the capability of improving the reducing 

potential in the rumen which could support the growth of bacterial communities. An 

improvement in the rumen environment would explain the increase in total, cellulolytic, and 

fibrolytic bacterial species found in previous research.  

 Gressley et al. (2016) evaluated the effect of Saccharomyces cerevisiae on hindgut 

fermentation in steers. Saccharomyces cerevisiae var. boulardii was infused into the abomasum 

for an 18-d period. On d 16, oligofructose was infused in the abomasum to stimulate a similar 

response to SARA. Prior to oligofructose infusion, NDF digestibility had increased with yeast 

infusion; however, digestibility was not affected after oligofructose infusion. Gressley et al. 

(2016) observed an improvement in fecal scores post infusion with yeast products. Further work 
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on the influence of yeast on hindgut fermentation and health has been performed in monogastric 

species. In post-weaning pigs fed yeast culture, there was an improvement on villus height in the 

jejunum which led to an increase in the villus to crypt depth ratio (Shen at al., 2009). In addition, 

intestinal mucosal macrophages increased in weaned piglets after consuming yeast supplement 

(Bontempo et al., 2006). Dogs supplemented YCW saw an improvement in ileal nutrient 

digestibility and a reduction in E. coli (Middelbos et al., 2007). These results indicate that yeast 

has the potential to improve intestinal gut integrity and function. 

 Livestock are natural reservoirs of bacterial pathogens, such as Salmonella and E. coli, 

which can negatively impact human health. Therefore, meat scientists are concerned about 

pathogen shedding and contamination in food production when hides are removed from animals 

during slaughter (Wheeler et al., 2014). Components of yeast and YCW products are believed to 

bind to pathogenic bacteria in the gastrointestinal tract to further improve gut health (White et 

al., 2002). In vitro studies demonstrate that Saccharomyces cerevisiae has the ability to bind to 

the cell wall of Salmonella spp. (Pérez-Sotelo et al., 2005). There is evidence supporting the use 

of probiotics to reduce pathogen shedding in feces (Gaggìa et al., 2010). The prevalence of fecal 

pathogens is not completely eliminated with the addition of yeast although yeast can decrease the 

rate of fecal shedding (Swyers et al., 2011). The ability of yeast to prevent pathogen colonization 

and fecal shedding will have greater application as the demand for the reduction of antibiotics 

continues.  

Immune function 

 It has been well established in the literature that inclusion of yeast and yeast cell products 

in the diet can influence the health status of individuals. Yeast and yeast cell wall are composed 

of polysaccharides such as α- and β-glucans (Ruiz-Herrera, 1991) which can bind with receptors 

on leukocytes and stimulate an inflammatory response. Beta-glucans are composed of 1,3-linked 
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monomers of D-glucose with varying degree of 1,6 linkage side chains (Williams, 1997). The 

shape and ratio of 1,3 to 1,6 linkages differ among fungal species (Volman et al., 2008). These 

two factors are important in determining the function and response that β-glucans play in the 

body (Volman et al., 2008). Dectin-1 has been classified as a β-glucan receptor on the surface of 

macrophages, monocytes, and natural killer cells (Brown and Gordon, 2001; Brown, 2006) and 

promotes the production of TNF- α (Brown et al., 2003). Other potential receptors have been 

identified; however, the Dectin-1 receptor has shown the greatest biological response (Brown 

and Gordon, 2001). Dectin-1 can interact with toll-like receptor 2 (TLR-2) and promote 

stimulation of the cytokine IL-12 (Gantner et al., 2003). Additionally, B lymphocytes that have 

been activated by β-glucans have upregulated production of IL-6, IL-8, and TNF- α (Ali et al., 

2015). Therefore, β-glucans can directly and indirectly stimulate the innate immune response.  

 While most research has been performed in vitro, there have been several studies that 

have investigated the effect that yeast components have on immune function and response. 

Receiving calves supplemented with live yeast, YCW, or a combination of the two had a lower 

neutrophil to lymphocyte ratio after a lipolysaccharide challenge (Finck et al., 2014). A smaller 

neutrophil to lymphocyte ratio is more desirable because it indicates a reduction in stress. 

Neutrophil function has been improved in dairy calves fed yeast culture from 2 to 70 d after birth 

(Magalhães et al., 2008). Contrasting results found that yeast treatment did not improve 

phagocytic activity or respiratory burst of neutrophil in pigs post-weaning (Sauerwein et al., 

2007).   

Finck et al. (2014) also reported an increase in TNF- α in control calves prior to a 

challenge. After the challenge, there was no difference based on treatment. In a similar study, 

heifer calves were fed different YCW products prior to and during a lipolysaccharide challenge 
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(Burdick Sanchez et al., 2013), and found that yeast treatment did not influence the levels of 

serum IFN-γ and TNF- α, but IL-6 was greater in control calves post-challenge. Yeast 

supplemented calves also had decreased cortisol concentrations and vaginal temperatures. These 

results differ from those found in weaned piglets where yeast culture increased IFN- γ gut 

concentration while plasma IFN- γ concentration was decreased (Shen et al., 2009). Increasing 

concentration of IFN-γ produced from T-lymphocytes have also been reported in swine (Xiao et 

al., 2004).  

Yeast has shown potential to improve morbidity throughout various stages of production. 

In receiving calves, the percentage morbidity decreased with a commercially available yeast 

product compared to control (Ponce et al., 2012). Additionally, yeast has shown the potential to 

decrease the number of days treated with antibiotics in calves (Magalhães et al., 2008; Cole et 

al., 1992). However, other studies have reported no effect on morbidity, especially in receiving 

calves (Young et al., 2017; Finck et al., 2014). A more consistent finding is the improvement on 

DMI in calves after a vaccine challenge or antibiotic treatment. Cole et al. (1992) found that 

yeast supplemented calves had greater DMI after an infectious bovine rhinotracheitis virus 

(IBRV) challenge. Similarly, Saccharomyces cerevisiae subspecies boulardii stimulated intake 

following prophylactic treatment in calves after arrival to the feedlot (Keyser et al., 2007). 

Furthermore, Burdick Sanchez et al. (2014) reported a change in metabolic response after a 

lipopolysaccharide challenge in heifer calves consuming different varieties of YCW product.  

Prenatal and calf nutrition 

 Nutritional status of the dam and the intake of colostrum at time of birth are two factors 

that can play a significant role in the health and performance of the calf later in life (Duff and 

Galyean, 2007). Immune function of the calf at birth is dependent on the passive transfer of 
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colostral immunoglobulins. Perino (1997) found that 10 to 25% of newborn calves do not receive 

acceptable transfer of immunoglobulins. Calves that have decreased plasma proteins 24 h after 

birth have increased risk for morbidity in the feedlot (Wittum and Perino, 1995). Additionally, a 

decrease in immunoglobulin concentrations has been observed in calves whose dams were 

restricted protein during late gestation (Burton et al., 1984; Blecha et al., 1981); suggesting that 

the nutritional status of the dam during late gestation can also impact the adequacy of passive 

transfer.  

 There has been very limited research done on the influence of yeast supplementation 

prepartum and the subsequent effect on beef calves. More research has been done on this area in 

the swine and dairy industry. Sows fed active live yeast during the last 3 wk of gestation had an 

increase in the number of total solids, crude protein, and gamma globulins in their milk (Jurgens 

et al., 1997). In the aforementioned study, there was no effect of dietary treatment on growth 

performance of pigs from birth to weaning; however, piglets who consumed yeast pre-weaning, 

and whose dams were fed supplemental yeast, had increased growth performance and feed 

efficiency post-weaning. Supplementing yeast during gestation and lactation to sows increased 

concentration of colostrum IgG which resulted in greater plasma IgG in their piglets (Jang et al., 

2013). Furthermore, MOS have shown potential to increase passive immunity to dairy calves. 

Cows fed MOS had increased serum levels of rotovirus neutralization titers, which resulted in a 

greater serum titer concentration in calves (Franklin et al., 2005).   

 Yeast products are beneficial in the maturation of rumen microbial populations in young 

ruminants. In lambs fed Saccharomyces cerevisiae, there was improved development and 

stabilization of celluloytic bacteria present in the rumen (Chaucheyras-Durand and Fonty, 2001) 

and improved rumen morphology (Lesmeister et al., 2004; Xiao et al., 2016). As previously 
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mentioned, yeast can improve gut health by binding to pathogens. In dairy calves supplemented 

yeast pre-weaning, there was a reduction in the percentage of days with scours (Galvão et al., 

2005; Seymour et al., 1995) which led to a decrease in the amount of antibiotics administered 

(Seymour et al., 1995). In agreement, Magalhães et al. (2008) reported a decrease in the 

incidence of diarrhea and fever. Supplementation of yeast to neonatal calves has shown health 

benefits above decreasing the severity of scours. Calves who consumed yeast through calf starter 

had increased IgA concentrations and elevated levels of serum haptoglobin after a vaccine 

challenge (Kim et al., 2011a).  

Heat Stress 

Heat stress can occur in cattle during elevated temperatures and high humidity. Annually 

the beef industry loses approximately $369 million dollars due to the negative effects that heat 

stress has on growth performance and reproduction along with increased mortality (St-Pierre et 

al., 2003). The temperature-humidity index (THI; Thom, 1959) is the most common index used 

to measure heat stress. According to the THI, temperatures above 24°C can indicate risk of heat 

stress (LCI, 1970). Feeding yeast products has been used as a method to mitigate the negative 

effects associated with heat stress.  

In lactating dairy cows, addition of dietary yeast can improve milk production (Bruno et 

al., 2009; Moallem et al, 2009), increase DMI (Moallem et al., 2009), and enhance feed 

efficiency (Schingoethe et al., 2004) during extended exposure to high temperatures. However, 

results are variable, and in some instances, yeast did not alleviate the effects of heat stress on 

milk yield or intake (Shwartz et al., 2009). During heat stress, it is believed that the decrease in 

milk production is attributable to a decrease in energy intake (Beede and Collier, 1986). Shwartz 

et al. (2009) found that energy balance was not altered by yeast treatment during heat stress, nor 
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was there an impact on circulating glucose, non-esterified fatty acids (NEFA), and plasma urea 

nitrogen (PUN). Similar results on plasma glucose and NEFA concentrations have been reported 

(Bruno et al., 2009). Suggesting that yeast products do not influence blood metabolites when 

dairy cattle are experiencing elevated environmental temperatures. Supplemental yeast increased 

the concentration of plasma niacin in lactating dairy cows (Dias et al., 2018; Salvalti et al., 2015) 

which improves evaporative heat loss and aids in body temperature regulation (Zimbelman et al., 

2010). 

Heat stress is detrimental to the poultry industry and the use of yeast to ameliorate the 

negative response has been evaluated. Mannan oligosaccharide supplemented broilers had 

greater BW gains and reduced feed conversion ratios compared to un-supplemented birds during 

heat stress (Sohail et al., 2012). Similar results were identified by Haldar et al. (2011) where 

yeast supplemented broilers had improved performance when temperatures averaged above 

32.4°C.  

High ambient temperatures have a greater impact on finishing cattle compared with cattle 

grazing pasture. Average daily gain of finishing cattle was increased by feeding enzymatically 

hydrolyzed yeast during the last 90 d before slaughter when THI was above normal (Salinas-

Chavira et al., 2015). Salinas-Chavira et al. (2015) suspected the improvement in ADG was 

related to the increase in DMI as net energy was not altered at this time. Broadway et al. (2016) 

also reported a decreased vaginal temperatures accompanied by an increase in water 

consumption and drinking bouts in finishing heifer calves during induced heat stress. Omnigen-

AF (a yeast-based product) mitigated some of the negative effects of heat stress by decreasing 

white blood cells and lymphocytes, therefore, improving the leukocyte profile (Burdick Sanchez 
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et al., 2015). Research suggests that yeast could be a useful tool in mitigating negative effects of 

heat stress.  

Objective 

Yeast products appear to be beneficial during times of stress. Calves experience 

significant levels of stress at birth, weaning, transportation, and receiving. Management during 

these time points impacts later performance. After reviewing the literature, the influence of yeast 

at birth and pre-weaning has not been intensively studied. Therefore, the objective of the 

following experiments was to determine how yeast influences health and growth performance 

during 1) receiving, 2) pre-weaning, and 3) in late gestation cows and the subsequent effect on 

their calves.   
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ABSTRACT 

Bovine respiratory disease (BRD) is of great concern for stocker producers in the 

Southeastern US, thus this research was conducted to test the effects of yeast products on health 

and performance of high risk, newly received beef calves at the University of Arkansas Stocker 

Receiving Unit. Male beef calves (n = 175; initial BW = 226 ± 24.5 kg) were delivered in 2 

arrival blocks (Arrival Block 1: n = 85 with 54 intact bulls and 31 steers; Arrival Block 2: n = 90 

with 62 intact bulls and 28 steers). Within arrival block, calves were blocked by initial BW, 

stratified by castrate status, and assigned randomly to pen (5 or 6 calves/pen; 15 pens/truckload). 

Pens within each weight block were allocated to 1 of 3 treatments; an unsupplemented control, or 

supplementation with 2 commercial Saccharomyces cerevisiae yeast products (Y1 or Y2) for 28 

d. Each day, a mixture (0.14 kg/d for each calf) of 58% ground corn and 42% of the appropriate 

yeast product, or 100% ground corn (control) was added to the feedbunks immediately after 

basal diet delivery. Average daily gain from d 0 to 28 was not different (P = 0.99) between 

treatments. Providing yeast product did not affect DMI (P ≥ 0.92) or G:F (P ≥ 0.91). Percentage 

morbidity (P = 0.36), percentage of BRD relapses (P = 0.32), and days to first antibiotic 

treatment (P = 0.17) did not differ due to yeast supplementation treatment. Antibiotic treatments 

began on d 2 and by d 5 approximately 50% of calves had been administered their first antibiotic. 

In high risk calves with over 50% morbidity by d 5, providing yeast products did not have an 

effect on health and growth performance. 

Key Words: health, performance, receiving calves, yeast  
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INTRODUCTION 

 The receiving period is a crucial time in finishing phase of production and can affect calf 

performance during finishing. Calves entering the feedlot are often stressed due to weaning, 

commingling, and transportation (Duff and Galyean, 2007). Stress leads to a reduction in DMI 

(Cole, 1996) in addition to adversely affecting the immune system (Blecha et al., 1984) which 

can increase susceptibility to disease. According to a USDA report in 2013, approximately 

16.2% of calves exhibited signs of bovine respiratory disease (BRD) during their time in the 

feedlot.  The incidence of BRD is a great source of economic loss to the beef industry. Economic 

losses are incurred through mortality, antibiotic treatment, and decreased production in calves. 

Schneider et al. (2009) reported that carcass values decreased by $23.23, $30.15, and $54.01 for 

calves treated once, twice, or thrice or more for BRD. There has been greater emphasize placed 

on the judicious use of antibiotics due to both public perception and recent government 

regulation. Therefore, in the beef industry feeding naturally occurring yeast products has been 

proposed to improve health and increase growth performance.  

  Yeast products are utilized in ruminant diets to target ruminal microbial populations. 

Different strains of Saccharomyces cerevisiae have been shown to increase total, cellulolytic 

(Newbold et al., 1995), and fibrolytic bacterial populations (Chaucheyras-Durand and Fonty, 

2006) in ruminants. The most promising use of live yeast is seen in the stabilization of ruminal 

pH and decreasing the incidence of acidosis in cattle (Chaucheyras-Durand et al., 2008). 

Supplementing yeast products to high risk, lightweight calves during the receiving period 

demonstrated a potential to increase DMI (Finck et al., 2014; Ponce et al., 2012); however, more 

variable results were found in ADG. Therefore, the objective of this study was to determine the 
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effect of feeding 2 commercial yeast products on growth performance and morbidity in high risk 

calves during a 28-d receiving period. 

MATERIALS AND METHODS 

Animals 

All experimental procedures were approved by the University of Arkansas Animal Care 

and Use Committee (protocol # 16068). This experiment was performed in 2 arrival blocks. The 

first arrival block (Arrival Block 1) of male calves (n = 85; 54 intact bulls and 31 steers; BW = 

244 ± 16.2 kg) was delivered to the University of Arkansas Stocker Cattle Receiving unit near 

Fayetteville, AR on May 13, 2016. The second arrival block of male calves (Arrival Block 2; n = 

90; 62 intact bulls and 28 steers; BW = 208 ± 17.1 kg) arrived on September 21, 2016.  

On d 0, calves from Arrival Block 1 were weighed, tagged with a unique individual 

identification number, and ear notched for detection of calves persistently infected with bovine 

viral diarrhea virus (PI-BVDV). Calves in Arrival Block 1 were allocated by BW and castrate 

status to treatment and processed later that afternoon. Arrival Block 2 was delivered on d -1 and 

calves were weighed, tagged with a unique individual identification number, and ear notched for 

detection of calves infected with PI-BVDV. Ear notches from both arrival blocks were sent to 

Cattle Stats (Oklahoma City, OK) and 2 calves (1 each on Y1 and Y2 treatment) from Arrival 

Block 2 were PI-BVDV positive and were pulled from the study pens on d 1. Calves from 

Arrival Block 2 were held overnight with access to hay and water. Processing and treatment 

allocation occurred at 0800 the following morning (d 0). At processing, calves from both arrival 

blocks were branded, dewormed (Valbazen®, Zoetis, Parsippany, NJ), castrated via banding (if 

needed), and administered a viral vaccine for respiratory pathogens (Bovi-Shield Gold, Zoetis) 
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and a clostridial vaccination (Covexin 8, Merck Animal Health, Madison, NJ). Weight at arrival 

and at processing were averaged together for an initial weight. 

Treatment and Pen Assignment 

  Calves were grouped by arrival weight into 5 weight blocks and stratified by castration 

status (bull or steer) and assigned randomly to 1 of 3 pens (5 to 6 calves/pen) within each BW 

group. Pens within each weight group were assigned randomly to 1 of 3 treatments that were top-

dressed over the basal diet: 1) ground corn (CON), 2) CON + commercial Saccharomyces 

cerevisiae yeast product 1 (Y1; brewer’s yeast), and 3) CON + commercial Saccharomyces 

cerevisiae yeast product 2 (Y2; yeast culture). Treatments 2 and 3 were the appropriate yeast 

product (42% as fed basis) and ground corn (58% as fed basis). Prior to the start of each arrival 

block, top-dress was mixed at the University of Arkansas Animal Science feed mill in a paddle 

mixer. 

DMI and BW 

  On d 0, calves were offered the basal diet (Table 1) at 1% of their BW formulated to meet 

their nutrient needs. Top dress was added to the basal diet daily at 0.14 kg/d for each calf and 

mixed in the bunk by hand. On d 0, 1, and 2, calves were offered 0.9 kg/d of long-stem hay to 

adapt to the basal diet. Calves were fed once a day in the morning using a slick bunk feeding 

method with the amount of feed adjusted accordingly, with a maximum daily feed increase of 

0.91 kg/calf. Any orts exceeding approximately 10% of feed offered were collected and weighed. 

 On d 14, calves were weighed, revaccinated with a respiratory (Bovi-Shield Gold, Zoetis) 

and clostridial vaccine (Covexin 8, Merck Animal Health), and given a second dewormer 

(Dectomax®, Zoetis). Calves remained on treatment until d 28 of the study. Calves were 

weighed on d 27 and 28 and BW were averaged to determine final weight.  
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Feed Analysis 

Basal diet and top-dress were sampled weekly and composited and a hay sample was 

collected once at the beginning of each arrival block. All samples were dried at 50°C in a forced-

air oven until a stable weight was reached. Duplicates of the dried samples were ground through 

a Wiley Mill (Thomas Scientific, Swedesboro, NJ) using a 1 mm screen and analyzed for 

nutrient content (Table 2). Dried samples were analyzed for NDF and ADF (ANKOM 

Technology Corp., Fairport, NJ; Vogel et al., 1999) and CP by total combustion (Rapid 

Combustion Method, Elementar Americas, Inc., Mt. Laural, NJ). Mineral analysis was 

performed at the University of Arkansas Division of Agriculture Altheimer Laboratory 

(Fayetteville, AR) by inductively coupled plasma spectroscopy (Model 3560, Applied Research 

Laboratory, Sunland, CA) following wet ashing.  

Calf Health 

Calves were observed daily for BRD and assigned a clinical attitude score (CAS) of 0 to 

4 (0 = normal, 1 = mild BRD, 2 = moderate BRD, 3 = severe BRD, 4 = moribund). If a calf 

received a CAS > 0 it was pulled from the pen. If a calf had a CAS of 1 or 2 and a rectal 

temperature ≥ 40°C, or the calf had a CAS of 3 or 4 regardless of rectal temperature were 

administered an antibiotic treatment based on a pre-determined antibiotic protocol. The antibiotic 

protocol consisted of florifenicol (Nuflor, Merck Animal Health) as the first antibiotic 

administered. Rectal temperatures were rechecked at the end of the post treatment interval (PTI; 

2 d). If calves were pulled a second time and met the predetermined requirements for antibiotic 

treatment, they were administered ceftiofur crystalline free acid (Excede, Zoetis) as the second 

antibiotic treatment (PTI = 5 d). Lastly, if calves required a third antibiotic treatment, they were 

given tulathromycin (Draxxin, Zoetis). Calves were rechecked 7 d following administration; 
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however, no additional antibiotics were administered at this time. Antibiotics, BW, rectal 

temperatures, and day of treatment were recorded throughout the study. 

Statistical Analysis 

Body weight, ADG, G:F, DMI, and cost of antibiotic treatment were analyzed using the 

MIXED procedure of SAS (SAS Inst., Inc., Cary, NC). Pen was set as the experimental unit for 

all dependent variables. In the initial statistical analysis, Weight Block was included in the model 

but was nonsignificant and thus was removed. Therefore, the model for quantitative variables 

included treatment as a fixed effect and Arrival Block as a random effect. The Kenward-Rogers 

option was used to adjust degrees of freedom to reduce prevalence of type 1 errors. Qualitative 

data were analyzed with the GLIMMIX procedure of SAS. Fixed effects included treatment 

while the random effect was Weight Block. Due to a lower number of observations, chronic and 

mortality data were analyzed using the GENMOD procedure with treatment being the only fixed 

effect. Least square means for growth performance, feed intake, and morbidity data were 

separated using orthogonal contrasts. Orthogonal contrasts were: 1) supplementation with yeast 

versus control and 2) the contrast between the 2 yeast products. The number of days until 

treatment was analyzed using the LIFETEST procedure of SAS. Treatment means were 

considered different at P ≤ 0.05 and tendencies were observed at 0.05 < P ≤ 0.10. 

RESULTS AND DISCUSSION 

There were no differences (P ≥ 0.82) in growth performance among the 3 treatment 

groups (Table 3). Final BW at the end of the 28-d period were not affected (P = 0.99) by 

supplemental yeast products. Furthermore, ADG did not differ (P = 0.99) among treatments 

during the receiving period. While it is difficult to detect differences in gain during a 28-d 

receiving period, previous research has found similar results in receiving cattle supplemented 
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yeast products for longer periods of time. Finck et al. (2014) reported that ADG was not affected 

by supplementation of live yeast, yeast cell wall (YCW), or a combination during a 56-d 

receiving period. Conversely, Ponce et al. (2012) reported a tendency for ADG to increase 

during a 35-d period when calves were fed an enzymatically hydrolyzed yeast product. Heifer 

calves supplemented YCW tended to have a greater ADG prior to and following a 

lipopolysaccharide challenge with differences observed in glucose, insulin, NEFA, and BUN 

concentrations post challenge (Burdick Sanchez et al., 2014). Indicating that supplementation 

with YCW could have the potential to alter energy metabolism in calves. Both yeast products in 

this study were strains of Saccharomyces cerevisiae and it is not well known how different 

varieties of yeast products effect growth performance. In a meta-analysis evaluating the impact 

that yeast has in ruminant species, primarily dairy, found that the form of diet, stage of 

production, and management could influence the beneficial effect of yeast (Desnoyers et al., 

2009).  

 There was no effect of treatment on DMI (P ≥ 0.99) or in G:F (P ≥ 0.97) from d 0 to 28 

(Table 3). Contrary to the current study, an increase in DMI was reported in receiving cattle 

when supplemented with yeast products (Finck et al., 2014; Ponce et al., 2012). In addition, there 

was a tendency for DMI to increase in feeder calves after induced stress when fed a yeast culture 

at 1 and 2% of the diet (Phillips and VonTungeln, 1985). Furthermore, Cole et al. (1992) 

observed an increase in DMI in calves fed yeast culture after exposure to IBRV challenge. Due 

to greater DMI in yeast fed calves, there was a tendency for increased weight gain compared to 

control. In regard to this study, a high occurrence of morbidity was observed across treatments 

with no change in performance due to treatment.   
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 Percentages of calves treated for BRD once, twice, or thrice were not affected (P ≥ 0.36; 

Table 4) by dietary treatment. The number of antibiotic treatments per calf was not different (P = 

0.74) between CON, Y1, and Y2 treatments. Percentage of mortality (P = 0.11; Table 5) and 

percentage of calves classified as chronic (P = 0.57) were not different among dietary treatments. 

Two calves (1 each from Arrival Block 1 and 2) on the Y2 treatment died from BRD and six 

calves were classified as chronic. Additionally, a third calf from Arrival Block 2 was removed 

from the study on d 16 for reasons outside of respiratory illness and data from this calf were 

excluded. Cost of antibiotic treatment was not different (P = 0.81) between the three dietary 

treatments. As represented in Figure 1, calves started receiving antibiotic treatment for BRD on d 

2. By d 5 approximately 54% of calves had been treated for respiratory disease, providing 

evidence that calves were previously exposed to respiratory pathogens prior to being delivered to 

the University Stocker Unit. Therefore, there was a reduced likelihood that nutritional 

intervention provided after arrival would have impacted BRD treatment rate. 

 Cole et al. (1992) proposed that supplemental yeast is more advantageous during periods 

of stress. Steers subjected to a lipopolysaccharide challenge had a lower neutrophil to 

lymphocyte ratio when supplemented with yeast product; indicating that steers supplemented 

with yeast experienced less stress from the immune challenge compared to the control (Finck et 

al., 2014).  Furthermore, lightweight calves receiving Saccharomyces cerevisiae subspecies 

boulardii in the diet had greater DMI after administration of antibiotics upon arrival and fewer 

calves received a second round of antibiotic treatment (Keyser et al., 2007). Additionally, YCW 

supplemented in the diet resulted in decreased cortisol and IL-6 concentrations, and vaginal 

temperatures after exposure to an endotoxin (Burdick Sanchez et al., 2013), suggesting that yeast 

product may be more beneficial in recovery from respiratory disease in high risk, receiving 
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calves. An increase in DMI intake after exposure to a challenge (Cole et al., 1992; Phillips and 

VonTungeln, 1985; Keyser et al., 2007) provides further evidence that yeast may reduce the 

negative effects of an immune challenge. However, the current study did not observe a decrease 

(P = 0.32) in the percentage of morbid calves treated a second time for BRD. In high risk calves 

with over 50% morbidity by d 5, providing yeast did not improve health and growth performance 

during a 28-d receiving period.  

Implications 

 Addition of yeast, Saccharomyces cerevisiae, did not affect growth performance during a 

28-d receiving period in high risk calves. Furthermore, yeast supplementation did not impact the 

percentage of calves treated for BRD, nor did yeast decrease the administration or cost of 

antibiotic treatment in newly received stocker calves. Morbidity was high in the first 5 d after 

entry to the stocker facilities, indicating that calves were exposed to pathogens prior to arrival. 

Therefore, it could be advantageous to evaluate the effect of yeast prior to arrival at the feedlot 

and prior to exposure to BRD pathogens. 
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APPENDIX 

 

Table 1. Ingredient list of basal diet fed during the 28-d receiving period  

Item % As-fed 

Cracked corn 40.0 

Cottonseed hulls 20.0 

Dried distiller grains 18.3 

Corn gluten meal 10.0 

Soybean meal, hi protein 7.0 

Limestone 1.5 

Molasses 1.5 

Yellow grease 1.0 

Salt, white 0.4 

Calcium monophosphate 0.1 

Corn and Rumensin intermediate mix3 0.1 

Vitamin A, D, E premix¹ 0.03 

Vitamin E premix2 0.03 

Trace mineral premix4 0.01 

¹Vitamin premix contained 8,800,000 IU Vitamin A, 1,760,000 IU Vitamin D, and 1,100 IU 

Vitamin E/kg  
2Vitamin E premix contained 44,000 IU Vitamin E/kg 
3Mix provides 22 g monensin/kg of intermediate mix 
4Contains NB-8675 (Nutrablend, Neosho, Mo) 12% Zn, 8% Mn, 4% Cu, 1% Fe, 500 ppm Co, 

2,000 ppm I, and 600 ppm Se
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Table 2. Chemical composition of basal diet, hay, and the topdress for treatment delivery 

fed during the 28-d receiving period (DM basis) 

  Treatment1  

  Basal diet CON Y1 Y2 Hay 

Dry matter, % 90.1 88.3 90.4 89.7 89.3 

Neutral detergent fiber, % 41.0 NA2 NA NA 69.9 

Acid detergent fiber, % 19.1 NA NA NA 39.3 

Crude protein, % 24.0 8.5 25.2 12.6 10.2 

Ash, % 3.2 0.7 1.8 2.1 5.3 

Calcium, % 0.95 ND3 0.06 0.02 0.47 

Phosphorus, % 0.57 0.26 0.53 0.66 0.46 

Magnesium, % 0.18 0.09 0.18 0.25 0.30 

Sodium, % 0.21 0.01 0.02 0.10 0.03 

Sulfur, % 0.31 0.09 0.20 0.20 0.23 

Potassium, % 0.92 0.33 0.90 0.98 2.43 

Copper, mg/kg 19 5 15 6 6 

Iron, mg/kg 151 25 95 71 85 

Manganese, mg/kg 41 19 41 23 77 

Zinc mg/kg 75 40 86 44 42 
1CON = control; Y1 = commercial yeast product 1; Y2 = commercial yeast product 2 
2Was not analyzed 
3Nondetectable   
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Table 3. Effect of 2 commercial yeast products on growth performance during the 28-d 

receiving period 

  Treatment1   P-value 

Item CON Y1 Y2 SEM2 F-test 

CON 

vs. Y 

Y1 vs. 

Y2 

BW, kg            

       Initial 226 227 226 8.0 0.99 0.96 0.99 

       Interim 231 231 232 8.0 0.99 0.97 0.99 

       Final 255 255 254 8.9 0.99 0.99 0.98 

        

ADG, kg        

       Day 0 to 14 0.4 0.3 0.4 0.10 0.98 0.98 0.86 

       Day 14 to 28 1.7 1.7 1.7 0.11 0.92 0.70 0.93 

       Day 0 to 28 1.0 1.0 1.0 0.09 0.99 0.89 0.98 

        

ADFI, kg        

       Day 0 to 14 3.4 3.4 3.4 0.22 0.98 0.94 0.87 

       Day 14 to 28 5.7 5.6 5.8 0.29 0.92 0.91 0.69 

       Day 0 to 28 4.5 4.5 4.5 0.27 0.99 0.93 0.89 

        

G:F        

       Day 0 to 14 0.10 0.10   0.10 0.028 0.99 0.92 0.98 

       Day 14 to 28 0.31 0.30   0.30 0.015 0.91 0.90 0.69 

       Day 0 to 28 0.23 0.23   0.22 0.012 0.97 0.97 0.82 
1CON = control; Y1 = commercial yeast product 1; Y2 = commercial yeast product 2; Y = Y1 

and Y2 
2Pooled standard error of the mean 
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Table 4. Effect of commercial yeast products on morbidity during the 28-d receiving period 

  Treatment1   P-value 

      Contrast 

Item CON Y1 Y2 SEM2 F-test 

CON vs. 

Y 

Y1 vs. 

Y2 

Morbidity             

  Treated once, % 67.2 77.2 64.9 6.38 0.36 0.60 0.18 

  Treated twice, % 27.6 31.6 35.1 6.12 0.69 0.45 0.69 

  Treated thrice, % 10.3 10.5 14.0 4.24 0.79 0.73 0.57 

  Number antibiotic treatments/calf 1.05 1.19 1.14 0.130 0.74 0.47 0.77 

  Relapse, %3 41.0 40.8 54.4 8.20 0.32 0.53 0.25 

  Treatment cost/head, $ 20.38 22.97 22.02 2.868 0.81 0.55 0.82 
1CON = control; Y1 = commercial yeast product 1; Y2 = commercial yeast product 2; Y = Y1 and Y2 
2Pooled standard error of the mean 
3Relapse is the percentage of morbid calves that received a second antibiotic  

4
2
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Table 5. Effect of commercial yeast products on days till treatment, percent chronic, and percent mortality for the 28-d 

receiving period.  

  Treatment¹   P-value 

Item CON Y1 Y2 SEM2 Chi-Squared 

Morbidity           

  Days till antibiotic treatment 1 9.4 7.5 9.9 0.92 0.17 

  Days till antibiotic treatment 2 17.1 20.3 21.8 0.98 0.76 

  Days till antibiotic treatment 3 18.7 23.3 21.1 0.31 0.79 

  Chronic, %3 1.7 3.5 5.3 2.37 0.57 

  Mortality, % 0 0 3.5 2.44 0.11 
1CON = control; Y1 = commercial yeast product 1; Y2 = commercial yeast product 2 
2Pooled standard error of the mean 
3Calves were considered chronic if they were treated 3 times with antibiotics for BRD and gained less than 0.23 kg 
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Figure 1. Days from arrival to the first antibiotic treatment was administered (P =0.29). Calves 

were administered their first antibiotic if they received a clinical attitude score of 1 or 2 and had 

a rectal temp higher than 40°C or if they score a 3 or 4 clinical attitude score rating regardless of 

rectal temperature. CON = control; Y1 = commercial yeast product 1; Y2 = commercial yeast 

product 2.  
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CHAPTER IV 

 

 

 

 

 

Effect of a combination of live yeast and yeast cell wall products supplemented before and after 

weaning on heifer growth performance, immune function, and heat stress  
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ABSTRACT 

Heifer calves (n = 95; initial BW = 165 ± 27 kg) were used to evaluate the effects of a 

combination of yeast products fed prior to weaning and through a backgrounding period. Heifer 

calves were stratified based on BW, birthdate, sire, and dam parity; and were assigned randomly 

to pasture (10 pastures, 9 or 10 cow-calf pairs/pasture). Pastures were assigned randomly to 1 of 

2 treatments: 1) no yeast (CON), or 2) addition of yeast product (YP; Phileo Lesaffre Animal 

Care, Milwaukee, WI). Calves were offered creep-feed (limited using 5% salt) at 0.5% of BW 

for 35 d prior to weaning. The YP creep-feed was formulated to provide 4 g YP/d. After 

weaning, heifers remained in their pre-weaning groups and had ad libitum access to forage and 

were fed 1.8 kg/d of a grain supplement for 42 d; YP continued to provide 4 g of YP/d. Body 

weights were collected on d -1, 0, 21, 35 (weaning), 49, 63, 76, and 77. A subsample of calves (3 

calves/pasture) were fitted with intra-vaginal temperature probes for 2-wk periods pre- and post-

weaning. Daily water intake was recorded on 8 pens (4 pens/treatment) following weaning. 

Blood was collected for analysis of serum haptoglobin concentrations and complete blood cell 

counts on d -1, 35, 49, and 76. Blood collected on d 35 and 76 was analyzed by flow cytometry 

to determine phagocytic activity. Average daily gain prior to weaning was not different (P ≥ 

0.45) between treatments. However, CON had an increased (P = 0.01) ADG compared to YP 

from weaning to the end of the backgrounding period. Temperatures were not affected by 

treatment before weaning (P = 0.31) nor after weaning (P = 0.37). Dry matter intake was not 

different (P = 0.41) between CON and YP during the 35-d pre-weaning period. Water intake 

during the 42-d backgrounding period was not impacted (P = 0.49) by treatment. There was no 

difference (P ≥ 0.13) observed for white blood cell concentrations or neutrophil to lymphocyte 

ratio. Serum haptoglobin concentrations were not affected (P = 0.15) by the addition of YP in the 
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diet; however, there was a day effect (P < 0.01). Furthermore, the percentages of cells that were 

positive for phagocytic activity were not different (P = 0.97). In summary, heifer calf growth 

performance, immune function, and heat tolerance were not affected by YP supplementation. 

 

Keywords Heifer calf, immune function, yeast products  
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INTRODUCTION 

Addition of yeast products is believed to be more advantageous when calves are exposed 

to stress (Cole et al., 1992). When calves are stressed, they have a reduction in DMI (Cole, 

1996); however, yeast products can aid in offsetting this negative effect by stimulating DMI 

(Phillips and VonTungeln, 1985; Cole et al., 1992; Keyser et al., 2007). Furthermore, at 

receiving, calves supplemented with yeast have an advantage in ADG and improved morbidity 

rates (Ponce et al., 2012). However, the receiving period is not the only stressful time for a calf. 

Calves experience a great deal of stress during weaning indicated by an elevated neutrophil to 

lymphocyte ratio (Hickey et al., 2003), and when calves are stressed, they are more susceptible 

to disease (Blecha et al., 1984). This can negatively impact their performance in the feedlot; 

therefore, it is important to evaluate tools that could mitigate the negative effects of weaning.  

 Creep-feeding starts calves on a concentrate diet and increases calf weight at weaning 

(Martin et al., 1981). Preconditioning is another management strategy that producers can take 

advantage of prior to entry at the feedlot. Preconditioned calves have been weaned and 

acclimated to feed bunks and waterers for a certain amount of time, vaccinated, dehorned, 

castrated, and treated for internal parasites. Calves that have been preconditioned have lower 

incidence of bovine respiratory disease (BRD) in the feedlot compared to high-risk, auction barn 

calves (Roeber et al., 2001). 

Yeast products supplemented prior to weaning have been shown to be beneficial in dairy 

calves. Yeast fed prior to weaning can reduce the degree of scours observed, ultimately 

decreasing the amount of antibiotics administered in young dairy calves (Seymour et al., 1995). 

Furthermore, providing yeast prior to weaning has improved DMI and ADG post-weaning (Terré 

et al., 2015). Nonetheless, dairy calves are weaned much earlier than beef calves and are 
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managed very differently. Limited research exists in this area in beef calves; therefore, the 

objective of the current study was to determine the effects of a combination of yeast products on 

growth performance and immune function when fed in creep-feed 35 d prior to weaning and 

during a 42-d backgrounding period in heifer calves.  

MATERIALS AND METHODS 

Animals and Treatments 

Experimental procedures were approved by the University of Arkansas Animal Care and 

Use Committee (protocol # 17060). Ninety-five cow-calf pairs with heifer calves (initial BW = 

165 ± 27 kg) from the University of Arkansas Division of Agriculture Beef Unit near 

Fayetteville, AR were stratified based on initial BW, birthdate, sire, and cow parity. Calves were 

assigned randomly to pasture (10 pastures, 9 or 10 cow-calf pairs/pasture). Pastures were then 

assigned randomly to 1 of 2 treatments; 1) no yeast (CON), and 2) addition of yeast products 

(YP; combination of yeast and yeast cell wall). Cow-calf pairs were held in holding pens over 

night with access to bermudagrass hay and water. The following day they were moved to their 

assigned 2.4 ha pastures. 

Calves were weaned from their dams 35 d after initiation of the study. At weaning calves 

were: 1) weighed, 2) branded, 3) vaccinated for respiratory pathogens (Virashield 6 VL 5, 

Elanco Animal Health, Greenfield, IN), 4) administered a clostridial vaccine (Covexin®8, Merck 

Animal Health, Madison, NJ), and 5) treated for internal parasites with an oral dewormer 

(Valbazen®, Zoetis, Parsippany, NJ). Cows were weighed and then removed from the study. 

Calves remained in their pre-weaning treatment groups and were moved to 0.4 ha pastures (10 

pastures; 9 or 10 calves per pasture) with concrete bunks and automatic waterers for a 42-d 

backgrounding period. Calves were revaccinated 14 d after weaning with a respiratory vaccine 
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(Virashield 6 VL 5, Elanco Animal Health) and a clostridial (Covexin®8, Merck Animal 

Health). Calves remained on backgrounding diet for 42-d post weaning. 

Diets and Nutrient Analysis 

Calves were offered a 5% salt limited creep-feed (47.5% cracked corn and 47.5% dried 

distillers’ grains) with or without YP at 0.5% of the average initial calf BW. Salt content was 

based on levels used by Lusby et al. (1985). Body weights were collected on d 21 and the 

amount of creep-feed offered was adjusted based on the average d 21 weight. Creep-feed with 

YP was formulated to provide a target intake of 4 g of YP/d (3 g of live yeast and 1 g of yeast 

cell wall product; Phileo Lesaffre Animal Care, Milwaukee, WI). Creep feeders were refilled 

twice a week; every Monday and Thursday afternoon which delivered creep supplement 

adequate for 3 or 4 d, respectively. Prior to refilling feeders, orts were collected, weighed, and 

subsampled. At weaning, calves were supplemented (Table 1) with 1.8 kg of grain daily. Grain 

diets that contained YP continued to provide 4 g of YP/d. Any orts remaining before feeding 

were collected at approximately 0800, weighed, and subsampled. Hay was offered as large round 

bales for ad libitum intake when pasture forage started to decline, a subjective decision by unit 

manager. All pens were offered hay beginning on the same day. 

Samples were composited and dried in a forced air oven at 50°C until a stable weight was 

reached. Dried samples were ground through a Willey Mill (Thomas Scientific, Swedesboro, NJ) 

using a 1 mm screen. Samples were analyzed for NDF and ADF using the Van Soest method 

(ANKOM Technology Corp, Fairport, NJ; Vogel et al., 1999). Crude protein was determined by 

total combustion (Rapid Combustion Method, Elementar Americas, Inc., Mt. Laural, NJ). 

Mineral analysis was prepared by wet ashing and then analyzed at the University of Arkansas 
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Altheimer Laboratory (Fayetteville, AR) by inductively coupled plasma spectroscopy (Model 

3560, Applied Research Laboratory, Sunland, CA). Nutrient analysis is presented in Table 2.  

Morbidity 

 Calves were observed daily for morbidity and assigned a clinical attitude score (CAS) of 

0 to 4 (0 = normal, 1 = mild BRD, 2 = moderately BRD, 3 = severe BRD, and 4 = moribund). If 

calves received a CAS of 1 or 2, and had a rectal temperature greater than 40°C, or if they 

received a score of 3 or 4 regardless of rectal temperature they were administered an antibiotic 

based on a pre-determined antibiotic protocol. The antibiotic protocol consisted of florifenicol 

(Nuflor, Merck Animal Health) as the first antibiotic administered. Rectal temperatures were 

rechecked at the end of the post treatment interval (PTI; 2 d). If calves were pulled a second time 

and met the predetermined requirements for antibiotic treatment, they were administered 

ceftiofur crystalline free acid (Excede, Zoetis) as the second antibiotic treatment (PTI = 5 d). 

Lastly, if calves required a third antibiotic treatment, they were given tulathromycin (Draxxin, 

Zoetis). Calves were rechecked 7 d following administration; however, no additional antibiotics 

were administered at this time. Antibiotics, BW, rectal temperatures, and day of treatment were 

recorded throughout the study.  

BW and Blood Samples 

Cow BW were recorded on d -1, 0, 34, and 35, while calf BW were collected on d -1, 0, 

21, 34, 35, 49, 63, 76, and 77. Consecutive BW were recorded and averaged at the beginning, 

weaning, and end of study. Blood samples (n = 95) were collected on d -1, 34, 49, and 76 via 

jugular venipuncture. Whole blood was collected for complete blood cell counts in 6 mL vacuum 

blood tubes containing EDTA (BD Vacutainer®, Becton Dickson and Company, Franklin Lakes, 

NJ). Samples were stored over night at 4°C and processed on an automated analyzer (HemaVet 
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HV950; Drew Scientific, Miami Lakes, FL) the following day. To determine the effect of YP on 

the innate immune system, whole blood was used to analyze the percentage of cells positive for 

phagocytic activity. Whole blood (n = 20; 2 calves/pasture) was collected in a vacuum tube 

containing sodium heparin (6 mL) and immediately returned to the lab for analysis. Phagocytic 

activity was determined using pHrodo™ BioParticles® Phagocytosis Kit (Life Technologies, 

Carlsbad, CA) and samples were analyzed using flow cytometry (BD Accuri™ C6 Plus; BD 

Biosciences, San Jose, CA) and the gating strategy found in figure 1. Additional blood samples 

were collected in a plain vacuum tube (10 mL) and centrifuged at 3,000 g for 20 min. Samples 

were stored at -20°C until serum haptoglobin (Hp) analysis was performed. Serum Hp 

concentration was determined using a commercially available ELISA kit (Immunology 

Consultants Laboratory Inc, Portland, OR) with antibodies specific for bovine Hp. 

Temperature Data and Water Intake 

Three of the heaviest calves in each pasture (n = 30) based on initial BW were fitted with 

vaginal temperature probes 2 wk prior to weaning (d 21). Vaginal temperature probes consisted 

of a hormone-free controlled internal drug release devise (CIDR; Zoetis) that contained a digital 

temperature logger (iButton DS1922L thermosensors, Digi-key Thief River Falls, MN). 

Temperature loggers were programmed to record once every hour and were set at a resolution of 

0.0625°C. The first set of temperature probes were removed on d 34 and a second subsample of 

30 calves (3 second heaviest calves from each pen based on initial BW) were fitted with a 

temperature probe. Temperatures were collected for 14-d post-weaning, at time of revaccination 

probes were pulled from calves. Water intake was recorded daily during the 42-d backgrounding 

period. Water intake was measured by water meters (Recordall® Model 25; Badger Meter, 
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Milwaukee, WI) connected to 4 of the automatic waterers (2 pens on the same treatment shared a 

waterer). 

Statistical Analysis 

 Data were analyzed using the MIXED procedure in SAS (SAS Inst., Inc., Cary, NC). 

Growth performance measurements for both cows and calves contained treatment as the only 

variable in the model. Water intake, DMI, temperature, and blood data were run as a repeated 

measure and analyzed with fixed effects of treatment, time, and treatment by time interaction. 

Pen was set as the experimental unit for all variables with the exception of water intake where 2 

pens were designated as the experimental unit. Significance was declared at P ≤ 0.05 and 

tendencies were assigned at 0.05 < P ≤ 0.10.  

RESULTS AND DISCUSSION 

 During the 77 d period, only 2 calves (both on the YP treatment) were treated with 

antibiotics, but neither were BRD related (1 due to footrot and 1 from vaginitis while monitoring 

body temperature with the indwelling temperature probes). Supplementation of YP pre- and 

post-weaning did not influence (P ≥ 0.22; Table 3) calf BW nor was there a difference in ADG 

from d 0 to 77 (P = 0.22). Prior to weaning ADG was not different (P = 0.45) between treatment 

groups, while post-weaning (d 35 to 77) ADG was greater (P = 0.01) in CON compared to YP 

calves. During the first 28 d after weaning, ADG was not impacted (P ≥ 0.11) by dietary 

treatment; however, the last 14 d of backgrounding saw a decrease (P = 0.05) in ADG for YP 

calves. Disappearance of creep-feed prior to weaning was not impacted (P = 0.41) by the 

addition of yeast in the diet (data not shown). Consumption of creep-feed averaged 0.48 kg 

DM/d. Like creep-feed disappearance, there was no difference in supplement disappearance after 

weaning. On d 0, orts were collected from 6 of the 10 pens; however, in that first day there was 
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no difference (P = 0.67) in supplement intake between treatments and after d 0 calves consumed 

all supplement offered. Cow BW during the creep-feeding period was not affected (P = 0.87) by 

the calves consuming either YP or CON creep-feed. Furthermore, there was no difference (P = 

0.34) in ADG in cows from the start of creep-feeding until weaning.  

Addition of yeast products to the diet are promoted in the livestock industry to improve 

growth performance and feed efficiency. As reported growth performance was negatively 

affected by yeast product supplementation during the end of the backgrounding period. Reason 

for this decrease in ADG during the last 14 d is not well understood. In early weaned calves 

supplemented with 115 g/d of a yeast fermentation product from early January to mid-

September, ADG was not impacted during the grazing or receiving period (Vendramini and 

Arthington, 2007). Finck et al. (2014) reported similar results during the receiving period when 

calves were fed live yeast at 5 g/d, yeast cell wall at 5 g/d, or a combination of the two (5 g/d of 

both live yeast and yeast cell wall) for 56 d. In contrast, Ponce et al. (2012) found that 1.8 g/d of 

an enzymatically hydrolyzed yeast cell wall and yeast cell metabolite product improved DMI in a 

35-d receiving period which was complemented with greater ADG in yeast supplemented calves. 

Positive impacts on growth performance are attributed to the influence that yeast has on the 

microbial population in the rumen. Total (Newbold et al., 1995; Kumar et al., 1994), cellulolytic 

(Harrison et al., 1988), and fibrolytic (Chaucheyras-Durand and Fonty, 2006) bacteria are all 

augmented by the addition of yeast in the diet. Likewise, total tract dry matter and fiber 

digestibility was enhanced (Jiang et al., 2017; Ovinge et al., 2018).  

 Vaginal temperatures recorded throughout the day without interference from human 

handling make them an appropriate tool for research (Burdick et al., 2012). During the first 2-wk 

of temperature collection, data were successfully collected from 8 calves on CON and 5 calves 
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on YP due to complications with the iButtons recording and probes falling out. After weaning, 

data were successfully collected on 11 calves on CON and 14 calves on YP, with 5 probes falling 

out during the 2-wk period. After observing a high occurrence of probes falling out, ewe CIDR 

should be considered for future studies that are recording temperature data in young heifer 

calves.  

Vaginal temperature was not affected by dietary treatment pre-weaning (P =0.31; Figure 

2) or post-weaning (P = 0.37; Figure 3); while, a day effect (P < 0.01) was observed during both 

2-wk periods. The spike in vaginal temperature during both periods coincided with an increase in 

ambient temperature. Additionally, water intake (Figure 4) was not different (P = 0.49) between 

treatments; indicating that supplementation of YP did not influence the calves’ ability to tolerate 

heat stress. In the current study, the average high ambient temperature was 25.7°C with a low of 

12.2°C, respectively. The thermal neutral zone (TNZ) for beef cattle falls between 22°C and 

30°C. Therefore, these calves did not experience elevated levels of heat stress which may have 

influenced the observed lack of response due to YP. 

In lactating dairy cows, supplementation of YP during heat stress increases milk yield 

(Moallem et al., 2009; Bruno et al., 2009) and feed efficiency (Schingoethe et al., 2004; Moallem 

et al., 2009). Similarly, in feedlot cattle, ADG and DMI have been shown to increase during high 

temperatures with the addition of a hydrolyzed yeast cell wall product (Salinas-Chavira et al., 

2015). Yeast has also been shown to reduce vaginal temperatures and increase the amount of 

water consumed during heat stress (Broadway et al., 2016).  

While yeast improves production parameters during heat stress, yeast also imparts 

physiological effects on the animal. Cattle experiencing an immune challenge had a contrasting 

effect on body temperature. After a lipopolysaccharide (LPS) challenge, heifers fed yeast cell 
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wall had higher vaginal temperatures but had greater ADG (Young et al., 2017). Young et al. 

(2017) hypothesize that heifers given yeast cell wall were more metabolically active during the 

immune challenge. This hypothesis is supported in a similar study that found increased blood 

urea nitrogen (BUN) and decreased non-esterified fatty acids (NEFA) in heifers supplemented 

yeast cell wall during an immune challenge (Burdick Sanchez et al., 2014).  

The cell wall of yeast is composed of polysaccharides such as β-glucans (Ruiz-Herrara, 

1991) which stimulate the innate immune response and bind to monocytes, macrophages, and 

natural killer cells (Brown and Gordon, 2001; Brown, 2006). An improvement in neutrophil 

function has been reported in dairy calves fed yeast culture from d 2 to 70 after birth (Magalhães 

et al., 2008). In the current study, stimulation of the innate immune system was examined by 

incubating cells with E. coli particles to determine degree of phagocytic activity. The number of 

live positive cells for phagocytic activity were divided by the frequency of total cells. Analysis 

showed that phagocytic activity was not affected (P = 0.97) by dietary treatment with the 

percentage of cells positive for phagocytosis being 23.5% for CON and 22.6% for YP at time of 

weaning and 16.6% for CON and 17.4% for YP at the end of the backgrounding period (Figures 

5 and 6). Similarly in pigs, dietary yeast treatment did not improve phagocytic activity or 

enhance respiratory burst of neutrophil cells (Sauerwein et al., 2007).  

Dietary treatment did not alter (P = 0.32) concentration of total white blood cells present. 

Concentration of lymphocytes tended to be greater in YP calves (P = 0.06; Table 4), but there 

was no difference in the concentration of neutrophils (P = 0.38; Table 4); ultimately leading to a 

similar (P = 0.13) neutrophil to lymphocyte ratio (Figure 7) between treatments. In contrast, 

Finck et al. (2014) reported a decrease in the neutrophil to lymphocyte ratio in steers 

supplemented with yeast product after exposure to a LPS challenge. The neutrophil to 
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lymphocyte ratio is a resource used to assess stress; a lower neutrophil to lymphocyte ratio 

indicates lower stress. As evident in Figure 7, a day effect was observed with the neutrophil to 

lymphocyte ratio being greatest on d 49, followed by d 35 and 77. This gradual increase in the 

ratio could be due to stress factors associated with weaning (Hickey et al., 2003). Furthermore, 

concentrations of monocytes, eosinophils, and basophils were not impacted (P ≥ 0.37; Table 4) 

by yeast supplementation during this study.  

 Haptoglobin is an acute phase protein produced in the liver and released in the blood 

during periods of stress. Haptoglobin concentration is associated with inflammation and disease 

(Baumann and Gauldie, 1994) and is negatively correlated to ADG (Moriel and Arthington, 

2013). Serum Hp levels were not different (P = 0.15; Figure 8) due to the main effect of 

treatment; however, a day affect (P < 0.001) was observed and Hp concentrations were greatest 

14-d post-weaning. In agreement, yeast treatment did not affect Hp concentrations in calves upon 

entry to the feedlot (Vendramini and Arthington, 2007). Haptoglobin concentrations increase 

after weaning (Kim et al., 2011a) and administration of vaccine (Arthington et al., 2013). Kim et 

al. (2011b), found an increase in Hp concentrations after a vaccine challenge in young dairy 

calves supplemented yeast product. While not statistically different, Hp concentrations were 

numerically greater in YP calves 14 d after calves had been vaccinated. Production of 

haptoglobin is stimulated by pro-inflammatory cytokines IL-1, IL-6, and TNF-α. In vitro studies 

found that β-glucans bind to leukocytes and promote the production of TNF-α (Brown et al., 

2003) and IL-6 (Ali et al., 2015). Furthermore, Burdick Sanchez et al. (2013) reported an 

increase in IL-6 in heifers supplemented yeast products after an endotoxin challenge compared 

with control.  
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Implications 

 Supplementing 4 g/d of a combination of live yeast and cell wall products prior to and 

after weaning did not improve performance. Consequently, it had a negative effect on 

performance from weaning to the end of the backgrounding period. Yeast products did not 

improve immune function of weaned calves based on the parameters measured in this study. 

Likewise, there was no effect of dietary treatment on water intake or vaginal temperatures. 

Therefore, providing YP to heifers in the thermal neutral zone and with low levels of stress may 

not be useful. 
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APPENDIX 

 

Table 1. Composition of backgrounding diet fed for a 42-d period after weaning. 

  Treatment¹ 

Item CON YP 

Ingredient, %    

  Cracked corn 68.4 68.3 

  Dried distillers' grains 26.0 26.0 

  Limestone 2.0 2.0 

  Molasses 2.0 2.0 

  Salt, white 1.0 1.0 

  Corn/Rumensin mix⁴ 0.4 0.4 

  YP NA 0.12 

  Vitamin A, D, E premix² 0.1 0.1 

  Ruminant trace mineral premix⁵ 0.085 0.085 

  Vitamin E premix³ 0.05 0.05 

¹CON = control, no addition of yeast product; YP = addition of yeast product. 

²ADE premix contains 8,800,000 IU Vitamin A, 1,760,000 IU Vitamin D, and 1,100 IU/kg 

Vitamin E. 

³Vitamin E contains 44,000 IU/kg. 

⁴Corn/Rumensin mix provides 22 g monensin/kg. 

⁵NB-8675 contains 12% Zn, 8% Mn, 4% Cu, 1% Fe, 500 mg/kg Co, 2,000 mg/kg I, and 600 

mg/kg Se (Nutrablend, Neosho, MO).  
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Table 2. Nutrient analysis of creep-feed and backgrounding diets (DM basis). 

¹CON = control, no addition of yeast product; YP = addition of yeast product. 

²Creep-feed was fed for 35 d prior to weaning and backgrounding diet was fed for 42 d post-

weaning.  

³Hay offered ad libitum once forage began to decrease  

 Creep-feed diet¹,2 Backgrounding diet¹ 

  CON YP CON YP  Hay³ 

DM, % 91.25 91.82 90.30 90.63 92.02 

Ash, % 5.19 4.79 3.68 3.16 4.37 

CP, % 17.95 17.30 16.17 13.92 12.32 

P, % 0.702 0.681 0.619 0.527 0.37 

K, % 0.961 0.925 0.836 0.712 1.63 

Ca, % 0.047 0.024 1.109 0.715 0.66 

Mg, % 0.231 0.221 0.204 0.177 0.25 

S, % 0.358 0.345 0.306 0.237 0.21 

Na, % 2.329 2.273 0.632 0.472 0.06 

Fe, mg/kg 173.74 180.23 217.72 125.65 92.42 

Mn, mg/kg 12.23 10.44 94.39 64.45 52.84 

Zn, mg/kg 51.90 45.48 138.08 152.08 46.69 

Cu, mg/kg 6.12 5.62 56.18 34.14 11.07 
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Table 3. Effect of supplementing YP on heifer growth performance pre- and post-weaning. 

  Treatment¹     

Item CON YP SEM P-Value 

Calf BW, kg        

  D 0 165 165 0.3 0.85 

  D 21 193 194 0.9 0.48 

  D 35 (weaning) 199 201 1.2 0.44 

  D 49 215 213 1.5 0.40 

  D 63 232 232 1.3 0.67 

  D 77 244 240 1.9 0.22 

     
Calf ADG, kg     
  D 0 to 21 1.34 1.38 0.044 0.53 

  D 21 to 35 0.45 0.48 0.072 0.77 

  D 35 to 49 1.14 0.91 0.090 0.11 

  D 49 to 63 1.23 1.30 0.076 0.50 

  D 63 to 77 0.79 0.60 0.062 0.05 

  D 0 to 35 (wean) 0.98 1.02 0.032 0.45 

  D 35 to 77 1.05 0.93 0.026 0.01 

  D 0 to 77 1.02 0.97 0.025 0.22 

     

Cow BW, kg     

  D 0  445 452 7.1 0.51 

  D 35 469 471 9.1 0.87 

  Cow ADG d 0 to 35, kg 0.68 0.54 0.092 0.34 

¹CON = control, no addition of yeast product; YP = addition of yeast product. 

²n = 95 

³Weaning occurred on d 35. Creep-feed fed from d 0 to 35 and the backgrounding diet fed d 35 

to 77.



 

 
 

6
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Table 4. Effect of YP on the concentration of white blood cells. 

 ¹CON = control, no addition of yeast product; YP = addition of yeast product

  Treatment1   P-Value 

 Control YP     

 D 0 D34 D49 D76 D 0 D 34 D 49 D 76 SEM Treatment Time 

Treatment 

x Time 

Concentration, K/ 

µl   

  

 

  

     
  White blood cells 8.54 11.54 9.54 9.29 8.87 11.08 10.73 9.93 0.59 0.32 <0.01 0.57 

  Neutrophil 2.88 4.12 4.08 3.41 2.95 4.12 4.49 3.43 0.20 0.38 <0.01 0.73 

  Lymphocyte 4.64 5.13 3.93 4.53 4.93 5.18 4.53 5.07 0.26 0.06 0.01 0.72 

  Monocyte 0.58 0.69 0.58 0.54 0.57 0.68 0.65 0.59 0.04 0.43 0.04 0.68 

  Eosinophil 0.40 1.22 0.87 0.75 0.38 0.96 0.98 0.75 0.12 0.63 <0.01 0.47 

  Basophil 0.03 0.38 0.08 0.07 0.04 0.15 0.08 0.08 0.09 0.37 0.04 0.45 

             

Proportions, %             

  Neutrophil 33.9 36.6 42.7 37.2 33.1 36.6 42.0 65.0 0.90 0.16 <0.01 0.66 

  Lymphocyte 54.2 46.0 42.7 49.0 55.6 47.3 42.5 51.1 1.22 0.18 <0.01 0.82 

  Monocyte 6.8 6.0 5.7 5.5 6.5 6.0 6.0 5.9 0.25 0.67 <0.01 0.53 

  Eosinophil 4.7 9.5 8.1 7.7 4.3 8.6 8.9 7.4 0.59 0.63 <0.01 0.57 

  Basophil 0.4 2.0 0.7 0.7 0.4 1.5 0.7 0.8 0.35 0.65 <0.01 0.84 
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Figure 1. Gating strategy for negative and positive phagocytic controls. 

A. B.  

A. Gating strategy for negative control incubated at 37°C to determine percent of cells positive 

for phagocytosis.  

B. Gating strategy for positive control incubated at 37°C to determine percent of cells positive 

for phagocytosis. E. coli particles were added to positive controls to promote phagocytic 

activity in the blood.   
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Figure 2. Body temperature recorded for a 2 wk period prior to weaning.2, 3 

 
¹CON = control, no addition of yeast product; YP = addition of yeast product. 

²n = 30; data successfully obtained from 8 calves on CON and 5 on YP. 

³Temperatures were collected using thermosensor iButtons embedded in hormone-free CIDR.  
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Figure 3. Body temperature recorded for a 2-wk period post-weaning.2, 3 

 
¹CON = control, no addition of yeast product; YP = addition of yeast product. 

²n = 30; successfully collected data from 11 calves on CON and 14 on YP. 

³Temperatures were collected using thermosensor iButtons embedded in hormone-free CIDR.  
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Figure 4. Effect of supplementing YP on water intake during the 42-d backgrounding 

period.2, 3 

 
¹CON = control, no addition of yeast product; YP = addition of yeast product. 

²Water meters were installed on 4 automatic waterers which measured water intake for 8 pens (2 

pens/waterer). The pens that shared a waterer were on the same dietary treatment. 

³Water measurements were taken daily and the average daily water intake was calculated for 

each week.  
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Figure 5. Phagocytic activity on d 34 from a calf on CON and YP.¹ 

A. B.  

¹ CON = control, no addition of yeast product; YP = addition of yeast product. 

A. Percentage of cells positive for phagocytic activity for a calf on CON diet. 

B. Percentage of cells positive for phagocytic activity for a calf on YP diet.   
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Figure 6. Phagocytic activity on d 76 from a calf on CON and YP.¹ 

A. B.  

¹ CON = control, no addition of yeast product; YP = addition of yeast product. 

A. Percentage of cells positive for phagocytic activity for a calf on CON diet. 

B. Percentage of cells positive for phagocytic activity for a calf on YP diet
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Figure 7. Effect of YP on the neutrophil to lymphocyte ratio pre- and post-weaning.2 

 
¹CON = control, no addition of yeast product; YP = addition of yeast product. 

²n = 95  

³Neutrophil:Lymphocyte obtained from whole blood collected in a EDTA blood tube.  
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Figure 8. Effect of YP on serum haptoglobin concentrations pre- and post-weaning.2 

 
¹CON = control, no addition of yeast product; YP = addition of yeast product. 

²n = 95 

³Haptoglobin concentrations were log transformed to improve normality. Means represent back 

transformed data.   

0

500

1000

1500

2000

2500

3000

3500

4000

-1 35 49 77

S
er

u
m

 h
ap

to
g
lo

b
in

, 
n
g
/m

l3

Day

CON

YP

Treatment1: P = 0.15 

Day: P < 0.001 

Treatment × Day: P = 0.18 



 

75 
 

CHAPTER V 

 

 

 

 

Characterization of rumen and fecal microbiota in heifer calves supplemented yeast products 

before and after weaning  
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ABSTRACT 

Live yeast is utilized in ruminant diets to increase growth performance while improving immune 

function. Yeast is more beneficial in high producing animals and during times of stress. During 

weaning, calves suffer from elevated stress; therefore, heifer calves were used to determine the 

effects of supplementing yeast products 35 d prior to weaning and through a 42-d backgrounding 

period. Calves (n = 95; initial body weight [BW] = 165 ± 27 kg) were stratified based on BW, 

birthdate, sire, and dam parity; and were assigned randomly to pasture. Pastures were assigned 

randomly to 1 of 2 treatments: 1) supplement without yeast (C), or 2) supplement with yeast 

product (YP; 3 g of live yeast, and 1 g of yeast cell wall). Fecal samples were collected from a 

subsample of calves (n = 40; 4 calves/pasture) on d 0, 34 (weaning), and 76. Ruminal fluid 

samples were obtained from the same calves on d 34 and 76. Rumen and fecal microbiota were 

characterized by next generation sequencing the 16S V4 hypervariable region with the Illumina 

MiSeq platform. Addition of YP in the diet did not change the rumen microbial community 

structure or diversity. Fecal microbiome was impacted by supplementation on d 34. Calves 

receiving YP had a reduction in Shannon α-diversity (P = 0.008) and observed OTU (P = 0.01) 

compared to control. However, there was no effect of treatment observed on d 0 and 76 in feces. 

Among the top 50 most abundant operational taxonomic units (OTUs), that associated with 

Paraprevotella was greater in feces and that associated with Prevotella was greater in rumen 

fluid when calves consumed YP compared with control. Overall, YP did not change rumen and 

fecal diversity but affected relative abundance of certain OTU. Additionally, the fecal and rumen 

microbiomes were altered based on d of collection with microbial structure changing from time 

of weaning to the end of the backgrounding period.   

Keywords: Microbiome, weaning, yeast products 
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INTRODUCTION 

 Probiotics are classified as live microorganisms that when consumed frequently and in 

adequate amounts can provide benefits to the host (FAO-WHO, 2002). Live yeast is a common 

probiotic used in livestock nutrition. It is able to maintain its integrity in the rumen and exert 

probiotic effects (Kung et al., 1997). When yeast is added to the diet it can increase diet 

digestibility (Jiang et al., 2017a; Ovinge et al., 2018) and promote the production of cellulolytic 

(Harrison et al., 1988) and fibrolytic (Chaucheyras-Durand and Fonty, 2006) rumen bacteria. 

Including yeast in the diet has influenced the relative abundance of various bacteria in the rumen 

of lactating dairy cows (Jiang et al., 2017b; AlZahal et al., 2016; Pinloche et al., 2013). 

Using next generation sequencing has helped advance the understanding of the rumen 

microbiome by identifying bacteria down to the genus level (McCann et al., 2014). Diet is the 

greatest driver behind the variation in the gut microbiome between ruminants (Henderson et al., 

2015). Age also influences the microbial populations within the rumen (Jami et al., 2013). Meale 

et al. (2016) found that weaning calves dramatically alters the gut microbiome. The aim of this 

study was to determine the influence that yeast has on the rumen and fecal microbiome of beef 

heifers during a 35-d creep-feeding period prior to weaning and through a 42-d backgrounding 

period.  

MATERIALS AND METHODS 

Animal Management 

Experimental procedures were approved by the University of Arkansas Animal Care and 

Use Committee (protocol # 17060). Heifer calves (n = 40; initial BW = 165 ± 27 kg) at the 

University of Arkansas Beef Unit were used to evaluate the effects that supplemental yeast has 

on the fecal and rumen microbiome. Heifer calves (n = 95) were stratified by BW, birthdate, dam 
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parity, and sire and assigned randomly to pasture (10 pastures). Pastures (2.4 h) were assigned 

randomly to 1 of 2 treatments: 1) grain supplement without yeast (C), or 2) grain supplement 

with yeast (YP).  

Calves were offered creep-feed for 35 d prior to weaning at 0.5% of initial BW. Creep-

feed consisted of 47.5% ground corn, 47.5% dried distiller’s grains, and 5% white salt with or 

without the addition of YP. Creep-diets were formulated to provide 4 g of YP/d (3 g live yeast 

and 1 g yeast cell wall; Phileo Lesaffre Animal Care, Milwaukee, WI). Creep-feeders were 

refilled every 3 or 4 d. On d 21, calf BW were recorded and the amount of creep-feed offered 

was adjusted. Calves were weaned from their dams on d 35 at which time they remained in their 

pre-weaning treatment groups for a 42-d backgrounding period.  

During the backgrounding period calves were housed on 0.4 h grass-traps (10 pastures; 9 

or 10 calves/pasture) with access to concrete bunks and automatic waterers. Calves were offered 

a grain supplement (Table 1) with or without the addition of yeast supplement. Yeast supplement 

continued to provide 4 g of YP/d (3 g live yeast and 1 g yeast cell wall; Phileo Lesaffre Animal 

Care). When forage became limiting, calves had ad libitum access to bermudagrass hay. Calves 

remained on backgrounding diet for 42 d post-weaning.  

Sample Collection 

 Fecal samples were collected on d 0, 34 (1 d prior to weaning), and 76 from a subsample 

of calves (n = 40; 4 calves/pasture). Rumen fluid was collected on the same 40 calves on d 34 

and 76 via esophageal tubing. Due to the size of calves at the initiation of the study, rumen 

samples were not collected on d 0. Samples were put on ice immediately after collection and 

transported back to the lab, where they were stored at -20°C until time of DNA extraction.  

DNA Extraction, library preparation, and sequencing 
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 Both rumen and fecal DNA were isolated using DNeasy PowerSoils Kit (Qiagen Inc., 

Germantown, MD) which required 100 mg of feces or 100 μL of rumen fluid. Concentrations of 

isolated DNA were determined using Nanodrop One C (Fisher Scientific, Hanover Park, IL). 

Library preparation required samples to be diluted to 10 ng of DNA. Samples were amplified by 

PCR using dual index primers. Amplification occurred in the following steps: 1) 95°C for 2 min, 

2) 30 cycles at 95°C for 20 s, then 55°C for 15 s, and 72°C for 5 min, and 3) 72°C for 10 min and 

then 4°C until the end (T100 Thermal Cycler; Bio-Rad Laboratories, Hercules, CA). Primers 

were selected to amplify the V4 region of the 16S rRNA gene in bacteria. Samples were checked 

for proper amplification by agarose gel electrophoresis. Amplified samples were then normalized 

using a SequalPrep™ Normalization Kit (Life Technologies, Grand Island, NY). After 

normalization, 5 μL aliquots from each sample were pooled together to create a library. 

Concentration of the pooled library was assessed using quantitative PCR (Eppendorf, Westbury, 

NY) and the Agilent 2100 Bioanalyzer System (Agilent, Santa Clara, CA). The pooled library 

was sequenced using the Illumina MiSeq® v2 (San Diego, CA) at the University of Arkansas 

Biomass Research Center (Fayetteville, AR). 

 Sequences produced were processed on the open-source mothur program (version 1.39.1) 

using the MiSeq SOP as described by the Schloss lab (Kozich et al., 2013). Sequences were 

screened, and ambiguous bases and sequences longer than 275 base pairs were removed (Schloss 

et al., 2009). Only unique sequences were kept to reduce the number of duplicated sequences 

present. Sample sequences were aligned with the SILVA release 128 (Quast et al., 2013) 

reference database. In order to remove excess noise, sequences were removed if they contained 

greater than 2 mismatches using the pre-cluster method (Huse et al., 2010). To further reduce 

sequencing error, chimeras were identified and removed from all samples (Edgar et al., 2011). 
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Operational taxonomic units (OTU) were classified at the genus level by way of the Bayesian 

method (Cole et al., 2009) using a cut-off of 97% similarity. Sequences were subsampled at 

3,000 reads for both rumen and fecal samples, which were used to determine alpha and beta 

diversity measures.  

Statistical Analysis 

 Two separate random forest analyzes were performed to determine the top rumen and 

fecal microbial predictors for treatment and ADG. Both regression and classification random 

forest were run using the randomForest package (Liaw and Wiener, 2002) in RStudios version 

1.1.423 (RStudio Team, Boston, MA). Classification random forest was used to determine the 

best predictors based on dietary treatment at d 34 and 78 in both the rumen and fecal 

microbiome. All OTUs identified in both the rumen and fecal microbiome were used for 

classification random forest in order to reduce the out of bag error rate (OOB).  Regression 

random forest evaluated the best predictors for ADG from d 34 to 76. First, the difference in the 

relative abundance of the top 1,000 OTUs on d 34 and 76 were calculated. Once the difference 

was determined this new number was used in the regression random forest. 

 Individual animal was set as the experimental unit for all data analysis. Alpha diversity 

measures including the Shannon Diversity Index (Shannon and Weaver, 1949) and the number of 

Observed OTUs, were analyzed using the Wilcoxon Rank Sum Test in RStudio. Beta diversity 

was measured using the Jaccard (Chao et al., 2005) and Bray-Curtis (Bray and Curtis, 1957) 

distance matrices. Statistical analysis for beta diversity measures were analyzed in mothur 

version 1.39.1 using the ANOSIM command (analysis of similarity). The relative abundance of 

the top 50 OTUs were analyzed using the MIXED procedure in SAS (SAS Inst. Inc., Cary, NC). 
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Treatment, time, and the treatment by time interaction were included in the model. Significant 

differences were deemed at P-value ≤ 0.05 and tendencies were set at 0.05 < P ≤ 0.10. 

RESULTS AND DISSCUSSION 

Calf Performance  

 Supplementation of YP pre- and post-weaning did not influence (P ≥ 0.22) calf BW nor 

was there a difference in ADG from d 0 to 77 (P = 0.22). Prior to weaning ADG was not 

different (P = 0.45) between treatment groups, while post-weaning (d 35 to 77) ADG was greater 

(P = 0.01) in control compared to YP calves. Disappearance of creep-feed prior to weaning was 

not impacted (P = 0.41) by the addition of yeast in the diet with consumption of creep-feed, 

averaging 0.48 kg DM/d. Similar to creep-feed, there was no difference in the amount of 

supplement consumed during the backgrounding period. After the first day of feeding the new 

diet, calves consumed all supplement offered during the remainder of the backgrounding period. 

Sequencing Analysis 

  Analysis of rumen and fecal samples produced a total of 2,362,426 and 1,790,860 reads, 

respectively. Rumen reads ranged from 6,664 to 246,428 with an average of 29,904 and fecal 

reads from 3,910 to 75,179 with an average of 14,924. Rumen and fecal samples were 

standardized and subsampled at 3,000 reads. One rumen sample was excluded from the dataset 

due to its low number of reads. This resulted in a total of 79 rumen samples and 120 fecal 

samples used for data analysis. The number of OTUs identified were 31,109 and 24,518 for 

rumen and fecal samples, respectively.  

Alpha and Beta Diversity Measures 

 Within community (alpha) diversity was evaluated using the Shannon index (Shannon 

and Weaver, 1949) and the number of observed OTUs for both rumen and fecal samples. Dietary 
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treatment did not affect the community diversity within the rumen (Figure 1) as evident by both 

the Shannon index (P ≥ 0.41) and the number of observed OTUs (P ≥ 0.51). However, fecal 

(Figure 2) alpha diversity was impacted by supplemental yeast at time of weaning. At weaning (d 

34), control calves had a greater (P < 0.01) Shannon index, indicating greater variety and 

distribution of species present. Similarly, the number of observed OTU were greater (P = 0.01) 

for control compared to calves supplemented yeast product. Nevertheless, both Shannon index (P 

= 0.12) and the number of observed OTUs (P = 0.19) were not different at the conclusion of the 

study. Others (Jiang et al., 2017b; AlZahal et al., 2017) have found no differences on alpha-

diversity in the rumen when feeding yeast. 

Rumen beta-diversity (Figure 3) was not different (P ≥ 0.24) based on community 

membership and structure between calves offered control or supplemental yeast which has been 

supported (AlZahal et al., 2017). As with alpha-diversity, there was a difference (Jaccard: 

ANOSIM P = 0.03; Bray-Curtis: ANOSIM P = 0.06; Figure 4) observed in community structure 

and membership in the fecal microbiome on d 34 but once again, beta-diversity was not impacted 

by dietary treatment on d 76.  This difference on d 34 for both alpha- and beta-diversity in fecal 

samples is interesting to note considering that there was no difference in creep-feed 

disappearance at this time. It would appear that at this time calves on YP had reduced diversity 

of bacterial populations in the fecal microbiome.  

While dietary treatment did not have an influence in community structure and 

membership, there was an effect (P < 0.01) of time on rumen and fecal microbiota. As shown in 

Figures 3 and 4, clustering was present based on the day of sample collection. Prior to the 

initiation of the study (d 0) calves were on a forage based diet. Calves received a grain based 

creep supplement for 35 d prior to weaning and during the backgrounding period; although, these 
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two grain supplements differed. Having a change in the dietary treatment at both these points 

could be the cause of the clustering observed based on time of sample collection. 

In young dairy calves, alpha-diversity in the rumen was greater in calves pre-weaning, 

this was different than alpha-diversity in the feces which showed greater richness and evenness 

post-weaning (Meale et al., 2016). Meale et al. (2016) further reported alterations in community 

structure in calves pre- and post-weaning. Furthermore, age of calves at weaning can affect the 

change in community structure. Meale et al. (2017) found that early weaned calves (5 wk of age) 

had a more abrupt shift in rumen community structure compared to calves weaned at 7 to 9 wk of 

age. However, these studies evaluating the microbiome at weaning were conducted in dairy 

calves which are managed and weaned very differently than beef calves.  

OTU Distribution 

The top 50 most abundant OTU in the rumen (Figure 5) accounted for, on average, 38% 

of the total sequences (Figure 5). The most abundant OTU in the rumen was OTU1 unclassified 

Firmicutes followed by OTU2 and OTU4, Prevotella. Based on the top 50 OTU, dietary 

treatment only impacted (P = 0.02) OTU32 Prevotella in the rumen which was increased with 

YP. Contrary to Pinloche et al. (2013) who found a decrease in Prevotella due to yeast 

supplementation. Prevotella has been well documented as one of the most abundant genus in the 

rumen (Mao et al., 2015; Jiang et al., 2017b).  

Within the fecal microbiome, the 50 OTU with the greatest relative abundance accounted 

for approximately 50% of the population (Figure 6). The top 3 genus found in the fecal 

microbiome were: 1) OTU1 unclassified Ruminococcacaea, 2) OTU2 Paraprevotella, and 3) 

OTU3 Clostridium XIV. Out of the top 50 OTU found in feces, dietary treatment affected the 

relative abundance of OTU2 Paraprevotella (P = 0.02), OTU37 unclassified Bacteroidales (P < 
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0.01), and OTU47 unclassified Ruminococcacaea (P < 0.01). OTU2 Paraprevotella was 

increased by the addition of YP in the diet; whereas, OTU37 and OTU47 were greater in calves 

fed the control diet. Paraprevotella has been isolated in human feces previously and it is 

believed to produce succinic and acetic acids as fermentation end products (Morotomi et al., 

2009). Ruminococcacaea is one of the most prominent families of bacteria in the gut and is 

generally related to gut health (Biddle et al., 2013).  

To acquire a broader perspective of the effect that YP has on the microbial population in 

the gut, the top 50 bacterial families isolated from the rumen and feces were determined. In the 

rumen (Figure 7) the top 3 microbial families consisted of Prevotellaceae, unclassified 

Bacteroidetes, and Lachnospiraceae. Prevotellaceae has reportedly been the most dominant 

family of bacteria identified in the rumen and is an important property of enzymes involved in 

acetate and propionate formation (Deusch et al., 2017). Additionally, 2 of the top 50 most 

abundant microbial families in the rumen were influenced by adding YP; including an increase in 

unclassified SR1 (P = 0.05) accompanied by a decrease in Victivallaceae (P = 0.02). Similar to 

the current study, AlZahal et al. (2017) reported that adding active dried yeast to the diet 

increased the phylum SR1 in the rumen. Bacteria from the SR1 phylum are anaerobic and have 

been isolated in the guts of humans and mice (Ley et al., 2008); while the specific function of 

this bacteria is not well understood, AlZahal et al. (2017) proposed that members of the phylum 

SR1 could potentially play a role in fiber digestion, as they found that SR1 was more abundant 

on a high fiber diet and decreased when cows were switched to a high concentration diet. As 

stated, a decrease in the family Victivallaceae was detected in the rumen of heifers fed YP, this 

microbe has been associated with increased average daily feed intake in heifers (Paz et al., 2018). 
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In the current study, the amount of supplement disappearance was not affected by treatment pre- 

or post-weaning. 

The top 3 bacterial families identified in the fecal microbiome (Figure 8) were: 1) 

Ruminococcaceae, 2) Lachnospiraceae, and 3) unclassified family from the phylum 

Bacteroidetes. Interestingly, Lachnospiraceae and unclassified Bacteroidetes were in the top 3 

most abundant bacterial families in both the rumen and feces. Families that were increased (P ≤ 

0.10) by YP included Prevotellaceae, Veillonellaceae, and Acetobacteraceae. In the rumen 

Veillonellaceae has been positively associated with gain (Myer et al., 2015) and is more 

abundant in the fecal microbiome when cows are fed a moderate grain diet (Kim et al., 2014). 

Whereas, Ruminococcaceae, Spirochaetaceae, Fibrobacteraceae, and Victivallaceae were 

greater (P ≤ 0.08) in calves on the control diet.  

Random Forest  

 Random forest was implemented on the genus level to determine the 50 most predictive 

OTUs on d 34 and 76 for both rumen and fecal samples based on the mean decrease accuracy 

(MDA; Figure 9). On d 34, the 2 best predictors for rumen fluid included OTU151 unclassified 

Prevotellaceae and OTU2 Prevotella. On d 76, the top 2 predictors included OTU13 Fibrobacter 

and OTU18 unclassified Bacteroidetes. The 2 best predictors for fecal samples on d 34 were 

OTU19 unclassified Bacteroidetes and OTU47 unclassified Ruminococcaceae; lastly, OTU141 

unclassified Bacteroidetes and OTU233 Clostridium_IV were the top 2 predictors on d 76. While 

these were the top 2 predictors from each d and sample type, the MDA was relatively low for 

each. Likewise, the OOB for each sample was high even when using all OTU identified. Out of 

the bag error rate for rumen samples on d 34 and 76 were 59 and 50%, respectively. While OOB 
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error rate for fecal samples on d 34 and 76 were 42.5 and 52.5%, respectively. Thus, the 

microbial population may not be the best predictor for supplemental yeast treatment.  

Average daily gain of calves supplemented yeast product was less than control from 

weaning to the end of the backgrounding. Therefore, there was interest in evaluating predictors 

on ADG based on the difference in the relative abundance of OTU on d 76 and 34. Within the 

rumen (Figure 10) the top 2 predictors for ADG were OTU492 unclassified 

Porphyromonadaceae and OTU640 unclassified Lachnospiraceae (Figure 10). Based on the top 

1,000 OTU identified in the feces, the 2 best predictors for ADG were OTU798 unclassified 

Ruminococcaceae and OTU115 unclassified Porphyromonadaceae (Figure 11). Both rumen and 

fecal samples had an unclassified OTU from family Porphyromonadaceae which is reported to 

be greater in the rumen of cows on high starch diets (Zened et al., 2012). In rumen samples, 

Porphyromonadaceae was negatively correlated to ADG based on Pearson regression (slope = -

0.52, r2 = 0.28, P < 0.01). Others have reported that OTU from Ruminococcaceae and 

Lachnospiraceae correlate positively to ADG in steers, however, they were not associated with 

ADG in heifers (Paz et al., 2018). The unclassified OTU in family Lachnospiraceae was 

positively associated with ADG based on Pearson regression (slope = 0.53, r2 = 0.27, P < 0.01).  

Implications 

 In a previous paper, authors found that supplemental yeast did not affect overall growth 

performance, health, or heat stress. However, supplementing yeast product during the 

backgrounding period negatively affected ADG post-weaning. As with growth performance, 

yeast product did not impact the rumen or fecal microbiome of calves. There was no difference 

in diversity based on dietary treatment in the rumen; but there was an effect of day on 

community structure and membership. In regard to the fecal microbiome, there was a greater 
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community diversity in calves fed the control diet on d 34 compared to calves supplemented 

yeast product. Supplemental yeast had a greater impact on the relative abundance of OTU. There 

were several OTU identified that were increased with YP, including unclassified SR1 and 

Paraprevotella. Based on random forest analysis, rumen and fecal bacteria were not sufficient 

predictors to determine yeast supplementation. Overall, feeding live yeast in combination with 

yeast cell wall products did not improve phenotypic parameters or alter the microbial population 

in the rumen and feces. 
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APPENDIX 

Table 1. Ingredient list of basal diet fed during the 28-d receiving period  

Item % As-fed 

Cracked corn 40 

Cottonseed hulls 20 

Dried distiller grains 18.33 

Corn gluten meal 10 

Soybean meal, high protein 7 

Limestone 1.5 

Molasses 1.5 

Yellow grease 1 

Salt, white 0.4 

Corn and Rumensin intermediate mix3 0.1 

Calcium monophosphate 0.1 

Vitamin A, D, E premix¹ 0.03 

Vitamin E premix2 0.03 

Trace mineral premix4 0.01 

¹Vitamin premix contained 8,800,000 IU Vitamin A, 1,760,000 IU Vitamin D, and 1,100 IU 

Vitamin E/kg  
2Vitamin E premix contained 44,000 IU Vitamin E/kg 
3Mix provides 22 g monensin/kg of intermediate mix 
4Contains NB-8675 (Nutrablend, Neosho, Mo) 12% Zn, 8% Mn, 4% Cu, 1% Fe, 500 ppm Co, 

2,000 ppm I, and 600 ppm Se  
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A.  

B.  

Figure 1. Alpha diversity measures for rumen microbiome. Yeast product calves were 

supplemented with 3 g of live yeast and 1 g of yeast cell wall for 35 d prior to weaning and 

through a 42-d backgrounding period. A. Shannon Index B. number of Observed.   
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A.  

B.  

Figure 2. Alpha diversity measures for fecal microbiome. Yeast product calves were 

supplemented with 3 g of live yeast and 1 g of yeast cell wall for 35 d prior to weaning and 

through a 42-d backgrounding period. A. Shannon Index B. number of Observed OTUs.  
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A.  

B.  

Figure 3. Beta diversity measures for rumen microbiome. Yeast product calves were 

supplemented with 3 g of live yeast and 1 g of yeast cell wall for 35 d prior to weaning and 

through a 42-d backgrounding period. A. Jaccard dissimilarity index B. Bray-Curtis Index.  
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A.  

B.  

Figure 4. Beta diversity measures for fecal microbiome. Yeast product calves were 

supplemented with 3 g of live yeast and 1 g of yeast cell wall for 35 d prior to weaning and 

through a 42-d backgrounding period. A. Jaccard dissimilarity index B. Bray-Curtis Index.  
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A.  

B.  
 

Figure 5. Relative abundance of the top 50 OTU present in the rumen microbiome on each day 

of sample collection. C = Control and YP = Yeast product.  
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A.  

B.  

C.  

Figure 6. Relative abundance of the top 50 OTU present in the fecal microbiome on each day of 

sample collection. C = Control and YP = Yeast product.   
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A.  

B.  

Figure 7. Relative abundance of the top 50 families present in the rumen microbiome on d 34 

and 76. C = Control and YP = Yeast product.  
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A.  

B.  

C.  

Figure 8. Relative abundance of the top 50 families present in the fecal microbiome on d 0, 34, 

and 76. C = Control and YP = Yeast product.  
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A. 

 

B. 

 

C.

 

D. 

 

Figure 9. A. The top two predictors of dietary treatment for rumen samples on d 34. B. The top 

two predictors of dietary treatment for rumen samples on d 76. C. The top two predictors of 

dietary treatment for fecal samples on d 34. D. The top two predictors of dietary treatment for 

fecal samples on d 76. Control is designated by the green boxes and yeast product (YP) by the 

blue boxes.  
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Figure 10. The top 30 OTU for predicating ADG based on the difference in relative abundance 

of OTU in the rumen on d 34 and 76.  



 

102 
 

 

Figure 11. The top 30 OTU for predicating ADG based on the difference in relative abundance 

of OTU in the feces on d 34 and 76.  
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CHAPTER VI 

 

 

 

 

 

 

Effects of yeast product supplementation during late gestation and subsequent effects on calf 

health and growth performance  
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ABSTRACT 

Late gestation cows (n = 97) were stratified based on parity, sire of fetus, and body weight (BW) 

and assigned randomly to pasture (5 pastures/treatment). Pastures were assigned randomly to 

treatment: 1) supplement without yeast (CON) or, 2) supplement with yeast products (YP). 

Cows were supplemented 0.9 kg/d corn gluten pellets and 0.45 kg/d ground corn. The YP was 

supplied in ground corn at a target intake of 8 g YP/d (6 g live yeast and 2 g yeast cell wall; 

Phileo Lesaffre Animal Care, Milwaukee, WI). At parturition, a colostrum and blood sample 

were collected from a subset of cows (n = 30, 3 cows/pasture) and calf BW were recorded. 

Supplementation ended on d 85, 22 d after the last calf was born. Birth weights of calves were 

not different (P = 0.72). However, BW on d 85 was greater (P = 0.01) in calves whose dams 

were supplemented YP (76 kg) compared to CON (69 kg). Cows that were supplemented YP had 

a lower (P = 0.03) neutrophil:lymphocyte at h 0 and 48 after parturition. Similarly, calves on YP 

had a lower (P = 0.02) neutrophil:lymphocyte at h 48. Colostrum IgA (P = 0.43) and IgG (P = 

0.62) concentrations were not impacted by YP. Additionally, serum IgA (P = 0.68) and IgG (P = 

0.33) concentrations in calves at h 24 and 48 after parturition were not different due to treatment. 

There was no treatment effect (P = 0.77) observed for blood urea nitrogen. There was a treatment 

× time interaction (P = 0.04) for serum non-esterified fatty acid serum concentrations with cows 

on YP having a greater concentration at h 48 compared to CON at h 0 or 48. Supplementation of 

YP increased calf BW on d 85 and reduced neutrophil:lymphocyte 48 h after birth, potentially 

indicating a reduction in stress compared to CON.  

 

Keywords: Colostrum, late gestation cows, yeast product 
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INTRODUCTION 

At birth the calf relies on the transfer of antibodies in colostrum to defend against 

infection and foreign pathogens. Therefore, adequate intake of colostrum is extremely critical for 

the health of the calf (Besser and Gay, 1994). Factors that affect transfer of immunoglobulins 

include but are not limited to the quality and quantity of colostrum, timing of consumption, breed 

and parity of the dam (Weaver et al., 2000). According to Perino (1997), 10 to 25% of calves do 

not receive adequate transfer of immunoglobulins at birth. Beef calves that do not receive proper 

transfer of immunoglobulins have an increased risk of morbidity prior to weaning and in the 

feedlot (Wittum and Perino, 1995). Nutritional status of the cow can affect the quality of 

colostrum (Hough et al., 1990) and further influence the performance of their offspring (Funston 

et al., 2010; Radunz et al., 2012).  

 Yeast products are naturally occurring feed additives that are used to promote health and 

increase growth performance in livestock. Feeding yeast products has been extensively studied in 

the receiving period where it can improve dry matter intake (DMI) and average daily gain 

(ADG; Finck et al., 2014; Ponce et al., 2012). But research determining the effects of yeast prior 

to the receiving period is limited in beef calves. In the swine and dairy industry, more work has 

been conducted to evaluate the effectiveness of yeast supplementation prior to parturition and in 

the neonate. Dairy calves provided yeast had improved ADG and DMI, with a decrease in the 

incidence of scours (Magalhães et al., 2008; Lesmeister et al., 2004; Seymour et al., 1995). In 

late gestation sows fed live yeast, there was a greater concentration of IgG reported in the 

colostrum that led to a greater concentration of circulating IgG in piglets (Jang et al., 2013). 

Seeing how there have been benefits of providing yeast during this stage of production, the 

hypothesis of the current experiment was that similar effects would be observed in beef calves. 
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Thus, the goal of this study was to evaluate the effects of supplementing yeast to beef cows prior 

to parturition and the subsequent effects on calf performance and immunity.  

MATERIALS AND METHODS 

Animals and diet 

 All experimental procedures were approved by the University of Arkansas Animal Care 

and Use Committee (protocol # 18020). Ninety-seven late gestation cows (initial BW = 560 ± 57 

kg; parity ≥ 2) that were confirmed bred by artificial insemination were stratified based on parity, 

sire of fetus, BW, and previous treatment and assigned randomly to pasture (10 pastures; 9 or 10 

cows/pasture). Pastures were assigned randomly to 1 of 2 experimental treatments: 1) 

concentrate supplement without yeast (CON), or 2) concentrate supplement with yeast product 

(YP; 8 g of YP/d). On d -1 cows were weighed, vaccinated for reproductive diseases including 

bovine viral diarrhea virus (BVDV; Virashield 6 VL 5, Elanco Animal Health, Greenfield, IN), 

ear notched to test for cows persistently infected with bovine viral diarrhea virus (PI-BVDV), 

and confirmed pregnant by rectal palpation. Ear notches were sent to Cattle Stats (Oklahoma 

City, OK) and all cows were reported negative for PI-BVDV. Cows were held overnight in 

holding pens with access to hay and water. The following day, cows were moved to their 

assigned 2.4 ha pastures with access to automatic waterers and concrete bunks. 

 Supplementation with dietary treatment began on d 0, approximately 45 d prior to the 

anticipated calving date. Cows were fed 1.4 kg of the supplement/d at approximately 0800. 

Supplement consisted of 0.9 kg/d corn gluten pellets and 0.5 kg/d top-dress (99% ground corn 

and 1% fat). Yeast product was delivered in top-dress and was formulated to provide 8 g of YP/d 

(6 g of live yeast and 2 g of yeast cell wall; Phileo Lesaffre Animal Care, Milwaukee, WI). Cows 

had access to a free choice mineral supplement (Fortigraze; Livestock Nutrition Center, 
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Memphis, TN). Once forage availability began to decline, hay was offered as a large round bale 

for ad libitum intake. All pens were offered hay on the same day based on the unit manager’s 

decision. Any orts were removed, weighed, and subsampled and samples were stored frozen. 

Additionally, forage samples were collected every 28 d for nutrient analysis. Supplementation 

ended on d 85, 22 d after the last calf was born, and at this time cow-calf pairs were commingled 

and grazed available forage until weaning at an average age of 210 d. 

Calving  

At birth, calves were weighed, tagged with unique individual identification, tattooed, 

castrated via banding (if necessary), and ear notched for PI-BVDV analysis. Ear notches were 

sent to Cattle Stats (Oklahoma City, OK) every Monday until the last calf was born and all 

calves came back negative for PI-BVDV. Cows were assigned a calving ease score (1 = no 

assistance, 2 = assisted, easy, 3 = assisted, very difficult, 4 = caesarean delivery, and 5 = breech 

birth, abnormal presentation) and a calf thriftiness score (1 = nursed immediately, calf was 

healthy at birth, 2 = nursed on own, but took time, 3 = required some assistance to suckle, 4 = 

died shortly after birth, and 5 = dead on arrival).  

Colostrum and blood sampling 

A subsample of cows (n = 30, 3 cows/pasture) were moved closer to handling facilities 

on d 36 for further data collection. From each pen, 1 cow from parity 2, 4, and 5 or 6 was 

selected for the subsample. Additionally, to be eligible for subsample the fetus had to be sired by 

an Angus bull. Cows were housed on 0.4 ha pastures (n = 6, 3 pens/treatment) with access to an 

automatic waterer and a concrete bunk. Cows continued to be fed their appropriate dietary 

treatment; however, feeding time was switched to 1900 to promote daytime calving.  
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After the calf had nursed, both cow and calf were removed from their pasture and brought 

to the handling facilities. Further data collection from cows included: 1) a pooled colostrum 

sample from all four quarters and 2) a blood sample via jugular venipuncture at 0 and 48 h after 

calving. Calves were bled at 24 and 48 h after birth via jugular venipuncture. All blood samples 

from the 24 and 48 h collections were obtained twice a day, at 0800 and again at 1500. If calves 

were born between midnight and 1200, then cows and calves were bled at the 0800-collection 

time and if calves were born between 1200 and midnight then cows and calves were bled at 

1500. The 0 h blood sample was collected as soon as cows and calves were brought in from the 

pasture. Cow-calf pairs were held in holding pens until after the 48 h blood collection, at which 

time they were moved to their appropriate 2.4 h pasture.  

Body weight, Blood, and Colostrum Samples 

 Cow BW were collected on d -1, 0, 84, 85, and 257 (weaning); while calf BW were 

collected at birth, d 84, 85, and 257 (weaning). Consecutive BW were recorded and averaged 

together at the beginning and end of the study. At calving, blood collected from cows (n = 30) at 

0 and 48 h were analyzed for complete blood cell count, immunoglobulin G (IgG), 

immunoglobulin A (IgA), BVDV Type 1a titers, haptoglobin (Hp), blood urea nitrogen (BUN), 

and non-esterified fatty acids (NEFA). Blood samples from calves (n = 30) at 24 and 48 h were 

analyzed for IgG, IgA, and BVDV Type 1a titers. Additionally, a complete blood cell count was 

evaluated from calves at 48 h. On d 84 (1 d before the end of dietary supplementation), all calves 

(n = 90) were bled via jugular venipuncture for IgG, IgA, BVDV Type 1a titers, and complete 

blood count. 

 Whole blood was collected via jugular venipuncture for complete blood cell analysis in 6 

mL vacuum tubes containing EDTA (Becton, Dickinson and Company, Franklin Lakes, NJ) and 
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processed on an automated analyzer (HemaVet HV950; Drew Scientific, Miami Lakes, FL). 

Blood for the remaining parameters was collected in a 10 mL plain vacuum tube (Becton, 

Dickinson and Company), centrifuged at 3,000 g for 20 min, and stored at -20°C until further 

analysis. Serum IgG, IgA, and Hp were assessed using a commercially available ELISA kit 

(Immunology Consultants Laboratory Inc., Portland, OR). Serum BUN were analyzed by 

colorimetric determination (Teco Diagnostics, Anaheim, CA). Serum NEFA concentrations were 

determined using an enzymatic colorimetric method (Wako Pure Chemical Industries, Ltd., 

Mountain View, CA). Lastly, serum was shipped on dry ice to the Iowa State University 

Veterinary Diagnostic Laboratory for BVDV Type 1a titer analysis. 

 Two aliquots of colostrum (n = 30) were saved for proximate analysis and determination 

of IgA and IgG concentrations. Colostrum intended for proximate analysis was mixed with a 

preservative and stored at room temperature and sent to Mid-South Dairy Records (Springfield, 

MO) every week until the end of calving. Samples were analyzed for percent fat, protein, lactose, 

solids, and somatic cell count. The remaining colostrum was stored in a 50 mL sterile conical 

tube and kept at -20°C until further laboratory analysis could be performed. A commercially 

available ELISA kit (Immunology Consultants Laboratory Inc.) was used to determine the 

concentration of colostrum IgG and IgA.  

Diet Analysis 

 Forage and supplement samples were composited and dried in a forced air oven. Dried 

samples were ground via a Willey Mill (Thomas Scientific, Swedesboro, NJ) through a 1 mm 

screen. Ground samples were analyzed for CP (Rapid Combustion Method, Elementar Americas, 

Inc., Mt. Laurel, NJ), NDF, and ADF (ANKOM Techonolgy Corp., Fairport, NJ; Vogel et al., 

1999). Mineral samples were prepared by wet ashing and analyzed by inductively coupled 
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plasma spectroscopy (Model 3560, Applied Research Laboratory, Sunland, CA) at the University 

of Arkansas Altheimer Laboratory (Fayetteville, AR). Nutrient analysis are presented in Table 1.  

Statistical Analysis 

 Data were analyzed using the MIXED procedure of SAS (SAS Inst., Inc., Cary, NC) with 

pen set as the experimental unit for all variables. Cow performance and colostrum data contained 

treatment as the only variable in the model; while, blood parameters were run as a repeated 

measure and the model included treatment, h, and the treatment by h interaction. Blood 

measurements for calves were run as repeated measure with treatment, h, and treatment by h 

interaction included in the model and contained sex as a random effect. The statistical model for 

calf performance included treatment with sex as a random effect. Date of birth was considered 

for calf performance on d 85 but was non-significant and thus, removed from the random 

statement. Normality was tested for every variable and data were transformed if necessary.  

Significance was declared at P ≤ 0.05 with tendencies at 0.05 < P ≤ 0.10.  

RESULTS AND DISCUSSION 

 The calving season lasted for a total of 56 d using cows confirmed bred by artificial 

insemination. The average calf age was similar between treatments, on d 85 calves averaged 40 

and 42 d old for CON and YP, respectively. All cows received a calving ease score of 1; 3 cows 

received a calf thriftiness score > 1 but this was not different (P = 0.93) between the treatments. 

During the first 85 d 7 cows were removed from the study. Three from the CON treatment; 1 

cow was open, 1 had a calf that died shortly after birth (part of the subsample), and 1 calf was 

lame. Colostrum and blood samples were collected from the cow who lost her calf shortly after 

birth and were included in the data analysis; once samples were collected the cow was removed 

from the study and a blood sample from h 48 was not obtained. On the YP treatment, 2 cows had 
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twins and the other 2 cows aborted their calf. This resulted in a total of 90 cow-calf pairs (44 on 

YP and 46 on CON) on d 85. After treatment administration stopped, while grazing in a single 

group, 5 more cow-calf pairs (all on YP treatment) were removed from the study, 1 calf was 

diagnosed with calf diphtheria, 1 cow had a foot abscess, and 3 cows died from bloat. This left 

85 cow-calf pairs (39 on YP and 46 on CON) at weaning. Additionally, the only morbidity 

recorded was 1 calf (on the CON diet) was treated during the duration of the study for an 

ulceration on the eye.  

Cow and calf performance 

Calf birth weight was not different (P = 0.72) between the CON and YP treatment. There 

was a 7 kg weight advantage (P = 0.01) in YP calves on d 85; as well as an increase (P = 0.04) in 

ADG from birth to d 85. However, at time of weaning there was no difference (P = 0.68) in calf 

BW. Similarly, ADG from d 85 to weaning was not impacted (P = 0.14) by dietary treatment; 

nor was there a difference (P = 0.61) in ADG from birth to weaning. Other studies evaluating the 

effects of yeast during late gestation have not followed calves past the time of parturition but 

several studies have evaluated the effectiveness of yeast products on growth performance when 

fed to the neonatal calf. A few studies found that adding yeast to the diet of young dairy calves 

increased DM intake and improved BW (Lesmeister et al., 2004; Galvão et al., 2005), but others 

have reported no improvement on growth performance when yeast was provided (Seymour et al., 

1995; Magalhães et al., 2008). In swine, adding active dry yeast to the sow’s diet during late 

gestation improved weaning weight of their piglets (Jurgens et al., 1997).  

One hypothesis behind the improvement of growth performance seen in young calves is 

the ability of yeast to stimulate bacterial growth and development in the rumen. Young 

ruminants fed live yeast had a greater abundance of cellulolytic bacteria in the rumen which is 
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indication of a more developed rumen (Chaucheyras-Durand and Fonty, 2001; Jami et al., 2013). 

Furthermore, adding yeast to the diet of young ruminants can improve rumen morphology by 

enhancing papillae length and width (Lesmeister et al., 2004; Xiao et al., 2016) both of which are 

associated with improved rumen function and development. While parameters measuring rumen 

development were not identified in the current study, previous work on rumen development 

could in part explain the 7 kg weight advantage in calves on d 85.  

Cow BW was not affected (P = 0.44; Table 2) at the end of the 85-d period and there was 

no difference (P = 0.67) in cow weight at time of weaning. Providing yeast culture to dairy cows 

did not affect cow performance pre-partum but it did improve cow BW by 23.4 kg during the 

first 42 d postpartum (Dann et al., 2000). Dann et al. (2000) further reported an increase in DMI 

during the first 42 d of lactation for cows fed yeast culture. These findings have not been 

consistent in dairy cows as others (Nocek and Kautz, 2006; Robinson, 1997) have reported no 

effect on cow performance when fed yeast products  

Colostrum 

One cow (CON) in the subsample did not let down her milk; thus, 29 colostrum samples 

were available for analysis (Table 3). Colostrum IgG from cows on both the CON and YP diet 

were within the recommended range of 50 to 100 mg/mL (Larson et al., 1980).  The 

concentration of colostrum IgA (P = 0.43) and IgG (P = 0.62) were not different between CON 

and YP. Like the current study, immunoglobulin concentrations (IgG1, IgG2, IgA, and IgM) in 

colostrum were not different in cows provided mannan oligosaccharides (MOS) during the last 3 

wk of gestation (Franklin et al., 2005). In swine, feeding yeast during gestation increased 

colostrum IgG (Jang et al., 2013).  
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Similar to immunoglobulin concentrations, there was no difference due to treatment in 

the proximate analysis of the colostrum. The percentage of fat in colostrum was not impacted (P 

= 0.20) by dietary treatment. But, supplemental YP numerically increased the percentage of fat 

in colostrum from 4.7% in CON to 6.4% in YP, respectively. Percentage of protein (P =0.73) 

and percentage lactose (P = 0.27) also did not differ between treatments. Yeast had no affect on 

the milk components of dairy cows during early gestation (Dann et al., 2000; Robinson. 1997). 

Jurgens et al. (1997) found that supplemental yeast increased the total amount of solids and 

percentage of CP in the milk of sows. These findings have been reported in milk rather than 

colostrum, which could explain the differences observed between studies.   

Blood Parameters 

Haptoglobin is an acute phase protein secreted by the liver during periods of 

inflammation and infection (Baumann and Gauldie, 1994). As seen in this study, serum Hp 

concentrations were not affected (P = 0.25; Table 4) by dietary treatment which has been 

observed previously in dairy cows (Zaworski et al., 2014). Although, there was an effect (P < 

0.01) of time on serum Hp with h 48 being greater compared to h 0. When the innate immune 

system is stimulated it elicits an increase in acute phase proteins in cows near parturition 

(Nightingale et al., 2015). Therefore, parturition elevates Hp levels in the subsequent week 

following parturition (Crawford et al., 2005; Humblet et al., 2006).  

While yeast did not effect the acute phase response as measured by serum Hp 

concentrations, yeast did alter blood cell composition in cows. The percentage of neutrophils was 

greater (P = 0.03; Table 5) in CON compared to YP which was accompanied by a tendency for a 

greater (P = 0.08) lymphocyte percentage in cows fed YP compared to CON. This gave rise to a 

reduction (P = 0.03) in the neutrophil to lymphocyte ratio (N:L) in cows supplemented YP. The 
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N:L ratio is used as a tool to measure the level of stress. A reduced N:L ratio indicates less stress, 

which would suggest that cows provided YP prior to parturition had reduced stress at time of 

calving. 

 Providing YP in the diet did not affect serum BUN concentrations (P = 0.77; Table 6); 

while time of blood collection did influence (P < 0.01) BUN concentrations with h 48 having 

elevated concentrations of circulating BUN compared to h 0. Comparatively, Zaworski et al. 

(2014) reported greater urea N concentrations 48 h after birth in cows fed yeast. As with BUN 

concentrations, serum NEFA concentrations did not differ (P = 0.42) due to dietary treatment. 

Which agrees with serum NEFA concentrations in dairy cows fed yeast prior to parturition 

(Nocek and Kautz, 2006). There was a treatment by time interaction (P =0.04) with cows on YP 

having a greater concentration at h 48 compared to CON at h 0 or 48 and YP at h 0. Heifer calves 

experiencing an immune challenge showed potential for yeast to alter blood metabolites (Burdick 

Sanchez et al., 2014). Therefore, it was hypothesized that adding YP to the diet could impact 

energy metabolism at time of calving in beef cows, but that was not the case in the current study.  

At 48 h after birth, calves supplemented YP had a reduction (P = 0.04; Table 7) in the 

percentage of neutrophils along with an elevated (P = 0.02) percentage of lymphocytes. There 

was no difference (P ≥ 0.15) in the percentage of monocytes, eosinophils, or basophils due to 

dietary treatment at h 48. These results differ from those reported by Kim et al. (2011) who 

found that adding yeast to calf starter did not impact the proportion of leukocytes. Calves from 

cows on the YP diet had a reduced (P = 0.02) N:L compared to CON. With a lower N:L ratio 48 

h after calving it is believed that calves supplemented YP experienced less stress at birth 

compared with calves on the CON treatment. But this advantage was not maintained (P = 0.22; 

Table 8) on d 85. When calves are born, neutrophils make up a greater proportion of white blood 
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cells compared to lymphocytes (Tennant et al., 1973). Tennant et al. (1973) reported that after d 

5, neutrophil concentration decreases while the concentration of lymphocytes increase; making 

the N:L more similar to adult cattle. While there was no treatment effect observed on d 85, 

calves hematology could have changed with age. Additionally, the influence of YP could have 

been less effective at this time due to the lower stress level of calves 22 d after the last calf was 

born.  

Passive immunity (Table 9) from dam to calf was not altered due to YP supplementation. 

There was no treatment effect on circulating IgA (P = 0.56; Table 6) or IgG (P = 0.51) in cows. 

At time of birth both serum IgA (P = 0.68) and serum IgG (P = 0.33) concentrations did not 

differ due to treatment. On d 85, a similar result was observed for serum IgG concentrations; on 

the contrary, there was a tendency for serum IgA to be greater (P = 0.07) in YP calves compared 

with CON. Franklin et al. (2005) reported reduced serum IgA concentrations 24 h after birth in 

calves whose dams were supplemented MOS during late gestation. Contrary, Jang et al. (2013) 

found greater serum IgG 24 h after birth in piglets when the sow was fed yeast. It is important to 

note that failure of passive transfer occurs when calves are not provided adequate volumes of 

colostrum and is identified when serum IgG is < 10 g/L (Tyler et al., 1996; Weaver et al., 2000). 

Therefore, passive transfer was sufficient in calves when dams regardless of diet.  

The humoral immune response was not affected by YP supplementation as evident by the 

results for BVDV Type 1a titers (Table 10) observed in both cow and calf serum. The BVDV 

Type 1a antibody titers did not differ (P = 0.32) in cows due to dietary treatment. Franklin et al. 

(2005) reported no difference in rotavirus neutralization titers in cows but found a tendency for 

elevated titers in calves when their dams were supplemented with MOS. Likewise, serum 

antibody titers in calves against BVDV Type 1a were not affected (P = 0.44) by dam’s diet; nor 
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was there a difference (P = 0.66) on d 85. In agreement, Magalhães et al. (2008) did not observe 

differences in humoral immune response when calves were fed yeast culture from 2 to 70 d of 

age.  

Implications 

 Feeding YP at 8 g/d to beef cows during the last 45 d of gestation had a beneficial 

influence on both calf performance and immunity. Calves from dams fed YP had greater BW on 

d 85 of the study; however, this weight advantage was not seen at weaning. Both cows and 

calves had a smaller N:L at time of parturition, indicating a reduction in stress at time of calving. 

Supplementation of YP did not influence passive transfer of immunoglobulins. Serum and 

colostrum IgG and IgA concentrations were not different between cows supplemented YP or 

CON; nor did serum IgA and IgG differ in their calves. Additionally, the humoral response, as 

measured by antibody titer to BVDV Type 1a, was not affected by dietary treatment of dam. 

Overall, there were advantages to providing YP to cows prior to parturition; but a long-term 

effects of YP supplementation on calf performance was not evident.  
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APPENDIX 

Table 1. Nutrient analysis of diet and forages consumed during the first 85 d. 

1CON=Control, topdressed on supplement at 0.5 kg/d consisting of 99% ground corn and 1% fat 
2YP=Yeast product, topdressed on supplement at 0.5 kg/d to provide 6 g live yeast and 2 g yeast 

cell wall. 

 

  

 Topdress carrier    

  CON1 YP2 Corn Gluten Forage Bermudagrass Hay 

DM 92.7 93.5 96.0 36.2 88.6 
CP 11.4 8.8 23.1 13.0 11.3 
ADF 4.4 3.4 13.5 37.0 36.4 
NDF 44.6 49.4 40.9 65.4 66.5 
Ash 2.5 1.4 6.8 8.3 9.8 
P 0.4 0.3 1.3 0.3 0.4 
K 0.5 0.4 2.0 2.3 2.8 
Ca 0.3 0.02 0.01 0.4 0.7 
Mg 0.1 0.1 0.5 0.2 0.2 
Na 0.2 0.1 0.4 0.2 0.3 
S 0.1 0.008 0.1 0.009 0.018 
Fe 269.4 70.4 275.4 89.7 286.4 
Mn 52.4 2.9 17.1 94.5 70.1 
Zn 92.2 30.0 64.5 45.1 34.0 
Cu 25.5 4.3 5.6 6.5 8.7 
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Table 2. Effect of yeast product supplemented during late gestation on cow and calf growth 

performance. 

¹1CON=Control, topdressed on supplement at 0.5 kg/d consisting of 99% ground corn and 1% fat 
2YP=Yeast product, topdressed on supplement at 0.5 kg/d to provide 6 g live yeast and 2 g yeast 

cell wall. 
3Day 85 BW was taken 22 d after the last calf was born. The average age for control on d 22 was 

40 d and the average age for YP on d 22 was 42 d (P = 0.28).  

  Treatment     

 CON1 YP2 SEM P-Value 

Cow performance, kg     
  D 0 BW 560 561 2.4 0.95 

  D 85 BW3 548 544 3.7 0.44 

  Weaning BW 513 517 6.2 0.67 

Calf performance, kg     
  Birth Wt 32 31 1.1 0.72 

  D 85 BW3 69 76 1.7 0.01 

  Weaning Wt 215 212 5.3 0.68 

  ADG birth to d 85 0.9 1.1 0.05 0.04 

  ADG d 85 to wean 0.84 0.78 0.03 0.14 

  ADG birth to wean 0.86 0.84 0.02 0.61 



 

122 
 

Table 3. Effect of YP supplemented during late gestation on colostrum composition.¹ 

¹n = 27; 14 cows on YP and 13 cows on control. 
2CON=Control, topdressed on supplement at 0.5 kg/d consisting of 99% ground corn and 1% fat 
3YP=Yeast product, topdressed on supplement at 0.5 kg/d to provide 6 g live yeast and 2 g yeast 

cell wall. 

  

  Treatment     

 CON2 YP3 SEM P-Value 

Milk Proximate Analysis     
  Fat, % 4.7 6.4 0.86 0.20 

  Protein, % 10.5 11.0 1.0 0.73 

  Lactose, % 2.3 2.8 0.3 0.27 

  Solids, % 12.3 13.4 1.1 0.49 

  Somatic cell count, cells x 10³/mL 963 1,460 295 0.27 

     

Immunoglobulins, mg/mL     

  IgA 10.5 8.9 1.33 0.43 

  IgG 96.9 106.8 13.64 0.62 
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Table 4. Effect of YP supplemented during late gestation on cow plasma haptoglobin 

(ng/mL) concentrations.3 

1CON=Control, topdressed on supplement at 0.5 kg/d consisting of 99% ground corn and 1% fat 
2YP=Yeast product, topdressed on supplement at 0.5 kg/d to provide 6 g live yeast and 2 g yeast 

cell wall. 
3Haptoglobin concentrations were transformed using the square root to improve normality. 

Means were back transformed from normal data. SEM values were obtained from the 

transformed data

  Treatment   P-Value 

 CON1 YP2 SEM Treatment Time Treatment × time  

       

  H 0 3,390 4,357 6.68 0.25 <0.01 0.97 

  H 48 16,147 18,314 6.82       



 

    
 

Table 5. Effect of YP supplemented to pregnant beef cows during late gestation on the concentration and proportion of white 

blood cells in cows. 

1CON=Control, topdressed on supplement at 0.5 kg/d consisting of 99% ground corn and 1% fat 
2YP=Yeast product, topdressed on supplement at 0.5 kg/d to provide 6 g live yeast and 2 g yeast cell wall. 
3White blood cell concentrations and proportions were log transformed to improve normality. Means were back transformed from 

normal data. SEM values obtained from transformed data. 
4At h 0 blood was collected from 30 cows. 
5At h 48 blood was collected from 29 cows; 1 cow lost her calf from h 0 to 48 

 CON1 YP2 
    

 H 04 H 485 H 04 H 485 SEM Treatment Time Treatment × time 

Concentration, K/µl3 
        

  White blood cells 9.70 6.61 12.58 7.82 0.13 0.17 <0.01 0.69 

  Neutrophil 4.42 2.89 4.79 2.90 0.13 0.76 <0.01 0.76 

  Lymphocyte 2.20 2.21 3.39 3.10 0.17 0.09 0.77 0.74 

  Monocyte 0.33 0.30 0.54 0.39 0.18 0.06 0.26 0.56 

  Eosinophil 1.89 0.80 2.48 0.82 0.19 0.36 <0.01 0.58 

  Basophil 0.28 0.10 0.25 0.12 0.34 0.90 0.02 0.68 

         
Proportions, %3 

        
  Neutrophil 45.8 43.8 38.1 37.1 0.07 0.03 0.64 0.90 

  Lymphocyte 22.5 33.7 26.9 39.7 0.09 0.08 <0.01 0.94 

  Monocyte 3.4 4.5 4.3 5.0 0.08 <0.01 0.03 0.50 

  Eosinophil 19.6 12.3 19.7 10.5 0.12 0.38 <0.01 0.59 

  Basophil 2.9 0.9 2.0 1.0 0.34 0.75 <0.01 0.48 

  Neutrophil:lymphocyte ratio 2.03 1.30 1.42 0.94 0.14 0.03 <0.01 0.92 

1
2
4
 



 

    
 

Table 6. Effect of YP supplemented during late gestation on cow blood metabolites at h 0 and 48.1 

1n = 30 at h 0 and n = 29 at h 48. 
2CON=Control, topdressed on supplement at 0.5 kg/d consisting of 99% ground corn and 1% fat 
3YP=Yeast product, topdressed on supplement at 0.5 kg/d to provide 6 g live yeast and 2 g yeast cell wall. 
4Nonesterified fatty acid concentrations were log transformed to improve normality. Means reported from back transformed data. 

SEM values from transformed data 

 

  Treatment   P-Value 

  CON2 YP3 SEM Treatment Time Treatment × time  

Blood urea N, mg/dL       
  H 0 6.7 6.3 0.51 0.77 <0.001 0.81 

  H 48 9.1 9.0 0.52    

       
Nonesterified fatty acids, µEq/L4      
  H 0 369 312 0.10 0.42 0.07 0.04 

  H 48 359 490 0.10       

1
2
5
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Table 7. Effect of YP supplemented during late gestation on the concentration and 

proportion of white blood cells in calves at 48 h.¹ 

¹n = 29 calves; 15 calves on YP and 14 calves on control. 
2CON=Control, topdressed on supplement at 0.5 kg/d consisting of 99% ground corn and 1% fat 
3YP=Yeast product, topdressed on supplement at 0.5 kg/d to provide 6 g live yeast and 2 g yeast 

cell wall. 
4White blood cell concentrations and proportions were log transformed to improve normality. 

Means were back transformed from normal data. SEM values obtained from transformed data  

 Treatment     

 CON2 YP3 SEM P-Value 

Concentrations, K/µL4 
    

  White blood cells 5.69 4.36 0.10 0.13 

  Neutrophils 3.55 2.41 0.04 0.01 

  Lymphocytes 1.12 1.27 0.20 0.84 

  Monocytes 0.19 0.19 0.21 0.97 

  Eosinophils 0.39 0.28 0.31 0.48 

  Basophils 0.02 0.02 0.21 0.93 

     
Proportions, %4 

    
  Neutrophils 63.3 56.6 0.03 0.04 

  Lymphocytes 22.4 28.9 0.06 0.02 

  Monocytes 3.5 4.4 0.10 0.15 

  Eosinophils 7.5 5.0 0.27 0.32 

  Basophils 0.3 0.3 0.16 0.98 

  Neutrophil:lymphocyte ratio 2.83 1.96 0.09 0.02 



 

127 
 

Table 8. Effect of YP supplemented during late gestation on the concentration and 

proportion of white blood cells in calves on d 85.1 

  Treatment     

Item² CON2 YP3 SEM P-Value 

Concentrations, K/µL4 
    

  White blood cells 9.14 9.28 0.60 0.87 

  Neutrophils 3.57 3.91 0.38 0.53 

  Lymphocytes 4.42 4.08 0.23 0.30 

  Monocytes 0.40 0.40 0.03 0.98 

  Eosinophils 0.72 0.85 0.10 0.36 

  Basophils 0.03 0.04 0.01 0.63 

     
Proportions, %4 

    
  Neutrophils 38.5 40.4 2.23 0.56 

  Lymphocytes 49.7 46.8 2.24 0.35 

  Monocytes 4.3 4.3 0.44 0.94 

  Eosinophils 7.5 8.4 0.77 0.43 

  Basophils 0.3 0.3 0.05 0.73 

  Neutrophil:lymphocyte ratio 0.83 1.01 0.10 0.22 

¹Day 85 BW was taken 22 d after the last calf was born. 
2CON=Control, topdressed on supplement at 0.5 kg/d consisting of 99% ground corn and 1% fat 
3YP=Yeast product, topdressed on supplement at 0.5 kg/d to provide 6 g live yeast and 2 g yeast 

cell wall. 
4Data obtained from 23 calves on control and 30 calves on YP.



 

 
 

Table 9. Effect of YP supplementation on cow and calf serum IgG and IgA concentrations.¹ 

1IgG and IgA concentrations log transformed to improve normality. Means back transformed and SEM values from transformed data. 
2CON=Control, topdressed on supplement at 0.5 kg/d consisting of 99% ground corn and 1% fat 
3YP=Yeast product, topdressed on supplement at 0.5 kg/d to provide 6 g live yeast and 2 g yeast cell wall. 
4At h 0 blood collected from 30 cows. At h 48 blood was collected from 29 cows for analysis. One calf died between h 0 and 48. 
5At h 24 and 48 blood collected from 29 calves. At D 85 blood collected from 90 calves  

  Treatment  P-Value 

  CON2 YP3 SEM Treatment Time Treatment x Time  

Cow IgA, mg/ml4 
      

  H 0 0.85 0.96 0.17 0.56 0.34 0.88 

  H 48 0.75 0.87 0.18    

       
Cow IgG, mg/ml4 

      
  H 0 19.3 21.6 0.11 0.51 0.62 0.64 

  H 48 19.3 18.8 0.11    

       
Calf IgA, mg/ml5 

      
  H 24 4.7 5.0 0.18 0.68 0.05 0.37 

  H 48 3.9 3.1 0.18    
  D 85 0.07 0.10 0.10 0.07 NA NA 

       
Calf IgG, mg/ml5 

      
  H 24 26.8 26.2 0.16 0.33 <0.01 0.40 

  H 48 74.5 55.4 0.16    
  D 85 10.6 11.9 0.07 0.26 NA NA 

1
2
8
 



 

 
 

Table 10. Effect of YP supplemented during late gestation on BVD type 1 titers in cows and calves.¹ 

¹BVD type 1 titers were log2 transformed. 
2CON=Control, topdressed on supplement at 0.5 kg/d consisting of 99% ground corn and 1% fat 
3YP=Yeast product, topdressed on supplement at 0.5 kg/d to provide 6 g live yeast and 2 g yeast cell wall. 
4At h 0 blood collected from 30 cows. At h 48 blood was collected from 29 cows for analysis. One calf died between h 0 and 48. 
5At h 24 and 48 blood collected from 29 calves. At d 85 blood collected from 90 calves

  Treatment   P-Value 

  Control2 YP3 SEM Treatment Time Treatment × time  

Cow BVD type 1a titers4 
      

  H 0 6.8 6.0 0.45 0.32 0.66 0.91 

  H 48 6.5 5.8 0.46    
       
Calf BVD type 1a titers5 

      
  H 24 7.1 6.5 0.43 0.44 0.26 0.76 

  H 48 7.6 7.3 0.43    
       

  D 85 6.1 5.9 0.19 0.66 N/A N/A 

1
2
9
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To: Beth Kegley 
FR: Craig Coon 
Date: November 4th, 2016 
Subject: IACUC Approval 
Expiration Date:  May 5th, 2019 

 
 
 
 

The Institutional Animal Care and Use Committee (IACUC) has APPROVED your 
personnel additions of Elizabeth Palmer to protocol # 16068 Influence of Commercial Yeast 
Products in Diets for Beef Cattle New to the Feedlot Environment. 

 
In granting its approval, the IACUC has approved only the information provided. Should there 
be any further changes to the protocol during the research, please notify the IACUC in writing 
(via the Modification form) prior to initiating the changes. If the study period is expected to 
extend beyond May 5th, 2019  you must submit a newly drafted protocol prior to that date to 
avoid any interruption.  By policy the IACUC cannot approve a study for more than 3 years at 
a time. 

 
The IACUC appreciates your cooperation in complying with University and Federal guidelines 
involving animal subjects. 

 

 
 

CNC/aem  
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To: Beth Kegley 

FR: Craig Coon 

Date: March 13th, 2017 

Subject: IACUC Approval 

Expiration Date:   March 12th, 2018 
 

 
 
The Institutional Animal Care and Use Committee (IACUC) has APPROVED your protocol # 17060: 

Combination of live yeast and yeast cell wall in creepfeed on calf health and performance. 

 
In granting its approval, the IACUC has approved only the information provided. Should there be any 
further changes to the protocol during the research, please notify the IACUC in writing (via the 
Modification form) prior to initiating the changes. If the study period is expected to extend beyond March 

12th, 2018  you can submit a modification to extend project up to 3 years, or submit a new protocol.  By 
policy the IACUC cannot approve a study for more than 3 years at a time. 

 
The following individuals are approved to work on this study:  Beth Kegley, Jeremy Powell, Peter Hornsby, 

Doug 
Galloway, Jase Ball, Toby Lester, and Elizabeth Palmer.   Please submit personnel additions to this protocol 
via the modification form prior to their start of work. 

 
The IACUC appreciates your cooperation in complying with University and Federal guidelines 

involving animal subjects. CNC/aem 
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To: Beth Kegley 

Fr: Craig Coon 

Date: September 7th, 2017 

Subject: IACUC Approval 

Expiration Date:   August 14th, 2020 
 

 
 

The Institutional Animal Care and Use Committee (IACUC) has APPROVED your protocol # 18020: 

Immune function in beef calves when dams are supplemented with a combination of live yeast and 
yeast cell wall during late gestation and calves are supplemented after weaning. 

 
In granting its approval, the IACUC has approved only the information provided. Should there be any 
further changes to the protocol during the research, please notify the IACUC in writing (via the 
Modification form) prior to initiating the changes. If the study period is expected to extend beyond 
August 14th, 2020  you must submit a newly drafted protocol prior to that date to avoid any 
interruption.  By policy the IACUC cannot approve a study for more than 3 years at a time. 

 
The following individuals are approved to work on this study:  Beth Kegley, Jeremy Powell, Toby 
Lester, Pete Hornsby, Jase Ball, Doug Galloway, Jana Reynolds, and Elizabeth Palmer.  Please 
submit personnel additions to this protocol via the modification form prior to their start of work. 

 
The IACUC appreciates your cooperation in complying with University and Federal guidelines 

involving animal subjects. CNC/tmp 
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