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ABSTRACT 

 With the emergence of digitization, large text corpora are now available online that 

provide humanities scholars an opportunity to perform literary analysis leveraging the use of 

computational techniques. This work is focused on applying network theory concepts in the field 

of literature to explore correlations between the mathematical properties of the social networks 

of plays and the plays’ dramatic genre, specifically how well social network metrics can identify 

genre without taking vocabulary into consideration. Almost no work has been done to study the 

ability of mathematical properties of network graphs to predict literary features. We generated 

character interaction networks of 36 Shakespeare plays and tried to differentiate plays based on 

social network features captured by the character network of each play. We were able to 

successfully predict the genre of Shakespeare’s plays with the help of social network metrics and 

hence establish that differences of dramatic genre are successfully captured by the local and 

global social network metrics of the plays. Since the technique is highly extensible, future work 

can be extended for fast and detailed literary analysis of larger groups of plays, including plays 

written in different languages as well as plays written by different authors. 
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1. INTRODUCTION 

1.1 Background 

In literary studies, the three key areas of research could be defined as philology (the study 

of words), bibliography (the study of books as objects), and criticism (the evaluation or 

interpretation of literary meaning). Particularly since the advent of New Criticism, “the basic task 

of literary scholarship has been close reading of texts” (Moretti 2011), which builds textual 

interpretations from precise study of specific words. Computational approaches to literature offer 

an alternate methodology for the work of literary study without close reading. “Distant reading” 

(Moretti 2011) takes many forms, including statistical topic models (Jockers and Mimno 2013), 

character profiling (Flekova and Gurevych 2015), character frequency analysis (Sack 2011), and 

sentiment analysis (Elsner 2015), as mentioned in Grayson et al. 2017. For computational methods 

to produce new literary insights, they must provide information about literary texts which is not 

easily accessible by reading them and must do so for more texts than it is feasible for a person to 

read. Our paper presents a distant reading method which may aid in the task of literary criticism 

using network graph analysis on social networks generated from the scripts of plays. 

Here, we study the social networks of Shakespeare’s plays to establish a correlation 

between social network metrics and genre identification. Using character networks of 

Shakespeare’s plays we found that combinations of some of the global and local network metrics 

(Watts 2001) were able to distinguish plays belonging to different genres. This work has been used 

for literary analysis of the ambiguous genre of Shakespeare’s “problem plays” (Evalyn, Gauch, 

and Shukla, 2018). 
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1.2 Motivation 

 Social network analysis is well-established to study social groups. Some scholars have 

applied social network analysis to literary works e.g., plot analysis (Grayson et al. 2016), or for 

discovering character communities (Watts 2001), wherein nodes represent characters, and edges 

represent interaction between pairs of characters for plot analysis. However, because these graphs 

are handmade for a very small number of plays, almost no work has been done to study the ability 

of mathematical properties of network graphs to predict literary features. We address this gap by 

exploring correlations between the mathematical properties of networks and dramatic genre.  

1.2.1 Why Social Networks of Plays? 

Our work presents a distant reading method which may aid in the task of literary criticism 

using network graph analysis on social networks generated from the scripts of plays taking only 

characters and their interaction into consideration. It is focused on applying network theory 

concepts in the field of literature to explore correlations between the mathematical properties of 

the social networks of plays and the plays’ dramatic genre, specifically how well social network 

metrics can identify genre. Almost no work has been done to study the ability of mathematical 

properties of network graphs to predict literary features. Since the technique is highly extensible, 

future work can be extended for fast and detailed literary analysis of larger groups of plays, 

including plays written in different languages as well as plays written by different authors. 

1.2.2 Discussion 

 The relevance of graph density in distinguishing genres is visually obvious when 

individual comedy and history networks are compared. Histories feature highly dispersed 

networks, with large numbers of very minor characters, such as “First,” “Second,” and “Third” 

members of groups like soldiers and ambassadors (Figure 1). Comedies, in contrast, feature 
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networks with far fewer characters, in which nearly everybody speaks to nearly everybody else 

at some point (Figure 2). 

 
Figure 1: Network graph of The Second Part of King Henry The Sixth, a history. 

 

 

 

Figure 2: Network graph of The Comedy of Errors, a comedy. 

 

Any single feature is insufficient, however, to fully distinguish the tragedies, which 

feature networks somewhere between history and comedy in their density and show more variety 
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overall (Figures 3 and 4). Therefore, more complex metrics are needed in combination with each 

other to accurately identify all three genres. 

 

Figure 3: Network graph of Julius Caesar, a tragedy 

 

 

Figure 4: Network graph of Hamlet, a tragedy. 

 

Our networks of the well-studied works of Shakespeare can provide a baseline against 

which to contextualize similar studies of other plays. The network graphs themselves provide a 

new insight into the plays, revealing the hidden shape of social relationships between characters. 
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The application of mathematical graph analysis to these networks provides a dramatically faster 

and more scalable way to determine important information about them, in this case their genre. 

The presented work is based on one central question: Can we develop a computational model that 

captures these differences and uses them for genre prediction? 

1.3 Organization of this Thesis 

 In Chapter 2, we present a summary of related work on social networks in different fields 

and the literary world.  Chapter 3 introduces a methodology for generating social networks of 

plays and presents which classifier, graph representation and metrics were chosen for classifying 

the plays by genre.  In Chapter 4, we report on the different experiments that we conducted, their 

results and their evaluation.  Finally, in Chapter 5, we present conclusions and discuss our 

ongoing and future work in this area. 

1.4 References 

1) Watts, D. 2001. “Small Worlds: The Dynamics of Networks between Order and 

Randomness”, Princeton University Press. 

2) Moretti, F. 2011. Network Theory, Plot Analysis. New Left Review, 68:80–102. 

3) Flekova, and I. Gurevych. 2015. Personality Profiling of Fictional Characters using 

Sense-Level Links between Lexical Resources. In Proc. Conference on Empirical 

Methods in Natural Language Processing, pages 1805–1816. 

4) Sack, G. 2011. Simulating plot: Towards a generative model of narrative structure. In 

2011 AAAI Fall Symposium Series. 

5) Evalyn, Lawrence, Susan Gauch, and Manisha Shukla. 2018. Analyzing Social Networks 

of XML Plays: Exploring Shakespeare’s Genres. In Digital Humanities Conference 2018. 

https://dh2018.adho.org/en/analyzing-social-networks-of-xml-plays-exploring-

shakespeares-genres/. 

6) Elsner, M. 2015. Abstract Representations of Plot Struture. LiLT (Linguistic Issues in 

Language Technology), 12(5). 

7) Jockers, M. L. and D. Mimno. 2013. Significant themes in 19th-century literature. In 

Poetics, 41(6):750–769. 

https://dh2018.adho.org/en/analyzing-social-networks-of-xml-plays-exploring-shakespeares-genres/
https://dh2018.adho.org/en/analyzing-social-networks-of-xml-plays-exploring-shakespeares-genres/
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8) Shukla, Manisha, Susan Gauch, and Lawrence Evalyn. 2018. Theatrical Genre Prediction 

Using Social Network Metrics. In 10th International Conference on Knowledge 

Discovery and Information Retrieval, Seville, Spain. (Accepted). 

9) Grayson, Siobhán, Karen Wade, Gerardine Meaney, Jennie Rothwell, Maria Mulvany, 

and Greene Derek. 2016. Discovering structure in social networks of 19th century fiction. 

In Proceedings of the 8th ACM Conference on Web Science (WebSci '16). ACM, New 

York, NY, USA, 325-326. 
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2. RELATED WORK 

This chapter presents related research on application of social networks in various fields 

and social network analysis in the field of literature. 

2.1 Social Network Analysis 

2.1.1 Social Networks 

 As Billah and Gauch observe, “Social network analysis (SNA) is not a formal theory, but 

rather a wide strategy for investigating social structures” (Billah and Gauch, 2015). These 

strategies borrow core concepts from sociometry, group dynamics, and graph theory (Watts  

2001; Scott 2000; Wasserman and Faust 1994).  

 A social network graph is a set of vertices and edges (called a sociogram) where vertices 

represent social actors and edges represent social relations among the vertices. However, a social 

network is more than just a set of vertices and lines, as its structure contains implicit information 

about the social actors and their relationships. The graph representation of a social network 

offers a systematic and mathematical method for investigating these structures. Social network 

analysis is the process of investigating social network structures and ties through the use of 

network and graph theory concepts. 

In social network analysis of human activities, the nodes can be connected by many kinds 

of ties, such as “shared values, visions, and ideas; social contacts; kinship; conflict; financial 

exchanges; trade; joint membership in organizations; and group participation in events, among 

numerous other aspects of human relationships” (Serrat 2017). However, regardless of the nature 

of the connection, “the defining feature of social network analysis is its focus on the structure of 

relationships” (Serrat 2017). The central assumption in SNA methodologies is that relationships 

between nodes are of central importance (Serrat 2017). 
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1.2.1 Current Research in Social Network Analysis 

 Social network analysis has been used in a wide variety of fields, with applications as 

diverse as  disintegration models based on social network analysis of terrorist organizations ( 

Anggraini et al. 2015), collaboration of scholars in graduate education (Chuan-yi, Xiao-hong, 

and Yi 2016), football team performance based on social network analysis of relationships 

between football players (Trequattrini, Lombardi, and Battista 2015), money laundering 

detection (Dreżewski, Sepielak, and Filipkowski 2015), and stress disorder symptoms and 

correlations in U.S. military veterans (Armour et al. 2017). In this paper, we explore application 

of social network in literary analysis, specifically in exploring how well social network metrics 

can identify genre without taking words into consideration which will lead it to potential 

possibilities of extension in future with variation in languages and authors. 

2.2 Literary Analysis with Social Networks 

 Because dramatic performances enact social encounters, social network analysis 

translates surprisingly well to fictional societies. Stiller et al. have shown that social networks in 

Shakespeare’s plays mirror those of real human interactions, particularly in size, clustering, and 

maximum degrees of separation (Stiller, Nettle, and Dunbar 2003).   

Surveying the field of literary analysis using SNA, Moretti categorizes several types of 

analyses: “an empirical, quantitative and hierarchical description of literary characters (Jannidis 

et al. 2016), corpus-based analyses exploring options for historical periodization of literature 

(Trilcke et al. 2015) and types of aesthetic modelling of social formations in and by literary texts 

(Stiller, Nettle, and Dunbar 2003; Stiller and Hudson 2005; Trilcke et al. 2016).” Moretti himself 

uses social networks to examine the plots of three Shakespearean tragedies, and to contrast a few 

chapters in English and Chinese novels (Moretti 2011). Work following Moretti has focused on 
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historical periodization, as in Algee-Hewitt’s examination of 3,439 plays looking only at the Gini 

Coefficient of each play’s eigenvector centrality to track changes in ensemble casts from 1500 to 

1920 (Algee-Hewitt 2017).  

Our project focuses on a novel application, the classification of literary genre. When 

scaled up to a corpus covering a wider historical time span, our approach to genre could also 

provide insight on the historic periodization of literature. 

Moretti also identifies that, in the application of SNA to literature, “methods for the 

automated extraction of network data (named entity recognition, co-reference resolution) and 

their evaluation are of particular importance,” (Moretti 2011), which we accomplish in this 

thesis. 

2.3 Gephi Toolkit 

 Gephi is an open source software for graph and network analysis, which allows for fast 

visualization and manipulation of large networks. As a generalist tool, “it provides easy and 

broad access to network data and allows for spatializing, filtering, navigating, manipulating and 

clustering” (Bastian, Heymann, and Jacomy 2009). Gephi also calculates a wide range of 

mathematical features for each graph, which we use as the basis for our mathematical analysis 

(as discussed in more detail in 3.3). 

2.4 References 

1) Algee-Hewitt, M. 2017. Distributed Character: Quantitative Models of the English Stage, 

1500-1920. In Digital Humanities 2017: Book of Abstracts. Montreal: McGill University 

and Université de Montréal, pp. 119–21. 

2) Bastian, M., S. Heymann, and M. Jacomy. 2009. Gephi: An Open Source Software for 

Exploring and Manipulating Networks. In International AAAI Conference on Web and 

Social Media, North America. 
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3) Armour, Cherie, Eiko, Marie K. Deserno, Jack Tsai, Robert H. Pietrzak. 2017. A network 

analysis of DSM-5 posttraumatic stress disorder symptoms and correlates in U.S. military 

veterans. In Journal of Anxiety Disorders, Volume 45, 2017, Pages 49-59. 

4) Anggraini, D., S. Madenda, E. P. Wibowo and L. Boumedjout. 2015. Network 

Disintegration in Criminal Network. In 11th International Conference on Signal-Image 

Technology & Internet-Based Systems (SITIS), Bangkok, 2015, pp. 192-199. 

5) Watts, D. 2001 “Small Worlds: The Dynamics of Networks between Order and 

Randomness”, Princeton University Press. 

6) Elson, D. K., N. Dames, and K. R. McKeown. 2010. Extracting Social Networks from 

Literary Fiction. In Proceedings of ACL 2010. Uppsala, pp. 138–47. 

7) Moretti, F. 2011. Network Theory, Plot Analysis. New Left Review, 68:80–102. 

8) Fischer F., M. Göbel, D. Kampkaspar, and P.Trilcke. 2015. Digital Network Analysis of 

Dramatic Texts. In Digital Humanities 2015 Conference Abstracts. University of Western 

Sydney. 

9) Jannidis F., I. Reger, M. Krug, L. Weimer, L. Macharowsky, and F. Puppe. 2016. 

Comparison of Methods for the Identification of Main Characters in German Novels. In 

Digital Humanities Conference Abstracts, Jagiellonian University & Pedagogical 

University, Kraków, pp. 578–82. 

10) Scott, J. 2000. “Social Network Analysis: A Handbook”, 2nd ed., Sage Publications, 

London. 

11) Shukla, Manisha, Susan Gauch and Lawrence Evalyn. 2018. Theatrical Genre Prediction 

Using Social Network Metrics. In 10th International Conference on Knowledge 

Discovery and Information Retrieval, Seville, Spain. (Accepted). 

12) Park, G. M., S. H. Kim, and H. G. Cho. 2013. Structural Analysis on Social Network 

Constructed from Characters in Literature Texts. In Journal of Computers 8.9, pp. 2442–
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13) Dreżewski, Rafał, Jan Sepielak, and Wojciech Filipkowski. 2015. The application of 

social network analysis algorithms in a system supporting money laundering detection. In 

Information Sciences, Volume 295, 2015, Pages 18-32, ISSN 0020-0255. 

14) Trequattrini, Raffaele, Rosa Lombardi, Mirella Battista. 2015. Network analysis and 

football team performance: a first application. In Team Performance Management: An 
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3. DESIGN 

The system for identifying genre consists of three building blocks: The Play Parser, the Social 

Network Generator and the Genre Predictor.  Figure 5 shows the main components of the system 

architecture, which are discussed in more detail in the following subsections. 

 

 

 

 

 

 

 

Figure 5: Block diagram of our system. (Shukla et.al. 2018) 

3.1 Corpus 

We will focus our work on the plays of William Shakespeare, one of the most widely studied 

authors of English literature.  These plays have been digitized and manually encoded with 

Extensible Markup Language (XML) tags.   

XML is a markup language that defines a set of rules for encoding documents in a format 

that is both human-readable and machine-readable. The design goals of XML emphasize 

simplicity, generality, and usability across the Internet. Although the design of XML focuses on 

documents, the language is widely used for the representation of arbitrary data structures such as 

those used in web services. [https://en.wikipedia.org/wiki/XML#cite_note-3] 

The Text Encoding Initiative (TEI) is a consortium that collectively develops and maintains 

a standard for the representation of texts in digital form. Its chief deliverable is a set of Guidelines 

Social Network Metric Generator 

Genre Predictor 

Play Parser 
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that specify encoding methods for machine-readable texts, mainly the ones in humanities, social 

sciences and linguistics. Since 1994, the TEI Guidelines have been widely used by libraries, 

museums, publishers, and individual scholars to present texts for online research, teaching, and 

preservation. [http://www.tei-c.org/index.xml]. 

For this project we downloaded the plays from the website http://showcases.exist-

db.org/exist/apps/Showcases/index.html that has TEI-encoded XML formatted Shakespeare Plays. 

Although TEI provides tagging scheme, each organization has its own version of that scheme. 

3.2 Play Parser 

 The main purpose of this component is to automatically parse TEI-encoded XML 

formatted plays to extract basic information such as the total number of characters, the name and 

role of each character, and the total number of acts and scenes in a play. For each scene, we used 

our parsed information to determine which characters were present in the scene (using stage 

directions to account for entrances and exits during a scene), and how many lines and words were 

spoken by each character.  

 

<teiHeader> 

        <fileDesc> 

            <titleStmt> 

                <title>All's Well That Ends Well</title> 

                <author>William Shakespeare</author> 

                  …….. 

</teiHeader> 

Portion of the input file containing the Play title, which would be extracted from the 

corresponding node ‘title’.  

Figure 6: Play Title extraction 

 

 

  

http://showcases.exist-db.org/exist/apps/Showcases/index.html
http://showcases.exist-db.org/exist/apps/Showcases/index.html
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We used java DOM API to parse XML files as it is designed to work very well with mixed 

content model and is not language dependent [https://blogs.oracle.com/thejavatutorials/jdom-and-

dom4j-vs-dom]. In this library, all the plays were consistent in their tagging scheme. We designed 

a parser that takes XML-formatted play as input, parses the file and stores the relevant tag 

information into Character objects. Figure 6,7,8 and 9 shows what information is contained in the 

file followed by how it is extracted. 

 

 

<text> 

        <front> 

            <div xml:id="sha-awwcast" type="castList"> 

                <head>Dramatis Personae</head> 

                <castList> 

                    <castItem type="role"> 

                        <role xml:id="FranceK">King of France</role> 

                    </castItem> 

                    <castItem type="role"> 

                        <role xml:id="FlorenceD">Duke of Florence</role> 

                    </castItem> 

                    <castItem type="role"> 

                        <role xml:id="Bertram">Bertram</role> 

                        <roleDesc>Count of Rousillon</roleDesc> 

                    </castItem> 

                    ………. 

                </castList> 

In this portion of the file, we iterate through the node ‘castList’ and fetch the cast list of the play. 

This contains information about role name and role description of each Character in the play. It 

is worth noting that some of the characters mentioned in the cast list never appear in any play 

scenes or acts. We removed such characters from the list.   

Figure 7: Character List information extraction 
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<div xml:id="sha-aww1"> 

                <head>Act 1</head> 

                <div xml:id="sha-aww101"> 

                    <head>Act 1, Scene 1</head> 

                    …………… 

</div> 

From this we fetched Act and Scene information. Each Act is associated with a specific id which 

is actually initials of the play appended with act number which in the example above is Act 1so, 

aww1.This is preceded by “sha-” Each scene is associated with an id as well which is a 

combination of act id followed by scene number, hence “sha-aww101”.  Fetching act and scene 

by id is important so that we always process the correct information during parsing.  

Figure 8: Act and Scene information extraction 

 

<sp who="FranceK"> 

                        <speaker>King</speaker> 

                        <l xml:id="sha-aww102001" n="1"> 

                                The Florentines and Senoys are by the ears; 

                         </l> 

                        <l xml:id="sha-aww102002" n="2"> 

                                Have fought with equal fortune and continue 

                        </l> 

</sp> 

<sp who="aww-stew."> 

                        <speaker>Steward</speaker> 

                        <ab xml:id="sha-aww103100" n="100"> 

                               Madam, I was very late more near her than I think 

                        </ab> 

</sp> 

In this example, the <sp> tag contains information about current speaker whereas the <who> 

tag encodes either who is speaking or who are present on stage. The <speaker> tag has the 

information about who is currently speaking.  The <speaker> tag is always proceeded by either 

<l> tag or <ab> tag to represent what lines were spoken by the person currently speaking. We 

parsed information inside <l> and <ab> tag to count the number of line spoken. While counting 

the line, we also counted the words by splitting the line by space. 

Figure 9: Speaker, Line and Words extraction 
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The parsed information is stored in a Character object that has attributes for the total 

number of lines and words spoken by that character in the play along with the total number of acts 

and scenes in which it appeared, as mentioned in Figure 10. After building the Character object, 

we pass the list of characters to next component, Social Network Metric Calculator. The 

information extracted, forms the play feature component of features used in genre prediction as 

mentioned in Table 1. 

 

public class Character { 

     

    String Name; 

    ArrayList<String> acts_scenes; 

    int no_of_lines_spoken; 

    int no_of_words_spoken; 

    HashMap<String, ArrayList<Integer>> sceneInfo; 

…. 

} 

    

1. Name - stores name of the Character. 
2. Acts_Scenes – stores information about act number and scene number in which 

the character appeared. 
3. no_of_lines_spoken – stores information about total number of lines spoken by 

the character in the play. 
4. no_of_words_spoken - stores information about total number of words spoken by 

the character in the play. 
5. sceneInfo - maps scenes to number of words spoken by the character in that 

scene. 
Figure 10: Java Character Object 

 

3.2 Social Network Metric Calculator 

 This component creates each play’s social network graph using the information generated 

by the Play Parser described in Section 3.1 and then calculates social network features from the 

generated graph of the play. We used Gephi’s API to generate the graph files. The character list 

from the Play Parser is passed to the Social Network Metric Calculator.  Each character in the list 
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maps to a graph node using Gephi API graph module. Once we have all the nodes identified, we 

use the scene information for each character to create an edge between this character and the 

remaining characters in the list, if they both appeared in the same scene.  

We created two types of graphs.  For non-directional graphs, we summed the total 

number of words spoken by each character in the shared scenes to determine the edge weights. 

For directional graphs, we created a directed edge from Character 1 to Character 2, weighted by 

the number of words spoken by Character 1 in the shared scenes. We also added another directed 

edge from Character 2 to Character 1, weighted by the number of words spoken by Character 2 

in the shared scenes.  The resulting graphs for each play are available online at 

http://text.csce.uark.edu:8080/SocialNetworkOfShakespearePlays/. 

Once the basic structure of graph is ready, we computed node and graph metrics using 

functions provided by Gephi.  In total, 17 graph metrics were calculated; these are presented as 

network features in Table 1. 

 

Table 1: Features extracted from Shakespeare’s plays. Here g represents a graph for a specific 

play, c a character node in the graph, and e an edge between two character nodes in the graph. 

Extracted Features 

1. tot_characters = total number of characters of g 

2. tot_edges = total number of edges of g 

3. tot_lines = total number of lines spoken by c in n 

4. tot_words = total number of words spoken by c in n 

 

 

 

 

 



18 

 

Table 1: Features extracted from Shakespeare’s plays. Here g represents a graph for a specific 

play, c a character node in the graph, and e an edge between two character nodes in the graph 

(Cont.) 

Network Features 

Node Features 

5. Degree = set of adjacent nodes of c in the graph 

6. Criticality = A k-critical graph is a critical graph with chromatic number k; a graph G with 

chromatic number k is k-vertex-critical if each of its vertices is a critical element. 

7. Eigenvector Centrality = A measure of c’s importance in a network based on c’s 

connections. 

8. Eccentricity = The eccentricity of a graph vertex in a connected graph is the 

maximum graph distance between and any other vertex of. 

9. Closeness Centrality = The average distance from a given node to all other nodes in the 

network. 

10. Harmonic Centrality = In a (not necessarily connected) graph, the harmonic 

centrality reverses the sum and reciprocal operations in the definition of closeness centrality. 

11. Betweenness Centrality = Node Betweenness Centrality measures how often a node 

appears on shortest paths between nodes in the network. 

12. Weighted Degree = weighted degree of a node is based on the number of edge for a node, 

but ponderated by the weight of each edge. It’s doing the sum of the weight of the edges. 

Graph Features 

13. Clustering Coefficient = The clustering coefficient, when applied to a single node, is a 

measure of how complete the neighborhood of a node is. When applied to an entire network, 

it is the average clustering coefficient over all nodes in the network. 

14. Density = Measures how close the network is to complete. A complete graph has all 

possible edges and density equal to 1. For undirected graph, density is equal to (2*|e|) / (|c|(|c|-

1)). For directed graph, it is  |e| / (|c|(|c|-1)). 

15. Diameter = The maximal distance between all pairs of nodes. 

16. Path Length = The average graph-distance between all pairs of nodes. 

17. Connected Components = A connected component of an undirected graph is a maximal 

set of nodes such that each pair of nodes is connected by a path. 

18. Modularity = Measures how well a network decomposes into modular communities. 

19. Average Degree = Sum of the degrees of all the nodes in the graph divided by the total 

number of nodes in the graph. 

20. Average Weighted Degree = Sum of the degrees of all the nodes in the graph divided by 

the total number of nodes in the graph. 

21. Radius = The radius of a graph is the minimum graph eccentricity of any graph vertex in a 

graph. 
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The input to the calculator is Character List and the output is gexf file and csv file. We 

chose gexf format as with this file format literary scholars can directly import this file into 

GEPHI tool to perform various analysis on the graph. This file is also used to display the graph 

on the website.  

 Input 

List of Characters { c1, c2, c3,…. }     

Where c1, c2 and c3 are Character objects as mentioned in Figure 10. 

Figure 11: Input to Social Network Metric Calculator 

 

 

 

Figure 12: Part of gexf file (Node representation)– Sample Output from Social Network Metric 

Calculator  
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Figure 12: Part of gexf file (Edge representation)– Sample Output from Social Network Metric 

Calculator cont. 

 

CSV files contain calculated metrics from each play in a single file which is used as an 

input for Genre Predictor module. See figure 11, 12, 13 for input to and output from Social 

Network Metric Calculator. Generating all the gexf and csv files took approximately 3 seconds 

on MAC OS system with 8 GB RAM. 

 

We have made the network graphs and selected mathematical features available online at 

http://text.csce.uark.edu:8080/SocialNetworkOfShakespearePlays/.  Figure 14 shows a screen shot 

of Hamlet, the first play we analyzed.  Figure 15 shows Hamlet after the user has interacted with 

the play to rearrange the character node placements. Users can click on a character to see more 

information about the node features (see Figure 16). Users can click on an edge to see more 

information about the edge features (see Figure 17).

http://text.csce.uark.edu:8080/SocialNetworkOfShakespearePlays/


 

 

2
1
 

 
 

Figure 13: Part of CSV file – Sample CSV Output from Social Network Metric Calculator
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Figure 14: Hamlet Social Network 

 

3.2.1 Extracted Features 

 Some features we studied were extracted from the play itself, i.e., not generated by the 

social network, e.g., total number of characters in the play (see Table 2). As our results in 4.3.1 

and 4.3.3 demonstrate, despite their simplicity as features, the number of edges and the number of 

words spoken in a play can play a crucial role in identifying the genre. 

3.2.2 Network Features 

 We compute the network features of the graph using Gephi’s library. Node Features such 

as Eigenvector capture information about a particular node in the graph/character in the play.  In 
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contrast Graph Features such as Path Length capture information about the graph/play as a 

whole.  

For the Node Features, we normalized the values using by calculating the network 

centralized value using the following network level centralization index as mentioned by 

Newman (Newman 2010): 

C =  
∑ [c∗ − ci]i

Max ∑ [c∗ −  ci]i
 

where, 

c* = maximum value for all the nodes in the graph 

ci = value of current node 

And in denominator, maximum of the summation over all the possible networks. This 

method helps in converting node metrics into graph metrics for evaluation purpose. 

 

 

Figure 15: User Interaction with Hamlet Network 
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Figure 16: Character Information 

 

3.3 Genre Predictor 

This module is the key to our research.  Given a set of training plays by Shakespeare labeled as 

Tragedy, Comedy, or History, it predicts the genre of a testing (previously unseen) Shakespeare 

play. This module trains the predictor using a subset of the features extracted above on a set of 

labeled plays. This is essentially a classification process that has been widely studied in Machine 

Learning.  Three of the most widely used classifiers are K-Nearest Neighbor (Aha and Kibler 

1991), Support Vector Machines (Chang and Lin 2011) and Naïve Bayes (John and Langley 1995). 



 

25 

 

 

Figure 17: Edge Information 

 

As reported in Manning (Manning, Raghavan and Schutze 2008), if the training set is 

small (Forman and Cohen 2004; Klein and Manning 2002), high bias/low variance classifiers 

(e.g., Naive Bayes) have an advantage over low bias/high variance classifiers (e.g., KNN), since 

the latter will overfit. But low bias/high variance classifiers start to win out as the training set 

grows (they have lower asymptotic error), since high bias classifiers are not powerful enough to 

provide accurate models. As mentioned by Forman (Forman and Cohen 2004), in case of little 

data to train a supervised classifier, machine learning theory recommends selecting a classifier 

with high bias. For example, there are theoretical and empirical results showing that Naive Bayes 

does well in such circumstances (Forman and Cohen 2004; Ng and Jordan 2001), although this 

effect is not necessarily observed in practice with regularized models over textual data (Klein 

and Manning 2002). At any rate, a very low bias model like a nearest neighbor model is probably 

https://nlp.stanford.edu/IR-book/html/htmledition/bibliography-1.html#forman04learning
https://nlp.stanford.edu/IR-book/html/htmledition/bibliography-1.html#klein02conditional
https://nlp.stanford.edu/IR-book/html/htmledition/bibliography-1.html#forman04learning
https://nlp.stanford.edu/IR-book/html/htmledition/bibliography-1.html#forman04learning
https://nlp.stanford.edu/IR-book/html/htmledition/bibliography-1.html#ng01discriminative
https://nlp.stanford.edu/IR-book/html/htmledition/bibliography-1.html#klein02conditional
https://nlp.stanford.edu/IR-book/html/htmledition/bibliography-1.html#klein02conditional
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contraindicate. (https://nlp.stanford.edu/IR-book/html/htmledition/choosing-what-kind-of-

classifier-to-use-1.html).  

Support Vector Machines (SVMs) also work well with limited data. High accuracy, nice 

theoretical guarantees regarding overfitting. SVMs) are a popular machine learning method for 

classification, regression, and other learning tasks. Since our classification problem had more than 

two classes, we combined SVM with One vs One (OvO) classification. This works as follows: 

choose a pair of classes from a set of n classes, which in our case is three (comedy, history and 

tragedy) and develop a binary classifier for each pair. Create all possible combinations of pairs of 

classes from n and then for each pair develop a binary SVM. The final class is assigned to each 

unseen play based on the class chosen by maximum number of binary SVM classifiers. By using 

OvO, our SVM is much less sensitive to the problems of imbalanced datasets, which is particularly 

helpful given the different sizes of each of our three classes and our small overall sample size 

(Chang and Lin 2011). In chapter 4, we evaluate each of the three classifiers above to see which 

works best for our application.   
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4. EXPERIMENTS 

4.1 Dataset 

 Our dataset is comprised of 36 plays by Shakespeare, in TEI encoded XML files. The 

dataset was downloaded from the website exist-db.org. We split dataset into five subsets, evenly 

balancing each genre in each subset. These were then used to perform five-fold cross validation 

to generate the results.  Table 2 shows the list of plays used with their associated genres.  There 

is some debate amongst scholars as to the genre of a few of the plays.  There is some debate 

among literary scholars as to the genre of a few plays, but we used the most commonly agreed 

upon classification for each play. 

4.2 Experimental Setup 

 Our generated network graphs were then used to test our central question: whether the 

social network of characters in a play can be used as a proxy for features of the play’s narrative 

content. Can we use social network metrics to distinguish between the dramatic genres of 

tragedy, comedy, and history? We used the 21 different features listed in Table 1 to test our 

hypothesis. We first evaluated three classifiers to wee which worked best on our dataset.  We 

then evaluated whether unidirectional links between nodes or bidirectional links (that capture 

who talks to whom) were better for genre prediction.  Then, we investigated how well individual 

features were able to predict genre followed by evaluating the effectiveness of predictors trained 

on all combinations of pairs of features.  We went on to evaluate combinations of larger sets to 

see if adding on more features increase accuracy of classifier’s genre prediction. Finally, we 

explored the results of using our best classifier for literary purposes, e.g., predicting the genre of 

plays whose classifications are disputed.  Section 4.3 discusses the result of each test. 
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Table 2: Dataset. 

Play_Name Class 

All’s Well That Ends Well Comedy 

As You Like It Comedy 

A Midsummer Night’s Dream Comedy 

Love’s Labour’s Lost Comedy 

Measure for Measure Comedy 

Much Ado About Nothing Comedy 

The Comedy of Errors Comedy 

The Merchant of Venice Comedy 

The Merry Wives of Windsor Comedy 

The Taming of the Shrew Comedy 

The Tempest Comedy 

The Winter’s Tale Comedy 

Twelfth Night or What You Will Comedy 

Two Gentlemen of Verona Comedy 

The First Part of King Henry the Fourth History 

The First Part of King Henry the Sixth History 

The Life and Death of King John History 

The Life of King Henry the Eighth History 

The Life of King Henry the Fifth History 

The Second Part of King Henry the Fourth History 

The Second Part of King Henry the Sixth History 

The Third Part of King Henry the Sixth History 

The Tragedy of King Richard the Second History 

The Tragedy of King Richard the Third History 

Antony and Cleopatra Tragedy 

Coriolanus Tragedy 

Cymbeline Tragedy 

Hamlet Prince of Denmark Tragedy 

Julius Caesar Tragedy 

King Lear Tragedy 

Macbeth Tragedy 

Othello the Moor of Venice Tragedy 

Romeo and Juliet Tragedy 

Timon of Athens Tragedy 

Titus Andronicus Tragedy 

Troilus and Cressida Tragedy 
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4.2.1 Classifier Selection 

We performed five-fold cross validation training the classifiers using all the features 

mentioned in Table 1 and calculated accuracy with Weka API implementations of KNN, SVM and 

Naïve Bayes classifiers [https://weka.wikispaces.com] for genre prediction. All the experiments 

were conducted on MAC OS with 8 GB RAM. Table 3 shows that Naïve Bayes performed best 

out of the three when all the features were taken into consideration for classification. It is worth 

noting that because there are three genres, a random predictor would only have 33.33% accuracy.  

So, although 66.43% might seem like low accuracy for genre prediction, it is roughly two times 

more accurate than random guess. 

Table 3: 5-fold cross-validation result of classification using all the features 

Classifier  Accuracy 

Naïve Bayes 66.43% 

SVM with OVO 57.50% 

KNN 48.93% 

 

 The biggest difference between the models from a features point of view is that Naive 

Bayes treats each feature as independent, whereas SVM looks at the interactions between the 

features to a certain degree when using a non-linear kernel. Since our features are likely to be non-

independent, e.g., the number of words in a play are likely correlated with the number of lines in 

a play, we decided to present results for the following experiments using Naïve Bayes and SVM.  

Naïve Bayes was chosen because it was the best performing classifier in this initial testing; SVM 

was chosen because it might work better with smaller subsets of correlated features.  KNN was 

eliminated from further consideration. 

https://weka.wikispaces.com/
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4.2.2 Graph Selection 

After choosing the above two classifiers to conduct experiments, our next question was 

whether a directional or non-directional graph data is a better representation of the play 

information. Table 5 shows the calculated average value for each network metric per genre. It is 

observed that the graph metrics have the same average for directional or non-directional graphs. 

However, metrics involving edges vary for the two as shown in Table 4. 

Table 4: Average of a metric for each genre – directional and non-directional 

 Non-Directional Directional 

Attribute Comedy History Tragedy Comedy History Tragedy 

Total No of 

Characters 
23.14 44 38.33 23.14 44 38.33 

Total No of Edges 132 233 217.75 132 233 217.75 

Total No of Words 22426.42 27238.2 27050.58 22426.4

2 

27238.2 27050.58 

Total No of Lines 2586.5 3070.2 3215 2586.5 3070.2 3215 

Criticality 0.03 0.022 0.020 0.011 0.005 0.006 

Eigenvector 0.34 0.59 0.52 0.79 0.84 0.81 

Eccentricity 8.63 19.11 13.01 18.35 42.34 35.375 

Closeness 9.28 27.42 24.95 13.09 34.33 27.94 

Harmonic 0.19 0.31 0.29 0.25 0.34 0.32 

Betweenness 0.012 0.010 0.011 0.004 0.002 0.0023 

Clustering 

Coefficient 
0.84 0.82 0.84 0.82 0.79 0.81 

Graph Density 0.52 0.25 0.34 0.26 0.13 0.17 

Diameter 2.85 4.3 3.08 2.93 3.9 3.42 

Path Length 1.52 2.02 1.71 1.38 1.63 1.55 

Connected 

Components 
1.07 1.7 1.5 1.07 1.7 1.5 

Degree 0.38 0.47 0.52 0.38 0.47 0.52 

Modularity 0.14 0.25 0.16 0.15 0.26 0.16 

Weighted Degree 1306.86 1022.029 1457.85 1306.86 1022.029 1457.85 

Average Degree 11.31 10.39 11.38 11.31 10.39 11.38 

Average Weighted 

Degree 
11353.31 7349.09 9136.53 11353.3

1 

7349.09 9136.53 

In degree NA NA NA 428.54 232.28 318.96 

Outdegree NA NA NA 1105.17 834.76 1216.61 
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To select the graph type, we calculated accuracy for genre prediction:  

a) using single feature at a time.  

b) using pair of features of all possible combinations 

 

After calculating individual accuracy of single features, the average over all the accuracies is 

shown in Table 5 for three different classifiers KNN, SVM and Naïve Bayes. The experiment was 

then done using pair of features and Table 6 shows the results. 

 Since on average, non-directional graph data provided better accuracy with two out of three 

classifiers in the experiment when calculating average of accuracy of individual feature. Also, all 

the three classifiers provided better average accuracy with pair of features experiment. Hence, we 

decided to conduct rest of the analysis using non-directional graphs and since the Naïve Bayes and 

SVM provided almost identical accuracy with single feature accuracy and showed only a 

difference of 1% with pair of features we decided to conduct rest of the experiments with both the 

classifiers as we wanted to explore what features are considered better for genre prediction by each 

of these classifiers. 

 

Table 5: Directional vs non-directional average of accuracies of all individual features using 

KNN, SVM and Naïve Bayes 

 KNN Naïve Bayes SVM 

Directional  44.87 51.85 49.14 

Non-Directional 45.70 50.68 50.27 

 

 

Table 6: Directional vs non-directional average of accuracies over all possible pair of features 

using KNN, SVM and Naïve Bayes 

 KNN Naïve Bayes SVM 

Directional 51.10 55.69 54.62 

Non-Directional 53.57 56.38 55.63 
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4.3 Results 

4.3.1 Single Feature Accuracy 

Our first test attempt was to identify genre using only single feature at a time. However, no 

single feature was independently sufficient to identify the genre. As shown in Table 7, of the 

features tested, Path Length provided the greatest accuracy (66.43%) for genre identification with 

SVM. It is worth noting that this feature alone ties the accuracy produced with all features reported 

in the previous section.  On the other hand, Total Number of Lines in the play was the best feature 

to identify genre using Naïve Bayes. However, both classifiers have graph density as the second-

best feature for genre identification.  

Table 7: Genre prediction using single feature. 

SVM Naïve Bayes 

Feature Accuracy Feature Accuracy 

Path Length 66.43 Lines 63.57 

Graph Density 61.07 Graph Density 61.43 

Diameter 58.57 Words 61.07 

Characters 55.71 Path Length 60.71 

Eigenvector 55.71 Average Weighted Degree 58.93 

Eccentricity 55.71 Diameter 58.57 

Harmonic 55.71 Connected Components 58.57 

Average Weighted Degree 55.71 Characters 58.21 

Lines 55.36 Eigenvector 58.21 

Degree 55.36  Eccentricity 52.86 

Closeness 52.50 Closeness 52.50 

Connected Components 50.35 Modularity 50.00 

Modularity 50.00 Degree 49.64 

Words 47.50 Radius 47.14 

Edges 47.14 Edges 46.78 

Radius 47.14 Harmonic 44.64 

Weighted Degree 44.28 Weighted Degree 43.93 

Criticality 41.43 Criticality 41.07 

Clustering Coefficient 38.93 Average Degree 38.21 

Average Degree 33.21 Betweenness 35.71 

Betweenness 27.85 Clustering Coefficient 22.50 
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4.3.2 Pair of Features Accuracy 

When features were used in pairs, the network graphs achieved greater accuracy in 

identifying the genre of Shakespeare plays. Table 8 and 9 shows pair of metrics that were able to 

identify genre with accuracy higher than maximum individual feature accuracy for genre 

prediction. 

Table 8: Pairs of features that provided above 70% accuracy in genre prediction using SVM 

classifier. 

SVM 

Feature 1 Feature 2 Accuracy 

Harmonic Diameter 72.50 

Harmonic Path Length 72.50 

Graph Density Diameter 72.50 

Graph Density Path Length 72.50 

Lines Path Length 72.14 

 

Table 9: Pairs of features which provided above 70% accuracy in genre prediction using Naïve 

Bayes classifier. 

Naïve Bayes 

Feature 1  Feature 2 Accuracy 

Lines Eigenvector 77.86 

Characters Words 77.50 

Words Eigenvector 77.50 

Words Graph Density 75.00 

Words Path Length 75.00 

Lines Graph Density 75.00 

Characters Lines 74.64 

Words Eccentricity 74.64 

Words Diameter 72.14 

Lines Eccentricity 72.14 

Lines Diameter 72.14 

Lines Path Length 72.14 

Lines Modularity 72.14 

Eigenvector Diameter 72.14 

Graph Density Diameter 72.14 
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4.3.3 Multiple Features Accuracy 

If we combine three features, the network graphs again achieve 10% higher accuracy in 

genre identification. Tables 10 and 11 show the triads that were able to identify genre with more 

than 80% accuracy. The best performance with SVM was with a set of Extracted Features (Words, 

Characters, Lines) at 83.57%.  However, Words, Lines, and Eigenvector (a Node Feature) was 

essentially tied a 83.21%.  With Naïve Bayes, a combination of an Extracted Feature (Lines) and 

two Graph Features (Graph Density and Degree) performed best. 

Table 10: Sets of three features which provided above 80% accuracy in genre prediction using 

SVM classifier. 

SVM 

Feature 1 Feature 2 Feature 3 Accuracy 

Words Characters Lines 83.57 

Words Lines Eigenvector 83.21 

Words Lines Closeness 81.07 

Lines Eigenvector Path Length 80.71 

Lines Harmonic Path Length 80.71 
 

Table 11: Sets of three features which provided above 80% accuracy in genre prediction using 

Naïve Bayes Classifier. 

Naïve Bayes 

Feature 1 Feature 2 Feature 3 Accuracy 

Lines Graph Density Degree 80.71 

Characters Words Lines 80.36 

Words Criticality Graph Density 80.36 
 

Because of the exponential nature of exploring all combinations of all features, we did not 

do an exhaustive test of all combinations of 4, 5, 6, etc., features.  However, we continued testing 

by adding additional features one by one to well-performing feature sets to see if we could further 

improve accuracy.  After this exploration we found that, with Naïve Bayes, the feature set of 
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Characters, Words, Lines and Path Length provided 86.07% accuracy.  Our highest accuracy was 

with the feature set of Words, Lines, Closeness, Graph Density and Average Weighted Degree 

provided 88.93% accuracy with SVM.  This feature set captures a combination of Extracted, Node, 

and Graph features, indicating that all are important for accurate genre prediction.  

4.4 Using the Genre Predictor on Disputed Play 

4.4.1 Disputed Plays 

To apply our findings in the literary world, we investigated the genre classification of 

Shakespeare’s Roman, Romance, and Problem plays. Table 12 list these plays along with the most 

commonly attributed genre. However, the genre of these sets of plays is in some dispute among 

literary scholars and we felt that it would be interesting to see how our SNA predictor classified 

them.  

Table 12: Disputed Plays 

Category Play Name Usual Genre 

Romances The Tempest Comedy 

The Winter’s Tale Comedy 

Pericles Prince of Tyre Comedy 

Cymbeline Tragedy 

Roman Antony and Cleopatra Tragedy 

Coriolanus Tragedy 

Julius Caesar Tragedy 

Titus Andronicus Tragedy 

Problem All’s Well That Ends Well Comedy 

Measure for Measure Comedy 

Troilus and Cressida Tragedy 

 

4.4.2 Classification of Disputed Plays using SVM and Naïve Bayes 

We classified each play using the best genre predictor features set with SVM and Naïve 

Bayes.  Thus, we trained an SVM classifier using a feature set comprised of Words, Lines, 

Closeness, Graph Density and Average Weighted Degree and also a Naïve Bayes classifier trained 
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using the Characters, Words, Lines, and Path Length features. For the Romances, we trained on 

32, all plays except the 4 Romances, and then classified the Romances using that classifier.  

Similarly, for the Roman plays, we trained on all 32 non-Roman plays and classified the Roman 

plays.  Finally, for the three Problem plays, we trained on the other 33 plays and then predicted 

the genre for the held-back 3 Problem plays.  

Table 13 shows the accuracy of genre classification using best features of each classifier. 

In this cases, accuracy measures is how often our classifier predicted the most-commonly 

associated genre for the play, i.e., it agreed with the most common genre.  As shown in Table 13, 

Naïve Bayes agreed with the Problem Plays’ usual genre 100% of the time, but many of the other 

predicted classifications were different.  The Romances, in particular, have social networks that 

only match their usually-associated genre 50% of the time regardless of which classifier is used. 

Table 13: Disputed Plays Accuracy 

Category SVM Accuracy Naïve Bayes Accuracy 

Roman 75.00% 50.00% 

Problem 66.67% 100.00% 

Romances 50.00% 50.00% 

 

Tables 14, 15, and 16 show our more detailed results that would be of interest to literary 

scholars.  From Table 14, we can see that whereas both classifiers agree that The Tempest is a 

Comedy, The Winter’s Tale, also usually considered a Comedy, looks like a History to both our 

classifiers.   

Table 14: Original and predicted classes for Romances 

Play Name Original Genre SVM Naïve Bayes 

The Tempest Comedy Comedy Comedy 

The Winter’s Tale Comedy History History 

Pericles Prince of Tyre Comedy Tragedy History 

Cymbeline Tragedy Tragedy Tragedy 
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From Table 15, we can see that whereas both classifiers agree that Coriolanus is a 

Tragedy, Titus Andronicus, also usually considered a Tragedy, looks like a Comedy to both our 

classifiers.   

Table 15:  Original and predicted classes for Roman plays 

Play Name Original Genre SVM Naïve Bayes  

Antony and Cleopatra Tragedy Tragedy History 

Coriolanus Tragedy Tragedy Tragedy 

Julius Caesar Tragedy Tragedy Tragedy 

Titus Andronicus Tragedy Comedy Comedy 

 

From Table 16, we can see that whereas both classifiers agree that All’s Well that Ends 

Well and Measure for Measure are both Comedies. However, Troilus and Cressida, also 

considered a Tragedy, looks like a Tragedy to our Naïve Bayes classifier but is predicted to be a 

Tragedy by our SVM classifier.   

Table 16:  Original and predicted classes for Problem plays 

Play Name Original Genre SVM Naïve Bayes  

All’s Well That Ends Well Comedy Comedy Comedy 

Measure for Measure Comedy Comedy Comedy 

Troilus and Cressida Tragedy Comedy Tragedy 
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5. FUTURE WORK 

Since the parser is highly extensible and can be used with any plays encoded in TEI, future work 

applying these methods to literary analysis does not need to be restricted to plays that are similar 

to Shakespeare’s but could be used to compare plays over a long period of time. Future work does 

not even need to be restricted to plays written in English; one future application in development, 

for example, will study eighteenth century plays written in English, French, and German. As we 

develop our website, we will add functionality for others to upload their own TEI encoded plays 

and download the resulting Gephi file, enabling broad applicability of our methods to new literary 

research problems. 

Future refinements to the social network generator could make edges between nodes 

directional, to better capture imbalanced relationships between characters; this level of detail was 

not necessary to distinguish between Shakespeare’s plays, but might be important for different 

identification tasks. Natural Language Processing (NLP) could also be integrated into the parser 

to more accurately identify the targets of speech, to capture instances where characters are on stage 

but cannot hear what is being said or are not being spoken to. These kinds of improvements would 

reduce “false positives” in the creation of edges between nodes, perhaps enabling better analysis 

of larger or more complicated groups of literary plays.  
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6. CONCLUSION 

In this work, we successfully classify plays based on their genre without using the actual 

vocabulary of the plays. Our networks of the well-studied works of Shakespeare can provide a 

baseline against which to contextualize similar studies of other plays. The network graphs 

themselves provide a new insight into the plays, revealing the hidden shape of social relationships 

between characters. The application of mathematical graph analysis to these networks provides a 

dramatically faster and more scalable way to determine important information about them, in this 

case their genre. 

 

We collect and parsed 36 TEI-encoded plays by William Shakespeare and parsed them to 

identify the lines and words spoken by each character to all other characters in that scene. We used 

this information to create a social network graph for each play in which each node was a character 

with edges representing the number of words and lines spoken between two characters over all the 

scenes in the play.  In total, we represented each play using 21 features, 4 features extracted from 

the text, 8 features extracted from the nodes in the social network graph, and 9 features that 

summarized attributes of the resulting overall graph.   

We first investigated several classifiers for our application.  We found that Naïve Bayes 

and SVM classifiers outperformed KNN classifiers when predicting genre trained on all features. 

Based on this result, we used Naïve Bayes and SVM classifiers for all further experiments. Next, 

we examined the impact of directed vs undirected links between characters.  The results indicated 

that undirected links were more accurate 55.63% vs 54.62%, so we used undirected links in our 

subsequent investigation. 

  Since the accuracy when trained on all features was quite low, 66.43%, we next 

investigated combinations of features that might give better accuracy.  We began by looking at 
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single features and found that the best single features were Path Length with 66.43% accuracy for 

SVM and Lines with 63.57% accuracy for Naïve Bayes.  We then looked at feature pairs and found 

that the accuracy improved, with 20 different feature pairs producing an accuracy over 70%. We 

then investigated feature triples and found that 8 different feature triples produced accuracy over 

80%.  We observe that the sets of three factors that provide higher accuracy do not necessarily 

always include the features that were able to provide better accuracy as pairs.  Many of the pairs, 

for example, include Graph Density or Path Length as one of the two identifying features, but none 

of the triples include graph density as a feature for maximizing the accuracy, and the triples instead 

include the number of words and lines as the most commonly useful feature. Instead, the triples 

include the Number of Words and Lines, two of the most accurate single features 

Overall, the metrics seem to capture a specific kind of information about the play that is 

more effective in combination with other metrics. Total Number of Words, for example, is only 

able to provide 47.5% accuracy alone, but reaches almost 89% when combined with another 

Extracted Feature (Lines, two Graph Features (Closeness, and Graph Density), and a Node Feature 

(Average Weighted Degree). 

To apply these findings to literary research, we have explored in more detail the genre 

attributions of Shakespeare’s romances and problem plays (Evalyn, Gauch, and Shukla 2018).  
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