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Abstract 

Obesity is an increasing epidemic which during 2015-2016 afflicted 39.8% of adults and 

18.5% of youth in the United States. Not only can obesity affect quality of life, but it can lead to 

life-threatening diseases such as type 2 diabetes, heart disease, stroke, and some cancers. Animal 

and human research have demonstrated a pattern of gut microbiota perturbation in overweight 

and obesity, characterized by a reduction of beneficial bacterial species and increase in harmful 

species. Diet has been established as a contributing factor in gut ecology, and foods including 

fiber, resistant starch, and polyphenols have been found to both enhance desirable species and 

inhibit pathogens. Short chain fatty acids (SCFA), the products of microbial fermentation of 

carbohydrates, have also been implicated in body weight maintenance. Sorghum is the world’s 

fifth leading crop and highly undervalued in the US as a source of nutrition. The diversity and 

abundance of polyphenols in sorghum bran has been identified, however limited information is 

available on the effects of sorghum polyphenols on gut microbiota. We hypothesized that 

polyphenolic extracts of black and sumac sorghum brans would impact production of SCFA, alter 

composition of human fecal microbiota in favor of beneficial species, and improve the overall 

microbiota profile of overweight/obese individuals. The objectives of this study were to 

determine the contents of polyphenolic compounds in sorghum bran and to evaluate the change 

of gut microbiota composition and the effect on SCFA production in response to sorghum bran 

polyphenols in normal weight (NW) and overweight/obese (O/O) subjects. Black and suman 

sorghum brans displayed individually unique polyphenol profiles. Total SCFA production tended 

to be higher in the NW group, while butyrate production from FOS tended to be higher in the 

O/O group. Sorghum bran phenolic extracts modulated the gut microbiota and stimulated 



 
 

Prevotella and the butyrate-producing bacteria Roseburia. They also worked synergistically with 

FOS to enhance Lactobacillus and Bifidobacterium. Varying responses to sorghum polyphenols 

were seen between bacteria in NW and O/O. Our results support gut health-enhancing actions 

of sorghum polyphenols, some of which may depend on body weight status. 
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Introduction 

Grain sorghum is rich in polyphenols, with proanthocyanidins, phenolic acids, and 

flavonoids that are concentrated in the bran fraction (Awika et al., 2005). Sorghum bran 

polyphenols have been shown to positively affect cancer cytotoxicity and tumor inhibition, and 

display considerable antioxidant activity (Shih et al., 2007; Yang et al., 2009; Wu et al., 2011.) 

Research in recent years has focused on how diet can be applied to promote a healthy 

human gut microbiota, which plays crucial roles in maintaining health. Gut dysbiosis has been 

observed in several health conditions including overweight and obesity (Collado et al., 2008), 

and foods that help correct this dysregulation may contribute to body weight maintenance 

strategies. Of particular interest have been carbohydrates, which are metabolized by bacteria 

through the process of fermentation and increase short chain fatty acid (SCFA) production and 

produce shifts in bacterial populations (Rossi et al., 2005). Prebiotics have recently been 

defined by the International Scientific Association for Probiotics and Prebiotic as "a substrate 

that is selectively utilized by host microorganisms conferring a health benefit" (Gibson et al., 

2017). While few food compounds are considered unquestioningly as prebiotics, several foods 

are being investigated as potential candidates, and these include polyphenols. Polyphenols 

from numerous sources have been shown to undergo metabolism in the colon and 

consequently affect the microbiota (Tomas-Barbaran et al., 2016).  

While there is abundant evidence of interactions between polyphenols and the gut 

microbiota, studies involving polyphenols from sorghum bran are limited. Following the 

redefinition of “prebiotics” we sought to investigate the prebiotic potential of these 

compounds. It has also been proposed that polyphenols may enhance utilization of 



2 

carbohydrates to produce SCFA (Tzounis et al., 2008), but little research has been done to test 

this theory. We hypothesized that sorghum bran polyphenols would impact production of SCFA, 

increase beneficial gut microbiota in both groups, and improve bacterial profile of 

overweight/obese individuals. The objectives of this study were to determine the contents of 

polyphenols in sorghum brans and to evaluate the change of gut microbiota composition and 

the effect on SCFA production with sorghum bran polyphenols in fecal samples from normal 

weight and overweight/obese subjects.  

  



3 

Chapter 1: Literature Review 

 

1. Grain Sorghum  

An often-overlooked member of the cereal grain family, sorghum bicolor (L.) Moench 

(commonly known as sorghum) is one of the world’s most important cereal crops, topped only 

by wheat, maize (corn), rice, and barley (Dykes et al., 2011). Often categorized with millets, 

sorghum displays high tolerance to arid, dry conditions relative to other grains, making it a 

staple food in areas prone to drought, such as Africa and India (Awika, 2011).  While its 

consumption is historically high in these areas, it has seen a decline since the early 20th century, 

being gradually replace by maize. During drought stress, maize is more readily afflicted by 

fusarium molds which can result in carcinogenic compounds, and this increase utilization of 

maize in Africa has been associated with increased diagnoses of squamous carcinoma of the 

oesophagus (Awika, 2011; Isaacson, 2005). According to the USDA Foreign Agriculture service, 

the United States was the number one producer of sorghum in 2016/2017, followed by Nigeria 

and Mexico (USDA, 2018). However, acreage of planted sorghum declined from 6.7 million 

acres in 2016 to 5.6 million acres in 2017, and production from 364 to 480 million bushels 

(USDA, 2016, 2018).  These statistics, however, do no accurately depict consumption, as most 

sorghum products produced in the US are exported to other countries. Of the sorghum 

produced and utilized in the United States, only 3% makes its way to the human food industry, 

with most being used for animal food (17%), ethanol production (21%), or as an export 

commodity (55%) (The Sorghum Checkoff, 2016). But as American consumers continue to seek 

functional foods and healthy products on grocery shelves, sorghum is becoming more desirable 
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for its numerous health benefits which include glucose and insulin control (Poquette et al., 

2014), anti-cancer properties (Awika and Rooney, 2004), and colonic health improvement 

(Fedail et al., 1984). 

1.1 Components of Grain Sorghum 

 

Like most cereal grains, the sorghum kernel is composed of an inner endosperm, germ, 

and outer layer of bran (Hubbard and Hall, 1950). Macro- and micronutrient composition differs 

amongst varieties, containing approximately 9-14% protein, 2-4% fat, 65-75% starch, and 1.5-

2.5% fiber (Hubbard and Hall, 1950; Neucere and Sumrell, 1980).  Poquette et al. (2014) found 

76% of starch to be slowly digestible starch (SDS) or resistant starch (RS), considered by many 

as dietary fiber and contributing many of the same positive effects of fiber (frequents and 

regular bowel movements) without negative consequences such as abdominal pain and 

flatulence. Sorghum is also gaining interest due to its lack of gluten, making it a safe and 

palatable alternative to wheat products for those suffering from celiac disease (Ciacca et al., 

2007).  

The bran fraction of sorghum contains not only the majority of its fiber, but also the vast 

majority of its polyphenols (Awika et al., 2005). Awika et al. (2003, 2005) found that sorghum 

brans of several varieties including brown, black, red, and white contained 4-6 times the dietary 

fiber and 3-5 times the concentration of polyphenols compared to the whole grain of each 

variety. Polyphenol content also differs amongst sorghum varieties. Sumac sorghums typically 

have higher total polyphenol content due to large amounts of condensed tannins, while black 
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sorghums are richer in flavonoids, especially the 3-deoxyanthocyanins (Awika et al., 2003, 2004, 

2005; Dykes et al., 2005). 

1.2 Polyphenols of Grain Sorghum 

 

Polyphenols are chemical structures composed of one or more phenol rings and are 

classified by number of rings and attached components into four categories: Phenolic acids, 

flavonoids, stilbenes, and lignans. Polyphenols are widely spread in plants and relatively 

abundant in diets high in fruits and vegetables. In plants, polyphenols are secondary 

metabolites that serve as protection against ultraviolet light, pathogens, and predators. In 

foods, they contribute positive actions such as protection against oxidation, resilience to light 

and pH, flavor, and effectiveness as coloring agents (Pandey and Rizvi, 2009). 

Although most have been demonstrated in vitro only, numerous health-promoting 

biological activities have been proposed for plant polyphenols (Manach et al., 2004). 

Polyphenols are well established antioxidants, and have been known to increase antioxidant 

activity in vivo, providing protection against free radicals and other potential oxidative threats 

(Manach et al., 2004). While these antioxidant activities occur during catabolism of 

polyphenols, their metabolites may also act upon target sites. Polyphenols also affect the 

metabolism of xenobiotics by competitively inhibiting various metabolic pathways (Manach et 

al., 2004). High intake of polyphenol-rich fruits and vegetables has been associated with 

decreased risk of chronic disease, and health-related actions include anti-cancer, 

cardioprotective, anti-diabetic, anti-aging, anti-viral, anti-bacterial, and neuro-protective 

(Manach et al., 2004, Kumar and Pandey, 2013). 
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Sorghum polyphenols can be categorized into three major groups: phenolic acids, 

condensed tannins (proanthocyanins), and flavonoids (Burdette et al., 2009). Previous research 

has found total polyphenol contents of 7.6-35.6 mg/g and 22.5-88.5 mg/g for black and brown 

sorghum bran, respectively (Awika et al., 2004, 2004, 2005). Polyphenols in sorghum bran have 

been of interest for decades, mostly for the sake of animal feed and food quality purposes 

rather than human nutrition.  

There are two subclasses of phenolic acids, cinnamic acid and benzoic acid derivatives 

(Pandey and Rizvi, 2009; Manach et al., 2005). Phenolic acids have demonstrated high 

antioxidant activity in vitro, and have been found in several sorghum varieties, including white 

which do not contain the other phenolic compounds commonly found in colored brans (Awika 

and Rooney, 2004).  In 1966, Guenzi and McCalla identified ferulic acid, p-coumaric acid, 

syringic acid, vanillic acid, and p-hydroxybenzoic acid in sorghum by paper chromatography 

(Guenzi and McCalla, 1966). Other phenolic acids in sorghum include gallic acid, protocatechuic 

acid, genistic acid, salicylic acid, caffeic acid, cinnamic acid, and sinapic acid (Dykes and Rooney, 

2006). 

Flavonoids in sorghum are mainly 3-deoxyanthocyanins, namely apigeninidin, 

luteolinidin, and their derivatives, and other flavonoids in sorghum include naringenin, 

 

Figure 1. 3-Deoxyanthocyanins apigeninidin (left) and luteolinidin (right) 
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apigenin, and eriodictyol. As opposed to other anthocyanins, 3-deoxyanthocyanins lack a 

hydroxyl group at the C-3 position of ring 3 (Figure 1). This characteristic makes 3-

deoxyanthocyanins especially stable in the presence of light and pH changes, and potential 

antioxidants and cancer cell cytotoxic agents (Sousa et al., 2016; Shih et al., 2007; Yang et al., 

2009). Sorghum polyphenol research has focused extensively on 3-deoxyanthocyanins, because 

it is the most significant dietary source of these compounds identified thus far (Awika and 

Rooney, 2004). Apigeninidin, luteolinidin, and their glucosides were identified in sorghum using 

HPLC analysis, with 36-50% of anthocyanins being apigeninidin and luteolinidin. These results 

were confirmed by Dykes et al. (2009), who identified luteolinidin, apigeninidin, 5-

methoxyluteolinidin, and 7-methoxyapigeninidin as the four major 3-deoxyanthocyanins in 

sorghum (Dykes et al., 2009). Quantification also revealed that black sorghums contained over 

two times the 3-deoxyanthocyanins of red and brown sorghums and concentrations in black 

and brown sorghum bran ranged from 1.7-6.1 mg/g and 0.5-2.8 mg/g, respectively (Awika and 

Rooney, 2004; Wu and Prior, 2005).  

Condensed tannins, or proanthocyanins, are polymeric flavanols, the most common in 

sorghum being catechin, epicatechin gallate, procyanidin B1, and polyflavan-3-ol (Awika and 

Rooney, 2004) (Figure 2). Degree of polymerization has been found to positively correlate with 

 

Figure 2. Common monomers of proanthocyanidins, catechin (left) and epicatechin (right) 
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antioxidant potential, and high molecular weight tannins are much more potent antioxidants 

than monomeric polyphenols (Hagerman et al., 1988). Additionally, animal studies have found 

condensed tannins to be significant antitumor agents in multiple types of cancer, including lung 

cancer and cervical cancer (Wu et al., 2011). Price and Butler used colorimetry and 

spectrophotometric methods to determine presence of condensed tannins in sorghum (Price 

and Butler, 1977). They were also identified in sorghum by HPLC and colorimetric methods 

(Dykes et al., 2005; Gu et al., 2007). Brown sorghum brans contained 28.2- 50.1 mg/g of 

condensed tannins, however none were detected in black brans (Awika et al., 2005). 

1.3 Health Effects of Grain Sorghum 

1.3.1 Cancer 

Whole grain consumption has been associated with prevention of gastrointestinal 

cancers, and epidemiological studies have suggested sorghum to be more effective than other 

grains (Chen et al., 1993; Isaacson, 2005), possibly due its relative abundance and variety of 

polyphenols (Yang et al., 2012). Anti-cancer activities of sorghum polyphenols have been 

demonstrated in vivo and in vitro. Sorghum 3-Deoxyanthocyanins exhibited anti-proliferative 

actions against colon cancer cells in vivo (Yang et al., 2009) while procyanidin-rich sorghum 

extracts inhibited lung tumor formation and growth in mice (Wu et al., 2011). Sorghum 

phenolic extract also reduced proliferation and induced apoptosis of prostate cancer cells in 

vitro and subsequently reduced the severity of tumor metastasis in cancer-induced mice (Ryu et 

al., 2017). Though studies utilizing crude sorghum extract are limited, one in vivo investigation 

with 40 rats found that diets containing 6% black or brown sorghum bran suppressed colon 

carcinogenesis compared to a cellulose control diet, as evidenced by development of fewer 
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aberrant crypts. No effect was found for white sorghum bran, which supports the hypothesis 

that anti-cancer effects of sorghum are due to the color-conferring phenolic compounds 

(Turner et al., 2006). Demonstrated mechanisms of sorghum anti-cancer activities include 

induction of detoxification/antioxidant enzymes by 3-deoxyanthocyanins (Yang et al., 2009; Wu 

et al., 2011), estrogen receptor activation by apigenin and naringenin (Yang et al., 2012; Yang et 

al., 2015), and chemo-sensitization (Dia et al., 2016). 

1.3.2 Diabetes 

Incidence of diabetes is continuously rising, and it is the 7th leading cause of death in the 

USA (American Diabetes Association 2016). When managing Type I or Type II diabetes, 

maintaining low glucose and insulin response is crucial. Due to its high levels of slowly digestible 

starch (SDS) and resistant starch (RS), sorghum shows promise as an alternative to traditional 

therapies for controlling these factors. It has been found to exert hypoglycemic effects in 

diabetic rats by altering hepatic gluconeogenesis (Kim and Park, 2012), and has also lowered 

both glucose and insulin response in healthy men (Poquette et al., 2014). Inclusion of whole 

sumac sorghum flour in a rat diet (n=40) not only improved glucose and insulin homeostasis, 

but also protected pancreatic islet function in high-fat diet induced obesity (Moraes et al., 

2017). Sorghum has also demonstrated lowering of protein glycation, a non-enzymatic reaction 

that is believed to contribute to development of diabetes (Farrar et al., 2008). 

1.3.3 Colonic Health 

As attention continues to shift to the gut and its implications for health in multiple 

bodily systems, colonic health and the human gut microbiota have become important targets of 
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research focusing on nutrition and functional foods. Consumption of whole grains retaining the 

bran was linked to a decrease in colorectal cancer in a cohort study of 60,000 women (Larsson 

et al., 2005).  Sorghum bran has also been found to support healthy colon function. When 

compared to wheat bran, sorghum bran displayed comparable health benefits such as frequent 

defecation and softening of stools, while negative side effects such as abdominal pain and 

excessive flatulence was caused only by wheat bran (Fedail et al., 1984). Consumption of 

extruded whole-grain sorghum enhanced colonic health in rats by decreasing pH and inducing 

antioxidant enzymes in the caecum (Llopart et al., 2017). Polyphenols from various foods, 

including sorghum, have also been found to positively affect colonic health through modulation 

of the gut microbiota (Cueva et al., 2012; Ritchie et al., 2015).  

2. Human Gut Microbiota 

 

2.1 General Overview 

Microbiota has been defined as the “entire population of microorganism that colonizes 

in a particular location,” (Jandhyala et al., 2015). The human flora has been studied since the 

mid to late 1900s (Drasar et al., 1976), but the intricate roles of the human gut microbiota 

(HGM) in health has gained new appreciation in the recent years. Most of the gastrointestinal 

tract is inhabited by bacteria, and the distal gut, or the colon, is the most heavily populated. 

Early on, occupation of fecal material in the colon by microbiota was reported as 1012 bacteria 

or more per gram (Moore and Holdman, 1974). Since then, estimates have ranged from 

1.5x1011 to 5x1011 bacteria/gram (Sender et al., 2016). Early studies characterized 100+ bacterial 

species (Moore and Holdman, 1974), but a more recent compilation of large culture databases 
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and scientific literature reported 2172 species isolated in humans (Hugon et al., 2015). Bacteria 

within the human gut are most abundant of phyla Firmicutes and Bacteroides, but also include 

Actinobacteria, Verrucomicrobia, and Proteobacteria (Arumugam et al., 2011). Individual gut 

microbiotas are often classified by enterotypes, which are determined by dominant genus, and 

Arumugam et al. (2011) determined from a study of 39 individuals that HGM enterotypes can 

be categorized into three groups: type 1 enriched in Bacteroides, type 2 enriched in Prevotella, 

and type 3 enriched in Ruminococcus.   

2.1.1 Age 

A stable adult microbiota can be characterized by three enterotypes, and development 

of this state is a dynamic process beginning at birth. Mode of delivery plays a crucial role in 

establishing initial microbiota; a study of ten newborns reported that infants born vaginally 

displayed a microbiota dominated by the mother’s vaginal bacteria e.g. Lactobacillus and 

Prevotella, where cesarean section infant displayed microbiota resembling maternal skin 

bacteria (Dominguez-Bello et al., 2010). These differential effects may diminish with age, 

however, as a recent study of 78 children ages 9-16 found no correlation between mode of 

delivery and gut microbial composition (Riva et al., 2017). By two years of age, the HGM 

resembles a stable adult population (Gibson et al., 1995), however, studies have demonstrated 

significant differences between child and adult microbiota, the most significant being higher 

abundance of Bifidobacterium in children than adults (Agans et al., 2011). Lower diversity is also 

observed in children, supporting continued development throughout adolescence (Ringel-Kulka 

et al., 2013). A stable state is reached during the 3rd decade of life (Jandhayala et al., 2015), 
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though the natural aging process is paralleled by decreased species diversity and a shift in 

population proportions (Claesson et al., 2011).  

 

2.1.2 Diet 

Diet is another factor that strongly affects HGM composition. As mentioned above, the 

initial HGM is established upon delivery and determined by route of passage. An infant’s HGM 

taxonomy is further affected by diet, however. In 1983, a study of 13 infants found that those 

fed breastmilk developed a HGM consisting predominantly of Bifidobacterium, which have been 

attributed beneficial effects including short chain fatty acid (SCFA) production, detoxification of 

toxins, immunomodulation, and vitamin production (Yoshioka et al., 1983, Gibson et al., 1994). 

Formula-fed infants, on the other hand, harbored only a fraction of Bifidobacterium compared 

to the breast-fed infants, and had greater levels of Bacteroides as well as the potentially 

harmful Enterobacteria and Enterococci (Yoshioka et al., 1983). These results were 

corroborated in a 1987 study, which also observed an increase in Clostridia, another potentially 

harmful bacteria, in bottle-fed infants (Mevissen-Verhage et al., 1987).  

While Arumagam et al. (2011) did not conclude a correlation with diet when establishing 

the three enterotypes, another study of 98 individual HGM found a strong association between 

high levels of Bacteroides (Type 1) and a long-term diet high in protein and animal fat, and high 

levels of Prevotella (Type 2) and long-term diet rich in carbohydrates (Wu et al., 2011). These 

results agreed with previous findings of not only increased Prevotella in children with a high 

fiber diet, but also an increased Bacteroidetes:Firmicutes ratio and increased short chain fatty 
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acid (SCFA) production compared with children with a western Diet (De Filippo et al., 2010). 

These results promote the idea that numerous plant foods contribute substrates for desirable 

bacteria, and support development of a healthy gut. 

Other dietary factors that affect the HGM include plant polyphenols and resistant starch 

(RS). Polyphenols have been found to alter HGM in vitro as well as in animal studies 

(Kemperman et al., 2013; Queipo-Ortuno et al., 2012), and RS modulates both bacterial 

population and SCFA production (Topping and Clifton, 2001; Martinez et al., 2010). Polyphenol 

and RS as HGM effectors will be discussed more in depth in another section.  

2.2 Roles of HGM in Health and Disease 

The HGM is considered by many to be an organ itself, with specific functions and roles in 

the body (Jandhyala et al., 2015). Colonic bacteria metabolize nutrients that bypass the small 

intestine unaltered and/or unabsorbed, such as polyphenolic compounds, fiber, and resistant 

starch (Dall’Asta et al., 2012; Topping and Clifton, 2001). The HGM can metabolize proteins that 

reach the colon and is also involved in lipid metabolism (Jandhyala et al., 2015). Vitamin 

synthesis is an additional intriguing role of bacteria in the gut. HGM have been found to 

promote biosynthetic pathways of multiple vitamins, with enterotype 1 (dominated by 

Bacteroides) associated with biotin, riboflavin, pantothenate, and ascorbate synthesis, and 

enterotype 2 (dominated by Prevotella) with thiamine and folate synthesis (Jandhyala et al., 

2015). Possibly the most obvious function of the HGM is its pro/anti-microbial effect. It is vital 

for a healthy gut to maintain a profuse population of beneficial bacteria while preventing or 

inhibiting growth of pathogenic bacteria. Beneficial bacteria such as Lactobacillus and 

Bifidobacterium inhibit harmful bacteria through multiple mechanisms, including competition 
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for nutrients and production of metabolites (e.g. SCFAs) that lower pH to promote an 

environment toxic to pathogens (Gibson et al., 1994). The HGM also combats pathogens 

(bacteria and others) through interactions with the immune system, such as development of 

gut associated lymphoid tissues, involvement in proliferation and homeostasis of T-cells, and 

control of inflammation (Hooper et al., 2012). One example of immune modulation by the HGM 

is its stimulation of plasma cells to produce immunoglobulin A (IgA). IgA is a crucial element in 

preventing bacterial translocation across the intestinal epithelium. Through these and other 

immune mechanisms, intestinal bacteria contribute to the fidelity of the gut mucus barrier, 

which bars pathogens from interacting with colonocytes and entering circulation (Sommer and 

Backhed, 2013). For example, Lactobacillus and Bifidobacterium spp. reduced inflammation and 

reversed permeability in interleukin-10 (IL-10) gene deficient mice (Madsen et al., 2001). In the 

following sections we will discuss associations between dysbiosis, or dysregulation of the 

normal microbiota, and some health conditions.  

2.2.1 Obesity 

 

Obesity is an increasing epidemic which during which during 2015-2016 afflicted 39.8% 

of adults and 18.5% of youth in the United States, and the rates in Arkansas closely follow this 

trend (CDC 2016). Not only can obesity affect quality of life, but it can lead to life-threatening 

diseases such as type 2 diabetes, heart disease, stroke, and some cancers. The high prevalence 

of obesity is due mainly to lifestyle factors such as decreased physical activity and unhealthy 

diet, but other physiological factors that may play a role in development of overweight/obesity, 

such as the HGM, must not be overlooked. 
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Several, but not all in vivo studies of HGM in obesity support a link between obesity and 

the ratio of Bacteroidetes to Firmicutes. Ley et al. (2005) found a 50% reduction of 

Bacteroidetes paralleled by an increase in Firmicutes in obese mice compared to lean mice. A 

following human study found that the Bacteroidetes:Firmicutes ratio in 12 obese individuals 

was positively correlated with weight loss during a year on a restricted calorie diet (Ley et al., 

2006). In conflict with the previous reports, a study of 98 human subjects found the opposite 

correlation, namely a higher proportion of Bacteroidetes in obese and overweight individuals 

(Schweirtz et al., 2009). Others identified no change in the Bacteroidetes:Firmicutes ratio in 

overweight/obese individuals (Duncan et al., 2008; Arumugam et al., 2011).  In support of early 

findings, a 2017 pediatric study of 96 children found a significant reduction of this ratio in 

obesity compared to normal weight (Riva et al., 2017). With the conflicting evidence presented, 

further study is needed to corroborate this association. 

Correlations with obesity have been found at the genus and species level, especially 

Staphylococcus aureus, Bifidobacterium and Akkermansia muciniphilia. Increased S. aureus and 

decreased Bifidobacterium has been consistently observed in overweight/obesity, in animal as 

well as human studies (Collado et al., 2008; Kalliomaki et al., 2008, Santacruz et al., 2010). A. 

muciniphilia is a mucin-degrading member of Verrucomicrobia that colonizes in the mucus layer 

of the gut (Darrien, et al., 2008). This mucus layer serves as the gut barrier and plays important 

roles in minimizing gut permeability, which is increased in diabetes and obesity (Derrien et al., 

2008; Everard et al., 2013). Derrien et al. (2008) found A. muciniphilia to represent 1-3% of 

bacterial cells in 96 human fecal samples, and this species has been negatively correlated with 

weight gain and obesity through in vivo animal studies (Everard et al., 2013; Schneeberger et 
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al., 2015) and human studies (Dao et al., 2016; Karlsson et al., 2012). Also, several human 

clinical trials indicate anti-obesogenic actions for some strains of Lactobacillus (Crovesy et al., 

2017). These findings implicate diets that increase Bifidobacterium, Lactobacillus and A. 

muciniphilia as possible interventions in overweight/obese individuals.  

Though findings regarding overweight/obesity and SCFAs have been mixed, several 

studies have observed protective effects of SCFAs against progression of obesity. Dietary 

supplementation of acetate was seen to suppress high fat diet (HFD)-induced weight gain by 

72% in mice (Lu et al., 2016). In a study with six overweight/obese men distal colonic acetate 

injections led to improved metabolic and inflammatory markers, including fat oxidation and 

glucose and insulin levels (van der Beek et al., 2016). Recently, supplementation with acetate or 

propionate abolished HFD-induced weight gain and improved glucose and insulin homeostasis 

in mice (Weitkunat et al., 2017). Multiple murine studies have found dietary propionate and 

butyrate to block or reduce HFD-induced weight gain, as well as ameliorate oral-glucose 

tolerance and insulin levels (Henagan et al., 2015; Lin et al., 2012; Lu et al 2016). One human 

trial found that propionate intake significantly reduced intrahepatocellular and body weight 

gain over 24 weeks in 60 overweight adults (Chambers et al., 2015). 

Contrarily, increased production of acetate by the gut microbiota was found to promote 

obesity and metabolic syndrome in rats via stimulation of appetite hormones (Perry et al., 

2016). In a human study with 94 adults, total fecal SCFA concentrations were significantly 

higher in overweight/obesity compared to their normal weight counterparts (Fernandes et al., 

2014). Also, the 2017 pediatric study found that butyrate, propionate, and acetate were all 
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significantly elevated in the obese group, though their findings do not necessarily implicate a 

causative role of SCFA in obesity (Riva et al., 2017). 

Possible mechanisms for amelioration of body weight gain by SCFA include modulation 

of circulating appetite hormones and effects on energy metabolism. It has been demonstrated 

that dietary, as well as acute injections of acetate result in altered expression of neuropeptides 

in favor of appetite suppression, and decreased circulating free fatty acids in mice (Frost et al., 

2014; Ge et al., 2008). Lin et al. (2012) found that satiety-promoting hormones Glucagon-like 

peptide 1 (GLP-1) and Glucose-dependent insulinotropic polypeptide (GIP) were both 

suppressed by butyrate, while propionate exerted effects on GIP alone. Psichas et al. (2015) 

also observed increases in polypeptide YY (PYY) and GLP-1 in response to propionate in rats. 

While subsequent in vivo human trials found these hormones to be stimulated also by a single 

supplemental dose, long term (24 week) trial resulted in no effects on PYY and GLP-1 despite 

reduce body weight gain, so it is unclear if hormone modulation by SCFA contribute to long-

term weight maintenance (Chambers et al., 2015).  

Recent work demonstrates several ways through which SCFA exert control of energy 

metabolism and homeostasis in the body. Den Besten et al. (2015) demonstrated that a 

reduction in HFD-induced obesity in mice following SCFA supplementation was mediated 

through a PPARƴ-dependent transition from lipogenesis to fat oxidation via adenosine 

monophosphate-activated protein kinase (AMPK). This supports previous reports of acetate 

activating AMPK, which is a key factor in cellular energy homeostasis (Sakakibara et al., 2006). 

Furthermore, rectal administration of physiological concentrations of butyrate, propionate, and 

acetate in 12 overweight/obese men resulted in significantly increased fasting fat oxidation, 
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increased resting energy expenditure (REE), and increased levels of circulating PYY (Canfora et 

al., 2017). Additionally, SCFAs have been linked to “browning” of deleterious white adipose 

tissue (WAT) and reduction of whole-body adiposity and mice (Sahuri-Arisoylu et al., 2016). 

Weitkunat et al. (2017) also found that prevention of HFD-induced weight gain was 

accompanied by significant increases in body temperature, which is indicative of adipose tissue 

“browning”. These studies lay a groundwork for long-term human studies to examine by which 

mechanism enhanced SCFA production can help alleviate obesity in humans. 

Not only is there clear evidence of correlations between the HGM and body weight, but 

multiple murine studies have suggested a causative role of microbiota, on the basis that 

excessive weight and fat gain can be transmissible through fecal transplant. In 2004, Backhed et 

al. (2007) inoculated gut microbiota (GM) to germ free (GF) mice, which resulted in a 60% 

increase in body fat despite reduced food intake. These findings highlight the ability of the gut 

microbiota to extract energy from food that is otherwise unutilized by the digestive tract and 

excreted in the feces. They later found that despite similar chow consumption, there were 

significant differences in body weight gain between conventional and GF mice being fed a 

western diet, with conventional mice gaining on average more than twice that of GF mice. This 

same study observed no significant differences between GF mice fed the high-fat western diet 

and GF mice fed a low-fat and polysaccharide-rich diet, indicating the presence of GM has 

greater effect than diet on body weight (Backhed et al., 2007).  This concept was further 

explored in 2008, when GF mice were inoculated with GM from either lean mice or mice with 

diet-induced obesity. Though no significant differences in food intake were observed between 

groups, significantly greater increase in body fat was seen in mice treated with microbiota from 
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diet-induced obese donors (Turnbaugh et al., 2008). Though dysbiosis is likely caused by diet 

and other environmental factors, the above study establishes that the dysbiosis observed in 

overweight/obesity can further augment undesirable weight gain.  

Proposed mechanisms by which the human gut microbiota may regulate body weight 

include its interactions with bile acid metabolism and the farnesoid X receptor (FXR) signaling 

pathway, and reduction of circulating lipoprotein fasting-induced adipose factor (FIAF). Gut 

microbes have the ability to transform bile acids through multiple enzymatic reactions including 

deconjugation, oxidation-reduction, and hydroxylation, which in turn activate the nuclear 

receptor FXR (Midtveldt 1974; Wang et al., 1999). FXR signaling pathways play an intricate role 

in both bile and lipid homeostasis, and genetic disruption of the receptor in mice has resulted in 

improved blood glucose and insulin sensitivity as well as reduced adiposity and weight gain in 

both genetic obesity and exposure to HFD (Sinal et al., 2000; Prawitt et al., 2011). In a study 

with germ free mice, Sayin et al. (2013) discovered that microbiota regulate bile acid 

homeostasis by metabolizing bile acids to forms that serve as ligands for FXR, alleviating its 

suppression. In 2017, Parseus et al. explored the effect of FXR on HFD-induced weight gain in 

GF and conventional mice. In agreement with previous findings, conventional mice gained 

significantly more weight than GF mice, however this difference was abolished in FXR deficient 

mice, implicating FXR as a requisite in GM-induced obesity (Parseus et al., 2017). This is in 

agreement with an earlier study, which showed that reduction of Lactobacillus led to increased 

levels of tauro-β-muricholic acid (known FXR antagonist), resulting in inhibited FXR signaling (Li 

et al., 2013). Future therapies to combat obesity may attempt to support a gut microbial 

population favoring FXR suppression rather than activation. 
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Fasting-induced adipose factor (FIAF) is protein expressed in fat and other tissues that 

downregulates fat storage and upregulates fat mobilization from adipocytes. Overexpression of 

FIAF resulted in a 50% decrease in body fat, however the translocation of fat out of adipocytes 

caused marked dyslipidemia, underscoring the importance of proper control of FIAF and lipid 

homeostasis (Mandard et al., 2006). One explanation for these effects is the ability of FIAF to 

inhibit both lipoprotein lipase (LPL), of which the primary function is to increase uptake of fatty 

acids and triglycerides into adipocytes, and peroxisomal proliferator activated receptor 

coactivator 1α (Pgc-1α), which increases expression of genes coding for fatty-acid oxidation 

(Yoshida et al., 2002; Backhed et al., 2004, 2007). Backhed et al. (2004) demonstrated the 

ability of the gut microbiota to suppress FIAF in intestinal epithelial cells and consequently 

increase LPL activity following inoculation of GF mice with caecal contents on conventional mice 

as well as isolated Bacteroides thetaiotaomicron. They expounded upon these findings in a later 

study, which showed a role of FIFA-regulated Pgc-1α in obesity that developed upon 

inoculation of germ free mice with a conventional microbiota (Backhed et al., 2007). 

2.2.2 Gastrointestinal conditions 

 

It is estimated by the American Cancer Society that in 2018 there will be 50,630 deaths 

from colorectal cancer (CRC), which ranks 3nd in cancer deaths in the USA (Alteri et al., 2014). 

Risk of CRC is 50% higher in African Americans than Caucasian citizens, though native Africans 

rarely contract the disease (O’Keefe et al., 2009). This disparity has been explained by the 

consumption of a Western diet in African Americans, and their increased risk for CRC has been 

associated with decreased microbial production of SCFAs and in the gut (O’Keefe et al., 2009). 
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Butyrate has been implicated in anti-proliferative actions. Ou et al. (2013) found not only higher 

levels of butyrate-producing bacteria in native Africans, but also lower production of 

carcinogenic bile acids compared to African Americans. A number of in vitro studies have 

attributed the anti-cancer effects of butyrate to its ability to induce cell cycle arrest and 

apoptosis through gene regulation and upregulation of enzymes that detoxify carcinogens 

(Hamer et al., 2008). A study in 2011 demonstrated not only reduced proliferation of colon 

cancer cells by butyrate, but also a reduction of select microRNAs (miRNA) that are increased in 

human colon cancer (Hu et al., 2011).  

Pathogenic microbial species also contribute to development of CRC. Excessive meat 

intake, as is seen in the Western diet, may result in increased proportions of proteolytic 

bacteria such as Bacteroides and Clostridium histolyticum, which in the colon metabolize 

proteins to toxic, cancer promoting agents (Hughes et al., 2000). Yu et al. (2017) positively 

associated cancer reoccurrence with Fusobacterium nucleatum in a cohort of 92 CRC patients. 

They subsequently linked F. nucleatum with development of chemoresistence through 

activation of an autophagy pathway via downregulation of specific miRNAs and alteration of 

innate immune signaling. It is clear that species residing in the gut play intricate roles in 

development of CRC, but further research is needed to elucidate the complexity of these roles 

and identify potential therapeutic strategies.  

Irritable bowel syndrome (IBS) has been defined as “a functional bowel disorder in 

which abdominal pain or discomfort is associated with defecation or a change in bowel habit, 

and with features of disordered defecation” and has an incidence of 10-20% worldwide, 

affecting mostly women (Longstreth et al., 2006). IBS does not lead to severe illness or 
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mortality, however symptoms including abdominal pain, severe flatulence, constipation, and 

diarrhea can lead to a decreased quality of life comparable to more serious illnesses. Though 

etiology of the disease remains unclear, factors such a psychological stress and diet seem to 

stimulate symptoms and increase severity. Dysregulation and instability of gut bacteria has 

been observed in IBS and is likely to play an important role in the course of the disease 

(Kassinen et al., 2007). Reports regarding specific bacterial populations have been conflicting, 

however. Kassinen et al. (2007) found Lactobacillus to be nearly extinct in IBS patients, while in 

another study Lactobacillus were increased in IBS subjects compared to subjects without IBS 

(Tana et al., 2010). Multiple studies have demonstrated that probiotics containing Lactobacillus 

can alleviate symptoms and improve HGM stability and quality of life in IBS (Kajander et al., 

2008; Ducrotte et al, 2012; Lorenzo-Zuniga et al., 2014). Rajilic-Stojanovic et al. (2001) reported 

a 2-fold decrease in the Bacteroidetes:Firmicutes ratio and a significant decrease in 

Bifidobacterium and Faecalibacterium paralleled by an increase in Dorea, Ruminococcus, and 

Clostridium in 62 subjects with IBS compared to healthy subjects. Accordingly, prebiotic 

intervention with GOS (galacto-oligosaccharide) resulted in increased Bifidobacterium and 

improved symptom scores, suggesting Bifidobacterium as a possible target of IBS therapy (Silk 

et al., 2009). Due to the heterogeneity of results, further research is needed to determine how 

bacterial composition can be normalized in IBS. 

Inflammatory bowel disease (IBD) encompasses ulcerative colitis (UC) and Crohn’s 

disease (CD) and is characterized by unregulated, chronic inflammation in the gut and 

activation of the mucosal immune system (Hanauer 2006). Dysbiosis of gut microbiota also 

seems to be a feature in both IBD and UC. Human studies have indicated lower diversity, higher 
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populations of pathogenic bacteria, and decreased Bacteroides spp. in UC (Noor et al., 2010; 

Lepage et al., 2011). Studies investigating fecal transplant as a therapy for UC have been 

promising; for example, a case study reports complete amelioration of symptoms and need for 

medication in six UC patients (Borody et al., 2003). Kump et al. (2013) demonstrated improved 

symptoms and microbial population in 6 UC patients, yet no remission. However, a later study 

of 70 UC patients (placebo n=34, fecal transplant n=36) resulted in remission for 24% of 

patients undergoing treatment as opposed to only 2% of placebo group (Moayeddi et al., 2015). 

Fecal transplant therapy shows potential in treatment of UC and may in the future be optimized 

though a more individualized approach. Similarly, patients suffering from CD have microbiota 

characterized by reduced species diversity (particularly with the phylum Firmicutes and 

Bacteroides spp.) as well as an increase in the possibly harmful bacteria Enterococcus sp., 

Clostridium difficile, Escherichia coli, Shigella flexneri, and Listeria (Manichanh et al., 2006; Kang 

et al., 2010). These results were demonstrated in patients with active CD (Kang 2010) as well 

those in remission (Manichanh et al., 2006), indicating that dysbiosis is not simply a result of 

inflammation and other symptoms of CD. Success of probiotic and prebiotic intervention has 

been limited, though some beneficial effects have been seen with Saccharomyces boulardii 

(Ghouri et al., 2014). Fecal transplant resulted in a 2-week remission for seven CD patients and 

a 6-12-week remission with no further treatments for five patients (Suskind et al., 2015). It also 

resulted in increased microbial diversity in 11 out of 19 patients (Vaughn et al., 2016). Though 

these studies hold positive implications for fecal transplant in CD, larger clinical trials are 

needed to confirm it as an effective therapeutic measure.  
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3. Functional Roles of Human Gut Microbiota 

 

3.1 Fermentation Pathways 

 

While most nutrients consumed are metabolized and absorbed in the stomach and 

small intestine, certain groups remain unaltered and provide fuel for the microbiota residing in 

the colon (Cummings and Macfarlayne, 1991).  Most colon bacterial species are saccharolytic 

and glean energy from carbohydrate (CHO) in the diet including fiber and resistant starch (RS), 

as well as host-secreted glycoproteins and glycoconjugates (Rossi et al., 2005). Upon reaching 

the colon, fiber and starch are hydrolyzed to mono- and oligosaccharides by bacteria and 

subsequently fermented, releasing SCFAs and intermediate metabolites (e.g. lactic acid) that 

can be further metabolized to SCFAs (Rossi et al., 2005; Chassard et al., 2008). The importance 

of the HGM in energy harvest has been demonstrated in vivo in rodents. Germ free mice not 

only excreted more calories in their feces, but also incurred reduced adiposity and consumed 

more food than bacteria-colonized mice (Tremaroli and Backhed, 2012). Human studies have 

also demonstrated how dietary CHO influences the gut microbiota. In one study, a high RS diet 

stimulated proliferation of Ruminococcus bromii, Eubacterium rectale, and Roseburia spp, while 

a low CHO diet resulted in decreases in the same species, suggesting RS as a preferred substrate 

for these bacteria (Walker et al., 2011). 

Short chain fatty acids are the major products of bacterial fermentation of carbohydrates in 

the colon. A series of reactions involving glycolytic pathways, pentose phosphate pathways, and 

others, convert mono- and oligosaccharides to intermediate metabolites and gasses, which are 

then metabolized to SCFAs, primarily propionate, butyrate, and acetate (Macfarlayne and 
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Macfarlayne, 2003). In fecal samples of 15 healthy human subjects, butyrate was produced in 

significant amounts by fermentation of starch and xylan, propionate in small amounts from all 

substrates (starch, xylan, casein, mucin, and cellulose), and acetate in significant amounts from 

all substrates (Chassard et al., 2008). SCFAs not only serve as energy sources, but they also 

lower pH which antagonizes unwanted bacteria; regulate cell volume, differentiation, 

proliferation, and gene expression; and regulate inflammation through activation of immune 

receptors and genetic inhibition of pro-inflammatory factors (Cook and Sellin 1998; Vinolo et 

al., 2011). Acetate, present at the highest concentrations in the colon, is produced by most 

enteric bacteria, while a limited number of butyrate and propionate producing genera have 

been identified thus far. Major butyrate producing bacteria found in human feces are within 

Firmicutes and include Eubacterium, Roseburia, Faecalibacterium, and Coprococcus (Duncan et 

al., 2004; Louis and Flint, 2009). Butyrate can be produced directly from food sources, or from 

other metabolites of fermentation. As reported by Duncan et al. (2004), Eubacterium hallii and 

Anaerostipes caccae produce butyrate from the abundant secondary metabolite lactate. 

Acetate is also utilized by certain butyryl CoA: acetate CoA transferase producing bacteria for 

butyrate formation (Louis and Flint, 2016).  These acetate-butyrate converting bacteria include 

Faecalibacterium prausnitzii, Roseburia spp., Eubacterium spp., Coprococcus catus, and 

Anaerostipes hadrus (Duncan et al., 2004; Louis and Flint, 2016).  Propionate production has 

been observed in multiple species within Firmicutes, including Veillonellaceae, Megasphaera, 

Coprococcus, Salmonella, Lachnospiraceae, Ruminococcus, and Roseburia. Intestinal propionate 

concentration has also been positively correlated with Prevotella and Bacteroides within 

Bacteroidetes (Rios-Covian et al., 2016; Salonen et al., 2014). Butyrate stands out as beneficial 
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to human health as it is the major energy source of colonocytes, with proposed anti-colon 

cancer effects, anti-inflammatory activity, and mechanisms in colonic barrier function (Hamer 

et al., 2008). A likely mechanism of butyrate’s inhibiting role in inflammation and colon 

carcinogenesis is its ability to cause increases in antioxidants and decreases in inflammatory 

mediators, which down-regulates cancer- and inflammation-promoting oxidative stress (Hamer 

et al., 2009). In vitro, butyrate increased production of glutathione-S-transferase, an anti-

oxidant phase 2 enzyme (Ebert et al., 2003). In vivo, dietary fiber stimulated increased 

production of butyrate in rats, which inhibited production of tumor necrosis factor-α (TNF-α) 

and nitric oxide (Rodrıguez-Cabezas et al., 2002). Hamer et al. (2009) found that butyrate 

increased production of glutathione and inhibited uric acid. These and many other studies 

strongly implicate butyrate’s role in combatting oxidative stress in the colon. Many of 

butyrate’s beneficial effects are due to its inhibition of histone deacetylase (HDAC), proteins 

involved in epigenetic mechanisms of gene control (Leonel and Alvarez-Leite, 2012).  Acetate 

and propionate have been linked with positive outcomes as well. Propionate resulted in death 

of E. coli and Salmonella in vitro, most likely because of its low pH (Cherrington et al., 1991). 

Acetate produced by Bifidobacterium in mice provided protected against lethal infection with E. 

coli (Fukuda et al., 2011). A recent study elucidated mechanisms by which butyrate and 

propionate regulate osteoclast metabolism to protect against injurious bone loss (Lucas et al., 

2018). Increased SCFA’s and especially enrichment of butyrate producing species is a desirable 

outcome of fermentation studies and dietary interventions. 
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3.2 Prebiotics  

 

Desire to manipulate bacterial populations, increasing beneficial while quenching 

harmful, led to the concept of prebiotics. The original criteria set forth to qualify a food as a 

prebiotic were: (a) resistance to gastric acidity, hydrolysis by mammalian enzymes and 

gastrointestinal absorption; (b) fermentation by intestinal microflora; (c) selective stimulation 

of the growth and/or activity of intestinal bacteria associated with health and wellbeing (Gibson 

et al., 2004). Prebiotics were previously defined as “selectively fermented ingredient(s) that 

result in specific changes in the composition and/or activity of the gastrointestinal microbiota, 

thus conferring benefit(s) upon host health” (Gibson et al., 2010), but the Mayo Clinic later 

updated this definition to “nondigestible substance that acts as food for the gut 

microbiota...[and] stimulate growth or activity of certain healthy bacteria that live in the body.”  

In August of 2017, the International Scientific Association for Probiotics and Prebiotic published 

a consensus statement in which they proposed that prebiotics be universally defined as "a 

substrate that is selectively utilized by host microorganisms conferring a health benefit" 

(Gibson et al., 2017). The three well-established prebiotics are the carbohydrate based fructo-

oligosaccharides (FOS), galacto-oligosaccharides (GOS), and lactulose (Gibson et al., 2004), 

though the newest definition may allow for inclusion of non-carbohydrate substrates such as 

polyphenols and polyunsaturated fatty acids (Gibson et al., 2004, 2010; Slavin 2013; Gibson et 

al., 2017). The main bacterial targets of prebiotics are Lactobacillus and Bifidobacterium and the 

benefits conveyed include enhanced immune function, gut barrier function, and SCFA 

production, and reduced pathogenic bacterial populations (Slavin, 2013). Prebiotic action can 

be evaluated in vivo through consumption and subsequent collection of fecal samples, and in 
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vitro through fecal sample fermentations utilizing fecal preparations, prebiotic substrates, and 

anaerobic nutrient media. An abundance of research has demonstrated the ability of FOS, GOS, 

and lactulose to stimulate Bifidobacterium and less consistently, Lactobacillus (Gibson et al., 

2010). Rycroft et al. (2001) performed in vitro human fecal fermentations of several potential 

prebiotics and observed significant increases in Lactobacillus and SCFAs and decreases in 

Clostridium for GOS, FOS, and lactulose. Fecal fermentation of FOS and inulin later resulted in 

enriched Bifidobacterium and increased production of SCFAs (acetate and propionate from FOS, 

butyrate from inulin) (Rossi et al., 2008). FOS are chains of 2-10 fructose derived through 

hydrolysis of inulin. FOS was more rapidly fermented than inulin during in vitro fermentation, 

demonstrating the relevance of structural characteristics in bacterial utilization (Stewart et al., 

2008). A recent study with GOS resulted in significant increases in Bifidobacterium and acetate 

production (Rodriguez-Colinasa et al., 2013). 

3.3 Polyphenols 

 

Much like complex carbohydrates, very few polyphenols are absorbed in the small 

intestine, in fact 90-95% of those consumed reach the colon unaltered where they are 

metabolized by the residing bacteria. Metabolism of these compound involves multiple steps 

including cleavage of attached sugars, opening of the C ring and fragmentation of the A ring 

(Williamson et al., 2017). In vitro incubation of nine anthocyanins with pig caecal inoculum 

resulted in hydrolysis of all compounds to their aglycone forms, which were further degraded 

to phenolic acids (Keppler et al., 2005). In 2013, rutin, quercetin, chlorogenic acid, and caffeic 

acid were also broken down by human fecal microbiota during in vitro fermentation to phenolic 
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acids, mainly hydrocaffeic acid, 3-hydroxyphenylacetic acid, 4-hydroxyphenylpropionic acid, 3-

hydroxyphenylpropionic acid, and phenylpropionic acid, and these microbial conversions were 

accompanied by increased proliferation of Bifidobacterium (Parkar et al., 2013). This is 

consistent with previous reported metabolism of chlorogenic acid by Bifidobacterium as well as 

Lactobacillus and E. coli (Couteau et al., 2001). Also, in 2011 grape seed polyphenols (mainly 

proanthocyanidins) were metabolized by Lactobacillus plantarum, but not Lactobacillus casei, 

demonstrating the metabolic diversity of bacterial species in regards to polyphenol degradation 

(Tabasco et al., 2011). 

Although polyphenols do not undergo fermentation to SCFAs by the gut microbiota, 

they can have a profound effect on bacterial population via numerous other mechanisms. 

These include but are not limited to interference with bacterial cell membranes, inhibition of 

DNA and RNA synthesis, and their metabolism by certain species (Kemperman et al., 2010). 

Several in vivo and in vitro studies demonstrate the ability of polyphenols to enhance 

proliferation of beneficial bacteria, such as Bifidobacterium, Lactobacillus, and Eubacterium, 

while undermining the growth of others, particularly Staphylococcus and Clostridium spp 

(Cardona et al., 2013). For example, red wine polyphenols rich in proanthocyanidins 

administered to rats increased Bacteroides, Lactobacillus, and Bifidobacterium, while controls 

had mainly Bacteroides, Clostridium and Propionibacterium (Dolara et al., 2005). Multiple 

murine studies observed modulation of Akkermansia by phenolic extracts from different plant 

sources. Cranberry extract fed to mice over a 9 week period brought about a decrease in 

Bacteroidetes and increase in Firmicutes, as well as a striking increase in Akkermansia (Anhe et 

al., 2014). It is possible that the increase in Akkermansia was related to the phenolic acid 
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content of the extract, as a study in 2016 found increases in this genus in mice with feeding of 

caffeic acid (Zhang et al., 2016). Akkermansia was similarly increased in mice after 

supplementation with compounds present in grapes, red pitaya fruit, and rhubarb (Roopchand 

et al., 2015; Song et al., 2016; Neyrinck et al., 2016). Modulation of gut bacterial groups by 

polyphenols has also been observed in in vitro human studies. Human in vitro fecal 

fermentation of grape seed flavan-3-ols resulted in decreased Clostridium histolyticum and 

increased Lactobacillus/Enterococcus (n=3) (Cueva et al., 2013). Grape polyphenols stimulated a 

significantly higher increase in Bifidobacterium than a FOS during in vitro fermentation with 

human fecal samples (n=3) (Zhou et al., 2016). Previous work has also purported a synergistic 

effect between polyphenols and FOS; Coprococcus and Roseburia are both known to convert 

acetate to butyrate, and were increased by feruloylated arabinoxylan oligosaccharides (FAXO) 

and red rice bran polyphenolics when applied together but not individually during and in vitro 

fecal fermentation (Pham et al., 2017). Tzounis et al. (2008) suggests that stimulation of 

saccharolytic bacteria by flavanols may lead to greater fermentation capacity and increased 

SCFA production, rendering prebiotics more effective. Further research should investigate the 

ability of polyphenols to enhance the effects of well-established prebiotics, such as GOS, FOS, 

and lactulose.   

4. Grain Sorghum and the Human Gut Microbiota 

 

Sorghum has been an invaluable source of nourishment for centuries, however its 

numerous benefits are only recently gaining attention. The two main components that have 

drawn interest in sorghum as a possible nutraceutical are resistant starch and polyphenols. Not 
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only do these components contribute to weight loss, insulin and glucose control, and cancer 

prevention and reduction, but they also may improve colonic health through modulation of the 

HGM. Resistant starch is metabolized in the gut through the process of fermentation, as 

mentioned earlier. Rats fed resistant starch from raw potato had significantly higher numbers 

of Lactobacillus, Streptococcus, and Enterobacteria, as well as greater production of all SCFAs at 

5 months than rats fed corn starch (Kleesen et al., 1997). Resistant starch engineered from corn 

has also been found to increase Bifidobacteria sp., Ruminococcus bromii, and Eubacterium 

rectale in humans (Martinez et al., 2010). In vitro fermentation utilizing human infant fecal 

samples (n=6) tested the ability of a whole grain sorghum cereal product to alter the infant gut 

microbiota; significant increases were seen in Bacteroidaceae, Bifdobacteriaceae, 

Lactobacillaceae, Prevotellaceae, Ruminococcaceae and Veillonellaceae, whilst 

Enterobacteriaceae was decreased (Gamage et al., 2017). Sorghum bran is also highly 

concentrated with polyphenols, which are unique in their variety and composition. As discussed 

above, several studies have provided evidence that the HGM is significantly affected by 

polyphenol intake, though studies with sorghum polyphenols are limited.  Gu et al. (2007) 

demonstrated that sorghum bran procyanidins underwent microbial metabolism in vivo in rats. 

A recent study investigated the actions of sorghum brans in rats with induced colitis (Ritchie et 

al., 2015). Sorghum bran increased species richness and diversity and effected multiple 

bacterial groups, with variations correlating with polyphenol content of sorghum brans. Rats 

fed sorghum brans exhibited higher ratios of Bacteroidetes:Firmicutes than did those fed 

cellulose, and also maintained higher proportions of the order Bacillales, though Lactobacillus 

was higher in the cellulose group (Ritchie et al., 2015). As sorghum gains more attention in 
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nutritional sciences, in vitro fecal fermentations and in vivo studies will further illuminate its 

capability to improve human health through impact on gut microbial populations and 

metabolite production. 
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Chapter 2: Publication Manuscript 

Abstract 

Grain sorghum brans contain polyphenols that may promote gastrointestinal health by 

stimulating beneficial bacteria and inhibiting pathogenic bacteria. The products of microbial 

fermentation, short chain fatty acids (SCFA), have been associated with body weight 

maintenance and other positive outcomes. The objectives are to characterize the polyphenol 

compounds in sorghum bran, and to evaluate the change of gut microbiota composition and 

the effect on SCFA production with sorghum bran polyphenols in fecal samples from normal 

weight (NW) and overweight/obese (O/O) subjects. Polyphenol profiles of black (BGSB) and 

sumac (SGSB) sorghum brans and extracts (BSE and SSE) were determined using colorimetric 

and HPLC analysis. Fresh fecal samples from NW and O/O individuals were incubated with 

anaerobic media and one of six treatments: no treatment (NC), fructooligosaccharides (FOS), 

black sorghum bran extract (BSE), sumac sorghum bran extract (SSE), FOS+BSE, or FOS+SSE. 

Aliquots were collected over 24 hours and analyzed for SCFA at 0, 6, 12, 18, and 24 hours, and 

bacterial populations at 0 and 24 hours. SSB was significantly higher in total polyphenols than 

BSE (P<0.01), each displaying a unique polyphenol profile. Total SCFA production tended to be 

higher in the NW group, while butyrate production from FOS tended to be higher in the O/O 

group. Synergistic effects were seen between sorghum polyphenols and FOS to enhance 

Bifidobacterium and Lactobacillus, and sorghum polyphenols independently stimulated 

Roseburia and Prevotella and inhibited Dorea (P<0.05). Our results indicate that sorghum 

polyphenols have differential effects on gut health and may positively impact gut ecology, with 

responses varying depending on weight class. 
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1. Introduction 

  

 In the past decades, the human colon has come to light as a hub for microbial activities 

that impact many aspects of human health. The gut microbiota is composed of hundreds to 

thousands of species with biological activities including nutrient metabolism, vitamin synthesis, 

immune modulation, pro- and anti-microbial activities, and modulation of gut permeability 

(Jandhyala et al., 2015). Dysbiosis, or microbial balance, has been implicated in a number of 

chronic diseases, one of which is obesity (BMI ≥ 30).  More than one third of adults in the 

United States suffer from obesity, and not only does this condition threaten quality of life, but it 

increases the risk of other chronic diseases such as cancer, type 2 diabetes, heart disease, and 

stroke (CDC 2017). Considerable evidence points to marked differences in the gut microbial 

communities in overweight/obese compared to normal weight (Riva et al., 2017; Collado et al., 

2008; Kalliomaki et al., 2008, Santacruz et al., 2010). These findings implicate the gut 

microbiota as a potential target of nutritional therapies to prevent/reduce weight gain and 

obesity. 

 While most food consumed is digested and absorbed in the stomach and small intestine, 

complex carbohydrates such as resistant starch and fiber reach the colon where they are 

utilized by the gut microbiota (Rios-Covian et al., 2016). These compounds are fermented by 

certain species to produce short chain fatty acids (SCFAs) which have numerous health 

implications including body weight maintenance (Canfora et al., 2015; Chambers et al., 2015; 

Rossi et al., 2005; Riva et al., 2017). Prebiotics were previously defined as “selectively 

fermented ingredient(s) that result in specific changes in the composition and/or activity of the 
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gastrointestinal microbiota, thus conferring benefit(s) upon host health” and the compounds 

that fit these criteria were limited to mainly galactooligosaccharides (GOS) and 

fructooligosaccharides (FOS) (Gibson et al., 2010).  In 2017 however, prebiotics were redefined 

as "a substrate that is selectively utilized by host microorganisms conferring a health benefit" 

(Gibson et al., 2017). This new definition may allow for inclusion of non-carbohydrate foods 

that do not undergo fermentation but are utilized by beneficial species in the gut, thus 

enhancing their expansion and positive health benefits. Such compounds include polyphenols. 

 Polyphenols are biologically active compounds in plants with numerous roles including 

pathogen protection, antimicrobial, and antioxidant activities (Pandey and Rizvi, 2009). When 

consumed by humans, the majority reach the colon where they are broken down by the gut 

microbiota to smaller, absorbable compounds (Manach et al., 2004). Grain sorghum, commonly 

called sorghum, is the world’s 5th leading cereal crop and a rich source of polyphenols in its bran 

fraction (Awika et al., 2005). The polyphenol composition of sorghum bran varies with its color, 

with brown and sumac varieties enrich in proanthocyanidins (condensed tannins) and black in 

3-deoxyanthocyanins (Awika et al., 2004). Though previous research has identified positive 

modulatory effects of polyphenols from grapes and other foods on the human gut microbiota 

(Cueva et al., 2013; Anhe et al., 2015; Roopchand et al., 2015; Song et al., 2016; Zhou et al., 

2016; Neyrinck et al., 2016), to our knowledge no research has been conducted with sorghum 

polyphenol extracts. The objectives of this research were to characterize the major polyphenol 

components of two sorghum brans, and to evaluate the change of gut microbiota composition 

and the effect on SCFA production in response to sorghum bran polyphenols in fecal samples 

from normal weight (NW) and overweight/obese (O/O) subjects. 
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2. Materials and Methods 

1.1 Sorghum Brans, standards, and reagents  

 

Black and Sumac sorghum bran (BSB and SSB) were purchased from Nu Life Market 

(Scott City, KS) and FOS from Megazyme International Ireland Ltd. (Wicklow, Ireland). Folin-

Ciocalteu’s reagent, 4-dimethylaminocinnamaldehyde (DMAC), 2,2- diphenyl-1-picrylhydrazyl 

(DPPH), and butyric acid, propionic acid, and acetic acid from were obtained from Sigma-Aldrich 

(St. Louis, MO). Luteolinidin and apigeninidin were from Chromadex (Irvine, CA). 

1.2 Preparation of Polyphenols from Sorghum Bran Samples 

 

Polyphenol extractions were performed according to Awika et al. (2004) with 

modifications. Defatted sorghum bran samples (1 g) and extracting solvent (1%HCl in 70% 

methanol) were mixed at a ratio of 1:20. Mixtures were stirred at room temperature (RT) for 2 

hours, centrifuged at 6000 rpm for 10 minutes, and the supernatants were collected. The 

extraction was repeated twice, and all three supernatants pooled for the final extract, BGSB 

(black grain sorghum bran) and SGSB (sumac grain sorghum bran). Solvent was evaporated 

using rotary evaporator at 30°C, extracted polyphenols were brought to 20 mL in deionized (DI) 

water and stored at -4 °C. 

Dried polyphenol extracts were prepared to be used as substrates in the in vitro fecal 

fermentation experiment. Polyphenols were extracted by combining defatted dry bran (5 g) and 

extracting solvent (1:60) and stirred at RT for 2 hours. Vacuum filtration with 42 Whatman filter 

paper (GE Healthcare, Amersham, UK) was used to separate extract from solid particles, and 
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solvent was removed using rotary evaporation at 30°C. The aqueous extract was then 

centrifuged at 6000 rpm for 10 minutes and supernatant applied to a pre-activated C-18 solid 

phase extraction (SPE) column (Grace Davidson Discovery Sciences, Deerfield, IL). Sugars were 

eluted with 100 mL water, and remaining components with 100 mL methanol.  After elution of 

polyphenols, 50 mL of DI water was then added to methanolic extract and methanol was 

removed through rotary evaporation at 30°C. The concentrated aqueous extract was then 

frozen and subsequently lyophilized in a VirTis Benchtop SLC freeze dryer (SP Industries, 

Warminster, PA). Resulting powdered extracts, black sorghum bran extract (BSE) and sumac 

sorghum bran extract (SSE), were then pooled and stored in a desiccator at -4°C until further 

analysis. 

1.3 Analysis of Polyphenol Content and Antioxidant Activity 

 

Total polyphenolic content of sorghum brans and bran extracts was determined using 

the Folin-Ciocalteu assay according to Singleton and Rossi (1965) with minor modifications. 

Standards were prepared using gallic acid in concentrations of 3.125, 6.25, 12.5, 25, 50, and 100 

ppm. BGSB and SGSB were centrifuged at 6000 rpm for 10 minutes and diluted 40-fold in water. 

BSE and SSE were dissolved in water for a dilution of 8000-fold. In a 48-well plate, 0.1 ml 

sample or standard, 0.5 mL of 0.2 N Folin-Ciocalteu’s reagent, and 0.4 ml of 7.5% Na2CO3 were 

combined. The plate was incubated at room temperature (RT) for 2 hours and analyzed in 

Synergy TT microplate reader (BioTek Instruments, Winooski, VT) at 760 nm. All samples and 

standards were measured in at least triplicate. Concentration was determined by plotting 

against a standard curve of absorbance and concentration using gallic acid.  
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Total proanthocyanidin content was determined using the 4-

dimethylaminocinnamaldehyde (DMAC) assay (Payne et al., 2010). For preparation of 60 mL 

DMAC solution, 6 mL HCl was diluted to 60 mL using reagent alcohol (95% ethanol in water), 

cooled at 4  ̊C for 20 minutes, with subsequent addition of 60 mg DMAC. Standards were 

prepared using catechin and reagent alcohol at concentrations of 100, 50, 25, 12.5, 6.25 and 

3.125 ppm. BGSB and SGSB were centrifuged at 6000 rpm for 10 minutes and diluted 40-fold in 

reagent alcohol. BSE and SSE were dissolved in alcohol for a dilution of 8000-fold. In a 48-well 

plate, 0.15 mL of sample or standard and 0.75 mL of DMAC solution were combined, all in at 

least triplicate. Plates were read immediately at 640 nm in microplate reader. Concentration 

was determined by plotting against a standard curve using catechin. 

For qualitative and quantitative analysis of 3-deoxyanthocyanins (3-DXA) a Beckman 

Coulter (Denvers, MA) System Gold HPLC system was used.  The system was equipped with a 

126 pump, a 168 Detector, and a 508 autosampler. Software used for data collection and 

integration was 32 Karat 8. A 250x4.6 mm i.d. C18 column (YMC America Inc, Allentown, PA) 

was used for separation of 3-DXA in sorghum and standards. The mobile phase consisted of A: 

5% formic acid in water, and B: 100% methanol. Flow rate was 1 mL min- and injection volume 

was 30 µL. The gradient of Cho et al. (2004) was used, with minor modifications: 0-60 min, 2-

60% B, 60-61 min: 60-2% B, 61-66 min, 2% B, 66-75 mins: 2-0% B. Wavelengths monitored were 

280, 340, and 480. Apigeninidin and luteolinidin were identified by comparing retention time 

and λ-max with standards. Quantification use standard curves constructed from peak areas of 

different concentrations of standards.  
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Antioxidant properties were determined using the free radical 2,2- diphenyl-1-

picrylhydrazyl (DPPH) assay according to Brand-Williams et al. (2004) with modifications. DPPH 

solution was prepared by dissolving in methanol (0.15 mM) and stored at -20°C between uses. 

Serial dilutions of BGSB and SGSB, as well as BSE and SSE, were prepared in methanol. For 

reaction, 0.95 mL DPPH solution was added to 0.05 mL extracts of varying concentrations and 

shaken. Plates were read in microplate reader at 30 minutes at 517 nm. Effective concentration 

to reduce the radical by 50% (EC50) was determined for both brans and reported as µg gallic 

acid equivalents per gram. All samples and standards were plated in at least triplicate.  

1.4 Human Fecal Fermentation 

 

The study has been approved by the International Review Board (University of Arkansas; 

IRB #17-02-433). Twenty-two subjects were recruited from the North West Arkansas area, 11 

normal weight (NW, BMI<25) and 11 overweight/obese (O/O, BMI ≥25) subjects. Exclusion 

criteria included tobacco use, digestive disease, fasting blood glucose (FBG), current 

medications (besides birth control), and antibiotic use within the past six months. Consent and 

screening forms as well as food frequency questionnaires were filled out during screening 

sessions. No significant differences in macro- and micro-nutrient intake were observed 

between weight class groups or genders. Participant characteristics are provided in Table 1. 

Selected participants were given a stool collection kit and delivered samples within an hour of 

defecation. Fecal samples were transferred to anaerobic chamber immediately for 

fermentation experiment. 
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Fecal fermentation was performed according to Yang et al. (2013) with minor 

modifications.  One liter of anaerobic fermentation medium was composed of 2 g peptone 

(Fischer Scientific, Waltman, MA), 2 g yeast extract (Alfa Aesar, Ward Hill, MA), 0.5 g bile salts 

(Oxoid, Hampshire, UK),  2 g NaHCO3, 0.1 g NaCl, 0.08 g K2HPO4,  0.01 g MgSO4.7H2O, 0.01 g 

CaCl2.6H2O, 0.5 g L-cysteine hydrochloride (Sigma-Aldrich, St. Louis, MO), 50 mg bovine hemin 

(Sigma-Aldrich, St. Louis, MO), 2 ml Tween 80, 10 µl vitamin K (Sigma-Aldrich, St. Louis, MO), 

and 4 ml 0.025% (w/v) resazurin solution. To prepare fecal slurry, 2 g fecal sample was added to 

20 mL phosphate-buffered saline, vortexed to homogenization, and filtered through 4 layers of 

cotton gauze. Within an anaerobic chamber, 14 mL of medium was inoculated with 1 ml fecal 

slurry and treated with either no substrate (negative control, NC), FOS (5 g/L), BSE polyphenols 

(1 g/L), SSE polyphenols (1 g/L), FOS (5 g/L) + BSE (1 g/L), or FOS (5 g/L) + SSE (1 g/L). Test tubes 

were incubated at 37°C and aliquots (2-4 mL) taken at time points (TP) 0, 6, 12, 18, and 24 

hours. Aliquots were added to 0.1-0.2 mL of 2M KOH stop solution and stored at -80 °C.  

Short chain fatty acid (SCFA) content was determined for all samples at all time point 

aliquots using a modified method of Bourquin et al. (1993). After thawing at room temperature, 

samples were vortexed and 450 µL combined with 50 µL of a prepared mixture. The mixture 

contained 50 g meta-phosphoric acid and 1.6 g CuSO4/liter, and 314.6 μL 4-methyl valeric acid 

was used as an internal standard. After incubation at room temperature for 10 minutes, the 

mixture was centrifuged at 11,500 rpm for 5 minutes and the supernatant collected and stored 

at -20°C until analysis. SCFA analysis was performed using a Varian CP-3800 GC (Agilent, Santa 

Clara, CA) with a CP-8400 autosampler and a HP-FFAP modified polyethylene glycol (25m x 

32mm) column. One µL of sample was injected with a split of 30:1 and a flow rate of 1.3 
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ml/min. The gradient used was 3°C/min from 65°C to 110°C and 8°C/min until 150°C. Total and 

individual SCFA were quantified against reference standards for butyric acid (BA), propionic acid 

(PA) , and acetic acid (AA). 

 Change of microbiota profile to treatments were determined by analyzing bacterial DNA 

of samples from time point 0 and 24 hours. DNA was extracted using the QIAamp Fast DNA 

Stool Mini Kit (Qiagen, Gaithersburg, MD), combined with AccuPrime Pfx SuperMix and primers 

and amplified by polymerase chain reaction (PCR) using Eppendorf Mastercycler Pro S 

(Eppendorf, Hamburg, Germany). After confirming amplification through agarose gel 

electrophoresis, DNA samples were normalized with SequalPrep Normalization Plate Kit 

(Thermo Fisher Scientific, Waltham, WA). The V4 region of 16S-rRNA of bacteria in samples was 

sequenced utilizing the Illumina MiSeq platform (Kozich et al., 2013). Fastq files generated 

through Illumina were demultiplexed and quality filtered, operational taxonomic units (OUT’s) 

assigned using SILVA database, and the data processed through Mothur 1.35.1 (Schloss et al., 

2009). 

1.5 Statistical Analysis  

 

Statistical analysis was performed using SPSS (IBM, Armonk, NY). One-way ANOVA was 

used for analysis of sorghum bran components. Friedman’s test with Bonferroni correction was 

used to analyze the differences in SCFA incremental concentration between treatments at 6, 

12, 18, and 24 hours. Non-metric multidimensional scaling was utilized to analyze similarities in 

bacterial communities between treatments.  PAST 3.15 was used for non-metric 

multidimensional scaling and analysis of similarities (ANOSIM) according the the Bray-Curtis 
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index, and species diversity was calculated according to the Shannon index. Data will be 

presented as Mean ± standard deviation (SD) or standard error of the mean (SEM), and results 

will be considered significant at P<0.05. 

3. Results 

2.1 Polyphenol Profiles and Antioxidant Properties of Sorghum Bran and Sorghum 

Bran Extracts 

 

For polyphenol content analysis, multiple extraction procedures and solvents were 

tested for efficacy, and the current method chosen based on maximum values for total 

polyphenols. Total polyphenols and proanthocyanidins significantly higher in sumac grain 

sorghum bran (SGSB, 43.0 ± 2.0 mg/g and 7.8 ± 0.5 mg/g), and 3-deoxyanthocyanins in black 

grain sorghum bran (BGSB, 1.2 ± 0.0 mg/g) (P<0.01) (Table 2). Polyphenol profiles of BSE (black 

sorghum bran extract) and SSE (sumac sorghum bran extract) closely resembled those of the 

bran at much higher concentrations.  

Radical scavenging capability was assessed using the DPPH radical, and both black and 

sumac sorghum bran demonstrated antioxidant capabilities (Table 2). BGSB demonstrated a 

significantly lower EC50 (54.1 ± 2.9 µg GAE/g) that those SGSB (79.9 ± 3.2), implicating a more 

potent antioxidant effect of black sorghum bran (P<0.01). However, after extraction and 

lyophilization both extracts (BSE and SSE) demonstrated lower antioxidant activity, with no 

significant differences between the two. 
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2.2 Short Chain Fatty Acid Production 

 

 Short chain fatty acid analysis was performed as a measure of microbial fermentation of 

the various substrates applied as treatments during our experiment.  No significant differences 

in total and individual SCFA production was observed between NW and O/O. In NW at 6 h, total 

SCFA concentration was significantly increased by FOS and FOS+SSE compared to the NC, BSE, 

and SSE (Figure 1A; P<0.05). No significant effect of FOS with or without sorghum extracts was 

seen in both NW and O/O (Figure 1A and 1B). Compared to BSE, SSE resulted in lower 

concentrations at time points from 12 h and 24 h in both NW and O/O.    

 Acetic acid (AA) is present in the colon at much higher concentrations than either 

butyric acid (BA) or propionic acid (PA) and makes the largest contribution to total SCFA. In NW, 

FOS alone increased AA compared to NC, BSE, SSE, and FOS+BSE at 6 h, and FOS+BSE displayed 

lower concentrations compared to FOS at 12 h (Figure 2A; P<0.05). These effects were ablated 

with time, and no differences between treatments were observed at time points of 18 h and 24 

h. No major impacts of treatments on AA concentration were seen in O/O (Figure 2B). As 

reflected in Total SCFA, AA production was generally higher in NW than O/O, though not 

significantly.  

 Incremental propionic acid concentration was not significantly impacted by FOS with or 

without sorghum extracts in NW or O/O (Figure 3). However, sorghum polyphenols alone 

appeared to have an effect. In both weight classes, SSE tended to have lower PA production 

than BSE over 24 h.  At 12 h, SSE caused lower concentrations of PA compared to NC in NW 

(P<0.05) and the trend continued at 18 and 24 h.  In O/O, this this same effect was seen at 12 
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and 18 h (P<0.05) with the trend continued at 24 h. A similar trend was observed in AA, which 

tended to be lower in response to SSE than the NC at 24 h in both weight groups.  

 In both NW and O/O, incremental BA concentration in FOS, FOS+SSE, and FOS+BSE 

treatments trended higher than NC, SSE, and BSE at all time points (Figure 4). In O/O, 

incremental BA concentrations with FOS significantly higher than NC, BSE, and SSE at 24 h 

(Figure 4B, P<0.05). Sorghum extracts alone did not alter BA concentrations. BA production was 

higher in O/O than in NW, though not reaching statistical significance.   

2.3 General Changes in the Microbiota 

 

 After DNA extraction and sequencing of 264 samples, a total of 5,062,231 high quality 

reads were obtained for analysis of microbial populations. After 24 hours, the three most 

abundant genera in the controls were Bacteroides, Enterobacteriaceae_unclassified, and 

Ruminococcaceae_unclassified for NW, and Bacteroides, Enterobacteriaceae_unclassified, and 

Prevotella for O/O (Figure 5). Although Prevotella was the third most abundant genus in O/O, it 

was not among the top 15 genera in NW. The control fermentation resulted in a significant 

increase in species diversity from 1.72 (0 hours) to 2.68 (0 hours) (P<0.05; Figure 6). BSE and 

SSE brought about similar increases (P<0.05), however FOS-containing treatments saw no 

significant increases in diversity compared to the control at time point 0. NMDS plots revealed 

no differences in bacterial communities between treatments at time point 0 (Figure 7A), 

however after 24 hours clear separation was seen between the NC and FOS-Containing 

treatments (P<0.05; Figure 7B). Sorghum extracts alone did not significantly impact bacterial 

communities compared to the negative control.  
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2.4 Specific Changes in Microbial Populations 

 

 Due to high interindividual variation, results are being reported for the 22 subjects’ 

samples combined as well as for individual weight class groups.  

 After 24 hours of in vitro fermentation, we observed relative increases in Firmicutes in 

all treatments (Figure 8). We found that BSE lessened this effect. BSE resulted in lower levels of 

Firmicutes at 24 hours compared to FOS and FOS+SSE (P<0.05). When analyzed by weight class, 

the same pattern was seen in O/O, but in the NW group there were no significant differences 

between treatments (Table 3). When treated with BSE, abundance of Firmicutes at 24 hours 

was higher in NW than in O/O (P<0.05). 

 As relative abundance of Firmicutes increased there was a corresponding decrease in 

Bacteroidetes (Figure 8). In all subjects BSE resulted in significantly higher abundance of 

Bacteroidetes at 24 hours than NC and all other treatments (P<0.05). Similar effects were 

observed in O/O (P<0.05), and though BSE tended to increase Bacteroidetes in NW, it did not 

significantly increase compared to NC (Table 3). The O/O group displayed higher abundance of 

Bacteroidetes than the NW group at 24 hours in the NC, FOS, BSE, and SSE (P<0.05). This effect 

was not seen with FOS+BSE or FOS+SSE (Table 3). 

 In the negative control, there were negligible increases of less than 0.5% in relative 

abundance of Actinobacteria after 24 hours (Figure 8). While BSE and SSE led to slightly higher 

abundance, FOS, FOS+SSE and FOS+BSE increased at significantly higher magnitudes of 10%, 

9%, and 12%, respectively (P<0.05). The same pattern was observed for both weight classes, 
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though NW tended to display a greater response than O/O to all treatments with a significant 

difference seen between weight classes for BSE and FOS+SSE (P<0.05) (Table 3).  

 Relative abundance of Verrucomicrobia decreased by about 0.1% in NC after 24 hours 

(Figure 8). In contrast, BSE increased abundance by 0.6% though the difference between NC 

and BSE was statistically insignificant. A similar pattern was observed in the individual weight 

classes groups, and though there was a greater response to BSE in NW individuals there were 

no significant differences between groups (Table 3).  

 While Proteobacteria was increased by 17% at 24 hours in the NC, changes in relative 

abundance were 10% or lower for all treatments (Figure 8). FOS, FOS+BSE, and FOS+SSE were 

significantly different from the negative control, BSE, and SSE (P<0.05) after 24 hours of in vitro 

fermentation. The same patterns of response to treatments were seen in NW and O/O 

individuals, and O/O displayed lower abundance than NW with FOS+BSE and FOS+SSE (Table 3; 

P<0.05). 

 After 24 hours, Bifidobacterium relative abundance in FOS, FOS+BSE, and FOS+SSE was 

significantly higher than the NC, BSE, and SSE (Figure 9; P<0.05). Sorghum polyphenols alone 

had no effect. When analyzed by weight class, samples from NW subjects had significantly 

higher levels of Bifidobacterium after 24 hours than O/O samples when treated with FOS and 

FOS+SSE (Table 4; P<0.05). Additionally, the NW group displayed the same pattern as with all 

subjects combined. In O/O however, FOS alone did not significantly enhance proliferation, but 

FOS+BSE and FOS+SSE had significantly higher abundance of Bifidobacterium after 24 hours 

compared to the NC (Table 4).  
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 While there was scant change (0.01%) in Lactobacillus in the NC after 24 hours, increases 

of this genus, though small, were seen in all treatments (Figure 9). While FOS alone did not 

significantly increase abundance at 24 hours compared to the NC, FOS+BSE and FOS+SSE had 

significantly higher levels compared to the NC (P<0.05). In NW group, FOS+SSE alone had a 

significant effect and only FOS+BSE had a significant effect in the O/O group compared to the NC 

(Table 4; P<0.05). Sorghum polyphenols alone did not significantly affect Lactobacillus. There 

were no significant differences between weight class groups for this genus.  

 Relative abundance of Prevotella decreased from about 20% to 5% in the NC but to a 

lesser extent in all treatments (Figure 9). At 24 hours, abundance was significantly higher than 

the NC for BSE, SSE, FOS+BSE and FOS+SSE (P<0.05) but not for FOS alone. Additionally, BSE and 

FOS+SSE had significant higher levels than FOS (P<0.05). In the NW and O/O groups, only BSE 

and FOS+SSE significantly increased Prevotella compared to NC (Table 4; P<0.05). Prevotella 

was present at significantly higher levels in O/O than NW in all treatments after 24 hours 

(P<0.05). 

 After 24 hours of in vitro fermentation, Bacteroides was decreased in NC and all 

treatments (Figure 9). Both BSE and SSE resulted in higher abundance at 24 hours than FOS 

(P<0.05). There were no significant differences between treatments in the NW group, and in 

the O/O group BSE alone resulted in higher abundance at 24 hours than FOS (Table 4; P<0.05). 

Though Bacteroides tended to be higher in NW samples, no significant differences were 

observed between the two groups.  
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 Relative abundance of Dorea was increased after 24 hours in the NC but to a much 

lesser extent in the five treatments (Figure 9). At 24 hours, Dorea was present in lower 

abundance than the NC in all treatments except SSE (P<0.05). When analyzed by weight class 

groups only FOS had a significant impact compared to the NC (Table 4; P<0.05). O/O samples 

had a significantly lower abundance of Dorea than NW in response to BSE. 

There was little change in Faecalibacterium over 24 hours in the NC, however 

abundance decreased in response to all treatments and was significantly lower in FOS, BSE, and 

FOS+BSE at 24 hours compared to NC, SSE, and FOS+SSE (Figure 10; P<0.05). In samples from 

NW subjects only FOS and FOS+BSE were significantly different from the NC, and in O/O 

samples only FOS+BSE was significantly lower (Table 4; P<0.05). Abundance of Faecalibacterium 

was significantly higher at 24 hours in NW than O/O in NC and all treatments except FOS. 

 Roseburia was stimulated by sumac sorghum polyphenols, with SSE resulting in higher 

abundance than NC and FOS at 24 hours (Figure 10; P<0.05). When analyzed by weight groups, 

NW followed the same pattern (P<0.05), but no significant differences were seen between 

treatments for OO (Table 4). The proliferation of Roseburia in response to SSE was also 

significantly higher in NW than O/O (P<0.05).  

 Relative abundance of Anaerostipes increased after 24 hours of fermentation in the NC, 

but to a higher magnitude in FOS, FOS+BSE, and FOS+SSE (Figure 10). At 24 hours, abundance 

was higher in FOS, FOS+BSE, and FOS+SSE compared to NC (Figure 10; P<0.05). When analyzed 

by weight class groups, FOS+BSE and FOS+SSE significantly increased Anaerostipes compared to 
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NC and BSE (P<0.05), but FOS alone was insufficient to elicit this effect (Table 4). There were no 

differences between NW and O/O.  

4. Discussion 

 

 As chronic diseases such as obesity trend toward epidemic proportions, the topic of gut 

health, and more specifically the gut microbiota, has gained increasing attention in the realms 

of health and nutrition. For this reason, a recent focus of nutrition research has been identifying 

whole foods as well as bioactive components with the potential to positively shift dysregulated 

bacterial populations towards more desirable profiles. Of particular allure are plant 

polyphenols, as they are widely spread in nature and have been credited with the ability to 

positively modulate the gut microbiota. Not only grain sorghum bran is a rich source of 

polyphenols, but it is cost effectively and efficiently produced in the United States, making it an 

attractive candidate for nutraceutical applications. 

Our current study found both black and sumac sorghum brans to be highly concentrated 

with polyphenols. Our findings of 27.5 ± 1.5 mg/g for black and 43.0 ± 2.0 mg/g for sumac are 

consistent with previous reports of total phenolics ranging from 7.6-35.6 mg/g and 22.5-88.5 

mg/g for black and sumac sorghum bran, respectively (Awika et al., 2004, 2004, 2005). We 

found 3-Deoxyanthocyanins (3-DXA) to be higher in black bran (1.2 ± 0.003 mg/g) compared to 

sumac bran (0.14 ± 0.007 mg/g), and sumac bran to be the dominant source of 

proanthocyanidins (7.8 ± 0.5 mg/g) over black (0.4 ± 0.08 mg/g). These results are in consensus 

with multiple previous analyses of black and sumac sorghum, in which black is established as 
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enriched in 3-DXA, and sumac in proanthocyanidins (Awika et al., 2003, 2004, 2005; Dykes et 

al., 2005). 

It has been well established that grain sorghum bran has significant antioxidant 

capabilities (Awika et al., 2003, 2004, 2005; Kamath et al., 2005; Kil et al., 2009), and our 

current analyses sought to compare the radical scavenging properties of the two different 

varieties of sorghum bran. Despite lower levels of total polyphenols, BGSB (black grain sorghum 

bran) had a lower EC50 (54.1 ± 2.9 µg/g) than sumac grain sorghum bran (SGSB, 79.9 ± 3.2 µg/g), 

implicating more efficient radical scavenging capabilities of the polyphenols present in black 

sorghum bran. While polyphenols were extremely concentrated in the dried sorghum extracts 

(BSE or SSE) compared to the bran, EC50 for both black and sumac polyphenols were 

significantly and greatly increased, reflecting a loss of antioxidant potential through the 

purification and/or freeze-drying process. It was previously reported that freeze drying of water 

caltrop resulted in reduction of scavenging abilities paralleled by the loss of hydroxycinnamic 

acid, a naturally present phenolic acid (Chiang et al., 2008). It is possible that in the present 

study, certain phenolic compounds were altered or lost during freeze drying.  

During our in vitro experiment, we examined the abilities of BSE and SSE to alter short 

chain fatty acids produced from FOS, a well-established prebiotic with known fermentability 

(Stewart et al., 2008). It is evident that butyric acid (BA) was the major end fermentation 

product in FOS-containing treatments during this experiment, as it resulted in increased 

concentrations in both NW and O/O over 24 h (Figure 4). Lactobacillus and Bifidobacterium are 

both known to utilize FOS to produce lactic acid (Kaplan and Hutkins 2000), which can be 

further metabolized to BA by genera such at anaerostipes (Duncan et al., 2004). In our 
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experiment we found increases in Lactobacillus, Bifidobacterium, and Anaerostipes in response 

to FOS-containing treatments (Figures 9 and 10), so it is plausible that the increases in BA were 

due to these cross-feeding pathways. In FOS, incremental BA concentration was higher than PA 

(propionic acid). These results are in accordance with the findings of Stewart et al. (2008) who 

reported that in vitro fermentation of FOS with pooled fecal samples from 3 subjects  resulted 

in higher levels of BA (9.0-9.6 µmol/ml) than PA (1.8-2.7 µmol/ml). Interestingly, we found that 

FOS did not impact AA (acetic acid) compared to the NC, which is not in agreement with the 

report of Stewart et al. (2008) who saw production of AA from FOS. While total SCFA 

concentration was increased by fermentation with FOS compared to NC, it did not reach 

statistical significance. Fructooligosaccharides exhibit more rapid fermentation than long-chain 

inulin in an in vitro fermentation system. 

  Our SCFA analysis suggests that SSE decreased production of PA from substrates already 

present in the donated fecal samples. In O/O, PA production was significantly lower in SSE 

compared to the NC at 12 and 18 h (P<0.05), and this trend continued to 24 h (Figure 3B). 

Similar results were seen in NW, but only reaching significance at 12 h. It is likely that SSE was 

an alternative substrate for PA-producing bacteria that would otherwise metabolize materials 

already present in the fecal material. Modulation of SCFA production by BSE and SSE are likely 

attributable to their interactions with the bacterial species that produce these substrates. 

Distinct differences in total SCFA production between BSE and SSE indicate differential effects 

of varying classes of polyphenols on microbial metabolism. Total SCFA production with SSE was 

significantly lower than BSE at 24 h in both weight groups (Figure 1; P<0.05). The same 

tendency was observed for PA and AA. This is one of the first studies to examine the impact of 
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sorghum bran polyphenols on SCFA production and further work is needed to corroborate 

these findings.  

Along with SCFA we analyzed changes in bacterial populations after 24 h of 

fermentation. Compared with time point 0, we observed an increase in species diversity in the 

NC as well as with BSE and SSE, although no increase was seen with FOS-containing treatments, 

and at 24 h they exhibited significantly lower diversity than NC, BSE, and SSE (Figure 6). 

Diversity takes into account species richness (total number of species) as well as the evenness 

in distribution of those species. Our result are likely a reflection of decreasing abundance of 

dominant saccharolytic species (such as Prevotella), in turn allowing for the flourishing of other 

non-saccharolytic species.  

Although NMDS did not reveal a significant impact of sorghum polyphenols on the 

overall microbial communities (Figure 7), the sorghum extracts modulated the gut microbiota 

at both phyla and genus levels, and sorghum polyphenols and FOS worked synergistically to 

enhance specific beneficial genera. The major bacterial phyla present in the human colon are 

Bacteroidetes and Firmicutes, though additional phyla such as Actinobacteria, Verrucomicrobia, 

and Proteobacteria are present in lower abundance. In all treatments as well as the negative 

control, we saw relative shifts in the two major phyla, Firmicutes increasing in abundance and 

Bacteroidetes decreasing (Figure 8). This is not surprising as many carbohydrate utilizers 

including the probiotic Lactobacillus are within Firmicutes, and the conditions of the 

experiment promote utilization of these substrates, including those already present in the fecal 

samples. This shift was less pronounced in BSE, which at 24 h had significantly higher levels of 

Bacteroidetes than the NC and FOS as well as lower levels of Firmicutes compared to FOS 
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(Figure 8; P<0.05), It is interesting to note that FOS+BSE tended to produce less BA than FOS. It 

could be suggested that the compounds present in BSE are an alternative food source to FOS-

utilizing bacteria, one which may not promote proliferation to the same extent and does not 

result in butyric acid production. When analyzed by weight class, O/O followed the same 

pattern as with all subjects combined, however no significant differences in Firmicutes were 

seen between treatments in the NW group suggesting a higher resilience of this phylum to 

dietary modulation in NW.  Bacteroidetes followed the same pattern in the individual weight 

class groups as when combined.  After 24 h O/O samples produced significantly higher 

abundance of Bacteroidetes than NW in the NC, FOS, BSE, and SSE (Table 3). These differences 

were ameliorated with FOS+BSE and FOS+BB, which did not produce a differing response in NW 

and O/O. NW samples tended to produce higher levels of Firmicutes, though the difference was 

only significant in response to BSE.  These results indicate differential impacts of nutrients 

between weight class groups at the phylum level.  

Actinobacteria composes a minute portion of human gut microbes but is of interest due 

to Bifidobacterium, another probiotic genus. BSE and SSE alone had no apparent effect, but 

FOS, FOS+BSE, and FOS+SSE all enhanced abundance of this phylum (Figure 8). No differences 

were seen between FOS treatments. These findings indicate that sorghum polyphenols may not 

interact with many bacteria within Actinobacteria. The individual weight class groups followed a 

similar pattern of response to treatment, and NW and O/O were only different in response to 

BSE and FOS+SSE.  

Verrucomicrobia contains the genus Akkermansia, which has potential implications in 

obesity and body weight maintenance (Schneeberger et al., 2015). In recent years, polyphenols 
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from multiple sources have demonstrated the ability to enhance Akkermansia in mice (Anhe et 

al., 2015; Roopchand et al., 2015; Song et al., 2016; Neyrinck et al., 2016), however in the 

current study sorghum polyphenols impacted neither Verrucomicrobia (Figure 8) or 

Akkermansia abundance. As Akkermansia generally colonizes in the mucus layer over the 

intestinal epithelium (Derrien et al., 2008), it is likely that factors involved in phenolic 

modulation of this genus were not present during the present in vitro fecal fermentation.   

Proteobacteria contains several potentially pathogenic bacteria (Shin et al., 2015), and 

reducing the relative abundance of this phylum is a positive outcome of nutrition strategies. 

Compared to the NC, lower abundance of Proteobacteria was seen with all treatments, though 

the difference was only significant for FOS-containing treatments (Figure 8).  We saw the same 

pattern in individual weight class groups. These shifts in abundance of Proteobacteria likely 

reflect the increases in groups which utilize FOS (Table 3). Though not statistically significant, 

BSE and SSE caused a marked decrease in Proteobacteria compared to the NC, suggesting they 

may act antagonistically against some pathogenic species. These results are similar to those of 

Pham et al., who found that during in vitro fecal fermentation Proteobacteria was decreased by 

FOS, feruloylated arabinoxylans, rice bran polyphenols, and feruloylated arabinoxylans and rice 

bran polyphenols combined. Though all treatments significantly decreased Proteobacteria 

compared to the NC, a smaller impact was observed for polyphenols alone (Pham et al., 2017). 

Though health-promoting bacterial genera in the colon are not limited to Lactobacillus 

and Bifidobacterium, they are the traditional targets of prebiotic supplementation (Gibson et 

al., 2017). With all samples combined, Bifidobacterium proliferation was enhanced by FOS, 

FOS+BSE, and FOS+SSE (Figure 9). When analyzed by weight group, the same pattern was seen 
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in NW samples. Compared to NW, O/O samples resulted in significantly lower levels of 

Bifidobacterium for FOS and FOS+SSE (P<0.05), and trended lower for FOS+BSE (Table 4). 

However, in O/O only FOS+BSE and FOS+SSE brought about significantly greater abundance of 

Bifidobacterium than the NC (P<0.05). This data suggests utilization of FOS by Bifidobacterium is 

altered in O/O microbiota, and that sorghum polyphenols may enhance fermentation of FOS by 

this species in O/O subjects. As decreased proportions of Bifidobacterium have been seen 

previously in overweight/obese subjects (Kalliomaki et al., 2008; Santacruz et al., 2010), 

nutritional therapies to increase this genus may be extremely beneficial to individuals 

combatting excessive body weight gain. Past in vitro fermentation studies have observed 

stimulation of Bifidobacterium by polyphenols such as the anthocyanin malvidin-3-glucoside 

(Hidalgo et al., 2012), multiple compounds known to be present in tart cherries (Mayta-Apaza 

et al., 2012), and grape and red wine polyphenols (Zhou et al., 2016; Dolara et al., 2005). In our 

experiment, however, this genus was not apparently impacted by sorghum polyphenols alone.  

In all samples combined as well as in individual weight class groups, FOS and sorghum 

polyphenols worked synergistically to enhance Lactobacillus. Though FOS, BSE, and SSE alone 

did not significantly impact Lactobacillus proliferation, FOS+BSE and FOS+SSE resulted in 

significantly higher abundance compared to the NC (Figure 9). As Lactobacillus was present at 

low abundance, further studies are needed to corroborate these effects. Success of prebiotic 

research in stimulating growth of Lactobacillus has been markedly lower than with 

Bifidobacterium (Gibson et al., 2017), and the ability of polyphenols to enhance oligosaccharide 

utilization by Lactobacillus would provide a new avenue of prebiotic supplementation. As 

human clinical trials have attributed several strains of Lactobacillus with anti-obesogenic 
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actions (Crovesy et al., 2017), this mode of supplementation may be especially beneficial in 

body weight maintenance. In addition, previous studies have observed stimulation of 

Lactobacillus by red wine polyphenols and anthocyanin malvidin-3-glucoside (Dolara et al., 

2005; Hidalgo et al., 2012). Often associated with long-term high carbohydrate diets, Prevotella 

is a PA-producing genus with potential impact on human health (Wu et al., 2011).  Prevotella 

was significantly stimulated by BSE, SSE, FOS+BSE, and FOS+SSE compared to NC, but not by 

FOS alone (Figure 9). There were no significant differences between sorghum polyphenols with 

and without FOS, indicating that sorghum polyphenols were responsible for the increases in 

Prevotella. At 24 h in all treatments, the O/O group had significantly higher levels of Prevotella 

than the NW group. While Prevotella was the 3rd most abundant genus in the O/O group after 

24 h, it was not within the top 15 most abundant in NW (Figure 5). Previously, Prevotella 

dominant microbiota were associated with enhanced production of BA from FOS (Chen et al., 

2017). These findings may explain why BA production tended to be higher in O/O samples in 

the present study. To our knowledge, this is the first report of polyphenols enhancing Prevotella 

in the human microbiota. A recent study found that in 62 obese subjects, individuals with a high 

Prevotella:Bacteroides ratio lost significantly more weight in response to a high-fiber diet than 

individuals with lower levels of Prevotella (Hjorth et al., 2018). Enhancing the ratio of 

Prevotella:Bacteroides may assist in weight-loss strategies that are based on increased fiber 

intake. In the present study, Bacteroides was more abundant than Prevotella in the NC at 24 h, 

however in O/O samples all treatments resulted in increased Prevotella:Bacteroides with higher 

levels of Prevotella after 24 h (Table 4). 
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In addition to enhancing beneficial bacteria, downregulation of potentially harmful 

genera is a positive outcome of nutritional interventions to modulate the microbiota. Dorea has 

been found in increased prevalence in irritable bowel disease (Rajilic-Stojanovic et al., 2011; 

Saulnier et al., 2011), multiple sclerosis (Chen et al., 2016) and non-alcoholic liver disease (del 

Chierico et al., 2017). Compared to the negative control, Dorea was decreased by all FOS-

containing treatments as well as by BSE alone (Figure 9). The ability of black sorghum 

polyphenols to inhibit Dorea is consistent with the findings of Pham et al. (2017) of suppressed 

Dorea by red rice bran polyphenols. As Dorea has been seen as a biomarker for dysbiosis in 

multiple diseases, decreasing its abundance through nutritional means may help restore 

harmonious gut ecology, and our results indicate that black sorghum polyphenols may have 

these effects. 

Additional targets of prebiotic supplementation include BA-producing bacteria. BA is not 

only the main energy source of colonocytes, but research has purported numerous roles in 

colon-cancer antagonism, inflammation suppression, and colonic barrier function (Hamer et al., 

2008). In the present study, we found increased BA production with FOS, FOS+BSE, and 

FOS+SSE in both weight classes. This trend was paralleled by increased abundance of 

Anaerostipes in response to FOS-containing treatments, though in individual weight groups the 

increase was only significant for FOS+BSE and FOS+SSE (this may be due to decreased sample 

size) (Table 4).  Anaerostipes produces BA by metabolizing lactate produced by other species or 

utilizing AA through the butyryl CoA: acetate CoA transferase pathway (Louis and Flint, 2016), 

and our results suggest that this genus was responsible for much of the BA production during 

this in vitro fermentation.  
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Faecalibacterium is another BA-producing genus which during the current study was 

decreased by all treatments with FOS, BSE, and FOS+BSE significantly lower than the NC at 24 

hours. In contrast, it was previously reported that Faecalibacterium was increased in response 

to FOS, and to a greater extent, red rice bran polyphenols during a similar experiment (Pham et 

al., 2017).  These conflicting results are likely due to the presence of different polyphenol 

compounds. The differential responses of Faecalibacterium to FOS may also reflect different 

patterns of crosstalk between the bacterial species present in each experiment, and underscore 

the complexity of gut microbial fermentation. 

 Roseburia is a novel bacterium which also has the ability to produce BA through the 

butyryl CoA: acetate CoA transferase pathway (Duncan et al., 2002). Though little research has 

been done with this genus, reduced abundance of Roseburia has been a marker of dysbiosis in 

both ulcerative colitis (Machiels et al., 2014) and colorectal cancer (Wang et al., 2012). Previous 

studies have identified stimulation of Roseburia by various carbohydrate sources (Neyrinck et 

al., 2011, 2012), but it was not significantly impacted by FOS-containing treatments in the 

present study. SSE, on the other hand, caused significant increases compared to both NC and 

FOS (Figure 10), indicating utilization of sumac sorghum polyphenols by Roseburia. This is not 

the first report of Roseburia stimulation by polyphenols, as this genus also increased in 

response to red rice bran polyphenols (Pham et al., 2017). When weight class groups were 

analyzed separately NW followed a similar pattern, however in O/O there were no significant 

differences between treatments. NW also had a significantly higher response to SSE than O/O 

(Table 4). These findings suggest that the microbial environment present in O/O individuals is 

less conducive to colonization by Roseburia. 
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5. Conclusions and Next Steps 

Black and sumac sorghum brans are significant sources of polyphenols with unique 

polyphenol profiles and differing radical scavenging capabilities. Although sorghum extracts did 

not significantly impact SCFA production from FOS, they enhanced proliferation of Prevotella 

and the butyrate producing genera Roseburia. Sorghum polyphenols and FOS worked 

synergistically to enhance Bifidobacterium and especially lactobacillus, a probiotic genus that 

has been difficult to stimulate through prebiotic supplementation. We observed differential 

responses to treatment in NW and O/O microbiota for Lactobacillus, Bifidobacterium, and 

Roseburia, supporting the theory that gut microbial metabolism is altered in O/O. In addition, 

BA concentrations in response to FOS tended to be higher in O/O individuals. Sorghum 

polyphenols may help modulate gut microbial populations, especially in concert with other 

prebiotic substances such as FOS. Further research is needed to examine the potential prebiotic 

activities of sorghum bran extracts. Human intervention trials would help determine if these 

alterations in bacterial populations would lead to long-term enhancement of SCFA production.  

Next steps include testing of the major polyphenol compounds in these extracts. Effects of 

polyphenols on individual bacteria should also be confirmed by fermentations with isolated 

strains. Determining which individual polyphenol compound is responsible for beneficial effects 

on the gut microbiota would enable the optimization of nutraceutical products aimed towards 

improvement of gut health.  
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Tables and Figures 

Table 2. Polyphenol profile of black and sumac sorghum 
bran 

  

 BGSB SGSB BSE SSE 

Polyphenols 

(mg gallic acid equiv/g) 
27.5 ± 1.5 43.0 ± 2.0* 321.5 ± 2.7 571.7 ± 6.0* 

Proanthocyanidins 

(mg catechin equiv/g) 
0.4 ± 0.1 7.8 ± 0.5* 8.4 ± 1.4 86.9 ± 1.1* 

3-Deoxyanthocyanins 

(mg/g) 
1.2 ± 0.0* 0.1 ± 0.0 10.1 ± 0.3* 2.0 ± 0.4 

Luteolinidin 1.0 ± 0.0* 0.1 ± 0.0 9.3 ± 0.4* 2.0 ± 0.4 

Apigeninidin 0.2 ± 0.0* ND 0.9 ± 0.1* ND 

Radical Scavenging EC50 

(µg gallic acid equiv/g) 
54.1 ± 2.9* 79.9 ± 3.2 274.0 ± 20.3 269.5 ± 2.1 

Data are expressed as Mean ± SD. *Indicates significant difference between black and suman 
for brans and extracts. P <0.01. BGSB: black grain sorghum bran, SGSB: sumac grain sorghum 
bran, BSE: black sorghum bran extract, SSE: sumac sorghum bran extract, ND: None Detected. 

 

 

Table 1. Subject Characteristics 

 All (n=22) 

Normal Weight Overweight/Obese 

Male (n=5) Female (n=6) Male (n=5) 
Female 
(n=6) 

Age (years) 29.0 ± 1.4 29.4 ± 2.1 24.2 ± 0.9 28.2 ± 1.6 34.2 ± 4.0 

BMI (kg/m
2
) 27.1 ± 1.2 23.0 ± 0.3 22.2 ± 0.5 30.9 ± 1.3* 32.2 ± 2.2* 

FBG (mg/dL) 92.1 ± 1.1 92.9 ± 1.4 90.6 ± 2.0 92.6 ± 3.1 96.3 ± 1.4 

Data are expressed as Mean ± SEM. *Indicates significant difference at P <0.01. FBG: Fasting 

blood glucose. 
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Figure 1. Total SCFA production during fermentation with fecal samples from (A) NW and (B) 

O/O subjects. Different letters indicate significant differences between treatments at the same 

time point. P<0.05. n=11/group. NC: negative control, FOS: fructooligosaccharides, BSE: black 

sorghum bran extract, SSE: sumac sorghum bran extract. 
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Figure 2. Acetic acid production during fermentation with fecal samples from (A) NW and (B) 

O/O subjects. Different letters indicate significant differences between treatments at the 

same time point. P<0.05. n=11/group. NC: negative control, FOS: fructooligosaccharides, 

BSE: black sorghum bran extract, SSE: sumac sorghum bran extract. 
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Figure 3. Propionic acid production during fermentation with fecal samples from (A) NW and 

(B) O/O subjects. Different letters indicate significant differences between treatments at the 

same time point. P<0.05. n=11/group. NC: negative control, FOS: fructooligosaccharides, 

BSE: black sorghum bran extract, SSE: sumac sorghum bran extract. 
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Figure 4. Butyric acid production during fermentation with fecal samples from (A) NW and 

(B) O/O subjects. Different letters indicate significant differences between treatments at the 

same time point. P<0.05. n=11/group. NC: negative control, FOS: fructooligosaccharides, 

BSE: black sorghum bran extract, SSE: sumac sorghum bran extract. 
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Figure 5. Abundant Genera in NW and O/O. N=11/group.  
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Figure 6. Species diversity after a 24 hour fermentation. Different letters indicate significant 

differences. P<0.05 (n=22). NC: negative control, FOS: fructooligosaccharides, BSE: black 

sorghum bran extract, SSE: sumac sorghum bran extract. 
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Figure 7. NMDS plot comparing bacterial communities between treatments. P<0.05 (n=22). 

(A) 0 hour and (B) 24 hour. ◌: negative control, x: fructooligosaccharides (FOS), △: black 

sorghum bran extract (BSE), □: sumac sorghum bran extract (SSE),    : FOS+BSE,    : FOS+SSE 
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Figure 8. Relative abundance at phylum level in all subjects. Letters indicate significant 

differences between treatments at 24 hours. P<0.05. n=22. NC: negative control, FOS: 

fructooligosaccharides, BSE: black sorghum bran extract, SSE: sumac sorghum bran extract. 
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Table 3. Relative abundance of dominant phyla in NW and O/O 

   Relative Abundance (%) 

   NC FOS BSE SSE FOS+BSE FOS+SSE 

Firmicutes 24 NW 50.3 ± 2.8 59.5 ±3.6 48.9 ± 3.2* 55.8 ± 3.3 52.2 ± 4.4 52.7 ± 4.5 

 O/O 45.2 ± 3.2ab 51.0 ± 5.5a 35.2 ± 4.1b 44.0 ± 4.5ab 45.6 ± 4.9ab 51.8 ± 5.2a 

         

Bacteroidetes 24  NW 24.8 ± 1.9ab 18.7 ± 2.5b 34.1 ± 2.3a 26.0 ± 2.3ab 27.5 ± 4.4ab 28.2 ± 3.9ab 

 O/O 32.8 ± 3.5b* 37.6 ± 5.7b* 52.9 ± 5.1a* 42.3 ± 5.1b* 43.3 ± 6.3ab 40.3 ± 5.6b 
         

Actinobacteria 24  NW 0.5 ± 0.1d 13.8 ± 3.8ab 1.3±0.2bcd* 1.1 ± 0.2cd 15.2 ± 3.5a 14.3±3.3abc* 

 O/O 0.5 ± 0.1c 7.1 ± 1.1a 0.5 ± 0.1c 0.7 ± 0.2bc 8.7 ± 2.1a 4.7 ± 1.0ab 

         

Verrucomicrobia 24  NW 0.2 ± 0.1ab 0.5 ± 0.5b 1.3 ± 0.7a 0.4 ± 0.1ab 0.3 ± 0.1ab 0.5 ± 0.1ab 

 O/O 0.4 ± 0.2ab 0.1 ± 0.0b 0.5 ± 0.2a 0.4 ± 0.1ab 0.1 ± 0.1ab 0.4 ± 0.2ab 

         

Proteobacteria 24 NW 21.8 ± 2.4a 6.5 ± 2.2bc 12.6 ± 1.6ab 14.7 ± 1.6a 3.6 ± 0.9c* 3.4 ± 0.5bc* 

  O/O 20.6 ± 4.2a 3.7 ± 1.1bcd 10.1 ± 1.6abc 11.9 ± 2.1ab 1.4 ± 0.3d 2.1 ±0.4cd 

Data are expressed as Mean ± SEM.  Letters indicate significant differences between treatments at 24 hours in each weight 
class group. * indicates significant difference between weight class groups for a given treatment at 24. P<0.05. n=11/group. 
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Figure 9. Relative abundance of select genera in all subjects. Letters indicate significant 

differences between treatments at 24 hours. P<0.05. n=22. NC: negative control, FOS: 

fructooligosaccharides, BSE: black sorghum bran extract, SSE: sumac sorghum bran extract. 
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Figure 10. Relative abundance of butyric acid-producing bacteria in all subjects. Letters indicate 

significant differences between treatments at 24 hours. P<0.05. n=22. NC: negative control,  

FOS: fructooligosaccharides, BSE: black sorghum bran extract, SSE: sumac sorghum bran   

extract. 
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Table 4. Relative abundance at genus level in NW and O/O 

   Relative Abundance (%) 

   NC FOS BSE SSE FOS+BSE FOS+SSE 

Bifidobacterium 24 NW 0.2 ± 0.1c 6.1 ± 2.5ab* 0.3 ± 0.1bc 0.3 ± 0.1bc 7.6 ± 2.7a 7.2 ± 2.4a* 

 O/O 0.1 ± 0.1c 1.1 ± 0.5abc 0.2 ± 0.1bc 0.2 ± 0.1c 3.2 ± 1.4a 1.6 ±0.6ab 

   
      

Lactobacillus 24  NW 0.0 ± 0.0b 0.4 ± 0.3ab 0.2 ± 0.1ab 0.2 ± 0.1ab 0.4 ± 0.3ab 0.5 ± 0.3a 

 O/O 0.0 ± 0.0b 0.4 ± 0.3b 0.1 ± 0.0ab 0.1 ± 0.0ab 1.5 ± 1.1a 0.4 ± 0.2ab 
   

      

Prevotella 24 NW 0.7 ± 0.5bc 1.0 ± 0.6c 3.6 ± 1.8a 1.7 ± 1.1abc 2.7 ± 1.1ab 4.6 ± 1.7a 

 O/O 10.1 ± 4.6b* 23.3 ± 8.3ab* 25.4 ± 8.7a* 19.3 ± 7.1ab* 24.1 ± 8.8ab* 23.1 ± 7.9a* 
   

      

Bacteroides 24  NW 19.4 ± 1.9 16.9 ± 2.9 26.6 ± 3.1 24.9 ± 5.1 22.1 ± 3.4 20.0 ± 3.0 

  O/O 16.4 ± 2.8ab 12.6 ± 3.3b 21.3 ± 3.9a 18.1 ± 2.9ab 16.9 ± 4.2ab 14.8 ± 3.2b 
   

      

Dorea 24  NW 2.4 ± 0.5a 0.6 ± 0.2b 1.3 ± 0.2ab 1.7 ± 0.4ab 1.5 ± 0.5ab 0.9 ± 0.2ab 

 O/O 1.9 ± 0.3a 0.9 ± 0.4b 0.8 ± 0.2ab* 1.2 ± 0.3ab 0.9 ± 0.3ab 0.9 ± 0.3ab 

 

 

  
      

Faecalibacterium 24 NW 5.1 ± 1.8a* 2.1 ± 0.8b 1.8 ± 0.4ab* 3.0 ± 0.7ab* 1.7 ± 0.7b* 2.7 ± 0.5ab* 

  O/O 1.9 ± 0.6ab 0.7 ± 0.2ab 0.9 ± 0.2bc 1.7 ± 0.5a 0.4 ± 0.2c 1.6 ± 0.3abc 
   

      

Roseburia 24  NW 2.3 ± 0.8b 1.8 ± 0.8b 3.6 ± 1.1ab 6.1 ± 1.6a* 3.2 ± 1.1ab 2.7 ± 0.8ab 
  O/O 1.3 ± 0.4 4.7 ± 2.0 2.3 ± 0.6 2.8 ± 0.7 4.5 ± 1.5 7.6 ± 2.8 
   

      

Anaerostipes 24  NW 0.2 ± 0.1c 4.1 ± 2.4abc 0.3 ± 0.1c 0.3 ± 0.1bc 4.1 ± 1.8a 4.7 ± 2.3ab 
  O/O 0.4 ± 0.3c 3.6 ± 1.8abc 0.8 ± 0.5c 1.2 ± 1.1bc 2.8 ± 1.1ab 3.8 ± 1.7a 

Data are expressed as Mean ± SEM.  Letters indicate significant differences between treatments at 24 hours in each weight 
class group. * indicates significant difference between weight class groups for a given treatment at 24. P<0.05. n=11/group. 
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Conclusion 

Grain sorghum bran harbors a diverse profile of polyphenols which varies with bran 

color and has positive implications in cancer, diabetes, and colonic health. In the present study 

we found sumac sorghum bran to be richer in total polyphenols and proanthocyanidins 

(condensed tannins) than black bran, while the black bran had much higher levels of 3-

deoxyanthocyanins. Marked dysbiosis of the gut microbiota has been observed in obesity and 

other conditions, and nutrition strategies to improve gut health have been a major topic in 

nutrition research. We found that polyphenols from black and sumac sorghum brans impacted 

bacterial distributions, increasing the abundance of several beneficial genera. We observed 

some differing responses between weight class groups, implicating altered microbial 

metabolism in overweight/obese individuals. We hypothesized that sorghum bran polyphenols 

would impact production of SCFA, increase beneficial gut microbiota in both groups, and 

improve bacterial profile of overweight/obese individuals. While our findings do not supply 

strong evidence of sorghum polyphenols impacting SCFA production, they supported our 

hypothesis of increases in beneficial groups of bacteria. We were not, however, able to 

conclude whether or not the overall bacterial profile was improved in O/O. Although sorghum 

polyphenols did not significantly impact SCFA production during this 24-hour fermentation, it is 

possible that the impacts on bacterial species could lead alterations in SCFA production during 

long-term consumption. Further research needed includes human intervention trials and 

isolation of major phenolic components of sorghum brans for individual testing. 
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