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ABSTRACT 

  The most popular herbicide used for weed control has been glyphosate for many years in 

the Midwestern United States.  Plants have begun to develop a resistance to glyphosate due to 

over use of the herbicide. This herbicide resistance has pushed farmers to turn to alternative 

herbicides such as dicamba and 2,4-D.  Recently agrochemical companies have developed 

genetically modified crops that are resistant to herbicides such as dicamba.  These modified 

crops allow farmers to spray their fields with dicamba without fear of crop damage. Farmers of 

non-genetically modified crops, however, suffer damage and loss of yield from herbicide drift 

effects of this spraying. We sought to prepare the dicamba glucosides, DCSA-glucoside, DCGA-

glucoside, and 5-OH dicamba-glucoside standards for LC/MS/MS analysis. Pure samples of 

these glucosides will provide a reference point in which to study how genetically modified plants 

metabolize dicamba. Efforts to prepare these glucoside samples, will be discussed.  Experiments 

done for the glucoside synthesis followed a Michael glycosylation type reaction using a glucosyl 

halide, aromatic phenolic compound, in the presence of a biphasic catalyst, tetrabutylammonium 

bromide.  Reactions failed to yield desired products or were unable to be purified.  Further 

investigation into other types of glycosylation reactions is necessary to continue synthesis of the 

desired glucosides. 
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CHAPTER 1: Dicamba 

1.1: Introduction 

 Dicamba is the trade name given to the herbicide scientifically known as 3,6-dichloro-2-

methoxybenzoic acid (Figure 1).  As the name implies the molecule consists of a benzoic acid 

substituted with a methoxy group at C-2 and two chloro groups in the C-3 and C-6 positions.  

 

Figure 1: Structure of dicamba 

Dicamba was developed in 1942 by Zimmermann and Hitchcock and has been produced and 

sold under various brand names such as Banvel®, Diablo®, Oracle™, and Vanquish® since the 

1960’s.  Dicamba has since been used by farmers as a way to control broad leaf plant growth in 

their pasture lands and crops.  It is useful for broad leaf plant control because it generally has no 

effect on the grass family of plants.1,2 

Glyphosate has traditionally been one of the most widely used herbicide by farmers 

because it is considered to have more “flexibility and simplicity” of use than other types of 

herbicides.25 Glyphosate is more commonly known by its commercial name Roundup and has an 

inhibitory type mode of action by which it kills plants.24 It is called an amino acid synthesis 

inhibitor.  ESPS (5-enolpyruvate shikimate-3-phosphate) is a key enzyme needed for aromatic 



 

2 

amino acid biosynthesis.  Glyphosate kills the plant by inhibiting the activity of enzyme ESPS. 

Glyphosate’s widespread use has created a significant drawback for the farming community.  

Many plants have developed a resistance to glyphosate in much the same way as microbes 

develop resistance to antibiotics.  This resistance has forced farmers to turn to other well 

established herbicides such as dicamba and 2,4-D to control broad leaf weeds.25 

Dicamba is considered moderately toxic if ingested and slightly toxic upon dermal 

exposure.2 Dicamba’s oral LD50 in rats is 1039 mg/kg of body weight, and a dermal LD50 of 

>2000 mg/kg in rabbits.  2,4-D is more toxic with an oral LD50 of 375 mg/kg in rats.  Dicamba 

and 2,4-D are part of a class of herbicides called synthetic auxins and have a different mode of 

action than glyphosate. Synthetic auxins mimic the naturally occurring growth hormone Indole-

3-acitic acid (IAA) which is the main auxin found in plants. Synthetic and naturally occurring 

auxins essentially cause the plant to grow abnormally and uncontrollably leading to its eventual 

death.23,24 Many plants that have developed a resistance to or are naturally tolerant to glyphosate, 

are still susceptible to the growth regulators dicamba and 2,4-D.  Dicamba and 2,4-D are two of 

very few effective products available for broadleaf weed control.25 Agrochemical companies 

claim that synthetic auxins are less likely to develop resistance issues than other herbicides 

available.25 This belief is met with opposition by many that claim the eventual outcome will be 

the same as with glyphosate.25 Regardless of the eventual outcome of dicamba and 2,4-D 

resistance, recent years have seen an increase in synthetic auxin production and use. This 

increase of use has produced a different type of problem.25 

Monsanto, an American agricultural biotechnology company, has recently developed a 

modified cultivar of soybeans and cotton known as Roundup Ready 2 Xtend® that are resistant 

to glyphosate and dicamba.  These genetically engineered crops were developed by inserting 
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genes from soil bacteria (that have resistance to glyphosate and dicamba) into the crop’s DNA.  

These modified cultivars allow for the farmer to plant and grow crops without fear of damage 

from dicamba or glyphosate that would kill a non-modified crop.  This approach to the problem 

works well for farmers that use this new soybean, but due to a phenomena called “herbicide 

drift” can be detrimental to farmers not using the new soybean technolony.2 

Dicamba drift occurs when a farmer sprays his dicamba resistant crop and some of the 

sprayed dicamba “drifts” and damages non-resistant crops.  It is believed the volatile nature of 

dicamba is what allows for the drift effect as well as its water solubility and droplet drift. This 

has caused crop damage to farmers all over the Midwest.  As much as 1 million acres of 

Monsanto’s resistant soybeans were planted in 2016 and an estimated 200,000 acres of non-

resistant soybeans in Arkansas, Missouri, and Tennessee were affected by dicamba drift.2   The 

drift can cause neighboring vegetation, including crops, to experience damage such as leaf 

wrinkling and cupping and stunted growth (Figure 2).1   

 

Figure 2: Crop Damage 

(Photograph: J. Franklin Egan) 
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Dicamba drift is apparent from its high volatility, and droplet drift when being sprayed.   

Dicamba has a vapor pressure of 2.6x10-8 atm at 25 ºC but is sprayed during the summer at 

temperatures as high as 95 ºF (35 ºC).  This increase in temperature increases the vapor pressure 

therefore increasing drift.  The type of nozzle used when spraying also effects how much drift 

occurs. Synthetic auxins are difficult to clean from sprayers and are thus mistakenly sprayed on 

susceptible crops via contamination.25   Dr. Cammy Willett’s lab in the Crop, Soil, and 

Environmental Sciences department at the University of Arkansas is currently studying how and 

to what extent dicamba drift harms non-resistant crops.  Dr. Willett’s research requires that she 

have pure standards of certain glucosides, for LC/MS/MS analysis, that are known to be 

metabolized by soybean plants.  This thesis demonstrates efforts put forth to synthesize the pure 

standards needed for Dr. Willett’s research.   

 

1.2: Dicamba Metabolites and Glucosides 

 

Following plant exposure to dicamba, it is metabolized into 3,6-dichloro-2-

hydroxybenzoic acid (DCSA) 1, 2,5-dichloro-3,6-dihydroxybenzoic acid (DCGA) 2, 2,5-

dichloro-3-hydroxy-6-methoxybenzoic acid (5-OH dicamba) 3, DCSA-glucoside 4, DCGA-

glucoside 5a, 5b, 5c, and 5-OH dicamba-glucoside 6 (Figure 3). Dicamba, DCSA, DCGA, and 

5-OH dicamba are commercially available, but the corresponding glucosides must be 

synthesized.  Once synthesized and purified these glucosides can be used as analytical standards 

for experiments quantifiying metabolite production following drift events under various 

environmental conditions. 
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Dicamba DCSA DCGA 5-OH dicamba 

    

-R DCSA Glucoside DCGA Glucoside 5-OH Dicamba 

Glucoside 

 

   

 

Figure 3:  Dicamba Metabolites and Glucosides 

   

The synthetic route chosen for the glycosylation reaction is a basic Michael glycosylation  

 

 

 

Scheme 1: Glycosylation of 4-(N-(benzyloxycarbonyl)amino)-2-hydroxybenzoate 

reaction.  A procedure was acquired from European Journal of Medicinal Chemistry in which 

they glucosylated 4-(N-(benzyloxycarbonyl) amino)-2-hydroxybenzoate using 2,3,4,6-Tetra-O-

acetyl-alpha-D-glucopyranosyl bromide (Scheme 1).9   This procedure was followed for the 

synthesis of the glucosides. 
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CHAPTER 2: Discussion and Experimental 

2.1   Synthetic Organic Experiments 

A) 

 

Scheme 2: Esterification of Salicylic Acid 

Model Studies: 

Salicylic acid was employed as model compound because it is inexpensive, and is similar 

in its structure to the compounds used to synthesize the metabolites.   

The sugar could potentially react at the hydroxyl and/or carboxyl groups of salicylic acid.  

A phenol has a pKa of ~10 in water and benzoic acid has a pka of ~4.2 in water, both are 

deprotonated by the base NaOH.  The glycosylation reaction is done in a NaOH solution, so both 

hydroxyl and carboxyl can be deprotonated during reaction.  To avoid the reaction at the 

carboxylic acid of salicylic acid, a Fischer Esterification reaction was performed.  Sulfuric acid 

catalyzed the esterification of salicylic acid to provide ester 8 with 61% yield.  The crude product 

proved to be remarkably clean and no further purification was necessary (Scheme 2). 
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B)   

 

Scheme 3:  Glycosylation of Methyl Salicylate 

The next step in the synthesis of the salicylic acid glucoside is to attach a glucose ring to 

the hydroxyl group of the newly formed methyl salicylate (Scheme 3).  Acetobromo-α-D-glucose 

9 is able to undergo a Michael glycosylation type reaction with 2 to substitute the bromo group 

with the methyl salicylate to afford 10.9   The glucoside used 1.6 equivalents of the methyl 

salicylate, 1 equivalent of the acetylated bromo glucose, and 0.5 equivalents of TBAB.  The 

reaction time was varied between 5-8 hours and temperature was kept between 40-60 ºC.   A 

single reaction was done with 1 equivalent of methyl salicylate, 1.5 equivalents of the acetylated 

glucosyl bromide, and 1 equivalent of TBAB at 45 ºC for 8 hours.   Pure product was never 

isolated for any of these reactions so no accurate/pure yields exist for 10.  TBAB is a phase 

transfer catalyst and initially posed contamination issues.  It was found that a prep TLC plate 

could be used to remove TBAB (tetra-N-butylammonium bromide) but is complicated because 

TBAB does not appear under UV light nor upon sulfuric acid staining and is therefore 

impossible to visualize on a TLC plate. This problem was solved by use of a short “plug” column 

that removed it from the product or by using 2 separate prep TLC plates (the first plate was run 

solely to remove the TBAB).  These procedures, however, caused the loss of yield of 10.   It was 
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also discovered from 1H-NMR that multiple products arose from the reaction and were extremely 

difficult to separate because of product overlap.  Both α and β anomers are believed to be present 

in NMR as well as TBAB.  Due to not isolating a pure glycosylation product, subsequent 

reactions were done with impure 10 and accurate identification impossible. 

 C-1)  

Scheme 4:  Saponification and Hydrolysis of Methyl Salicyl Glycoside 

 Once the glycosylation was completed the next step was to deacetylate the sugar and 

hydrolyze the methyl ester (Scheme 4).  But because of the extremely low yields of 11 and 

impure products from the glycosylation reaction, there was frequently not enough of 11 to do the 

subsequent saponification reaction.  Reactions were done at room temperature with varying 

reaction times between 2-5 hours to synthesize 11.  The highest yield obtained was 16% and it 

was impure. 
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 C-2) 

 

Scheme 5: Saponification and Hydrolysis of Methyl Salicyl Glycoside 

 A 10 mg sample of 11 was reacted with excess NaOH and H2O (few drops) for 14 hours 

at room temperature (Scheme 5). 1H-NMR confirmed product was present but was not purified. 

C-3)  

 

Scheme 6: Saponification and Hydrolysis of Methyl Salicyl Glycoside 

 It was theorized that it might be possible to do the complete hydrolysis with only one 

reaction instead of two in hopes of avoiding any further loss of product.  10 was allowed to react 

with an excess of NaOH in DI water for 14 hours at room temperature (Scheme 6).  Residual 

water complicated product identification by 1H-NMR. Water and silica gel problems posed the 

biggest issue in purification.  Temperatures above 45˚C were avoided for drying the compound 
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because the glucoside is prone to decomposition above this temperature.  So the only drying 

method employed was high vacuum for extended periods of time (up to 48 h). 

 D)   

 

Scheme 7: Esterification of DCSA 

Table 1: DCSA Esterification Data 

 H2SO4 eq. Time (h) Yield (%) 

1  0.8 7-8  0 

2  1 9  38  

3  1 4  21 

4  1 35  44 

5  2 10  96.6 

 

 The same synthetic approach was used for the synthesis of the DCSA metabolite as was 

used with salicylic acid model.  DCSA was protected at the carboxylic acid to force reaction at 

the carbon-2 hydroxyl group on the aromatic ring (Scheme 7).  This esterification was 

successfully accomplished by heating DCSA under reflux with H2SO4 in methanol. Reaction 

time ranged from 4-35 hours.  The amount of H2SO4 varied between 0.8-2 equivalents.  The 
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highest yield (96.6%) was accomplished when 2 equivalents of H2SO4 was used .  No reaction 

occurred using only 0.8 equivalents of H2SO4 (Table 1). 

 E-1)  

 

Scheme 8:  Glycosylation of DCSA Methyl Ester 

Table 2:  Glycosylation of DCSA Methyl Ester Data 

 Comp 3 eq. Time (h) Temp. (˚C) Yield 

1  1.5 8 h 50 ºC 55% 

2  2 17 h rt 23% 

3 1.5 5 h 35-40 ºC 18% 

 

The glycosylation of the DCSA methyl ester 13 was accomplished through the reaction 

of the glucosyl bromide, 5% NaOH solution, and TBAB (1 eq.) as phase transfer catalyst 

(Scheme 8).  Temperatures ranged from 23 ˚C to 50 ˚C and times ranged from 5-17 hours.  The 

amount of 9 was varied from 1.5-2 equivalents (Table 2).  These reactions had low to moderate 

yields but were successful in creating the glycosylation product 14.  However, this approach was 

revised when it became clear how difficult the saponification reaction of 14 would be. 
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E-2) 

        

Scheme 9:  Glycosylation of DCSA 

Table 3:  Glycosylation of DCSA Data 

 

In an attempt to remove the need for a saponification reaction the synthetic approach was 

altered so that DCSA as the free acid would react with the glucosyl bromide to form 15 (Scheme 

9).  Neither of the 2 reactions appeared to produce any product based on the TLC (Table 3).  It is 

unclear why the glycosylation occurred when the carboxylic acid was protected but no 

glycosylation occurred when there was no acid protection.  This problem may be due to an 

increased number of reactive sites on the unprotected compound causing competition and thus 

lower/no yields. 

  

 Comp 3 eq. Time Notes 

1  2 6 h No Rxn 

2  1 45 h No Rxn 
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F)   

 

Scheme 10:  Saponification and Hydrolysis of DCSA Methyl Ester Glycoside 

Table 4:  Saponification and Hydrolysis of DCSA Methyl Ester Glycoside 

 Conditions Notes 

1 NaOH (excess) in DI water, rt, 15 h  

2 7M NH3 in methanol, rt, 3 h Methyl ester 
still present in 

NMR 

3 1) 7M NH3 in methanol, rt, 6 h 

2) 0.2% NaOH in methanol, rt, 13 h 

 

4 0.2% NaOH in methanol, DI water (few drops), rt, 16 h  

5 1) NaOH (1.6 eq), methanol, DI water, EtOAc (few drops), rt, 4 h 

2) 7M NH3 in methanol, rt, 4 h 

No NMR 

 

Saponification and hydrolysis of the DCSA methyl ester glucoside was attempted just as 

was done with the methyl salicylate glucoside (Scheme 10).  5 separate reactions were tried but 

16 was never synthesized or recovered (Table 4).  Based on 1H-NMR analysis, the acetyl groups 

of the sugar portion were hydrolyzed to the hydroxyl groups but there was no saponification of 

the methyl ester.   
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2.2   Methods, Materials, and Select Spectra 

General Methods and Materials  

 Reactions were done in standard glassware that had been washed in Alconox and air 

dried.  All reagents were purchased from commercial sources and were used without further 

purification.  Most reactions were done under standard conditions and select reactions were done 

under a nitrogen atmosphere.  All reactions were monitored using thin layer chromatography 

(TLC) using glass-backed silica gel plates.  TLC plate were visualized under UV light (for 

aromatic compounds) and by charring with 5% (v/v) H2SO4 in EtOH (for sugar compounds).  

Chemical separation was done on custom made prep TLC plates as well as commercial TLC 

plates.  Column chromatography was performed on silica gel (230–450 mesh, Sorbent).  NMR 

data were obtained using a 400 MHz Bruker NMR and a 300 MHz Bruker NMR.  1H and 13C 

NMR’s were run in deuterated solvents and said solvents were used as the internal reference.  

 

 

Experimental and Select Spectra: 

 

Figure 4: Methyl 2-hydroxybenzoate 

Salicylic Acid (4.4 g, 1 equiv.) was put in a round bottom flask.  Concentrated H2SO4 (1.4 mL, 

0.8 equiv.) was dissolved in methanol (20 mL, 16 equiv.) and was poured into flask with the 

salicylic acid.  Solution refluxed for 8 hours.  Methanol was removed under vacuum and DI 
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water was used to dissolve solid/oil.  Solution was transferred to a separatory funnel and water 

layer was washed 3 times with 30 mLs of ethyl acetate.  Organic layer was then washed with 

30mLs of NaHCO3 solution and lastly 15 mLs of DI water.  Solution was dried with MgSO4 

overnight.  Crude product was filtered off MgSO4 and ethyl acetate was removed under vacuum 

affording a relatively pure 8 (61%) (Figure 4). 

1H NMR (400 MHz, CDCl3) δ (ppm): 10.75 (s, 1H, H-1), 7.81 (m, 1H, H-2), 7.43 (m, 1H, H-3), 

6.96 (d, 1H, H-4, J1,2=8.4 Hz), 6.85 (m, 1H, H-5), 3.92 (s, 3H, H-6). (Figure 5)

 

Figure 5: H1-NMR of Methyl 2-hydroxybenzoate 
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Figure 6: 2,3,4,6-Tetra-O-acetyl-alpha-D-glucopyranosyl bromide 

9 was generously synthesized by the Streigler lab and was purified periodically due to 

decomposition. Compound was stored in freezer to minimize decomposition (Figure 6).  

1H NMR (400 MHz, CDCl3) δ ppm: 6.62 (d, 1H, H-1, J1,2=4.04 Hz), 5.57 (at, 1H, H-3, J=9.72 

Hz), 5.17 (at, 1H, H-4, J=9.88 Hz), 4.85 (dd, 1H, H-2, J2,3=5.92), 4.36-4.29 (m, 2H, H-6, H-5), 

4.15-4.13 (m, 1H, H-7), 2.1123, 2.108, 2.0625, 2.0453 (4s, 4 x OC(O)CH3). (Figure 7) 

 

Figure 7: H1-NMR of 2,3,4,6-Tetra-O-acetyl-alpha-D-glucopyranosyl bromide 
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Figure 8: Methyl Salicylate ß-D-Glucose Tetraaacetate 

Methyl Salicylate (0.1 g, 1.6 equiv.) and tetra- butyl ammonium bromide (0.07 g, 0.5 equiv.) 

were dissolved in 2 mL of dichloromethane.  Then 1 mL of a 5% NaOH solution (v/v) was added 

and mixture stirred for approximately 30 minutes.   9 (0.17 g, 1 equiv.) was dissolved in 2 mL of 

dichloromethane and added dropwise to stirring mixture.  Solution was allowed to react for 7 

hours at 40-60 ˚C.  Solution was cooled to room temperature then put in an ice bath.  Solution 

was transferred to separatory funnel and organic layer was washed with two 2 mL portions of the 

5% NaOH solution (v/v).  The organic layer was then washed with three 2 mL portions of DI 

water.  Dichloromethane was removed by evaporation and produced 0.074 g of crude product 

(Figure 8).  

1H NMR (300 MHz, CDCl3) δ (ppm): 7.75 (m, 1H, H-11), 7.45 (m, 1H, H-9), 7.14-7.10 (m, 2H, 

H-8, H-10), 5.56 (d, 1H, H-1, J1,2=4.29 Hz), 5.38-5.09 (m, approx. 2H, H-6, H-7), 4.29 (dd, 1H, 

H-3, J2,3=6.99 Hz), 4.18 (dd, 1H, H-2, J2,3=9.84 Hz), 3.91-3.87 (m, 1H, H-4), 3.85 (s,3H, H-12), 

2.07, 2.06, 2.05, 2.04 (4s, 4 x OC(O)CH3). (Figure 9) 
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Figure 9: H1-NMR of Methyl Salicylate ß-D-Glucose Tetraaacetate 

 

 

Figure 10: DCSA Methyl Ester Glucoside 

Crude 10 (0.247 g) was dissolved in 2 mL of methanol and 0.5 mL of a 5% Na2CO3 solution was 

added dropwise.  Solution was allowed to stir at room temperature for 2 hours.  Solution was 

neutralized with trifluoroacetic acid.  Solution was put in a separatory funnel and DI water was 
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added.  Dichloromethane was used to extract compound from water layer.  Purified using a 

Preparatory TLC (dichloromethane/10% methanol as solvent). 11 was found to be the second 

product on TLC plate and 0.022 g were isolated (16%) (Figure 10). 

1H NMR (400 MHz, D2O) δ (ppm): 7.82 (m, 1H, H-10), 7.63 (m, 1H, H-8), 7.33 (d, 1H, H-7, 

J1,2=8.44 Hz), 7.23 (at, 1H, H-9, J=7.58 Hz), 5.17 (d, 1H, H-1, J1,2=7.20 Hz), 3.95-3.93 (m, 4H, 

 

Figure 11: H1-NMR of DCSA Methyl Ester Glucoside 

[1H,H-3], [3H, H-6]), 3.78 (dd, 1H, H-2, J2,3=7.00 Hz), 3.67-3.59 (m, 2H, H-6, H-7), 3.53 (m, 

1H, H-4), 3.19 (m, 1H, H-5). (Figure 11) 
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Figure 12: Salicylic Acid Glucoside 

11 (10 mg, 1 eq.) (Figure 12) was dissolved in DI water and NaOH (0.025 g, 20 eq) and stirred at 

room temperature for 14 hours.  Purified on preparatory TLC using dichloromethane/20% 

methanol as solvent. 

1H NMR (400 MHz, CD3OD) δ (ppm): 7.82 (d, 1H, H-1), 7.28 (m, 1H, H-3), 6.77 (m, 2H, H-4, 

H-2), 5.49 (d, 1h, H-5), 3.67 (m, H7, H-6 – H-11). (Figure 13) 

 

Figure 13: H1-NMR of Salicylic Acid Glucoside 
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Figure 14: DCSA Methyl Ester 

1 (0.4 g, 1 eq) was dissolved in excess methanol and H2SO4 (0.1 mL, 1 eq) was added.  Solution 

stirred at room temperature for 14 hours with no reaction occurring based of TLC.  Temperature 

was increased to 70 ˚C and stirred for an additional 21 hours.  After reaction occurred the 

methanol was removed by vacuum and DI water was added to re-dissolve solid.  Solution was 

transferred to a separatory funnel and three 5 mL portions of ethyl acetate were used to extract 

product from water layer.  Ethyl Acetate washes were collected and washed with a saturated 

NaHCO3 solution.  Extracted organic layer from NaHCO3/water layer and evaporated ethyl 

acetate under vacuum.  A preparatory TLC was used to purify 13.  13 was found to be the top 

product on the TLC plate.  Ethyl acetate was used as solvent for purification.  0.189 g of 13 were 

recovered (44% yield) (Figure 14). 

1H NMR (400 MHz, CDCl3) δ (ppm): 11.42 (s, 1H, H-1), 7.33 (d, 1H, H-2, J1,2=8.56), 6.86 (d, 

1H, H-3, J1,2=8.56), 3.97 (s, 3H, H-4). (Figure 15) 

13C NMR (400, CDCl3) δ (ppm): 169.69 (C-1), 158.25 (C-2), 134.05 (C-3), 133.29 (C-4), 122.55 

(C-5), 121.30 (C-6), 113.46 (C-7), 53.11 (C-8). (Figure 16) 
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Figure 15: H1-NMR of DCSA Methyl Ester 
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Figure 16: C13-NMR of DCSA Methyl Ester 

 

 

Figure 17: DCSA ß-D-Glucose Tetraacetate 

13 (0.02 g, 0.5 eq) and tetra butyl ammonium bromide (0.03 g, 0.5 eq) were dissolved in 1 mL of 

dichloromethane.  Then 0.5 mL of a 5% NaOH solution (v/v) was added and mixture stirred for 

approximately 30 minutes.   9 (0.075 g, 1 eq) was dissolved in 0.5 mL of dichloromethane and 

added dropwise to stirring mixture.  Solution was allowed to react for 17 hours at room 
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temperature.  Solution was put in an ice bath.  Solution was transferred to separatory funnel and 

organic layer was washed with two 0.5 mL portions of the 5% NaOH solution (v/v).  Organic 

layer was then washed with two 0.5 mL portions of DI water.  Dichloromethane was removed by 

evaporation and produced 0.065 g of crude product.  Purification was done using a series of 3 

preparatory TLC plates.  The first plate used ethyl acetate as solvent and top compound on the 

TLC plate was kept (this removed TBAB).  The second plate used an ethyl acetate/hexanes 1:1 

solvent system keeping the second product on this TLC plate.  The third plate used 

dichloromethane as solvent and was allowed to run for 5 hours.  Bottom product of this TLC 

plate was desired product. Yield was 0.011 g of product (23% yield) (Figure 17). 

1H NMR (400 MHz, C6D6) δ (ppm): 6.67 (d, 1H, H-9, J1,2=8.68 Hz), 6.51 (d, 1H, H-10, 

J1,2=8.72), 5.53 (at, 1H, H-3, J.=8.58 Hz), 5.39-5.29 (m, 2H, H-6, H-7), 4.95 (d, 1H, H-1, 

J1,2=7.88 Hz), 4.25 (dd, 1H, H-2, J2,3=8.56 Hz), 3.9 (m, 1H, H-4), 3.62 (s, 3H, H-11), 2.95 (ddd, 

1H, H-5, J4,5=3.8 Hz), 1.82, 1.74, 1.69, 1.69 (4s, 4 x OC(O)CH3). (Figure 18) 

13C NMR (400, C6D6) δ (ppm): 169.96, 169.93, 169.02, 168.84 (C-7), 163.94 (C-8), 149.69 (C-

9), 131.99 (C-10), 131.75 (C-11), 130.88 (C-12), 127.42 (C-13), 126.95 (C-14), 101.73 (C-1), 

73.30 (C-5), 72.55 (C-3), 71.97 (C-2), 68.03 (C-4), 61.01 (C-6), 52.49 (C-15), 20.42, 20.28, 

20.19, 20.10 (C-16). (Figure 19) 
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Figure 18: H1-NMR of DCSA ß-D-Glucose Tetraacetate 
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Figure 19: C13-NMR of DCSA ß-D-Glucose Tetraacetate 

 
 

 

Figure 20: DCSA Glucoside 

14 was dissolved in excess 7M NH3 in methanol solution and allowed to react for 3 hours at 

room temperature.  The 7M NH3 in methanol solution was removed via vacuum and purification 

was done.  A preparatory TLC was used with ethyl acetate as solvent.  An NMR was run on the 

bottom product of the TLC plate.  The NMR proved that the reaction was not completely 
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successful.  The acetyl groups of the sugar were hydrolyzed but the methyl ester on the aromatic 

ring was still present in sample (Figure 20). 

1H NMR (400 MHz, MD3OD) δ (ppm): 7.54 (d, 1H, H-9, J1,2=8.72 Hz), 7.31 (d, 1H, H-10, 

J1,2=8.72 Hz), 4.89 (dd, 1H, H-3, J2,3=3.16 Hz), 3.93 (s, 3H, H-8), 3.77 (dd, 1H, H-2, J2,3=9.48 

Hz), 3.66-3.61 (m, 2H, H-6, H-7), 3.41 (dd, 1H, H-4, J2,3=3.48 Hz), 3.19 (m, 1H, H-5). (Figure 

21) 

 

Figure 21: H1-NMR of DCSA Glucoside 
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CHAPTER 3: Results and Conclusion 

The plan was to synthesize the glucosides of three different dicamba metabolites by 

attaching a glucose ring to the hydroxyl groups of the different metabolites.  The first step was to 

use a model system that is similar to dicamba (salicylic acid).  The carboxylic acid group of 

salicylic acid was protected by esterification in order to allow for glycosylation at only the 

hydroxyl group.  This reaction was simple and provided a reasonably pure product with no 

additional purification necessary for 8.   

 A tetra acetylated glucosyl bromide sugar was provided by the Striegler lab to do the 

Michael glycosylation reaction.  All the free hydroxyl groups on the sugar were protected from 

reaction by using acetyl groups as protecting groups.  This sugar contained an alpha bromine 

group on the aromatic carbon to act as leaving group during the glycosylation reaction. The 

glycosylation reaction was optimized but proved difficult to purify.  TBAB is undetectable on 

TLC plate under UV light and upon sulfuric acid staining/burning.  This problem was solved by 

using either a silica gel “plug” column or by using multiple preparatory TLC plates.  Purification 

was further complicated by presence of alpha and beta anomers.  It is believed (from 400 MHz 

1H-NMR) that the beta anomer was the predominate anomer produced with an α/β 1:4 ratio.  The 

product 10 is crude and 1H-NMR is complicated, but the alpha proton peak shows up as a 

doublet at ~6.35 ppm and the beta proton peak is visible at 5.56 ppm.21   Pure product was not 

recovered and subsequent reactions were carried out with impure products.  It is possible that 

product was never synthesized or that it decomposed. The NMR is complicated making accurate 

identification impossible. 
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The synthetic strategy for synthesizing the glucosides follows a traditional Michael 

glycosylation reaction (Scheme 11).  It was initially believed that glycosylation reactions 

occurred  

Scheme 11: Original Michael Reaction 

simply through an SN2 type mechanism based on studies done by Koenig and Knorr in 1901.   

To reach the final salicylic acid metabolite it was necessary to hydrolyze the glucosyl 

acetyl groups as well as the ester protecting group.  The plan was to accomplish this over two 

reaction steps.  First would be the removal of the acetyl groups 11 followed be the ester de-

protection 12.  It became clear however, that attempting to do two reactions/purifications that 

there was virtually no product left and that this procedure should be modified.  Adjustments were 

made and complete hydrolysis was attempted over one step instead of the previous two steps. 

The fully hydrolyzed glucoside was synthesized but NMR is messy because of the presence of 

water and methanol in sample 12.   

 With a working model, DCSA metabolite synthesis was begun.  Using the same 

methodology as with salicylic acid, the carboxylic acid of DCSA was protected by transforming 

it into a methyl ester 13.  This reaction proceeded as planned and produced as much as a 96% 

yield.  Product purity was established via NMR. 

 The glycosylation of the protected DCSA 14 was eventually successful with low to 

moderate yields (55% yield was the highest obtained) and was able to be purified.  This method 

would have been fine were it not for the fact that the final product required the de-protection of 
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the ester.  The hydrolysis of the DCSA-glucoside was very difficult 16.  Multiple attempts were 

made and I was able to hydrolyze the acetyl groups on the sugar with ease but could never 

manage to hydrolyze the ester. 

 Further work on this synthesis can be done to improve yields and purification.  There are 

also other synthetic routes that may prove more beneficial.  The Koenigs-Knorr glycosylation 

reaction is a possible alternative.  This reaction glycosylates an alcohol in the presence of 

Ag2CO3.  The Koenigs-Knorr glycosylation reaction employs the use of the 2-O-acyl group to 

increase selectively toward the alpha or beta product.  The Helferich conditions may also be a 

viable route of synthesis.  Beta-D-glucose pentaacetate is used as glucosyl donor in the presence 

of a lewis acid such as BF3·OEt2 to glycosylate various phenols.  This route may eliminate the 

need for saponification of glycosylation product that has been a complication with current 

methods.  Many other glycosylation reactions exist that may accomplish the synthesis of the 

glucosides.22 
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