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Abstract

In many applications data are collected sequentially in time with very short time intervals be-

tween observations. If one is interested in using new observations as they arrive in time then non-

sequential Bayesian inference methods, such as Markov Chain Monte Carlo (MCMC) sampling,

can be too slow. Increasingly, state space models are being used to model nonlinear and non-

Gaussian systems. The structure of state space models allows for sequential Bayesian inference

so that an approximation to the posterior distribution of interest can be updated as new observa-

tions arrive. In special cases, the exact posterior distribution can be updated through conjugate

Bayesian inference. However, for the general state space model this is not possible. In quantita-

tive finance hidden Markov models have been used to analyze and forecast percent log returns of

an asset or a group of assets. In this thesis the Liu and West [2001] auxiliary particle filter is ap-

plied to sequentially update the posterior distribution of a hidden Markov model with unknown

state and observation distribution parameters.
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1 Introduction

A time series is a set of observations collected sequentially in time. Commonly, it is assumed the

observations were collected at equally spaced time intervals. In this case, the time series can be

denoted as y1:T := {yt : t = 1, 2, ..., T} where yt was observed at time t. Examples of time series

data include stock market prices, daily average temperature, and daily sales counts. Given a time

series we are typically interested in analyzing the historical observations and forecasting future

observations. Outside of time series literature, many statistical models assume the observations

are independent of each other. However, when collecting observations sequentially through time

it is very common to see temporal dependence between the observations. For example, Figure 1.1

shows the daily closing price of the S&P 500 Index from June 4th, 2017 to June 4th, 2018. Figure

1.1 shows the trend of the daily closing price changing through time with a large structural break

between January and March, a pattern that would have been missed if time had been ignored. If

the assumption of independence is relaxed and it is assumed that previous observations in time

can provide information about the current and future observations then inference and forecasting

can be greatly improved.

To handle temporal dependence classical time series models such as, autogressive

moving average (ARMA) models, assume the observed time series is stationary. Loosely, a time

series is stationary if the mean and variance are constant over time [Chatfield, 2003, West and

Prado, 2010]. If the time series is clearly non-stationary then the data must be transformed so

they are approximately stationary. This assumption is very limiting and does not allow for model-

ing of time series with evolving dynamics, as seen in Figure 1.1. Recently, extensive research has

been devoted to developing state space models, that allow for modeling of non-stationary time

series [Petris et al., 2009, West et al., 1994, West and Prado, 2010, Koopman and J., 2001].

State space models provide a flexible and intuitive approach for handling many prob-

lems in time series analysis and include ARMA models as a special case. In general, state space

models assume that the observed time series y1:T is the noisy measurement of some underlying
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Figure 1.1: Daily Closing Price of S&P 500 in US Dollars
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and possibly unobserved structural or state process, denoted by θ0:T := {θt : t = 0, 1, ..., T}.

The goal then is to filter out the noise from the observations in order to estimate the latent state

process. Furthermore, in many applications observations are received at very short time intervals

and the structure of state space models allows for computationally efficient sequential Bayesian

inference and forecasting [Petris et al., 2009].

Under certain conditions the posterior distribution of interest can be updated sequen-

tially in closed form. For example, if the structure of the state space model is defined so that the

observations and states evolve according to a linear function and the corresponding distributions

are Gaussian then the posterior distribution can be updated using the Kalman filter [Kalman,

1960]. The current Gaussian posterior distribution becomes a prior distribution when a new

observation is received and given the new observation the Kalman filter updates the mean and

variance of the prior distribution to form the new Gaussian posterior distribution. However, for a

general nonlinear and non-Gaussian state space model computing the closed form posterior dis-

tribution is not possible. The use of nonlinear and non-Gaussian state space models has greatly

increased. Among many other applications these models have been used for automatic speech

recognition, modeling volatility of stock price returns, and tracking animal movement [Zucchini

et al., 2016, Petris et al., 2009]. And so, extensive research has been devoted to developing se-

quential Monte Carlo methods to compute and update approximations to the posterior distribu-

tion as new observations are received [Petris et al., 2009, Arulampalam et al., 2002, Cappe et al.,

2007, Doucet et al., 2001].

In this thesis we will provide a brief overview the general state space model in Chapter

2. In addition, we will discuss optimal state estimation. In Chapter 3 we will outline several of

the common and well known sequential Monte Carlo methods. Finally, in Chapter 4 we apply the

Liu and West [2001] auxiliary particle filter to a hidden Markov model to model the volatility of

daily log returns of the S & P 500.
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2 General State Space Models

A general state space model is defined by

yt ∼ p(yt|θt, φ), (2.1)

θt ∼ p(θt|θt−1, φ) t ≥ 1 (2.2)

and an initial density θ0 ∼ p(θ0). yt is the observation, θt is the latent state at time t, and φ is a

vector of unknown parameters. The densities (2.1) and (2.2) are called the observation density

and state density respectively. Using the above specification it is assumed that each yt is condi-

tionally independent of all other observations given the latent state θt and the underlying state

process is a Markov chain. That is, θt depends only on the previous state θt−1.

Assuming we have observations y1:T , the goal is to compute the posterior distribution

p(θt, φ|y1:T ). If t < T then we are using all available observations to estimate a state at a previous

time period. This is referred to as smoothing. If t = T then we are using all available observa-

tions to estimate the current state. This is referred to as filtering. And if t > T then we are using

all available observations to estimate a future state. This is referred to as forecasting [Petris et al.,

2009].

2.1 State Estimation

In this section we derive the closed form equations to sequentially update the filtering distribu-

tion, p(θt|y1:t), once a new observation is received.

Using Bayes’ theorem and the conditional independence of the observations the filter-

ing distribution p(θt|y1:t) can be factored as

p(θt|y1:t) =
p(θt, yt|y1:t−1)
p(yt|y1:t−1)

=
p(yt|θt)p(θt|y1:t−1)∫
p(yt|θt)p(θt|y1:t−1)dθt

.
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In the above equation p(yt|θt) is the observation density defined by the model. However, the one

step ahead forecast density, p(θt|y1:t−1), needs to be computed recursively. Using the Markov

property of the states, the density can be factored as

p(θt|y1:t−1) =

∫
p(θt|θt−1)p(θt−1|y1:t−1)dθt−1.

The state density p(θt|θt−1) is defined by the model and p(θt−1|y1:t−1) is known from the previous

step so it does not have to be recomputed. Therefore, updating the filtering distribution is a two

step process. First, forecast the state one step ahead using equation 2.3 then once a new observa-

tion is received update the forecast once a new observation is received using equation 2.1 [Doucet

et al., 2001].

p(θt|y1:t−1) =

∫
p(θt|θt−1)p(θt−1|y1:t−1)dθt−1. (2.3)

p(θt|y1:t) =
p(yt|θt)p(θt|y1:t−1)∫
p(yt|θt)p(θt|y1:t−1)dθt

t > 1. (2.4)

Often an estimate for the entire state path up to time t is needed. The goal then is to

compute the joint posterior distribution p(θ0:t|y1:t) and sequentially update the estimate as new

observations are received. As before, using an application of Bayes’ theorem and the properties

of the state space model the joint distribution can be factored as

p(θ0:t|y1:t) =
p(yt|θt)p(θt|θt−1)
p(yt|y1:t−1)

p(θ0:t−1|y1:t−1) (2.5)

=
p(yt|θt)p(θt|θt−1)∫
p(yt|θt)p(θt|y1:t−1)dθt

p(θ0:t−1|y1:t−1). (2.6)

The density p(θ0:t−1|y1:t−1) is known from the previous step, p(yt|θt) and p(θt|θt−1) are defined

by the model and p(θt|y1:t−1) can be computed using equation 2.4. Therefore, similar to how the

filtering distribution is updated the posterior distribution p(x0:t−1|y1:t−1) can be updated in two

steps, prediction and updating. First, use equation 2.7 to forecast the state one step ahead then use
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equation 2.8 [Doucet et al., 2001].

p(θt|y1:t−1) =

∫
p(θt|θt−1)p(θt−1|y1:t−1)dθt−1. (2.7)

p(θ0:t|y1:t) =
p(yt|θt)p(θt|θt−1)∫
p(yt|θt)p(θt|y1:t−1)dθt

p(θ0:t−1|y1:t−1) t > 1. (2.8)

Kalman [1960] introduced a solution, known as the Kalman Filter, for linear Gaussian

state space models. However, in most cases computing the distributions defined in 2.7 and 2.8

is not possible given that they can involve high dimensional integrals. The use of nonlinear and

non-Gaussian state space models has greatly increased. Therefore, extensive research has been

devoted to developing Monte Carlo methods to sequentially update approximations of the filter-

ing distribution for general state space models. This class of algorithms are commonly known as

Sequential Monte Carlo methods or Particle Filters [Cappe et al., 2007, Doucet et al., 2001, Aru-

lampalam et al., 2002, Petris et al., 2009].
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3 Sequential Monte Carlo Methods

In this chapter we give an overview of some common sequential Monte Carlo methods. Simi-

lar summaries are given by [Cappe et al., 2007, Arulampalam et al., 2002, Doucet et al., 2001,

Petris et al., 2009]. Recall that given the filtering density p(θt|y1:t) or the joint density p(θ0:t|y1:t)

at time t, the goal is to update the density when a new observation is received. Sequential Monte

Carlo (SMC) methods achieve this by extending importance sampling.

3.1 Importance Sampling

Suppose we wish to calculate the expectation of a function f(x) with respect to the density, p(x).

Computing the necessary integral is either not possible or computationally expensive. Instead

we can introduce an importance density q(x) and write the expectation of a function f(x) with

respect to p(x) as

Ep[f(x)] =

∫
f(x)p(x)dx =

∫
f(x)

p(x)

q(x)
q(x)dx = Eq

[
f(x)

p(x)

q(x)

]
.

To calculate this expectation draw the samples from the importance density q(x) and compute the

Monte Carlo approximation

Eq

[
f(x)

p(x)

q(x)

]
=

∫
f(x)

p(x)

q(x)
q(x)dx ≈ 1

N

N∑
i=1

f(x(i))
w̃(i)∑N
i=1 w̃

(i)
.

Where, w̃(i) = p(x(i))

q(x(i))
are the unnormalize importance weights. The samples {x(i) : i = 1, 2, ..., N}

are commonly referred to as particles. These particles and corresponding weights, denoted {(x(i), w(i)) :

i = 1, 2, ..., N}, are a Monte Carlo approximation of the density p(x). That is, we can define the

approximation to p(x) as

p̂(x) =
N∑
i=1

w(i)δx(i) ,
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where δx(i) is the Dirac delta function centered at x(i) and w(i) are the normalized importance

weights defined above.

For the special case in which we can draw samples directly from the target density

p(x) the importance density q(x) will be equal to p(x) and all of the importance weights will be

equal to one. If the importance density is approximately equal to the target density then all of the

normalized importance weights will be close to one. However, if the importance density is far

from the target density then a small number of the particles will have large corresponding impor-

tance weights while most of the particles will have importance weights approximately equal to

zero. This leads to a small effective sample size and a poor Monte Carlo approximation. To coun-

teract this the particles can be resampled. By resampling, particles with large importance weights

are replicated and particles with small importance weights are removed. There are several ways

to resample the particles. An obvious approach is known as multinomial resampling. Given a

Monte Carlo approximation, {(x(i), w(i)) : i = 1, 2, , N}, the particles can be resampled by draw-

ing a sample of size N from the set {x(i) : i = 1, 2, ..., N} where the probability of selecting

x(i) is equal to the importance weight, w(i). This results in a new set of equally weighted parti-

cles that is now a new Monte Carlo approximation to the density p(x). However, this resampling

step increases the Monte Carlo variance so resampling methods designed to limit the increase in

variance have been developed [Cappe et al., 2007, Petris et al., 2009].

3.2 Particle Filters

Particle filters extend importance sampling to sequentially update a Monte Carlo approximation

to the joint density p(θ0:t|y1:t). We begin by reviewing methods that assume the parameters of

the state and observation densities are known. For a general state space model we would like

to estimate the distribution by sampling directly from p(θ0:t|y1:t); however, in most cases this is

not possible and it is also increasingly inefficient as time goes on. As in importance sampling an

importance density, q(θ0:t|y1:t), can be introduced. To compute a Monte Carlo approximation to

p(θ0:t|y1:t) start by drawing a large number of samples from the importance density and then cal-
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culate the corresponding unnormalized importance weights as,

w̃
(i)
t =

p(θ
(i)
0:t|y1:t)

q(θ
(i)
0:t|y1:t)

.

Finally, normalize the importance weights and the set {(θ(i)0:t, w
(i)
t ) : i = 1, 2, , N} defines a Monte

Carlo approximation to p(θ0:t|y1:t). However, when a new observation is received the target den-

sity will change. Furthermore, it would be computationally efficient to update the current state

path particles so that they provide an approximation to the new density rather than drawing an

entirely new set of state paths each time we receive a new observation. Particle filters update the

current Monte Carlo approximation to estimate the new density by assuming or constructing an

importance density that evolves in a similar manner to the target density.

3.2.1 The Bootstrap Filter

Assume that at time t the set {(θ(i)0:t−1, w
(i)
t−1) : i = 1, 2, , N} is a Monte Carlo approximation to

p(θ0:t−1|y1:t−1) and a new observation, yt, is received. In order to sequentially update the approxi-

mation it is assumed that the importance density can be factored as

qt(θ0:t|y1:t) = qt|t−1(θt|θ0:t−1, y1:t)qt−1(θ0:t−1|y1:t−1).

The general idea is that the current samples θ(i)0:t−1 were generated from qt−1(θ0:t−1|y1:t−1), the

importance density at time t − 1, and each of the state paths can by extend from θ
(i)
0:t−1 to θ

(i)
0:t by

drawing a new particle θ(i)t from qt|t−1(θt|θ(i)t−1, yt). This assumption about the importance density

allows us to update the unnormalized importance weights sequentially. The formula for updating

9



the unnormalized importance weights can be factored as

w̃
(i)
t =

p(θ
(i)
0:t|y1:t)

qt(θ
(i)
0:t|y1:t)

=
p(yt|θ(i)t )p(θ

(i)
t |θ

(i)
t−1)

qt|t−1(θ
(i)
t |θ

(i)
0:t−1, y1:t)

p(θ
(i)
0:t−1|y1:t−1)

qt−1(θ
(i)
0:t−1|y1:t−1)

=
p(yt|θ(i)t )p(θ

(i)
t |θ

(i)
t−1)

qt|t−1(θ
(i)
t |θ

(i)
0:t−1, y1:t)

w
(i)
t−1

where, the importance density qt|t−1(θ(i)t |θ
(i)
t−1, yt) is carefully chosen, p(yt|θ

(i)
t ) and p(θ(i)t |θ

(i)
t−1)

are defined by the model and w(i)
t−1 are the importance weights computed at the previous step.

This process defines an algorithm that updates the approximation of the filtering density at time

t− 1 to an approximation of the density at time t each time a new observation is received.

In summary, suppose at time t the set {(θ(i)0:t−1, w
(i)
t−1) : i = 1, 2, ..., N} defines a Monte

Carlo approximation to p(θ0:t−1|y1:t−1) and a new observation, yt, is received. The approximation

can be updated if, for i = 1, 2, ..., N :

• extend θ(i)0:t−1 to θ
(i)
0:t by sampling θ(i)t from qt|t−1(θt|θ(i)0:t−1, y1:t),

• update the corresponding unnormalized importance weight, w̃(i)
t , according to

w̃
(i)
t =

p(yt|θ(i)t )p(θ
(i)
t |θ

(i)
t−1)

qt|t−1(θ
(i)
t |θ

(i)
t−1.yt)

w
(i)
t−1

After, normalizing the importance weights and the new set of particles and weights define a Monte

Carlo approximation to p(θ0:t|y1:t). The approximation can be written as p(θ0:t|y1:t) ≈
∑N

i=1w
(i)
t δθ(i)0:t

.

If only the filtering distribution is need then the weights remain the same and the state path up to

the current time can be dropped. That is, the approximation to the filtering distribution is given

by p(θt|y1:t) ≈
∑N

i=1w
(i)
t δθ(i)t

[Petris et al., 2009].

When using the basic particle filter algorithm a proper importance density needs to be

defined. In practice, even with a well defined importance density after several iterations almost all
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of the importance weights are approximately zero so only a few particles contain almost all of the

weight. To counteract this problem a resampling step as described in Section 3.1 can be included

when the effective sample size falls below a certain threshold [Petris et al., 2009]. As in Petris

et al. [2009], the effective sample size is defined as Neff = (
∑N

i=1(w
(i)
t )2)−1 and resampling

occurs when Neff is less than half the number of samples drawn, N .

When defining the importance density it is common to use the state density. That is,

qt|t−1(θt|θ0:t−1, y1:t) = p(θt|θt−1). This choice is convenient because it is easy to

draw samples from and the equations to update the importance weights simplify nicely. How-

ever, this choice often leads to poor performance [Petris et al., 2009]. The state density will likely

be far from the target density and this can worsen the weight degeneracy problem or this can re-

sult in resampling particles that have relatively high importance weights but still provide a poor

Monte Carlo approximation. A better choice for importance density is to use the new observa-

tion yt to help guide the generation of new particles. If possible we could compute the density

qt|t−1(θt|θt−1, yt) directly. This is commonly defined as the optimal importance density in the

sense that the conditional variance of the importance weights is zero [Cappe et al., 2007, Petris

et al., 2009]. Unfortunately, directly computing the optimal importance density is not possible for

a general state space model.

3.2.2 Auxiliary Particle Filter

Pitt and Shephard [1999] introduced the Auxiliary Particle Filter (APF) which updates the ap-

proximation to the posterior density while avoiding the potential problem of computing the opti-

mal importance density for the bootstrap filter. Suppose at time t−1, p̂(θ0:t−1|y1:t−1) =
∑N

i=1w
(i)
t−1δθ(i)0:t

11



defines a Monte Carlo approximation to p(θ0:t−1|y1:t−1) then it follows that

p(θ0:t|y1:t) =
p(yt|θt)p(θt|θt−1)
p(yt|y1:t−1)

p(θ0:t−1|y1:t−1)

∝ p(yt|θt)p(θt|θt−1)p(θ0:t−1|y1:t−1)

≈ p(yt|θt)p(θt|θt−1)p̂(θ0:t−1|y1:t−1)

=
N∑
i=1

p(yt|θt)p(θt|θ(i)t−1)w
(i)
t−1δθ(i)0:t−1

.

An auxiliary variable can be introduced and then the auxiliary target distribution is given by

p̂(θ0:t, i|y1:t) ∝ p(yt|θt)p(θt|θ(i)t−1)w
(i)
t−1δθ(i)0:t−1

To update the approximation Pitt and Shephard [1999] proposed using the importance density,

qt|t−1(θ0:t, i|y1:t) ∝ w
(i)
t−1p(yt|θ̂

(i)
t )p(θt|θ(i)t−1)δθ(i)0:t−1

.

Where, θ̂(i)t is some likely value, such as the mean or mode, of the state density p(θt|θ(i)t−1). Using

this importance density the Monte Carlo approximation can be updated if, for k = 1, 2, ..., N ,:

• draw an auxiliary variable Ik from the set {i = 1, 2, ..., N} with p(Ik = i) ∝ w
(i)
t−1p(yt|θ̂

(i)
t )

• extend the state path from θ
(Ik)
0:t−1 to θ

(k)
0:t by sampling θ(k)t from p(θt|θ(Ik)t−1 )

• update the unnormalized weights according to

w̃
(k)
t =

w
(Ik)
t−1 p(yt|θ

(k)
t )p(θ

(k)
t |θ

(k)
t−1)

w
(Ik)
t−1 p(yt|θ̂

(Ik)
t )p(θ

(k)
t |θ

(k)
t−1)

=
p(yt|θ(k)t )

p(yt|θ̂(Ik)t )
.

After discarding the auxiliary variables, normalizing the weights and resampling if needed and

the new set of particles will define a Monte Carlo approximation to p(θ0:t|y1:t) [Petris et al., 2009].
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It is interesting to note that when an auxiliary variable is sampled certain state paths

will have a relatively higher probability of being selected. A large value of w(i)
t−1 suggest that the

state θ(i)t−1 is consistent with the previous observation. In theory θ̂
(i)
t is a state that is likely to show

up at time t given θ(i)t−1. So, for each state path we find a likely next state for time t. If the previous

state θ(i)t−1 is consistent with the previous observation and the observation density given a likely

next state in that path, p(yt|θ̂(i)t ), is large then that state path will have a relatively large probabil-

ity of being selected. In theory we should select state paths that will likely evolve to a state that is

"consistent" with the new observation [Liu and West, 2001].

3.2.3 Auxiliary Particle Filter with Unknown Parameters

Until now we have discussed methods for general nonlinear and non-Gaussian state space models

with known observation and state density parameters. Now assume that the parameter vector φ is

unknown. The goal is to update the estimate of the joint posterior density p(θ0:t−1, φ|y1:t−1) se-

quentially as new observations are received. A method proposed by Liu and West [2001] extends

the auxiliary particle filter by using a kernel smoothing technique to approximate the marginal

density of the unknown parameter vector, φ, given the observations y1:t−1.

In a similar process to the APF, suppose at time t − 1 the set {(θ(i)0:t−1, φ
(i), w

(i)
t−1) : i =

1, 2, ..., N} defines a Monte Carlo approximation to p(θ0:t−1, φ|y1:t−1) then it follows that,

p(θ0:t, φ|y1:t) ∝ p(yt|θt, φ)p(θt|θt−1, φ)p(θ0:t−1, |y1:t−1, φ)p(φ|y1:t−1).

Kernel density smoothing methods take an importance sample and create a weighted

mixture of a continuous distribution to define a continuous approximation to the density of in-

terest. The particle filtering algorithm proposed by Liu and West [2001] uses a kernel density

smoothing technique to approximate p(φ|y1:t−1). Given the importance sample {(φ(i), w
(i)
t−1) :

i = 1, 2, ..., N} let φ̄ and V be the mean and variance matrix of the importance sample then

13



p(φ|y1:t−1) can be approximated as

p(φ|y1:t−1) ≈
N∑
i=1

w
(i)
t−1N(m(i), h2V ).

Where, the meanm(i) = aφ(i) + (1 − a)φ̄ and the variance h2V of the normal kernel density are

defined so that the variance of the approximation is not increased by using a mixture of normal

distributions. And, a =
√

1− h2 is defined by a smoothing parameter, h [Liu and West, 2001].

Liu and West [2001] suggest using a value of a between 0.974 and 0.995. It follows that the den-

sity of interest can be approximated as,

p(θ0:t, φ|y1:t) ∝ p(yt|θt, φ)p(θt|θt−1, φ)p(θ0:t−1, |y1:t−1, φ)p(φ|y1:t−1)

≈
N∑
i=1

w
(i)
t−1p(yt|θt, φ)p(θt|θt−1, φ)N(m(i), h2V )δ

θ
(i)
0:t−1

.

Again, introduce auxiliary variable i so that the distribution of interest becomes

p̂(θ0:t, φ, i|y1:t) ∝ w
(i)
t−1p(yt|θt, φ)p(θt|θ(i)t−1, φ)N(m(i), h2V )δ

θ
(i)
0:t−1

.

To sample from the distribution introduce an importance density,

qt(θ0:t, φ, i|y1:t) ∝ w
(i)
t−1p(yt|θt = θ̂

(i)
t , φ = m(i))p(θt|θ(i)t−1, φ)N(m(i), h2V )δ

θ
(i)
0:t−1

.

Where θ̂(i)t is some likely value such as the mean, median or mode of the state density p(θt|θt−1 =

θ
(i)
t−1, φ = m(i)). Then the approximation can be updated if, for k = 1, 2, ..., N :

• draw an auxiliary variable Ik from the set {i = 1, 2, ..., N} with p(Ik = i) ∝ w
(i)
t−1p(yt|θt =

θ̂
(i)
t−1, φ = m(i))

• draw a new fixed parameter vector φ(k) from N(m(i), h2V )

• extend the state path from θ
(Ik)
0:t−1 to θ

(k)
0:t by drawing θ

(k)
t from p(θt|θt−1 = θ̂

(Ik)
t−1 , φ = φ(k))

14



• update the unnormalized importance weights according to

w̃
(k)
t =

w
(Ik)
t−1 p(yt|θt = θ

(k)
t , φ = φ(k))p(θt|θ(k)t−1, φ)N(m(Ik), h2V )

w
(Ik)
t−1 p(yt|θt = θ̂

(Ik)
t , φ = m(Ik))p(θt|θ(k)t−1, φ)N(m(Ik), h2V )

=
p(yt|θt = θ̂

(k)
t , φ = φ(k))

p(yt|θt = θ̂
(Ik)
t , φ = m(Ik))

After, discarding the auxiliary variables, normalizing the weights and resampling if needed the

new set of importance weights and particles define a Monte Carlo approximation to p(θ0:t, φ|y1:t)

[Liu and West, 2001].

The Liu and West [2001] particle filter used normal kernels to smooth the importance

sample {(φ(i), w
(i)
t ) : i = 1, 2, ..., N} however this does not work if the support of the parameter

of interest is not the real line. If this is the case then we can either transform the parameter so

that its support is the real line or we can use a different continuous density for the kernel. If a

different continuous density is used then, as Petris et al. [2009] suggests, we can match the first

two moments tom(i) and V . An example given in Petris et al. [2009] used a gamma kernel for

unknown variance parameters. Given an importance sample {(φ(i), w
(i)
t−1) : i = 1, 2, ..., N}

that approximates p(φ|y1:t−1). Then for i = 1, 2, ..., N the we can match the mean µ(i) = α(i)

β(i)

and variance σ2(i) = α(i)

β2(i)
of the gamma distributions to the meanm(i) and variance h2V of the

normal distribution suggest by Liu and West [2001]. Solving for α(i) and β(i) we get that

α(i) =
m(i)2

h2V
(3.1)

β(i) =
m(i)

h2V
. (3.2)

Then p(φ|y1:t−1) can be approximated as a weighted mixture of gamma distributions,
∑N

i=1w
(i)
t−1gam(α(i), β(i)).

And like the normal mixture used in Liu and West [2001] the gamma mixture has the same mean

and variance as the discrete Monte Carlo approximation given by {(φ(i), w
(i)
t ) : i = 1, 2, ..., N} .
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4 Application

In quantitative finance modeling and forecasting daily returns of an asset or a group of assets is

a large area of research. Let pt be an asset price at time t then the percent log return is defined

as yt = 100 ∗ (log(pt) − log(pt−1)). In a linear Gaussian state space model the variance of the

observations is assumed to be constant through time. However, the variance of log returns noto-

riously vary over time and so the assumption of constant variance is not appropriate [Koopman

and J., 2001]. Historically, the autoregressive conditional heteroskedasticity (ARCH) model and

the generalized autoregressive conditional heteroskedasticity (GARCH) model have been used to

model the changing variance by assuming the current variance is a function of the previous return

residuals [Engle, 1982], [Bollerslev, 1996]. More recently stochastic volatility models assume the

variance evolves according to a stochastic process. Another approach to model the changing vari-

ance is to use a hidden Markov model (HMM) [Zucchini et al., 2016]. HHMs are another type of

state space model that assume the latent states are discrete random variables.

4.1 A Hidden Markov Model for a Financial Application

In general Hidden Markov models are mixture models that allow for temporal dependence be-

tween observations. Commonly am-state HMM assumes that the latent state process is a discrete

Markov chain with a transition probability matrix Γ defined as,

Γ =



γ11 γ12 . . . γ1m

γ21 γ22 . . . γ2m
... ... . . . ...

γm1 γm2 . . . γmm


where γij = p(θt+1 = j|θt = i). That is, the probability of moving to state j given the pro-

cess is currently in state i is entry γij in the transition probability matrix. The observation density

depends on the current state, yt ∼ p(yt|θt = i) for i = 1, 2, . . . ,m.
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When using HHMs to model the changing variance of log returns the discrete states

correspond to observation densities that have different variances. So as the returns transition

between states the expected variance of the returns changes. We can interrupt the latent states

as different levels of variance. For example, the returns may have the smallest relative variance

when in state one, the second smallest variance when in state two and so on.

We will use a two state HMM to model percent log returns. Log returns are known

to have several“stylized facts" such as a kurtosis greater than three and significant autocorrela-

tion in absolute or squared returns [Zucchini et al., 2016, Bulla, 2011]. Bulla [2011] showed that

a HMM with at least one state corresponding to Student’s t-distribution reproduces“most of the

stylized facts better than or comparably well" as a HMM with only Gaussian components. Fur-

thermore, under the assumption of efficient markets log returns have a conditional expected value

of zero [Petris et al., 2009]. Using this assumption and the results from Bulla [2011], the hidden

Markov model we will use for the percent log returns is defined by equation 4.1.

yt|θt = i ∼


N(0, σ2

1), if i = 1

tν2(0, λ
−1
2 ), if i = 2

(4.1)

If the current state is one, θt = 1, then the observations follow a normal distribution with mean

zero and variance σ2
1 and if the current state is two, θt = 2, then observations will follow a t-

distribution with mean zero, scale parameter λ−12 , and degrees of freedom ν2. The latent states

evolve as a Markov Chain with a transition probability matrix Γ =

 γ11 γ12

γ21 γ22

. That is, the
probability of moving to state i given state j is γij . For identifiability it is assumed that σ2

1 <

λ−12 and 2 < ν2 ≤ 20. The general idea behind this model is that state one will account for

observations in a state of low variance while state two will account for outliers and observations

with high variance.

The t-distribution for observations in state two can be represented as a scale mixture

of normal distributions by introducing a latent variable ωt for each observation in that state. That
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is, if

yt|ωt, λ2 ∼ N(0, (ωtλ2)
−1)

ωt|ν2 ∼ gamma(ν2/2, ν2/2)

then the marginal distribution of yt is tν2(0, λ−12 ). The ωt’s are commonly used to detect outliers.

If ωt is far from one then this signals that the corresponding observation, yt, is likely a outlier

[Petris et al., 2009].

4.1.1 Sequential Inference for Hidden Markov Models

In the sequential Monte Carlo methods described in Chapter three we assume that we have an ini-

tial approximation to posterior distribution that can be updated as new observations are received.

With little to no prior information this initial approximation may be very poor. However, if we

have previous observations we can use these to construct an approximation to the current pos-

terior distribution. One suggestion is to use a Markov Chain Monte Carlo (MCMC) sampler to

initialize the particle filter [Petris et al., 2009]. Luckily, financial data is extremely abundant so

for the examples below we run an MCMC sampler on all available observations up to some time

t then use the Liu and West [2001] auxiliary particle filter to sequentially update the approxima-

tion.

For the HMM defined in 4.1 we are interested in the posterior distribution p(θ0:t, ω1:t, φ|y1:t)

where φ = (σ2
1, λ2, ν2,Γ). The Liu and West [2001] auxiliary particle filter allows us to up-

date the marginal distributions of the unknown parameters in the parameter vector, φ by drawing

samples from a smoothed approximation to the parameter’s marginal distribution. The marginal

distributions of σ2
1 , λ2 and ν2 will be approximated using a gamma kernel with shape, α, and

rate, β, parameters defined as in equations 3.1 and 3.2 so that the variance of the approximation

is not increased. The state transition probability matrix Γ has two free parameters. To approxi-

mate marginal distribution of γ11 and γ21 a logistic transformation will be applied with a normal
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density kernel. At time t − 1 a MCMC sampler is used to approximate the posterior of interest

p(θ0:t−1, ω1:t−1, φ|y1:t−1) then as a new observation is received at time t the posterior is updated

to p(θ0:t, ω1:t, φ|y1:t) by applying the Liu and West [2001] auxiliary particle filter. That is, for

k = 1, ..., N ,

• draw an auxiliary variable Ik from the set {i = 1, 2, ..., N} with

p(Ik = i) ∝ w
(i)
t−1p(yt|θt = θ̂

(i)
t , ωt = ω̂

(i)
t , φ = m(i))

• update each of the parameters by drawing

– σ2(k)

1 from gamma(α(Ik)

σ2
1
, β

(Ik)

σ2
1

)

– λ
(k)
2 from gamma(α(Ik)

λ2
, β

(Ik)
λ2

)

– ν
(k)
2 from gamma(α(Ik)

ν2 , β
(Ik)
ν2 )

– logit(γ
(k)
11 ) from N(m

(Ik)
γ11 , h

2Vγ11)

– logit(γ
(k)
21 ) from N(m

(Ik)
γ21 , h

2Vγ21)

• extend the state parameters from

– ω
(Ik)
1:t−1 to ω

(k)
1:t by drawing ω

(k)
t from gam(ν(Ik)/2, ν(Ik)/2)

– θ
(Ik)
0:t−1 to θ

(k)
0:t by drawing θ

(k)
t from p(θt|θt−1 = θ̂

(Ik)
t−1 , φ = φ(k))

• update the unnormalized importance weights according to

w̃
(k)
t =

p(yt|θt = θ
(k)
t , ωt = ω

(k)
t , φ = φ(k))

p(yt|θt = θ
(Ik)
t , ωt = ω

(Ik)
t , φ = m(Ik))

.

After discarding the auxiliary variables, normalizing the weights and resampling if needed and

the new set of particles will define an approximation to the posterior p(θ0:t, ω1:t, φ|y1:t). When

drawing the auxiliary variable Ik with probability p(Ik = i) ∝ w
(i)
t−1p(yt|θt = θ̂

(i)
t , ωt = ω̂

(i)
t , φ =

m(i)), θ̂(i)t is defined to be the previous state, θ(i)t−1, in that state path. This implies the observation
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is likely to remain in the same state. And ω̂(i)
t is defined to be the median of gam(ν

(i)
2 /2, ν

(i)
2 /2).

A value of 0.975 was used for the smoothing parameter a, h =
√

1− a2.

4.2 A Simulated Example

Figure 4.1: Simulated Daily Returns from HMM

To provided an example of estimating the known state and observation density param-

eters the Liu and West [2001] auxiliary particle filter is first applied to data simulated from the

HMM defined in equation 4.1. Figure 4.1 shows 5500 data points simulated for the HMM defined

by 4.1. A MCMC sampler using 70000 samples and a burnin period of 50000 samples was used

to construct an approximation to the posterior at time t. The MCMC samples were then used to

initialize the particle filter. Then for each new observation we update the approximation using the
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Liu and West [2001] algorithm laid out in section 4.1.1. At each iteration 20,000 samples were

used to approximate the distribution and the particles were resampled after every iteration.

Figure 4.2: State and Observation Parameter Estimates for Simulated Data
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Figure 4.3: State Estimates for Simulated Data

4.2.1 Parameter and State Estimation for Simulated Data

Figures 4.2 show the 95% credible intervals in grey, the posterior mean in blue and the simulated

value in red for each of the parameters in the observation and state densities over the 100 observa-

tions. Figure 4.3 shows the 100 simulated daily log returns with the probability of state two and

the simulated state. State two corresponds to the state with highest variance so periods of high

volatility in the log returns should correspond to periods of high probability of state two. There is

a period of high volatility from observation 5400 to 5437 followed by a period of volatility from

observation 5438 to 5500. Figure 4.3 shows the particle filter is identifying periods of high and

low volatility though it takes a few observations for the particle filter to fully identify the change

in volatility.
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Figure 4.4: Daily Log Returns for S & P 500 Index

4.3 Daily Returns for S&P 500 index

Next the Liu and West [2001] auxiliary particle filter is applied to the daily log returns for the

S&P 500 index. Figure 4.4 shows 5688 daily returns from January 2nd, 1996 to August 3rd,

2018. A MCMC sampler using 50,000 samples and a burnin of 25,000 samples was applied to

the first 5588 observations to initialize the particle filter. Then the Liu and West [2001] auxiliary

particle filter was used to update the posterior distribution over the final 100 observations (March

14th, 2018 to August 3rd, 2018). For the auxiliary particle filter a sample of size 20,000 was used

and the particles were resampled at each iteration.
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Figure 4.5: Parameter Estimates for S & P 500 Data

4.3.1 Parameter and State Estimation for S & P 500 Data

Figures 4.5 show the 95% credible intervals in grey and the posterior mean in blue for each of the

parameters in the observation and state densities over the 100 days. Figure 4.6 shows the daily

log returns of the S&P 500 over the 100 days with the probability of the state two at time t below.

State two corresponds to the state with highest variance so periods of high volatility in the log

returns should correspond to periods of high probability of state two. Around April of 2018 the

S&P went though what appears to be a period of relatively high volatility and also during that

period our HMM estimates with a high probability that the log returns were in state two, the state

of high volatility.
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Figure 4.6: State Estimates for S & P 500 Data
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4.4 Forecasting

In quantitative finance the interest is often in forecasting future volatility in order to price various

types of options. The full forecast distribution can be produced by simulating the process ahead

"k" steps. At time t, given an up-to-date approximation to p(θ0:t, ω1:t, φ|y1:t), assuming all impor-

tance weights are equal, we can produce a one step ahead forecast if for n = 1, ..., N

• draw θ
(n)
t+1 from p(θ

(n)
t+1|θt = θ

(n)
t )

• Given θ(n)t+1

– Forecast the variance of the log returns, var(yt+1)

∗ if θ(n)t+1 = 1 then var(yt+1) = σ2(n)

1

∗ if θ(n)t+1 = 2 then var(yt+1) =
ν
(n)
2

ν
(n)
2 −2

λ−1
(n)

2

– Forecast the log returns, yt+1

∗ if θ(n)t+1 = 1 then draw yt+1 from N(0, σ2(n)

1 )

∗ if θ(n)t+1 = 2 then

· draw ω
(n)
t+1 from gam(ν

(n)
2 /2, ν

(n)
2 /2)

· given ω(n)
t+1 draw yt+1 from N(0, (ω

(n)
t+1λ

(n)
2 )−1)

Figure 4.7 shows the one step ahead forecast distribution for the states and percent log

returns.

4.4.1 Evaluation of Forecasts

It is common to evaluate a forecast based on how well the point forecast, such as mean or me-

dian, minimize a given loss function. In the case of log returns, given the assumption of efficient

markets, any point estimate is always expected to be zero so this type of evaluation is not helpful.

Furthermore, the forecast of the log returns is the full forecast distribution. To fully evaluate fore-

cast distribution we can check the coverage of the credible intervals over the 100 day period. In
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Figure 4.7: One Step Ahead Forecast Distributions
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Figure 4.8: Evaluation of S & P 500 Percent Log Return Forecast Distributions

figure 4.8 the y axis is the proportion of observations within each of the estimated credible inter-

vals and the x axis is the theoretical proportion. So the diagonal dotted line is the ideal scenario

where x% of observations fall within the x% credible interval. The plot shows that the estimated

credible intervals are consistently too wide. For example, the 60% credible interval contains ap-

proximately 63.6% of the observations in that 100 day period.
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5 Conclusion

With today’s technology data are being collected sequentially with increasingly short time in-

tervals between observations. Non-sequential Bayesian inference methods, such as MCMC, are

notoriously slow and if we want to account for new observations in analysis and forecasting as

they arrive then these methods are not practical. State space models provide a frame work that

allows for sequential inference for the posterior distributions of interest. In special cases the full

closed form posterior distribution can be computed directly. However, for a general nonlinear

and/or non-Gaussian state space model this is not possible. In this case, particle filters allow for

sequential updating of the approximate posterior distribution as new observations arrive.

In this thesis we have applied the Liu and West [2001] auxiliary particle filter with

unknown parameters to a two state hidden Markov model to analyze and forecast the volatility

of the log returns of the S & P 500. The variance of the log returns is known to change through

time and the hidden Markov model allows for changing variance as the returns transition through

the latent states. Furthermore, Bulla [2011] showed that by including at least one t distribution in

the HMM can reproduce some of the“stylized facts" of log return at least as well as a HMM with

only Gaussian distributions. The model presented in this thesis uses a Gaussian distribution for

periods when the log returns are in a state of low volatility and a t distribution for periods when

the log returns are in a state of high volatility. The simulated example in 4.2 showed how the aux-

iliary particle filter tracks the parameter and state estimates. In section 4.3 the HMM was applied

to the S & P 500 index. When evaluating forecasts of the log returns standard point estimate met-

rics are not helpful. Furthermore, we would like to evaluate the full forecast distributions. To this

end the coverage of the estimated credible intervals were compared to theoretical credible inter-

val coverage. Using this metric it appears that one step ahead forecast from the HMM produce

credible intervals that are slightly too wide. In this thesis the number of discrete latent states was

assumed to be two. The main goal being to provide an example of using the Liu and West [2001]

auxiliary particle filter on a HMM with unknown state and observation parameters. Further re-
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search to determine the proper number of latent states and mixture of normal distribution and t

distributions could potentially reduce the coverage of the credible intervals. Another option is to

assume the number of latent states is unknown and estimate them.

30



Bibliography

M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters for online
nonlinear/non-gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2),
2002.

T. Bollerslev. Generalized autoregressive conditional heteroskedasticity. Journal of Economet-
rics, 31(3):307–327, April 1996.

J. Bulla. Hidden Markov models with t components. increased persistence and other aspects.
Quantitative Finance, 11(3):459–475, March 2011.

O. Cappe, S. J. Godsill, and E. Moulines. An overview of existing methods and recent advances
in sequential Monte Carlo. Proceedings of the IEEE, 95(5):899–924, May 2007.

C. Chatfield. The Analysis of Time Series. Chapman and Hall/CRC, 6 edition, 2003.

A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo Methods in Practice. Springer,
2001.

R. F. Engle. Autoregressive conditional heteroscedasticity with estimates of the variance of
United Kingdom inflation. Econometrica, 50(4):987–1007, July 1982.

R. E. Kalman. A new approach to linear filtering and prediction problems. Transactions of the
ASME–Journal of Basic Engineering, 1960.

J. Durbin and S.J. Koopman Time Series by State Space Methods. Oxford University Press, 2
edition, 2001.

J. Liu and M. West. Combined parameter and state estimation in simulation-based filtering. In
Arnaud Doucet, Nando de Freitas, and Neil Gordon, editors, Sequential Monte Carlo Methods
in Practice, chapter 10, page 197. Springer, 2001.

G. Petris, S. Petrone, and P. Campagnoli. Dynamic Linear Models with R. Springer, 2009.

M. K. Pitt and N. Shephard. Filtering via simulation: Auxiliary particle filters. Journal of the
American Statistical Association, 94(446):590, June 1999.

M. West and R. Prado. Time Series: Modeling, Computation, and Inference. Chapman and
Hall/CRC, 1 edition, 2010.

M. West, A. Pole, and J. Harrison. Applied Bayesian Forecasting and Time Series Analysis.
Chapman and Hall/CRC, 1 edition, 1994.

31



W. Zucchini, I. L. MacDonald, and R. Langrock. Hidden Markov Models for Time Series. CRC
Press, 2 edition, 2016.

32


	Sequential Inference for Hidden Markov Models
	Citation

	tmp.1544023449.pdf.ITTo6

