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ABSTRACT

Existing models of speleogenesis neglect the shape of cross-sections, which can hold in-

formation related to climate, tectonics, and sediment supply in their widths. The first study of this

dissertation simulates cross-sections of phreatic tubes, vadose canyons, and paragenetic galleries

using a method developed for bedrock channels. Successful simulation of these cross-sections

depends on erosion scaling with shear stress, in conflict with speleogenesis theory. Scaling of

equilibrium width in paragenetic galleries was explored through analytical derivation and simula-

tions, showing that width scales positively with discharge to the 1/2 power, and negatively with a

weak power of sediment supply. Negative scaling of width to sediment supply is the opposite of

scaling in surface bedrock channels.

Mechanisms of erosion were explored in Parks Ranch Cave, NewMexico, and Copperhead

Cave, Arkansas by comparing simulated relationships between scallop ratios and incision angles

varying with an exponent in the erosion model, and field data measured from 3D scans of mean-

dering passages. Data indicate that the exponent is between 0.5 and 2.5, with a best fit of 0.5 for

Copperhead, and 1 for Parks Ranch. These values arise due to a mixing of dissolution and abrasion.

This study also developed a tool to estimate discharge in partially air-filled passages by minimizing

the discrepancy between measured and calculated scallop size.

The last study extends the cross-section model into multiple cross-sections simulating a

single conduit, with flow calculated using a stormwater management code. This model includes

the ability for base level to change, and erosion weighted by the probability of a particular dis-

charge. Single cross-section simulations with weighted erosion shows that equilibrium width in

vadose canyons scales similarly when only the mean discharge is simulated, though the magnitude

of widths is lower. Magnitude is controlled by an extremity parameter in the probability distribu-



tion, with distributions with less extreme events having larger widths. The multiple cross-section

model simulates vadose canyon formation from a phreatic tube, and simulates vadose canyons prop-

agating downstream, the opposite of knickpoint propagation in surface channels. The model also

shows that keyhole passages are only successfully simulated when mean discharge lowers during

conduit formation.
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1 Introduction

Most studies on the formation of caves and karst features have largely focused on dissolu-

tion as the dominant mechanism of erosion (Covington et al., 2015). In contrast, geomorphologists

studying insoluble bedrock channels have largely ignored the dissolution process and instead fo-

cus on erosion by mechanical processes (e.g. Chatanantavet and Parker, 2009; Lamb et al., 2008;

Sklar and Dietrich, 2004; Whipple et al., 2000). Current mathematical models of speleogenesis

(cave formation) in epigene caves, caves connected to surface hydrology and chemistry, are re-

flective of this disparity as they seek to understand the time scale and geometry of caves in the

pre-breakthrough stage, before the onset of turbulent flow through the entire cave (e.g. Dreybrodt,

1996; Dreybrodt et al., 2005; Groves and Howard, 1994; Palmer, 1984, 1991; Szymczak and Ladd,

2011). These models cease at the centimeter scale in the dimension of passage width/diameter, treat

cross-sections as either fractures or tubes, and neglect mechanical erosion as there would be little,

if any, sediment transport through the incipient cave. Past the breakthrough stage models of cave

evolution are conceptual, with fewmathematical models existing (Covington and Perne, 2015; Grm

et al., 2017; Hammer et al., 2011; Perne et al., 2014b), despite the bulk of morphology, particularly

in the cross-section view (Lauritzen and Lundberg, 2000), being set in this stage.

Cave passages can be considered bedrock channels under the definition of Turowski et al.,

2008b, as adjustments to channel morphology is due to erosion of bedrock. Such channels are

well known to preserve records of past conditions such as climate in their geometry (e.g Amos

and Burbank, 2007; Finnegan et al., 2005; Stark, 2006; Turowski et al., 2007, 2009; Wobus et al.,

2008, 2006; Yanites and Tucker, 2010). The geometry of cave passages is thus a powerful tool for

understanding climate, tectonics, and paleohydrology over long time periods as they can persist in
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a landscape for millions of years (Broak, 2008; Gabrovšek, 2002; Osborne, 2007; Palmer, 2007;

Plotnick et al., 2015). Additionally, caves are used as records for climate and landscape evolution

through dating of sediment deposits preserved at discrete cave levels (Anthony and Granger, 2004,

2006, 2007; Granger et al., 2001, 1997; Granger and Siame, 2006). To address the lack of models

I develop several process based models of cave evolution, including the cross-section and profile

view, as well as explore the erosional mechanisms of cave formation past the breakthrough stage.

1.1 Current understanding of erosion in turbulent flow

The reason few attempts to model post-breakthrough speleogenesis have been conducted

is due to the complexity of speleogenesis in turbulent flow. Turbulent flow creates complex flow

structures that control shear stress on the walls, requiring computationally expensive estimations

of the Navier-Stokes equations (e.g., Grm et al., 2017; Hammer et al., 2011). Turbulent flow can

also transport sediment, which in turn can either armor caves from erosion or aid in it. While both

dissolution and mechanical erosion is known to occur in caves and soluble bedrock channels, the

relative amounts have only begun to be explored (Covington et al., 2015). Perhaps the largest issue

in modeling speleogenesis in turbulent flow is a conundrum relating to the type of dissolution that

occurs. This conundrum arises as speleogenetic theory, built upon experiments of Plummer et al.,

1978, predicts that only surface reaction rate limited dissolution occurs in turbulent flow (Coving-

ton, 2014; Dreybrodt and Buhmann, 1991; Liu and Dreybrodt, 1997), resulting in an erosion law

that does not scale with shear stress, and as a consequence, does not produce bedforms that require

such scaling. The hypothesis of scallop formation by Curl, 1966, requires erosion to scale with

shear stress. Despite this conundrum, scallops, a cuspate bedform (Fig. 1.1), are abundant in many

cave settings.
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Figure 1.1: A photograph of a set of scallops, a cuspate speleogen. The length of scallops is
proportional to shear stress, with higher shear stresses resulting in smaller scallops. The geometry
of scallops also indicates flow direction, with the point of the cusp indicating downstream direction,
in this case from right to left.

Dissolution of minerals when interacting with water can occur with two rate limiting end

members, or, if the rates are close enough, undergo mixed kinetics (Berner, 1978). These end

members are surface reaction rate limited dissolution, where the chemical reaction at the surface

limits the rate, and transport limited dissolution, where the rate at which ions involved in the reaction

diffuse across a diffusion boundary layer (DBL). Surface reaction rate limited dissolution depends

solely on the bulk chemistry of the water and a rate constant for the conversion of the mineral to

dissolved ions. These rate constants are determined empirically through experiments. Transport

limited dissolution depends on the bulk chemistry, and on the ratio between the thickness of the

diffusion boundary layer (ϵ) and the diffusion rate of a particular ion. These extremes produce two

differing erosion laws; surface reaction rate limited dissolution erosion only depends on chemistry,

with no dependence on shear stress. On the other hand, transport limited dissolution depends on

shear stress as DBL thickness can be written in terms of boundary shear stress, e.g.,

ϵ =
5ν√
τb/ρw

· Sc−1/3, (1.1)
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where ν is kinematic viscosity, τb is boundary shear stress, ρw is water density, andSc is the Schmidt

number (ν/D) (Perne et al., 2014a). In this formulation, ϵ depends on τb to the −1/2 power, and

as erosion rate is proportional to the inverse of ϵ it is related to τ 1/2b .

Most caves formed by dissolution are within limestone, which is composed primarily of

calcite. The dissolution of calcite is a slow reaction when compared to the dissolution of gypsum

and salt, two other cave forming minerals. By analyzing the possible rates of calcite dissolution

due to surface reaction limited dissolution as determined by experiments of Plummer et al., 1978,

compared to thickness of the DBL in a large parameter space calculated from the hydraulic pa-

rameters diameter and gradient (Fig. 1.2), Covington, 2014 determined that in almost no case is

dissolution of calcite transport limited. As such, any speleogen (cave formation formed by erosion)

that requires erosion to scale with shear stress must be formed by some mechanical process, such

as abrasion or grain plucking, or the rate constants determined from Plummer et al., 1978 are not

true surface reaction rates. One issue in the experiments of Plummer et al., 1978 is that the hydro-

dynamics of the system, in this case powdered calcite in a batch reactor, are not known, and the

ratio of surface reaction rate to transport rate can not be determined. Experiments where hydrody-

namics are known, and ϵ can be computed, show higher surface reaction rates in calcite (Rickard

and Sjöberg, 1983; Sjöberg, 1976; Sjöberg and Rickard, 1983). Thus, in some cases, dissolution

of calcite can be transport limited. While these experiments show that transport limited dissolution

or mixed kinetics can occur for calcite, the rates obtained do not greatly increase the cave settings

in which dissolution is transport limited (min(ϵcrit,Sj)inFig. 1.2).

In other media, such as gypsum, dissolution rates have been shown to be transport limited of

mixed in turbulent flow. The mixed kinetics of gypsum (Raines and Dewers, 1997) allow erosion

in this media to scale with a fractional power of shear stress (Opdyke et al., 1987). While this
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Figure 1.2: Graph of boundary layer thickness given a hydraulic diameter and gradient. Lines
indicate the critical thickness, above which transport limited dissolution can occur considering data
from Plummer et al., 1978 (PWP), and Sjöberg, 1976 (Sj).

is the case in experiment, it is unknown what conditions produce transport limited dissolution in

caves formed in gypsum. Additionally, the relative importance of mechanical erosion is unknown

in these caves.

As erosion in non-soluble, surface bedrock channels is well understood (Chatanantavet and

Parker, 2009; Sklar and Dietrich, 2004; Whipple et al., 2000) compared to caves and surface soluble

bedrock channels, models of bedrock channel formation are more developed for turbulent flow. To

model speleogenesis in turbulent flow methods developed for studying bedrock channel evolution

can be adapted.

1.2 Bedrock channels

1.2.1 Erosion in bedrock channels

Erosion in bedrock channels is most largely due to processes of mechanical erosion such as

plucking of jointed blocks, abrasion, and cavitation (e.g., Whipple and Tucker, 1999). To model

erosion in bedrock channels a simplified equation is often used. Equations include the stream power
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erosion model,

E = KsA
m
b S

n, (1.2)

where Ks is a constant encapsulating erodibility, Ab is contributing basin area, S is slope, and m

and n are exponents related to process, or a shear stress erosion model,

E = Kτab (1.3)

where K is a constant and a is an exponent related to process. When shear stress is formulated as

the depth-slope product,

τb = ρgHS (1.4)

where ρ is density of the fluid, g is acceleration due to gravity, and H is the depth of flow, the

exponents are translatable with n = 2a/3. Known relationships between processes and a include

1 ≤ a ≤ 3/2 for plucking of jointed blocks, a = 5/2 for abrasion, and q/2 where q is a positive

integer up to 7 for cavitation. Erosion can also be modeled by physically derived equations for

plucking and abrasion (Chatanantavet and Parker, 2009; Sklar and Dietrich, 2004).

While considering only stream power and shear stress erosion laws allow generalizations

at the landscape scale, sediment effects become important at the scale of individual channels and

cross-sections due to cover protecting some of the bed from erosion.

1.2.2 Role of sediment

Sediment plays two roles in bedrock channels. The first role is supplying tools for eroding,

the second is providing a cover from further erosion.

Sediment cover has many effects. Cover in bedrock channels is known to widen channels

(Turowski, 2018; Turowski et al., 2007), and an increase in sediment supply increases cover and
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width (Yanites and Tucker, 2010). This widening is due to sediment armoring the center of the

channel, where without cover most erosion would occur, forcing erosion to proceed laterally. Lat-

eral erosion may also cause meandering (Turowski et al., 2008a). Cover can also set the efficacy

of erosion, and lower long term incision rates (Lague, 2010).

Another effect of sediment is the setting of thresholds. The ability to transport sediment

requires an initial threshold to bemet at which the force of drag on a sediment particle can overcome

frictional forces. This threshold is known as the threshold for sediment motion and can be expressed

as a critical shear stress τc, and is typical in sediment transport laws such as that of Fernandez Luque

and Beek, 1976. As there is a threshold for sediment motion, it follows that in order for erosion

to occur this threshold must be exceeded, and that under the threshold the cover effect dominates.

The shear stress threshold also creates a discharge (Q) threshold, as τb is a function of discharge.

At lowQ sediment is immobile and a cover persists. At highQ, such as during flooding, the cover

can become mobile and provide tools for erosion. From this threshold effect it is interpreted that

most geomorphic work occurs in floods of high return time (Barbour et al., 2009; Hartshorn et al.,

2002; Lague, 2010; Turowski et al., 2008a). The recognition of this threshold has led to modeling

of erosion using probabilistic models of erosion past simple expressions such as the stream power

erosion law by including discharge probability distributions and the likelihood of exceeding (e.g,

Lague, 2014; Lague et al., 2005; Molnar et al., 2006). Such models have increasingly shown the

importance of discharge probability on scaling relationships between geometry, climate, tectonics,

and sediment supply.
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1.2.3 Geometry scaling and cross-section models

Models of bedrock channel evolution are commonly explored to build scaling relationships

between measurable parameters such as slope and width to climate and tectonics (Amos and Bur-

bank, 2007; DiBiase and Whipple, 2011; Finnegan et al., 2005; Stark, 2006; Whipple and Tucker,

1999; Wobus et al., 2008, 2006), as they can be used to constrain unknowns such as uplift rate (e.g.,

Kirby and Whipple, 2012; Lague, 2014; Miller et al., 2013; Roberts and White, 2010; Whittaker

et al., 2007). Common scalings are between width and discharge (W ∝ Q0.3−05), and slope and

discharge (S ∝ Q−3/16) (e.g., Finnegan et al., 2005). Such models can be analytical (e.g., Finnegan

et al., 2005; Wobus et al., 2008), starting with a set of assumptions, or can simulate geometry with

a freely changing cross-section shape (e.g., Stark, 2006; Wobus et al., 2008, 2006). Common as-

sumptions in analytic derivations are a constant shape, characterized by width-to-depth ratio, and

erosion governed by the stream power erosion law or linear shear stress erosion law equaling base

level drop, also known as steady state (e.g., Finnegan et al., 2005).

The speleogenesis models in this dissertation use a freely updating cross-section. To update

the cross-section a shear stress erosion model is used, and shear stress is estimated using the method

ofWobus et al., 2006, termed theWTAmethod. TheWTAmethod treats the cross-section as a series

of points that define the perimeter and updates the cross-section through time proportional to shear

stress to an exponent reflective of process. Shear stress in theWTA is approximated with amodified

law of the wall equation that references the point of maximum velocity. The speleogenesis model

developed in this dissertation modifies the original WTA method which considers the maximum

velocity position to be the center of the free-surface, to the centroid of the perimeter for conduit-full

conditions (phreatic conditions). The normalWTAmethod is also used to simulate vadose canyons,
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where the cave passage is partially air filled. The WTA method also includes a method to find the

height of thewater in the cross- section byminimizing the difference between a prescribed discharge

and discharge calculated using the Chézy equation with a height dependent wetted perimeter, P ,

and wetted cross-sectional area, A. The WTA method allows the simulation of a cross-section

given only the geometry of the channel, roughness length, discharge, and slope in the free-surface

case. In the phreatic case slope becomes an energy slope and is calculated with the Chézy equation

and roughness length.

1.3 Cave cross-sections

Unlike the morphology of bedrock channels, cave morphology has been largely limited to

conceptual models. One aspect of cave morphology, the cross-section, can be very complex and

range from simple tubes and canyons, to ruggedly sculpted shapes with features such as ceiling

anastomoses and pendants. These cross-sections can also record multiple stages of development

such as the switch from phreatic to vadose conditions, or the changing of discharge reflected by

narrowing or the formation of notches. Lauritzen and Lundberg, 2000 presents a thorough review

of cross-sectional geometries in caves.

The cross-section geometries explored in this dissertation are phreatic tubes, meandering

and non-meandering vadose canyons, paragenetic galleries, and keyholes where a narrower vadose

canyon incises into a phreatic tube. Phreatic tubes are simple elliptical or circular shapes. These

form when hydraulic head is above the cave passage and the passage is in conduit-full conditions,

causing erosion to occur entirely throughout the perimeter. Vadose canyons are typically taller than

they are wide, and often have a constant, or little varying width from floor to ceiling. Canyons form
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when a free-surface is in the passage. As the cave is partially air-filled the upper portions do not

erode, and erosion is focused on the walls below the free-surface and the floor of the passage.

Paragenetic galleries are also are typically taller than they are wide. These form in the

phreatic zone and therefore the conduit is filled with water. This interesting process occurs when

sediment armors the floor of the passage, protecting the floor and lower parts of the walls from ero-

sion (e.g., Farrant and Smart, 2011; Renault, 1968). As water is in contact with the ceiling, and it is

not protected by cover, erosion occurs upwards towards the water table. As this erosion is directed

upwards, against the direction of gravity, it is sometimes termed antigravite erosion (Pasini, 2009).

Again, like vadose canyons, paragenetic galleries commonly feature constant widths. Paragenesis

can also form many complex cross-sections when the sediment interface is near the ceiling, includ-

ing ceiling anaostomeses and ceiling pendants (Farrant and Smart, 2011; Lauritzen and Lundberg,

2000).

The last type of cross-section explored are keyholes. Keyholes are shaped like their name-

sake and have a narrower vadose canyon cut into a phreatic tube. There are several possible ex-

planations for keyholes including only requiring base level to drop, transitioning from conduit-full

conditions to having a free-surface with conduit-full conditions existing long enough to enlarge the

cross-section to be greater than the equilibrium width of a canyon given particular discharge, com-

bined with base level dropping. Another hypothesis is that discharge must change at some point,

causing the smaller width to occur.

1.4 Goals of the dissertation

The overall goal of this dissertation is to develop an understanding of speleogenesis in tur-

bulent flow and to provide tools for determining erosive mechanisms in soluble bedrock channels.
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This dissertation is organized into three separate, but connected chapters that stand as pa-

pers on their own. The first paper details a simple, single cross-section model of speleogenesis in

turbulent flow and focuses on modeling the process of paragenesis. The goal of this paper is to

see if it is possible to model cave cross-sections in phreatic tubes, vadose canyons, and paragenetic

galleries, and to elucidate the dynamics of paragenesis.

The second paper explores mechanisms of erosion in two caves, Parks Ranch Cave, a gyp-

sum cave in NewMexico, and Copperhead Cave, a limestone cave in Arkansas. To explore erosion

mechanisms 3D scans are performed around well scalloped meander bends. The scallops and inci-

sion angles within the meander bends are measured, and compared to relationships simulated using

the cross-section model built in the first paper. The goal of this paper is to see if it is possible to

constrain erosion method from these data and modeled relationships.

The last paper extends the cross-section model into a multiple cross-section model with

multiple discharges, erosion weighted by the probability of a discharge occurring, and base level

drop. The goal of the last paper is to explore cross-section and profile geometry in the transition

from phreatic to vadose conditions, and to test hypotheses of keyhole type passage formation.
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2 Modeling Cross-Section Evolution

MODELING CAVE CROSS-SECTION EVOLUTION INCLUDING SEDIMENT
TRANSPORT AND PARAGENESIS

2.1 Abstract

The geometry of cave cross-sections is an important indicator of its formative processes.

While speleogenesis (cave formation) has been modeled extensively, cross-sections have nearly

entirely been treated as simple tubes or fractures. In this study we build a model for the evolution

of cross-sections by adapting methods developed in the bedrock channel literature.

To model cross-section development in caves we adapt a method developed to estimate

boundary shear stress along a perimeter of discrete points for surface bedrock channels to closed

shapes. The geometry of the cross-section is updated with an erosion law that scales with shear

stress. As a first test of the model we simulate phreatic tubes, vadose canyons, and paragenetic gal-

leries with two erosion rules: scaling with shear stress to the 1/2 power, and not scaling with shear

stress. Simulations where erosion does not scale with shear stress, in-line with current speleogene-

sis theory, do not produce realistic cross-sections, indicating our knowledge of erosion in caves is

incomplete. Secondly, we duplicate the scaling relationship between discharge and width modeled

in the original study that developed the shear stress method, and simulated the effect of changing

power in the erosion law, reflecting a change in erosional mechanism. Changing the erosional

power does not affect the scaling relationship, though does change the magnitude of width.

We also use this model to explore the dynamics and scaling relationships that form parage-

netic galleries. The model successfully duplicates the hypothesized dynamics that these galleries,
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and produces equilibrium widths that scale identically with an analytically derived relationship.

The scaling law predicts that increased sediment supply results in smaller widths to balance shear

stress and sediment transport. This scaling is opposite of that within surface channels.

2.2 Introduction

Cave cross-sections have long been understood to record information about the formative

processes of caves (Bretz, 1942). Cross-section shape can indicate the position of a cave passage

with respect to the water table during development. Water-filled passages forming in the phreatic

zone have a tube or enlarged fracture shape, typically of similar width to height. Vadose pas-

sages, which are partially air-filled, tend to be canyon shaped and have a greater height than width.

However, superficially similar geometries can also arise through entirely different genetic origins;

paragenetic galleries have a greater height than width, but unlike vadose canyons they form in the

phreatic zone when sediment armors the floor and walls of the cave (Farrant and Smart, 2011).

It is important to be able to identify the formative location of particular passages, because

cave levels, and age dates of sediments deposited within them, are often used to reconstruct base

level history and constrain landscape evolution rates (e.g. Anthony and Granger, 2004, 2006, 2007;

Granger et al., 2001, 1997; Granger and Siame, 2006; Palmer, 1987; Stock et al., 2005). For in-

stance, misidentifying a paragenetic passage as vadose would lead to an underestimation of the

elevation of base level, and thus an improper value for erosion rate. Additionally, cave passages

can be considered to be bedrock channels (Turowski et al., 2008), as morphological adjustments of

a cave channel require the erosion of bedrock. Since the geometry of bedrock channels is known to

vary with parameters such as uplift rate, discharge, and sediment supply (e.g., Amos and Burbank,

2007; Finnegan et al., 2005; Stark, 2006; Turowski et al., 2007, 2009; Wobus et al., 2008, 2006;
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Yanites and Tucker, 2010), the geometry of cave cross-sections may also hold information about

hydrological, tectonic, and sediment supply conditions during the time of formation. Despite the

usefulness of cave cross-sections, and a broad conceptual understanding of the relationships be-

tween cave passage shape and formative conditions (e.g., Bretz, 1942; Farrant and Smart, 2011;

Lauritzen and Lauritsen, 1995; Lauritzen and Lundberg, 2000; Palmer, 1984), no mathematical

models have been developed to quantitatively explore the relationships between cave passage shape

and the conditions during cave development. Consequently, we also have little understanding of

the dynamics and timescales associated with adjustments in cross sectional shape.

Here we simulate the evolution of cross-sectional shapes using a simple, physically based

model, and explore the development of phreatic tubes, vadose canyons, and paragenetic galleries.

We test the conceptual model of paragenesis, capture the dynamics of the process, and determine

scaling relationships between equilibrium geometry, discharge, and sediment supply. We also test

the effect of different erosion mechanisms on scaling relationships and cross-section shape.

2.3 Background

The morphology of surface bedrock channels has been well studied quantitatively and has

been modeled both physically in flumes (e.g., Finnegan et al., 2007; J. P. Johnson and Whipple,

2010) and numerically (e.g., Finnegan et al., 2005; Nelson and Seminara, 2011; Stark, 2006; Wobus

et al., 2008, 2006). Bedrock channel studies have focused on how geometry scales with parameters

such as discharge, contributing basin area, sediment supply, and lithology. Geometrical parameters

include the width of the channel, the width-to-depth (aspect) ratio, and slope. Well known relation-

ships include the scaling of width (W ∝ Q0.3−0.5) and slope to discharge, and how width-to-depth

ratio changes with lithology (e.g., Amos and Burbank, 2007; Finnegan et al., 2005). These studies
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have also focused on the response of the geometry to changes in uplift rates and lithology (e.g.

Amos and Burbank, 2007; Finnegan et al., 2005; Stark, 2006; Wobus et al., 2006), and sediment

supply (e.g., Yanites and Tucker, 2010).

Bedrock channel models often start with an erosion law, typically the stream power erosion

model,

E = KsA
m
b S

n, (2.1)

or a shear stress erosion model,

E = Kτab . (2.2)

The parameters for these models are: Ks, a constant that encapsulates erodibility factors with units

[L1−2mT−1], Ab, contributing basin area, S, the slope of the channel, and τb, boundary shear stress.

K in the shear stress model is also a constant, though is different than Ks in the stream power

erosion model. The powersm, n, and a are values that depend on erosional processes. These two

models of erosion are near identical in their formulation, as shear stress in most models is estimated

with the depth-slope product,

τb = ρwgHS, (2.3)

where ρw is the density of water, g is acceleration due to gravity, and H is the depth of water.

When the depth-slope product is used to estimate boundary shear stress, the exponents in these

models are related by n = 2a/3. Values in the shear stress erosion law are typically 1 ≲ a ≲

7/2 for mechanical/physical processes such as plucking of jointed blocks, abrasion, and cavitation

(Whipple et al., 2000).

Landscape evolution models including bedrock channels treat channels as having simple

geometry that does not evolve in shape. While this is sufficient for modeling at the landscape
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scale, it neglects the ability for cross-sections to freely evolve in shape. Cross-section models treat

the geometry as a series of points that can erode at independent rates that are function of shear

stress. Available models use a shear stress approximation such as the Ray-Isovel Method (Kean

et al., 2009; Kean and Smith, 2004; Nelson and Seminara, 2011) or a modified version of the

law of the wall equation (Wobus et al., 2008, 2006) to estimate shear stress and erode the channel

cross-section using the shear stress erosion law (e.g., Eq. 2.2).

While mathematical models of speleogenesis (cave formation) have been around since the

1980s (Dreybrodt, 1988; Palmer, 1984), they have primarily focused on the pre-breakthrough stage,

during initial network development, typically with individual conduit widths at the centimeter scale.

These models have neglected evolution of passage cross-sectional shape and instead treat incipient

cave passages as fractures or tubes (e.g., Dreybrodt et al., 2005). There are several barriers to the de-

velopment of models for cross section evolution. The first barrier is the complexity of calculating

flow structures and shear stress for passage shapes more complicated than a simple planar frac-

ture or circular tube. Such calculations are needed to estimate contrasts in erosion rates along the

passage wall. Some attempts to model flow structures and shear stress use computational fluid dy-

namics (CFD) to solve the Navier-Stokes equation for incompressible flow (Covington and Perne,

2015; Grm et al., 2017; Hammer et al., 2011). While these methods can calculate flow structures,

they are computationally expensive and are not currently suitable for cross-section evolution over

thousands of time steps. Perne et al., 2014 used a simplified version of the Navier-Stokes equa-

tions, the 1-D Saint-Venant equations in a storm water management software, SWMM, to simulate

cave formation over long periods of time, however, this simplified equation is depth averaged and

neither captures small scale flow structures nor produces a robust method of shear stress estimation.

Simpler approximations such as the depth-slope product have been used to estimate shear stress in
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caves for the purposes of quantifying sediment transport (e.g., Dogwiler and Wicks, 2004; Her-

man, 2006; Springer, 2004; E. L. White and W. B. White, 1968). While this formulation may be

adequate for generalizations, it is not adequate for simulating channel development (Wobus et al.,

2008).

A second problem is the poor understanding of the dissolution of calcite in turbulent flow.

The theory of speleogenesis in turbulent flow is built on the calcite dissolution experiments of

Plummer et al., (1978), and assumes the measured rates in the experiments represent true surface

reaction rate limited dissolution. If these experimental results are applied within the turbulent disso-

lution model developed by Dreybrodt and Buhmann, (1991), results suggest that dissolution rates

are limited by the rate of the surface reaction under most turbulent flow conditions Covington,

(2014). If this is the case, dissolution rate, ED, is only controlled by a rate constant and the degree

of undersaturation with respect to calcite. Below 80% saturation the rate is

ED = αC(CEq − Cb), (2.4)

where αC is a rate constant that does not depend on flow and is determined by experiment, CEq is

the equilibrium concentration of calcium in the fluid, and Cb is the concentration of calcium in the

bulk fluid.

Though this formulation of erosion rate based on experimental results suggests that calcite

dissolution rates should be independent of shear stress under turbulent conditions, the presence of

scallops, a sculpted bedrock form with a size that scales with shear stress (Curl, 1966), within nat-

ural limestone channels requires that erosion rates vary as a function of shear stress (Covington,

2014). This contradiction suggests that there is some problem with either the calcite dissolution

model or with the interpretation of the experimental results. In terms of the shear stress erosion
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model, Eq. 2.2, this reaction-limited case would be represented by a = 0, withK adjusted accord-

ing to the saturation state of the water.

The opposite limit, transport limited dissolution, occurs when dissolution rates are entirely

controlled by the rate at which species can be transported to and from the dissolving surface. For

transport limited dissolution the erosion rate is

ED =
D

ϵ
(CEq − Cb), (2.5)

where D is the diffusion coefficient for ions in the solution, and ϵ is the thickness of the diffusion

boundary layer (DBL). DBL thickness can be written in terms of flow parameters, e.g.,

ϵ =
5ν√
τb/ρw

· Sc−1/3, (2.6)

where ν is kinematic viscosity, τb is boundary shear stress, ρw is water density, andSc is the Schmidt

number (ν/D) (Perne et al., 2014). This equation is valid for flow over a planar surface. For trans-

port limited dissolution the exponent in the shear stress erosion model becomes a = 1/2. Mixed

kinetics can also occur, where transport and reaction rate both play a role. This can produce an

intermediate value of the exponent a. For instance, gypsum, unlike calcite, follows mixed kinetics

and experiments have shown a between 1/3 and 1/2 (Opdyke et al., 1987).

A third confounding issue is the role of sediment in determining cross sectional shape. Sed-

iment is known to impact the width of bedrock channels (e.g., Yanites and Tucker, 2010). Sediment

has two effects, a ’tool’ effect where sediment provides tools for erosion, and a ’cover’ effect where

deposited sediment shields a channel from further erosion (Sklar and Dietrich, 2001). In cave pas-

sages, the cover effect can have dramatic impacts, as it is hypothesized to lead to a process of upward

channel erosion called paragenesis (Farrant and Smart, 2011). Paragenesis, also termed antigrav-

itative erosion (Pasini, 2009), occurs when cave development is forced upwards in the phreatic
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zone due to sediment armoring of passage floors and walls that protects them from dissolution

(Farrant and Smart, 2011; Lauritzen and Lundberg, 2000; Renault, 1968). Paragenesis results in

features such as ceiling half-tubes and anastomoses, wall tubes, pendants, and paragenetic galleries

(Lauritzen and Lundberg, 2000). These features can be very complex in cross-section view.

Farrant and Smart, 2011 review the role of sediment in speleogenesis, including a concep-

tual model of paragenetic passage evolution (Fig. 2.1). The paragenetic process is hypothesized to

occur in the following sequence:

1. Sediment influx armors the floor and walls of a passage under phreatic conditions.

2. Passage growth is forced upwards as only the upper walls and ceiling of the passage can be

eroded.

3. The passage reaches an equilibrium cross-sectional area, where sediment deposition occurs

at the rate of upward incision and flow velocity remains near the threshold for sediment

transport.

4. The process continues until the passage reaches the water table, or there is a halt in sediment

supply and erosion on the walls can resume, forcing lateral growth.

The passages formed by this process are termed paragenetic galleries. These galleries tend to have a

greater height than width, and the width above the incipient phreatic tube is constant when subjected

to similar average conditions (Farrant and Smart, 2011). The balance between upward growth and

sedimentation in the conceptual model represents an equilibrium condition, and the constant pas-

sage width (herein termed equilibrium width) established may be indicative of average conditions,

similar to those in other bedrock channels.
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Figure 2.1: The conceptual model of paragenetic gallery formation under constant average condi-
tions, i.e., same average discharge and sediment supply.

Some paragenetic speleogens (dissolutional cave forms) have been physically modeled in-

cluding paragenetic meanders, anastomoses (braided ceiling channels), ceiling half-tubes, and pen-

dants (Lauritzen, 1981). The conclusions from these hardware models are that these speleogens

result from water flow along the sediment-rock interface and pendants require erosion rate to vary

with local velocity. These models only simulated the development of speleogens, rather than the

development of paragenetic galleries outlined in the conceptual model.

2.4 Model description

To simulate cross-section evolution we develop a model consisting of several components:

1) a cross-section discretized into a series of x, z points defining the perimeter, 2) a method to

estimate shear stress, and 3) an erosion model that updates the cross-section geometry with each

time step. In paragenesis simulations a sediment transport and alluviation component is also added

to the model.
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2.4.1 Cross-section

A cross-section consists of a series of np x, z points, with li representing an individual pair

of points. The set of points are arranged counter-clockwise from the top-most point.

At each time step a second, wetted cross-section is generated as a subset of l. The wetted

cross-section is defined with respect to a horizontal reference line. Vadose wetted cross-sections

are the subset of wall points below the line representing a free-surface. Paragenetic wetted cross-

sections are the subset of wall points above the line representing the sediment-water interface, as

well as an added set of points representing the sediment-water interface. In the phreatic case with no

sediment, the wetted cross-section and general cross-section are the same. Wetted cross-sections

have the following associated parameters: A, the cross-sectional area, P , the perimeter, R, the

hydraulic radius (A/P ), dLi, the distance from a point to the previous point in the cross-section,

and r(li), the distance between a reference point and the point li. The reference point represents

the position of maximum velocity, which we consider to be the center of the free-surface in vadose

cases or the centroid in phreatic cases.

At each time step cross-sections are updated by moving the subset of points defining the

wetted portion outwards perpendicular to their current position by a per-point erosion rate,Ei. Ei is

calculated from the boundary shear stress estimation and the shear stress erosion law. Simulations

are stopped when either the channel equilibrates, staying the same width over 100 time steps, or

when a certain number of time steps is reached if no equilibration occurs.
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2.4.2 Estimating boundary shear stress

We choose the method developed by Wobus et al., 2006 (WTA method), for calculating

boundary shear stress, as it is relatively accurate and computationally inexpensive compared other

available methods (Wobus et al., 2008). The WTA method approximates boundary shear stress

along the channel perimeter using a modification of the law of the wall for open channels with a

free surface. As the law of the wall applies equally in full pipes (George, 2007), we implement

and modify the WTA method for use in conduit-full conditions, allowing the cross-section model

to simulate phreatic passages.

The WTA method allows the computation of boundary shear stress (τb) for an arbitrary

channel geometry given only a set discharge (Qw), roughness length (z0) and hydraulic gradient

(S). The steps of the algorithm are:

1. Find water height in free-surface conditions, or energy slope in the case of conduit-full con-

ditions,

2. Calculate the near bed velocity gradient at each point along the perimeter that describes a

cross-section,

3. Solve an equation that ensures force balance around the perimeter, and

4. Calculate τb from the force balance and velocity gradients.

To determine water height in the free-surface case three equations are solved by varying

the reference line height above the channel bottom until the calculated discharge equals prescribed

discharge,

Qw = ū · A, (2.7)
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Figure 2.2: Schematic of model parameters in the conduit-full/phreatic case. Velocity gradient is
calculated from Umax, and r(l), the distance from the maximum velocity position to point l on the
perimeter. The bed-normal velocity gradient and τb are calculated from velocity gradient, the angle
of the bed-normal vector to horizontal (α), and the angle of the vector r(l) to horizontal (ϕ).

ū = C
√
R · S, and (2.8)

C = 2.5
√
g ln

(
0.37R

z0

)
, (2.9)

where ū is mean velocity in the downstream direction, and C is the Chézy friction factor (Wobus

et al., 2008). For conduit-full (phreatic) conditions A and P are known, and the energy slope, S, is

solved for using these equations.

Velocity gradients are computed using a modified the law of the wall equation with a ref-

erence point at the maximum velocity (Umax) position,

du

dr(li)

∣∣∣∣∣
z0

=
Umax

z0
· 1

ln(r(li)/z0)
· sin(ϕi − αi), (2.10)

The term sin(ϕi−αi) projects the velocity gradient onto a bed- normal vector (Fig. 2.2). The value

ofUmax is determined by integrating equation 2.10, and assuming the sum of the integrated velocity

gradients divided by area equal ū. A full derivation and algorithm is presented in Appendix 1.

Finally, boundary shear stress at each point is calculated via

τb(l) = φρwA

(
du

dr(l)

∣∣∣∣∣
z0

)2

, (2.11)
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with φ being a factor to ensure force balance,

φ =
gS

np∑
i=1

(
du

dr(li)

∣∣∣∣∣
z0

)2

dLi

. (2.12)

2.4.3 Erosion

During each time step, erosion at each point of the wetted cross-section is calculated using

shear stress erosion (Eq. 2.2). We use a range of a values in the cross-section model runs for

simulating different types of erosion and dissolution. For reaction rate limited dissolution a = 0,

while for transport limited dissolution a = 1/2. We also simulate mixed kinetics dissolution with

a = 0.3. Sediment transport is a vital part of paragenesis and also occurs in the vadose zone.

As such we also model mechanical erosion in both paragenesis and vadose channels with several

values of a > 1/2.

2.4.4 Sediment dynamics

The sediment dynamics model includes components for both transport and alluviation. The

alluviation method implemented is that of Nelson and Seminara, 2011, which assumes that if the

bed-load layer is thicker than five times the sediment diameter (Ds), the channel alluviates, adding

one sediment diameter thickness. The alluviation rule of Nelson and Seminara, 2011 is derived

from flume experiments (Finnegan et al., 2007; J. P. Johnson and Whipple, 2010).

Bed-load sediment transport capacity along the perimeter is calculated using the transport

equation of Fernandez Luque and Beek, 1976,

qt(li) = 5.7(τ ∗b (li)− τ ∗c )
3/2ρs(ρbD

3
s)

1/2 (2.13)
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where τ ∗c is critical Shields stress, ρs is sediment density, and ρb = ρs/ρw − 1. The form of τb used

in this equation is the dimensionless Sheilds stress (τ ∗b = τb
(ρs−ρw)gDs

). τ ∗c is calculated from Ds

using linear functions fit to data in Julien, (2010, Table 7.1). Sediment transport capacity is then

integrated along the bottom of the channel from equidistant points from the center iteratively until

the integral equals the prescribed sediment supply, Qs:

Qs =

∫ lRs

lLs

qt(li)dLi (2.14)

where lLs and lRs are points that indicate the left side and right side of the bed-load layer, re-

spectively. Bed-load thickness is calculated from the z component of lLs and lRs and the current

sediment reference line. If the thickness is > 5Ds the reference line is raised by Ds and flow is

recalculated. This process is repeated until alluviation ceases.

2.5 Results

2.5.1 Initial tests of the model

Initial tests were run to determine the ability of our implementation of the WTA method

to duplicate the shapes of cave cross-sections seen in the field, including phreatic tubes, vadose

canyons (Fig. 2.3), and paragenetic galleries (Fig. 2.4). We also test our model compared to the

scaling results from Wobus et al., 2006.

Phreatic tube type cross-sections were simulated starting from a bedding plane fracture

geometry with an aperture of 0.01m and a breadth of 0.5m. We use a wall roughness value of

0.01m given by Palmer, 2007 for scalloped walls. Wall roughness values can be translated to z0

by dividing by 30 for hydraulically rough flow (Nikuradse, 1950), and thus z0 = 3.3 · 10−4m

in this case. A discharge of 1m3/s is used in these simulations. The erosional exponents used
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Figure 2.3: Wetted cross-section evolution of: (A) a phreatic tube with a = 0.5, (B) a phreatic
tube with a = 0, (C) a vadose canyon with a = 0.5, and (D) a vadose canyon with a = 0. Lighter
cross-sections indicate later times. For the phreatic tube cases, the cross-section is initialized as
a bedding-plane fracture. For the vadose cases, the cross-section is initialized as a circle of 1m
radius. Black lines indicate the water height in the vadose cases.
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Figure 2.4: A. Simulated paragenetic gallery with erosion law e = K. B. Simulated paragenetic
gallery with erosion law e = Kτ

1/2
b . Grey shaded region in A and B indicates water filled portion of

the passage. C. A field example of a paragenetic gallery stripped of sediment from further erosion.
This example shows an equilibrium width established directly above the incipient phreatic tube.
Height of gallery ∼2m. Photograph from Simms, 2004.
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in these simulations are a = 0 and a = 1/2 (Fig. 2.3a,b). Runs where a = 1/2 maintain the

incipient parting shape through their evolution. While simulations of a = 0 produce a tube shape,

the incipient parting is erased after few time steps.

There are some caveats concerning the input parameters for these model runs; bothQw and

z0 are unrealistic for the incipient 0.01m aperture fracture; however, they are applicable once the

cross-section enlarges. These phreatic tube simulations are not to be taken as representative of re-

alistic dynamics, and are instead used to illustrate the ability of the model to reproduce equilibrated

geometries seen in the field.

Vadose canyon type cross-sections were simulated beginning as a closed, circular geometry

with an initial radius of 1m (Fig. 2.3c,d). Parameter values are Qw = 1m3/s, S = 0.017 and

z0 = 3.3 · 10−4m. Runs with a > 0 obtain an equilibrium width after a number of time steps;

however, runs with a = 0 do not obtain an equilibrium width or width-to-depth ratio and continue

to widen indefinitely.

As a check of our implementation of theWTA algorithmwe ran a set of simulations identical

to those inWobus et al., 2006, Fig. 2d, forDs = 0.001m. This set of simulations starts with a broad,

elliptical channel with an initial width of 8m, and a constant slope of 10−3. Our independently

written code produces a scaling relationship between width and discharge ofW ∝ Q0.42, which is

approximately the same as that found using the previous model, W ∝ Q0.38 (Wobus et al., 2006).

Unlike Wobus et al., 2006 we vary a in the erosion law (Fig. 2.5). Changes in the exponent a only

lead to changes in the magnitude of the erosion rates, and an identical scaling law results for all

tested values of a, withW ∝ Q0.42. Higher values of a reduce the overall width.

Initial simulations of paragenesis used erosion model exponents of a = 0 and a = 1/2.

Simulations were run until the channel reached an equilibrium width, or for a set number of time
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Figure 2.5: Plot of equilibriumwidth versus discharge in a surface channel for various values of the
exponent, a. Curve fitting suggests successful duplication of the WTA algorithm as the exponent
in the power law fit is similar.

steps. Runs where a = 1/2 reached a constant width, whereas runs with a = 0 always ran for all

time steps (Fig. 2.4), as an equilibrium width was never reached.

2.5.2 Paragenesis dynamics

To explore the dynamics of paragenetic gallery development a simulation is selected where

average shear stress, wetted cross-sectional area, and width were recorded for each time step (Fig.

2.6).

Figure 2.6 reveals the dynamics of paragenetic gallery formation. The simulated parage-

netic galleries are initialized as phreatic tubes (Fig. 2.3a). They grow until they reach a cross-

sectional size where the reduction in shear stress allows alluviation to occur. After a time step in

which alluviation occurs the water-filled part of the passage shrinks slightly, thus increasing aver-

age shear stress. Growth in the outward and upward direction continue until an equilibrium shear

stress is maintained that is sufficient to transport the available sediment. Once the equilibrium

shape is established, only upward growth of the passage continues, with width being constant.

33



2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7

W
id

th
 (

m
) A

1.45

1.50

1.55

1.60

1.65

1.70

A
re

a
 (

m
2

) B

0 2000 4000 6000 8000 10000

Timestep

105
110
115
120
125
130
135

A
v
e
ra

g
e
 

b
 (

P
a
)

C

Figure 2.6: Width (A), area (B), and average shear stress (C) versus time step in a simulation run.

2.5.3 Controls on equilibrium width of paragenetic conduits

Analytical approximation of scaling relationship

An analytical approximation can be used to understand the controls on equilibrium width,

particularly how equilibrium width scales with discharge, Qw, and sediment supply, Qs. To make

the problem tractable, we assume that the channel reaches an equilibrium shape, and that this shape

is the same for all equilibrium channel cross-sections with different Qw and Qs. Under this as-

sumption of equilibrium shape, it follows that, for equilibrium channel cross-sections, all linear

measures of channel geometry (such as radius and wetted perimeter) scale linearly with channel

width, and cross sectional area scales with width squared. Consequently,

Qw ∝ ūw2, (2.15)

where w is channel width, and the constant of proportionality relates only to cross sectional shape.
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Figure 2.7: Scaling relationship with varying Qw and Qs with a = 0.5 (A) and different values of
a (B). (C) Scaling of Qs to equilibrium width with Qw = 0.5. (D) Scaling of average boundary
shear stress at equilibrium to sediment supply with Qw = 0.5.

35



Combining the force balance equation at the channel wall (Stark, 2006),

τb =
ρgAS

P
, (2.16)

where P is the wetted perimeter, with the Chézy Equation (2.8), leads to

τb ∝ Q2
w/w

4. (2.17)

Sediment supply, Qs, also relates to shear stress, and considering the case where bed stress

is much greater than critical leads to

Qs ∝ τ
3/2
b . (2.18)

Eliminating τb, by combining Equations 2.17 and 2.18, and then solving for channel width gives

w ∝ Q1/2
w Q−1/6

s . (2.19)

From this approximate scaling relationship, we would predict that paragenetic channel width in-

creases with the square root of discharge and decreases weakly with increased sediment supply.

Simulated scaling relationships

To understand the controls of channel width, we run a set of simulations with Qw between

0.3 and 20.0m3/s and Qs between 0.3 and 42 kg/s. All other parameters are held constant (Table

2.1). The full set of chosenQw andQs are presented in Supplemental 1. Running these simulations

results in a linear fit to the analytically derived scaling relationship (Fig. 2.7a), with some scatter

in low Qs cases.

To explore the effect of erosional mechanism on channel width, we also run three sets of

simulations with different erosional exponents. These simulations also result in a linear relationship
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Table 2.1: Constant input parameters for scaling simulations.
Parameter Value Unit
a 1/2 Unitless
Ds 0.006 m
z0 0.002 m
ρw 999.97 kg/m3

ρs 2650 kg/m3

g 9.81 m/s2

between width and the scaling relationship, with higher powers of shear stress resulting in smaller

widths (Fig. 2.7b).

Both of the previous simulation sets show that the analytical scaling relationship breaks

down for low sediment supply. Therefore, to better understand the reason for this breakdown in

scaling, we run a set of simulations with varying sediment supply. Simulations for Fig. 2.7c use

the same constants as Table 2.1, with the addition of setting Qw = 5m3/s. By inspecting the rela-

tionship between Qs and average τb (Fig. 2.7d) there appears to be a limit where further reduction

in sediment supply does result in a reduction of τb. This causes a breakdown in the scaling rela-

tionship in equation 2.19 for lowQs. This limit shifts depending on erosional power and discharge

(see a = 0.3 runs in Fig. 2.7b. For runs in Fig. 2.7 dimensionless τ ∗sc = 0.043, while the dimen-

sional version, τsc = 4.3Pa. Average τb is an order of magnitude larger than τsc for all runs in

(Fig. 2.7c,d). A simulation with a = 0.5, Qw = 5m3/s and Qs = 10kg/s results in a minimum

τb = 4.2Pa at the corner between the sediment surface and the wall. HalvingQs results in the same

minimum τb, while setting Qs = 70kg/s results in τb = 13.1Pa. As such, the width is limited by

τsc in these cases, whereas it is ignored in the analytical derivation which only considers average

shear stress.
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Figure 2.8: Power in the erosion law, a, versus aspect ratio as determined by model runs. Here
aspect ratio is the equilibrium width of the paragenetic gallery divided by the height of the wetted
portion of the cross-section.

A set of simulations were run to test the assumption of a universal equilibrium shape, which

we used in the analytically derived scaling relationship. This set varied one parameter at a time from

the parameters in Table 2.1. Qw andQs, were also held constant except for one case at 5.0m3/s and

20kg/s, respectively. Aspect ratio, w/h, here defined as the ratio between equilibrium width and

the distance between the sediment reference line and the highest point in the channel (Fig. 2.4b)

was recorded as a measure of shape. These model runs reveal that aspect ratio is only dependent

on a (Supplemental 2). A second set of runs varying a show the relationship between aspect ratio

and a is a power law with an exponent ≈ −1/4 (Fig. 2.8).

2.6 Discussion

2.6.1 Success of the model

Our implementation of theWTAmethod approximately duplicates the results of the original

WTA model (Fig. 2.5). In turn, the model results of Wobus et al., 2006 match scaling relationships

seen in the field and ones derived analytically for open channels. Our model also successfully
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produces phreatic tubes from an initial fracture shape (Fig. 2.3a,b). Production of equilibrium

width channels and phreatic tubes, as observed in the field, requires that erosion rates that vary

with shear stress.

The paragenesis simulations (Fig. 2.4b) produce passage shapes that are qualitatively simi-

lar to those seen in the field (Fig. 2.4c), and the dynamics of paragenesis are similar to the available

conceptual model for paragenetic passage evolution (Fig. 2.1). As for open channels, simulated

passage cross sections do not approach an equilibrium width unless erosion rate varies with shear

stress. The fact that paragenesis and vadose incision frequently produce constant width channels

in real cave settings provides further evidence that erosion rates do vary with wall shear stress in

natural cave settings. While this is in-line with the hypothesis of Lauritzen, 1981 presented for

paragenetic speleogens, and with the existence of scalloped bed forms in limestone cave channels

Curl, (1966), it provides further evidence that currently available models of calcite dissolution in

turbulent flow require revision. Simulations where erosion is a function of shear stress develop an

equilibrium width that scales with Qw and Qs (Fig. 2.7) as predicted by the analytical approxima-

tion. While the exact values of the scaling exponents may depend, in part, on simplifications made

in the model, this scaling result provides evidence that paragenetic cave channel width records

information about flow and sediment conditions during formation. The specific scaling relation-

ship determined both by analytical approximation and simulations, w ∝ Q
1/2
w Qs−1/6, provides a

starting point for future studies.

2.6.2 Scaling relationships in bedrock channels

The derived scaling relationship and results of the paragenesis model show some common-

alities and differences to scaling relationships in bedrock channels, in both assumptions used in
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deriving relationships and in the scaling relationships themselves. Scaling relationships in surface

bedrock channels are well known, with the relationship of width to discharge, erosion/uplift rate,

and slope being derived analytically (Finnegan et al., 2005; Turowski et al., 2007; Wobus et al.,

2008), modeled numerically (Turowski et al., 2009; Wobus et al., 2006; Yanites and Tucker, 2010),

and observed in the field (Turowski et al., 2009; Whipple, 2004; Yanites and Tucker, 2010). Typ-

ical scaling law exponents for width as a power law function of discharge are 0.3-0.5. Analytical

approximations begin with the continuity equation (Eq. 2.7) and a flow equation such as the Man-

ning (Finnegan et al., 2005; Turowski et al., 2007) or Chézy (Wobus et al., 2008) equation. They

also typically assume a constant width-to-depth (aspect) ratio and that erosion is equal to uplift

(steady state). We also assume constant aspect ratio to derive the paragenesis scaling relationship

(Eq. 2.19). In our numerical simulations we find that simulations reach identical aspect ratios for

given value of shear stress exponent, a (Fig. 2.8). Field data (Finnegan et al., 2005) and models of

cross-section evolution (Turowski et al., 2009; Wobus et al., 2006) suggest that channels in simi-

lar rock types maintain aspect ratios. However, sediment cover of the bedrock can also influence

channel aspect ratio (Yanites and Tucker, 2010). Unlike equilibrium bedrock channel models, we

make no steady state assumption in deriving the paragenesis scaling relationship, as phreatic cave

development and paragenesis occur beneath base level.

Prior bedrock channel cross-section models often assume a linear relationship between ero-

sion and boundary shear stress (a = 1) (e.g., Wobus et al., 2006; Yanites and Tucker, 2010). In

contrast, pure dissolution of soluble bedrock scales with a shear stress exponent of a ≤ 1/2, with

a = 1/2 representing the transport-limited end member and a = 0 representing the surface reaction

rate limited end member. Simulating vadose canyons or surface channels with the WTA method

and different exponents of shear stress in the erosion equation results in the same scaling relation-
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ship between width and discharge as found in Wobus et al., 2006 and Wobus et al., 2008 for each

choice of exponent (Fig. 2.5). Smaller values of the exponent result in larger widths. Understand-

ing the response of bedrock channel widths to changes in rock properties, erosion rate, and slope,

is important for interpreting channel profiles and the history of landscape evolution that can be

preserved within them (e.g., Kirby and Whipple, 2012; Lague, 2014; Miller et al., 2013; Roberts

and N. White, 2010; Whittaker et al., 2007). However, in contrast to surface channels, caves often

preserve long histories of channel width, potentially enabling cave passages to be powerful tools

in reconstructing past conditions.

While the scaling of width with discharge in bedrock channels has been well explored in

all types of models, the scaling of width to sediment supply has been primarily explored in numer-

ical models (Turowski et al., 2007; Yanites and Tucker, 2010) and flume experiments (Finnegan

et al., 2007). These modeling results, along with observations of natural channels, suggest that

open channels respond to increasing sediment supply by widening, as cover prevents erosion in the

channel center (Yanites and Tucker, 2010). In contrast, paragenetic galleries respond to increasing

sediment supply by narrowing. The channels narrow to obtain a smaller cross sectional area so

that a sufficient shear stress can be applied to transport the available sediment. Armoring of the

central portion of the eroding channel, the process that drives widening with increased sediment in

open channels, does not occur in the paragenetic case, because the center of active erosion is on the

ceiling of the cave passage.

In the simulations run for Figure 2.7c there appears to be a threshold in the scaling relation-

ship for paragenesis. This threshold is due to a breakdown in the scaling between sediment supply

and boundary shear stress, arising when critical shear stress is equal to the minimum shear stress

at the corners between the sediment-water interface and the gallery walls.
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2.6.3 Sediment transport and alluviation

The bed-load sediment transport capacity equation used in the paragenesis model plays a

vital role in the width scaling relationship. We use the equation given by Fernandez Luque and

Beek, 1976, one that is commonly used in other bedrock channel models for both erosion, and

alluviation (e.g., Hodge and Hoey, 2012; J. P. Johnson and Whipple, 2010; Lamb et al., 2008;

Nelson and Seminara, 2011; Sklar and Dietrich, 2004; Turowski et al., 2007, 2009). While there

are several choices for bed-load transport equations, (e.g. Bagnold, 1977; Meyer-Peter and Müller,

1948; Parker, 1990; Wilson, 1966) their power of excess shear stress is the same, 3/2, and as such

the derivation and model are insensitive to the choice of equation.

While there are no physically derived models of alluviation in cross-sections, they do ex-

ist for reaches (e.g., Hodge and Hoey, 2012; Inoue et al., 2016; J. P. L. Johnson, 2014; Nelson

and Seminara, 2012). These models take into account mass balance and sediment transport, and

successfully duplicate experimental results and observations from physical streams. As the cross-

section paragenesis model is insensitive to the alluviation rule and uses the same transport equa-

tions, it is possible this scaling relationship holds to field examples.

2.6.4 Applications in speleogenesis modeling

Scaling relationships are often employed in landscape evolution models to simplify channel

development (e.g., Whipple and Tucker, 1999). The paragenesis scaling relationship and other such

scaling relationships that can be derived may allow simplifications in further post-breakthrough

speleogenesis models. The shapes and widths formed at a set discharge and sediment supply rep-

resent an equilibrium that appears to be reached quickly in models and in the field (Fig. 2.4). If the
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time scale at which average conditions change is larger than the equilibrating time scale, it may be

possible to directly apply the width and shapes for a given condition and only track upward (par-

agenesis) or downward (vadose) growth. If this is the case, only the routing of flow and incision

rate needs to be calculated.

Additionally, if a shear stress erosion law is found to apply to speleogenesis, models can be

further simplified if length scales are short enough to ignore chemistry changes and only calculate

erosion using shear stress. In a mature cave conduit, these lengths are typically on the order of

a kilometer (Covington et al., 2012). In contrast, existing models exploring the pre-breakthrough

stage of speleogenesis must track chemistry as short lengths of conduit effect saturation state, and

thus erosion rate (e.g., Dreybrodt et al., 2005).

That fact that equilibriumwidth cave channels (vadose or paragenetic) do not develop unless

erosion rate is a function of shear stress suggests that channels in caves, which often exhibit nearly

constant width during incision, do not form from surface reaction rate limited dissolution alone

as the models suggest. Instead either transport limited dissolution or mechanical erosion is likely

playing a role. Equilibriumwidths thus are further field evidence that speleogenesis under turbulent

flow conditions is not purely surface reaction rate limited (Covington, 2014). However, it remains

unclear whether transport-limited dissolution or mechanical erosion is the key factor, and additional

work is needed to resolve this question and improve the fidelity of future speleogenesis models.

2.7 Conclusion

The model developed here provides a physically based and computationally efficient means

of simulating cave cross-section evolution and is able to duplicate cross-sectional shapes that are

seen in the field such as phreatic tubes, vadose canyons, and paragenetic galleries. The efficiency
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of the WTAmethod enables simulations of the evolution of channel form through many time steps,

making investigations into the morphology of post-breakthrough cave channels possible using a

wide range of parameter values. Using this model, we have tested analytical relationships between

discharge, sediment supply, and width and have explored dynamics not captured in the analytical

relationships.

We derive an analytical relationship between discharge, sediment supply, and width in par-

agenetic galleries, backed with simulation results reveal that equilibrium width in paragenetic gal-

leries scales on discharge to the half power, and weakly to the inverse of sediment supply. In surface

bedrock channels the inverse has been observed, with width being positively related to sediment

supply.

Equilibrium in the paragenetic case is maintained by a balance of shear stress and sediment

transport capacity. Our model also demonstrates that the equilibrium shape obtained is a function

of only the exponent in the erosion law, reflective of process.

These simulations also reveal that paragenetic galleries and other channel types that main-

tain an equilibrium width depend on erosion to scale with shear stress, in conflict with the as-

sumption of current speleogenesis theory. Such scaling is possible due to dissolution rates being

transport limited, or mechanical erosion being more important than previously thought.
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Appendices

2.A Derivation for maximum velocity

To calculateUmax we assume that the average velocity, ū, is composed of the sum of average

velocities in each triangle delineated by the rays r(li). To find the average velocities of the triangles

we first find the average velocities along r(l). To do this we simplify the WTA formulation of the

law of the wall by removing the Umax and sine terms,

du

dr(li)

∣∣∣∣∣
z0

=
1

z0
· 1

ln(r(li)/z0)
, and (2.20)

integrating, we obtain,

ūi =
r(li)

r(li)− z0

(
1 +

z0
r(li) ∗ log(r(li)/z0)

)
− 1

log(r(li)/z0
. (2.21)

The average velocity within each triangle is,

ūT,i =
ūi + ūi+1

2
, (2.22)

and the area of the triangle is,

Ai =

∣∣∣∣xc(zi+1 − zi) + xi+1(zi+1 − zc) + xi(zc − zi+1)

2

∣∣∣∣, (2.23)

where xc and zc are the x and y components of the centroid, and xi and zi are coordinates defining

the perimeter of the wetted cross-section. If we then assume the sum of average velocities weighted

by area is equal to the total area multiplied by ū and reintroduce Umax it follows that

ūA = Umax

np∑
i

ūT,iAi. (2.24)
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Finally, by rearranging and solving for Umax we obtain an equation for maximum velocity,

Umax =
ūA∑np

i ūT,iAi

. (2.25)
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3 Determining Mechanisms of Erosion

CAVE MEANDERS AS A RECORD OF EROSION MECHANISM

3.1 Abstract

The relative importance of different types of erosion in caves is poorly quantified, and,

within models, dissolution has been considered the main erosive agent. Additionally, speleogenetic

theory built on experiments predicts that dissolution is only reaction rate limited under turbulent

flow conditions and does not depend on flow structure. Recent analysis on scallops and equilibrium

widths in cave channels suggests that erosion must scale with shear stress, and either transport

limited dissolution does occur, or mechanical erosion is more important than previously thought.

In this study we use observations of meandering cave channels and scallops extract the exponent

in a power law shear stress erosion model, reflective of erosion mechanism.

To determine the exponent the length of shear stress indicating bedforms, scallops, and an

indicator of relative lateral and vertical incision rate, wall angles, are measured in meander bends in

the gypsum cave, Parks Ranch in New Mexico, and the limestone cave, Copperhead, in Arkansas.

These data are compared to modeled relationships between scallop ratio and incision angle that

vary with the exponent, produced by shifting the position of maximum velocity in a shear stress

estimation method. Field data indicate that erosional power in these caves is between values for

transport limited dissolution, and abrasion. We interpret erosional mechanisms to be a combination

of some type of dissolution, and abrasion in both caves.

Additionally, we test the veracity of the shear stress estimation method as it applies around

meander bends by measuring the distribution of shear stress in a cross-section as indicated by scal-
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lops, and minimizing the discrepancy between calculated values by changing discharge and max-

imum velocity position. We find that computed scallop lengths are statistically indistinguishable

from measured. This method shows promise for calculating discharge in cave passages with a

free-surface.

3.2 Introduction

Bedrock channels are well known to record past conditions such as climate, tectonics, and

hydrology in their geometry (e.g Amos and Burbank, 2007; Finnegan et al., 2005; Stark, 2006;

Turowski et al., 2007, 2009; Wobus et al., 2008, 2006; Yanites and Tucker, 2010). Cave passages,

a type of soluble bedrock channel, are particularly useful in recording past conditions over long time

periods as they are preserved from surface erosion, and have the ability to remain in a landscape

over millions of years (Broak, 2008; Gabrovšek, 2002; Osborne, 2007; Palmer, 2007b; Plotnick

et al., 2015). This preservative aspect has been used to constrain landscape evolution rates using

sediment deposited in different cave levels (e.g. Granger et al., 2001, 1997). However, interpreting

past conditions based on channel geometry is problematic, as erosion of soluble bedrock channels

is poorly understood once turbulent flow develops (Covington, 2014).

While the process of limestone dissolution in turbulent flow has been explored through

experiments and models (e.g. Dreybrodt and Buhmann, 1991; Liu and Dreybrodt, 1997), the re-

sults from the theory appear to contradict observations of dissolutional cave forms seen abundantly

in the field (Covington, 2014). This contradiction is perhaps best illustrated by the conundrum

of scallop formation; scallops are hypothesized to form due to turbulent eddies that cause differ-

ences in diffusion boundary layer thickness. This variation in boundary layer thickness leads to a

variation in erosion rate, as transport limited dissolution rates are proportional to boundary layer

54



thickness (Curl, 1966). However, theoretical results suggest that transport limited dissolution of

calcite does not occur in the vast majority of turbulent flow conditions, as the boundary layer is

never thick enough to limit the rate (Covington, 2014). Instead, theory predicts that dissolution

of calcite is surface reaction rate limited under most turbulent flow conditions, and, therefore, that

dissolution rates should be independent of the boundary layer thickness. As such, scallops, and

other speleogens that require dissolution rate to depend on boundary shear stress, should not form

in limestone channels. This conflict between theory and observation suggests that either: 1) the

experiments that measure dissolution rates are not measuring actual surface reaction rates, or 2)

there is a mechanical component to the formation of scallops, such as grain detachment (Levenson

and Emmanuel, 2016). While mechanical erosion is known to happen in caves and other soluble

bedrock channels, the relative importance of chemical and mechanical processes is not well con-

strained (Covington et al., 2015). Gypsum, which follows mixed kinetics (Raines and Dewers,

1997), does not exhibit the same contradiction between theory and field observations; however,

the relative importance of erosion mechanisms in gypsum caves have also not been explored. The

fact that canyon passages within caves often reach stable widths is further evidence that erosion

rates are not independent of shear stress (Cooper and Covington, in prep).

The magnitude of erosion perpendicular to a bedrock channel wall can be written in a

generic form as a power law of boundary shear stress (τb),

E = Kτab , (3.1)

whereK is a constant, and a is an exponent related to the erosional process (Whipple et al., 2000).

Whipple et al., (2000) give likely values of a for different erosion mechanisms such as plucking of

jointed blocks (1 ≲ a ≲ 3/2) and abrasion by sediment (a = 5/2) While plucking of grains de-
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tached following boundaries loosened by dissolution has been observed in soluble rocks (Levenson

and Emmanuel, 2016) and on other corroding materials (Guo et al., 2006), it has not been mapped

to a specific value of a. Transport limited dissolution, where dissolution rate is proportional to the

boundary layer thickness (ϵ), scales with a = 1/2 (e.g. Perne et al., 2014). For surface reaction rate

limited dissolution, as predicted on limestone for turbulent flow (Covington, 2014; Dreybrodt and

Buhmann, 1991; Liu and Dreybrodt, 1997), a = 0 as this process depends solely on chemistry. Sur-

face reaction rates can be calculated from kinetic experiments (e.g. Dreybrodt et al., 2005; Palmer,

1991; Plummer et al., 1978). Dissolution experiments on gypsum show 1/3 ≤ a ≤ 1/2 (Opdyke

et al., 1987) due to mixed transport/reaction rate kinetics. Erosion within bedrock channels can also

be approximated using the stream power erosion model, E = KsA
m
b S

n, where Ks is a constant

encapsulating erodibility, Ab is contributing basin area,m is a constant depending on process, and

S is channel slope. The exponent n in the stream power model is related to a by n = 2a/3.

Both dimensional analysis and experiments with dissolution of gypsum have shown that

scallop lengths are a function of boundary shear stress, with

Re∗ =
L
√
τb/ρ

ν
, (3.2)

where Re∗ = 2200 is the scallop roughness Reynolds number, L is the length of of the scallop, ρ

is the fluid density, and ν is the fluid kinematic viscosity (Blumberg and Curl, 1974; Curl, 1974).

Since τb can be estimated from scallop bedforms, a record of E could be used to constrain a in nat-

ural settings. However, most efforts to estimate E in soluble bedrock channels calculate the value

from chemistry (e.g. Covington et al., 2015), and, since these values rely on the dissolution models,

they cannot be used to constrain a. Methods of direct measurement include limestone tablets and

micro-erosion meters (Gabrovšek, 2009). However, direct measurement also poses a problem as
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Figure 3.1: (A) A photograph in Copperhead Cave showing the incision angle around a meander
bend. Scallop sizes on the outside of the bend are about half the size of those on the inside. (B)
Schematic of the model. Umax is the position of the maximum velocity, offset from the center
as a result of channel curvature in a meander. E, Ez, and Ex are the perpendicular, vertical, and
horizontal erosion vectors, respectively. Colored floor indicates the current active channel, with
color corresponding to τb normalized by its maximum value.

the rate of wall retreat is relatively slow, and may differ to that within scallops (Springer and Wohl,

2002). Additionally, the placement of limestone tablets or pins for micro-erosion measurements

disrupt the flow structures required to form scallops.

Meandering cave channels preserve reaches that have incised both vertically and laterally

(Fig. 3.1). The lateral migration of the channel within meanders presumably relates to contrasts

in wall shear stress, with higher stresses present in the direction of channel migration. It seems

plausible that the ratio of vertical to lateral incision will be sensitive to the relationship between

erosion rate and wall shear stress. The stronger the dependence of erosion rate on shear stress, the

greater the rate of lateral incision that will be produced for a given contrast in wall shear stresses.

Consequently, while absolute erosion rates are challenging to measure and interpret, morpholo-

gies preserved in scalloped meandering cave channels may help to constrain the active erosional

mechanisms.
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To understand shear stress distributions and relative incision rates in meandering soluble

bedrock channels we collect morphological data in the form of 3D scans in several caves. To assist

in interpretations of the observed relationships between incision angle and scallop sizes we compare

the field data to simulations of cross-section evolution within meander bends that employ a power

law shear stress erosion model.

3.3 Site Descriptions

We collect field data in the form of incision angles and scallop lengths on opposite walls

in two caves: Parks Ranch Cave (PRC) and Copperhead Cave (CHC). PRC is located in Eddy

County, New Mexico, USA, and is formed within the Castile Formation, a gypsum unit (Stafford

et al., 2008). Water enters PRC through several surface channels and sinkholes and drains into

Chosa Draw, a tributary of the Black River. The active stream channel contains water through the

entire year and some sediment. Evidence of flooding to the ceiling is visible throughout PRC, even

in passages at higher elevation. Slope values are 1/2−3◦. Measurements were recorded in a series

of meander bends located in a tributary to the main stream near the most northwestern entrance.

CHC is located in Newton County, Arkansas, USA, and is formed in the St. Joe member

of the Boone Formation. CHC contains water year round in one major stream passage that empties

into a tributary of the Buffalo River (Gillip, 2007). This passage is mainly meandering canyon,

with some areas having tubes near the ceiling. The stream contains chert gravel and larger clasts

weathered from the Boone Fm, a unit with a high chert content. Measurements were recorded

in a section of stream upstream of a knickpoint where slope is 1/2 − 1◦ and sediment is sparse.

Downstream from the measured section there are higher slopes and larger clasts.
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3.4 Methods

3.4.1 Field measurements

Data were analyzed from 3D scans generated using AgiSoft Photoscan, a Structure from

Motion (SfM) software package. These scans were constructed from many photographs of the

cave walls from differing view points (Westoby et al., 2012). Such scans have been used to make

measurements of geomorphological features (Fonstad et al., 2013; James and Robson, 2012; West-

oby et al., 2012), including within caves (Mankoff et al., 2017). Markers were placed on the walls

in locations that do not obscure scallops. The relative position of the markers was determined using

a survey with a DistoX2 laser range finder, which measures length, azimuth, and inclination. This

instrument is accurate to 2 mm for distance at up to 10 meters, and 0.5◦ for angular measurements

(Trimmis, 2018). Survey data were logged to the cave survey software TopoDroid (Corvi, 2018b)

then processed into x, y, z points in Cave3D (Corvi, 2018a). The x, y, z points from the survey were

attached to markers in AgiSoft Photoscan to provide a reference coordinate system. This reference

coordinate system allows measurement of incision angle and properly scaled dimensions.

Locations for morphological measurements were picked by first identifying parallel walls

within a meander bend. The scan was then cropped to this area using the Cross-Section tool in

the CloudCompare (CloudCompare 2018) software. Planes were fit to the cropped walls with

RANSAC Shape Detection (Schnabel et al., 2007), which samples points repeatedly to find a model

and remove outliers (Fischler and Bolles, 1987). The dip of the plane was recorded as the incision

angle if the angle disparity between the walls was less than ten degrees. This to ensures the mor-

phology has reached equilibrium and reduces variability in the statistical distribution of angles.

Scallops were measured on each wall in Photoscan. The recorded scallop size (L) was the longest
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distance parallel to flow as per Curl, 1974. Channel slope measurements were also taken by fitting

a plane to the floor of the cave. These values were used to constrain slope within model runs for

each cave setting.

Blumberg and Curl, 1974; Curl, 1974 suggest using Sauter-mean,

LS =

∑
L3
i∑

L2
i

, (3.3)

as a measure of characteristic size within a scallop population, since the larger scallops are more

indicative of wall shear stress. Since we seek to measure a ratio, the Sauter-mean of the inner

wall, LI , and outer wall, LO, were computed separately. The ratio is computed as LI/LO, and

shear stress on the outer wall is, by definition, greater than that on the inner. Scallop measurements

tend to follow a log-normal to normal distribution (Lauritzen, 1982, 1989), and therefore the ratio

LI/LO is also log-normally or normally distributed. To estimate confidence limits on the observed

ratios we used bootstrapMonte Carlo with replacement. Approximately 50 scallops were randomly

sampled from each wall 1000 times, and the Sauter-means were calculated for each random sample.

Scallop ratio and incision angle measurements were fit to a linear model using orthogonal

distance regression, as both the ratios and angles have associated uncertainty. To compare field

data to modeled meanders, confidence bands on the measured data are plotted at the 95% level.

A cross-section was also extracted from the 3D scans using the contour tool in CloudCom-

pare (CloudCompare 2018). Within this cross-section, scallops were binned by distance along the

channel perimeter, and Sauter-means of scallops were calculated for each bin. These values were

later compared against theoretical scallop sizes produced by the shear stress estimation algorithm

used in the numerical model.
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3.4.2 Numerical meander model

To model relationships between erosion, channel morphology, and bed shear stress we sim-

ulate channel evolution as a function of wall shear stress. To estimate shear stress, we use the WTA

method (Wobus et al., 2008, 2006) and assume that erosion rate is a power law of shear stress (Eq.

3.1). The WTA method uses the law of the wall to approximate τb around a channel perimeter

given cross-section geometry, discharge (Q), slope (S), and roughness length (z0). Here we use the

implementation of the WTA method for open channels as developed by Cooper and Covington, in

prep. To approximate the asymmetry of bed stresses found within a meander bend, we offset the

position of maximum velocity from the center of the free-surface to an arbitrary position between

the left wall of the channel and the center of the free-surface (Fig. 3.1). The general algorithm of

the WTA method is:

1. Determine the water height, h, by minimizing the difference between prescribed Q and dis-

charge computed by the Chézy equation with h dependent wetted area, A, and perimeter,

P .

2. Calculate the maximum velocity, Umax, using the law of the wall over all rays, r(l), from

maximum velocity position to x, z points on the wall and requiring the average velocity

within the cross-section to satisfy u = Q/A.

3. Solve the modified law of the wall equation for the bed-normal velocity gradient,

du

dr(l)

∣∣∣∣
z0

=
Umax

z0
ln(r(l)/z0)

−1 · sin(ϕ− β). (3.4)

Angles ϕ and β are illustrated in Fig. 3.1b.
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4. Calculate τb for all points along the perimeter via

τb(l) = φρA

(
du

dr(l)

∣∣∣∣
z0

)2

. (3.5)

The factor, φ, ensures force balance,

φ =
gS∑N

i=1

(
du

dr(l)

∣∣
z0

)2
dl(i)

, (3.6)

where g is gravitational acceleration, and l(i) is the distance between the i and i−1 x, z point

defining the perimeter.

At each time step this algorithm is used to calculate τb at each point along the perimeter. The

channel is then evolved as a function of shear stress at every point along the wall, where erosion

occurs in a direction perpendicular to the wall at each point. Simulations are run until the active

channel width does not change over 100 time steps. Simulations are run with parameters Q, S,

and z0 that are representative of caves in this study. Roughness height, z0, is the least constrained

variable and is obtained from a distribution of scallop relief,D, that is on the order of 1cm (Palmer,

2007a). Here z0 = D/30 for hydraulically rough flow (Nikuradse, 1950). For every simulation the

equilibrium shear stress distribution along the channel, incision angle, and mean shear stress from

the previous 100 time steps on the left and right wall are recorded along with the input parameters

(a, Q, S, z0). We use a = 0.1 to approximate a reaction rate limited dissolution end member, as

simulations with a = 0 (the true reaction limited case) do not reach a constant width (Cooper and

Covington, in prep).

Since the WTA method was developed for straight reaches, we test the applicability of the

modified model in meander bends by calculating the shear stress distribution along a cross-section

extracted from a 3D scan. Calculated shear stress is compared to scallop length using Eq. 3.2. The

62



maximum velocity position is found by minimizing

χ2 =
k∑

i=1

(Lci − LSi
)2

LSi

, (3.7)

where k is the number of perimeter bins measured along the cross-section, LS is the Sauter-mean

scallop length of scallops within each bin, and Lc is scallop length scale estimated from the shear

stress model for each bin. Eq. 3.7 describes the χ2 statistic with the null hypothesis that computed

and measured scallop lengths are independent.

3.5 Results

3.5.1 Field data

Scallops and incision angles weremeasured from scans in seven locations in CHC, and eight

locations in PRC. Data were also collected by hand at one location in PRC via caliper and Brunton

compass inclinometer. Scallop sizes on either wall follow normal and log-normal distributions

(Supplemental Information 1). Ratios of the Sauter-mean scallop lengths on either wall versus

incision angle are plotted in Figure 3.2 for CHC and PRC, along with the 95% confidence band on

the orthogonal regressions, and lines fit to the simulation results for different exponents, a, in the

shear stress erosion model. Confidence intervals on ratios are the standard deviation as determined

by bootstrap Monte Carlo, and confidence intervals on the incision angle are the maximum and

minimum values. Simulations are discussed in the following section.

For all cave sites, we find a pattern of smaller scallops (and therefore higher shear stress)

on the channel wall that is being undercut in the direction of migration. Similarly, we find a general

relationship of lower incision angles for larger contrasts in wall shear stress as erosion on the outer
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Figure 3.2: Channel incision angle versus the ratio of Sauter-mean scallop lengths on the inner
and outer meander walls in Parks Ranch Cave (A) and Copperhead Cave (B). Data are fit using
orthogonal distance linear regression as both incision angle and ratio have associated error values.
Error bars for ratio of Sauter-means are the standard deviation, while they are the maximum and
minimum values for incision angle. Colored lines are best fit lines to simulation runs with different
values of the exponent, a, in the shear stress erosion model.

wall overwhelms that on the inner. The slope of this relationship differs between the two sites

studied here, with PRC having a steeper negative slope than CHC.

3.5.2 Comparison between the shear stress model and measured scallop lengths

A cross-section was extracted from a 3D scan in Parks Ranch Cave. The incision angle in

the cross-section is 51.5±2.5◦. We measured eight groups of ten scallops distributed through the

cross-section, and computed the Sauter-mean length of each group (Fig. 3.3). A channel slope

of 1◦ is estimated using a plane fit to the floor of the cave in the reach where the cross-section

is located. To estimate discharge, Q, the maximum velocity position, and to test the validity of

the modified WTA approximation within meander bends, we minimize χ2 (Eq. 3.7) calculated

using the shear stress from the WTA method and the measured scallop lengths (Fig. 3.3c,d). The

input parameters for the WTA algorithm are the 1 cm roughness and the measured slope. We

obtain a best fit value of Q = 0.16m3/s and χ2 = 0.337, corresponding to a p-value <0.01.

Minimizing the difference between measured scallop size and modeled size without a fixed value

for S results in Q = 0.16m3/s, S = 0.7◦, and χ2 = 0.046, also corresponding to a p-value <0.01.
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Figure 3.3: (A) Sauter-mean of scallop lengths measured within a cross section. (B) Scallop length
computed using WTA method with parameters S = 0.013, Q = 0.16m3/s, and z0 = 3.3 ∗ 10−4.
(C) Difference between measured and computed scallop lengths. The geometry of the cross-section
in A, B, and C was measured from a 3D scan. (D) The relationship between measured and modeled
scallop sizes, plotted as scallop length versus distance along the wall. Both computed andmeasured
scallop sizes are plotted. Local peaks are due to roughness in the cross-section extracted from the
scan.

The second value of S is used to test the method in recovering slope and to compensate for z0 not

being a measured value. The discharge values estimated from the measured and minimized slopes

are equal and result in a water height that corresponds with the active channel below the incised

meander walls (Fig. 3.3b).

Given the low p values, we conclude that the computed scallop lengths are statistically

indistinguishable from the measured lengths, and that the model therefore provides a good approx-

imation to shear stresses recorded in scallop sizes in the real channel. From the determined Umax

positions and Q we ran simulations with varying exponents, a, in the shear stress erosion model

until the modeled incision angle is the same as the measured. Using the slope value fit to the 3D

scan, a simulation where a = 0.25 best matches the measured incision angle, whereas the best fit

value of a = 0.30 using the slope obtained from minimization.
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3.5.3 Impact of model parameters on incision angle

To explore sensitivity of the relationship between scallop ratio and incision angle to poten-

tial controlling parameters, we run four sets of simulations. In each simulation set, we vary one of

the four potential controlling parameters, Q, S, z0, and a, and keep all other parameters constant.

For each value of the varied parameter a subset of 6-10 simulations are run with different positions

of maximum velocity to produce a range of incision angles. (Fig. 3.4). Simulations are initiated

with a circular geometry with a radius of one meter and are run until the width of the wetted channel

does not change over 100 time steps. The fiducial values are Q = 0.25, S = 0.035, z0 = 0.0003,

and a = 1.0, except when they are varied. Each parameter is varied between a factor of 5 and 10.

For each simulation, we record the input parameters, incision angle, calculated scallop ratio, and

width at the top of the wetted channel (Supplemental Information 2). Unpaired independent t-tests

between regression slopes of the minimum and maximum of the tested parameter values for each

simulation set result in p = 0.3223, p = 0.4062, and p = 0.3630 for Q, z0, and S, respectively.

Testing at α = 0.05 these parameters do not statistically change the relationship between ratio and

incision angle.

To determine impact of the shear stress erosion exponent, a, we ran a set of simulations

where parameters were chosen randomly from uniform distributions with 0.1 ≤ Q ≤ 0.3, 0.01 ≤

S ≤ 0.052, and 0.005 ≤ D ≤ 0.05. Values of a used in the simulations were 0.1, 0.5, 1.0, and 2.5

(Fig. 3.4d, SI2). These distributions cover the range of parameters measured or determined in PRC

and CHC. We choose a = 0.1 to represent a nearly reaction rate limited dissolution end member.

We do not use a = 0, because such simulations do not reach a constant width but rather continue

to grow wider with each time step.
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Figure 3.4: Influence of (A) slope, (B) roughness height, (C) discharge, and (D) erosion exponent
on the relationship between scallop length ratio and channel incision angle. Within each panel the
position ofUmax was varied in order to produce a range of scallop lengths ratios and incision angles.

The relationship between the incision angle and the contrast in scallop sizes on the inner

and outer walls is roughly linear and responds to changes in a by changing slope. For larger a,

corresponding tomechanical processes, the slope increases. Despite choosing parameters randomly

for these simulations little scatter occurs for each value of a, suggesting that the other parameters

have little impact on this relationship (Fig. 3.4a-c).

When field data are plotted along with simulation results a = 0.1 and a = 0.5 do not fit

within the 95% confidence interval for PRC, while for CHC only a = 0.1 does not. For Parks Ranch

Cave the line of best fit for the data is nearly parallel to the relationship of a = 1.0. Copperhead

data produce a best fit that is less steep, nearly parallel to relationship simulated for a = 0.5. The

exponent a = 1.0 occurs for the mechanical process for plucking of jointed blocks, though neither

PRC nor CHC contain the presence of plucked blocks.
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3.6 Discussion

3.6.1 Scallops as a measure of hydraulics

This study is among the first, along with (Nance, 2007), to estimate discharge from scal-

lops in a vadose canyon assuming free-surface conditions. The model presented here provides a

valuable tool to estimate discharge in further cave studies. Other such studies that attempt to calcu-

late discharge in vadose canyons include Checkley and Faulkner, (2014), who calculate discharge

assuming that the the conduit is full during the time scallops are being formed. Charlton, (2003)

performs in-situ measurements of shear stress and discharge, and while they do not perform the

backwards calculation from scallop size distribution, they note the difficulty of such a procedure

as the cross-section changes with discharge.

Themethod used here requires two easily measured parameters, scallops at certain locations

within the channel, and the slope of the channel. The known relationship between shear stress and

scallop length (Eq. 3.2) allows discharge to be estimated using theWTAmethod by minimizing the

discrepancy between measured and calculated scallop lengths (or shear stress). Accuracy of this

method is demonstrated by the close fit of scallop lengths along the channel perimeter (Fig. 3.3d),

and recovery of the flow height of the active channel below an incised meander in Parks Ranch

Cave (Fig. 3.3b) Additionally, by treating slope as a free parameter during minimization, the same

discharge is calculated, and the calculated slope is similar to the measured slope.

A value of a ≈ 0.25 − 0.3 was estimated using the distribution of shear stress and the

incision angle. To estimate a, we determined the maximum velocity position in the channel using

the scallop size distribution along the wall and then ran a set of simulations that used this maximum

velocity position while changing a until the resulting incision angle matched the measured incision
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angle. This value is outside of the 95% confidence band for PRC data and within the range that

would be expected for mixed dissolution kinetics, where both surface reaction rate and transport

are important.

3.6.2 Validity of the model

TheWTAmodel has successfully duplicated observed scaling relationships between geom-

etry and flow, such as the scaling of width to discharge (Wobus et al., 2006), with an exponent of

0.38, which falls within the range of 0.3-0.5 observed in the field (e.g., Finnegan et al., 2005). Ad-

ditionally, this method has been used to model realistic cross-section shapes in conduit-full cave

passages (Cooper and Covington, in prep). The WTA method has also been compared to mea-

sured shear stresses, and shear stress values calculated with more accurate methods, such as the

Ray-Isovel model (Wobus et al., 2008). As such, the WTA method is valid method for estimating

boundary shear stress in bedrock channel models.

The WTA model assumes that the maximum velocity is in the center of the free- surface,

and the model has not previously been used to estimate shear stress in meander bends where the

maximum velocity position can be offset. Here, we tested the applicability of a modified WTA

method to meander bends by comparing the distribution of shear stress measured from scallop

sizes within a measured channel to that estimated with the WTA method with an offset position of

the velocity maximum. A statistically significant χ2 value obtained by minimizing the discrepancy

between measured and calculated scallop sizes demonstrates that the WTA method successfully

estimates boundary shear stresses in a cross-section within a meander bend.
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3.6.3 Erosional mechanisms

Field relationships between incision angles and scallop length ratios (Fig. 3.2) from Parks

Ranch Cave and Copperhead Cave have a 95% confidence band that includesmodeled relationships

with several values of a. Both PRC andCHC are consistent with a = 1 and a = 2.5. These values of

a would arise from mechanical processes, with a = 1 representing plucking of jointed blocks, and

a = 2.5 representing abrasion by sediment. The best fit relationship to the data in PRC corresponds

closely to a = 1. The confidence bands for the CHC data are also consistent with the model runs

with a = 0.5, which represent transport limited dissolution. In fact, the slope of best fit line for

CHC data corresponds most closely to the slope produced by this transport limited case.

Incision angle and scallop ratio data for both PRC and CH suggest that a in these caves

is between 0.5 and 2.5. In contrast, a ≈ 0.25 − 0.3 is obtained by the simulation that matches

incision angle using the position of Umax estimated based on scallops for the full cross-section at

one location in PRC. Both methods exclude a = 0.1, and therefore would also exclude a = 0,

representing reaction rate limited dissolution. The presence of scallops, which require erosion to

scale with boundary layer thickness/boundary shear stress, and the fact that the data are inconsistent

with model runs with low values of a strongly suggest that the dominant type of erosion occurring in

CH and PRC is not reaction rate limited dissolution; however, if combination of erosion processes

are active, particularly if some of these are mechanical, this could explain the values obtained for

a.

The value of the erosional exponent found using the incision angle within a single cross-

section of PRC (a ≈ 0.25−0.3) falls outside of the 95% confidence band andwould require reaction

rate limited dissolution mixed with another process. The exponent 0.25-0.3 can be interpreted
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several ways: 1) the active channel reflects a different a than that of the long-term incision; 2) the

data and confidence band are too sparse; 3) this a only represents one data point and no conclusions

should be drawn from it; or 4) the method used to obtain this a is spurious, as it would produce a

scallop ratio greater than observed in all field data in the modeled relationship.

Inferring erosional mechanism from a, no matter how well the data constrain the relation-

ship, is not directly possible, since mixing of processes could lead to intermediate values of a.

For instance, combining transport limited dissolution with abrasion by sediment might produce

0.5 < a < 2.5, which includes the values of a for plucking of jointed blocks, where 1 ≤ a ≤ 3/2.

Some processes, however, can be eliminated. While there is jointing present in both PRC and

CHC, neither site shows physical evidence of plucked blocks following joints. Both caves con-

tain sediment either sourced from outside of the cave (PRC), or possibly derived from weathering

of material inside the cave (CHC). These sediments can become tools for abrasion during high

discharges. Neither transport limited dissolution, nor reaction rate limited dissolution can be elim-

inated as a possible mechanism responsible for a portion of the erosion. The value a ≈ 0.25− 0.3

in PRC suggests a mix of reaction rate limited dissolution and some other mechanism. This value

of a is near that predicted for dissolution of gypsum dissolving by mixed kinetics (a ∈ [1/3, 1/3],

Opdyke et al., 1987). The values 0.5 < a < 2.5 suggest a mix of abrasion and some form of

dissolution, whether transport limited, reaction rate limited, or mixed kinetics.

Current models of speleogenesis in turbulent flow employ surface reaction rates measured

in experiments such as Plummer et al., 1978. However, as these experiments largely do not measure

hydrodynamics, the assumption that they are measuring surface reaction rates may not be correct.

The experiments of Rickard and Sjöberg, 1983; Sjöberg, 1976; Sjöberg and Rickard, 1983 do use

known hydrodynamics, and do show weak mixed kinetics for calcite. To truly understand the
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type of dissolution occurring in limestone caves, additional experiments of this nature need to be

performed. Inspection of natural dissolving surfaces via microscopy could reveal the signatures of

grain detachment as seen in Emmanuel and Levenson, 2014; Levenson and Emmanuel, 2016. The

rate of grain detachment is also likely to depend on shear stress, adding another possible process

of erosion that has not yet been quantified.

3.6.4 Implications for meandering in bedrock channels

The cave passages that are used in this study are a form of meandering, bedrock channel,

a type of channel that is not well understood (e.g. Johnson and Finnegan, 2015; Turowski, 2018).

The morphology of scalloped cave channels may add additional insight into the process of bedrock

meandering, as these channels contain both a history of meander incision and indicators of shear

stress distribution. Turowski, 2018 suggests that the fundamental cause of meanders in bedrock

is sediment cover. We suggest that meanders can form from any type of perturbation that causes

a longstanding shift in maximum velocity position away from the center of the channel. Cover

within the channel is a possible mechanism for this shift, though sediment cover is not the only

fundamental cause of velocity distribution shifts. Meandering occurs without sediment cover, for

example, in meanderkarren, a type of karst formation that is a sinuous channel in bare limestone.

Meanderkarren are known to form on bare, alpine slopes with little sediment input (Veress, 2010,

2012). Sediment, while present in Parks Ranch Cave and Copperhead Cave, does not create a

substantial cover in the studied meandering reaches.

The recorded shear stress distributions in the form of scallops do give an indication of the

processes driving meandering, assuming the only fundamental cause of meandering is contrast in

wall shear stresses. Both the simulated (Figs. 3.1b, 3.3b, d) and measured (Fig. 3.3a, d) distri-
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butions of shear stress around the active channel show shear stress on the inside wall being high

relative to that on the outside wall. Higher shear stresses on the outside wall result in higher erosion

rates due to either mechanical erosion, or transport limited dissolution. This differential erosion

could lead to meanders forming and further evolving without the need of a sediment cover.

3.7 Conclusion

This study presents a novel method to determine how erosion rates scale with shear stress

within cave channels by analyzing the relationship between scallop lengths and the incision angle

of the passage walls within a meander bend. Data collected from Parks Ranch Cave, a gypsum cave

in NewMexico, and Copperhead Cave, Arkansas, suggest that erosion scales with shear stress with

an exponent, a, between 0.5 and 2.5. Processes that result exponents in this range include transport

limited dissolution (a = 0.5), plucking of jointed blocks (1 ≤ a ≤ 3/2), and abrasion (a =

5/2). However, we caution against the direct interpretation of a measured a in terms of a specific

process, as mixing of processes may generate intermediate values of the exponent. The presence

of sediment, lack of plucked blocks, and the meander data suggest a combination of abrasion and

some type of dissolution in both Parks Ranch Cave and Copperhead Cave.

This study is among the first to reconstruct discharge values from scallop lengths in vadose/free-

surface conditions. We obtain a discharge of 0.16m3/s in a tributary passage in Parks Ranch Cave

by minimizing differences between scallop-estimated shear stresses and modeled shear stresses.

This minimization method presents a tool that could become commonplace in studies of cave hy-

drology.
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The minimization method also demonstrates the validity of the numerical model to simulate

cross-section evolution in a meander bend. Additional modeling of this type may give greater

insight to meandering processes in bedrock channels.
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4 Modeling Speleogenesis with Varying Discharge

MODELING SPELEOGENESIS WITH VARIABLE DISCHARGE: IMPLICATIONS FOR THE
WIDTHS OF VADOSE CANYONS AND KEYHOLE PASSAGES

4.1 Abstract

The distribution of discharge is an important factor in the erosion of surface bedrock chan-

nels, and increasingly has been included in models of their formation. While variable discharge

is equally important in speleogenesis (cave formation) no models have yet incorporated this pro-

cess. In this study we develop a speleogenesis model where erosion is weighted by the probability

of discharge in both a single cross-section, and a conduit, with hydraulic calculated by the storm

water management software, EPA-SWMM.

First, we successfully test the ability of SWMM to produce realistic hydraulics as base level

changes, and also explore the distribution of erosion in a non-updating, keyhole shaped, conduit.

The distribution of erosion is similar to that seen in bedrock channels, though in the cave case the

highest erosion rates are produced by discharges close to the mean discharge, as dissolution acts at

all discharges with minimal thresholding, and the mean discharge is the most probable.

Simulations of single cross-sections where erosion at varying discharges is weighted by

probability of discharge result in equilibrium widths that scale similarly to simulations of single

discharges, though the magnitude of such simulations are less than their single discharge coun-

terparts. In multiple cross-sections, representing a conduit, simulations show that a canyon shape

develops as head drops, either through the conduit being a more efficient route for water, or base

level fall. This canyon propagates from the upstream portion, to the downstream, the opposite as
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observed and modeled in surface channels. Keyhole passages are successfully simulated, though

only where discharge lowers during the evolution of the conduit. Additionally, similar to surface

bedrock channels, the rate of base level drop sets the slope of the conduit floor. This model shows

promise for future use exploring speleogenesis past the incipient stages.

4.2 Introduction

The width and slope of bedrock channels have been used to constrain information related

to climate and tectonics such as uplift rate, sediment supply, and discharge, through scaling rela-

tionships of between geometry and these parameters (e.g., Kirby and Whipple, 2012; Lague, 2014;

Miller et al., 2013; Roberts and N. White, 2010; Whittaker et al., 2007). Such scaling relationships

are derived through field observations, and through mathematical modeling (e.g., Finnegan et al.,

2005; Wobus et al., 2008, 2006; Yanites and Tucker, 2010). Mathematical models of bedrock chan-

nels often rely on a single measure of the distribution of possible discharges, the mean (e.g., Whip-

ple, 2004; Whipple and Tucker, 1999; Wobus et al., 2006), and as such, do not capture the effects

of stochastic variability in discharge. The importance of discharge variability in bedrock channel

evolution is due to erosion and sediment transport laws often containing a threshold, implying only

large events with high return times cause geomorphic work (Barbour et al., 2009; Hartshorn et al.,

2002; Lague, 2010; Turowski et al., 2008). Increasingly, models include variability of discharge,

(e.g., DiBiase and Whipple, 2011; Lague, 2010; Lague et al., 2005; Molnar et al., 2006; Snyder

et al., 2003; Stark, 2006) due to its importance. While a growing body of mathematical models

exist to explore variations in discharge on surface channels, models of large scale cave morphol-

ogy for the early (e.g., Dreybrodt, 1988; Dreybrodt et al., 2005; Palmer, 1984, 1991; Szymczak

and Ladd, 2011) and later stages (Cooper and Covington, in prep[a],[b]; Perne et al., 2014) of cave
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conduit evolution do not take discharge variation into account. Additionally, few models of cave

evolution factor in base level change (Gabrovšek et al., 2014), despite the widespread use of cave

levels as base level position indicators (Palmer, 1987), combined with sediment dating as a tool for

constraining landscape evolution rates (e.g., Anthony and Granger, 2004, 2006, 2007; Audra and

Palmer, 2011; Granger et al., 2001, 1997; Granger and Siame, 2006; Stock et al., 2005). Therefore,

in this study, we mesh models for surface bedrock channels and their cave counterparts to explore

the effects of these processes.

Like bedrock channels, cave conduits undergo large variations in discharge. In response,

hydraulic head can greatly change, (Bonacci, 2001; Covington et al., 2009; Halihan and Wicks,

1998; Kaufmann et al., 2016; Prelovšek et al., 2008; C. C. Smart, 1988), in some cases over 100

meters (Gabrovšek et al., 2018), which raises or lowers where erosion occurs. The variability of

discharges in both caves and surface bedrock channels arises from the spatial and temporal recharge

in the form of rainfall or snow melt within a drainage basin (Olsson and Niemczynowicz, 1996).

Discharge variability can be captured within a statistical distribution, such as exponential distri-

butions (Tucker and Bras, 2000), power law distributions (Olsson and Burlando, 2002; Svensson

et al., 1996), and gamma distributions (Crave and Davy, 2001; Davy and Crave, 2000). The study

of Lague et al., 2005 showed that a two parameter, modified gamma function best explains the

distribution of daily discharges for over 30 years of data from 22 discharge monitoring stations in

Taiwan, and 8 in the United States, though they argue that for large events where erosion occurs

a power law fit is applicable. The parameters of the distribution are daily mean discharge, and

one that controls the importance of both large and small extreme events. Following Lague et al.,

2005, Molnar et al., 2006 found the power law fit, N(Q) ∝ Q−κ, where N(Q) is the number of

years that exceed a threshold discharge, applicable to daily discharge variation for 440 gauges in 14
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states within the United States, and explored the range of values for the extremity parameter, with

more arid environments having κ between 1-3, and wetter environments with κ between 3-6. Their

model also confirms that erosion rates are lower in arid environments where overall precipitation is

decreasing, and that environments that switch from humid to arid can have higher or lower incision

rates depending on a threshold.

Unlike surface bedrock channels in which floodwaters flood over the banks, the closed na-

ture of caves produce several effects depending on hydraulic conditions. If water flowing through

the conduit maintains a free-surface (vadose) during base flow, larger events can switch the cave

to being conduit-full (phreatic). Cave passages where this switch occurs regularly are termed

epiphreatic (W. B. White, 1988). Another possible condition is the diversion of water into higher

cave levels during floods, termed an overflow, or the entire cave system becomes flooded when

head exceeds land elevation and water is routed in intermittent streams or over land. Estimating

the hydrology of these systems has been traditionally difficult in traditional porous media models

due to extreme heterogeneity, and large differences in permeability. Caves also differ from surface

streams as they minimal downstream discharge increase for a single conduit with no infeeders (only

matrix contributions), whereas in surface bedrock channels Q ∝ y1.6 in the downstream direction

(Whipple and Tucker, 1999; Wobus et al., 2006).

While traditional groundwater modeling techniques for porous media have been modified

for aquifer scales (e.g., Dufresne and Drake, 1999; Gallegos et al., 2013; Ghasemizadeh et al.,

2015; Hill et al., 2010; Scanlon et al., 2003; Sun et al., 2005), modeling specific caves requires

a different set of equations suitable for partially or entirely full pipes undergoing turbulent flow.

These equations arise as simplifications of the incompressible Navier-Stokes equations. Conduit-

full pipe flow can be simulated with Euler’s equation for fluid flow, which for straight pipes with
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no change in cross-section shape can be simplified to the 1-D form (Covington et al., 2009). If

the flow is in steady state Euler’s equations can be further simplified into the Darcy-Weissbach or

Chézy equations. In the case of a free-surface, and considering the same assumptions as in Eu-

ler’s equations, the 1-D Saint Venant equations govern flow, and again these can be simplified for

steady state. To construct a flow model caves are broken up into individual sections that have a

similar shape characterized by wetted perimeter, P , and cross-sectional area, A, as well as conduit

roughness characterized by a parameter such as the Darcy-Weisbach friction factor (Covington et

al., 2009; Springer, 2004) or the Manning roughness coefficient (e.g. Palmer, 2007). A system of

equations for each discrete section is then solved, with equations chosen depending if the sections

have a free-surface or are conduit full. These models have uses from reconstructing discharge from

indicators of past water level position (e.g., Springer, 2004), or attempting to duplicate hydrographs

from springs (e.g, Covington et al., 2009; Halihan and Wicks, 1998), with a set of equations con-

structed from the given physical or hypothetical cave. A growing number of hydrological models

for specific caves have been developed from the freely available EPA-SWMM (StormWater Man-

agement Model) (Campbell and Sullivan, 2002; Gabrovšek et al., 2018; Kaufmann et al., 2016;

Peterson and Wicks, 2006; Prelovšek et al., 2008), eliminating the need to write and solve a set of

equations.

SWMM can calculate a number of hydraulic parameters such as discharge and head in

conduits based on geometry of conduits, open channels, and surface runoff that can be prescribed a

set discharge, a time series of discharge, or rainfall over a catchment (Rossman, 2010). The equation

used for calculating of flow in this model is the 1-D Saint Venant equations for momentum,

1

g

(∂u
∂t

+ u
∂u

∂y

)
+

∂d

∂y
+ Sf − S0 = 0, (4.1)
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and continuity,

∂A

∂t
+

∂Q

∂y
= 0. (4.2)

Here g is acceleration due to gravity, t is time, u is velocity, y is the downstream direction, d is flow

depth, Sf is friction slope, S0 is floor slope, andQ is discharge. Friction (energy) slope is typically

defined by an empirical equation, and in SWMM the Manning form is used,

Sf =
n2u2

C2
0R

4/3
, (4.3)

where n is the Manning roughness coefficient, C0 is a constant depending on units (for metric the

constant is 1, for US system, 1.49), and R is the hydraulic radius, A/P . In SWMM either the full

1-D Saint Venant equations are solved (dynamic wave routing), or a simplification where Sf = S0

(kinetic wave routing). While the 1-D Saint Venant equations normally only apply to flows with

a free-surface, SWMM uses an element called a Preissmann slot to simulate conduit-full flows.

The Preissmann slot is a narrow, vertical slot applied at the top of a cross-section that allows for an

artificial free-surface at the head elevation (Rossman, 2010). SWMMhas been used to successfully

calculate flow in a speleogenesis model by Perne et al., 2014 to explore the transition between

pressurized and free-surface flows, and as such we use it in this model.

In addition to variable discharge we include base level changes to the model. Base level

change is hypothesized to cause a variety of effects on cave development, including the estab-

lishment of discrete cave levels (Palmer, 1987) that can be used as records of climate and tectonics

(e.g., Anthony and Granger, 2004, 2006, 2007; Audra and Palmer, 2011; Granger et al., 2001, 1997;

Granger and Siame, 2006; Stock et al., 2005). Lowering of base level can also switch phreatic sec-

tions of the cave to vadose, causing entrenchment towards the water table, with canyon shaped

passages (Ford and Ewers, 1978; Worthington, 2005). Typically, the changeover from phreatic to
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vadose conditions changes orientation of passage development from strike-oriented, to dip-oriented

(Palmer, 1984, 1991). However, in some cases canyons can entrench into formerly phreatic pas-

sages, resulting in either a vadose canyon of similar width to the phreatic tube, or one that is smaller,

forming what is termed a keyhole shape (Lauritzen and Lundberg, 2000; Palmer, 2007). While both

phreatic and vadose type passages have been modeled in a single cross-section, no realistic attempt

has been made to simulate keyholes, as vadose keyholes in Cooper and Covington, in prep(b) start

with a phreatic tube that is artificially larger than the equilibrium width at a particular discharge.

In this model the introduction of multiple cross-sections and determination of flow in both phreatic

in vadose conditions allows the simulation of keyhole type passages. From this ability we use the

model to test two hypotheses of keyhole formation: 1) the only requirement to form a keyhole

shaped passage is the transition between phreatic and vadose conditions through base level drop

and a sufficient amount of time spent in phreatic conditions, or 2) a drop in discharge that requires

a smaller width to maintain equilibrium.

The final component of the model in this study is erosion. Caves evolve differently from

non-soluble, surface bedrock channels, as erosion is at least partially, if not fully, due to dissolu-

tion, and thus geomorphic work can occur in most discharge regimes with a minimal threshold as it

depends on undersaturation of water with respect to calcite rather than energy required to mobilize

sediment (Covington et al., 2015). At higher discharges the threshold for sediment motion can be

reached, and mechanical erosion may occur. The relative importance of these types of erosion has

only begun to be explored quantitatively in surface soluble bedrock channels (Covington et al.,

2015), and within caves (Cooper and Covington, in prep[a]). Dissolution has two end members:

reaction rate limited dissolution, where erosion rate is only dependent on a rate constant depending

on rock properties and chemistry, with no relation to shear stresses; and transport limited dissolu-

85



tion where erosion rate depends on chemistry and the rate at which ions diffuse across a diffusion

boundary layer. The thickness of the diffusion boundary layer is a function of flow. The type of

dissolution that occurs is that of the slower rate for a particular flow and chemistry, though there are

arguments that transport limited dissolution does not occur in limestone caves (Covington, 2014).

While these two distinct end members exist, if the rates are close enough mixed kinetics can occur,

as is seen in experiments on gypsum (e.g., Opdyke et al., 1987).

Both end members can be modeled in the same way as mechanical erosion, with a shear

stress erosion law,

E = Kτab , (4.4)

where K is a constant encapsulating erodibility, τb is boundary shear stress, and a is number re-

flecting the type of erosion. For reaction rate limited dissolution a = 0, and thus erosion rate does

not depend on shear stress. In the case of transport limited dissolution a = 1/2. While the reaction

rate limited case does not depend on shear stress, there may be a dependence on flow as it has

been observed that higher discharges effect chemistry, and thus erodibility (Groves and Meiman,

2005), though this effect likely depends on the type of recharge (Covington et al., 2015). As K in

erosion due to dissolution is a function of of chemistry, and dissolution of limestone increases the

saturation state with respect to calcite, erodibility decreases in the downstream direction. While

this change is important for incipient caves of small cross-sectional area in a closed system (e.g.,

Dreybrodt, 1996; Dreybrodt et al., 2005; Palmer, 1991), and over long lengths, for short lengths

(<1km) in mature systems of large cross-sectional area, the change in saturation state is minimal

(Covington et al., 2012).
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While the difference in erosional mechanism and the closed nature of caves make interpre-

tations from surface streams not directly applicable, we can adapt processes used in these models to

explore effects of variable discharge can be adapted to speleogenesis (cave formation) models. In

this study we develop a speleogenesis model that tracks geometry of single conduit through multi-

ple, aligned cross-sections, calculates head and energy slope at multiple discharges using SWMM,

updates the geometry of cross-sections using a shear stress erosion law weighted by the probability

of a particular discharge occurring, and changes base level as the conduit evolves. To test the util-

ity of the model several scenarios are simulated to test hypotheses of keyhole passage formation.

While the model in this study is superficially similar to a previous speleogenesis model utilizing

SWMM for simulating the transition between phreatic and vadose conditions (Perne et al., 2014),

ours adds the multiple discharge capability, changes in base level, and a different, more realistic

estimate of shear stress termed the WTA method of Wobus et al., 2008, 2006 that has been used

to successfully duplicate geometry of surficial bedrock channels, and those within caves (Cooper

and Covington, in prep[a],[b]). Also, unlike Perne et al., 2014 we do not track chemistry in the

model and instead consider saturation state to be the same over the length scales (<1km) explored.

Additionally, we use a single cross-section model to test the effects of discharge variability on

equilbrium width in vadose canyons.

4.3 Model Setup

To simulate cave formation under varying discharge a model is developed with several com-

ponents: 1) a set of cross-sections representing a reach of cave passage, 2) a probability function

determining the percentage of time a particular discharge, Qk, occurs, 3) an interface with Storm

Water Management Model (SWMM) to compute hydraulic parameters such as head from base
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Figure 4.1: Geometry of the multiple cross-section model in the profile view (A), plan/map view
(B), and cross-section view (C). Here the cross-section geometry in C is imposed throughout the
conduit. J1-J6 indicate junctions, while C1-C5 indicate conduit sub-lengths. BL represents base
level position (outfall in the SWMM model), while CB represents a stream run in this case. Qk

in A indicates where discharge enters the conduit. Converging lines in CB section in plan view
represent the presence of a slope in the style of a cave map (e.g. Dasher, 1994). The dashed line in
C indicates an example free-surface reference line.

level and passage geometry, 4) a method to estimate boundary shear stress from passage geometry

and hydraulic parameters, and 5) an erosion law that weights erosion by the probability, Pk of a

particular discharge, Qk.

4.3.1 Model geometry

The model coordinate system is defined by x, y, z axes, with x being the cross-stream di-

rection, y being the down/up stream direction, and z being height. Downstream is in the positive y

direction. The geometry of the model is ncs cross-sections along a line of lengthL in the y-direction

representing a sub-length of the conduit, dL = L/ncs (Fig. 4.1). Cross-sections are a series of np

x, z points that define their perimeter. Base level height, B, is located dL from the right-most

cross-section. Geometry is initiated as a series of circular cross-sections representing a phreatic

tube. The initial heights of the cross-sections are calculated from a prescribed initial passage slope

with the downslope direction to the right.
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Individual cross-sections contain their own properties: li, the set of x, z points defining

the cross-section perimeter, with li,j being the jth point counter-clockwise from the highest point

(Fig. 4.1c), Zmax,i is the z component of highest point, and Zmin,i is the z component of the lowest

point. Subscript i represents an individual cross-section, with i = 1 being the left/upstream-most

cross-section, and i = ncs the right/downstream-most.

For every time step a wetted cross-section, pk,i ∈ li is created for each cross-section for all

discharges. When a discharge results in conduit-full (phreatic) conditions pk,i = li. In the free-

surface case the subset of points is determined below a reference line that represents the height

of the water (Fig. 4.1c). Wetted cross-sections have additional properties: Ak,i is the area, Pk,i is

wetted perimeter, Rk,i = Ak,i/Pk,i is the hydraulic radius, and r(pk,i,j) is the distance between a

reference point to each point that defines a perimeter. The reference point is the position of where

velocity is maximum. For phreatic cross-sections we consider this position to be the centroid of

the cross-section geometry, while for vadose cross-sections we consider this to be the the midpoint

on the free-surface.

At each time step the cross-section geometry is updated perpendicular to the current geome-

try by an erosion rate, Ei for each point defining the perimeter, determined by weighting individual

erosion rates, Ek, by Pk. Parameters Zmax,i and Zmin,i are then recalculated with the evolved ge-

ometry. Erosion rates are only defined for a given discharge when the points are part of the wetted

cross-section, otherwise for that discharge they are set to zero.

4.3.2 Discharge distribution

Probabilities are determined fornQ discharges with individual dischargesQk spaced equally

in logarithmic space. Lague et al., 2005 determined that a modified gamma probability density

89



10 1 100 101

Discharge (m3/s)

10 5

10 4

10 3

10 2

10 1

100

101
Pr

ob
ab

ilit
y 

de
ns

ity
m=0.1
m=1
m=10
m=75

0.1 0.2 0.3 0.4
Discharge (m3/s)

10 5

10 4

10 3

10 2

10 1

100

Cu
m

ul
at

iv
e 

de
ns

ity

m=0.1
m=1
m=10
m=75A B

Figure 4.2: A. Probability density function of discharge with Q̄ = 0.3 for varying values ofm. B.
Cumulative density function with Q̄ = 0.3 for varying values ofm.

function (Pdf) best fits discharge variation. This Pdf is characterized with two parameters, the

mean discharge, Q̄, and a fitting parameter, m. The modified gamma Pdf is given by Crave and

Davy, 2001; Davy and Crave, 2000 as

PdfQ̄,m(Q) =
(Q̄m)m+1

Γ(m+ 1)
exp
(
−m

Q̄

Q

)
Q−(2+m), (4.5)

where Γ(α) is the gamma function. The effect of changing m in this distribution is that extreme

events are lessened with greater values (Fig. 4.2). The value of m is related to κ of Molnar et al.,

2006, with κ = m+ 1, and as such typical values form are between zero and five.

We define the probability of a particular discharge as

Pk =

∫ Q̄k,k+1

Q̄k−1,k

Pdf(Q)dQ, (4.6)

where Q̄α,β is the average between Qα and Qβ (Fig. 4.3). For k = 1 the lower limit of integration

becomes 0, while the upper limit for k = nQ becomes +∞.

To avoid integrating numerically for each probability the Pdf can be integrated analytically

into a cumulative distribution function. From Lague et al., 2005 the cumulative distribution func-

tion is

CdfQ̄,m(Q) = 1− γ(mQ̄/Q,m+ 1), (4.7)
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where γ(β, α) is the lower incomplete gamma function. As such, Eq. 4.6 becomes

Pk = Cdf(Q̄k−1,k)− Cdf(Q̄k,k+1). (4.8)

In this form P1 = Cdf(Q̄k,k+1) and PnQ
= 1− Cdf(Q̄k−1,k).

4.3.3 Hydraulics

To calculate hydraulic parameters we develop an interface between the cross-section evo-

lution code and SWMM. This interface constructs SWMM input files from the cross-sections ge-

ometries, runs a simulation to steady state, and reads the value for head at each cross-section. These

simulations are run for each discharge, Qk, per time step.

SWMM defines channel geometry through three types of objects: nodes, links, and curves.

Nodes represent the junction between sections of the conduit, outlets (outfalls), or storage. Param-

eters specified at junctions are the height of the bottom of the junction (invert elevation in SWMM

terminology), which we consider to be Zmin,i, and maximum water depth at which overland flood-

ing occurs. The maximum depth parameter allows the total head to be limited to realistic values. To

translate the model geometry to SWMM ncs + 1 junction nodes are specified, and one outlet node
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at the most downstream location representing base level. Each junction may also have an inflow

defined, where water enters the conduit. We consider only the upstream-most junction to have an

inflow with the valueQk. Parameters set at the outlet are the type of outlet and height. The type of

outlet is set to a fixed head condition, with the value being set to B. Values read from nodes after

a simulation are the steady state head, h, at each junction and the total discharge that reaches the

downstream-most junction as limited by the maximum depth parameter. This discharge is stored

as the temporary discharge at a time step for erosion calculations.

Links represent lengths of conduit sub-sections. Links have two set of parameters: the first

set are the length andManning friction factor, and the second are geometry parameters consisting of

the type of geometry of the cross-section, the maximum width of the cross-section, and the height.

We use the custom geometry type to translate the freely updating cross-sections to SWMM. Custom

geometries are specified as a shape defined by the widths at a series of heights in the cross-section.

Widths and heights are normalized by the total height of the cross-section. Each cross-section li

is translated to this format by sampling widths at equidistant heights from the bottom of the cross-

section to the total height Zmax,i−Zmin,i. The geometry of the model is translated to SWMMwith

ncs links with the custom geometry determined by cross-sections li at each time step. An additional

link of length dL connects the downstream-most cross-section of the conduit to base level. The

geometry of this extra link is prescribed to be the same as the downstream most cross-section.

Simulations are run using the Python module SWMM5-Python for each Qk per time step,

with dynamic wave routing that solves the full 1-D Saint-Venant Equations. We assume that each

Qk reaches a steady state and therefore simulations are run with 15 minute sweeps for a total of

24 hours to ensure simulations reach steady state. Head values at each junction, hk,i, are recorded
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from the last sweep step and friction slope for each cross-section is calculated,

Sfk,i =
hk,i − hk,i+1

dL
. (4.9)

4.3.4 Shear stress estimation and erosion

We use the method described in Wobus et al., 2006, Wobus et al., 2008, and Cooper and

Covington, in prep(b), termed theWTAmethod, to estimate boundary shear stress, τb, for use in the

erosion step. The WTA method consists of several steps: determine the height of the free-surface

in the vadose case or the energy slope in the phreatic case, compute bed-normal velocity gradients,

solving a force balance, and computing τb. This method allows the calculation of shear stress given

only discharge, geometry, and roughness length, z0.

To determine the height of the free-surface in the vadose case three equations are solved

iteratively at free-surface heights until computed discharge equals prescribed discharge. These are,

the continuity equation,

Q = ūA, (4.10)

the Chézy equation,

ū = C
√
RSf, (4.11)

and a logarithmic approximation of the Chézy friction factor,

C = 2.5
√
g ln

(
0.37R

z0

)
. (4.12)

Wobus et al., 2006 considers water height to be at normal depth, and as such Sf is equal to the slope

of the floor, S0. For the phreatic case A, P , and R are known from the general cross-section and

Sf is calculated. To determine whether a cross-section is under vadose or phreatic conditions we

compute a maximum discharge by computing discharge at heights through the cross-section. If the
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prescribed discharge is greater than this maximum discharge phreatic conditions are assumed. This

procedure is used in the test of multiple discharges with a single cross-section, however, we solve

for height of the free-surface and friction slope using the SWMM interface in multiple cross-section

simulations.

Velocity gradients are solved with a modified form of the law of the wall using the position

and magnitude of the downstream maximum velocity, Umax,

du

dr(pk,i,j)

∣∣∣∣∣
z0

=
Umaxk,i

z0
ln(r(pk,i,j)/z0)

−1 · sin(ϕ− θ). (4.13)

To find the value of Umaxk,i
we assume the integrated law of the wall over all pk,i,j equals the

average velocity. Angles ϕ and θ are illustrated in Figure 4.4. To translate between roughness

length, z0, and the Manning roughness coefficient used in SWMM, we combine the logarithmic fit

of the Chézy friction factor with its relation to the Manning roughness coefficient,

C = n−1R1/6, (4.14)

where n is the Manning roughness coefficient, resulting in the equation

n =
R1/6

2.5
√
g
ln
(
0.37R

z0

)−1

. (4.15)
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This equation allows the translation between hydraulic parameters in SWMM and those used in the

WTA method.

From velocity gradients, boundary shear stress is computed,

τb(pk,i,j) = φρA

(
du

dr(pk,i,j)

)2

, (4.16)

where φ is a force balance term,

φ =
gS∑np

i=1

(
du

dr(pk,i,j)

)2
dl(j)

. (4.17)

Here dl(j) is the distance between pk,i,j and pk,i,j−1.

Erosion rate at each point is calculated per discharge with a shear stress power law equation,

Ek(pi,j) = Kτb(pk,i,j)
a, (4.18)

whereK is a constant that incorporates factors of erodibility and the size of a time step. Erosion rate

for all discharges is computed by the sum of per discharge erosion rate weighted by the probability

of that discharge over the general cross-section,

E(li,j) =

nQ∑
k=1

PkEk(li,j). (4.19)

4.4 Results

4.4.1 Hydraulics, shear stress, and erosion

To test the ability of SWMM to model the hydraulics at all stages of cave development we

test a single, 300 m long, conduit with 5 keyhole shaped cross-sections, as in Figure 4.1. This

keyhole shape was generated via simulation of a single cross-section with Q = 1, S = 0.017

z0 = 0.01 and an initial radius of 1m. Length of the sub-conduits are 60 meters. For each scenario
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Figure 4.5: Head in the conduit when base level is above the entire conduit. Base level is indicated
by a blue circle 60 meters downstream of the conduit. Progressive filling indicates head at different
discharges. Colored lines are the potentiometric surface past the conduit.

base level represents a fixed head 60 meters downstream of the last junction node. The initial

prescribed slope in the geometry is S = 0.01. Manning friction factor is set to 0.04, a common

value for caves (Palmer, 2007). The ground surface is set to 12 m above the datum, which is the

initial bottom of the downstream-most junction node. Four discharge values are equally spaced

logarithmically from 1 − 100, with Q1 = 1.0, Q2 = 4.6, Q3 = 21.5, and Q4 = 100. We test four

scenarios of base level position to evaluate the ability of SWMM to handle the change in base level

as the system evolves. The positions of base level are: entirely above the conduit, between the

Zmax of the upstream- and downstream-most node, between Zmax and Zmin of the downstream-

most cross-section, and below Zmin of the downstream-most cross-section. This simulation does

not evolve the cross-section through time. The results of these model runs are shown in Figures

4.5-4.8.

In each case the largest discharge is limited by the surface. The limited discharges areQ =

39, Q = 48, Q = 66, and Q = 70 for cases 1, 2, 3, and 4, respectively. In most cases the friction

slope is highest in the length between the down-stream most junction and base level, however, in

the 3rd case when base level is between the floor and ceiling of the down-stream most section of
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Figure 4.6: Head in the conduit when base level is above part of the conduit.
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Figure 4.7: Head in the conduit when base level is in between the top and bottom of the downstream
cross-section.
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Figure 4.8: Head in the conduit when base level is below the entire conduit.
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conduit the highest friction slope is located in upstream sections. In case 4 the down-stream most

junction maintains a free-surface for large discharges. The limited discharge, 70m3/s, as well as

the second highest discharge, 21.5m3/s exceeds the maximum discharge capable if prescribed the

same slope and roughness in a single cross-section (≈ 20m3/s), with roughness value obtained

from the Manning roughness coefficient, 0.04, and equation 4.15. While 21.5m3/s exceeds the

maximum discharge in the single cross- section case, the water height solved for is the normal

depth per Chaudhry, 2007, whereas in the multiple cross-section case depth does not need to be

normal.

From the hydraulic parameters shear stress is estimated via the WTA method. With head

knownwater depth/height of the free-surface does not need to be found by the minimization method

of Wobus et al., 2008, 2006, and the heads calculated from SWMM are used. In the free-surface

case water depth is calculated as hk,i − Zmin,i and parameters A, P , and R are calculated from the

wetted cross-section. For the conduit-full/phreatic case these parameters are calculated from the

general cross-section. Per discharge distribution of shear stress for the upstream-most section of

conduit in case 4 is shown in Fig. 4.9. This particular case and section are chosen as it captures all

discharges including one in phreatic conditions, contains a limited upper discharge, and at least one

discharge reaches normal depth where energy slope is parallel to the floor slope. The shear stress

distribution for this setting shows an increase in shear stress and wetted perimeter as discharge

increases. Shear stress ranges from 4-8 Pa for the lowest discharge, and from nearly 0 to 300 Pa

for the highest. The highest shear stresses are located near the top of the wetted portion of the

cross-section in the free-surface case, or near the centroid in the conduit-full case. At the vertical

walls in the canyon part of the keyhole shear stress decreases. Along the floor shear stress increases

from the canyon portion.
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The distribution of erosion is also determined from the shear stress distribution (Fig. 4.10).

For this purpose we use the probability distribution parameters Q̄ = 3m3/s and m = 2, resulting

in P1 = 6.4 ∗ 10−1, P2 = 3.5 ∗ 10−1, P3 = 1.1 ∗ 10−2, and P4 = 1.5 ∗ 10−3, for Q = 1, Q = 4.6,

Q = 21.5, and Q = 100, respectively. While the highest discharge is larger than the limit set by

the imposed ground surface, P4 is not changed and we assume the discharge partitions between the

conduit and surface flow. The highest amounts of erosion are focused along the floor of the conduit,

and along the walls in the canyon section of the keyhole near the free-surfaces/centroid for each

discharge. Peaks in Fig. 4.10a near the free-surfaces are artifacts of low nQ = 4, however, with

higher nQ peaks are smoothed as the locations of free-surfaces are throughout the canyon portion

of the keyhole (Fig. 4.10b). Despite large shear stresses higher in the cross-section during large

discharges (Fig. 4.9e), erosion length is the smallest in these sections as the probabilities of such

discharges are orders of magnitude less than those close to Q̄. Note that the mean discharge value

here is smaller than that used to form the keyhole geometry, and as such erosion lengths are high

within the canyon part of the keyhole, which would cause widening in an evolution simulation.
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focused on the walls of the canyon causing widening. The cross-section in C is equilibrated and
as such erosion is dominantly focused on the floor. Peaks near free surface/centroid position are
artifacts from the discrete discharges.

When an equilibrated keyhole cross-section for Q̄ is used with the same geometry arrangement and

settings as in case 4, erosion is dominant on the floor, with minimal widening at the bottom of the

canyon (Fig. 4.10c).

4.4.2 Single cross-sections with variable discharge

As a first test of the effect of variable discharge on cross-section evolution we run simula-

tions varying the parameter nQ (Fig. 4.11). For such simulations the height of the free-surface is

solved by minimizing equations 4.10- 4.12 with a set slope, S = Sf = 0.017, roughness length,

z0 = 0.01m, and power in the erosion law, a = 1/2. Distribution parameters of average discharge
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Figure 4.11: Graph on the effect of changing nQ, with Q̄ = 1m3/s andm = 2. Solid line indicates
the equilibrium width obtained when a simulation is run without a probabilistic discharge. Dashed
line is a line fit to simulation results where nQ > 10, demonstrating that past this value for nQ

equilibrium width does not vary substantially.

and m are set to 1.0 m3/s and 2.0, respectively. Individual discharges, Qk, are spaced equally in

log-space from 0.1− 32m3/s. If a particular discharge is greater than the maximum discharge wa-

ter height is not calculated and instead Sf is calculated using equations 4.10-4.12 with the wetted

cross-section equal to the general. These simulations are run until a free-surface is formed even at

the largestQk. A single simulation of only one discharge,Q = Q̄, with the same parameters is also

run until width is stable over 100 time steps.

To explore the scaling of probabilistic discharge parameterized by Q̄ andm we run simula-

tions with a single cross-section varying these parameters (Fig. 4.12). The set of Q̄ for simulations

are: 0.15; 0.3; 0.6; 1.2; 2.4; 5.0; 7.5; and 15.0m3/s and the set ofm simulated are: 0.5; 1; 2; 3; 5;

and 10. Qk is spaced equally in log-space from 0.1− 32m3/s with nQ = 20, and probabilities are

calculated per Q̄,m pair. Parameters S, z0, and a are the same as the test of varying nQ. Similarly,

simulations are run until a free-surface can be maintained for even the largest discharge value. A

second set of simulations are run with only Q̄, a probability of 1, and the same parameters as above.
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Figure 4.12: Discharge versus equilibrium width for a variety of m. Dashed line is a curve fit to
simulations run without probabilistic discharge.

The results of these simulations show that the parameterm results in differing curves in the

relationship between mean discharge and equilibrium width. As m increases, simulating smaller

probabilities of extreme events both large and small, equilibrium width increases for a given Q̄.

The largest widths are obtained when m → +∞ and the probability PQ̄ = 1, simulated by only

considering Q̄. Power law curves fit to each simulation result in an exponent between 0.3 for the

smallest value ofm and 0.35 for the single discharge, Q̄.

4.4.3 Multiple cross-sections with variable discharge

To test the multiple cross-section and base level change aspect of the model we test hy-

potheses of keyhole passage formation. Initial geometry in these simulations is a 100 meter long,

0.05 meter radius tube, with a slope of 0.03, consisting of 10 individual cross-sections. We choose

the 0.05 meter radius as this is a typical stopping radius/width in speleogenesis models exploring

the initial stages of cave development (e.g., Dreybrodt et al., 2005). For tests not varying discharge

or the distribution of discharge we set Q̄ = 1m3/s, m = 2, and sample 10 discharges equally in

logarithmic space between 0.5m3/s, and 10m3/s. We choose a Manning roughness coefficient of
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0.4, and calculate z0 using 4.15. The power in the erosion law, a, is set to 1/2 representing transport

limited dissolution. In addition to the typical erosion step we smooth the erosion distribution with

a univariate spline of order 1 and a smoothing factor of 0.006 to eliminate the stair steps due to

discrete discharges (Fig. 4.10). The ground surface is set to 20 meters above the initial floor of the

inlet junction. Initial base level position and base level drop per time step are set per simulation to

explore the effects of these values on keyhole formation. Simulations are run until cross-sections

either form a canyon shape, or obtain a keyhole shape.

For the first simulations we hold base level constant at various positions near the initial

conduit. For the first simulation base level is set to 3 meters, near the top of the initial conduit. As

the conduit enlarges head drops to a nearly flat gradient, establishing a free-surface in the upstream

most parts. While a free-surface is established the low gradient combined with the position of base

level produces a backwater. This backwater minimizes shear stress and incision all but stops (Fig.

4.13a). With a static base level of 1 meter the free-surface does maintain a gradient in the upstream

portions of the cave with a backwater in the downstream sections. While a vadose canyon forms,

a keyhole does not (Fig. 4.13b). With a static base level below the initial conduit, at -1 meter, the

entire cave develops a free-surface and no backwater. Again, a vadose canyon that is not keyhole

shaped forms (Fig. 4.13c).

For the second set of simulations we start with a base level at 3 meters and drop base level

at various rates. We first set base level drop rate to be a static 0.1 meter per time step. In this case

base level drop is initially similar to conduit enlargement when shear stresses are high, and becomes

faster than enlargement once the conduit has established a larger radius and shear stress drops. In

early stages of this simulation hydraulic gradient becomes gradual as conduit enlargement occurs

(Fig. 4.14a), and the free-surface in upstream portions of the conduit are in backwater conditions.
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Figure 4.13: Evolution of the multiple cross-section model with a constant base level of 3 meters
(A), 1 meter (B), and -1 meter (C). Inset cross-sections are in order 1-10 from left to right. These
cross-sections are not to the same scale as the profile and are only to visualize shape. Blue line
indicates position of head through the conduit for Q̄ = 1m3/s, and the blue dot indicates the
position of base level.
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As base level continues to fall the free-surface becomes parallel to the passage floor, increasing

hydraulic gradient and shear stress, though a backwater is still maintained in the downstream por-

tions. At this point the floor slope changes from the initial slope as a non-keyhole canyon begins

incising (Fig. 4.14b). Eventually, the entire conduit maintains a hydraulic gradient that is parallel

to the floor, and the new floor slope is observed through the entire conduit. The geometry at this

point starts with a canyon with the remnant of a phreatic tube at the upstream portion, with the

remnant being overprinted in the dowstream direction. At the downstream end, a phreatic type

cross-section is still maintained until the canyon completely cuts through the conduit (Fig. 4.14c).

The second simulation drops base level at twice the highest calculated erosion rate per time step

in the conduit. Dynamics and geometry of this simulation are the same as the first simulation of

this type (Fig. 4.14c). In the last simulation of this type base level is dropped ten times the highest

calculated erosion rate per time step. At this high rate of base level drop the dynamics are again

the same, however, the floor slope is greater (Fig. 4.15).

The last set of simulations explore the effect of changing the parameters related to discharge

during conduit evolution in attempt to simulate a keyhole shape passage. As the vadose canyon

section of keyhole passages is narrower than the phreatic tube we drop mean discharge and the ex-

tremity parameter. Base level in these simulations begin at 3 meters, and drops at twice the highest

rate of incision in the conduit per time step. Despite changing the parameters controlling the proba-

bility distribution, we do not change the actual discharges and they remain selected logarithmically

spaced between 0.5m3/s and 10m3/s. In these simulations we change the probability parameters

once the free-surface has been established for the nearest discharge to Q̄. For the first simulation

Q̄ = 3m3/s while the conduit is entirely phreatic, and Q̄ = 0.5m3/s once the free-surface is es-

tablished at 3m3/s. We hold m = 3 for the entire simulation. In this simulation a canyon is cut
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Figure 4.14: Evolution of the multiple cross-section model with dropping base level, starting with
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Figure 4.15: Evolution of the multiple cross-section model with base level dropping at 10 times
the maximum erosion rate in the conduit. This simulation results in a higher floor slope than those
with lower rates of base level fall.
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Figure 4.16: Geometry of the evolved conduit when Q̄ is changed from 3m3/s to 0.5m3/s (A),m
is changed from 5 to 0.5. (B), and both are changed (C). Simulations where Q̄ changes successfully
produce a keyhole shaped passage.

into the floor of the phreatic tube portion, and a keyhole forms (Fig. 4.16a). This keyhole begins

in the upstream most section, migrates in the downstream direction as the conduit evolves. For the

second simulation Q̄ is held constant at 1m3/s andm is changed from 5 to 0.5 once a free-surface

is established. In this simulation a canyon is formed, however, it is the same width as the phreatic

tube and no keyhole forms (Fig. 4.16b). For the last simulation we change both Q̄ and m, with Q̄

changing from 3m3/s to 0.5m3/s, and m from 5 to 0.5. This simulation also results in a keyhole

that propagates in the downstream direction (Fig. 4.16c).

107



4.5 Discussion

The model developed here successfully simulates erosion in cave bedrock channels with

weighting by probability of discharge controlled by two parameters: the mean discharge Q̄, and an

extremity exponent,m. We also successfully model equilibrium widths when variable discharge is

taken into account within a single cross-section. Finally, the model also allows the simulation of

vadose canyons forming in a conduit defined by multiple cross-sections. Each of these components

present valuable contributions to both speleogenesis and surface bedrock channel evolution.

4.5.1 Effect of probabilistic weighting on erosion

While the result that shear stress is higher at higher discharges (Fig. 4.9) is obvious as

hydraulic gradient increases with discharge, the distribution of erosion around a channel is not

necessarily intuitive when probabilistic weighting is taken into effect. As seen in Fig. 4.10a,b

erosion in channels not yet equilibrated in width is dominant in areas that have not yet achieved

the eventual width, and along the channel floor. In equilibrated channels (Fig. 4.10c) erosion is

dominant on the floor. These areas of highest erosion are eroded at all discharges, however areas

that are only eroded by the highest discharges have the smallest magnitude of erosion. The result

of the highest regions having the least erosion follows that observed in Turowski et al., 2008 for

surface bedrock channels. While the distribution of erosion is similar to that of surface channels,

the discharges where themost erosion occurs is different. Themodeled erosion rates fromTurowski

et al., 2008 show that the highest discharges, indicated by the highest water positions, produce the

most erosion. In our model the most erosion occurs in discharges near to the mean discharge. The

difference between these models is the mechanism of erosion; in Turowski et al., 2008 erosion
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is due to the tools effect at high discharges, while cover dominates lower discharges, preventing

erosion. As such, there exists a threshold at which a discharge can produce geomorphic work. In

our model the mechanism of erosion is dissolution, where threshold discharges for geomorphic

work are minimal (Covington et al., 2015).

While the tool and cover effect also plays a role in cave evolution (Cooper and Covington,

in prep[b]; Farrant and P. L. Smart, 2011), we do not model it in this study. It may be likely that

if it is included similar thresholding may arise. Additionally, the inclusion of sediment transport

may impact equilibrium width, as increased cover is known to widen channels (Finnegan et al.,

2007; Johnson and Whipple, 2010; Nelson and Seminara, 2011; Turowski et al., 2007; Yanites and

Tucker, 2010). As our model does not include sediment, the equilibrium widths simulated should

not be treated as an exact function of discharge to width, though the results can be interpreted as

general rules.

4.5.2 Effect of variable discharge on equilibrium widths

Figure 4.12 demonstrates that variable discharge impacts the equilibrium widths obtained

in bedrock channels. Widths obtained through probabilistically weighted erosion are smaller than

those obtained when simulating erosion with a single discharge as done in previous studies (e.g

Wobus et al., 2008, 2006). While equilibrium widths are smaller, power law fits to simulations

reveal that equilibrium width scales with mean discharge to the power of 0.3− 0.35. These values

are similar to those analytically derived (e.g Finnegan et al., 2005; Wobus et al., 2008), andmodeled

numerically (Cooper and Covington, in prep[b]; Wobus et al., 2006). Such values also fall within

those observed in the field of 0.3− 0.5 (Finnegan et al., 2005; Turowski et al., 2007).
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Besides Q̄, parameters explored that effect equilibrium width are nQ (Fig. 4.11), and m

(Fig. 4.12). The number of discharges and probabilities plays an important control on actually

reaching an equilibrium width. For low (< 10) nQ equilibrium widths are smaller than those for

larger values. As nQ becomes larger, equilibrium widths are actually obtained and the width does

not change with nQ. As such, nQ > 10 was used in simulations to explore scaling relationships.

The effect of m is that as the value increases equilibrium widths approach those of singular value

simulations with only Q̄. The equilibrium widths obtained when erosion is weighted by probability

are lower than those in the singular value case. While for smaller values of m the probabilities of

larger discharges is higher, the smaller discharges are more likely. Additionally, the probabilities of

large discharges is so small that their influences are minor in regions where only those discharges

reach (Fig. 4.10). As m becomes large both small and large discharge effects are suppressed, and

discharge values near Q̄ become increasingly probable. Asm → ∞ the probability of Q̄ → 1, and

no other discharges occur.

The study by Molnar et al., 2006 allows further interpretation of these modeling results

as they relate m to climate. In arid environments, large variations in discharge can occur relative

to the mean discharge, and thus m is small, whereas in humid environments variability is more

constrained. As such, it can be expected that for a given mean discharge, widths of channels in arid

environments are narrower than their humid counterparts.

4.5.3 Multiple cross-section evolution and keyhole passages

When the single cross-section model is extended into multiple cross-sections that represent

a conduit the evolution of the cave profile can be simulated. We use this model in an attempt to

duplicate keyhole passages, a type of cave passage where a vadose canyon of smaller width incises
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into a larger phreatic tube. We tested several hypotheses of keyhole formation: 1) the transition

from phreatic to vadose conditions generate a keyhole, even without base level change, as the

conduit becomes a more efficient route for water and a free-surface establishes, 2) the transition

from phreatic to vadose conditions, combined with base level dropping, and 3) the transition from

phreatic to vadose conditions, combined with base level drop and change in the probability of dis-

charge as governed by climate. The only simulations that successfully form a keyhole are those

where the probability of discharge changes. Additionally, only simulations where Q̄ is dropped

do keyholes form (Fig. 4.16a,c), despite smaller m producing smaller equilibrium widths in the

single cross-section model (Fig. 4.12). Simulations where keyholes successfully form reveal that

they propagate in the downstream direction, first forming in the most upstream portion when the

hydraulic gradient becomes parallel to floor slope, creating the highest shear stresses in this por-

tion. This represents the propagation of a knickpoint downstream. Interestingly, in thise case, the

knickpoint propagates in the opposite direction of surface channels where they travel in the up-

stream direction (e.g., Cook et al., 2013; Crosby and Whipple, 2006; Lague, 2014; Loget and Van

Den Driessche, 2009; Seidl et al., 1994).

While the other sets of simulations do not create keyholes, they do reveal some dynamics

of profile evolution in caves. The simulations where the rate of base level fall is changed shows

that faster drops in base level create steeper floors in vadose canyons. This result is identical to

that seen in surface bedrock channels, where increasing base level rates result in steeper channels,

with slope scaling to base level drop rate to the 1.3−1.5 power (Whipple and Tucker, 1999; Wobus

et al., 2006).

While the possibilities for simulation of a single conduit were not exhausted, this model

shows several important results for both caves and bedrock channels. Additionally, SWMM can
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simulate flows not only in single conduits, but in conduit networks, allowing this model to be

extended into a network model in the future.

4.6 Conclusion

The model developed here successfully simulates several aspects of speleogenesis in turbu-

lent flow. The first aspect is the ability to model the flow itself. Secondly, the model constructions

the distribution of erosion in canyons, showing both similarities and differences to erosion in sur-

face bedrock channels. By allowing cross-sections to freely evolve using the erosion calculated

from shear stress generated by varying discharges, weighted by the probability of those discharges,

equilibriumwidths are successfully established, showing similar scaling tomodels considering only

the mean discharge. Lastly, a speleogenesis model combining erosion, the ability for cross-sections

to evolve at all points, and variable discharge in a conduit with flow determined by the storm wa-

ter management software, SWMM, allows the simulation of single conduit evolution coupled with

changes in base level. This model was used to test various hypotheses on the formation of keyhole

type passages.

Simulations of the distribution of erosion weighted by discharge probability showed that

erosion is focused on the walls of a canyon and the floor for non-equilibrated channels, and on

the floor for equilibrated ones. This focusing occurs despite the highest discharges producing high

shear stresses in upper parts of the canyons, as the probability of high discharges is low. These

simulations also show that lower discharges, near the mean discharge, do most of the geomorphic

work when the erosion mechanism is dissolution, opposite that observed in bedrock channels where

tool and cover effects are provided by sediment.
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The freely updating single cross-section model with variable discharge shows a similar

scaling of equilibrium width to discharge in canyons, however, the magnitude of widths is lower

for the variable discharge model. The magnitude of the width is affected by a parameter of the

discharge distribution that changes the probability of extreme events; when more extreme events

occur, such as in arid environments, equilibrium widths are lower.

The multiple cross-section model is part of the forefront of current speleogenesis mod-

els, combining a recent speleogenesis model for cross-section development in turbulent flow with

common features in bedrock channel models. We used this model to test multiple hypotheses of

keyhole formation, which can only be adequately simulated when taking into account variable dis-

charge, base level change, and the ability of a model to transition between conduit-full conditions

and free-surfaces. Keyholes are successfully simulated only when average discharge is changed in

the probability distribution. These modeled keyholes propagate downstream, the opposite of that

observed in surface channels. This model can be used in the future for realistic simulations of a

variety of cave geometries, and allow the exploration of relationships that can only be obtained

through numerical models.
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5 Conclusions

The components of this dissertation provide a first step for understanding speleogenesis

past the breakthrough stage, when turbulent flow develops, sediment is transported, and the bulk

of cave morphology forms. Notably, this dissertation establishes the first accurate model of cross-

section evolution within caves including a variety of settings: phreatic tubes, paragenetic galleries,

both meandering and non-meandering vadose canyons, and keyhole passages. The third project

extends the freely updating 2D cross-section model to one of a single conduit in the form of a

series of cross-sections representing sub-reaches. The code-base for these simulations is available

to download and adapt for future use.

Besides the production of accurate simulations of cross-section geometries, each project

contributes to the field of speleogenesis and to bedrock channels in general. The first project mod-

els the process of paragenesis, where cave development proceeds upwards under phreatic condi-

tions coupled with a sediment cover. This process has only so far been understood in a conceptual

framework, with minimal physical modeling, and no physical models of the formation of parage-

netic galleries. The successful simulation of the process reveals dynamics of paragenetic gallery

formation that have been hypothesized in conceptual models. While duplication via a model devel-

oped from first principles on its own provides a valuable contribution to the field, the first project

also explores results that can only be obtained through modeling. The ability to simulate parage-

netic galleries with prescribed discharge and sediment supply over large timescales that can not be

observed in the field enables the exploration of how geometry responds to these input parameters.

The scaling relationship derived analytically from the governing equations is verified through a set

of simulations, and the establishment of such a scaling relationship can be used to constrain past
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conditions of sediment supply and discharge from the simple measurement of paragenetic gallery

width. This relationship shows that equilibriumwidth in paragenetic galleries scales with discharge

to the 1/2 power, and weakly (1/6 power) to the inverse of sediment supply. Interestingly, this in-

verse scaling with sediment supply is the opposite of what is observed and modeled for surface

bedrock channels.

The numerical model of cross-section evolution adds additional evidence that our under-

standing of erosion in soluble bedrock channels is incomplete; paragenetic galleries and vadose

canyons that reach a stable width, as seen ubiquitously in the field, do not form unless erosion is

a function of shear stress. For erosion to scale with shear stress these types of passages must form

by mechanical erosion, or transport limited dissolution, contradicting predictions of only reaction

rate limited dissolution occurring in turbulent flow. The cross-section model developed in this first

study, combined with the observation that shear stress indicating bedforms, scallops, have different

sizes on opposing walls around a meander bend provide a potential way of resolving the type of

erosion seen in various cave settings. The second study in this dissertation combined cross-section

models of meanders where shear stress on opposing walls and the incision angle of the wall was

recorded, with measurements of 3D scanned, well scalloped, meander bends in a gypsum cave,

Parks Ranch Cave in New Mexico, and a limestone cave, Copperhead Cave, in Arkansas. Simu-

lations revealed that different powers in a shear stress erosion law, reflective of erosion process,

produced different relationships between shear stress/scallop ratio, and incision angle. Statistical

interpretation of the field data in both Copperhead Cave and Parks Ranch Cave indicate that the

power in the shear stress erosion law is between 0.5 and 2.5, with a best fit of approximately 1 for

Parks Ranch Cave, and 0.5 for Copperhead Cave. These values arise through a mix of dissolution

and mechanical erosion. The lack of plucked blocks in these caves suggested that abrasion is the
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dominant mechanical process, though plucking of individual grains may be important, however no

models exist suggesting the scaling of grain plucking to shear stress. Dissolution in either case can

be reaction rate limited or transport limited to produce such a scaling of erosion to shear stress.

This study also produced a valuable tool in bedrock channel simulations, as well as a tool for

estimating discharge from scallops in vadose settings. Statistical fitting of scallop sizes estimated

by the shear stress approximation method to scallops measured around a meander bend in Parks

Ranch Cave showed that themethod developed for straight reaches successfully approximates shear

stress in a non-straight type cross-section by shifting the position of maximum velocity, validating

its veracity in the meander cross-section evolution model. This fitting minimizes the difference

between scallop size calculated from by discharge and slope and that of the measured scallop dis-

tribution in the channel. The minimized value of discharge and slope from this method successfully

reconstructed water height as indicated by the change in angle of passage walls, and the slope from

minimization matched measured floor slope.

The last study in this dissertation extends the speleogenesis model developed for simulating

paragenesis and vadose canyons in several, more realistic ways. First, the cross-section model is

extended into a series of cross-sections representing sub-lengths of an individual conduit (consid-

ered to be 2.5 dimensional), with water height determined by the stormwater management software,

SWMM. This model combines a feature widely implemented in surface bedrock channel models,

but mostly neglected in speleogenesis models, the ability for base level to evolve. Lastly, hydraulic

parameters for multiple discharges are calculated, and erosion is weighted by the probability of a

particular discharge as determined by a two parameter discharge distribution. For the last feature,

the implementation in this study appears to be the first in a cross-section model where the cross-

section can freely evolve at all points, and therefore is a valuable contribution not only to speleo-
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genesis models, but to bedrock channels in general. The variable discharge feature, combined with

a single cross-section reveals the importance of the distribution parameters of average discharge

and one controlling the probability of extreme events. Such simulations showed that width of va-

dose canyons/surface bedrock channels including variable discharge scales the same as if only the

single, average discharge is considered. However, the actual magnitude of width is smaller than

the single, average discharge. As the extremity parameter increases, simulating less importance of

extreme events, width magnitude approaches the single discharge case. As high variability occurs

in arid environments and less variability occurs in more humid environments, these results show

that equilibrium widths are likely smaller per average discharge in arid environments.

The 2.5D nature of the model, combined with base level changes allows the simulation of

many cave passage geometries. As a first use of this type of speleogenesis model keyhole type

passages were successfully simulated from an initial, post-breakthrough, phreatic tube when mean

discharge falls during conduit evolution. This model shows potential for many future speleogenesis

models, and the capability of SWMM to simulate not only single conduits, but networks of pipes,

allows further extension to model network geometries, such as branchwork or maze caves, post-

breakthrough.

Overall this dissertation presents a contribution to speleogenesis models and to understand-

ing erosion in caves. It also opens up future lines of work. To resolve the issue of the type of

dissolution in caves more field work is recommended using measurements scalloped, meandering

channels with a set incision angle. An extremely valuable test of the meander method would be to

performmeasurements in a glacier cave, as the scaling with erosion is known. Further, experiments

to quantify the scaling of erosion to shear stress for individual grain plucking would help in under-

standing the erosional processes in gypsum and limestone caves. The importance of grain plucking
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can also be explored by collecting field samples and using microscopy as plucked grains leave

a signature fingerprint. Finally, the model developed in last study show promise for simulating

realistic geometries not only at the cross-section level, but the reach level as well.
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