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Abstract

Regression analysis fits predictive models to data on a response variable and corresponding

values for a set of explanatory variables. Often data on the explanatory variables come at

a cost from commercial databases, so the available budget may limit which ones are used in

the final model.

In this dissertation, two budget-constrained regression models are proposed for continuous

and categorical variables respectively using Mixed Integer Nonlinear Programming (MINLP)

to choose the explanatory variables to be included in solutions. First, we propose a budget-

constrained linear regression model for continuous response variables. Properties such as

solvability and global optimality of the proposed MINLP are established, and a data trans-

formation is shown to significantly reduce needed big-Ms. Illustrative computational results

on realistic retail store data sets indicate that the proposed MINLP outperforms the statis-

tical software outputs in optimizing the objective function under a limit on the number of

explanatory variables selected. Also our proposed MINLP is shown to be capable of select-

ing the optimal combination of explanatory variables under a budget limit covering cost of

acquiring data sets.

A budget-constrained and /or count-constrained logistic regression MINLP model is also

proposed for categorical response variables limited to two possible discrete values. Alterna-

tive transformations to reduce needed big-Ms are included to speed up the solving process.

Computational results on realistic data sets indicate that the proposed optimization model

is able to select the best choice for an exact number of explanatory variables in a modest

amount of time, and these results frequently outperform standard heuristic methods in terms



of minimizing the negative log-likelihood function. Results also show that the method can

compute the best choice of explanatory variables affordable within a given budget. Further

study adjusting the objective function to minimize the Bayesian Information Criterion BIC

value instead of negative log-likelihood function proves that the new optimization model can

also reduce the risk of over-fitting by introducing a penalty term to the objective function

which grows with the number of parameters.

Finally we present two refinements in our proposed MINLP models with emphasis on

multiple linear regression to speed branch and bound (B&B) convergence and extend the

size range of instances that can be solved exactly. One adds cutting planes to the formula-

tion, and the second develops warm start methods for computing a good starting solution.

Extensive computational results indicate that our two proposed refinements significantly re-

duce the time for solving the budget constrained multiple linear regression model using a

B&B algorithm, especially for larger data sets.

The dissertation concludes with a summary of main contributions and suggestions for

extensions of all elements of the work in future research.
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1. Introduction

Regression analysis is a well-known tool for understanding the relationship between a

response variable and a set of explanatory variables. Linear regression and logistic

regression are two commonly used regression models for continuous and categorical

responsible variable, respectively. Variable selection is very important in model building to

identify the best subset of available explanatory variables for predicting response values.

Budget considerations arise because values of explanatory variables may be available only

at cost and a budget limit may restrict the subset to be included in the fitted model.

Although many different models and methods have been proposed for regression and

variable selection, we know of none that has reported adding a budget constraint to the

regression model while doing the variable selection.

The aim of this dissertation is to propose two budget-constrained regression models for

continuous and categorical variables respectively using Mixed Integer Nonlinear

Programming (MINLP) to choose the explanatory variables to be included in solutions.

We first propose a budget-constrained and count-constrained linear regression model for

continuous response variables. Then we propose a budget-constrained and

count-constrained logistic regression model for categorical response variables limited to two

possible discrete values. Finally, we refine the proposed MINLP Models by adding cutting

planes and warm starts to facilitate solving bigger data sets.

Good variable selection or feature selection can lead to a clear relationship between the

response variable and the selected variables and improve the model building effectiveness

by filtering out less-significant features. Many feature selection methods such as forward

selection, backward elimination and stepwise selection are well known and deeply studied

for linear regression. In the past twenty years, hardware along with algorithm

improvements have resulted in a dramatic speedup of solving optimization problems, and

consequently, different optimization models have become practical for solving the classical

variable selection problem. Specifically, Lasso regression, Ridge regression and a naive

1



elastic net regression, are proposed for variable selection ((Tibshirani, 1996), (Rejchel,

2016), (Park and Klabjan, 2017), (Wu et al., 2018)). Bertsimas et al (Bertsimas et al.,

2016) proposed a MINLP model for selecting the best fixed number p of features for linear

regression models. Instead of fixing the number of selected features, Park (Park and

Klabjan, 2017) proposed an optimization model for picking the best subset of variables in

terms of minimizing mean absolute error (MAE) or mean squared error (MSE).

Feature selection methods are much less studied in logistic regression. Sato (Sato et al.,

2016) proposed a Mixed Integer Optimization model and Lucadamo (Lucadamo and

Simonetti, 2011) proposed the Disco Coefficient method to identify the significant variables

for logistic regression. Bursac (Bursac et al., 2008) proposed a method called purposeful

selection of co-variates in which an analyst makes a variable selection decision at each step

of the modeling process.

Although many different models and methods have been proposed for regression and

variable selection, to the best of our knowledge, none of those existing studies has

considered budget constrained model selection in linear or logistic regression, and most do

not guarantee an optimal choice of model. These are the main focus areas of this research.

The main body of this dissertation begins in Chapter 2, with a budget-constrained linear

regression model for continuous response variables using MINLP. The objective function is

constructed to minimize the sum of squared error and data standardization reduces the

value of big-M coefficients to 1. Properties such as solvability and global optimality of the

proposed MINLP are derived. Illustrative computational results on realistic store data sets

indicate that the proposed MINLP outperforms standard statistical software outputs in

optimizing the objective function under a limit on the number of explanatory variables

selected. Also our proposed MINLP is shown to be capable of selecting the optimal

combination of explanatory variables under a budget limit covering cost of acquiring data

sets. This cannot be done through an exercise of the usual statistical software except by

total enumeration of possible variable combinations.

2



In Chapter 3, we propose a corresponding MINLP to perform budget-constrained and /or

count-constrained logistic regression modeling with categorical response variables limited to

two possible discrete values. Instead of minimizing the sum of squared error, maximum

likelihood through the logit transform function is used for constructing the objective

function. Alternative transformations to reduce needed big-Ms are also proposed to speed

up the B&B solving process. Computational results on realistic data sets indicate that the

proposed optimization model is able to select the best choice for an exact number of

variables in a modest amount of time, and these results frequently outperform standard

heuristic methods in terms of minimizing the negative log-likelihood function. Studies of

varying prices for variables and/or budget limits also demonstrate the new,

optimization-based insights that can be available for analysis about what data sources to

consider and how large a budget is needed to obtain satisfactory results. Further study

adjusting the objective function to minimize the BIC value instead of negative

log-likelihood function proves that the new optimization model can reduce the risk of

over-fitting by introducing a penalty term to the objective function which grows with the

number of parameters.

In Chapter 4, we propose two refinements to our Chapter 2 MINLP model for multiple

linear regression to speed branch and bound convergence and extend the size range of

instances that can be solved exactly. One part of the work considers adding cutting planes

to the models. Noting that the budget constraint in our proposed models has the same form

as 0–1 knapsack problems, minimal cover knapsack inequalities are proposed and tested on

five realistic data sets under four different budget limits in comparison to cuts already

available in GUROBI, a mathematical programming solver. A second set of enhancements

investigate and test six candidate constructions to produce a good integer-feasible solutions

as warm starts to the budget-constrained multiple linear regression MINLP models to

speed branch and bound convergence. Extensive computational results indicate that our

two proposed refinements significantly reduce the time for solving the budget constrained

3



multiple linear regression model using B&B algorithm, especially for large data sets.

Finally, Chapter 5 summarizes the results obtained in this dissertation and points out some

directions for future research.
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2. Budget Constrained Model Selection for Multiple Linear Regression

2.1 Introduction

Multiple linear regression is a well-known tool for understanding the variation in a response

variable as a function of some explanatory variables. The regression model can be

expressed as: Y = Xβ + ε where Yn×1 is a response vector, X = [x1, ...,xp] ∈ Rn×p is an

explanatory variable matrix , β ∈ Rp×1 is regression coefficient vector and ε ∈ Rn×1 is error.

Variable selection, also called feature subset selection, is choosing a subset of useful

variables from many explanatory variables for model estimation. Currently variable

selection seems even more critical in model construction for big data that were previously

unwieldy. How we can effectively and accurately select a “best” subset of explanatory

variables from a huge amount of data is very challenging. The three most commonly used

variable selection methods are forward, backward and stepwise (Efroymson, 1960). Several

shortcomings of these three methods have been documented (Bertsimas and King, 2015),

and as a result, authors have proposed alternative methods, such as the Akaike’s

information criteria (AIC), the Bayesian information criterion (BIC) (Schwarz et al., 1978),

the wrapper method (Kohavi and John, 1997), the supersaturated designs ((Parpoula

et al., 2014), (Yamada, 2004)). However, all these alternatives use greedy search algorithms

that add one variable at a time to the model to maximize the reduction in sum of squared

of errors along with certain penalty terms and then drop variables from the model if they

are redundant in terms of reducing sum of squared error. Therefore, there is no guarantee

that a truly best subset of features will be selected.

In the past twenty years, hardware along with algorithm improvements have resulted in a

dramatic speedup of solving optimization problems, and consequently, different

optimization models have become practical for solving the classical variable selection

problem. Tibshirani (Tibshirani, 1996) introduced an approach called Lasso to the variable

selection problem and Rejchel (Rejchel, 2016) considered both Lasso and adaptive Lasso

6



for variable selection. Lasso penalizes the least squares method by imposing an L1-penalty

on the regression coefficients.

min
(β0,β)∈Rp+1

Rλ(β0, β) = min
(β0,β)∈R(p+1)

[
1

2n

n∑
j=1

(yj − β0 − xTβ)2 + λPα(β)] (1)

Where

Pα(β) = (1− α)
1

2
‖β‖2

`2
+ α‖β‖`1 (2)

Pα is the penalty part. When α = 1, the method is called lasso regression. When α = 0, the

method is called ridge-regression. When α ∈ (0, 1), the method becomes a naive elastic net

regression which combines the characteristics of both lasso and ridge regression. Lasso does

both continuous shrinkage and variable selection at the same time, but ridge regression

provides a better solution than lasso when the number of observations is greater than the

number of explanatory variables and explanatory variables are highly correlated with each

other. Still, none of these methods is easily adaptable to the problem of constrained model

selection, where the otherwise best subset of explanatory variables may not be affordable.

Recently, Mixed Integer Optimization (MIO) ((Bertsimas et al., 2016),(Park and Klabjan,

2017)) was proposed for feature subset selection. (Bertsimas et al., 2016) proposed a MIO

model for selecting the best fixed number K of features for regression. A discrete extension

of the modern first-order continuous optimization method was used to find high quality

feasible solutions that can be used as warm starts to a MIO solver. Instead of fixing the

number of selected features, Park and Klajan (Park and Klabjan, 2017) proposed an

optimization model for picking the best subset of variables in terms of minimizing mean

absolute error (MAE) or mean squared error (MSE). Wu, Xue, and Zhao (Wu et al., 2018)

proposed a method by using basis function approximation with smooth-threshold

7



estimating equations to achieve variables selection and coefficient estimation at the same

time without solving a convex optimization problem. Li and Lin (Li and Lin, 2009)

introduced a variable selection procedure via penalized least squares with the smoothly

clipped absolute deviation (SCAD) penalty proposed by Fan and Li (Fan and Li, 2001) for

screening experiments.

Although many different models and methods have been proposed for forecasting and

variable selection, we know of none that has reported adding a budget constraint to the

forecasting model. Consider a sales forecasting problem. In order to get a useful forecast

we may like to consider many explanatory variables such as unemployment rate, GDP,

disposable income, profits, households, population, inflation, etc. from different websites.

Some of the metrics may be free, but others may be very expensive. In reality, we would

like to find a best subset of explanatory variables within the budget limit available while

minimizing the regression sum of squared errors.

In this paper, we propose a constrained linear regression model to solve optimally this

budget limited regression task. The model is discussed in the next section. Then, in Section

3, convexity of the constrained regression model is proved to assure efficient computation of

optimal solutions in MIO search. Section 4 presents the computational results from tests

on realistic retail store sales data sets. Our final conclusions are given in the last section.

2.2 Budget Constrained Regression Model for Continuous Response Variables

Inspired from the above lasso and ridge regression, and considering a realistic business

application such as budget limits or constrained counts of explanatory variables, we first

add the cost of predictors or count of predictors as a penalty to the objective function of

ordinary least squares.

8



min
(β0,β)∈Rp+1

(
n∑
j=1

(yj − β0 − xTβ)2 +

p∑
i=1

ci · I(βi 6=0))

or

+

p∑
i=1

I(βi 6=0)) (3)

where ci(i = 1, · · · p) is the cost of ith predictor. I(βi 6=0) is the indicator function,

I =


0, for βi = 0

1, for βi 6= 0

(4)

There are two potential problems with the above optimization model: (1) The objective

function is no longer a convex function of the parameters because of the indicator

functions, and (2) we would like to find a best predictive model within the budget B or the

count limit K instead of minimizing the budget or the count of predictors. To address the

second problem, we move the cost of predictors or the count of predictors from the

objective function to the constraints. After the transformation, the objective function

becomes convex (see proof in the next section). However, the budget limit and count of

predictors constraints are no longer convex functions due to the indicator functions. Also

in the next section, a linear transformation of both budget and count of predictors

constraints is introduced to address this last obstacle.
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min
n∑
j=1

(yj − β0 − xTβ)2

s.t.

p∑
i=1

ci · I(βi 6=0) ≤ B

p∑
i=1

I(βi 6=0) ≤ K

(β0, β) ∈ Rp+1. (5)

2.3 MINLP Formulation of the Budget Constrained Linear Regression Model

2.3.1 Mixed Integer Nonlinear Programming

A Mixed Integer Nonlinear Programming (MINLP) is an optimization problem where some

variables take integer values and some variables take continuous values. The objective

function and constraints are described by nonlinear functions (Bussieck and Pruessner,

2003). The general form of a MINLP is defined as

min f(x, y)

s.t. g(x, y) ≤ 0

x ∈ X

y ∈ Y integer (MINLP)

Here, function f(x, y) is the objective function and g(x,y) is the constraint function.

Either of them can be nonlinear. Variables x, y are the decision variables, where y are

restricted to integer values. MINLPs have been used in many areas such as engineering,

management science, finance, and operations research(Grossmann and Sahinidis, 2003a,b;

Bertsimas et al., 2016; Bertsimas and King, 2015).
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The primary decision variables in the above constrained linear regression model are the

coefficients of the predictors βi, i = 1, . . . , p and the constant term β0. In order to linearize

both budget and count constraints in our proposed MINLP model, we first introduce

non-negative deviation variables si+, si−, where βi = si+ − si−. Note that si+, si− cannot be

both equal to 0 when |βi| 6= 0. Secondly, we replace the indicator function I(βi 6=0) by adding

binary variables qi, i = 1, . . . p and two sets of ”Big-M” constraints guaranteeing qi = 1

when |βi| 6= 0, otherwise qi = 0. Here M is a constant upper bound on

max{|βi| i = 1, . . . p}.

With these modifications, the optimization model for the above MINLP reduces to the

following mixed-integer nonlinear program:

min (
n∑
j=1

(yj − β0 − xTβ)2

s.t. βi = si+ − si−,∀i ∈ 1, . . . p

si+ ≤M · qi,∀i ∈ 1, . . . p

si− ≤M · qi,∀i ∈ 1, . . . p

p∑
i=1

ci · qi ≤ B (Budget constraint)

p∑
i=1

qi ≤ K (Number of variables constraint)

si+ ≥ 0, si− ≥ 0,∀i ∈ 1, . . . p

(β0, β) ∈ Rp+1

qi = 0 or 1,∀i ∈ 1, . . . p. (CLREG)

2.3.2 Data Transformation to Allow Choosing M = 1

Here the value of Big-M should be chosen carefully. First, M must be larger than

max{|βi| i = 1, . . . p}. If M is smaller than any estimated coefficient {|βi| i = 1, . . . p},
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certain feasible solutions may be cutoff. However, if M is too big, the model may become

numerically difficult to solve, and bounds from continuous relaxations may deteriorate

severely.

Therefore, we standardize all predictors with mean 0 and standard deviation 1. This can

be done by calculating the Z score for all predictors and the response variable. That is,

y′ =
(y − µ̂y)
σy

, x′1 =
(x1 − µ̂x1)

σx1
, x′2 =

(x2 − µ̂x2)
σx2

, . . . , x′p =
(xp − µ̂xp)

σxp

After standardizing all predictors and response variable, we build the regression model

based on variables after standardization.

y′ = β′1x
′
1 + β′2x

′
2 + . . .+ β′px

′
p + ε

Here, β′i, i ∈ 1, 2, . . . p are the standardized regression coefficients. β′0 isn’t included in the

above regression model. That is because that β′0 = µ̂′y − β′1µ̂′x1 − β
′
2µ̂
′
x2
− . . .− β′pµ̂′xp = 0.

y = β0 + β1x1 + . . .+ βpxp + ε

⇒

y − ȳ = β0 + β1x1 + . . .+ βpxp + ε− ȳ

= ȳ − β1x̄1 − . . .− βpx̄p + β1x1 + . . .+ βpxp + ε− ȳ

= β1(x1 − x̄1) + . . .+ βp(xp − x̄p) + ε

= β1σx1x
′
1 + . . .+ βpσxpx

′
p + ε

⇒
y − ȳ
σy

= y′ = β1
σx1
σy
x′1 + . . .+ βp

σxp
σy
x′p + ε′

12



Therefore, the standardized coefficients β′i = βi
σxi
σy

= cov(xi,y)
σxiσy

which is same as the

correlation between two vectors r = cov(xi,y)
σxiσy

. The correlation between two vectors is

definitely bounded between -1 and 1. This way, the absolute value of all estimated

coefficients on the standardized variables are ≤ 1. The value of M is set to 1 in the model.

2.3.3 Tractability of MINLP

The transformed binary MINLP model can be addressed by applying the nonlinear form of

branch-and-bound. The nonlinear branch-and-bound method starts with a continuous NLP

problem formed by relaxing the binary constraints on discrete decision variables qi from

qi = 0 or 1 to 0 ≤ qi ≤ 1. If the NLP relaxation problem is infeasible, then the MINLP is

infeasible as well. If the solution of the NLP relaxation happens to be binary for all qi, it

also solves the MINLP. Otherwise, branch-and-bound may be used to systematically search

more constrained candidate sub-problems of the current node to isolate an optimum,

solving the corresponding relaxation at each step to find a bound on the objective value

achievable. The best binary-feasible solution discovered in the search is retained as a

provably global optimum for the full model.

Whether or not the transformed MINLP can be solved to global optimality in this way

depends critically on the tractability of the NLP continuous relaxation. Many well-known

improving search algorithms can produce a global optimum of an NLP as long as an NLP

satisfies the following Definitions 2.3.1 and 2.3.2 (Rardin, 1998).

Definition 2.3.1. A function f(x) is convex if

f(x(1) + λ(x(2) − x(1))) ≤ f(x(1)) + λ(f(x(2))− f(x(1)))

for every x(1) and x(2) in its domain and every step λ ∈ [0, 1].
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Similarly, f(x) is concave if

f(x(1) + λ(x(2) − x(1))) ≥ f(x(1)) + λ(f(x(2))− f(x(1)))

for every x(1) and x(2) in its domain and every step λ ∈ [0, 1].

Definition 2.3.2. A constrained nonlinear program in functional form

max or min f(x)

s.t. gi(x)


≥

≤

=


bi i = 1, . . .m

is a convex program if f is concave for maximize or convex for a minimize, each gi of a ≥

constraint is concave, each gi of a ≤ is convex, and each gi of an =constraint is linear.

The continuous NLP relaxation of the above budget constrained regression model

(CLREG) is indeed a convex program which can be proved as follows.

The continuous NLP relaxation of the budget constrained regression CLREG has all the

same constraints as the full CLREG, except the binary constraints qi = 0 or 1 for each

binary variable i are replaced by 1 ≥ qi ≥ 0. All other constraints are linear, and the

relaxation of qi constraints is also linear. This assures that all constraints of the relaxed

NLP model are linear and thus convex. What remains for the NLP relaxation to be a

convex program is whether or not its objective function is convex for the minimization

problem.

min
(β0,β)∈R(p+1)

1

2n

n∑
j=1

(yi − β0 − xTβ)2

14



As we can see, the objective function is the sum of functions fj(β0, β) = (yj − β0 − xTj β)2.

It will be convex as long as each fj is convex. Now, dropping the i subscripts, we examine

fj(β0, β) , [y − β0 − x1β1 − · · · − xnβn]2

= [|y − β0 − x1β1 − · · · − xnβn|]2

= [max((y − β0 − x1β1 − · · · − xnβn),−(y − β0 − x1β1 − · · · − xnβn))]2

Expressions (y − β0 − x1β1 − · · · − xnβn) and −(y − β0 − x1β1 − · · · − xnβn) are both linear

and thus convex. Therefore,

h(β0, β) = max((y − β0 − x1β1 − · · · − xnβn),−(y − β0 − x1β1 − · · · − xnβn))

is also convex since it is the maximum of convex functions. Finally, consider s(y) , y2.

Second derivative s
′′
(y) = 2 proves s(y) is convex because s

′′
(y) is the 1 by 1 Hessian

matrix and positive definite. Over domain y ≥ 0, s(y) , y2 is also non-decreasing. Thus, by

applying composition rule, we can conclude that

fj(β0, β) , [y − β0 − x1β1 − · · · − xnβn]2 = s(h(β0, β)) is convex.

This completes the argument for convexity of objective function of linear regression, and

establishes that continuous CLREG relaxation is a convex program. As a result, our

proposed budget constrained linear regression model for CLREG can be solved efficiently

to global optimality via branch and bound.

2.4 Illustrative Computational Testing

In this section, we conduct illustrative computational experiments on realistic data sets to

investigate the performance of the proposed model. All computational results in this
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section are performed using Knitro solver through AMPL on a desktop equipped with Intel

core 2.70 GHz CPU, 8.00GB usable RAM and Microsoft Windows 7 Professional.

2.4.1 Realistic Test Sets

An entire data set derived from a real retail store forecasting includes 333 observations and

continuous 53 variables. Here, the 53 variables are composed of one response variable

(store annual sales) and 52 independent variables which have potential impact on store

annual sales (e.g., associate engagement score, termination rate, population density, price

gap, unemployment rate, household income). In order to better investigate the

performance of the proposed optimization model with increasing number of variables as

well as observations, we first separate the entire data set into nine different sub-data sets.

The number of observations and variables of each sub-data set are shown in Table 2.1.

2.4.2 Model Application for Fixed Numbers of Explanatory Variables

The 52 independent variables which can be used for predicting sales are not free. First, we

assume the cost of each variable is the same, and we can afford only eight out of the total

52 variables. As a result, our budget constraint is the same as a count constraint which

determines a maximum number of independent variables allowed in the model. The

optimization model detailed above was tested on all nine sub-data sets to select the best

combination of eight variables which explain a majority of variance in sales. For each

model, the value of the objective function, R2 and CPU time are reported in Table 2.1.

From the comparison of CPU time across the different data sets, we can see that the model

run time does not increase too much when increasing the number of observations and

keeping the number of variables fixed. However, the model run time is dramatically

increased by increasing the number of predictor variables considered. The high R2 values

indicate that most variance of sales is explained by the selected eight independent

variables. Since regular variable selection methods such as forward, backward and stepwise
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Table 2.1: Sales Data Sets Test for Selecting Eight Explanatory Variables

Data set Vars Obs Objective value R2 CPU time (sec)

1 13 111 11.84 0.89 0.48

2 26 111 8.42 0.93 128

3 52 111 7.71 0.93 8,416

4 13 222 24.85 0.88 0.79

5 26 222 17.59 0.92 56.9

6 52 222 16.04 0.92 21,910

7 13 333 38.81 0.88 0.70

8 26 333 27.83 0.91 68.95

9 52 333 24.00 0.93 9,863

are all heuristic one-step-ahead search algorithms, the only way to make sure that the

exact best count of variables will be selected by such methods is fitting the regression

model to all possible combinations of independent variables considered, in other words, by

enumeration. The time spent on enumerating all possible combinations will exponentially

increase with number of variables making it impractical for even medium-sized data sets.

To further investigate the advantages of our optimization model, we compare the variable

selection sequences and corresponding objective values obtained from statistical software R

to our proposed optimization model on the first data-set which includes thirteen variables

and 111 observations. The forward selection method is used while fitting the regression

model in R. Table 2.2 shows the results.

From Table 2.2, we have the following observations.

� The predictor which tends to explain more variance in the response variable and

results in the smaller objective value will get selected first. From the variable

selection sequence, we can see that most of the time, our proposed optimization

model and statistical software select the same combination of variables.

� Still the forward, backward and stepwise methods sometimes follow a suboptimal

path and get stuck in a suboptimal area of the solution space. There is no guarantee
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Table 2.2: Variable Selection Results

Count of selected variables Objective value Selected variables (R, Model)

R Model X1 X2 X3 X4 X5 X6 X7 X8

1 23.89 23.89 X?

2 18.47 18.47 X? X?

3 16.25 14.68 X? X X? ?

4 13.88 13.51 X? X X? X? ?

5 12.79 12.69 X? X X? X? X? ?

6 12.11 12.11 X? X? X? X? X? X?

7 11.90 11.90 X? X? X? X? X? X? X?

8 11.84 11.84 X? X? X? X? X? X? X? X?

The check mark indicates the selected variables by statistical software R, star indicates the
selected variables by our proposed optimization model.

that the best set of variables will be selected. Results in Table 2.2 when three, four

and five variables are selected illustrate that our proposed optimization model selects

a different set of variables compared to the variable selection results of statistical

software R, with an optimal choice that improves on heuristic results.

2.4.3 Testing with Varying Prices and Budgets for Data Items

Cost was assumed to be the same for each variable in the above analysis. In reality, most

likely that will not be the case. Hence, synthetic different costs for each variable are

considered in the following analysis. To begin, a cost for each variable is fixed as shown in

Table 2.3, and we suppose budget limits vary from $300 to $1800. Under different budget

limits, the selected combination of variables, objective function values and corresponding

budget utilization are shown.

From Table 2.3, we can see that, as would be expected, the best variable X1 with cost $450

is no longer selected when we have only $300 budget. The objective value obtained by the

selected three variables X4, X12 and X13 within the budget limit is much worse than the

objective value obtained by including only variable X1 which we can not afford. However,

variable X1 is added to the model immediately as long as our budget limit is greater than

$450. Variables X2 and X13 are also selected with variable X1 while increasing the
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Table 2.3: Variable Selection Results under Different Budget Limits

Variable Cost ($) Budget limits ($)

300 800 1200 1800

X1 450 ? ? ?

X2 300 ? ?

X3 250 ? ?

X4 150 ? ? ?

X5 200 ? ?

X6 400 ?

X7 350

X8 300

X9 250

X10 200

X11 150

X12 100 ? ?

X13 50 ? ? ? ?

Objective value 94.11 18.43 13.43 12.10

Budget usage 300 800 1200 1800

current budget from $300 to $800. The corresponding objective value is reduced from 94.11

to 18.43, but, from Table 2.2, we know that the best three variables in terms of minimizing

the objective function value are X1, X3, and X4. The reason that they are not selected is

because the total cost of those three variables ($850) exceeds our budget current limit

$800. As the budget keeps increasing, additional significant variables are selected, and the

corresponding objective value is further reduced.

To illustrate what happens when data sources become more expensive, we tested new

scenarios that increase the cost of each variable by 20% and 100%. Variable selection

results are shown in Table 2.4 and Table 2.5, respectively. As the variables become

increasingly expensive, under the same budget limits, fewer and “less significant” variables

are available for selection, and the objective function value of the optimization model

increases. A valuable benefit of being able to test such optimization scenarios could be to
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Table 2.4: Variable Selection Results at 20% Increment of Cost of Each Variable

Variable Cost ($) Budget limits ($)

300 800 1200 1800

X1 540 ? ? ?

X2 360

X3 300 ? ?

X4 180 ? ? ?

X5 240 ?

X6 480 ?

X7 420

X8 360

X9 300

X10 240

X11 180

X12 120 ? ?

X13 60 ? ? ? ?

Objective value 96.81 19.92 14.62 12.68

Budget usage 180 780 1200 1800

provide decision makers with information about the budget required to produce good

results.

2.5 Conclusions and Extensions

One-step-ahead procedures, forward, backward and stepwise methods are commonly used

for variable selection in multiple linear regression. However, as discussed in Section 4,

common variable selection methods have no way to control the exact count of variables

that will be selected. Moreover, all three variable selection methods are heuristic

algorithms, that may follow a suboptimal path and converge to a suboptimal solution;

there is no guarantee that a best subset of variables will be selected in terms of minimizing

an objective function, even if the only constraint is variable count. Recently, a constrained

linear regression optimization model has been proposed by Bertsimas et al. (Bertsimas
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Table 2.5: Variable Selection Results at 100% Increment of Cost of Each Variable

Variable Cost ($) Budget limits ($)

300 800 1200 1800

X1 900 ? ?

X2 600 ?

X3 500 ?

X4 300 ? ?

X5 400

X6 800

X7 700

X8 600

X9 500

X10 400

X11 300

X12 200 ? ?

X13 100 ? ?

Objective value 96.81 93.94 19.94 14.68

Budget usage 300 800 1200 1800

et al., 2016) to select an optimal subset of variables of a given size. To our knowledge,

however, the more complicated task of choosing an optimal subset of variables under a

budget constraint has not been reported even though such budget considerations are part

of many applied data analytic environments.

� In this paper, we describe investigations into constrained linear regression models

that add constraints for a budget limit and/or count limit to the regression task. Our

model empowers the analyst to select a best set of variables without violating a

budget or variable count limitation.

� Computational experiments on realistic data sets were conducted to investigate the

performance of our approach. Computational results indicate that (i) the proposed

optimization model enables us to select the best choice for an exact number of
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independent variables in a modest amount of time, and our results frequently

out-perform standard heuristic methods in terms of minimizing squared regression

error.

� Further studies varying prices of variables and/or budget limits also demonstrate the

newly available, optimization-based insights into data analysis about what data

sources to consider, and how large a budget is needed to obtain satisfactory forecasts

or predictions.

From the results in Table 2.1 of computational experiments in Section 4, we also notice

that the solution time rapidly increases as the number of variables increases. One natural

extension of the current optimization approach is to exploit advanced integer programming

techniques such as adding appropriate cutting planes to speed up the optimization model.

That would permit us to solve even larger problems.

In this paper, we are focused on adding constraints to the linear regression model. Linear

regression models are used when the response variable is continuous, and minimizing LSE

can be used for parameters estimation. If the response variable is categorical (e.g. binary)

and non-continuous, non-linear relationship should be considered through different link

functions and distribution families(Agresti, 1996). Instead of minimizing LSE, a maximum

likelihood method should be considered for parameter estimation. The objective function

then becomes finding the values of parameters for a given statistic which makes the known

likelihood distribution a maximum. In Section 3, we established that our proposed

constrained linear regression model satisfies the convexity in both objective function and

constraints that guarantee the global optimum of the corresponding continuous relaxations.

Extending the optimization model framework proposed here to the Generalized Linear

Models could be another useful step to pursue.
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3. Budget Constrained Model Selection for Logistic Regression

3.1 Introduction

In reality, there are many situations where we need to predict an output variable which is

discrete (or categorical) instead of continuous such as given a set of input features to

predict whether a breast tumor is benign or malignant. Linear regression is inappropriate

for such modeling and classification problems because the response values are not measured

on a continuous scale and the error term does not follow a normal distribution. The linear

regression model can generate any real number ranging from negative to positive infinity as

the predicted value, whereas a categorical variable might be restricted to discrete values

such as ”Yes” or ”No”. Logistic regression and multinomial regression along with many

classification techniques such as discriminant analysis, support vector machine (SVM),

classification tree, random forest, naive Bayes classifier are useful for solving classification

problems ((James et al., 2013), (Hosmer Jr et al., 2013), (Guyon et al., 2002), (Keerthi and

Gilbert, 2002), (Friedman and Koller, 2003), (Friedman et al., 1997)). This paper focuses

on the logistic regression model which is widely used for predicting a response variable with

binary values.

Feature selection or model selection is very important in model building. It can lead to a

clear relationship between the response variable and the selected features and improve the

model prediction effectiveness by filtering out less-significant features. Many feature

selection methods such as forward selection, backward elimination, stepwise selection,

mixed integer optimization (MIO), Lasso regression, Ridge regression and a naive elastic

net regression are well known and deeply studied for linear regression ((Efroymson, 1960),

(Tibshirani, 1996), (Rejchel, 2016), (Bertsimas et al., 2016), (Park and Klabjan, 2017),

(Wu et al., 2018)). Bertsimas et al (Bertsimas et al., 2016) proposed a MIO model for

selecting the best fixed number p of features for linear regression models. Instead of fixing

the number of selected features, Park (Park and Klabjan, 2017) proposed an optimization
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model for picking the best subset of variables in terms of minimizing mean absolute error

(MAE) or mean squared error (MSE). Zhang (Zhang et al., 2018) proposed a mixed integer

nonlinear programming model for selecting the best subset of independent variables under

either count or budget constraints for linear regression.

Feature selection methods are much less studied in logistic regression. Sato (Sato et al.,

2016) proposed a Mixed Integer Optimization model. Lucadamo (Lucadamo and

Simonetti, 2011) proposed the Disco Coefficient method to identify the significant variables

for logistic regression. Bursac (Bursac et al., 2008) proposed a method called purposeful

selection of co-variates within which an analyst makes a variable selection decision at each

step of the modeling process. To the best of our knowledge, none of those existing studies

has considered budget constrained model selection in logistic regression, and most do not

guarantee an optimal choice of model.

3.2 Budget Constrained Logistic Regression Model

In linear regression, OLS is used for estimating the parameters by minimizing the sum of

squared errors. However, in logistic regression, least squares estimation is no longer

appropriate for parameters estimation (Friedman et al., 2010). Instead, maximum

likelihood estimation is used for estimating the parameters which best fit data. Let y

represent the response variable having values in (0, 1). The logistic regression model

constructs the conditional probability of y as a function of a linear combination of the

explanatory variables x through the logit transform function.

logit(πj) = log(
πj

1− πj
) = β0 + xTβ (1)
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πj =
1

1 + e−(β0+xT β)
(2)

where πj = P (y = 1|xj). With the logit transform, in other words, the log-odds of the

probability of (y = 1) is equal to the linear combination of explanatory variables. Unknown

parameters β0, β are estimated by using maximum likelihood which finds the estimations of

parameters by maximizing the probability they could have generated the observed data.

The joint conditional probability density function can be written as following

f(y|β) =
n∏
j=1

π
yj
j (1− πj)1−yj (3)

The joint conditional probability density function in (3) expresses the values of y as a

function of known values of β. The likelihood function has the same form as the

probability density function except that the parameters of functions are reversed: the

likelihood function expresses the values of β in terms of known values of y. Thus,

L(β|y) =
n∏
j=1

π
yj
j (1− πj)1−yj (4)

The maximum likelihood finds the estimate of β which maximizes the likelihood function

(4). By taking the first derivative of the likelihood function, we get the critical points

which can be either maxima or minima. If the second derivative at that point is less than

zero, then the critical point becomes a maximum. Thus, in order to find the maximum

likelihood estimate of β, we need to take the first and second derivatives of the likelihood

function. Taking the derivative of (4) is not easy due to the complexity of multiplicative

terms. Actually for logistic regression, there is no closed form solution for MLE

27



parameters. Since the logarithm is a monotonic function, any maximum of the likelihood

function will be a maximum of the log likelihood function as well. After taking the natural

log on both sides of function (4), it becomes

`(β|y) =
N∑
j=1

yjlogπj +
N∑
j=1

(1− yj)log(1− πj)

=
N∑
j=1

log(1− πj) +
N∑
j=1

yilog
πi

1− πi

=
N∑
j=1

log(1− πj) +
N∑
j=1

yi(β0 + xTβ)

=
N∑
j=1

−log(1 + eβ0+xT β) +
N∑
j=1

yj(β0 + xTβ) (5)

We proposed a constrained linear regression model for selecting the best combination of

independent variables within either count or budget constraints ((Zhang et al., 2018)). The

objective function is defined as minimizing the sum of the squares of the differences

between the observed dependent variable (values of the variable being predicted) in the

given data set and those predicted by the linear function. To be comparable to the linear

regression model, instead of maximizing function (5), we minimize the negative log

conditional likelihood. After adding both budget and count of predictors constraints, the

constrained logistic regression model becomes
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min
N∑
j=1

log(1 + eβ0+xT β)−
N∑
j=1

yj(β0 + xTβ)

s.t.

p∑
i=1

ci · I(βi 6=0) ≤ B

p∑
i=1

I(βi 6=0) ≤ K

(β0, β) ∈ Rp+1. (6)

Here, both budget and count of predictors constraints take the same form as our linear

regression model (Zhang et al., 2018). The same transformation of the constraints using a

constant ”big-M” can be applied to obtain the appropriate model for the logistic case.

min
N∑
j=1

log(1 + eβ0+xT β)−
N∑
j=1

yj(β0 + xTβ)

s.t. βi = si+ − si−,∀i ∈ 1, . . . p

si+ ≤M · qi,∀i ∈ 1, . . . p

si− ≤M · qi,∀i ∈ 1, . . . p

p∑
i=1

ci · qi ≤ B (Budget constraint)

p∑
i=1

qi ≤ K (Number of variables constraint)

si+ ≥ 0, si− ≥ 0, ∀i ∈ 1, . . . p

(β0, β) ∈ Rp+1

qi = 0 or 1,∀i ∈ 1, . . . p. (CLOGREG)
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3.3 Tractability of MINLP

The above constrained logistic regression model (CLOGREG) can be solved to global

optimum by branch and bound if its continuous NLP relaxation is a convex program.

The continuous NLP relaxations of the budget constrained regression CLOGREG have the

same forms constraints as the full CLOGREG except the binary constraints qi = 0 or 1 are

replaced by 1 ≥ qi ≥ 0. All other constraints are linear, and the relaxation of qi constraints

is also linear. This assures that all constraints of the relaxed NLP model are linear and

thus convex. What remains for the NLP relaxation to be a convex program is whether or

not its objective function is convex for this minimization problem.

min
N∑
j=1

log(1 + eβ0+xT β)−
N∑
j=1

yj(β0 + xTβ)

Expression yj(β0 + xTβ) is linear in β0, β. Hence, it is a concave function and

−yj(β0 + xTβ) is thus convex. Exponential e(β0+xT β) is a convex function of β0, β, and

log(x) is a non-decreasing single value function and thus convex. Finally since the

non-negative weighted sum of convex functions is also convex, the full objective function of

logistic regression model is convex. We may conclude that the full NLP relaxation of

constrained logistic regression model (CLOGREG) is also a convex program. The

convexity of the model guarantees branch and bound methods can (at least in principle)

produce a global optimum to the MINLP(CLOGREG).

3.4 Value of Big-M

The value of Big-M in the above CLOGREG needs to be chosen carefully. First, M needs

to be larger than max{|βi| i = 1, . . . p}. If M is smaller than any estimated coefficient
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{|βi| i = 1, . . . p}, then possible feasible solutions might be cutoff. On the other hand, if M

is too big, the model may become numerically difficult to solve because bounds from

continuous relaxations will be weak.

This issue can be addressed for the linear regression case by standardizing all predictor

variables with their mean 0 and standard deviation 1 so that M = 1 suffices for all

constraints of the MINLP (Zhang et al., 2018). The issue is much more complex for logistic

regression, but this research will seek to find a suitable standardization permitting smaller

values of M. Sections 3.4.1 and 3.4.2 describe methods to be considered.

3.4.1 Standardized Logistic Regression Coefficients

Menard (Menard, 2004) reviewed six different approaches for standardizing the logistic

regression coefficients. Table 3.1 shows the explanation of all six. The first approach is

dividing each unstandardized coefficient by its estimated standard deviation which was

proposed by Goodman (Goodman, 1972). The second method suggested by Agresti

(Agresti, 1996) and Menard (Menard, 2002) is to standardize only the predictors. The third

approach proposed by Menard (Menard, 2002) is currently implemented in SAS statistical

software. This procedure is to standardize both the predictors and the dependent variable.

However, the same variance π√
3

is assumed for every dependent variable in every model

while standardizing the dependent variable. The fourth approach was proposed by Long

(Scott Long, 1997). The only difference between the third and fourth procedure is that

π√
3

+ 1 is assumed as the constant variance of the dependent variable instead of π√
3
. All of

those four approaches are classified as partially standardized logistic regression coefficients

since none of them really considers the empirical variation of the dependent variable.

The final two methods in Table 3.1 are variance-based fully standardized coefficients and

information theoretic fully standardized coefficients proposed by Menard (Menard, 2002)

and Soofi (Soofi, 1992) by taking into account the actual variation of the depend variable

as well as the predictors.The information theoretic fully standardized coefficients is derived
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Table 3.1: Standardized Logistic Regression Coefficients

Coefficients Description Type

β?G Standardize coefficients by dividing its std (Goodman) Partial

β?A Standardize predictors only (Agresti, Menard) Partial

β?S Standard logistic distribution (SAS) Partial

β?L Standard logistic and normal distribution (Long) Partial

β?M Variance-based fully standardized coefficients (Menard) Fully

β?I Information theoretic fully standardized coefficients (Soofi) Fully

from information theory through measuring the direct contribution of each predictor to the

explained variance in the dependent variable. Menard (Menard, 2004) pointed out that the

information theoretic fully standardized coefficients may be the best from a conceptual

standpoint. But the practical application of this method is limited unless there is an

appropriate algorithm to simplify this calculation.

3.4.2 Estimation of Variance-based Fully Standardized Coefficients

This research uses preferred variance-based fully standardized coefficients to construct

needed big-M values. However, in the logistic regression, instead of directly modeling the

relationship between the binary variable Y and the predictors, we model the logit

transformed Y as the response variable. Therefore, in order to get the fully standardized

coefficient β?M , we must construct an appropriate estimation of the variance of logit(Y )

instead of Y . Since, the value of logit transformed Y is from negative infinity to positive

infinity, Menard (Menard, 2004) pointed out that it is impossible to directly calculate the

standard deviation of logit(Y ). However, it can be estimated indirectly by borrowing the

formula from OLS:

β? = (β)(
SX
SY

)
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R2 =
S2
Ŷ

S2
Y

⇒ SY =
SŶ√
R2

β? = (β)(SX)

√
R2

S ˆ(Y )

Where β is the estimate of unstandardized linear regression coefficient, SX is the sample

standard deviation of the predictors X, and SY is the sample standard deviation of

response variable Y . SŶ is the standard deviation of the predicted value of Y . In the

parallel fashion, the estimation of β?M for the logistic regression can be written as following,

βM
? = (β)(

SX
Slogit(Y )

)

R2 =
S2
logit(Ŷ

S2
logit(Y )

)⇒ Slogit(Y ) =
Slogit(Ŷ )√

R2

βM
? = (β)(SX)(

√
R2

Slogit(Ŷ )

)

(β)(SX) = (βM
?) ∗ (Slogit(Ŷ ))/

√
R2

Agresti (Agresti, 1996) proved that β?A = (β)(SX) can be easily obtained by standardizing
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only the predictors with mean 0 and variance 1. Menard (Menard, 2002) noted that the

magnitude of the variance-based fully standardized logistic regression coefficients tend to

be smaller than the magnitude of partially standardized coefficients. Especially, the

magnitude of β?M is between -1 and +1 as long as there is no collinearity existing in the

data set. Therefore, the value of β?A is between −Slogit(Ŷ )/
√
R2 and Slogit(Ŷ )/

√
R2. The

value of M can be picked as any positive value greater than Slogit(Ŷ )/
√
R2 which can be

obtained by fitting the non-constrained logistic regression.

3.5 Illustrative Computational Testing

In this section, we conduct illustrative computational experiments on real-world benchmark

data sets to illustrate the performance of the proposed logistic regression model with

constraints. All computational results in this section are performed using Knitro solver

through AMPL on a desktop equipped with Intel core 2.70 GHz CPU, 8.00GB usable

RAM and Microsoft Windows 7 Professional.

3.5.1 Data Introduction

A public benchmark data set is the default of credit card clients data set, obtained from

the UCI repository(Dheeru and Karra Taniskidou, 2017). It is used for computational

experiments. The entire data set is composed of 30000 observations, with one binary

variable indicating whether the payment will default, and 23 explanatory variables such as

the amount of the given credit in dollars, borrower gender, education, marital status, age,

past 9 months payment history, the amount of bill statement and the amount of previous

payment in dollars. In order to better investigate the performance of the proposed

optimization model with increasing number of variables as well as observations, we split

the entire data set into nine different subsets. The number of observations and variables in

each subset are shown in Table 3.2.
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Table 3.2: Credit Card Clients Data Sets Test for Selecting Three Explanatory Variables

Data set Vars Obervs Upper bound of |β| Obj(Mod) Obj(R) Mod CPU time (sec)

1 5 5000 2.667 2491.26 2491.26 0.42

2 5 10000 2.712 4926.31 4926.31 0.78

3 5 15000 2.704 7538.80 7538.80 1.26

4 10 5000 2.342 2279.77 2279.77 4.76

5 10 10000 2.338 4499.27 4502.59 6.71

6 10 15000 2.340 6828.17 6853.38 13.20

7 15 5000 2.808 2278.41 2283.20 18.78

8 15 10000 2.698 4497.75 4515.26 52.70

9 15 15000 2.512 6828.17 6841.83 89.47

Obj(Mod) is the objective of our proposed CLOGREG model, Obj(R) is the objective of back-
ward selection logistic regression model in statistical software R. The last three variables kept
by the backward selection procedure are picked as the best three variables in the R case.

3.5.2 Illustrative Testing for Fixed Numbers of Explanatory Variables

To begin we assume that the cost of each explanatory variable is the same and we can only

afford three of them. Our proposed CLOGREG model is tested on the nine different data

sets to pick the best combination of 3 variables which can help us better predict credit card

default payment. First, we standardized all of the explanatory variables with mean 0 and

standard deviation 1 (as explained in Section 3.4.1). Then we fitted the non-constrained

logistic regression model and saved the predicted value of Y from the logistic regression

model. Next we used the predicted value of Y to calculate R2 and variance of logit(Ŷ ).

Finally, the upper bound of absolute value of estimated coefficients were calculated using

formula Slogit(Ŷ )/
√
R2 and shown in Table 3.2. The value of M is set to three which is

greater than the absolute value of all estimated coefficients on the standardized explanatory

variables. For each model, the value of objective function of our proposed CLOGREG

model and R backward selection, model CPU time are also reported in Table 3.2.

From the comparison of objective value between our proposed CLOGREG model and R

backward selection model, we can see that for the smaller data sets backward selection

method in R is able to pick the best combination of three variables, but when numbers of
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Table 3.3: Variable Selection Results

Variable Sequence of Selected Variables

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

x1 ? ? ? ? ? ? ? ? ?

x2 ? ? ? ?

x3 ?

x4 ? ?

x5 ? ? ? ? ? ? ?

x6 ? ? ? ? ? ? ? ? ? ?

x7 ? ? ? ? ? ? ? ?

x8 ? ? ? ? ?

x9 ? ? ? ? ? ?

x10 ? ? ?

Objective 4562.6 4517.85 4499.27 4484.12 4476.99 4472.23 4468.61 4465.28 4462.04 4458.9

variables and observations increase, the backward selection method as one of heuristic

one-step-ahead search algorithms tends to follow a wrong path and get stuck in a

suboptimal area of the solution space. There is no guarantee that the best set of variables

will be selected. From the CPU run time of nine data sets, we can see that the run time of

our proposed model is more sensitive to the increment of number of variables compared

with number of observations.

To further investigate the significance of each explanatory variable in terms of predicting

credit card default payment, we construct the variable selection sequences using our

proposed optimization model by selecting 1, 2,... up to all explanatory variables on data

sets 5 through 10 variables and 10,000 observations. The results are shown in Table 3.3.

From Table 3.3, we can see that variable x6 is the ”most significant”variable in terms of

predicting credit card default payment, then variable x1 and the ”least significant” variable

is x3. Also, the objective function (quality) of the fit improves each time more variables are

allowed.
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Table 3.4: Variable Selection Results under Different Budget Limits

Variable Cost ($) Budget limits B ($)

300 900 1200 1500

X1 500 ? ?

X2 250

X3 100

X4 150 ? ?

X5 400

X6 550 ? ? ?

X7 450

X8 300 ? ? ?

X9 350

X10 200

Objective value 4819.98 4535.64 4508.01 4490.5

Budget usage 300 850 1200 1500

3.5.3 Illustrative Testing with Varying Prices and Budgets for Data Items

The cost was assumed to be the same for each variable in the above analysis. In reality,

that may not be the case. Hence, differing synthetic costs for each variable in data set 5

(see Table 3.4) are considered in the next analysis. We consider budget limits varying from

B = $300 to B = $1500 in Table 3.4. Under different budget limits, the selected

combination of variables, the objective values and the corresponding budget utilization for

data set 5 are shown.

From Table 3.4, we can see that the best variable x6 with cost $550 is no longer selected

when we have only $300 budget. The objective value obtained by the selected variable x8

within the budget limit is worse than the objective value obtained by variable x6 which we

cannot afford anymore. However, variable x6 is added to the model immediately as long as

the budget is greater than $550. There are also more variables selected when more budget

is available.The objective value is further reduced as well.

What happens when data sources become more expensive? To illustrate, we tested new
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Table 3.5: Variable Selection Results at 30% Increment of Cost of Each Variable

Variable Cost ($) Budget limits ($)

300 900 1200 1500

X1 650 ?

X2 325 ?

X3 130 ?

X4 195

X5 520

X6 715 ? ? ?

X7 585

X8 390 ?

X9 455

X10 260 ?

Objective value 5085.38 4562.47 4535.64 4517.22

Budget usage 260 845 1105 1495

scenarios by increasing the cost of each variable by 30%. The variable selection results are

shown in Table 3.5. As the variables become more expensive, under the same budget

limits, fewer and ”less significant” variables can be afforded by the optimization model.

The objective value of the optimization model becomes greater. A valuable benefit of being

able to test such optimization scenarios could be to provide decision makers with

information about the budget required for good results.

3.5.4 Illustrative Testing with Akaike and Bayesian Information Criterions for

Over-fitting

The objective function of proposed CLOGREG model is minimizing the negative

maximum log-likelihood function. It selects as many explanatory variables as it can as long

as the budget allows. What happens if we have more than enough budget? We might end

up building an unnecessarily complicated model, which has too many parameters to be

estimated accurately on a given training data set. That potentially causes an over-fitting
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problem. The over-fitted model tends to memorize training data and therefore fail to fit

additional data or predict unseen data unreliably.

Two most commonly used model selection criteria to address this challenge are the Akaike

Information Criterion (AIC) and the Bayesian Information Criterion (BIC). The AIC and

BIC are computed as follows (Fabozzi et al., 2014):

AIC = −2logL(β̂) + 2k

BIC = −2logL(β̂) + klog(n)

where

β̂ = the parameter values that maximize the likelihood function

L(β̂) = the maximized value of the likelihood function of the candidate model

k = the number of parameters estimated by the model(p+ 1)

n = the number of observations

The first component of both AIC and BIC is the log-likelihood function multiplied by -2.

Ignoring the second component, the model with the minimum AIC or BIC is the one which

maximizes the log-likelihood. However, a penalty term based on the number of estimated

parameters is added to the first component for both AIC or BIC. The more parameters,

the larger the penalty that will be added to the first component, increasing the value of

either AIC or BIC. A difference between the AIC and BIC is that the larger penalty term

imposed for number of parameters is added to BIC as compared to AIC. Also BIC as
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presented here is a function of n observations that do not affect AIC as presented here.

In order to overcome the over-fitting problem and at the same time consider the budget

limit, we can adjust the proposed CLOGREG model by changing the objective function

from minimizing the negative log-likelihood function to minimize either the AIC or the

BIC value. The adjusted objective functions for both AIC and BIC are defined as follows:

min 2(
N∑
j=1

log(1 + eβ0+xT β)−
N∑
j=1

yj(β0 + xTβ)) + 2(

p∑
i=1

qi + 1) (AIC)

min 2(
N∑
j=1

log(1 + eβ0+xT β)−
N∑
j=1

yj(β0 + xTβ)) + (

p∑
i=1

qi + 1)logn (BIC)

The continuous NLP relaxations of adjusted AIC and BIC objective functions replace the

binary variables qi = 0 or 1 by 1 ≥ qi ≥ 0. The expressions of both penalty terms are linear

and thus convex. Since all the constraints are still the same, the convexity of the adjusted

MINLP(CLOGREG) guarantees that branch and bound methods can still produce a global

optimum.

Suppose we have $3500 budget which can cover the cost of all ten variables in data set 5.

By applying the updated optimization models on data set 5, the selected variables,

objective value and budget utilization are as shown in Table 3.6.

From the results in Table 3.6, we can see that AIC model selects all ten variables while the

BIC model only selects six out of ten variables even though we have enough budget to

cover each of the ten variables. The reason for AIC model selecting each of ten variables

covered by budget is that the reduction in the first component is always greater than the
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Table 3.6: Variable Selection Results based on AIC and BIC Values

Variable Cost ($) Budget: 3500 ($)

AIC BIC

X1 500 ? ?

X2 250 ?

X3 100 ?

X4 150 ?

X5 400 ? ?

X6 550 ? ?

X7 450 ? ?

X8 300 ? ?

X9 350 ? ?

X10 200 ?

Objective value 8939.8 9008.9

Budget usage 3250 2550

penalty imposed by adding more parameters. However, for the BIC model, since there is

greater penalty imposed for the number of parameters, the minimum BIC value is achieved

by selecting the best six out of ten variables. If we select each of the ten variables, the BIC

value would be increased from 9008.9 to 9019.1.

3.6 Conclusions and Extensions

One-step-ahead variable selection procedures, forward, backward and stepwise methods are

commonly used for variable selection in logistic regression. However, as discussed in

Section 3.5.2, the one-step-ahead variable selection has no way to control the exact count of

variables to be selected. Moreover, all three of these variable selection methods are

heuristic algorithms, sometimes following a wrong path and getting stuck in a suboptimal

solution; there is no guarantee that the best set of variables will be selected in terms of

minimizing the objective function even if the only limit is variable count. To our best

knowledge, the more complicated task of choosing an optimal subset of variables under a
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budget constraint has not been addressed in any other journal paper even though such

budget constraints are part of many data analytic environments.

� In this paper, we have investigated constrained logistic regression models that add

constraints for a budget limit or a count limit to the logistic regression task. The

proposed model is able to select the best set of variables without violating the budget

or count limitation.

� Illustrative computational experiments on realistic data sets have been conducted to

investigate the performance of the proposed approach. The computational results

indicate that the proposed optimization model is able to select the best choice for an

exact number of variables in a modest time, and that these results frequently

out-perform standard heuristic methods in terms of minimizing the negative

log-likelihood function.

� Studies varying prices of variables and/or budget limits also demonstrate the new,

optimization-based insights that can be available for data analysis about what data

sources to consider and how large a budget is needed to obtain satisfactory forecasts.

� Further study adjusting the objective function to minimize the BIC value instead of

negative log-likelihood function proves that the new optimization model reduces the

risk of over-fitting by introducing a penalty term to the objective function which

grows with the number of parameters.

From the results in Table 3.2 of computational experiments in Section 3.5.2, we also notice

that the time for solving the model increases rapidly with the number of variables. One

natural extension of the current optimization approach is to exploit advanced integer

programming techniques such as adding appropriate cutting planes to speed up the

optimization model. The result would permit us to solve bigger data instances.

Computation may also be reduced by starting the branch and bound with a strong starting

solution.
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In this paper, we are focused on adding constraints to the logistic regression model.

Logistic regression models are used when the response variable has binary values. If the

response variable is categorical with more than two values, multinomial or ordinal

regression along with other machine learning techniques need to be considered. Extending

the proposed optimization model to other Generalized Linear Models could be another

useful step to pursue.
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4. Computational Enhancements to Accelerate Budget Constrained Regression

Model Selection by Mixed Integer Nonlinear Programming

4.1 Introduction

Branch and bound methods to solve the MINLP’s developed in Chapters 2 and 3 over only

a few predictor variables can compute exact optimal solutions in at most a few seconds.

However, to deal with larger data sets, enhancements in branch and bound methods will be

required. In this investigation, two classes of such enhancements are proposed, cutting

planes and warm starts to strengthen continuous relaxations and speed branch and bound

convergence. Computational experiments on five different data sets under different budget

limits are conducted to illustrate their effectiveness.

The work will focus on the optimization model of Chapter 2 for budget constrained

multiple linear regression is defined as the following mixed-integer nonlinear programming

(CLREG):

min (
n∑
j=1

(yj − β0 − xTβ)2

s.t. βi = si+ − si−,∀i ∈ 1, . . . p

si+ ≤ 1 ∗ ·qi,∀i ∈ 1, . . . p

si− ≤ 1 ∗ ·qi,∀i ∈ 1, . . . p

p∑
i=1

ci · qi ≤ B (Budget constraint)

si+ ≥ 0, si− ≥ 0, ∀i ∈ 1, . . . p

(β0, β) ∈ Rp+1

qi = 0 or 1, ∀i ∈ 1, . . . p. (CLREG)

Where, β0 is the estimated constant term and βi, i = 1, . . . , p are estimated coefficients of
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the predictors. si+, si− are non-negative deviation variables. Here, si+, si− cannot be both

equal to 0 if |βi| 6= 0. qi, i = 1, . . . p are binary variables. Two sets of “Big-M” constraints

guarantee qi = 1 when |βi| 6= 0, otherwise qi = 0. The value of M is replaced by 1 after

standardizing both response variable and predictors with mean = 0 and standard deviation

= 1.

4.2 Cutting Plane Enhancements

Cutting plane methods have been a very popular tool for solving larger integer/mixed

integer programming (IP/MIP) models in recent years. The fundamental idea of cutting

plane technique is to find inequalities that are valid (satisfied) for all feasible solutions to

the underling IPs and MIPs but violated by some solutions to continuous relaxations.

Including such cuts in the MINLP model sharpens the approximation provided by its

continuous relaxation and thus improves bounds on integer solution values and makes

integer-feasible solutions to the relaxations more likely.

There are general techniques for generating cutting planes for IPs and MIPs without

considering the problem structure. Examples are Gomory’s fractional cuts and rounding

cuts ((Gomory et al., 1958), (Gomory, 1960a), (Gomory, 1960b), (Gomory, 1963)), simple

disjunctive cuts ((Marchand, 1998), (Marchand and Wolsey, 2001)) and lift-and-project

cuts ((Balas et al., 1993), (Lovász and Schrijver, 1991), (Sherali and Adams, 1990)).

Indeed some such cutting planes are already available in the GUROBI solver which is going

to be used for solving MINLPs in this chapter.

However, the cutting planes created by the general techniques can be quite inefficient in

producing continuous relaxations that closely approximate the set of integer-feasible

solutions to any model of interest. The budget constraint in our proposed Multiple Linear

regression and Logistic regression optimization model has the exact same formulation as

0–1 knapsack problem – a single main constraint over binary decision variables. Here, ways

are considered to obtain stronger inequalities by using such “local” structure.
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4.2.1 Knapsacks and Minimal Cover Inequalities

Cover inequalities for 0–1 knapsack have been studied and used extensively in the

literature to derive valid inequalities for IP/MIP sets. Generalizations of cover

inequalities can be found in ((Balas, 1975), (Balas and Zemel, 1978), (Balas and Zemel,

1984), (Hammer et al., 1975), (Padberg, 1979), (Wolsey, 1975)) where the 0–1 knapsack set

with generalized upper bounds constraints, the 0–1 knapsack with precedence constraints

and the multiple 0–1 knapsack set are studied.

Consider the constraint set of a 0–1 knapsack problem

S = {x ∈ Bn :
∑
j∈N

ajxj ≤ b} (1)

Where N = {1, . . . , n}, aj ∈ Z1
+ for j ∈ N , and b ∈ Z1

+. In other words, x belongs to binary

sets {0, 1} and aj ≥ 0 and b ≥ 0, When aj > b implies that xj = 0 for all x ∈ S. Thus it is

assumed that aj ≤ b for all j ∈ N . The set C ⊆ N is a cover if

λ =
∑
j∈C

aj − b > 0 (2)

The cover C is minimal if aj ≥ λ for all j ∈ C.

Proposition 4.2.1. ((Nemhauser and Wolsey, 1988)) If C ⊆ N is a minimal cover, then

∑
j∈C

xj ≤ |C| − 1 (3)

is a valid inequality for S.

The extension E(C) of a minimal cover set C is the set C ∪ {k ∈ N\C : ak ≥ aj for all

j ∈ C}.
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Proposition 4.2.2. If C is a minimal cover, then

∑
j∈E(C)

xj ≤ |C| − 1 (4)

is a valid inequality for S.

Example 4.2.1. Consider the budget constraint in the multiple linear regression model

S = {x ∈ B8 : 100x1 + 200x2 + 250x3 + 100x4 + 150x5 + 300x6 + 400x7 + 350x8 ≤ 600}

C = {1, 2, 3, 4} is a minimal cover for S because the sum of corresponding budget

coefficients exceeds the limit, but removing any one leaves a subset that conforms to the

budget. The corresponding minimal cover inequality

x1 + x2 + x3 + x4 ≤ 3

The extension E(C) of this minimal cover set C includes all other variables with knapsack

coefficients as large as any in C to obtain E(C) = C ∪ {6, 7, 8} and inequality.

x1 + x2 + x3 + x4 + x6 + x7 + x8 ≤ 3

is a valid inequality for S.

4.2.2 Method for Generating Minimal Cover Inequalities

All extended minimal cover inequalities are generated and added at the root node to

strengthen the constrained multiple linear regression models (CLREG). For a large data set

with many predictor variables available, it is challenging to find them all since there are

generally an enormous number of such constraints. The following simple example

illustrates how all the possible minimal cover inequalities are found.
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Table 4.1: Minimal Cover Inequalities Generation

Variable Cost ($) MinCover1 MinCover2 MinCover3

X1 1000 ?

X2 900 ? ?

X3 800 ? ?

X4 700 ?

X5 600 ?

Total Cost 1900 1700 2100

Example 4.2.2. Suppose there is a data set which includes five predictor variables, X1 to

X5. The cost for buying all those five variables is $4000. And there is only $1500 budget

to spend. First all the predictors are ranked from high to low based on their costs, see

Table 4.1. Secondly a valid minimal cover inequality is generated starting with the most

expensive variables (MinCover1), lastly sequentially exclude the most expensive variable

from the current minimal cover inequality and pick next expensive variables which are not

included in the current inequality to generate another minimal cover inequality

(MinCover2, MinCover3).

X1 +X2 ≤ 1 (MinCover1)

X2 +X3 ≤ 1 (MinCover2)

X3 +X4 +X5 ≤ 2 (MinCover3)

According to Proposition 4.2.2, MinCover2 can be extended by including variable X1 with

the cost that is higher than any variable in MinCover2. MinCover3 can be extended by

including both variables X1 and X2 for the same reason. And the extended MinCover2

inequality dominates both MinCover1 and MinCover2 inequalities. Therefore, finally

generated minimal cover inequalities are as following,
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X1 +X2 +X3 ≤ 1 (MinCover2 Extension)

X1 +X2 +X3 +X4 +X5 ≤ 2 (MinCover3 Extension)

A similar routine will be followed while generating the minimal cover inequalities for a large

data set. Those minimal cover inequalities cutting planes will be tested on different real

data sets to evaluate whether including them has produced enough gains to be valuable.

4.3 Warm Starts for Constrained Linear Regression Models

The heart of any branch and bound search of an MINLP is comparing bounds computed

from continuous relaxations to the objective value of the best known feasible solution to

the full mixed-integer model. Having good feasible solutions, and finding them as quickly

as possible, can be extremely valuable in the MIP search for lots of reasons. The better the

objective value of a feasible solution, the more likely it is that the value of continuous

relaxation will exceed it (in a minimization problem) and hence lead to a node being

fathomed. Convergence of the process can be greatly accelerated if good warm-start

feasible solutions are available. The second part of MINLP enhancement research in this

chapter is to investigate and test different methods to produce such good feasible solutions

as warm starts.

4.3.1 Processing Non-Integer Solutions as Knapsack Problems Over the Budget

Constraint

The task of any such heuristic is to select which binary variables to make =1 (and thus

which predictor variables to be included in the solution) while satisfying budget

constraints. Focusing on the budget constraint, the task is to solve, at least approximately,

a binary knapsack problem like the following to find a good feasible solution.
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max
∑
i

viqi

s.t.
∑
i

ciqi ≤ Budget (Budget Constraint)

qi = 0 or 1, for every i.

Here vi is some measure of the contribution to the overall regression solution of including

predictor i in the warm start. For a smaller instance, this warm start knapsack problem

can be solved exactly to the optimal. However for instances with relatively many candidate

predictors, it will be preferable to only approximately solve the above knapsack after each

continuous relaxations.There are two standard heuristic methods for approaching binary

knapsacks. One is greedy algorithm by adding the remaining qi = 1 with max vi as long as

budget permits. The other is to use “bang for buck” ratio vi/ci to rank variables i,

iteratively fixing qi = 1 in decreasing ratio sequence until the budget is filled, and taking

the rest of the qi = 0. Based on the number of candidate predictors that the testing data

set has, either exact or approximate method will be used for solving warm start knapsack

problems.

4.3.2 Continuous Relaxation Solutions as the Starting Point

A natural starting point for heuristics to produce good feasible solutions will be the

continuous relaxation optima produced at at every iteration of branch and bound. Any

such relaxation will produce relaxation optimal values {q̄i : i = 1, . . . , p} for the binary

variables associated with each predictor variable. Of course if all such q̄i are binary, the

relaxation optimum is already feasible for the full model. But in the usual case where some

or all of them are fractional, a heuristic is needed to choose which should be made =1 and

which =0 in order to obtain a good feasible solution.
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Table 4.2: Continuous Relaxation Solutions

Variable Description Variable Cost ($) (ci) q̄i
q̄i
ci

Cylinders 300 0.19 0.000638

Displacement 350 0.22 0.000640

Horsepower 100 0.34 0.003382

Weight 600 0.78 0.001292

Acceleration 200 0.19 0.000935

Model year 450 0.40 0.000881

Example 4.3.1. The data set used for this example is obtained from UCI

repository((Dheeru and Karra Taniskidou, 2017)). The the original data set includes one

response variable (consumption in miles per gallon), three multivalued discrete and five

continuous predictors, and 392 observations after removing the missing values. In this

example, six out of eight predictor variables are selected along with $1000 budget limit to

illustrate how the two proposed heuristics methods in Section 4.3.1 can be used to find a

good warm start based on continuous relaxation solutions. We first solve a continuous NLP

problem formed by relaxing the binary constraints of discrete decision variable qi in the

CLREG model for the root node of B&B. Variable description, variable cost, continuous

relaxation solution q̄i, and ratio between continuous relaxation q̄i and cost ci are shown in

Table 4.2.

The steps of the greedy algorithm to find a good warm start are: (1) sort the variables by

q̄i in descending order and (2) taking each j in turn, set the qi = 1 if the corresponding cost

fits within the remaining budget and qi = 0 otherwise. The variables picked by this greedy

algorithm are weight, horsepower and cylinders. The objective value of original CLREG

model is 114.308 for the solution obtained by picking those three variables. Similar steps

are followed to find a good warm start using the “bang for buck” algorithm. The only

difference is sorting the variables based on q̄i
ci

instead of q̄i. The variables picked by “bang

for buck” algorithm are horsepower, weight, and acceleration. The objective value of

original CLREG model is 114.807. The greedy algorithm outperforms the “bang for buck”
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algorithm in terms of the objective value minimization for this specific example.

4.3.3 Unconstrained Statistical Solutions as the Starting Point

In above warm start knapsack problem, vi is defined as some measure of the contribution

to the overall regression solution of including predictor i in the warm start. The

non-constrained linear multiple regression describes the statistical relationship between

predictor variables and the response variable. The p-value in linear regression output tests

the null hypothesis that the estimated coefficient is equal to zero (no effect). A predictor

that has a low p-value is likely to make a significant contribution to the regression model.

Conversely, a larger p-value means that the predictors have no impact in the response.

When p-value is very small, most statistical software tends to report the range value such

as p-value <0.0002 instead of the exact value of p-value. However, the vi measurement of

contribution needs an exact value instead of range value. There is another metric called

t-value reported in the regression analysis output. And p-value and t-value are inextricably

linked as p-value is calculated from a t-test. The greater the magnitude of t-value (it can

be either positive or negative), the smaller the p-value, and the greater the evidence that

the predictor is highly important to the regression model. Therefore, the absolute t-value

can be used as one of the choices for vi in the warm start knapsack problem.

In linear regression statistical analysis, partial R2 is another important metric for

measuring the mutual relationship between response variable and explanatory variable xi

when other variables xj(j 6= i) are held constant. The partial R2 is very useful in multiple

linear regression, where it allows to directly estimate the proportion of unexplained

variation of y that becomes explained with the addition of variable xi to the model.

Therefore, it can be used as another option of vi in the warm start knapsack problem.

Both the absolute t-value and the partial R2 value were obtained by fitting non constrained

linear regression model in statistical software R. After that the warm start knapsack

problem will be run with vi replaced by either absolute t-value or partial R2. Exact
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method is used for small data sets and two proposed heuristics methods in section 4.3.1 are

used for large data sets to find a good feasible solution as a warm start.

4.4 Computational Experience

In this section, computational experiments are conducted on five real-world benchmark

data sets to investigate the performance of the proposed knapsack cutting planes and warm

starts methods. Computational results are reported in detail. All computational

experiments in this chapter are performed using AMPL software with GUROBI solver on a

desktop equipped with Intel core 2.70 GHz CPU, 8.00GB usable RAM and Microsoft

Windows 7 Professional.

4.4.1 Real World Data Sets

Five benchmark databases, obtained from UCI repository((Dheeru and Karra Taniskidou,

2017)), are used for computational experiments. The descriptions of the five real-world

benchmark data sets for budget constrained multiple linear regression are listed in Table

4.3. The first and fourth data sets are generated from Communities and Crime Data Set.

The original data set includes 128 variables. 52 of them are selected for data set one and 99

variables are selected for data set four. The second and third data sets are generated from

Residential Building Data Set. The original data set includes 105 variables. 52 of them are

selected for both data sets two and three. The difference between data set two and three is

the response variable. One is about the selling price and another one is about the

construction cost. Data set five is generated from Blog Feedback Data Set. The original

data set includes 281 variables and 60021 observations. 99 variables and 5000 observations

are selected from the original data set for data set five. All the original data sets have no

cost assigned for each variable. Therefore, we arbitrarily assigned a cost for each variable

we picked. For the first three data sets, the cost of the selected variable starts with $50,

then is increased by $50, and ends up with $2600 as the highest cost. For the fifth and sixth
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Table 4.3: Descriptions of Real-world Data Sets

Data set Predictors Observations Description of response variable

1 52 1994 Total number of violent crimes per 100K population

2 52 372 Actual sales prices

3 52 372 Actual construction costs

4 99 1994 Total number of violent crimes per 100K population

5 99 5000 The number of comments in the next 24 hours

data sets, the cost of selected variables starts with $200, then is increased by $100, and

ends up with $10000 as the highest cost. Budget limits are set at 15%, 25%, 50%, and 75%

of total costs of all variables. These different budget limits cover the cost of few variables

to the most variables which can give us a broader picture of the performance evaluation.

4.4.2 Computational Experiments on Cutting Planes

In this section, we compare the time spent for solving the MINLP models with vs. without

minimal cover inequalities (knapsack cuts) on the five real-world data sets of Table 4.3

given budgets to cover 15%, 25%, 50%, and 75% of total costs. The method proposed in

Section 4.2.2 is used to generate all possible knapsack cuts for five data sets under different

budget costs. The computational results are reported in Table 4.4.

From Table 4.4, we have the following observations.

� For most experiments on the five data sets, adding knapsack cuts helped reduce the

time for solving the MINLP models by 20% to 40%.

� For most experiments on the five data sets, the time for solving the MINLP models is

not as dramatically reduced by adding the knapsack cutting planes as might be

expected. One reason is that there are many cutting planes already included in

GUROBI solver. The solver adds all those cutting planes in the solution process to

tighten the formulation by removing undesirable fractional solutions. And there is no

option to turn off all those existing cutting planes implemented by the solver.
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Table 4.4: Solution Time with Knapsack Cutting Planes

Budget Knapsack Cuts CPU time (sec)

k% Dataset1 Dataset2 Dataset3 Dataset4 Dataset5

15% No 22 4 8 28113 53

Yes 18 3 4 25107 32

% improve 18% 32% 45% 11% 39%

25% No 102 52 119 99313 3563

Yes 85 52 91 93527 2365

% improve 16% 0% 24% 6% 34%

50% No 430 210 41 47974 3977

Yes 425 154 19 43684 2427

% improve 1% 26% 54% 9% 39%

75% No 82 40 8 17373 2373

Yes 47 16 6 15401 1234

% improve 43% 61% 24% 11% 48%

4.4.3 Computational Experiments on Warm Start Methods

In this section, we solve warm start knapsack problems by replacing vi with continuous

relaxation value and two statistical solutions proposed in Sections 4.3.2 and 4.3.3. The

computational results in terms of percentage by which the warm start solution exceeded

the optimal the objective value are reported on five real-world data sets under different

budget limits in Table 4.5.

From Table 4.5, we have the following observations.

� For most experiments on five real data sets, the warm starts generated based on

partial R square value and the ratio between partial R square and the corresponding

cost yields better results than other methods in terms of minimizing the objective

starting solution value .

� For most experiments on five real data sets, the continuous relaxation value of the

binary variables qi does not provide a good warm start as compared to the other

methods.

� For most experiments on five real data sets, the warm starts generated based on the
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Table 4.5: Test Results of Objective Value Improvement on Warm Starts

Budget Data set Percent Deviation from Optimal Value (%)

k% q̄i
q̄i
ci

|ti| |ti|
ci

R2
p

R2
p

ci

15% 1 13.12 31.45 12.54 54.35 1.30 1.07

2 28.64 17.94 77.80 48.32 34.24 27.09

3 116.46 111.46 25.40 20.30 9.63 10.40

4 35.80 28.65 14.65 22.00 4.03 4.03

5 22.64 31.55 0.55 0.54 1.10 1.10

25% 1 37.68 31.09 11.79 40.36 1.27 1.80

2 44.46 39.43 112.15 28.43 12.98 12.81

3 130.85 128.86 38.93 23.29 8.98 11.18

4 11.90 12.18 10.99 23.40 2.35 2.32

5 23.85 32.82 0.64 0.79 1.18 1.18

50% 1 6.19 9.74 6.22 6.76 1.98 2.68

2 35.61 35.61 7.57 16.01 6.71 6.18

3 134.09 134.47 1.57 4.97 4.89 4.59

4 13.68 13.68 4.81 5.41 2.01 2.10

5 17.36 17.30 0.13 0.47 0.04 0.08

75% 1 5.47 7.22 2.52 4.05 2.71 2.31

2 36.00 36.52 3.31 3.68 4.37 3.04

3 134.85 136.73 0.08 0.46 0.55 0.69

4 8.83 8.83 0.51 1.27 1.54 1.52

5 5.33 17.13 0.02 0.17 0.02 0.02

|ti| are better than continuous relaxation value of binary variable but worse than

partial R square value.

4.4.4 Solution Time Results with and without Cutting Planes and Warm Starts

In this section, instead of letting GUROBI solver automatically picks the starting points

while solving MINLP models using Branch and Bound (B&B) method, we choose the

feasible solutions produced by both partial R2 value and the ratio between partial R2 and

the corresponding cost as warm starts. Other than this, we also combine both knapsack

cutting planes and warm starts together to see whether or not we can further speed up the

solving process.

The time for solving the MINLP models on five real data sets using different enhancements
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is reported in Table 4.6. For completeness, some computational results in Table 4.4 are also

included in Table 4.6. Since knapsack cuts are generated manually using the proposed

method in Section 4.2.2, the time for generating those cuts is not included in Table 4.6.

Also, the time for solving the unconstrained statistical models and corresponding warm

start knapsack problems to find a good feasible solution is less than a second which can be

ignored compared to B&B solution time. Therefore, those times are also not included in

Table 4.6.

In Table 4.6, “NN” means no cutting planes no warm starts, “Y N” means with cutting

planes no warm starts, “NYPR2” means no cutting planes with warm starts based on

partial R2, “NYPR2 Ratio” means no cutting planes with warm starts based on the ratio

between partial R2 and cost, “Y YPR2”and “Y YPR2 Ratio” means with cutting planes and

two different types of warm starts.

From Table 4.6, we have the following observations.

� For all experiments on five real data sets, the time for solving MINLPs with knapsack

cutting planes added is smaller than the time without cutting planes added. Still, the

difference see in terms of percentage of time saved across most of experiments on five

data sets is only modest .

� For most experiments on five real data sets, using warm starts generated by either

partial R2 or partial R2 ratio help more dramatically to speed the MINLPs solving

process of the B&B algorithm. The larger the data set, the more time can be saved.

� For most of time, there is some gain by combining both knapsack cutting planes and

warm starts together especially for larger data sets.

4.5 Conclusions and Extensions

In this chapter, we conduct extensive computational experiments to validate the

performances of the proposed knapsack cutting planes and warm starts for solving the
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Table 4.6: Solution Time with and without Cutting Planes and Warm Starts

Budget Solution Type CPU time (sec)

k% Dataset1 Dataset2 Dataset3 Dataset4 Dataset5

15% NN 22 4 8 28113 53

YN 18 3 4 25107 32

NYPR2 18 3 8 9406 40

NYRP2 Ratio 18 6 7 9406 40

YYPR2 15 2 6 8025 27

YYPR2 Ratio 17 3 6 8025 27

25% NN 102 52 119 99313 3563

YN 85 52 91 93527 2365

NYPR2 79 55 101 19168 1682

NYRP2 Ratio 85 50 111 17314 1682

YYPR2 73 56 93 18074 907

YYPR2 Ratio 75 56 92 19803 907

50% NN 430 210 41 47974 3977

YN 425 154 19 43684 2427

NYPR2 346 208 22 7054 1578

NYRP2 Ratio 348 200 29 4463 1628

YYPR2 353 178 36 6112 1250

YYPR2 Ratio 375 148 21 4890 1248

75% NN 82 40 8 17373 2373

YN 47 16 6 15401 1234

NYPR2 53 41 7 5166 561

NYRP2 Ratio 52 30 6 4487 473

YYPR2 70 20 7 2636 132

YYPR2 Ratio 37 16 7 3093 202

budget constrained multiple linear regression model using B&B algorithm. Our major

findings are summarized below.

4.5.1 Conclusions

The most important results of the above research can be summarized as follows:

� Developed knapsack cutting planes techniques that can sharpen relaxations and

materially reduce B&B solution times.

� Developed warm start methods based on unconstrained statistical computation
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produced that can significantly greater B&B time improvements.

� Combined both methods together, to further improve the solving process and make

larger instances more possible to be solved to the optimality.

4.5.2 Extensions

Several directions for further extending this research are also suggested:

� Further refining the methods presented above to deal with even bigger instances. One

example is instead of adding all those knapsack cutting planes at the root node, the

opportunity of adding them during the solution process could be explored. This way,

would make sure constraints would be added only if they will help.

� In this chapter, our proposed enhancements were tested only on the constrained

multiple linear regression model. Another extension would adapt those enhancements

to be tested on budget constrained categorical regression and logistic techniques as

discussed in (Zhang et al., 2018).
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5. Conclusion and Future Research Directions

This dissertation has proposed and studied two budget-constrained regression models for

continuous and categorical variables respectively using Mixed Integer Nonlinear

Programming (MINLP) to select the best explanatory variables to be included in solutions.

Section 5.1 summarizes its contributions. Section 5.2 suggests some directions for future

research.

5.1 Summary of Contributions

As a variable or feature selection method, forward, backward and stepwise methods are

commonly used. The basic concept of those three methods is adding one variable at a time

to the model to minimize the sum of squared of errors or maximize the likelihood function

and dropping variables from the model if they are redundant. Therefore, there is no

guarantee that a truly best subset of features will be selected.

In recent years, along with hardware and algorithm improvements, different optimization

models have been implemented for solving variable selection problems. However, none of

those existing optimization models has considered budget constrained variable selection.

In this dissertation, two budget or count-constrained MINLP models for continuous and

categorical response variables respectively are proposed to choose an optimal subset of

variables to be included in the model. Two enhancements of the MINLP model for the

continuous response variable are also studied to speed up the optimization model solving

process using B&B algorithm. Specific contributions of this dissertation are summarized as

follows.

� We have proposed a budget or count-constrained regression model for a continuous

response variable using MINLP. One of the most commonly used data standardizing

methods has been implemented to reduce the value of big-M coefficients to 1 in the

formulation. Properties of constructed MINLP model such as solvability and global
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optimality have been studied.

� Computational experiments on the realistic retail store data sets have been conducted

to investigate the performance of the proposed MINLP model for continuous response

variable. The computational results indicate that, (i) our proposed MINLP model

outperforms the statistical software outputs in optimizing the objective function

under a limit on the number of explanatory variables selected, and (ii) our proposed

MINLP is shown to be capable of selecting the optimal combination of explanatory

variables under a budget limit covering the cost of acquiring data sets.

� We have also proposed a budget or count-constrained logistic regression model for

categorical response variables limited to the binary case. Different data standardizing

methods have been studied. Variance-based fully standardized coefficients method

has been implemented to reduce needed big-Ms in the MINLP formulation in order to

speed up the solving process.

� Computational experiments on nine realistic data sets indicate that our proposed

optimization model outperforms the standard heuristic methods in terms of

minimizing the negative log-likelihood function, especially for bigger data sets.

Studies varying prices of variables and budget limits demonstrate that our proposed

model can be used for deciding what data sources to consider and how large a budget

is needed to obtain satisfactory results.

� We have proposed to adjust the objective function of the logistic case to either AIC

or BIC value to overcome the over-fitting issue. The adjusted model is able to reduce

the risk of over-fitting by introducing a penalty term to the objective function which

grows along with the number of parameters.

� We have proposed and developed tools for cutting plane and warm start solutions as,

two types of enhancements to speed up the solving process of the MINLP model for a
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continuous response variable. Extensive computational experiments results indicate

that our two proposed enhancements significantly reduce the computational time,

especially for bigger data sets.

5.2 Future Research

In chapter 2, linear regression, also known as ordinary least squares (OLS) is the method

we used to build the objective function of our proposed budget constrained MINLP model.

There are some known weaknesses related to OLS algorithm such as sensitivity to outliers

and multicollinearity and prone to overfitting. To address these problems, several advanced

methods have been proposed by researchers, such as ridge regression, lasso regression, and

partial least squares regression (PLS). Therefore, the idea of incorporating our budget or

count limit constraint to lasso, ridge or PLS to overcome the weaknesses of OLS model and

at the same time select the best subset of variables within budget limit could be an

interesting area to explore.

In chapter 3, our proposed budget or count-constrained regression model for categorical

response variable is limited to the binary case. Categorical variable can be ordinal, nominal

or even count data. Different logistic regression models such as ordinal, nominal logistic

regression can be used to model the categorical responsible variable with more than two

discrete values. Poisson regression or alternatives to Poisson for example negative binomial

or zero-inflated models can be used to model count data. Combining the budget constraint

with all those different regression models, or the generalized linear model (GLM) could be

another interesting area for consideration.

In chapter 4, our two proposed enhancements are only developed and tested on the

constrained multiple linear regression model. One extension would adapt those

enhancements to be tested on budget constrained categorical regression models as well.
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Another potential extension is to further refine the two proposed enhancements to deal

with even bigger instances.
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