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Abstract

The Diederich-Fornæss Index has played a crucial role in studying regularity of the Bergman

projection on pseudoconvex domains in Sobolov spaces as is shown by Kohn, Harrington,

Pinton and Zampieri and others. In this work, we discuss the Diederich-Fornæss Index on

Hartogs domains, and its relation to other properties connected to regularity of the Bergman

projection. An upper and lower bound for the Diederich-Fornæss Index is calculated for Har-

togs domains and computed sharply for worm domains. Related conditions for the existence

of a strong Stein neighborhood basis for Hartogs domains are introduced.
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Chapter 1

Background Review

1.1 Introduction

A holomorphic function is a solution for the homogeneous Cauchy-Riemann equation ∂̄u = 0.

A central problem in the study of partial differential equations in several complex variables

is solving the inhomogeneous Cauchy-Riemann equation ∂̄u = f . If a solution exists, then

we will have many solutions. For any solution u ∈ L2, if we subtract from u its orthogonal

projection onto the kernel of ∂̄ we get the canonical solution. The orthogonal projection

from L2
(0,q)(Ω) onto ker ∂̄ is denoted by Pq, and it is called the Bergman projection. A

domain of holomorphy in Cn is a domain on which holomorphic functions cannot extend to

larger domain, for example a convex domain. It is known that ∂̄u = f admits a solution on a

domain of holomorphy whenever ∂̄f = 0. On a domain of holomorphy with smooth boundary,

if derivatives of all order of f extend continuously to the boundary, it is not necessary for

the canonical solution to have the same regularity, as we will see in our discussion of the

worm domain.

The Riemann mapping theorem says if U ⊂ C is a simply connected, proper, open

subset, then U is biholomorphic to the interior of the unit disc, i.e., there exists a bijective

holomorphic mapping with a holomorphic inverse defined from U to the interior of the unit

disc. This theorem is not correct in higher dimensions in general. For example, the unit ball

in n dimensions and the cross product of n unit disks are not biholomorphic for n > 1 (see

for example [7]).

Fefferman [14] proved that if we have two smooth bounded strictly pseudoconvex domains

D1 and D2 in Cn, and f : D1 → D2 is biholomorphic, then f extends smoothly to the

boundary. Bell and Ligocka [3] showed that the Fefferman theorem is also a consequence of

subelliptic estimates for the solution operator to ∂̄, which are known for strictly pseudoconvex

domains.
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A smooth bounded pseudoconvex domain is said to satisfy Condition R if the Bergman

projection P associated with Ω maps the set of smooth functions on Ω̄ into a set of functions

that is smooth on Ω̄ and holomorphic on Ω. If we have two smooth bounded pseudocon-

vex domains D1 and D2, at least one of them satisfying Condition R in Cn, n ≥ 2, and

f : D1 → D2 is biholomorphic, then f extends smoothly to the boundary [3]. This result is

a nuanced substitute for the Riemann mapping theorem in higher dimensions.

The importance of worm domains (see Definition 2.1.7), a class of smoothly bounded

pseudoconvex domains in C2, is due to the fact that they represent a counterexample to

Condition R, i.e., the Bergman projection operator P0 fails to be continuous on C∞(Ω̄), as

is shown in Christ [8] based on work of Barrett [1].

In 1977, Diederich and Fornæss [11] proved that for any bounded pseudoconvex domain Ω

with C2 boundary in a Stein manifold there exists a C2 defining function ρ on a neighborhood

U of Ω̄ such that ρ̂ = −(−ρ)τ is strictly plurisubharmonic on Ω for some 0 < τ < 1, where τ

is called a Diederich-Fornæss exponent. The Diederich-Fornæss Index of Ω is the supremum

of the Diederich-Fornæss exponents taken over all defining functions of Ω. Our interest in

Diederich-Fornæss exponents is due to the fact that Kohn [22], Harrington [18], and Pinton

and Zampieri [25] have shown that if the Diederich-Fornæss Index is equal to one with some

additional hypotheses, we get Condition R (global regularity).

Diederich and Fornæss [12] have shown that for the worm domain the Diederich-Fornæss

Index approaches zero when the winding number approaches infinity. Fornaess and Herbig

[15] have shown that the Diederich-Fornæss Index is equal to one for a smooth bounded pseu-

doconvex domain in Cn that admits a plurisubharmonic defining function on the boundary.

Condition R is known to hold on such domains by a result of Boas and Straube [4]. Since

the worm domain is a special case of a larger class of domains called Hartogs domains, we

will focus on studying Hartogs domains.

The presence of an annulus in the boundary of a Hartogs domain plays a crucial rule in

the study of the Diederich-Fornæss Index. Our primary innovation is to use the curvature
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term ∂2δ̃
∂w∂z̄

on the annulus in the boundary to compute an upper and lower bound for the

Diederich-Fornæss Index for Hartogs domains.

We denote the distance function from z to the boundary of Ω by δ(z) and the signed

distance function by δ̃ which is defined as follows

δ̃(z) =

 −δ(z) on Ω̄

δ(z) outside of Ω̄.

Theorem 1.1.1. Let Ω ⊂ C2 be a smooth Hartogs domain, and suppose that for some w ∈ C,

B > A > 0 and C > 0 the set M = {(z, w) : A < |z|2 < B} is in bΩ and
∣∣∣ ∂2δ̃
∂w∂z̄

∣∣∣ > C
|z| on M .

Assume there exists a smooth strictly positive function h on Ω̄ such that

σ = −h(−δ̃)τ

is plurisubharmonic on Ω, for some 0 < τ < 1. Then τ < π
2C ln B

A
+π
.

We also get a lower bound for the Diederich-Fornæss Index if we place an additional

hypothesis on the set of weakly pseudoconvex points.

Theorem 1.1.2. Let Ω be a smooth Hartogs domain, and suppose that for some B > A > 0

and C > 0 whenever the set M = {(z, w) : A ≤ |z|2 ≤ B} is in bΩ for some w ∈ C,

then
∣∣∣ ∂2δ̃
∂w∂z̄

∣∣∣ ≤ C
|z| on M . Moreover, let M1 = {weakly pseudoconvex point, such that ∂δ̃

∂z
= 0},

M2 = {weakly pseudoconvex points, such that ∂δ̃
∂z
6= 0}, and assume M1 ∩ M̄2 = ∅ and M1

has only finitely many connected components. Also, assume that for some τ, 0 < τ < 1 and

τ < π
2C ln B

A
+π
. Then there exists a smooth strictly positive function h on Ω̄ such that

σ = −h(−δ̃)τ

is plurisubharmonic on Ω.

If Ω is a worm domain, this allows us to recover a result of Liu [24].
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Corollary 1.1.1. Let Ωr be a worm domain defined as Ωr = {(z, w) : ρr(z, w) < 0}, and the

set of weakly pseudoconvex in bΩ is given by the annulus Mr = {(z, w) : 1 < |z| < r,w = 0}

for some r > 1. Then the Diederich-Fornæss Index is equal to π
ln r2+π

.

Remark 1.1.1. We use the original definition of the worm domain. Some recent papers,

including [24], choose a parametrization in which the annulus in the boundary is given by

Mβ = {(z, w) : −β +
π

2
≤ ln |z|2 ≤ β − π

2
, w = 0}

for β > π
2
. Under a rescaling with r = exp(β− π

2
), these two definitions are equivalent. There-

fore, the Diederich-Fornæss Index for the worm domain using the second parametrization is

π/2β, which is the same value computed by Liu [24].

Another sufficient condition for Condition R was introduced by Boas and Straube in

1991. If a domain has a good vector field for some defining function ρ, then the Bergman

projections Pq, 0 ≤ q ≤ n are continuous on the Sobolev space W s, s ≥ 0. See Chapter 2 for

the definition of Condition R.

On Hartogs domains, we have the following relationship between the Diederich-Fornæss

Index and the Boas and Straube condition.

Theorem 1.1.3. Let Ω be a smooth Hartogs domain in C2, and M1 = {weakly pseudoconvex

points, such that ∂δ̃
∂z

= 0}, and M2 = {weakly pseudoconvex points, such that ∂δ̃
∂z
6= 0}.

Assume M1 ∩ M̄2 = ∅, and M1 has only finitely many connected components. Then the

Diederich-Fornæss Index equals one if and only if there exists a family of good vector fields

on bΩ.

Our technique also sheds the light on the study of Stein neighborhood basis.

Definition 1.1.1. Let Ω be a domain in Cn. If for any open domain U containing Ω̄,

there exists a pseudoconvex domain Ωu such that Ω̄ ⊂ Ωu ⊂ U, then we say Ω̄ has a Stein

neighborhood basis.
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Zeytuncu [29] has shown that if the canonical solution to ∂̄u = f is regular on C∞(0,1)(Ω),

where Ω = {(z1, z2) ∈ C2, z1 ∈ D; |z2| < e−ψ(z1)}, D is a unit disc in C, and ψ is a smooth

bounded below subharmonic function on D, then Ω has a Stein neighborhood basis. A worm

domain does not have a Stein neighborhood basis when it has a sufficiently large winding

number. The following results introduce conditions under which the existence of a Stein

neighborhood basis is granted.

Theorem 1.1.4. (Bedford and Fornæss[2]). Let Ω be a smooth Hartogs domain, and suppose

that for some B > A > 0 and C > 0 the set M = {(z, w) : A < |z|2 < B, w ∈ C} is in bΩ

and ∣∣∣∣∣ ∂2δ̃

∂z∂w̄

∣∣∣∣∣ < π

2
√
A
∣∣logA

B

∣∣
when |z| =

√
A. Then a Stein neighborhood basis for Ω̄ exists. If

∣∣∣ ∂2δ̃
∂z∂w̄

∣∣∣ > π
2
√
A

∣∣log A
B

∣∣ when

|z| =
√
A then no Stein neighborhood basis exists.

Zeytuncu [30] has shown that the existence of a Stein neighborhood basis grants Condition

R. Combining Theorem 1.1.4 with our earlier result, we obtain:

Corollary 1.1.2. Let Ω be a smooth Hartogs domain in C2, and M1 = {weakly pseudoconvex

points, such that ∂δ̃
∂z

= 0}, and M2 = {weakly pseudoconvex points, such that ∂δ̃
∂z
6= 0}.

Assume M1 ∩ M̄2 = ∅, and M1 has finitely many connected components. If the Diederich-

Fornæss Index for Ω is equal 1, then Ω admits a Stein Neighborhood basis.

We can also generalize our results on the Diederich-Fornæss Index to a Stein neighborhood

basis:

Theorem 1.1.5. Let Ω be a smooth Hartogs domain, and suppose that for some w ∈ C, B >

A > 0 and C > 0 the set M = {(z, w) : A < |z|2 < B} is in bΩ and
∣∣∣ ∂2δ̃
∂w∂z̄

∣∣∣ > C
|z| on M .

Assume there exists a strictly positive function h such that

σ = hδ̃τ

5



is plurisubharmonic on Ω, for some τ > 1. Then C < π
2 ln B

A

and τ > π
π−2C ln B

A

.

Using Theorem 1.1.5, we describe a sufficient and a necessary condition for the existence

of the Stein neighborhood basis on the worm domain. This characterization is consistent

with the recent work by Yum [28].

Corollary 1.1.3. Let Ωr be a worm domain defined as Ωr = {(z, w) : ρr(z, w) < 0} with

weakly pseudoconvex points given by the annulus Mr = {(z, w) : 1 < |z| < r,w = 0} in bΩ

for some r > 1. Then a Stein neighborhood basis exists if
∣∣log 1

r2

∣∣ < π, but if there exists

τ > 1 and a smooth function h > 0 such that ρ = hδ̃τ is plurisubharmonic outside Ω, then

τ ≥ π
π−ln r2 and no Stein neighborhood basis exists if

∣∣log 1
r2

∣∣ > π.

6



Chapter 2

Preliminaries

2.1 Functions and domains in Cn

In this section, we will define tools that we use in our research.

Definition 2.1.1. Let zj = xj + iyj, for 1 ≤ j ≤ n and let f be a C1 function defined on Cn.

We use the following notation:

∂f

∂zj
=

1

2

(
∂f

∂xj
− i ∂f

∂yj

)
,

∂f

∂zj
=

1

2

(
∂f

∂xj
+ i

∂f

∂yj

)
.

Furthermore, dzj = dxj + idyj and dzj = dxj − idyj, and

∂f =
n∑
j=1

∂f

∂zj
dzj

and

∂̄f =
n∑
j=1

∂f

∂zj
dzj.

The following is the definition of a holomorphic function.

Definition 2.1.2. Let f(z) be a C1 function defined on an open subset D of Cn.Then f is

called a holomorphic function if f(z) is holomorphic with respect to each of its variables zj.

That is

∂f

∂z̄j
= 0, ∀j = 1, 2, ..., n.

The defining function is defined as follows.

Definition 2.1.3. Let D ⊂ Rn, n ≥ 2 and p ∈ bD. We say D has a Ck boundary at p if

there exists a Ck real valued function r defined in some open neighborhood U of p such that
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D ∩ U = {x : r(x) < 0} and bD ∩ U = {x ∈ U : r(x) = 0, dr(x) 6= 0}. The function r is

called a local defining function for D near p, and it is called a global defining function for

D, or simply a defining function for D, if U is an open neighborhood of D̄.

Using a defining function r and the operators ∂ and ∂̄, we can define pseudoconvex

domain as follows:

Definition 2.1.4. Let Ω ⊂ Cn, n ≥ 2, be a bounded C2 domain. Then Ω is called pseudo-

convex or Levi pseudoconvex at a point p on the boundary if the Levi form

〈Lr(z)t, t〉 =
n∑

i,j=1

∂2r

∂zj∂pj
(p)titj ≥ 0,

for all t = (t1, · · · , tn) ∈ Cn with
∑n

j=1 tj(
∂r
∂zj

)(p) = 0, where r is a C2 defining function for

Ω. In other words, the Levi form of ρ, restricted to the boundary, is positive semidefinite on

vectors that are orthogonal to the complex normal.

An exhaustion function for a domain Ω is defined as follows.

Definition 2.1.5. A function ϕ : Ω → R, Ω be an open domain, is called an exhaustion

function for Ω if the closure of {x ∈ Ω|ϕ(x) < c} is compact for all real numbers c.

Definition 2.1.6. Let ρ be a C2 function defined on Ω. Then ρ is called plurisubharmonic

if and only if for all z ∈ Ω
n∑

j,k=1

∂2ρ

∂zj∂zk
(z)tjtk ≥ 0

for all t = (t1, · · · , tn) ∈ Cn.

The following is the definition of a worm domain, a smooth pseudoconvex domain. It

was proposed by Diederich and Fornæss [10].

Definition 2.1.7. Suppose we have a smooth function λ : R 7→ R satisfying the following

properties:

8



1. λ(x) = 0 if x ≤ 0

2. λ(x) > 1 if x > 1

3. λ′′(x) ≥ 100λ′(x) for all x

4. λ′′(x) > 0 if x > 0

5. λ′(x) > 100 if λ(x) > 1
2
.

Let the function ρr : C× C→ R, for any r > 1, be defined as follows:

ρr(z, w) =
∣∣w + e(i ln zz̄)

∣∣2 − 1 + λ(
1

|z|2
− 1) + λ(|z|2 − r2).

Then Ωr = {(z, w) ∈ C× C|ρr(z, w) < 0} is called a worm domain.

The definition of a (p, q) differential form is given by.

Definition 2.1.8. We can write (p, q) form f as:

f =
∑′

|I|=p,|J |=q

fI,Jdz
I ∧ dzJ ,

where I = (i1, · · · , ip) and J = (j1, · · · , jq) are increasing multiindices and the superscript of

the summation refers to the ascending order of the multiindices. Also, dzI = dzi1 ∧ · · · ∧ dzip

and dzI = dzj1 ∧ · · · ∧ dzjq . Note that ∂̄f is

∂̄f =
∑′

I,J

∂̄fI,J ∧ dzI ∧ dzJ

which is (p, q + 1) form.

Definition 2.1.9. Let L2(bΩ) denote the space of square integrable functions on bΩ, and

L2
(p,q)(bΩ) denote the space of (p, q) forms whose coefficients are in L2(bΩ). Let

f =
∑′

I,J

fI,Jdz
I ∧ dzJ

9



and

g =
∑′

I,J

gI,Jdz
I ∧ dzJ

be (p, q) forms in L2
(p,q)(bΩ) where

∑′ is the summation over strictly increasing multiindices.

Then we define

〈f, g〉 =
∑
I,J

〈fI,J , gI,J〉 and ‖f‖ =
∑′

I,J

∫
bΩ

|fI,J |2dV

where the volume element dV = indz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn.

For the sake of completeness, we will present the following definitions, which will be used

in the proof of Theorem 1.1.3.

Definition 2.1.10. A smooth r-form ω is closed if dω = 0.

Definition 2.1.11. A smooth r-form ω is exact if there exists an (r − 1) form η such that

dη = ω.

Since d ◦ d = 0, every exact form is closed, but the reverse is not valid in general.

Definition 2.1.12. Let Hr(M) be the r- th de Rham cohomology group of M (a vector space

over R). It is defined as follows

Hr(M) = {closed r-forms on M}/{exact r-forms on M}

For a connected M, we have

H0(M) = {the set of constant functions} ∼= R.

Moreover, for a simply connected M, we have H1(M) = 0.

We will focus on studying the Diederich-Fornæss exponents for Hartogs domains in C2.

Definition 2.1.13 (Hartogs domain). We say that Ω ∈ C2 is a Hartogs domain if it is

invariant under rotation in one of the coordinates. That is, Ω contains (eiθz, w) whenever

(z, w) ∈ Ω and θ ∈ R.

10



A stronger notion of Stein neighborhood basis for smooth domains is introduced by

Şahutoğlu [9].

Definition 2.1.14. Let Ω be a smooth bounded pseudoconvex domain. We say that Ω̄ has a

strong Stein neighborhood basis if there exists a defining function ρ and a parameter ε0 such

that the Ωε = {z ∈ Cn : ρ(z) < ε0} is a pseudoconvex domain for every 0 ≤ ε ≤ ε0.

2.1.1 The Distance Function

The following result can be found in [20] and [27].

Theorem 2.1.1. For any smooth bounded domain Ω ⊆ Rn, there exists a neighborhood U

of bΩ such that for all x ∈ U

∇2δ̃(x) = ∇2δ̃(π(x)) ·
(
I + δ̃(x)∇2δ̃(π(x))

)−1

, (2.1.1)

where I denotes the identity matrix and ∇2δ̃ denotes the real Hessian of δ̃.

Proof. From Federer [13], we have for all x ∈ Ω, sufficiently close to bΩ, π(x) is the unique

nearest point to x on the boundary of Ω, where π(x) is given by

π(x) = x− δ̃(x)∇δ̃(x).

We also have

δ̃x`(x) = δ̃x`(π(x)) ` = 1, ..., n,

see for example Theorem 4.8 in [13]. Differentiating both sides with respect to xj, j = 1...n,

we get

δ̃x`xj(x) =
n∑
k=1

δ̃x`xk(π(x))
∂πk
∂xj

(x)

where

πk(x) = xk − δ̃(x)δ̃xk(x).

11



Here xk means the k-th component of x. Then for all k, j ∈ {1, 2, ..., n}

∂πk(x)

∂xj
=
∂xk
∂xj
− δ̃xj(x)δ̃xk(x)− δ̃(x)δ̃xkxj (2.1.2)

Therefore,

δ̃x`xj(x) = δ̃x`xj(π(x))−
n∑
k=1

δ̃x`xk(π(x))δ̃xk(x)δ̃xj(x)− δ̃(x)
n∑
k=1

δ̃x`xk(π(x))δ̃xkxj(x) (2.1.3)

Recall that

∣∣∣∇δ̃(x)
∣∣∣2 = 1 ∀x ∈ U,

where U is some open neighborhood of the boundary of Ω. Differentiating both sides in a

direction u ∈ Rn, we get

n∑
k=1

uk
∂

∂xk

(∣∣∣∇δ̃(x)
∣∣∣2) = 2

n∑
k,l

δ̃x`xk(x)δ̃x`(x)uk = 0. (2.1.4)

This implies the second term in (2.1.3) is zero. Hence we get the result.

With more calculation, we can reformulate the previous result in complex notation. let

zj = xj + iyj.

Since

∂
∂zj

= 1
2

(
∂
∂xj
− i ∂

∂yj

)
, ∂

∂z̄j
= 1

2

(
∂
∂xj

+ i ∂
∂yj

)
,

we have

∂2δ̃

∂zj∂z̄k
=

1

4

∂2δ̃

∂xj∂xk
+

1

4

∂2δ̃

∂yj∂yk
+
i

4

∂2δ̃

∂xj∂yk
− i

4

∂2δ̃

∂yj∂xk
. (2.1.5)
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Equation (2.1.1) can be approximated for small value of δ̃(z) by

∇2δ̃(z) = ∇2δ̃(π(z))
(
I − δ̃(z)∇2δ̃(π(z))

)
+O((δ̃(z))2)

= ∇2δ̃(π(z))− δ̃(z)
(
∇2δ̃(π(z))

)2

+O((δ̃(z))2).

By using formula (2.1.5), we get

∂2δ̃(z)

∂zj∂z̄k
=
∂2δ̃(π(z))

∂zj∂z̄k

− δ̃(z)

(
n∑
`=1

∂2δ̃(π(z))

∂zj∂x`
· ∂

2δ̃(π(z))

∂x`∂z̄k
+
∂2δ̃(π(z))

∂zj∂y`
· ∂

2δ̃(π(z))

∂y`∂z̄k

)
+O((δ̃(z))2).

After we plug in ∂
∂xj

= ∂
∂zj

+ ∂
∂z̄j

and ∂
∂yj

= i
(

∂
∂zj
− ∂

∂z̄j

)
, we get

∂2δ̃

∂zj∂z̄k
(z) =

∂2δ̃

∂zj∂z̄k
(π(z))− δ̃(z)

n∑
`

(
∂2δ̃

∂zj∂z`
· ∂2δ̃

∂z`∂z̄k
+

∂2δ̃

∂zj∂z̄`
· ∂2δ̃

∂z`∂z̄k

+
∂2δ̃

∂zj∂z`
· ∂2δ̃

∂z̄`∂z̄k
+

∂2δ̃

∂zj∂z̄`
· ∂2δ̃

∂z`∂z̄k
− ∂2δ̃

∂zj∂z`
· ∂2δ̃

∂z`∂z̄k

+
∂2δ̃

∂zj∂z̄`
· ∂2δ̃

∂z`∂z̄k
+

∂2δ̃

∂zj∂z`
· ∂2δ̃

∂z̄`∂z̄k
− ∂2δ̃

∂zj∂z̄`
· ∂2δ̃

∂z̄`∂z̄k

)
π(z) +O((δ̃(z))2).

(2.1.6)

So,

∂2δ̃(z)

∂zj∂zk
=
∂2δ̃(π(z)

∂zj∂zk
− δ̃(z)

n∑
`=1

(
2
∂2δ̃(π(z))

∂zj∂z`
· ∂

2δ̃(π(z))

∂z`∂zk

+2
∂2δ̃(π(z))

∂zj∂z`
· ∂

2δ̃(π(z))

∂z`∂zk

)
+O((δ̃(z))2).

The following lemma is from [7].
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Lemma 2.1.1. For any two local defining functions r1 and r2 of a domain Ω of class Ck , 1 ≤

k ≤ ∞, in a neighborhood U of p ∈ bΩ, there exists a strictly positive function h ∈ Ck−1 on

U satisfying the following:

(1) r1 = hr2 on U,

(2) dr1(x) = h(x)dr2(x) ∀x ∈ U ∩ bΩ.
(2.1.7)

2.1.2 ∂̄-Neumann Regularity

Although this research is not directly connected with the ∂̄-Neumann problem, some of our

results will be relevant to this study. Therefore, we provide a brief introduction to the key

terminology and results. The ∂̄-Neumann problem represents an archetypal example of a

boundary value problem with an elliptic operator but with non-coercive boundary conditions.

We start by solving ∂̄u = f, where ∂̄f = 0. Since ∂̄2 = 0, ∂̄f = 0 is a necessary condition for

solvability. Define the inner product (f, g) =
∫

Ω
〈f, g〉dV. The adjoint operator ∂̄∗ is defined

by the relation (∂̄f, g) = (f, ∂̄∗g). Integration by parts will introduce a boundary term. In

order for ∂̄∗ to be a properly defined Hilbert space adjoint operator, we must restrict the

domain of ∂̄∗ to those forms where the complex normal component vanishes on the boundary.

The ∂̄-Neumann problem is to find the inverse Nq of the complex Laplacian ∂̄∗∂̄ + ∂̄∂̄∗

on (0, q) forms when 0 ≤ q ≤ n subject to two boundary conditions u ∈ Dom∂̄∗ and

∂̄u ∈ Dom∂̄∗. Hörmander [21] has introduced the fundamental L2 existence theorem for

the ∂̄-Neumann problem which states that for any 1 ≤ q ≤ n the solution u ∈ L2
(0,q−1)(Ω)

for ∂̄u = f exists under the condition that f is a ∂̄-closed form in L2
(0,q)(Ω), and Ω is

pseudoconvex. Kohn [23] introduced the canonical solution u = ∂̄∗Nqf . This solution is

orthogonal to the kernel of ∂̄.

Kohn [23] discussed the global regularity of the ∂̄-Neumann problem in the L2-Sobolev

spaces W s(Ω) for all nonnegative s on strictly pseudoconvex domains. He discovered an

explicit relationship between the ∂̄-Neumann operator and the Bergman projection: P =

14



Id− ∂̄∗N∂̄.

The basic estimate ‖u‖2 ≤ C(
∥∥∂̄u∥∥2

+
∥∥∂̄∗u∥∥2

) for all u ∈ Dom(∂̄)∩ Dom (∂̄∗) plays an

important rule in proving regularity of the ∂̄-Neumann problem in L2. Our next question is

can we generalize this estimate to other Sobolev spaces, i.e, ‖u‖2
s ≤

∥∥∂̄u∥∥2

s
+
∥∥∂̄∗u∥∥2

s
. This

estimate does not hold for all s ≥ 0, as shown by Barrett [1] on the worm domain. If we cover

the boundary of Ω by special boundary charts such that tangential vector fields preserve the

domain of ∂̄∗, those vector fields have variable coefficients, so they do not commute with

either ∂̄ or ∂̄∗ in general. The error terms that come from the commutator need to be

handled. For T any tangential vector field, we have the a priori estimate

‖Tu‖2 ≤
∥∥∂̄Tu∥∥2

+
∥∥∂̄∗Tu∥∥2

.

After some integration by parts, see Chen-Shaw [7, p.131] , we get

∥∥∂̄Tu∥∥2
+
∥∥∂̄∗Tu∥∥2 ≤ ‖f‖2

1 + (sc) ‖Tu‖2 + (sc) ‖u‖2
1 +

∥∥[∂̄, T ]u
∥∥2

+
∥∥[∂̄∗, T ]u

∥∥2
.

This motivates another condition that has been used to define sufficient condition for

condition R : the existence of a family of good vector fields introduced by Boas and Straube

[6]. Suppose there exists a positive constant C > 0 so that for every ε > 0, there exists a

vector field Xε of type (1, 0) such that the coefficients of Xε are smooth in a neighborhood Uε

of the set of weakly pseudoconvex boundary points of Ω. Moreover, the following conditions

are satisfied

1- |argXερ| < ε on Uε, C
−1 < |Xερ| < C, and

2- ∂ρ[Xε,
∂
∂z̄j

] < ε, for all 1 ≤ j ≤ n, on Uε,

for some defining function ρ. Then the domain Ω satisfies condition R. The first condition

grants that this family of vector field is transverse to bΩ, and the second condition ensures

the vector field commutes approximately with ∂̄. We will study this condition further in

Chapter Four.
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Chapter 3

Proof of Main Result

3.1 Upper Bound for Diederich-Fornæss Index

In this section, we will calculate an upper bound for the Diederich-Fornæss Index on a

Hartogs domain. In our calculations, we will use the signed distance function as a defining

function for the domain.

Proof of Theorem 1.1.1. Let t = |z|2. Since Ω is Hartogs, we may assume

δ̃(z, w) = ρ(|z|2 , w),

for some smooth function ρ. Furthermore, we pick p ∈ Ω such that π(p) ∈ M. For such p,

the signed distance function δ̃ satisfies

∂δ̃

∂z
(π(p)) = 0, (3.1.1)

and

∂2δ̃

∂z∂z
(π(p)) = 0. (3.1.2)

From (2.1.2),

∂δ̃

∂z
(p) = 0

as well. We write

∂δ̃

∂w
=

1

2
(
∂δ̃

∂x
− i∂δ̃

∂y
),

so at p

|ρw|2 =

∣∣∣∣∣ ∂δ̃∂w
∣∣∣∣∣
2

=
1

4

{
(
∂δ̃

∂x
)2 + (

∂δ̃

∂y
)2
}
. (3.1.3)
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But because
∣∣∣∇δ̃∣∣∣ = 1, and ∂δ̃

∂z
(p) = 0, we get

|ρw(p)|2 =

∣∣∣∣∣ ∂δ̃∂w (p)

∣∣∣∣∣
2

=
1

4
. (3.1.4)

Since this is true for all p such that π(p) ∈ M and M has nonempty interior, we can

differentiate in p. Take the derivative of both sides of (3.1.4) with respect to t, we have

ρtw̄ρw + ρtwρw̄ = 0. (3.1.5)

Since

∂δ̃

∂z
= ρt(|z|2 , w)z,

we have

ρt(π(p)) = 0.

Then

∂2δ̃

∂z∂z
= ρtt(|z|2 , w) |z|2 + ρt(|z|2 , w) =⇒ ρtt(π(p)) = 0.

We also compute

∂2δ̃

∂w∂z
= ρtw(|z|2 , w)z, (3.1.6)

and

∂2δ̃

∂w∂z
= ρtw(|z|2 , w)z. (3.1.7)

Also, on the boundary we have

∂2δ̃

∂z∂z
= ρtt(|z|2 , w)z2 =⇒ ∂2δ̃

∂z∂z
(π(p)) = 0.
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Using (2.1.6), we compute

∂2δ̃

∂z∂z
(p) = −2δ̃(p)

( ∂2δ̃

∂z∂w
(π(p)) · ∂2δ̃

∂w∂z
(π(p))

+
∂2δ̃

∂z∂z
(π(p)) · ∂

2δ̃

∂z∂z
(π(p)) +

∂2δ̃

∂z∂w
(π(p)) · ∂2δ̃

∂w∂z
(π(p))

)
+O((−δ̃(p))2).

So, using (3.1.7) and (3.1.6), we get

∂2δ̃

∂z∂z
(p) = 4(−δ̃)(p) |ρtw(π(p))|2 |z|2 +O((−δ̃(p))2). (3.1.8)

By our hypothesis, there exists some positive C2 function h, such that h(−δ̃)τ is a

plurisubharmonic function. Since Ω is a Hartogs domain, using the symmetry property

of Ω , we may define ĥ from h as

ĥ(z, w) =

∫ 2π

0

h(eiθz, w)dθ.

We use ĥ to define another rotationally symmetric plurisubharmonic function in z, which is

σ = ĥ(−δ̃)τ on Ω. Now, we denote the complex Hessian of σ at the point p = (z, w) by

Hσ

(
|z|2 , w, ξ, η

)
=

∂2σ

∂z∂z
|ξ|2 + 2Re

(
∂2σ

∂z∂w
ηξ

)
+

∂2σ

∂w∂w
|η|2 .

We compute

∂2σ

∂z∂z
(p) = −ĥτ

(
(−δ̃)τ−1∂

2(−δ̃)
∂z∂z̄

+ (τ − 1)(−δ̃)τ−2 ∂δ̃

∂z̄

∂δ̃

∂z

)
+ τ(−δ̃)τ−1∂ĥ

∂z̄

∂δ̃

∂z
− ∂2ĥ

∂z∂z̄
(−δ̃)τ + τ(−δ̃)τ−1∂ĥ

∂z

∂δ̃

∂z̄
.

Substituting (3.1.8), we get

∂2σ

∂z∂z̄
(p) = (−δ̃)τ

(
4ĥτ |ρtw (π (p))|2 |z|2 − ∂2ĥ

∂z∂z

)
+O((−δ̃(p))τ−1).
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Also,

∂2σ

∂z∂w̄
(p) = −ĥτ

(
(−δ̃)τ−1∂

2(−δ̃)
∂z∂w̄

+ (τ − 1)(−δ̃)(τ−2)∂(−δ̃)
∂w̄ �

�
�
��

0

∂(−δ̃)
∂z

)

+ τ(−δ̃))(τ−1)∂(−ĥ)

∂w̄ �
�
�
��

0

∂(−δ̃)
∂z

− (−δ̃)τ ∂2ĥ

∂z∂w̄
+ τ(−δ̃)(τ−1)∂ĥ

∂z

∂δ̃

∂w̄
.

So,

2Re(
∂2σ

∂z∂w̄
(p)ξη̄) = 2Re

((
− ĥτ(−δ̃)τ−1

(
−ρtw̄(p)z̄ − (−δ̃)τ ∂2h

∂z∂w
+ τ(−δ̃)(τ−1)∂h

∂z

∂δ̃

∂w

)
ξη
)

Using |ρtw̄(π(p))− ρtw̄(p)| < O(−δ̃(p)), we get

2Re(
∂2σ

∂z∂w̄
(p)ξη̄) = 2Re

((
ĥτ(−δ̃)(τ−1)ρtw̄z̄(π(p)) + τ(−δ̃)(τ−1)∂h

∂z

∂δ̃

∂w̄
+O((−δ̃)τ )

)
ξη̄
)
.

Furthermore, the third term is given by

∂2σ

∂w∂w̄
(p) = −ĥτ

(
(−δ̃)τ−1∂

2(−δ̃)
∂w∂w̄

+ (τ − 1)(−δ̃)τ−2 ∂δ̃

∂w̄

∂δ̃

∂w

)
+ τ(−δ̃)τ−1 ∂ĥ

∂w̄

∂δ̃

∂w
− (−δ̃)τ ∂2ĥ

∂w∂w̄
+ τ(−δ̃)τ−1 ∂ĥ

∂w

∂δ̃

∂w̄
,

which can be further simplified to

∂2σ

∂w∂w
(p) = −τ(τ − 1)(−δ̃)τ−2ĥ

∂δ̃

∂w

∂δ̃

∂w̄
+O((−δ̃)τ−1).

Combining these, we have

Hσ(|z|2 , w, ξ, η) =

(
(−δ̃)τ

(
4ĥτ |ρtw (π (p))|2 |z|2 − ∂2ĥ

∂z∂z

)
+O

(
(−δ̃)(τ+1)

))
|ξ|2

+ 2Re
((
ĥτ(−δ̃)τ−1ρtw̄(π(p))z̄ + τ(−δ̃)τ−1∂ĥ

∂z

∂δ̃

∂w̄
+O((−δ̃)τ )

)
ξη̄
)

+
(

(−ĥ)τ(τ − 1)(−δ̃)τ−2 ∂δ̃

∂w
· ∂δ̃
∂w̄

+O(−δ̃)τ−1
)
|η|2 .
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Due to the different order of vanishing in each term, we substitute η = (−δ̃)η̂ :

Hσ(|z|2 , w, ξ, η̂) =
(

4ĥτ |ρtw(π(p))|2 t− ∂2ĥ

∂z∂z

)
(−δ̃)τ |ξ|2

+ 2Re
{
τ

(
ĥρtw(π(p))z̄ +

∂ĥ

∂z

∂δ̃

∂w

)
(−δ̃)τξη̂

}
− 1

4
(−δ̃)τ ĥτ(τ − 1) |η̂|2

+O((−δ̃)τ+1).

Note that we have used (3.1.4) here. Next, dividing by (−δ̃)τ , then letting (−δ̃) → 0, we

have

lim
δ̃→0

Hσ(|z|2 , w, ξ, η̂)

(−δ̃)τ
≥ 0 =⇒

(
4ĥτ |ρtw(π(p))|2 t− ∂2ĥ

∂z∂z

)
|ξ|2+2Re

{
τ

(
ĥρtw(π(p))z̄ +

∂ĥ

∂z

∂δ̃

∂w̄

)
ξη̂
}
−1

4
ĥτ(τ−1) |η̂|2 ≥ 0.

Let

a = ĥτ
(
4 |ρtw(π(p))|2 t

)
− ∂2ĥ

∂z∂z
,

b = −1

4
ĥτ(τ − 1)

and

c = τ

(
ĥρtw̄(π(p))z̄ +

∂ĥ

∂z

∂δ̃

∂w̄

)
.

Note that

lim
δ̃→0

Hσ(|z|2 , w, ξ, η̂)

(−δ̃)τ
≥ 0⇐⇒

(
ξ η

)a c

c̄ b


ξ̄
η̄

 ≥ 0, ∀
(
ξ η

)

Therefore, the matrix a c

c̄ b


must be positive semidefinite. Since ĥ > 0 and 0 < τ < 1, b > 0 on M.
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So, we are left with showing the determinant ab− |c|2 ≥ 0.

We compute

∂ĥ

∂z
(|z|2 , w) =

∂ĥ

∂t
(|z|2 , w) · z̄,

and

∂2ĥ

∂z∂z̄
(|z|2 , w) =

∂ĥ

∂t
(|z|2 , w) +

∂2ĥ

∂t2
(|z|2 , w) |z|2 .

We can simplify |c|2 by

|c|2 = cc = τ z̄

(
ĥρtw +

∂ĥ

∂t
ρw

)
· τz

(
ĥρtw +

∂ĥ

∂t
ρw

)

= τ 2t

∣∣∣ĥ∣∣∣2 |ρtw̄|2 +
∂ĥ

∂t
(ρtwρw + ρtwρw) +

(
∂ĥ

∂t

)2

|ρw|2
 .

Using (3.1.4) and (3.1.5), we get

|c|2 = τ 2t

∣∣∣ĥ∣∣∣2 |ρtw|2 +
1

4

(
∂ĥ

∂t

)2
 .

Here we will calculate the value for ab :

ab =
−ĥτ(τ − 1)

4

(
4ĥτ |ρtw(π(p))|2 |z|2 − ∂ĥ

∂t
− ∂2ĥ

∂t2
t

)
.

Compute

ab = −ĥ2τ 2(τ − 1) |ρtw(π(p))|2 t+ τ(τ − 1)

(
∂ĥ

∂t

ĥ

4
+
ĥ

4

∂2ĥ

∂t2
t

)
.

Therefore,

ab− |c|2 = −ĥ2τ 3 |ρtw(π(p))|2 t+ τ(τ − 1)

(
∂ĥ

∂t

ĥ

4
+
ĥ

4

∂2ĥ

∂t2
t

)
− τ 2t

1

4

(
∂ĥ

∂t

)2

.

Let g = ĥ1/(1−τ). Since ĥ is positive, the value of g is real and positive. To linearize the
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previous equation, we plug in ĥ = g(1−τ).

So,

ab− |c|2 = −g(2−2τ)τ 2(τ − 1) |ρtw|2 t+
1

4
τ(τ − 1)g(1−τ)

·

(
(1− τ)g−τ

∂g

∂t
+ (1− τ)t

(
g−τ

∂2g

∂t2
− τg−τ−1

(
∂g

∂t

)2
)

− τ 2t

(
g2(1−τ) |ρtw|2 +

1

4

(
(1− τ)g−τ

)2
(
∂g

∂t

)2
)
.

Dividing by g1−2τ we get

ab− |c|2

g1−2τ
= −τ 2(τ − 1) |ρtw|2 tg −

1

4
τ(1− τ)2

(
∂g

∂t
+ t

(
∂2g

∂t2
− τg−1

(
∂g

∂t

)2
))

− τ 2t

(
g |ρtw|2 +

1

4

1

g
(1− τ)2

(
∂g

∂t

)2
)
.

We compute

ab− |c|2

g1−2τ
= −τ 3tg |ρtw|2 + τ 2tg |ρtw|2 − τ 2tg |ρtw|2 −

1

4
τ(1 − τ)2

(
∂g

∂t
+ t

∂2g

∂t2

)
,

so, ab− |c|2 ≥ 0 gives us

−1

4
τ(1− τ)2

(
∂g

∂t
+ t

∂2g

∂t2

)
− τ 3tg |ρtw|2 ≥ 0. (3.1.9)

Our hypothesis on
∣∣∣ ∂2δ̃
∂w∂z̄

∣∣∣ implies

|ρtw| >
C
t
.

Then, (3.1.9) implies

−1

4
τ(1− τ)2

(
∂g

∂t
+ t

∂2g

∂t2

)
− C

2

t2
τ 3tg > 0 (3.1.10)
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when A ≤ t ≤ B.

We will show that this implies a contradiction unless τ < π
2CLnB

A
+π
. Let g̃(s, w) = g(es, w).

We will plug in t = es, so that lnA < s < lnB on M.

Then

dg̃

ds
= es

dg

dt

and

d2g̃

ds2
= es

dg

dt
+ e2sd

2g

dt2
.

Substituting in (3.1.10) gives us

1

4
τ(1− τ)2

(
d2g̃

ds2

)
+ τ 3C2g̃ < 0. (3.1.11)

Let us assume we have a strictly positive function g̃ on some interval I satisfying (3.1.11).

We make the substitution u =
√

τ3C2

1
4
τ(1−τ)2 s = 2τC

1−τ s.

For u in the range

2τC
(1− τ)

lnA < u <
2τC

(1− τ)
lnB,

we get

d2g̃

du2
+ g̃ < 0. (3.1.12)

Assume τ ≥ π
2C ln B

A
+π
. This implies

2τC
(1− τ)

ln
B

A
≥ π.

So (3.1.12) holds on an interval of length π, which implies d2g̃
du2 < 0. So g̃ is strictly concave.

Therefore there should be an interval of length at least π
2

on which g̃ is strictly increasing

or strictly decreasing. If it is strictly increasing we can flip it by a reflection to make it

strictly decreasing. So, after a translation dg̃
du
< 0 on [0, π

2
]. In [10], Diederich and Fornæss
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have shown in the proof of Theorem 6 that this differential inequality (3.1.12) has no positive

solution g̃, which is contradicts the assumption. Hence, the conclusion of the theorem follows.

3.2 Lower Bound for Diederich-Fornæss Index

In this section, we will prove technical lemmas that will help us to deal with each connected

component of the set of weakly pseudoconvex points separately. Then we patch the end

results together to prove Theorem 1.1.2.

Lemma 3.2.1. Let Ω be a Hartogs domain in C2, and for some w ∈ C,M = {(z, w) : |z|2 ≤

B} ⊂ bΩ be a disk in bΩ. Then there exists a real valued function h such that

∂h

∂z
= − ∂2δ̃

∂z∂w̄
/
∂δ̃

∂w̄
on M (3.2.1)

and ρ = δ̃eh is plurisubharmonic on M.

Proof. Let

L =
∂δ̃

∂w

∂

∂z
− ∂δ̃

∂z

∂

∂w
,

and

N =
∂δ̃

∂z̄

∂

∂z
+
∂δ̃

∂w̄

∂

∂w
.

On M we can assume ∂δ̃
∂w̄
6= 0, because ∂δ̃

∂z
= 0.

Let

α = − ∂2δ̃

∂z∂w̄
/
∂δ̃

∂w̄
dz − ∂2δ̃

∂z̄∂w
/
∂δ̃

∂w
dz̄ (3.2.2)

be a one-form. This form is a scalar multiple of D’Angelo’s one form (see [6] for its detailed

analysis).

Next, we will show that α is closed on M .

dα =
∂

∂z̄
{− ∂2δ̃

∂z∂w̄
/
∂δ̃

∂w̄
}dz̄ ∧ dz +

∂

∂z
{− ∂2δ̃

∂z̄∂w
/
∂δ̃

∂w
}dz ∧ dz̄.
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Compute

dα =
{
{− ∂δ̃

∂w̄

∂3δ̃

∂z̄∂z∂w̄
+

∂2δ̃

∂z∂w̄

∂2δ̃

∂z̄∂w̄
}/( ∂δ̃

∂w̄
)2
}
dz̄ ∧ dz

+
{
{− ∂δ̃

∂w

∂3δ̃

∂z∂z̄∂w
+

∂2δ̃

∂z̄∂w

∂2δ̃

∂z∂w
}/( ∂δ̃

∂w
)2
}
dz ∧ dz̄. (3.2.3)

On M

∣∣∣∣∣ ∂δ̃∂w
∣∣∣∣∣
2

=
1

4
=⇒ ∂2

∂z∂z̄

∣∣∣∣∣ ∂δ̃∂w
∣∣∣∣∣
2

= 0.

So,

∂2

∂z∂z̄
(
∂δ̃

∂w

∂δ̃

∂w̄
) =

∂3δ̃

∂z∂z̄∂w

∂δ̃

∂w̄
+

∂2δ̃

∂z̄∂w

∂2δ̃

∂z∂w̄
+

∂2δ̃

∂z∂w

∂2δ̃

∂z̄∂w̄
+
∂δ̃

∂w

∂3δ̃

∂z∂z̄∂w̄
= 0. (3.2.4)

Since Hδ̃(L,L) = 0 on M, and Hδ̃(L,L) ≥ 0 on bΩ, tangential derivatives of Hδ̃(L,L) must

vanish on M. Consider the tangential derivative ∂δ̃
∂w

∂
∂w̄
− ∂δ̃

∂w̄
∂
∂w
, so we have

∂δ̃

∂w

∂Hδ̃(L,L)

∂w̄
− ∂δ̃

∂w̄

∂Hδ̃(L,L)

∂w
= 0 on M. (3.2.5)

We compute

∂Hδ̃(L,L)

∂w
=

1

4

∂3δ̃

∂w∂z∂z̄
− ∂2δ̃

∂z̄∂w

∂2δ̃

∂z∂w

∂δ̃

∂w̄
− ∂2δ̃

∂z∂w̄

∂δ̃

∂w

∂2δ̃

∂z̄∂w
.

So, adding four times (3.2.5) to (3.2.4), we have

2
∂δ̃

∂w

∂3δ̃

∂w̄∂z∂z̄
− 4

∂2δ̃

∂z∂w̄
(
∂δ̃

∂w
)2 ∂2δ̃

∂z̄∂w̄
− ∂δ̃

∂w̄

∂3δ̃

∂w∂z∂z̄
+ 4

∂2δ̃

∂z̄∂w

∂2δ̃

∂z∂w
(
∂δ̃

∂w̄
)2 +

∂3δ̃

∂z∂z̄∂w

∂δ̃

∂w̄

+

∣∣∣∣∣ ∂2δ̃

∂z̄∂w

∣∣∣∣∣
2

+

∣∣∣∣∣ ∂2δ̃

∂z∂w

∣∣∣∣∣
2

+
∂δ̃

∂w

∂3δ̃

∂z̄∂w̄∂z
= 0.
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Hence,

∂δ̃

∂w

∂3δ̃

∂z̄∂w̄∂z
= 2

∂2δ̃

∂z∂w̄
(
∂δ̃

∂w
)2 ∂2δ̃

∂z̄∂w̄
− 2

∂2δ̃

∂z̄∂w
(
∂δ̃

∂w̄
)2 ∂2δ̃

∂z∂w
− 1

2

∣∣∣∣∣ ∂2δ̃

∂z̄∂w

∣∣∣∣∣
2

− 1

2

∣∣∣∣∣ ∂2δ̃

∂z∂w

∣∣∣∣∣
2

.

On M , we have

∂

∂z

∣∣∣∣∣ ∂δ̃∂w
∣∣∣∣∣
2

= 0 =⇒ ∂2δ̃

∂z∂w

∂δ̃

∂w̄
+
∂δ̃

∂w

∂2δ̃

∂w̄∂z
= 0.

By using this observation, and the property of the distance function that 1

( ∂δ̃
∂w̄

)2
= 16( ∂δ̃

∂w
)2

we get

∂δ̃

∂w

∂3δ̃

∂z̄∂w̄∂z
= −1

2

∣∣∣∣∣ ∂2δ̃

∂w̄∂z

∣∣∣∣∣
2

+
1

2

∣∣∣∣∣ ∂2δ̃

∂z̄∂w

∣∣∣∣∣
2

− 1

2

∣∣∣∣∣ ∂2δ̃

∂z̄∂w

∣∣∣∣∣
2

− 1

2

∣∣∣∣∣ ∂2δ̃

∂z̄∂w

∣∣∣∣∣
2

= −

∣∣∣∣∣ ∂2δ̃

∂z̄∂w

∣∣∣∣∣
2

. (3.2.6)

So, (3.2.3) can be written as

dα =
{
{− ∂δ̃

∂w̄

∂3δ̃

∂z̄∂z∂w̄

+
∂2δ̃

∂z∂w̄

∂2δ̃

∂z̄∂w̄
}/( ∂δ̃

∂w̄
)2
}
dz̄ ∧ dz +

{
{− ∂δ̃

∂w

∂3δ̃

∂z∂z̄∂w
+

∂2δ̃

∂z̄∂w

∂2δ̃

∂z∂w
}/( ∂δ̃

∂w
)2
}
dz ∧ dz̄.

Compute

dα = −4

∣∣∣∣∣ ∂2δ̃

∂z̄∂w

∣∣∣∣∣
2

dz̄ ∧ dz − 4

∣∣∣∣∣ ∂2δ̃

∂z̄∂w

∣∣∣∣∣
2

dz ∧ dz̄

+
∂2δ̃

∂z∂w̄

∂2δ̃

∂z̄∂w̄
(
∂δ̃

∂w
)2dz̄ ∧ dz +

∂2δ̃

∂z̄∂w

∂2δ̃

∂z∂w
(
∂δ̃

∂w̄
)2dz ∧ dz̄

= 0.

Since α is closed and M is simply connected, there exists h̃ such that dh̃ = α on M. Next,

we extend h̃ smoothly to a neighborhood of M. Let h = h̃ + sδ̃, for some number s > 0.

Since ∂δ̃
∂z

= 0, we have ∂δ̃
∂z

= ∂δ
∂z
. Hence, on M, we have (3.2.1).
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For ρ = δ̃eh, we compute

∂ρ

∂z
= δ̃eh

∂h

∂z
+ eh

∂δ̃

∂z
= eh

∂δ̃

∂z
,

∂ρ

∂w
= δ̃eh

∂h

∂w
+
∂δ̃

∂w
eh = eh

∂δ̃

∂w
,

∂ρ

∂w̄
=
∂δ̃

∂w̄
eh,

and

∂2ρ

∂z∂z̄
(q) =

∂

∂z
(eh

∂δ̃

∂z̄
+ δ̃eh

∂h

∂z
) = eh

∂h

∂z

∂δ̃

∂z̄
+ eh

∂2δ̃

∂z∂z̄
+
∂δ̃

∂z
eh
∂h

∂z
+ δ̃(eh(

∂h

∂z
)2) + δ̃eh

∂2h

∂z∂z̄
= 0

on M. Also,

∂2ρ

∂z∂w̄
=

∂

∂z
(eh

∂δ̃

∂w̄
+ δ̃eh

∂h

∂w̄
)

= eh
∂h

∂z

∂δ̃

∂w̄
+ eh

∂2δ̃

∂z∂w̄
+
∂δ̃

∂z
eh
∂h

∂w̄
+ δ̃eh

∂h

∂z

∂h

∂w̄
+ δ̃eh

∂2h

∂z∂w̄

= eh

(
∂h

∂z

∂δ̃

∂w̄
+

∂2δ̃

∂z∂w̄

)
.

So, ∂2ρ
∂z∂w̄

= 0 on M because ∂h
∂z

= ∂h̃
∂z̄

= −
∂2δ̃
∂z∂w̄
∂δ̃
∂w̄

. Furthermore,

∂2ρ

∂w∂w̄
=

∂

∂w
(eh

∂δ̃

∂w̄
+ δ̃eh

∂h

∂w̄
). (3.2.7)

Substitute h = h̃+ sδ̃, in (3.2.7), we get

∂2ρ

∂w∂w̄
= eh̃{ ∂h̃

∂w

∂δ̃

∂w̄
+

∂2δ̃

∂w∂w̄
+
∂δ̃

∂w

∂h̃

∂w̄
+ 2s

∣∣∣∣∣ ∂δ̃∂w
∣∣∣∣∣
2

}.
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Using (3.1.4) and δ̃ = 0 on M , we get

∂2ρ

∂w∂w̄
= eh̃{ ∂h̃

∂w

∂δ̃

∂w̄
+

∂2δ̃

∂w∂w̄
+
∂δ̃

∂w

∂h̃

∂w̄
+
s

2
}.

For a large enough number s, ∂2ρ
∂w∂w̄

> 0. Hence, ρ will be plurisubharmonic on M.

Lemma 3.2.2. Let Ω be a Hartogs domain in C2. If K ⊂ ∂Ω is compact, and ∂δ̃
∂z
6= 0 on K,

then there exists a plurisubharmonic defining function on a neighborhood of K.

Proof. First, we will prove that for every (z, w) ∈ K, we have z 6= 0. Assume p = (0, w) ∈

K,w ∈ C, and let {(zj, wj)} be any sequence in bΩ converging to p. Let U = (u1, u2)

be a unit length vector tangential to bΩ at p. We may assume the restricted subsequence

{ (zj ,wj−w)√
|zj |2+|wj−w|2

} converges to U. Federer [13] considers this as the definition of the tangent

vector, which coincides with the usual definition on a domain with C1 boundary. Since Ω is

a Hartogs domain, (eiθzj, wj) ∈ bΩ for any θ ∈ R. This implies (eiθu1, u2) is tangential to bΩ

at p for any θ ∈ R, that is,

eiθu1
∂δ̃

∂z̄
(p) + u2

∂δ̃

∂w̄
(p) = 0

for any θ ∈ R.

From the assumption ∂δ̃
∂z̄
6= 0. Therefore, we must have u1 = 0. So, every tangent vector at

p must be in the form (0, u2), which does not fulfill the requirement to span a tangent space

of three real dimensions. Hence, we are allowed to assume that z 6= 0 for every (z, w) ∈ K.

From the Implicit Function Theorem, locally there exists f(w) such that t = f(w), where

t = |z|2 for (z, w) in a neighborhood of bΩ, and ∂δ̃
∂t
6= 0 on a neighborhood of bΩ. So,

δ̃(t, w) = δ̃(f(w), w) = 0.
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Our defining function will be

ρ(t, w) = e− log f (t− f) = (f(w))−1t− 1.

Since f is uniquely determined, ρ is globally defined on K. Computing the first and the

second derivatives of (f(w))−1, we get

∂(f(w))−1

∂w̄
= −(f(w))−2 ∂f

∂w̄
,

∂2(f(w))−1

∂w∂w̄
= −(f(w))−2 ∂2f

∂w∂w̄
+ 2(f(w))−3

∣∣∣∣ ∂f∂w
∣∣∣∣2 .

From the pseudoconvexity of Ω, Hρ(L,L)(p) ≥ 0. This implies

∣∣∣∣ ∂f∂w
∣∣∣∣2 ≥ f(w)

∂2f

∂w∂w̄
.

∂2(f(w))−1

∂w∂w̄
≥ −(f(w))−3

∣∣∣∣ ∂f∂w
∣∣∣∣2 + 2(f(w))−3

∣∣∣∣ ∂f∂w
∣∣∣∣2

= (f(w))−3

∣∣∣∣ ∂f∂w
∣∣∣∣2 .

Next, we show that ρ is a plurisubharmonic defining function near K. We may compute the

second derivatives with respect to z and z̄

∂2ρ

∂z∂z̄
=

∂

∂z
((f(w))−1z) = (f(w))−1,

and with respect to w and z̄

∂2ρ

∂w∂z̄
=

∂

∂w
((f(w))−1z) = −z(f(w))−2 ∂f

∂w
,
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which is equal to

∂2ρ

∂w̄∂z
= −z̄(f(w))−2 ∂f

∂w̄
.

Also, we compute the second derivative with respect to w and w̄

∂2ρ

∂w∂w̄
=

∂

∂w
(t(−(f(w))−2 ∂f

∂w̄
)) = t(−(f(w))−2 ∂2f

∂w∂w̄
+ 2(f(w))−3

∣∣∣∣ ∂f∂w
∣∣∣∣2).

Let

L = { ∂ρ
∂w

∂

∂z
− ∂ρ

∂z

∂

∂w
}/ |∂ρ| .

Then the Levi form is given by

Hρ(L,L)(p) = (
∂2ρ

∂z∂z̄

∣∣∣∣ ∂ρ∂w
∣∣∣∣2 − ∂2ρ

∂z̄∂w

∂ρ

∂z

∂ρ

∂w̄
− ∂2ρ

∂z∂w̄

∂ρ

∂w

∂ρ

∂z̄
+

∂2ρ

∂w∂w̄

∣∣∣∣∂ρ∂z
∣∣∣∣2)

1

|∂ρ|2
.

Using the above derivatives, we get

Hρ(L,L)(p) = (f(w))−1

∣∣∣∣ ∂f∂w
∣∣∣∣2 − ∂2f

∂w∂w̄
.

Turning to the full complex Hessian, we have

∣∣∣∣∣∣∣
∂2ρ
∂z∂z̄

∂2ρ
∂w∂z̄

∂2ρ
∂z∂w̄

∂2ρ
∂w∂w̄

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
(f(w))−1 −z(f(w))−2 ∂f

∂w

−z̄(f(w))−2 ∂f
∂w̄

t(−(f(w))−2 ∂2f
∂w∂w̄

+ 2(f(w))−3
∣∣ ∂f
∂w

∣∣2)

∣∣∣∣∣∣∣
= (f(w))−1t(−(f(w))−2 ∂2f

∂w∂w̄
+ 2(f(w))−3

∣∣∣∣ ∂f∂w
∣∣∣∣2)− tf−4

t=f |bΩ
= −(f(w))−2 ∂2f

∂w∂w̄
+ (f(w))−3

∣∣∣∣ ∂f∂w
∣∣∣∣2 = (f(w))−3(

∣∣∣∣∂2f

∂w

∣∣∣∣2 − f ∂2f

∂w∂w̄
) ≥ 0.

From the assumption, our domain is pseudoconvex which implies the Levi form is positive

semidefinite on the complex tangent space (the last inequality). Hence, ρ is a plurisubhar-

monic defining function.
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Lemma 3.2.1. Let Ω be a Hartogs domain in C2, and let K1 and K2 be two compact subsets

of the boundary of Ω. Let U1, and U2 be neighborhoods of K1, and K2 respectively, such that,

K1∩U2 = ∅, K2∩U1 = ∅, and the boundary of Ω is strictly pseudoconvex on bΩ∩Ū1\K1 and

bΩ∩ Ū2 \K2. Let ρ1 and ρ2 be two defining functions for Ω defined on U1 and U2 respectively.

Then, for every 0 < τ3 < 1, there exists a neighborhood U3 of bΩ and ρ3 a defining function

defined on U1 ∪ U2 such that

ρ3 = ρ1 onU1 \ U2

and

ρ3 = ρ2 onU2 \ U1.

Furthermore,

i∂∂̄(−(−ρ3)τ3) ≥ iM3(−ρ3)τ3∂∂̄ |z|2 onU3 ∩ U1 ∩ U2.

Proof. Given χ ∈ C∞(C2) such that 0 ≤ χ ≤ 1, χ = 1 on a neighborhood of U1 \ U2, and

χ = 0 on a neighborhood of U2 \ U1, there exists a defining function ρ3 = χρ1 + (1− χ)ρ2,

and we know eλ3ρ3 − 1 is strictly plurisubharmonic on U1 ∩ U2 for λ3 sufficiently large (see

Theorem 3.4.4 in [7]). By Theorem 3.4.4 in [7], there exists some N3 > 0 such that

i∂∂̄(eλ3ρ3 − 1) > iN3∂∂̄ |z|2 .

We compute

i∂∂̄(eλ3ρ3 − 1) = iλ3e
λ3ρ3(∂∂̄ρ3 + λ3∂ρ3 ∧ ∂̄ρ3) ≥ iN3∂∂̄ |z|2 .

Hence,

i∂∂̄ρ3 ≥ ie−λ3ρ3N3∂∂̄ |z|2
1

λ3

− iλ3

τ3

∂ρ3 ∧ ∂̄ρ3 (3.2.8)
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On the other hand, we want to show

i∂∂̄(−(−ρ3)τ3) ≥ iM3(−ρ3)τ3∂∂̄ |z|2 .

Expanding the left hand side we need

−iτ3(τ3 − 1)(−ρ3)τ3−2∂ρ3 ∧ ∂̄ρ3 + iτ3(−ρ3)τ3−1∂∂̄ρ3 ≥ iM3(−ρ3)τ3∂∂̄ |z|2

which follows from

iτ3(−ρ3)τ3−1∂∂̄ρ3 ≥ iM3(−ρ3)τ3∂∂̄ |z|2 + iτ3(τ3 − 1)(−ρ3)τ3−2∂ρ3 ∧ ∂̄ρ3.

So, we need

i∂∂̄ρ3 ≥ iM3(−ρ3)
1

τ3

∂∂̄ |z|2 + i(τ3 − 1)(−ρ3)−1∂ρ3 ∧ ∂̄ρ3. (3.2.9)

Since ρ3 is close to zero near the boundary, the first term e−λ3ρ3N3∂∂̄ |z|2 1
λ3

in the right

hand side of (3.2.8) is greater than the first term iM3(−ρ3) 1
τ3
∂∂̄ |z|2 in the right hand side

of (3.2.9). Similarly, since 0 < τ3 < 1, the second term in (3.2.8) bounds the second term

(3.2.9).

Proof of Theorem 1.1.2. First we consider the case where bΩ contains an annulus on which

∂δ̃
∂z

= 0. From the assumption, we have 0 < τ < 1 and τ < π
2C ln B

A
+π
. This implies

2τC
1− τ

lnB − 2τC
1− τ

lnA < π,

Since 2τC
1−τ lnB − 2τC

1−τ lnA < π, there exists a constant φ, such that

sin(
2τC

1− τ
ln t+ φ) > 0

on A ≤ t ≤ B.

32



Then there exists ε > 0 such that a positive solution of

−1

4
τ(1− τ)2

(
∂g

∂t
+ t

∂2g

∂t2

)
− C

2

t2
τ 3tg ≥ ετ 3t

C2

t2
(3.2.10)

on A ≤ t ≤ B is given by

g = c1 cos(
2τC

1− τ
ln t) + c2 sin(

2τC
1− τ

ln t)− ε,

where c1 = sinφ ,and c2 = cosφ. Then (3.2.10) becomes

−1

4
τ(1− τ)2

(
∂g

∂t
+ t

∂2g

∂t2

)
> τ 3tg

C2

t2
. (3.2.11)

Define h = g1−τ , and σ = −h(−δ̃)τ . Let a, b and c be as in the proof of Theorem 1.1.1.

As in the proof of that theorem, we have

ab− |c|2 = −τ 2(τ − 1) |ρtw|2 tg −
1

4
τ(1− τ)2

(
∂g

∂t
+ t

(
∂2g

∂t2
− τg−1

(
∂g

∂t

)2
))

− τ 2t

(
g |ρtw|2 +

1

4

1

g
(1− τ)2

(
∂g

∂t

)2
)
.

We compute

ab− |c|2 = −τ 2(τ − 1)tg |ρtw|2−
1

4
τ(1− τ)2∂g

∂t
− 1

4
τ(1− τ)2t

∂2g

∂t2
+

1

4
τ 2(1− τ)2tg−1

(
∂g

∂t

)2

− τ 2tg |ρtw|2 −
1

4
τ 2tg−1(1− τ)2

(
∂g

∂t

)2

.
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After simplifications, we get

ab− |c|2 = −τ 3tg |ρtw|2

+ τ 2tg |ρtw|2 − τ 2tg |ρtw|2 −
1

4
τ(1− τ)2

(
∂g

∂t
+ t

∂2g

∂t2

)
.

From equation (3.2.11), and the fact that our hypotheses imply |ρtw| ≤ C
t

ab− |c|2 > 0 =⇒ Hσ > 0

on M. Since Hσ is strictly positive on a compact set, it is greater than zero on a neighborhood

of M.

Then Hσ ≥ 0 on some neighborhood of the annulus (see also Harrington [19], and Liu

[24]). Therefore, σ is plurisubharmonic in a neighborhood of M .

Next, Suppose M is a disc on which ∂δ̃
∂z

= 0. Then we have shown in Lemma 3.2.1 that

there exists h satisfying (3.2.1). Then on M

∂h

∂z
= − ∂2δ̃

∂z∂w̄
/
∂δ̃

∂w̄
= −4

∂δ̃

∂w

∂2δ̃

∂z∂w̄
. (3.2.12)

The second derivative is given by

∂2h

∂z̄∂z
= −4

∂δ̃

∂w

∂3δ̃

∂z̄∂w̄∂z
− 4

∂2δ̃

∂z̄∂w

∂2δ̃

∂z∂w̄
.

Since h is real, we get

∂2h

∂z̄∂z
= −4Re(

∂δ̃

∂w

∂3δ̃

∂z̄∂w̄∂z
)− 4

∣∣∣∣∣ ∂2δ̃

∂z∂w̄

∣∣∣∣∣
2

. (3.2.13)

Using equation (3.2.6), the above (3.2.13) becomes

∂2h

∂z̄∂z
= 0
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on M. Let

ĥ = eτh−s|z|
2

(3.2.14)

where s > 0 and

σ = ĥ(−δ̃)τ .

As in the proof of Theorem 1.1.1 we set

a = 4ĥτ |ρtwπ(p)|2 t− ∂2ĥ

∂z∂z
. (3.2.15)

After computing the second derivative of ĥ, we get

a = 4τeτh−s|z|
2

|ρtw|2 t− eτh−s|z|
2

(
τ∂h

∂z
− sz̄)(

τ∂h

∂z̄
− sz)− eτh−s|z|

2

(
τ∂2h

∂z∂z̄
− s).

After simplification, we get

a = 4τeτh−s|z|
2

|ρtw|2 t− eτh−s|z|
2

(τ 2

∣∣∣∣∂h∂z
∣∣∣∣2 − τ ∂h∂z sz − sτ z̄ ∂h∂z̄ + s2 |z|2) + seτh−s|z|

2

.

So, (3.1.6) implies

a = 4τteτh−s|z|
2

|ρtw|2 − eτh−s|z|
2

(4t |ρtw|2 τ 2 + 2Re(
∂h

∂z
sz) + s2t+ s).

Hence,

Re(
∂h

∂z
sz) = −4sRe(

∂δ̃

∂w

∂2δ̃

∂z∂w̄
.z) = Re(4

∂δ̃

∂w
ρtw̄ |z|2) = −4tRe(ρwρtw̄).

Rewriting the real part as the sum of a complex number and its conjugate, we get

Re(
∂h

∂z
sz) = −2t(ρwρtw̄ + ρw̄ρtw) = 0.
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The last equality comes from (3.1.5). So

a = eτh−s|z|
2

(s+ 4τ(1− τ)t |ρtw|2 − s2t).

Let

b = −1

4
ĥτ(τ − 1). (3.2.16)

Since τ < 1, we get b > 0. Furthermore,

c = τ

(
ĥρtw̄z̄ +

∂ĥ

∂z

∂δ̃

∂w̄

)
= τeτh−s|z|

2

ρtw̄z̄ + τeτh−s|z|
2 ∂δ̃

∂w̄
(τ
∂h

∂z
− sz̄). (3.2.17)

Using (3.2.12), we get

c = τeτh−s|z|
2

ρtw̄z̄ + τeτh−s|z|
2 ∂δ̃

∂w̄
(τρtw̄z̄ − sz̄),

which is equal to

c = eτh−s|z|
2

(τ(1− τ)ρtw̄z̄ − sτ z̄
∂δ̃

∂w̄
).

So, using (3.1.6)

ab− |c|2 =
1

4
e2τh−2s|z|2{τ(1− τ)(s− s2 |z|2)− τ 2s2 |z|2}.

The above quantity ab− |c|2 > 0 if 1− τ > s |z|2. From the assumption on the disc M , we

have |z|2 ≤ B. So, if s < 1−τ
B
, we get ab−|c|2 > 0. Therefore, since b > 0 and the determinant

of the matrix

L =

a c

c̄ b


is also greater than zero, the matrix L is positive definite. Then Hσ > 0 on the disc, so

Hσ ≥ 0 on a neighborhood of the disc.

Suppose K ⊂ bΩ is a set of weakly pseudoconvex points satisfying the hypotheses of
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Lemma 3.2.2. Lemma 3.2.2 grants that there exists a plurisubharmonic defining function on

K. Following the same procedure in [16], we can construct a Diederich-Fornæss Index of τ

near K.

Finally, we decompose the weakly pseudoconvex points into {Kj} where each Kj is either

a disc, an annulus or {weakly pseudoconvex : ∂δ̃
∂z
6= 0} in the boundary of Ω. Repeated use

of Lemma 3.2.1, shows that there exists a defining function, say ρ3, defined on ∪iUi, where

each Ui is a neighborhood of Ki, such that −(−ρ3)τ is plurisubharmonic.

As shown in Liu [24], we can also show that our results are sharp on the worm domain.

Proof of Corollary 1.1.1. Let ρr be the defining function for the worm domain given by

Definition 2.1.7. We choose r to be fixed, so remove the subscript from ρ. Let w = u + iv,

and z = x+ iy. Then

∂

∂w
=

1

2
(
∂

∂u
− i ∂

∂v
),

∂

∂w̄
=

1

2
(
∂

∂u
+ i

∂

∂v
),

∂

∂u
= (

∂

∂w
+

∂

∂w̄
),

∂

∂v
= i(

∂

∂w
− ∂

∂w̄
).

(3.2.18)

Substituting, we get

∂2ρ

∂u∂z̄
=

∂2ρ

∂w∂z̄
+

∂2ρ

∂w̄∂z̄
(3.2.19)

and

∂2ρ

∂v∂z̄
= i(

∂2ρ

∂w∂z̄
− ∂2ρ

∂w̄∂z̄
). (3.2.20)

For (z, w) ∈Mr, we have

∂ρ

∂w
= e−i ln|z|

2

,
∂2ρ

∂z̄∂w
=
−iz
|z|2

e−i ln|z|
2

,

∂2ρ

∂z∂w
=
−iz̄
|z|2

e−i ln|z|
2

,
∂ρ

∂z̄∂w̄
=

iz

|z|2
ei ln|z|

2

.

(3.2.21)

37



We also have ∂ρ
∂z

= 0. Since

∂ρ

∂w
=

1

2

∂ρ

∂u
− i1

2

∂ρ

∂v
= cos(ln |z|2)− i sin(ln |z|2),

the real normal vector, denoted by ν, is given by

ν = 5ρ = (0, 0, 2 cos(ln |z|2), 2 sin(ln |z|2)),

and the real tangent space is spanned by the following components:

T1 = (1, 0, 0, 0) · 5 =
∂

∂x

T2 = (0, 1, 0, 0) · 5 =
∂

∂y
,

and

T3 = (0, 0,− sin(ln |z|2), cos(ln |z|2)) · 5 = − sin(ln |z|2)
∂

∂u
+ cos(ln |z|2)

∂

∂v
.

We denote ∂
∂ν

= 1
2
5 ρ · 5.

Therefore,

∂

∂w
=

1

2
(
∂

∂u
− i ∂

∂v
) =

1

2
(cos(ln |z|2)− i sin(ln |z|2)) · (cos(ln |z|2)

∂

∂u
+ sin(ln |z|2)

∂

∂v
)

+
1

2
(− sin(ln |z|2)− i cos(ln |z|2){− sin(ln |z|2)

∂

∂u
+ cos(ln |z|2)

∂

∂v
}

=
1

2
e−i ln|z|

2 ∂

∂ν
− i1

2
e−i ln|z|

2

T3.

Hence,

∂2δ̃

∂z̄∂w
=

1

2
e−i ln|z|

2 ∂

∂ν

∂δ̃

∂z̄
− i1

2
e−i ln|z|

2

T3
∂δ̃

∂z̄
.

Since T3 and ∂
∂z̄

are tangential, T3
∂δ̃
∂z̄

= |5ρ|−1 T3
∂ρ
∂z̄
. For justification, see the argument

preceding (2.9) in [17].
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Using (2.1.4), we have ∂
∂ν

∂δ̃
∂z̄

= 0, where ν = (0, 0, 2 cos(ln |z|2), 2 sin(ln |z|2)). We get

∂2δ̃

∂z̄∂w
= −i1

2
e−i ln|z|

2

|5ρ|−1 T3
∂ρ

∂z̄
.

We also have

T3 = ie−i ln|z|
2 ∂

∂w
− ie−i ln|z|

2 ∂

∂w̄
.

Using these formulas, we compute

T3
∂ρ

∂z̄
= − sin(ln |z|2)

∂2ρ

∂u∂z̄
+ cos(ln |z|2)

∂2ρ

∂v∂z̄
.

Using (3.2.19) and (3.2.20), we get

T3
∂ρ

∂z̄
= − sin(ln |z|2 + i cos(ln |z|2))

∂2ρ

∂w∂z̄
(− sin(ln |z|2))− i cos(ln |z|2)

∂2ρ

∂w̄∂z̄
.

This can be simplified using Euler’s Formula as follows:

T3
∂ρ

∂z̄
= iei ln|z|

2 ∂2ρ

∂w∂z̄
− ie−i ln|z|

2 ∂2ρ

∂w̄∂z̄
.

Subsititute (3.2.21), we compute

∂2δ̃

∂z̄∂w
= − i

4
e−i ln|z|

2(
iei ln|z|

2−iz
|z|2

e−i ln|z|
2

− ie−i ln|z|
2 iz

|z|2
ei ln|z|

2)

=
i

4
e−i ln|z|

2 2z

|z|2
,

so, ∣∣∣∣∣ ∂2δ̃

∂z̄∂w

∣∣∣∣∣ =
1

2

1

|z|
. (3.2.22)

From Theorem 1.1.1, we get

τ <
π

2C ln r2 + π
,
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for every C < 1
2
, so

τ ≤ π

ln r2 + π
.

Moreover, Theorem 1.1.2 grants the value of the Diederich-Fornæss Index is at least π
2C ln r2+π

.

Hence, we get the equality.

Remark 3.2.1. Boas and Straube defined Hartogs domains that were nowhere worm-like in

[5]. They show that Condition R is satisfied on these domains. In our setting, Ω satisfies

the condition of nowhere worm-like if and only if ∂2δ̃
∂z∂w̄

= 0 on any annulus in the boundary

of Ω. Therefore, C can be chosen close to 0 in π
2C ln r+π

. Hence, Theorem 1.1.2 grants that the

Diederich-Fornæss Index τ for a nowhere worm-like is equal to one.
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Chapter 4

Good Vector Field Method

4.1 Existence of a Family of Good Vector Fields

Proof of Theorem 1.1.3. Assume we have a family of good vector fields. Since the hypotheses

of Theorem 2.11 in [19] are satisfied, the Diederich-Fornæss Index of Ω equals one.

Conversely, assume that the Diederich-Fornæss Index of Ω is equal to one. In the following

proof, we will make use of Boas and Straube’s result [4], and others [26] which say the

existence of a plurisubharmonic defining function on the boundary implies the existence of

a good vector field.

We will consider each connected component of the weakly pseudoconvex points separately.

First, suppose that B ≥ 0, ∂δ̃
∂z

= 0 and, ∂2δ̃
∂z∂z̄

= 0 on M, where for some w ∈ C

M = {(z, w) : |z|2 ≤ B} ⊂ bΩ.

By Boas and Straube’s result [6], the existence of a family of good vector fields in a neighbor-

hood of a disc M in the boundary is granted. Let K satisfies the hypotheses of Lemma 3.2.1.

Let α be defined by (3.2.2). We get that there exists a function h solving the differential

equation (3.2.1), so dh = α on M. So, the plurisubharmonic defining function is given by

ρ = δ̃eh. Therefore, the result of Boas and Straube [4] ensures the existence of a family of

good vector fields in a neighborhood of M in the boundary.

Next, we will consider the case that we have an annulus in the boundary. From Theorem

1.1.1, if the supremum over all possible τ is equal to 1, we get A = B, or for every C > 0,

there exists (z, w) ∈M such that
∣∣∣ ∂2δ̃
∂w∂z̄

∣∣∣ ≤ C
|z| . The case A = B will be considered later. Let

Cj = 1
j
. Then there exists a sequence {(zj, w)} ⊂ M such that

∣∣∣ ∂2δ̃
∂w∂z̄

(zj, w)
∣∣∣ ≤ 1/j

|z| , for every

j ∈ N. Since M is compact, then there exists a convergent subsequence {(zjk, w)} converging
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to (z̃, w) ∈M. By the continuity of ∂2δ̃
∂w∂z̄

, we get

∣∣∣∣∣ ∂2δ̃

∂w∂z̄
(z̃, w)

∣∣∣∣∣ = 0,

so due to the circular symmetry of the Hartogs domain
∣∣∣ ∂2δ̃
∂w∂z̄

∣∣∣ = 0 on a circle. So, α = 0

on the circle |z| = C, for some real constant C. Next, we will show that we also have a

zero cohomology class [α|M ] = 0 on the annulus that contains |z| = C. Let γ be the path

parametrized by γ(t) = reit. With the notation

z = x+ iy = reit

α(γ(t)) = β(γ(t))dz + β̄(γ(t))dz̄.

We compute

dz = ireitdt

dz̄ = −ire−itdt.

So,

α(γ(t)) = β(γ(t))ireitdt− β̄(γ(t))ire−itdt

and ∫
γ

α = ir

∫ 2π

0

β(reit)eit − β(reit)e−itdt.

Now,

dα =
∂β

∂z̄
dz̄ ∧ dz +

∂β̄

∂z̄
dz ∧ dz̄

= (
∂β̄

∂z
− ∂β

∂z̄
)dz ∧ dz̄.
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Since dα = 0 (see Lemma 3.2.1), we get

∂β̄

∂z
=
∂β

∂z̄
=⇒ ∂β

∂r
=
∂β

∂z
eiθ +

∂β

∂z̄
e−iθ

∂β

∂θ
=
∂β

∂z
ireiθ − ∂B

∂z̄
ire−iθ.

Multiplying the first equation by ir, and then subtract it from the second equation we get

ir
∂β

∂r
− ∂β

∂θ
= 2ire−iθ

∂β

∂z̄
.

So,

eiθ(ir
∂β

∂r
− ∂β

∂θ
) + e−iθ(−ir∂β̄

∂r
− ∂β̄

∂θ
) = 0.

We can write

ir(eiθ
∂β

∂r
− e−iθ ∂β̄

∂θ
) = eiθ

∂β̄

∂θ
+ e−iθ

∂β̄

∂θ
,

and hence,

∂

∂r

∫
γ

α =
1

r

∫
γ

α +

∫ 2π

0

eit
∂β

∂t
(reit) + e−it

∂β̄

∂t
(re−it)dt.

This can be written as

∂

∂r

∫
γ

α =
1

r

∫
γ

α +

∫ 2π

0

∂

∂t
(eitβ + e−itβ̄)dt−

∫ 2π

0

ieitβ(reit)− ie−itβ̄(reit)dt.

Compute

∂

∂r

∫
γ

α =
1

r

∫
γ

α− 1

r

∫
γ

α + 0 = 0.

So, ∫
γ

α = 0, ∀γ,
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where γ is a closed circle.

Therefore, we can define

h =

∫
γ

α,

for an arbitrary path γ with fixed base point.

So,

dh = α.

This shows that we have zero cohomology class on the annulus. By Boas and Straube’s

observation, Remark 5, section 4 of [6], there exists a family of good vector fields.

For the case A = B, we will have a circle on which the normal is constant by the rotational

invariance of Hartogs domains. Using Theorem 1 in [5], we get a family of good vector fields,

see Example 3 in the same reference.
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Chapter 5

Stein Neighborhood Basis

5.1 A Necessary and a Sufficient Condition for the Existence of a Strong Stein

Neighborhood Basis

In this Chapter we provide a condition under which the Stein neighborhood basis exists.

Bedford and Fornæss [2] have introduced a general criteria for the existence of a Stein

neighborhood basis. This criteria is relatively easy to compute on a Hartogs domain. Suppose

M = {(z, w) : A < |z|2 < B} is an annulus in the bΩ for some w ∈ C. For θ ∈ R, we denote

the boundary component of M by γ0 and γ1 which can be parametrized by γ0 = (
√
Beiθ, w)

and γ1 = (
√
Aeiθ, w), respectively. We define c1 =

∫
γ1
α, where α is given by (3.2.2). Let

dcω = i(∂̄ − ∂)ω.

Theorem 5.1.1. (Bedford and Fornæss) Let Ω ⊂ C2 be a strongly pseudoconvex domain at

all points of ∂Ω \ M̄ with C4 boundary, where M ⊂ ∂Ω. Also, assume γ0 and γ1(defined as

above) are boundary components of an annulus in C which is conformally equivalent to M.

Let ω be a solution of the following problem:

1. ω is harmonic on M, ω ∈ C1(M̄)

2.
∫
γ1
dcω = c1

3. ω(z) = 0 for z ∈ γ0.

Then there exists a constant a1 satisfies ω(z) = a1 on γ1.

If |a1| < π then Ω̄ has a Stein neighborhood basis, and if |a1| > π then Ω̄ does not have a

Stein neighborhood basis.
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In our setting,

c1 =

∫
γ1

α =

∫
γ1=
√
Aeiθ
− ∂2δ̃

∂z∂w̄
/
∂δ̃

∂w̄
dz − ∂2δ̃

∂z̄∂w
/
∂δ̃

∂w
dz̄

=

∫
γ1=
√
Aeiθ
−ρtw̄(|z|2 , w)z̄

ρw̄(|z|2 , w)
dz − ρtw(|z|2 , w)z

ρw(|z|2 , w)
dz̄

=

∫
γ1=
√
Aeiθ
−2Re(

ρtw̄(|z|2 , w)

ρw̄(|z|2 , w)
z̄dz).

(5.1.1)

The integrand is constant with respect to θ, so we get

c1 =

∫ 2π

0

−2Re(
ρtw̄(A,w)

ρw̄(A,w)
(iA)dθ) = −2Re(2πiA

ρtw̄(A,w)

ρw̄(A,w)
).

Using (3.1.6), we get

c1 = −2Re

(
2πiA

∂2δ̃
∂w̄∂z

z̄ ∂δ̃
∂w̄

)
. (5.1.2)

We can check

ω =
c1

4π
log
|z|2

B

satisfies the assumption of Theorem 5.1.1.

Using the above result we have

∫
γ1

dcω =

∫
γ1

i(∂̄ − ∂)ω = i

∫
γ1

∂ω

∂z̄
dz̄ − i

∫
γ1

∂ω

∂z
dz

= i

∫
γ1

c1

4π |z|2
zdz̄ − i

∫
γ1

c1

4π |z|2
z̄dz = c1.

When |z|2 = A, we have ω(z) = a1, where a1 is a constant given by

a1 =
c1

4π
log

A

B
.

Hence, if ∣∣∣∣ c1

4π
log

A

B

∣∣∣∣ > π,
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then there is no Stein neighborhood basis, and if

∣∣∣∣ c1

4π
log

A

B

∣∣∣∣ < π,

then a Stein neighborhood basis exists when |z|2 = A.

Proof of Theorem 1.1.4. Let us assume

∣∣∣∣∣ ∂2δ̃

∂z∂w̄

∣∣∣∣∣ < π

2
√
A
∣∣logA

B

∣∣ .
when |z|2 = A. Using equation (3.1.7)

∣∣∣∣∣ ∂2δ̃

∂z∂w̄

∣∣∣∣∣ = |ρtw̄(A,w)z̄| = |ρtw̄(A,w)z̄| = |ρtw̄(A,w)|
√
A.

Using (5.1.2)

|c1| < 8πA

∣∣∣ ∂2δ̃
∂z∂w̄

∣∣∣
√
A

,

so

|a1| =
∣∣∣∣ c1

4π
log

A

B

∣∣∣∣ < 2
√
A

∣∣∣∣∣ ∂2δ̃

∂z∂w̄

∣∣∣∣∣
∣∣∣∣log

A

B

∣∣∣∣ < π.

This implies a Stein neighborhood basis exists.

Next assume
∣∣∣ ∂2δ̃
∂z∂w̄

∣∣∣ > π
2
√
A

∣∣log A
B

∣∣ when |z| =
√
A. The Taylor series in ω for δ̃ near M

is given by

δ̃(z, w) = Re(weiθ(|z|
2)) +O(|w|2),

for some smooth real-valued function θ. On M, we have

∂δ̃

∂w
=

1

2
eiθ|z|

2
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and

∂2δ̃

∂z̄∂w
=

1

2
eiθ(|z|

2)iθ′(|z|2)z.

When |z|2 = A, after plugging into (5.1.2), we get

c1 = 2Re(2πiA
(1/2)eiθ(|z|

2)iθ′(|z|2)z

(1/2)zeiθ(|z|
2)

) = 4πAθ′(A).

On M, we also have

|z|

∣∣∣∣∣ ∂2δ̃

∂z̄∂w

∣∣∣∣∣ =
1

2

∣∣θ′(|z|2∣∣) |z|2 .
Then

|c1| = 8π
√
A

∣∣∣∣∣ ∂2δ̃

∂z̄∂w

∣∣∣∣∣ .
Using our hypothesis, we get

|a1| =
∣∣∣∣ c1

2π
log

A

B

∣∣∣∣ > π.

Theorem 5.1.1 implies that no Stein neighborhood basis exists.

Proof of Corollary 1.1.2. Let M = {(z, w) : A ≤ |z|2 ≤ B}, for some w ∈ C, be an annulus

in the boundary of Ω. For every ε > 0, define for some w ∈ C,

Mε = {(z, w) : A ≤ |z|2 ≤ A+ ε }.

Apply Theorem 1.1.1 to Mε,∀ε > 0, and conclude that ∂2δ̃
∂w∂z̄

= 0 on a circle (rεe
iθ, w) ∈Mε.

On |z|2 = A, we have ∂2δ̃
∂w∂z̄

= 0, by the continuity of ∂2δ̃
∂w∂z̄

. Hence, the existence of a Stein

neighborhood basis is granted by Theorem 1.1.4.

Proof of Theorem 1.1.5 . Following the proof of Theorem 1.1.1, the complex Hessian of σ

is positive semidefinite at p near M satisfying π(p) ∈ M only if the matrix L =

a c

c̄ b

 is

positive semidefinite, where
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a =
(
− ĥτ

(
4 |ρtw(π(p))|2 t

)
+

∂2ĥ

∂z∂z

)
,

b =
1

4
ĥτ(τ − 1)

and

c = τ

(
ĥρtwz̄ +

∂ĥ

∂z

∂δ̃

∂w

)
.

To show that L is positive semidefinite, since τ > 1, b > 0. We are left with showing that

ab− |c|2 ≥ 0.

As before we set ĥ = g(1−τ) for some g > 0, so that

ab− |c|2 ≥ 0 which is equivalent to

−1

4
τ(1− τ)2

(
∂g

∂t
+ t

∂2g

∂t2

)
− τ 3tg |ρtw|2 ≥ 0. (5.1.3)

Our assumptions imply

|ρtw| >
C
t
.

Then, (5.1.3) implies

−1

4
τ(1− τ)2

(
∂g

∂t
+ t

∂2g

∂t2

)
− τ 3tg

(
C2

t2

)
> 0.

We will show that this implies a contradiction.

Let g̃(s) = g(es) i.e., we will use the following substitution t = es, lnA < s < lnB . So,

dg̃

ds
= es

dg

dt

and

d2g̃

ds2
= es

dg

dt
+ e2sd

2g

dt2
.
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Therefore, (5.1.3) will be

1

4
τ(1− τ)2

(
d2g̃

ds2

)
+ τ 3C2g̃ < 0. (5.1.4)

Assume we have a strictly positive function g̃ on some interval I satisfying (5.1.4). After

making the substitution u =
√

τ3C2

1
4
τ(1−τ)2 s = 2τC

τ−1
s, with

2τC
(τ − 1)

lnA < u <
2τC

(τ − 1)
lnB.

We get

d2g̃

du2
+ g̃ < 0. (5.1.5)

If 2τC
(τ−1)

ln B
A
≥ π, then we obtain a contradiction as in the proof of Theorem 1.1.1. Therefore,

we must have

τ

τ − 1
<

π

2C ln B
A

.

From the assumption, we have τ > 1. So, we must have

1−
2C ln B

A

π
> 0 and τ >

1

1− 2C ln B
A

π

.

Proof of Corollary 1.1.3. From the proof of Corollary 1.1.1, (3.2.22), we know that

∣∣∣∣∣ ∂2δ̃

∂z̄∂w

∣∣∣∣∣ =
1

2

1

|z|

on M. Choosing B = r2 and A = 1, Theorem 1.1.4 grants the existence of a Stein neighbor-

hood basis if 1
2
< π

2 ln r2 , and no Stein neighborhood basis can exist if 1
2
> π

2 ln r2 .

For any value of C < 1
2
, the hypotheses of Theorem 1.1.5 are satisfied. So, if there exists

a strictly positive function h such that σ = hδ̃τ is plurisubharmonic on some neighborhood

of Ω̄, Theorem 1.1.5 implies that π
2 ln r2 ≥ 1

2
and τ ≥ π

π−ln r2 .
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Using (5.1.2)

c1 = 2Re(2π(−
2z

4|z|2

1
2
z

)) = 4π,

so, ∣∣∣∣ c1

4π
log

1

r2

∣∣∣∣ < π.

This implies a Stein neighborhood basis exists. From the above theorem τ > π
π−2C ln B

A

, but

for any value of C ≤ 1
2
. This implies τ ≥ π

π−ln r2 .
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