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Abstract

The Diederich-Fornaess Index has played a crucial role in studying regularity of the Bergman
projection on pseudoconvex domains in Sobolov spaces as is shown by Kohn, Harrington,
Pinton and Zampieri and others. In this work, we discuss the Diederich-Fornaess Index on
Hartogs domains, and its relation to other properties connected to regularity of the Bergman
projection. An upper and lower bound for the Diederich-Fornaess Index is calculated for Har-
togs domains and computed sharply for worm domains. Related conditions for the existence

of a strong Stein neighborhood basis for Hartogs domains are introduced.
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Chapter 1

Background Review

1.1 Introduction

A holomorphic function is a solution for the homogeneous Cauchy-Riemann equation du = 0.
A central problem in the study of partial differential equations in several complex variables
is solving the inhomogeneous Cauchy-Riemann equation du = f. If a solution exists, then
we will have many solutions. For any solution u € L?, if we subtract from u its orthogonal
projection onto the kernel of 0 we get the canonical solution. The orthogonal projection
from L%O, q)(Q) onto ker d is denoted by P,, and it is called the Bergman projection. A
domain of holomorphy in C" is a domain on which holomorphic functions cannot extend to
larger domain, for example a convex domain. It is known that Ou = f admits a solution on a
domain of holomorphy whenever 0f = 0. On a domain of holomorphy with smooth boundary,
if derivatives of all order of f extend continuously to the boundary, it is not necessary for
the canonical solution to have the same regularity, as we will see in our discussion of the
worm domain.

The Riemann mapping theorem says if U C C is a simply connected, proper, open
subset, then U is biholomorphic to the interior of the unit disc, i.e., there exists a bijective
holomorphic mapping with a holomorphic inverse defined from U to the interior of the unit
disc. This theorem is not correct in higher dimensions in general. For example, the unit ball
in n dimensions and the cross product of n unit disks are not biholomorphic for n > 1 (see
for example [7]).

Fefferman [14] proved that if we have two smooth bounded strictly pseudoconvex domains
D; and Dy in C", and f : Dy — D, is biholomorphic, then f extends smoothly to the
boundary. Bell and Ligocka [3] showed that the Fefferman theorem is also a consequence of
subelliptic estimates for the solution operator to d, which are known for strictly pseudoconvex

domains.



A smooth bounded pseudoconvex domain is said to satisfy Condition R if the Bergman
projection P associated with € maps the set of smooth functions on € into a set of functions
that is smooth on Q and holomorphic on Q. If we have two smooth bounded pseudocon-
vex domains D; and D,, at least one of them satisfying Condition R in C*,n > 2, and
f : Dy — Dy is biholomorphic, then f extends smoothly to the boundary [3]. This result is
a nuanced substitute for the Riemann mapping theorem in higher dimensions.

The importance of worm domains (see Definition 2.1.7), a class of smoothly bounded
pseudoconvex domains in C2, is due to the fact that they represent a counterexample to
Condition R, i.e., the Bergman projection operator P, fails to be continuous on C*(12), as
is shown in Christ [8] based on work of Barrett [1].

In 1977, Diederich and Fornaess [11] proved that for any bounded pseudoconvex domain €2
with C? boundary in a Stein manifold there exists a C? defining function p on a neighborhood
U of 2 such that p = —(—p)T is strictly plurisubharmonic on €2 for some 0 < 7 < 1, where 7
is called a Diederich-Fornaess exponent. The Diederich-Fornaess Index of €2 is the supremum
of the Diederich-Fornaess exponents taken over all defining functions of €2. Our interest in
Diederich-Fornzess exponents is due to the fact that Kohn [22], Harrington [18], and Pinton
and Zampieri [25] have shown that if the Diederich-Fornzess Index is equal to one with some
additional hypotheses, we get Condition R (global regularity).

Diederich and Forneess [12] have shown that for the worm domain the Diederich-Forneess
Index approaches zero when the winding number approaches infinity. Fornaess and Herbig
[15] have shown that the Diederich-Fornaess Index is equal to one for a smooth bounded pseu-
doconvex domain in C" that admits a plurisubharmonic defining function on the boundary.
Condition R is known to hold on such domains by a result of Boas and Straube [4]. Since
the worm domain is a special case of a larger class of domains called Hartogs domains, we
will focus on studying Hartogs domains.

The presence of an annulus in the boundary of a Hartogs domain plays a crucial rule in

the study of the Diederich-Fornaess Index. Our primary innovation is to use the curvature



term %gg on the annulus in the boundary to compute an upper and lower bound for the

Diederich-Fornzess Index for Hartogs domains.
We denote the distance function from z to the boundary of €2 by §(z) and the signed

distance function by & which is defined as follows
. —8(z) on Q

6(2) = ,
d(z)  outside of €.

Theorem 1.1.1. Let Q C C? be a smooth Hartogs domain, and suppose that for some w € C,

B>A>0andC >0 the set M = {(z,w) : A< |z|> < B} is in b and

||

925 C
m’ > = on M.
Assume there exists a smooth strictly positive function h on 0 such that
o= —h(—=0)"
18 plurisubharmonic on 2, for some 0 < 17 < 1. Then 17 < m
A vy

We also get a lower bound for the Diederich-Fornzess Index if we place an additional

hypothesis on the set of weakly pseudoconvex points.

Theorem 1.1.2. Let Q) be a smooth Hartogs domain, and suppose that for some B > A >0

and C > 0 whenever the set M = {(z,w) : A < |z|> < B} is in bQ for some w € C,

then ‘ﬂ < £

udz| < o] ON M. Moreover, let My = {weakly pseudoconvex point, such that g—f =0},

My = {weakly pseudoconvex points, such that g—i # 0}, and assume M, N My = @ and M,
has only finitely many connected components. Also, assume that for some 7, 0 < 7 <1 and

T < m Then there exists a smooth strictly positive function h on Q such that
A

o= —h(=b)

18 plurisubharmonic on €.

If Q is a worm domain, this allows us to recover a result of Liu [24].



Corollary 1.1.1. Let Q, be a worm domain defined as Q. = {(z,w) : p,(z,w) < 0}, and the
set of weakly pseudoconvex in bQ) is given by the annulus M, = {(z,w) : 1 < |z| < r,w =0}

for some r > 1. Then the Diederich-Fornaess Index is equal to 3.

Remark 1.1.1. We use the original definition of the worm domain. Some recent papers,

including [24], choose a parametrization in which the annulus in the boundary is given by
My = {(z,w) : —5+g <Inlz?<B- g,w:o}

for 3> Z. Under a rescaling with r = exp(B—7%), these two definitions are equivalent. There-
fore, the Diederich-Fornass Index for the worm domain using the second parametrization is

/283, which is the same value computed by Liu [24].

Another sufficient condition for Condition R was introduced by Boas and Straube in
1991. If a domain has a good vector field for some defining function p, then the Bergman
projections FP,, 0 < ¢ < n are continuous on the Sobolev space W?*, s > 0. See Chapter 2 for
the definition of Condition R.

On Hartogs domains, we have the following relationship between the Diederich-Fornaess

Index and the Boas and Straube condition.

Theorem 1.1.3. Let Q be a smooth Hartogs domain in C?, and M, = {weakly pseudoconvex
points, such that g—i = 0}, and My = {weakly pseudoconvez points, such that g—f # 0}.
Assume My, N My = @, and M, has only finitely many connected components. Then the

Diederich-Forness Index equals one if and only if there exists a family of good vector fields

on b§).
Our technique also sheds the light on the study of Stein neighborhood basis.

Definition 1.1.1. Let Q be a domain in C". If for any open domain U containing €,
there exists a pseudoconvex domain Q, such that Q C Q, C U, then we say € has a Stein

neighborhood basis.



Zeytuncu [29] has shown that if the canonical solution to du = f is regular on C'(O‘dl)(Q),
where Q = {(21,2) € C%, 21 € D;|z| < e ¥V}, D is a unit disc in C, and 1 is a smooth
bounded below subharmonic function on D, then 2 has a Stein neighborhood basis. A worm
domain does not have a Stein neighborhood basis when it has a sufficiently large winding
number. The following results introduce conditions under which the existence of a Stein

neighborhood basis is granted.

Theorem 1.1.4. (Bedford and Forness|2]). Let Q be a smooth Hartogs domain, and suppose
that for some B > A > 0 and C > 0 the set M = {(z,w) : A < |z|° < B, w € C} is in b

and
9%
020w

™

pENZIE

826 T A
626117‘ > 57 |logB’ when

when |z| = /A. Then a Stein neighborhood basis for Q exists. If

2| = V/A then no Stein neighborhood basis exists.

Zeytuncu [30] has shown that the existence of a Stein neighborhood basis grants Condition

R. Combining Theorem 1.1.4 with our earlier result, we obtain:

Corollary 1.1.2. Let Q be a smooth Hartogs domain in C*, and My, = {weakly pseudoconvex

95

52 = 0}, and My = {weakly pseudoconvex points, such that g—i # 0}.

points, such that
Assume My N My = @, and M, has finitely many connected components. If the Diederich-

Fornass Index for Q is equal 1, then  admits a Stein Neighborhood basis.

We can also generalize our results on the Diederich-Fornaess Index to a Stein neighborhood

basis:

Theorem 1.1.5. Let €2 be a smooth Hartogs domain, and suppose that for some w € C, B >

< on M.

A >0 and C > 0 the set M = {(z,w) : A < |2|° < B} is in b and ‘%‘ >

Assume there exists a strictly positive function h such that

o= ho"



18 plurisubharmonic on ), for some 7 > 1. Then C < —=% and 7 > —2—.
2lnz 7r72C1nZ

Using Theorem 1.1.5, we describe a sufficient and a necessary condition for the existence
of the Stein neighborhood basis on the worm domain. This characterization is consistent

with the recent work by Yum [28].

Corollary 1.1.3. Let . be a worm domain defined as . = {(z,w) : p.(z,w) < 0} with
weakly pseudoconvex points given by the annulus M, = {(z,w) : 1 < |z] < r,w = 0} in b2
for some r > 1. Then a Stein neighborhood basis exists if ’log%‘ < m, but if there exists
7 > 1 and a smooth function h > 0 such that p = hé™ is plurisubharmonic outside §2, then

T > —— and no Stein neighborhood basis exists if |10g 7%2| > .



Chapter 2

Preliminaries

2.1 Functions and domains in C"
In this section, we will define tools that we use in our research.

Definition 2.1.1. Let z; = z; +iy;, for 1 <j <n and let f be a C' function defined on C".

We use the following notation:

af 1 (af ,af)
= ,

9z 2\o; oy

of _L(or  of
(‘3Ej N 2 8xj 8yj .

Furthermore, dz; = dx; + idy; and dz; = dx; — idy;, and

and

The following is the definition of a holomorphic function.

Definition 2.1.2. Let f(z) be a C' function defined on an open subset D of C".Then f is
called a holomorphic function if f(z) is holomorphic with respect to each of its variables z;.

That is
of
— =0 Vi=12..n.
azj ) j ) Y Y n
The defining function is defined as follows.

Definition 2.1.3. Let D C R*,n > 2 and p € bD. We say D has a C* boundary at p if

there exists a C* real valued function r defined in some open neighborhood U of p such that



DNU ={z:r(zx) <0} and bDNU = {x € U : r(x) = 0,dr(x) # 0}. The function r is
called a local defining function for D near p, and it is called a global defining function for

D, or simply a defining function for D, if U is an open neighborhood of D.

Using a defining function r and the operators 0 and 0, we can define pseudoconvex

domain as follows:

Definition 2.1.4. Let Q@ C C*,n > 2, be a bounded C? domain. Then € is called pseudo-

convex or Levi pseudoconvex at a point p on the boundary if the Levi form

\/

Z 32] apj =0

forallt = (ty,--- ,t,) € C" with 377, t;(£5)(p) = 0, where 1 is a C? defining function for
J
Q. In other words, the Levi form of p, restricted to the boundary, is positive semidefinite on

vectors that are orthogonal to the complex normal.
An exhaustion function for a domain €2 is defined as follows.

Definition 2.1.5. A function ¢ : Q@ — R, Q be an open domain, is called an exrhaustion

function for Q if the closure of {z € Q|p(z) < ¢} is compact for all real numbers c.

Definition 2.1.6. Let p be a C? function defined on Q). Then p is called plurisubharmonic

if and only if for all z € Q)
n an _
tit, >
8zj8§k <Z> % =
=1

for allt = (ty,--- ,t,) € C™

The following is the definition of a worm domain, a smooth pseudoconvex domain. It

was proposed by Diederich and Fornaess [10].

Definition 2.1.7. Suppose we have a smooth function A : R — R satisfying the following

properties:



1. XMz)=0ifz <0

2. Mz)>1ifx>1

3. N'(z) > 100N (z) for all x
4. N(z) >0 ifz >0

5. N(x) > 100 if A(z) > 1.

Let the function p, : C x C — R, for any r > 1, be defined as follows:

L 1
pr(z,w) = |w+ e(“nzz)|2 -1+ )\(‘7 — 1)+ (21" — 7).
z
Then Q, = {(z,w) € C x Clp,(z,w) < 0} is called a worm domain.
The definition of a (p, q) differential form is given by.
Definition 2.1.8. We can write (p,q) form f as:
f= 3 frdd nd?
1=p,|J|=q

where I = (iy,--- ,i,) and J = (j1,- -+ ,J,) are increasing multiindices and the superscript of
the summation refers to the ascending order of the multiindices. Also, dz' = dz;, A--- A\ dz;,

and dz' = dz;, N\ --- Ndz;,. Note that Of is
5f = Z/ 5f[ﬂ] AN dZI N d?’
1.J

which is (p,q+ 1) form.
Definition 2.1.9. Let L?(bS2) denote the space of square integrable functions on bS), and

L%p’q)(bQ) denote the space of (p,q) forms whose coefficients are in L*(bS2). Let

F=3" frsde' ndZ
1,J



and

/
g= E gLszI A dz?
1,J

2

o q)(bQ) where Y is the summation over strictly increasing multiindices.

be (p,q) forms in L

Then we define
(F9) = S frgns) and |51 = X [ Vfrafdv
TR

1,J

where the volume element dV = 1"dz; ANdz1 N -+ Ndz, N\ dz,.

For the sake of completeness, we will present the following definitions, which will be used

in the proof of Theorem 1.1.3.
Definition 2.1.10. A smooth r-form w is closed if dw = 0.

Definition 2.1.11. A smooth r-form w is exact if there exists an (r — 1) form n such that
dn = w.
Since d o d = 0, every exact form is closed, but the reverse is not valid in general.

Definition 2.1.12. Let H" (M) be the r- th de Rham cohomology group of M (a vector space
over R). It is defined as follows

H"(M) = {closed r-forms on M}/{exact r-forms on M}
For a connected M, we have
HY(M) = {the set of constant functions} = R.

Moreover, for a simply connected M, we have H'(M) = 0.
We will focus on studying the Diederich-Fornzess exponents for Hartogs domains in C2.

Definition 2.1.13 (Hartogs domain). We say that Q € C? is a Hartogs domain if it is

invariant under rotation in one of the coordinates. That is, 2 contains (€*z, w) whenever

(z,w) € Q and 0 € R.

10



A stronger notion of Stein neighborhood basis for smooth domains is introduced by

Sahutoglu [9].

Definition 2.1.14. Let Q be a smooth bounded pseudoconvexr domain. We say that Q has a
strong Stein neighborhood basis if there exists a defining function p and a parameter ey such

that the Q. = {z € C": p(z) < o} is a pseudoconvex domain for every 0 < e < e.

2.1.1 The Distance Function

The following result can be found in [20] and [27].

Theorem 2.1.1. For any smooth bounded domain 2 C R™, there exists a neighborhood U
of bSY such that for all x € U

V() = V33(n(x)) - (1+ S@)v?é(w(;p)))l | (2.1.1)

where I denotes the identity matriz and V26 denotes the real Hessian of .

Proof. From Federer [13], we have for all x € 2, sufficiently close to bQ2, 7(z) is the unique

nearest point to x on the boundary of €2, where m(x) is given by

We also have

see for example Theorem 4.8 in [13]. Differentiating both sides with respect to x;, j = 1...n,

we get
87Tk
z T § 53@/1%
4 ] 8$]< )

where

m(z) = 2 — 6(2)0,, ().

11



Here z;, means the k-th component of x. Then for all k,j € {1,2,...,n}

omp(x)  Orp - L
Therefore,
gxewj (1') = gmgibj (77'(33)) - ~xexk (W(x))gxk (%)ij(l‘) — g(l‘) wak(w(;c))gmkm] (SL‘) (2_1.3)

Recall that

)vs(x)f — Vel

where U is some open neighborhood of the boundary of 2. Differentiating both sides in a

direction u € R", we get
n P ~ 9 noo ~
3w ]va@:)‘ =25 G0, (2)8s, () g = 0. (2.1.4)
c?:vk

This implies the second term in (2.1.3) is zero. Hence we get the result.

]

With more calculation, we can reformulate the previous result in complex notation. let
zj = x5 +1y;.

Since

we have
025 _1 ) +1 925 +3' 9265 _3. 925
0z;0zZy  40x;0xy  40y;0y,  40x;0y,  40y;0xy

(2.1.5)

12



Equation (2.1.1) can be approximated for small value of 6(z) by

V23(2) = V3(n(2)) (1 = 3(:)V23(x(2))) + O((6(2))%)
— V2(n(2)) — 8(2) (v25<7r<z>>)2 +0((3(2))2).

By using formula (2.1.5), we get

825(2) B 825(7r(z))
8zj82k n 8zj82k

(m(2) 825(7r(z)) 325(7T(z)) 825(7r(z)) i
(; 82]8335 a.%gazk * 8zjay£ ) aygazk )+O((5

(2))%)-

After we plug in a%j % + % and 5 - =1 (a%j — a%) , we get

) o) = %% 9% 5 9%
52,05 %) = 52,05, ") — () 2 (azjazg 0207 02,05 0207

O  P5  P P 9% 9%
02j0z 07z,0%Z,  0z;0Z, 020%Z, 0z;0z 0z0%
025 ) 025 0925 SR 0925

02,07 0240% 02,0z 020z 0207 070%

So,

0%0(z)  0%(n S ( P(w(2) 9%(n(2))

(9zj(9,zk - (9z15'_k B E 1 < aZjaZg 8Zga§k

The following lemma is from [7].

13



Lemma 2.1.1. For any two local defining functions r1 and o of a domain Q of class C* |1 <
k < oo, in a neighborhood U of p € IS, there exists a strictly positive function h € C*~1 on

U satisfying the following:

(1) ry =hry onU,
(2.1.7)

(2) dri(x) = h(x)dry(z) VYa € UnNbQ.

2.1.2 O-Neumann Regularity

Although this research is not directly connected with the O-Neumann problem, some of our
results will be relevant to this study. Therefore, we provide a brief introduction to the key
terminology and results. The 0-Neumann problem represents an archetypal example of a
boundary value problem with an elliptic operator but with non-coercive boundary conditions.
We start by solving Ou = f, where Of = 0. Since 0> = 0, df = 0 is a necessary condition for
solvability. Define the inner product (f,g) = [,(f, g)dV. The adjoint operator 0* is defined
by the relation (9f,g) = (f,0*g). Integration by parts will introduce a boundary term. In
order for 0* to be a properly defined Hilbert space adjoint operator, we must restrict the
domain of 0* to those forms where the complex normal component vanishes on the boundary.

The 0-Neumann problem is to find the inverse N, of the complex Laplacian 0*0 + 90"
on (0,q) forms when 0 < ¢ < n subject to two boundary conditions u € Domd* and
Ou € Domd*. Hérmander [21] has introduced the fundamental L? existence theorem for
the O-Neumann problem which states that for any 1 < ¢ < n the solution u € L? )(Q)

(0,g—1
for Qu = f exists under the condition that f is a O-closed form in Lﬁqu)(Q), and 2 is
pseudoconvex. Kohn [23] introduced the canonical solution u = 9*N,f. This solution is
orthogonal to the kernel of 0.
Kohn [23] discussed the global regularity of the d-Neumann problem in the L?-Sobolev

spaces W*(Q2) for all nonnegative s on strictly pseudoconvex domains. He discovered an

explicit relationship between the d-Neumann operator and the Bergman projection: P =

14



Id — 0*NO.

The basic estimate ||u|]” < C’(H5u||2 + ||0*u |2) for all u € Dom(9)N Dom (9*) plays an

important rule in proving regularity of the O-Neumann problem in L?. Our next question is

J*u ‘i This

can we generalize this estimate to other Sobolev spaces, i.e, ||u||§ < HéuHi + |
estimate does not hold for all s > 0, as shown by Barrett [1] on the worm domain. If we cover
the boundary of €2 by special boundary charts such that tangential vector fields preserve the
domain of 0%, those vector fields have variable coefficients, so they do not commute with
either 0 or 0* in general. The error terms that come from the commutator need to be
handled. For T" any tangential vector field, we have the a priori estimate

|Tu|)* < ||0Tul|” + || 0°Tu||”.

After some integration by parts, see Chen-Shaw [7, p.131] , we get
T u])” + (| Tul|* < 1FIT + (se) 1Tul® + (se) lfull? + ][0, Thel[* + [[[0°, Tl

This motivates another condition that has been used to define sufficient condition for
condition R: the existence of a family of good vector fields introduced by Boas and Straube
[6]. Suppose there exists a positive constant C' > 0 so that for every ¢ > 0, there exists a
vector field X, of type (1,0) such that the coefficients of X, are smooth in a neighborhood U,
of the set of weakly pseudoconvex boundary points of €2. Moreover, the following conditions
are satisfied
1- largX.p| < e on U., C7! < | X,.p| < C, and
2- Op[X., a%j] <eg, foralll <j<mn,onU,,
for some defining function p. Then the domain () satisfies condition R. The first condition
grants that this family of vector field is transverse to 6€2, and the second condition ensures

the vector field commutes approximately with 0. We will study this condition further in

Chapter Four.

15



Chapter 3

Proof of Main Result

3.1 Upper Bound for Diederich-Fornass Index

In this section, we will calculate an upper bound for the Diederich-Fornsess Index on a
Hartogs domain. In our calculations, we will use the signed distance function as a defining

function for the domain.

Proof of Theorem 1.1.1. Let t = |z|*. Since  is Hartogs, we may assume

S(Zaw) = p(‘Z|2 7w)7

for some smooth function p. Furthermore, we pick p € €2 such that m(p) € M. For such p,

the signed distance function ¢ satisfies

96

5, (7)) =0, (3.1.1)
and
8(1253(%(]9)) = 0. (3.1.2)
From (2.1.2),
g—i(p) =0

as well. We write
o 105 o8
ow  2°90x Oy’

so at p
~ 12 ~ ~
, |06 1,06, 05,
oul —‘aw = G+ G (3.0.3)

16



But because ’V5’ =1, and g—i(p) =0, we get

~ 2
00
% (P)

(3.1.4)

1
2 — —_
|pw(p)|” = 1

Since this is true for all p such that 7(p) € M and M has nonempty interior, we can

differentiate in p. Take the derivative of both sides of (3.1.4) with respect to ¢, we have

PriPw + Prwps = 0. (3.1.5)
Since
9o
& = pt(’z|2 ,’LU)Z,
we have
pi(m(p)) =0
Then
029 2 2 2
920 = pu(|z|"w) 2" + pe(|2]7, w) = pu(m(p)) = 0.
We also compute
) 5
8’(1]82 :pt’w(‘z| 7w)z7 (316)
and
925 _
e pu(|2]* W)z, (3.1.7)
Also, on the boundary we have
) ) )

_ 2 _
9202 - ptt(‘z| ,U))Z g aZ&Z<7T(p)) =0.
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Using (2.1.6), we compute

72327) = =250 (g2 () o) ~
(7)) 5 (7)) + o () (7)) + O((~5())).

So, using (3.1.7) and (3.1.6), we get

L0 (0) = 45)D) o (w))? 2 + O(=50)). (3.1.8)

By our hypothesis, there exists some positive C? function h, such that h(—0)” is a
plurisubharmonic function. Since €2 is a Hartogs domain, using the symmetry property

of Q , we may define h from & as

A~

2m
h(z,w):/ h(e®z,w)d6.
0

We use h to define another rotationally symmetric plurisubharmonic function in z, which is

o= ﬁ(—g)T on 2. Now, we denote the complex Hessian of o at the point p = (z,w) by

2

2 . 8 o 2 820' = 620' 2
Ha’ (|Z| ’w’é.?n) - 82’82 |€| +2R€ 828“)776 + 8'[1)8@ |T]| :

We compute

-~ 0hds  O?h - - 0hdd
- 7'71__ o _\T o 7'71__
AU = it wr =l GME S SN =t

Substituting (3.1.8), we get

882'(;72 (p) = (=0) (437 e (7 () |2 — m) +O((=0(p))™ ).
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Also,

0
Do " 1 0%(=9) (r—2)0 —0) d(0
9000 =" (=9) amaw T DT T )
0
= O(—=h)d(= - 9%h < (~_1yOh 96
_ S\ (-2 T (5T (r-1) 71" FY
TN s o, T s T G ae
So,
o o % L Oh Db
2Re( 52— (p)E) = 2Re( (= hr(=3) " (=pralp)2 — (=) 5 =+ (=0T = )

Using |pra(7(p)) — pra(p)] < O(=0(p)), we get

7 () = 2Re ((hr(=5) " puaz(n(p)) + 7(~5) T 4 O((~d)))én)

020w

2Re(

Furthermore, the third term is given by

which can be further simplified to

020 - .05 90
owow p

Combining these, we have

Hy (s w,€.n) = ((—S)T (4fw o (7 () |27 jza’;) +0 ((—5><T“>)> €f*

o+ 0((=0)))én)

+ zRe((w—S)T*lpm(W(p))z +7(=d)

(Rt = ) A2 00 22 oy Il
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Due to the different order of vanishing in each term, we substitute n = (—0)7 :

. O2h .
H, (|2 w.&,7) = (407 |pra(m(p)) £ = 5= ) (=0)7|¢P

+ 2Re{7’ <ﬁptw(7r(p))z + %g—;) (—S)Tfﬁ} - 1(—5)TBT<T —1) |77|2

+O((=6)™Y).

Note that we have used (3.1.4) here. Next, dividing by (—9)7, then letting (=) — 0, we

have

Ho (|, w,6,7)

lim > 0=
6—0 (—5)7
. 02h . Ohad\ ..\ 1, .
(407 |pra (o)) t= 5= ) [6*+2Re {7 (hpm(p»z + a—a—w> i j—hr(r=1) [l > 0.
Let
8%h
a=hr (4 \th(ﬂp))\zt) ~ 505"
b= ——hr(r —1)
and
- Oh 06
c=T (hptw(ﬂ(p))z + &@)
Note that

. HO' 27 77/\ a ¢ g
i L0 5 g () [0 (€] 20 v (s )

Therefore, the matrix

a c
c b

must be positive semidefinite. Since h>0and0<7<1,b>0o0n M.
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So, we are left with showing the determinant ab — |¢[> > 0.

We compute

oh, oh B
@(IZI W) = at(lZl w) - Z,
and
h oh, O%h . )
(%%(IZI ,w)=§(|2| ,w)+ﬁ(lzl ,w) 2]

We can simplify \0]2 by

|C|2 =CC=TZ (iLth + %%) "TZ (iLth + %Pw)
oh

NE oh
=7 b |pal’ + = (P
T 675 (thPw + ptwpw) at |pw|

Using (3.1.4) and (3.1.5), we get

ot =2 [i] ool + (2@‘)

Here we will calculate the value for ab:

1) (. ah 0%h
ab = T <4hT ’th( ( ))‘ | | - atQ t) )
Compute
) Ohh  ho*h
_ B2 20 2 _ - __
ab = —h*T (7' 1) ’ptw(ﬂ-<p))’ t+ T(T 1) (at 4 + 4 8t2 t) ’
Therefore,

- Ohh ho*h oh
ab— |ef* = —1*r® | pua(r(p)) £ 4 7(r — 1) (m ’ zmﬁ - (815) |

Let g = R/ Since h is positive, the value of ¢ is real and positive. To linearize the
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previous equation, we plug in h= g,

So,

1
ab—|c* = —g® 707 (7 = 1) |pr|* t + ZT(T —1)gt"

_Tag —7629 —7—1 ag ?
((1 T)g yn (1—7)t(g a2 Y e

7_2t 92(1—7') |p7|2 + 1 ((1 _ T)g_T)Q @ 2
T ot) |

Dividing by ¢'~2" we get

ab — ]c|2 B

@l _ 2o L w0 (P9 (09
T (= Dlpwltg = (=1 | 2+t | 55— 07" | 5

We compute

ab — |of* > ) , 1 dg %
pre=ra =g lowl” + g lowl” = Ttglpml” — Jr(L = ) (24t )
s0, ab — |c[> > 0 gives us
1 2 ag 829 3 2
_17(1_7> <g+t@ — 7°tg |pru|” = 0. (3.1.9)
Our hypothesis on ‘%gz implies
ol >
Ptw t
Then, (3.1.9) implies
1 dg 0% C?
—r(l =7 (o g | = 57g >0 3.1.10
47’( T) <8t+ o2 tQT g ( )
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when A <t < B.

We will show that this implies a contradiction unless 7 < . Let g(s,w) = g(e®,w).

| SR
2CLn% +7

We will plug in t = e*, so that InA < s <In B on M.

Then
dg  .dg
— = —
ds dt
and
d2§ dg 2s d2g

a2 Ca T ae

Substituting in (3.1.10) gives us

1 d?g
ZT(1 —7)? <d—8§> + 7°C%§ < 0. (3.1.11)

Let us assume we have a strictly positive function § on some interval I satisfying (3.1.11).

T3C2 27C
%7(1—7’)2

We make the substitution v =

V)
I
»

For u in the range

270 pAcu< S B,
(1—1) (1—1)

we get

—~+§<0. (3.1.12)

™

m. This 1mphes

Assume 7 >

27C | B
1-7) A4

> .

So (3.1.12) holds on an interval of length 7, which implies % < 0. So g is strictly concave.
Therefore there should be an interval of length at least 7 on which g is strictly increasing
or strictly decreasing. If it is strictly increasing we can flip it by a reflection to make it

strictly decreasing. So, after a translation 2 < 0 on [0, %]. In [10], Diederich and Forneess
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have shown in the proof of Theorem 6 that this differential inequality (3.1.12) has no positive
solution g, which is contradicts the assumption. Hence, the conclusion of the theorem follows.

[]

3.2 Lower Bound for Diederich-Fornasess Index

In this section, we will prove technical lemmas that will help us to deal with each connected
component of the set of weakly pseudoconvex points separately. Then we patch the end

results together to prove Theorem 1.1.2.

Lemma 3.2.1. Let Q be a Hartogs domain in C2, and for some w € C, M = {(z,w) : |2|> <

B} C Q2 be a disk in bS). Then there exists a real valued function h such that

)

% = .00 9w on M (3.2.1)
and p = del is plurisubharmonic on M.
Proof. Let
200 99
C Oowdz  0z0w’
and
_dho 950
020z Owow
On M we can assume 8‘5 # 0, because 25 0.
Let
0% 06 029 (95

_azaw/ ow"” 828w/ (3.2.2)

be a one-form. This form is a scalar multiple of D’Angelo’s one form (see [6] for its detailed
analysis).

Next, we will show that « is closed on M.

0 9?6 9o 9?5 9o

da = — 5 828_/_}dz dz+—{—azaw/ tdz A dz.
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Compute
90 9% 926 9% 6 5 .
do = {{_% 970:00 9200 9z00" 90 pdz A d
A 020 020 o, _
+ - Gu w00 * 520w 320 (g 12N 85 (323)

On M
. _ 2
al 1 ool
ow| 4 0207 | 0w
So,
0 (3_50_5)_ 0% 95 % P 00 P 06 P (3.2.4)
020z 0w 0w’  0z20Z0wow = 0zOw 020w 020w IzZ0w = Ow 020z0w o

Since H3(L,L) =0 on M, and Hz(L,L) > 0 on bS2, tangential derivatives of H3(L, L) must

95 0 95 0 on we have

vanish on M. Consider the tangential derivative 52 == 2
w 0w ow Ow’

06 0Hz(L,L) 95 0Hz(L,L)
Y 9n 9o dw 0 on M. (3.2.5)

We compute
1 P66 a5 P05 9%
C 40w0z0Z  0Z0w 020w 0w 020w Ow 0ZO0w’

OH:(L, L)
ow

So, adding four times (3.2.5) to (3.2.4), we have

?Pé 9% 95, 6 9o

,00 0% 00 00, 9% 95 9% (P, 9
ow 0wdz0z 0z0w Ow’ 0z0w  Ow owdz0z 0zZ0w 0z0w " 0w 020Z0w Ow
|9 % | 05 P _
0z0w 0z0w ow 0z0wdz
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Hence,

o5 @5 o8 o5, %5 05, s || 1| o[
Ow 0z0wdz ~ 0z0w Ow’ 0zZ0w 0zO0w ‘0w’ 0z0w 2 |0z0w 2 | 0z0w
On M, we have
~ 12 ~ ~ ~ ~
3@ PN 9% 65_1_8(5 0% B
0z |Ow 020w ow  Ow 0wz
By using this observation, and the property of the distance function that e ) = 16(g—~)
Ow
we get
9% 9% 11| 1) | 1) 19 | 9% (3.2.6)
ow 0zZ0woz 2 | Owdz 2 | 0z0w 2 | 0z0w 2 |0z0w ozow|
So, (3.2.3) can be written as
26 9%
da _{ " 9w 02020w
9% 9% ., 06 26 D6 9% 9% ., 06
* 52005200 (95 fdz ndz+ {{_%azazaw t 5500 9:00" (9w jdz A dz
Compute
25 25
doa = —4 (?5 dzZNdz—4 ? dz Ndz
zZOow 0zo0w
020 9% 9o 5 920 9% 9o
azaw 0z0w (9w> dzZndz+ 0z0w azé’w(aw) dzndz

=0.

Since « is closed and M is simply connected, there exists h such that dh = o on M. Next,
we extend h smoothly to a neighborhood of M. Let h = h + sb, for some number s > 0.

Since %2 = 0, we have aS % Hence, on M, we have (3.2.1).
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For p = el we compute

g % 0w Taw T o
a5,
ow  ow
and
2 N B N 25 N B B 2
d%p o, ,00 @ B h@h@Jr p 020 @eh%+5(eh(%)2)+5ehah _0

_ h_ h — e
9050 = g e e ) = e 5. s

Pp 9, ,0 ~,0h
9200~ 9 30 7% 3

Oh 06 020 05 ,Oh ~,0hOh ~, O%h

h h N i pUre Ot h

=550 ¢ 200 T 9:¢ 90 T 9: 00 T 50w

(s v
“ N\ o200 " 90w |

~ 25
9% _ Oh _ Oh _ BBZBLD
So, 0200 0 on M because 0z — 0z — g—‘? . Furthermore,

>p d 00

-, Oh
— - h’_
Swdn aw(e B + de aw). (3.2.7)
Substitute h = h + s0, in (3.2.7), we get
0?p R Oh 05 9% 96 Oh 9o
win ¢ Bwow * gwow T owow T2 aw| b
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Using (3.1.4) and § = 0 on M, we get

9%p {8h65 9% +a_50_ﬁ+_}
owdw owow  Oowdw  Owow 2

3%p

For a large enough number s, 5>~

> 0. Hence, p will be plurisubharmonic on M.

]

Lemma 3.2.2. Let Q) be a Hartogs domain in C?. If K C 0 is compact, and g—i #0 on K,

then there exists a plurisubharmonic defining function on a neighborhood of K.

Proof. First, we will prove that for every (z,w) € K, we have z # 0. Assume p = (0,w) €
K,w € C, and let {(z;,w;)} be any sequence in b2 converging to p. Let U = (uq,us)
be a unit length vector tangential to b{) at p. We may assume the restricted subsequence
{ \/%} converges to U. Federer [13] considers this as the definition of the tangent
vector, which coincides with the usual definition on a domain with C! boundary. Since € is
a Hartogs domain, (e?z;, w;) € bQ for any € R. This implies (¢?uy,us) is tangential to b

at p for any 6 € R, that is,

o 00 9o

e’ ulaz(P) + U2%(p) =0

for any 0 € R.
From the assumption g—g # 0. Therefore, we must have u; = 0. So, every tangent vector at
p must be in the form (0, uy), which does not fulfill the requirement to span a tangent space
of three real dimensions. Hence, we are allowed to assume that z # 0 for every (z,w) € K.
From the Implicit Function Theorem, locally there exists f(w) such that t = f(w), where
t = |z|? for (z,w) in a neighborhood of b2, and % 7é 0 on a neighborhood of b§2. So,

6(t,w) = 6(f(w), w) = 0.
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Our defining function will be

plt,w) = e8I (¢ — f) = (F(w)) 't — 1.

Since f is uniquely determined, p is globally defined on K. Computing the first and the

1

second derivatives of (f(w))™', we get
O(f(w))™t _ L 0f
PO = ()L
82<f(w))_1 _ -2 5’2f 5| 0f ?
From the pseudoconvexity of Q, H,(L,L)(p) > 0. This implies
of |? - % f
ow| — f<w)8w8w'
O (f(w)) ™! of |? of |?
YN 5 (= |2+ a(pw) 2| 2
_ s|of [
= (7)) 2L

Next, we show that p is a plurisubharmonic defining function near K. We may compute the

second derivatives with respect to z and 2

82P d —1.\ _ -1
L () ) = (fw)

and with respect to w and z
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which is equal to
aQP 2 ) of
dwoz ~ W) T5g

Also, we compute the second derivative with respect to w and w

2

0?p 0 L0f L, O*f 5| 0f
Let
L0 0
L_{Gwaz 8z6w}/|ap|'
Then the Levi form is given by
Pp |op|? 9% Opdp  Pp dpdp  *p |9p| 1
Hy(L, L)(p) = (5= | 22| = n 2P 20 OP 2P0 20|20y —
020z | Ow 0zOw 0z 0w  0z0w owdz Owow |0z |0p|
Using the above derivatives, we get
L|of]f &
_ 127
Turning to the full complex Hessian, we have
o me| | )T —=(f(w) 5L
2 2 _ _ _ 2 _ 2
v aans| | E(F(W) 755 H(=(f(w) g +2(f(w) 7| 5E])
. L, P S|off, L
_ 1 2 39Ty _ 4p4
= () (@) 5+ 2 w) |51 ) 1
t=flvo -2 an -3 ﬁ ’ _ -3 82_f i _ 82f >

From the assumption, our domain is pseudoconvex which implies the Levi form is positive
semidefinite on the complex tangent space (the last inequality). Hence, p is a plurisubhar-

monic defining function. m
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Lemma 3.2.1. Let Q be a Hartogs domain in C?, and let K, and Ky be two compact subsets
of the boundary of ). Let Uy, and Uy be neighborhoods of Ky, and Ky respectively, such that,
KiNUy, = @, KyNU; = @, and the boundary of Q is strictly pseudoconvex on bQNU,\ K, and
QONU,\ K. Let py and pa be two defining functions for Q0 defined on U, and U, respectively.
Then, for every 0 < 13 < 1, there exists a neighborhood Us of bS2 and p3 a defining function
defined on Uy U Uy such that

p3 = pronlU; \ Us

and

p3 = p2 onUs \ Uy.

Furthermore,

285(—(—,03)73) Z ng(—pg)mﬁ(@ |Z‘2 onU3 N U1 N UQ.

Proof. Given y € C*(C?) such that 0 < y < 1, = 1 on a neighborhood of U; \ Us, and
X = 0 on a neighborhood of U, \ Uy, there exists a defining function p3 = xp1 + (1 — x)pa,
and we know e*** — 1 is strictly plurisubharmonic on U; N U, for A3 sufficiently large (see

Theorem 3.4.4 in [7]). By Theorem 3.4.4 in [7], there exists some N3 > 0 such that
i00(eP* — 1) > iN390 |z|* .
We compute
100(eP* — 1) = iX3e™” (DDps + NsOps A Dps) > iN300 |z|° .

Hence,

_ o, 1A _
i0Dps > ie 373 N30 | 2| = iZ20p5 A Dps (3.2.8)
3 73
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On the other hand, we want to show

i00(—(—p3)™) > iMs(—ps)™00 | 2|
Expanding the left hand side we need
—iry(m5 — 1)(—ps) ™ 20ps A Dps + im5(—p3) " 100ps > iMs(—p3)™0 ||
which follows from
iT3(—p3)™ 1 00ps > iMs(—p3)™00 ]2\2 + im3(13 — 1)(—p3)™ 20p3 A Ops.

So, we need

e : L, = : _ =
i00p3 > zMg(—p3)7—386 |2|* 4 i(3 — 1)(—p3) " Dps A Dps. (3.2.9)

Since ps is close to zero near the boundary, the first term e 37 N30 |z|? %3 in the right
hand side of (3.2.8) is greater than the first term ng(—pg)%Gé |z|* in the right hand side
of (3.2.9). Similarly, since 0 < 73 < 1, the second term in (3.2.8) bounds the second term

(3.2.9). O

Proof of Theorem 1.1.2. First we consider the case where b{) contains an annulus on which

dé

3, = 0. From the assumption, we have 0 <7 <1 and 7 < ﬁ This implies
HZ ™
21C 2
™ mB- 7C InA <,
1—7 1—7

Since % InB — % In A < 7, there exists a constant ¢, such that

in 27C
sin
1

Int+¢) >0
-7

on A<t<B.

32



Then there exists € > 0 such that a positive solution of

1 , (09 0% c? . 5, C?
—17(1 —7) (a + tﬁ - t_QT tg > et tt_Q (3.2.10)

on A <t < B is given by

2T . 27C
g = c1 cos( Int) + ¢ sin(
1—7 1—7

Int) — ¢,

where ¢; = sin ¢ ,and ¢y = cos ¢. Then (3.2.10) becomes

1 , (0g 0% 5, C?

Define h = ¢g'7, and ¢ = —h(—09)". Let a,b and ¢ be as in the proof of Theorem 1.1.1.

As in the proof of that theorem, we have

1 ] 92 ) 2
ab — [ = =7*(7 = 1) | p|* tg — 17(1 —7)? (8;;} +1 (8_753 -9 <0_£t7) )>

e eIl (09
Tt<g|ptw| +49(1 7—) at .

We compute

1 dg 1 g 1 {09\
ab— |c|2 = 71— 1ty |pm,|2 — 17(1 — T)2E — ZT<1 — T)Qtw + 17'2(1 —7)tg™? i
1 g\ >
— g loal® - 1t 1= 7 ()
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After simplifications, we get

ab — |c|2 = —7tg |,0tw|2

dg 0%
ot ot? )’

1
+ 72tg | pro|” — 729 | pew| — ZT(l —7)? <— + =2
From equation (3.2.11), and the fact that our hypotheses imply |ps,| < ¢
ab—|c|* >0= H, >0

on M. Since H, is strictly positive on a compact set, it is greater than zero on a neighborhood
of M.

Then H, > 0 on some neighborhood of the annulus (see also Harrington [19], and Liu
[24]). Therefore, o is plurisubharmonic in a neighborhood of M .

Next, Suppose M is a disc on which g—i = (0. Then we have shown in Lemma 3.2.1 that

there exists h satisfying (3.2.1). Then on M

. . < =
% N _aZaiu % - %aiaiu' (8.2.12)
The second derivative is given by
OPho_ 05 5, 90 P
0z0z Ow 0Z0w0z 0zZ0w 020w
Since h is real, we get
. . <2
aizgz = 6(%% -4 azi‘aiu (32.13)

Using equation (3.2.6), the above (3.2.13) becomes

9%h B
0z0z
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on M. Let
h = ekl (3.2.14)

where s > 0 and

As in the proof of Theorem 1.1.1 we set

AhT | pro7(p)|* t & (3.2.15)
a = 4hT |ppm — —. 2.
PrwT\P 020%
After computing the second derivative of ﬁ, we get
oh oh O0?h
a = dremhslel et — 6Th_s|z‘2(76—z - SZ)(Ta—Z — 52) Th_s‘zp(gzaz —5).
After simplification, we get
oh|*>  on oh
a = dremh=sl=? |ptw]2t — eTh_S|Z|2(7'2 5| TESZ - 57'2% + 52 |z|2) + semh=sll”

So, (3.1.6) implies

oh
a = drte™n sl |prw|” — eTh_8|z|2(4t |prw|” T2 + 2Re(a—sz) + 8%t + ).
2

Hence,

< o% _
Re(@sz) = —4sRe( 9 9% z) = Re@%ptw

2 _— — —
ER Y0900 |2[") = —4tRe(puwpra)-

Rewriting the real part as the sum of a complex number and its conjugate, we get

oh
Re(5-s2) = =2t(pupra + popuw) = 0.
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The last equality comes from (3.1.5). So
a = e (s 4 4r(1 — 7)t | pro|? — 5%¢).

Let
b=—-hr(T —1).

Since 7 < 1, we get b > 0. Furthermore,

Using (3.2.12), we get

J
c=reh ol pz 4 TeTh_S‘ZFF(Tpm—,Z — sZ),
w
which is equal to
06
c= eTh_S|Z|2(T(1 — T)praZ — STEF).
w

So, using (3.1.6)

1
ab—|ef = 21— 7)(s = 5 2I°) — 77|l

(3.2.16)

(3.2.17)

The above quantity ab — |¢|*> > 0if 1 — 7 > 5|z|°. From the assumption on the disc M, we

have |z|2 < B.So,if s < 1%, we get ab— |c|2 > 0. Therefore, since b > 0 and the determinant

of the matrix

is also greater than zero, the matrix L is positive definite. Then H, > 0 on the disc, so

H, > 0 on a neighborhood of the disc.

Suppose K C bS) is a set of weakly pseudoconvex points satisfying the hypotheses of
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Lemma 3.2.2. Lemma 3.2.2 grants that there exists a plurisubharmonic defining function on
K. Following the same procedure in [16], we can construct a Diederich-Fornaess Index of 7
near K.
Finally, we decompose the weakly pseudoconvex points into { K;} where each K is either
a disc, an annulus or {weakly pseudoconvex : g—f # 0} in the boundary of Q. Repeated use
of Lemma 3.2.1, shows that there exists a defining function, say ps, defined on U;U;, where
each U; is a neighborhood of K;, such that —(—p3)7 is plurisubharmonic.
O

As shown in Liu [24], we can also show that our results are sharp on the worm domain.

Proof of Corollary 1.1.1. Let p, be the defining function for the worm domain given by
Definition 2.1.7. We choose 7 to be fixed, so remove the subscript from p. Let w = u + v,

and z = x +1y. Then

o 10 0 o 10 0
0 0 0 0 0 0 -

Substituting, we get
Pp  Pp | Pp

= 2.1
5udz  dwds | 0wz (3:2.19)
and
Pp . Pp  Pp
5007~ guoz ~ 9007 (8:2.20)
For (z,w) € M,, we have
@ _ 6—z'ln|z|2 aQP _ __ZZ —iln|z|?
o o | (3.2.21)
62/) _ __712 7i1n\z|2 ap _ i iln|z|2 o
0z0w  |z)? 7 0z0w  |z?
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We also have 8—5 = 0. Since

dp 10p 10p . ,
dw  20u  20v = cos(In|z|”) —isin(In|z|%),

the real normal vector, denoted by v, is given by
v =1x7p=(0,0,2cos(In|z|*), 2sin(In|z|)),
and the real tangent space is spanned by the following components:

T1:(1»0>0,0)V:£

and

_ : 2 2 o 2\ 0 2\ 0
T3 = (0,0, —sin(In|z]"), cos(In|z]")) - v = —sin(In | 2| )8u + cos(In |z )av.

We denote 2 =1 p- .

Therefore,
0 1,0 0 1 0 0
Ee 5(% - z%) = é(cos(ln |2|?) — isin(In |2]*)) - (cos(In |z|2)% + sin(In |z|2)%)
—I—E(— sin(In |z|%) — i cos(In |z|*){ — sin(In |z|2)2 + cos(In |z|2)£}
2 ou v
1 7inz28 1 —iln|z|?
256 1”5—256 1||T3.
Hence,
00 _ 1 _inpp 000 1 _jupapg, 90
9z0w 2 oz 2 S0z
Since T3 and % are tangential, ng—g = \Vp]_l T3g—§. For justification, see the argument

preceding (2.9) in [17].
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Using (2.1.4), we have -2 95 — (), where v = (0,0,2cos(In |2]?), 2sin(In |z|*)). We get

v 0z
RN 1 e - ap
— _i-e —iln|z|

prow = 3¢ VAT g

We also have
2 0 2 0
T3 _ Z€7Un|z| a_w ielen\z| a_ﬂ_)
Using these formulas, we compute
9] 9?p o?
T38_§ = —sin(In |z )W + cos(In |z|2)8v8pz'
Using (3.2.19) and (3.2.20), we get
0 0? o?
Tga—g = —sin(In |z|* + i cos(In |z|2))@w§2(_ sin(In |z]%)) — i cos(In |z|2)aw§2.
This can be simplified using Euler’s Formula as follows:
8p Inlz|2 82p - 2 an
T ¢1n|z| _ i1n|z| )
0z owdz C owoz
Subsititute (3.2.21), we compute
o) U itnlal /e ilnlel2 — %2 _itnlsl? o2 82 2
— _ C—ilnfe|T (s iln|z|” _ *% —iln|z|® _ ;- —iln|z|" _°© iln|z|
9zOw 4" (ie B € |Z\2e )
_ L gimla? 22
D
S0,
25| 11
= 3.2.22
0zow| 2|z ( )

From Theorem 1.1.1, we get

<—
T 20Inr2 +n’
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for every C < %, SO

< T
T —.
T Inr2+4w
Moreover, Theorem 1.1.2 grants the value of the Diederich-Fornaess Index is at least 57775
Hence, we get the equality. O]

Remark 3.2.1. Boas and Straube defined Hartogs domains that were nowhere worm-like in

[5]. They show that Condition R is satisfied on these domains. In our setting, ) satisfies

the condition of nowhere worm-like if and only if % = 0 on any annulus in the boundary

of Q2. Therefore, C can be chosen close to 0 in s Hence, Theorem 1.1.2 grants that the

Diederich-Fornaess Index T for a nowhere worm-like is equal to one.
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Chapter 4

Good Vector Field Method

4.1 Existence of a Family of Good Vector Fields

Proof of Theorem 1.1.3. Assume we have a family of good vector fields. Since the hypotheses
of Theorem 2.11 in [19] are satisfied, the Diederich-Fornzess Index of € equals one.
Conversely, assume that the Diederich-Fornaess Index of €2 is equal to one. In the following
proof, we will make use of Boas and Straube’s result [4], and others [26] which say the
existence of a plurisubharmonic defining function on the boundary implies the existence of
a good vector field.
We will consider each connected component of the weakly pseudoconvex points separately.

First, suppose that B > 0, 85 = 0 and, aa 85, =0 on M, where for some w € C

M ={(z,w) : |z|* < B} C bX.

By Boas and Straube’s result [6], the existence of a family of good vector fields in a neighbor-
hood of a disc M in the boundary is granted. Let K satisfies the hypotheses of Lemma 3.2.1.
Let a be defined by (3.2.2). We get that there exists a function h solving the differential
equation (3.2.1), so dh = « on M. So, the plurisubharmonic defining function is given by
p = 0¢”. Therefore, the result of Boas and Straube [4] ensures the existence of a family of
good vector fields in a neighborhood of M in the boundary.

Next, we will consider the case that we have an annulus in the boundary. From Theorem
1.1.1, if the supremum over all possible 7 is equal to 1, we get A = B, or for every C > 0,

826

there exists (z,w) € M such that < C . The case A = B will be considered later. Let

C; = =. Then there exists a sequence {(z;, )} C M such that ‘ = (25, w )‘ < M for every

| Y

J € N. Since M is compact, then there exists a convergent subsequence {(z;,,w)} converging
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to (Z,w) € M. By the continuity of aigz, we get
0%
zZ,w)| =0,
8w82< ) |
so due to the circular symmetry of the Hartogs domain ‘ ‘ = (0 on a circle. So, @« =0
on the circle |z| = C, for some real constant C. Next, we will show that we also have a

zero cohomology class [a|M] = 0 on the annulus that contains |z|

parametrized by v(t) = re’. With the notation

2 =x+ iy =ret

a(y(t) = B(y(t))dz + B(y(t))dz

We compute

dz = iredt

dz = —ire "dt.

So,
a(y(t)) = B(y(t))ire"dt — B(y(t))ire™ " dt
and
/a —27’/ B(ret)e — B(reit)edt.
Now,

ap 85
da (%d /\dz+§dz/\dz
98 0B,
_(% E)d 2 ANdz.
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Since dov = 0 (see Lemma 3.2.1), we get

08 05 9808, 98
2: 0z o 9. Tazc
96 _0B. o _9B. _i
0 o0z 5z "¢

Multiplying the first equation by ir, and then subtract it from the second equation we get

7”8—6 - 8—6 2i7’e’i98—ﬂ,
or 00 o7
So,
s R
We can write ) _

and hence,

2
ﬁ : 408 o
zt 'Lt it it
8r/a /a+/ +e 825( )dt.

This can be written as

jz/azl/@+/%éhﬁﬁ+eWﬂﬁ—/%wﬂmgﬁ—w”mm%ﬁ
ar’Y T Jy 0 ot 0 '

Compute

1 1
2/oz:—/oz——/oz—l—()zo.
or . rJ, T,

/&ZO, v,
¥

So,
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where 7 is a closed circle.

Therefore, we can define

h:/a,
2!

for an arbitrary path v with fixed base point.
So,
dh = a.

This shows that we have zero cohomology class on the annulus. By Boas and Straube’s
observation, Remark 5, section 4 of [6], there exists a family of good vector fields.

For the case A = B, we will have a circle on which the normal is constant by the rotational
invariance of Hartogs domains. Using Theorem 1 in [5], we get a family of good vector fields,

see Example 3 in the same reference.
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Chapter 5

Stein Neighborhood Basis

5.1 A Necessary and a Sufficient Condition for the Existence of a Strong Stein

Neighborhood Basis

In this Chapter we provide a condition under which the Stein neighborhood basis exists.
Bedford and Forneess [2] have introduced a general criteria for the existence of a Stein
neighborhood basis. This criteria is relatively easy to compute on a Hartogs domain. Suppose
M = {(z,w): A< |z|* < B} is an annulus in the bQ for some w € C. For 6 € R, we denote
the boundary component of M by vy and 7, which can be parametrized by 7o = (\/Eew, w)
and v, = (VAe? w), respectively. We define ¢; = f% a, where « is given by (3.2.2). Let
dw = i(0 — 9)w.

Theorem 5.1.1. (Bedford and Fornass) Let Q C C? be a strongly pseudoconver domain at
all points of 90\ M with C* boundary, where M C 0). Also, assume ~yo and vy, (defined as
above) are boundary components of an annulus in C which is conformally equivalent to M.

Let w be a solution of the following problem:

1. w is harmonic on M, w € CY(M)
2. f% d‘w = ¢,

3. w(z)=0 for zé€.

Then there ezists a constant ay salisfies w(z) = ay on ;.

If |a1| < 7 then Q has a Stein neighborhood basis, and if |a;| > 7 then Q does not have a

Stein neighborhood basis.
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In our setting,

C0z0w' ow ~ 0z0w
[ el b,
m=vacr  pa(]z|*,w) pu(|z|”, w)
:/ —2Re(m’2’w)2dz).
y1=vAet? pa(lz]”, w)

The integrand is constant with respect to 6, so we get

/ 020 a_S i 920 /85
y1=+Aet? 0 0

:/1a

*(A,IU))

27
th(Aaw) . - g Pta
c = —2Re(——————2(1A)dO) = —2Re(2mi A
' / CoalAw) %) Cmid )

Using (3.1.6), we get

925
_ - A Qwdz
c1 = —2Re | 2miAT% o |-

% ow

We can check

satisfies the assumption of Theorem 5.1.1.

Using the above result we have

. ow ow
/ dw = / a 0w %dz —1 Edz

:i/ %zdi—i/ %Edz:cl.
! 4m |Z| 7 dm |Z|

When |z|> = A, we have w(z) = a1, where a; is a constant given by

Cll A
a — log —.
1T 4 %
Hence, if

C1

—log —| >

i 8 B|T™
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then there is no Stein neighborhood basis, and if

< A<
— 108 — T
ir 2B =™

then a Stein neighborhood basis exists when |z|* = A.

Proof of Theorem 1.1.4. Let us assume

0%
020w

™

~ 2oy ]

when |z|> = A. Using equation (3.1.7)

0926
020w

= |pta(A, w)2] = |pras(A, w)2] = |y (A, w)| VA,

Using (5.1.2)

9% ’
9200
loy| < 8mALEZL

VA
SO
926
0z0w

c1 A
=|—log—=| <2VA
] 'AJ ogB\< v

log A <
0og — Tr.
&

This implies a Stein neighborhood basis exists.

%5

Next assume BB

‘ > #Z ‘log%‘ when |z| = v/A. The Taylor series in w for 0 near M
is given by

d(z,w) = Re(wew(|z‘2)) +O(jw]?),
for some smooth real-valued function . On M, we have

ow 2
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and

P61 e
— Ze0U27)50/ (| 52
dzow  2° (2=

When |z|* = A, after plugging into (5.1.2), we get

(1/2)e®=i0 (| 2]%) 2

= 2Re(2miA =47 A0'(A).
c1 Re(2mi (1/2) 2 ) = 4w Af'(A)
On M, we also have
0% | 1
—— 0/ 2 2 )
2l [ | = 5 1812 I
Then
029
=81V A .
el VA 0zZ0w
Using our hypothesis, we get
A
lai| = ‘;—;loggl > .
Theorem 5.1.1 implies that no Stein neighborhood basis exists. O

Proof of Corollary 1.1.2. Let M = {(z,w) : A < |z|> < B}, for some w € C, be an annulus

in the boundary of €2. For every € > 0, define for some w € C,
M. ={(z,w): A< |2’ < A+e}.

Apply Theorem 1.1.1 to M., Ve > 0, and conclude that %gg =0 on a circle (r.e??, w) € M..

On \2\2 = A, we have %gz = 0, by the continuity of %‘2. Hence, the existence of a Stein
neighborhood basis is granted by Theorem 1.1.4. O]

Proof of Theorem 1.1.5 . Following the proof of Theorem 1.1.1, the complex Hessian of o

a c
is positive semidefinite at p near M satisfying w(p) € M only if the matrix L = is

c b

positive semidefinite, where
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%h )

a= (= hr (4lpu(rp)] 1) + 5

and
ST\ PmET e ow )

To show that L is positive semidefinite, since 7 > 1, b > 0. We are left with showing that
ab — |c[> > 0.
As before we set h = g™ for some g > 0, so that

ab — |¢|> > 0 which is equivalent to

1 )
— (1 =7y (-9 + t—g) — 73tg | prul? > 0. (5.1.3)

Our assumptions imply

Then, (5.1.3) implies

1 , (09 0% ., [C?
—47’(1—7’) ((9t+t8t2 — Ttg > 0.

We will show that this implies a contradiction.

Let g(s) = g(e®) i.e., we will use the following substitution t = e*,ln A < s <In B . So,

dj _ .dg
ds  dt
and
25 d
g _ 599 . 289
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Therefore, (5.1.3) will be
17'(1 —7)? &g +7°C%5 < 0 (5.1.4)
4 ds? ' o

Assume we have a strictly positive function g on some interval I satisfying (5.1.4). After

making the substitution u = %TT(TEQT)QS = EL_Cls, with
27C

mA<u< 2 B

(r—1) (t—1)

We get
d*g
— +g<0. 5.1.5
R (5.1.5)
If (3161) In % > m, then we obtain a contradiction as in the proof of Theorem 1.1.1. Therefore,

we must have
T - T
T—1 2CInE’

From the assumption, we have 7 > 1. So, we must have

2CIn £ 1
1-— >0 and 7> —v-—%.
T 1_2Clnz

Proof of Corollary 1.1.3. From the proof of Corollary 1.1.1, (3.2.22), we know that

926
0z0w

11

22|

on M. Choosing B = r? and A = 1, Theorem 1.1.4 grants the existence of a Stein neighbor-

™

hood basis if % < 573, and no Stein neighborhood basis can exist if % > i3
n nr

729
For any value of C < %, the hypotheses of Theorem 1.1.5 are satisfied. So, if there exists
a strictly positive function h such that o = hé™ is plurisubharmonic on some neighborhood

of €, Theorem 1.1.5 implies that T 2 % and 7 > ——

m—lnr?"
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Using (5.1.2)

2z
c1 = 2Re(2m( 4‘;' )) = 4,
52
S0,
C1 1
= log—| <m
This implies a Stein neighborhood basis exists. From the above theorem 7 > %, but
m—2CIn 3
for any value of C < % This implies 7 > ——.
m

o1



1]

[10]

Bibliography
D. E. Barrett, Behavior of the Bergman projection on the Diederich-Fornaess worm,
Acta Math. 168 (1992), no. 1-2, 1-10.

E. Bedford and J. E. Forneess, Domains with pseudoconvex neighborhood systems, Invent.

Math. 47 (1978), no. 1, 1-27.

S. Bell and E. Ligocka, A simplification and extension of Fefferman’s theorem on bi-

holomorphic mappings, Invent. Math. 57 (1980), no. 3, 283-289.

H. P. Boas and E. J. Straube, Sobolev estimates for the O-Neumann operator on domains
in C" admitting a defining function that is plurisubharmonic on the boundary, Math.

7. 206 (1991), no. 1, 81-88.

, The Bergman projection on Hartogs domains in C?, Trans. Amer. Math. Soc.

331 (1992), no. 2, 529-540.

, de Rham cohomology of manifolds containing the points of infinite type, and

Sobolev estimates for the O-Neumann problem, J. Geom. Anal. 3 (1993), no. 3, 225-235.

S-C Chen and M-C Shaw, Partial differential equations in several complex variables,
AMS/IP Studies in Advanced Mathematics, vol. 19, American Mathematical Society,

Providence, RI; International Press, Boston, MA, 2001.

M. Christ, Global C™ irreqularity of the 0-Neumann problem for worm domains, J.
Amer. Math. Soc. 9 (1996), no. 4, 1171-1185.

S. Sahutoglu, Strong Stein neighbourhood bases, Complex Var. Elliptic Equ. 57 (2012),
no. 10, 1073-1085.

K. Diederich and J. E. Fornass, Pseudoconver domains: an example with nontrivial

Nebenhiille, Math. Ann. 225 (1977), no. 3, 275-292.

52



[11]

[13]

[14]

, Pseudoconvexr domains: bounded strictly plurisubharmonic exhaustion functions,

Invent. Math. 39 (1977), no. 2, 129-141.

, Pseudoconvex domains with real-analytic boundary, Ann. Math. (2) 107 (1978),
no. 2, 371-384.

H. Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418-491.

C. Fefterman, The Bergman kernel and biholomorphic mappings of pseudoconvex do-

mains, Invent. Math. 26 (1974), 1-65.

J. E. Fornaess and A.-K. Herbig, A note on plurisubharmonic defining functions in C",

Math. Ann. 342 (2008), no. 4, 749-772.

, A note on plurisubharmonic defining functions in C", Math. Ann. 342 (2008),

no. 4, 749-772.

P. Harrington and A. Raich, Defining functions for unbounded C™ domains, Rev. Mat.
Iberoam. 29 (2013), no. 4, 1405-1420.

P. S. Harrington, Global regularity for the O-Neumann operator and bounded plurisub-

harmonic exhaustion functions, Adv. Math. 228 (2011), no. 4, 2522-2551.

P. S. Harrington, The Diederich-Fornass Index and Good Vector Fields (2017). preprint,
arXiv:1705.05815.

A.-K. Herbig and J. D. McNeal, Convex defining functions for convexr domains, J. Geom.
Anal. 22 (2012), no. 2, 433-454.

L. Hormander, L? estimates and existence theorems for the O operator, Acta Math. 113

(1965), 89-152.

J. J. Kohn, Quantitative estimates for global regularity, Analysis and geometry in several

complex variables (Katata, 1997), pp. 97-128.

23



[23] . Regularity at the boundary of the O-Neumann problem, Proc. Nat. Acad. Sci.

U.S.A. 49 (1963), 206-213.

[24] B. Liu, The Diederich—Forness index I: for domains of non-trivial indez, preprint,

arXiv:1701.00293 (2017).

[25] S. Pinton and G. Zampieri, The Diederich-Forness index and the global regularity of
the 0-Neumann problem, Math. Z. 276 (2014), no. 1-2, 93-113.

[26] E. J. Straube and M. K. Sucheston, Plurisubharmonic defining functions, good vector

fields, and exactness of a certain one form, Monatsh. Math. 136 (2002), no. 3, 249-258.

[27] B. M. Weinstock, Some conditions for uniform H -convezity, lllinois J. Math. 19 (1975),
400-404.

(28] J. Yum, On the Steinness Index (2018). preprint, arXiv:1804.04304.

[29] Y. E. Zeytuncu, Regularity of canonical operators and Nebenhiille: Hartogs domains, J.
Math. Anal. Appl. 409 (2014), no. 1, 236-243.

[30] , Regularity of canonical operators and Nebenhille: Hartogs domains, J. Math.

Anal. Appl. 409 (2014), no. 1, 236-243.

o4



	Hartogs Domains and the Diederich-Fornæss Index
	Citation

	tmp.1544820129.pdf.iBztd

