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Abstract: 

Produce is susceptible to contamination by foodborne pathogens. Food service establishments 

utilize sanitizing agents to reduce microbes on produce surfaces.  The research objectives were to 

evaluate the efficacy of aqueous ozone 1) on the inactivation of viruses and bacteria on produce; 

2) on the inactivation of viruses on stainless steel; and 3) against viruses in association with 

bacteria on produce surfaces. For objective 1, Boston bibb lettuce and cherry tomatoes were spot 

inoculated with a cocktail of viruses (murine norovirus (MNV) and MS2 bacteriophage) or 

bacteria (Enterobacter cloacae and Bacillus cereus) and washed for 40 min with samples taken 

every 10 min. For objective 2, stainless steel (SS) coupons were spot inoculated with the same 

cocktail of viruses and washed for 0.5, 3, and 10 min. For objective 3, Boston bibb was spot 

inoculated with either MNV and E. cloacae or MNV and B. cereus and washed for 40 min with 

samples taken every 10 min. Inocula were allowed to dry for > 90 min. A batch wash ozone 

sanitation system (BWOSS) was prepared with ice (3-5°C) and 0.5 ppm ozone or no ozone. 

Surfaces were treated with either an ozone or water wash with samples taken over time and 

repeated in at least duplicate. Samples were processed to determine plaque forming units (PFU) 

and colony forming units (CFU). In objective 1, there were no significant differences in 

inactivation of MNV, MS2, or bacteria with ozone compared to water only. There was greater 

variability in viral reduction while bacterial inactivation increased over time. In objective 2, there 

was no significant difference in inactivation of MNV or MS2 on SS, but the variability was 

reduced. The log reduction difference between ozone and water for MNV and MS2 after 10 min 

was 0.25 and 0.51 PFU/ml, respectively. In objective 3, MNV-bacteria association on lettuce did 

not impact ozone inactivation of MNV. The log reduction differences between ozone and water 
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for MNV with B. cereus and MNV with E. cloacae after 40 min were 0.95 and -0.36 PFU/ml, 

respectively. Further research is needed on how food matrices effects viral inactivation by ozone. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



4 
 

 

 

 

 

©2018 by Cailin R. Dawley 

All Rights Reserved 

  



5 
 

Acknowledgements: 

I am incredibly grateful for everything that Dr. Kristen Gibson has done for me in my pursuit of 

my Masters. She has been incredibly patient as I learned the ins and outs of research, especially 

tissue culture. Her expanse knowledge in the field is awe inspiring and I am so blessed to have 

spent the last two years learning from her. I also would like to thank Giselle Almeida, laboratory 

assistant for Dr. Kristen Gibson, for her support in my laboratory training and patience as I asked 

countless questions throughout my time here. I also am grateful for my committee members, Dr. 

Ruben Morawicki and Dr. Young Min Kwon, their insight was helpful in the course of my 

research. Kevin Thompson was also a crucial part of this research. He aided in statistical analysis 

and was incredibly helpful with helping me understand my data. Additionally, my lab mates 

were an amazing support system: Sarah Jones, Wenjun Deng, Kacy Wright, Gina Riggio, and 

Thomas Yeargin. They helped solve problems, made media, and reminded me that I was so close 

to being done. I would also like to thank my parents and roommates for listening to me talk 

about my research for the last two years. A major thank you also goes to my campus ministry, 

Razorbacks for Christ, a place where I could go bake cookies when I was stressed and be 

welcomed by several friends that would make me laugh and forget about my massive to-do list. I 

would not have made it through this program without their support. I also know I would not have 

done this if God had not opened this opportunity, and I will be forever grateful that he did 

because this experience has changed my life.  

  



6 
 

Table of Contents: 

Chapter 1: Literature Review 1 

1. Foodborne Illnesses  2 

a. Outbreaks and Fresh Produce 2 

2. Strategies to control pathogens in Retail Food Service  3 

3. Ozone as a disinfectant  5 

a. Ozone inactivation of bacteria  5 

b. Ozone inactivation of viruses 7 

4. Microbe-Microbe Interactions 8 

a. Virus and Bacteria 8 

5. Future Research and Objectives 9 

References  11 

Appendix  16 

 

Chapter 2: Virus-Bacterial Interactions: Implications for Prevention and Control of 

Human Enteric Viruses from Environment to Host 20 

Abstract  21 

1. Introduction 22 

2. In Vivo Implications of Virus-Bacteria Interactions 23 

a. Infectivity and Pathogenesis 24 

b. Protection and Competitive Exclusion 25 

c. Role in Recombination 29 

3. In Situ Implications of Virus-Bacteria Interactions 31 

a. Food Contact Surfaces 31 

b. Water resources-Biofilms 33 

c. Specialty Crops 35 

4. In Vitro Implications of Virus-Bacteria Interactions 37 

5. Conclusion 39 

References 40 

 

Chapter 3: Inactivation of microorganisms on Boston bibb lettuce and cherry tomatoes by 

aqueous ozone 46 

Abstract  47 

1. Introduction 49 

2. Material and Methods  51 

a. Microbe Cultivation 51 

b. Produce 54 

c. Inoculation of Produce 54 

d. Treatments 55 

e. Microbial Analysis 55 

f. Statistical Analysis 56 

3. Results 57 

4. Discussion 59 



7 
 

5. Conclusion 62 

References 63 

Appendix 66 

Chapter 4: Aqueous ozone inactivation of viruses on stainless steel surfaces 70 

Abstract 71 

1. Introduction 72 

2. Material and Methods 73 

a. Microbe Cultivation 73 

b. Stainless Steel 74 

c. Treatments 75 

d. Microbial Analysis 76 

e. Statistical Analysis 76 

3.  Results 76 

4. Discussion 77 

5. Conclusion 78 

References 80 

Appendix 82 

Chapter 5: Aqueous ozone inactivation of viruses in association with bacteria on Boston 

bibb lettuce 83 

Abstract 84 

1. Introduction 85 

2. Material and Methods 86 

a. Microbe Cultivation 86 

b. Microbe-Microbe Interactions 88 

c.  Produce 88 

d. Inoculation of Produce 89 

e. Treatments 89 

f. Microbial Analysis 90 

g. Statistical Analysis 90 

3.  Results 90 

4. Discussion 91 

5. Conclusion  92 

References 93 

Appendix 95 

Chapter 6: Overall Conclusions 97 

References 101 

  

Appendix 102 

IBC Approval Letter 102 

IBC Registration for Research Project 103 

  



8 
 

List of Unpublished Papers 

1. Chapter 2: Dawley, Cailin and Gibson, Kristen. (2018) Virus-Bacterial Interactions: 

Implications for Prevention and Control of Human Enteric Viruses from Environment to Host. 

Foodborne Pathogens and Disease. Submitted for Publication.



1 
 

Chapter 1: Literature Review 

  



2 
 

1. Foodborne Illnesses 

Of 31 major foodborne pathogens, it is estimated there are 9.4 million cases of foodborne 

illness in the United States each year (Scallan et al., 2011). Foodborne pathogens can 

contaminate food anywhere from the farm to the fork, due to the range of environments it incurs 

before reaching the consumer. These environments are the production field, processing facilities, 

transportation, handling by food service establishment employees, or in homes during 

preparation. Foods that are especially susceptible to contamination are produce, dairy, poultry, 

eggs, and beef (Painter et al., 2013). Major foodborne pathogens are introduced into these 

environments through a variety of routes. In some cases, animals are hosts to pathogens such as 

Salmonella, Listeria, Escherichia coli, and Campylobacter (Swartz, 2002). Sometimes humans 

are hosts and can transfer the pathogen (e.g. human norovirus) during handling (Berger et al., 

2010). Of the 31 major pathogens, human noroviruses are the primary cause of foodborne 

illnesses in the United States (Scallan et al., 2011). 

a. Outbreaks and Fresh Produce 

Fresh produce, specifically leafy greens, have been found to be a common source of 

foodborne pathogens resulting in 46% of estimated foodborne illnesses (Painter et al., 2013). 

Norovirus is often associated with leafy greens as well; from 2001-2008, 33% of norovirus 

outbreaks were associated with leafy greens (Hall et al., 2012). Produce is susceptible to 

contamination with pathogens for several reasons. It is consumed raw, unlike products that are 

cooked or pasteurized before eating. Produce is also processed to be ready to eat which can cause 

tears and breaks to the surface of the produce allowing some microbes to grow on the surface or 

be internalized (Benson, 2010). Produce can become contaminated prior to retail or during 

preparation at the food service establishment (FSE). Prior to harvest, contamination can come 
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from the soil, water, or wild animal excrements carrying pathogens that adhere to produce 

(Benson, 2010). Then as produce is transferred from the field to the store there are more 

opportunities for contamination: field workers, packaging, and transportation (Johnston et al., 

2005). At the FSE, the contamination more than likely comes from the employees. This could be 

in the form of poor personal hygiene or from improper hand washing leading to the transmission 

of viruses such as norovirus and Hepatitis A virus (Strohbehn et al., 2008).  

Contamination of fresh produce has led to several outbreaks. For instance, E. coli O157:H7 

has been associated with contaminated leafy greens resulting in various outbreaks. A multistate 

outbreak of E. coli O157:H7 was linked to bagged spinach that was sold for at home use (Grant 

et al., 2008). The authors hypothesized that the bacteria were either internalized by the spinach 

plant in the field or attached to the cut surfaces of the prepackaged spinach. Another outbreak of 

E. coli O157:H7 in Wisconsin was linked to bagged spinach where the pathogen was detected in 

river water, cattle feces, and pig feces near the field the spinach was grown in (Wendel et al., 

2009). Non-typhoidal Salmonella has been associated with outbreaks due to contaminated 

tomatoes. In a multistate outbreak across 26 states, tomatoes were contaminated by Salmonella 

Newport which was found to be present in the irrigation water at the field the tomatoes were 

grown in (Greene et al., 2008).  

2. Strategies to control pathogens in retail food service 

The U.S. Food and Drug Administration (FDA) has published recommendations on how to 

prevent contamination of food products after receiving. It includes separating products, washing 

hands, and cleaning equipment. There is a specific section on washing produce which is as 

follows: 
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Washing Fruits and Vegetables A) Except as specified in (B) of this section and except 

for whole, raw fruits and vegetables that are intended for washing by the consumer before 

consumption, raw fruits and vegetables shall be thoroughly washed in water to remove 

soil and other contaminants before being cut, combined with other ingredients, cooked, 

served, or offered for human consumption in ready to eat form. (B) Fruits and vegetables 

may be washed by using chemicals as specified under 21 CFR 7-204.12 (U.S. 

Department of Health and Human Services, 2009). 

 

Retail and institutional food service can apply several different strategies to control 

pathogens and prevent contamination once produce reaches the retailer. Retailers can take steps 

to prevent improper food handling by workers. These steps can include enforcing good hygiene, 

hand washing, and sending ill workers home. Retailers can also make sure that suppliers are 

following good manufacturing practices (GMPs) to prevent contamination before the products 

reach them. The use of refrigeration when the produce is not being served can keep bacterial 

pathogens from multiplying (Lynch et al., 2009). Retailers can also wash produce with a 

sanitizing solution of chlorine, ozone, or lemon juice and vinegar to reduce microbes on the 

surface of produce (Berger et al., 2010). A study by Allende et al. (2008) investigated 

commercial sanitizing agents for the inactivation of epiphytic microbes on the surface of leafy 

greens via submersion in these sanitizers. The sanitizers they used were chlorine (sodium 

hypochlorite), Sanova (acidified sodium chlorite), Sanoxol 20 (hydrogen peroxide and 

peroxyacetic acid), Tsunami 100 (peroxyacetic acid and hydrogen peroxide), Purac FCC 80 

(lactic acid), Citrox 14W (organic acid and flavonoids) and Catallix (lactoperoxidase, hydrogen 

peroxide and thiocyanate) under the manufacturer’s suggested concentrations and exposure time. 

The researchers found that chlorine, Sanova, Purac FCC 80, Citrox 14W and Catallix all had a 

significant impact on the microbial epiphytes present on the leafy greens compared with the 

water only wash.  
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3. Ozone as a disinfectant 

Ozone (O3) is a strong oxidant that can be effective against several different microorganisms 

(Alexandre et al. 2011). Aqueous ozone is being used in the food industry during produce 

washes, disinfection of processing equipment, and disinfection of the environment (Mahapatra et 

al., 2005) Ozone is an effective disinfectant against E. coli O157:H7, Salmonella, Listeria 

monocytogenes, Staphylococcus aureus, foodborne viruses, and protozoa (Achen et al., 2001; 

Cursons et al., 1980; Lim et al., 2010; Restaino et al., 1995). When considering ozone as a 

disinfectant, it has some positive characteristics that aid in its ability to disinfect and some 

drawbacks that need to be considered. Ozone is soluble in water which creates a solution, but it 

is not stable long term; it will decompose into oxygen over time. Due to the short half-life of 

ozone, there is no residue left on the produce after being washed unlike chlorine that leaves 

residues on produce and surfaces that can be toxic in high concentrations (Karaca and Velioglu, 

2007). 

Ozone is also sensitive to pH as it is more stable in acidic conditions than alkaline (Khadre et 

al., 2001). Additionally, the half-life of ozone is increased at colder temperatures thus enhancing 

its stability (Batakliev et al., 2014). Ozone effectiveness can be impacted by the presence of 

organic matter by changing the pathway of ozone. Some organic matter converts the hydroxyl 

radical into a superoxide radical which slows the effectiveness of ozone while other organic 

compounds can stabilize ozone (Kim et al., 1999).   

a. Ozone inactivation of bacteria 

Ozone has been shown to be effective in inactivating a range of bacteria. Ozone oxidizes 

lipids present in the cell membrane of the bacteria, intracellular enzymes, as well as the bacterial 

genome (Guzel-Seydim et al., 2004). The effectiveness is in relation to the type of bacteria: gram 



6 
 

positive or gram negative. Gram negative bacteria are reported to be less resistant to ozone while 

gram positive bacteria have greater resistance due to the cellular structure of the outer 

membrane. Gram positive bacteria contains a higher concentration of peptidoglycan which is 

more resistant to ozone than the lipoproteins present in gram negative bacteria (Khadre et al., 

2001). Ozone also has the potential to inactivate bacterial spores such as Bacillus cereus by 

degrading the outer spore coat and exposing the core to disinfection (Khadre et al., 2001). 

Ozone has been used with bacteria in suspension and bacteria inoculated on food products. 

Table 1 highlights studies that have used ozone as a sanitizing agent for bacteria. Kim and 

Yousef (2000) investigated the inactivation of bacteria in suspension when exposed to ozone. 

The researchers used a low concentration of ozone (0.2-0.3ppm) and observed at least a one log 

reduction after 30s for all of the microbes tested. Ozone is highly effective against bacteria in 

suspension; however, adding in a food matrix requires higher concentrations of ozone and a 

longer contact time to experience the same reduction. This can be seen in the study by Bialka and 

Demirci (2007). Here, the authors inoculated blueberries with E. coli and Salmonella and 

required over 2 minutes to observe at least a log reduction with a higher concentration of ozone 

(1.7-8.9ppm) compared to the previously mentioned study by Kim and Yousef (2000). The main 

limitation in comparing these studies is the difference between microbes in suspension and 

microbes on the surface of produce which effects the results. Besides the presence of a biotic 

surface, there are two different ways of generating aqueous ozone: ozonated water which was 

utilized in the study by Kim and Yousef (2000) and bubbling ozone which was utilized by Bialka 

and Demirci (2007). Ozonated water is water that ozone has been generated in to reach a certain 

concentration and then the generator of ozone is removed whereas bubbling ozone has a 

continuous supply of ozone added to the water (Achen and Yousef, 2001). Bubbling ozone 
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generates a greater log reduction than ozonated water due to the ozone always being replenished 

(Achen and Yousef, 2001) (Table 1). 

b. Ozone inactivation of viruses  

Viruses are also reportedly susceptible to ozone. This is primarily due to the composition of a 

virus particle. It is genetic material surrounded by a capsid made of proteins that can be 

denatured by ozone thus releasing the genetic material which leads to inactivation (Khadre et al., 

2001). It could also be hypothesized that ozone could damage the viral capsid and lead to an 

inability to bind to receptors which has been documented in thermal treatments (D. Li et al., 

2012).  Ozone inactivation of viruses has been investigated with virus in suspension. Ozone has 

been found to be more effective in deactivating viruses at lower pH’s and with lower 

temperatures. Table 2 highlights studies that have documented the impact of ozone on the 

inactivation of viruses. Lim et al. (2010) investigated the inactivation of murine norovirus 

(MNV) at 5°C and 20°C and at pH 5.6 and 7. The authors observed a more rapid inactivation of 

MNV at 5°C than at 20°C, but this was not significantly different. The pH did have a significant 

impact on the inactivation of MNV, with a more rapid inactivation of the viral surrogate at pH 

5.6 than at pH 7, regardless of temperature. Studies have also been conducted on biotic and 

abiotic surfaces such as green onions and stainless-steel utensils inoculated with viruses. Green 

onions were inoculated with adenovirus, MNV, and Hepatitis A virus, and log reductions of 4.3, 

2.5, and 2.9 were achieved, respectively, in 6.25 ppm ozone after 10 minutes (Hirneisen and 

Kniel, 2013). Gibson and Almeida (2016) reported dipping a stainless-steel utensil in a virus 

solution containing PRD1 bacteriophage then placing the inoculated utensil in a circulating 

ozone washer at 0.5ppm. The authors observed a 6.44 log reduction at 30 seconds (Almeida and 

Gibson, 2016) (Table 2). 
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4. Microbe-Microbe Interactions 

Microorganisms do not exist in monoculture but rather in a diverse community of microbes. 

A community that is often discussed in the food industry are biofilms. Biofilms are 

microorganisms that attach to and multiply on a surface while attracting nutrients (Kumar and 

Anand, 1998). These communities may allow interactions to form which could create stronger 

resistances to being inactivated. Research has begun to investigate these interactions but several 

questions still remain.  

a. Virus and Bacteria 

As previously stated, microbes do not exist in isolation. Microbial communities such as 

biofilms may harbor bacteria including pathogens, but can also protect viruses from desiccation 

and other environmental stressors (Lacroix-Gueu et al., 2005). Similar studies that occurred in 

vivo showed that in the presence of bacteria (gram positive and gram negative) or in the presence 

of bacterial cell components viruses had increased infectivity (Kuss et al., 2011).  

When it comes to foodborne pathogens, human noroviruses are a primary concern due to the 

volume of illnesses. A majority of human noroviruses bind to histo-blood group antigens 

(HBGA) (Huang et al., 2005). Some bacteria, such as enteric bacteria, have been known to 

possess HBGA-like structures that viruses are able to bind to as well (Miura et al., 2013).  Jones 

et al. (2014) took this knowledge and showed that enteric bacteria can act as co-factors to aid in 

viral attachment to B-cells. These studies show that viral interactions with bacteria have the 

potential to exist and increase viability and virulence of the virus.  

i. Disinfection 

Understanding the impact of virus-bacteria interactions on the efficacy of a disinfection 

method is an important research area. If these interactions occur, how do the microbes respond to 
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current disinfection processes? Heat treatment is the only disinfectant that has been applied to 

these interactions thus far. Li et al. (2015) utilized several genera of norovirus allowing the virus 

to interact with various bacteria. Three different treatment groups were evaluated: virus like 

particles (VLPs) of human norovirus GI.1; VLPs of human norovirus GI.1 and bacteria with 

HBGA-like substances; and VLPs of human norovirus GI.1 and bacteria with no HBGA-like 

substances. Results indicated that when viruses interacted with bacteria with HBGA-like 

structures, the viruses had a higher immunoreactivity after applying heat (Li et al., 2015). On the 

other hand,  Li et al. (2017) found that when Tulane virus (TV) was in association with bacteria 

with HBGA-like structures the interaction did not protect the virus against heat inactivation. The 

authors hypothesized that the difference in results was due to the different viruses used: VLPs of 

human norovirus versus a viral surrogate (TV).  

5. Future Research and Objectives 

Due to heat stress being the only form of inactivation that has been applied to virus-bacteria 

interactions, there is a range of possible research in this area of microbiology, such as 

investigating common disinfectants including chlorine, bleach, peroxide, or ozone and their 

impact on viruses in association with bacteria. The disinfectant of interest in this specific study is 

ozone. This is due to ozone being effective against several microbes individually. This could 

mean that ozone might be an effective disinfectant for microbe-microbe interactions that have 

very little published research.  

Ozone washers have been proposed for the retail setting especially for fresh produce. 

Produce is a possible environment that microbe-microbe interactions could occur. Since leafy 

greens have been linked to several outbreaks of foodborne illnesses especially norovirus 
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outbreaks, this commodity is a possible environment that could highlight microbe-microbe 

interactions.  

A batch wash ozone sanitation system (BWOSS) will be used to evaluate the efficacy of an 

ozone washer to inactivate viruses with different attachment times. This research will further 

elucidate the susceptibility of viruses when adhered to different surfaces: Boston bib lettuce, 

cherry tomatoes, and stainless steel. The second area of research focus is to investigate the ability 

of the BWOSS to inactivate viruses associated with bacteria when in combination on the fresh 

produce surface. These interactions could possibly prevent current control strategies from 

working at the optimal level which is important for food safety. 
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Appendix 

 

Table 1. Previous studies on bacterial survival while using ozone 

Bacteria Method of Ozone 

(Aqueous) 

Ozone 

Concentration 

Microbe 

Concentration 

Results Reference 

P. fluorescens Lettuce inoculated and 

washed in water with 

bubbling ozone  

3-10ppm 104 cfu/mL 1.5-1.9 log reduction in 3min 

3.9-4.6 log reduction in 5min 

(Kim et al., 

1999) 

E. coli O157:H7 

L. monocytogenes 

L. mesenteroides 

P. fluorescens 

Cell suspension was 

placed in ozonated water 

and samples taken at 30s 

Varied by batch EC:1-3x109cfu/mL 

LMo:1-2x108cfu/mL 

LMe: 107cfu/ml 

PM: 1-3x109cfu/mL 

EC: 0.3ppm-1.3 log red. 

LMo: 0.4ppm-4.6 log red 

LMe: 0.3ppm-1.3 log red 

PM: 0.2ppm-0.9 log red. 

(Kim and 

Yosef, 

2000) 

E. coli O157:H7 Inoculated apples dipped 

in ozonated water and 

immersed in water with 

bubbling ozone 

Ozonated Water: 

22-24ppm 

Bubbling Ozone: 

25ppm 

109 cfu/mL Maximum decreases: 

OW: 3min immersion 2.6 log 

red 

BO: 3min washing 3.7 log red 

(Achen and 

Yousef, 

2001) 

E. coli O157:H7 

Listeria 

monocytogenes 

Inoculated lettuce and 

strawberries in an 

aqueous ozone till there 

is a one log reduction 

3 ppm 106 cfu/g EC: 1 log reduction in shredded 

lettuce 92s and strawberries in 

20s 

LMo: 1 log reduction in 

shredded lettuce 96s in 

strawberries 20s 

 

(Rodgers et 

al., 2004) 

 

 

 

 

 

 

 

 

1
6
 

EC Escherichia coli O157:H7, LMo Listeria monocytogenes, LMe Leuconostoc mesenteroides, PM Pseudomonas 

fluorescens, S Salmonella enterica, OW ozonated water, BO bubbling ozone 
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Table 1. (Continued) Previous studies on bacterial survival while using ozone 

 

 

Bacteria Method of Ozone 

(Aqueous) 

Ozone 

Concentration 

Microbe 

Concentration 

Results Reference 

E. 

 coli O157:H7 

Lettuce inoculated 

immersed in ozone 

solution in a bag with 

agitation for different 

time 

5.2ppm, 9.7ppm, 

16.5ppm  

8.10log10 cfu/g 5.2 ppm no significant 

reduction 

9.7 ppm 

(10min):1.41log10  

(15min):1.42log10 reduction 

16.5ppm 

(10min):1.68log10 reduction 

(15min):1.8log10 reduction 

 

(Koseki 

and Isobe, 

2006) 

Yersinia 

enterocolitica 

 

Inoculated surfaces of 

potatoes were immersed 

in aqueous ozone for one 

minute 

5 ppm 109cfu/ml 1.6 log reduction in 1 min 

 

(Selma et 

al., 2006) 

E. coli O157:H7 

Salmonella 

enterica 

Inoculated blueberries 

were immersed in 

aqueous ozone solution 

log reductions recorded 

over time 

Varied (1.7-

8.9ppm) 

106cfu/g EC: 2min-1.7ppm-1.3 log red.  

16 min-7.6ppm-2.5 log red. 

64min-8.9ppm-4.9 log red. 

 

S: 2min-1.7ppm-0.7log red. 

16min-7.6ppm-3.5log red. 

64min-8.9ppm-4.7log red. 

(Bialka and 

Demirci, 

2007) 

Shigella sonnei 

 

Shredded lettuce was 

inoculated then 

submerged into different 

ozonate water 

concentrations for 5 min 

1ppm 

2ppm 

5ppm 

109cfu/ml 1ppm: 0.7 log red. 

2ppm: 1.4 log red. 

5ppm: 1.8 log red. 

(Selma et 

al., 2007) 

EC Escherichia coli O157:H7, LMo Listeria monocytogenes, LMe Leuconostoc mesenteroides, PM Pseudomonas fluorescens, S 

Salmonella enterica, OW ozonated water, BO bubbling ozone 

1
7
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Table 2. Previous studies on virus survival while using ozone 

Virus Aqueous Ozone Method Ozone 

Concentration 

Virus 

Concentration 

Results Reference 

Poliovirus 2 

Echovirus 1 

Poliovirus 1 

Coxsackievirus B5 

Echovirus 5 

Coxsackievirus A9 

Viral suspension was added 

with aqueous ozone in a 

beaker and samples were 

collected at 2 min, 20°C, and 

pH 7.2 

0.15ppm 106 PFU/mL PV2: 1.4 log reduction 

EV1: 2.6 log reduction 

PV1: 2.8 log reduction 

CXB5: 2.9 log reduction 

E5: 3.4 log reduction 

CXA9: 3.9 log reduction 

(Roy et 

al., 1982) 

Simian Rotavirus 

SA-11 

Human Rotavirus 

type 2 

Virus in suspension was 

added to ozonated water and 

gently mixed with a stirrer 

with samples taken over time 

at pH 6 and 9 over time 

Varied 107 PFU/mL SA-11 (pH6):  

(0.10ppm) 5 log reduction in 30s 

(0.25ppm) 5 log reduction in 10s  

pH 9 

(0.15ppm) 3.4 log reduction in 

60s 

(0.30ppm) 5 log reduction in 10s 

 

HRV (pH 6): 

(0.05ppm) 5 log reduction in 10s 

pH 9 

(0.10ppm) 5 log reduction in 10s 

(Vaughn 

et al., 

1987) 

Murine Norovirus Virus was suspended in a 

solution and ozonated water 

was then added at two pH 

and temps. Then measured 

by plaque assay 

1ppm 104 PFU/mL 20° (pH 7): 2 log reduction 

20° (pH 5.6): 2.4 log reduction 

5° (pH 7): 2.8 log reduction 

5° (pH 5.6): 3 log reduction 

(Lim et 

al., 2010) 

 

 

 

 

 

 

V2 Poliovirus 2, EV1 Echovirus 1, PV1 Poliovirus 1, CXB5 coxsackievirus B5, E5 Echovirus 5, CXA9 Coxsackievirus A9, SA-

11 Simian Rotavirus SA-11, HRV Human Rotavirus type 2, AD41 Adenovirus 41, MNV Human Murine Norovirus, HAV 

Hepatitis A 

 

 

1
8
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Table 2. (Continued) Previous studies on virus survival while using ozone 

Virus Aqueous Ozone 

Method 

Ozone 

Concentration 

Virus Concentration  Results Reference 

Adenovirus 41 

Human Murine 

Norovirus 

Hepatitis A 

Virus inoculated on the 

surface of onions and 

then placed in water with 

bubbling ozone at 20°C 

for 10min 

6.25ppm AD41: 105PFU/mL 

MNV: 106 PFU/mL 

HAV: 106 PFU/mL 

AD41: 4.3 log reduction 

MNV: 2.5 log reduction 

HAV: 2.9 log reduction 

 

(Hirneisen 

and Kniel, 

2013) 

PRD1 

bacteriophage 

Virus particles were 

added to a solution then 

a stainless-steel scoop 

was dipped in it. Then 

placed in a continuous 

ozone washer 

0.5ppm 105-106 PFU/mL 30s: 6.44 log reduction 

180s: 6.44 log reduction 

 

(Almeida 

and 

Gibson, 

2016) 

 

 

  

 

V2 Poliovirus 2, EV1 Echovirus 1, PV1 Poliovirus 1, CXB5 coxsackievirus B5, E5 Echovirus 5, CXA9 Coxsackievirus A9, SA-11 

Simian Rotavirus SA-11, HRV Human Rotavirus type 2, AD41 Adenovirus 41, MNV Human Murine Norovirus, HAV Hepatitis A 

 

 

1
9
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Chapter 2: Virus-Bacterial Interactions: Implications for Prevention and Control of 

Human Enteric Viruses from Environment to Host   
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Abstract 

Human enteric viruses, specifically human noroviruses (hNoV), are the most common cause of 

foodborne illness boasting a wide range of transmission routes. These include person-to-person, 

contact with contaminated fomites as well as ingestion of contaminated water and food. Because 

of this, the control and prevention of enteric viruses in food and other relevant environments has 

been a research focus over the past few decades. Interestingly, viruses as well as many other 

pathogens are often studied in isolation even though it is known that microorganisms do not 

occur in isolation but rather as part of complex microbial communities—both external from the 

host as well as within the host. Therefore, the overall goal of this review is to present the current 

evidence on virus-microbe interactions as these relate to the infectivity as well as the control and 

prevention of epidemiologically relevant foodborne viruses (such as hNoV) within our food 

systems. Therefore, this review is divided into in vivo, in situ, and in vitro implications of virus-

microbe interactions through discussion of studies investigating the complex relationships 

between human enteric viruses and microbial co-habitants, specifically hNoV and bacteria. 
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1. Introduction 

The U.S. Centers for Disease Control and Prevention (CDC) estimates that there are 9.4 

million foodborne illnesses caused by 31 major pathogens each year in the United States, of 

which 5.5 million of those illnesses are associated with foodborne viruses (Scallan et al., 2011). 

Due to the high prevalence of virus related foodborne illnesses, it is important to characterize 

how viruses behave in food systems in order to implement prevention and control strategies. The 

most common foodborne viruses are human norovirus (hNoV) and Hepatitis A virus (HAV) 

(Hall, 2016). These viruses have various, well-documented modes of transmission including 

from person-to-person, contact with contaminated fomites as well as ingestion of contaminated 

water and food. One of the most common modes of transmission is via infected food handlers 

with inadequate hygiene while in contact with food (Koopmans et al., 2002). In addition, food 

may become contaminated prior to preparation such as during production which is often the case 

with shellfish (e.g., bivalve mollusks) as well as for leafy greens and berries—the most common 

commodities implicated in viral foodborne disease outbreaks (Marsh et al., 2018). With respect 

to shellfish and fresh produce, these commodities are susceptible to contaminants from the 

surrounding production environment, especially from water sources utilized during production 

and processing (Greening and Cannon, 2016).  

While oftentimes pathogens are studied in isolation, it is known that viruses—and 

microorganisms in general—do not occur in isolation but are rather a part of complex microbial 

communities. The most well-known example of a complex microbial community are biofilms 

that form on various types of surfaces. Biofilms are composed of microorganisms that attach to 

surfaces and multiply, and as the microbes multiply the colonies attract nutrients, organic 

compounds, and other microbes thus creating a biofilm (Kumar and Anand, 1998). These 
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microbial communities have had an impact on the food industry for years. Pathogenic microbes 

can be attracted to biofilms that develop on food contact surfaces. Due to this, there is an 

increased chance of contamination in food processing when biofilms are present (Shi and Zhu, 

2009). Biofilms also reside in the natural environment – aquatic and sediment – in which food 

production occurs (Winkelströter et al., 2013). Besides microbial communities in the form of 

biofilms, there are also communities on the surfaces of foods as well as within the human 

gastrointestinal system. These communities are being investigated in order to understand how 

they affect the infectivity and pathogenicity of viruses (Jones et al., 2014; Kuss et al., 2011; 

Monedero et al., 2018).  

The past ten years has seen an explosion of studies attempting to better understand complex 

microbial communities including the interactions of viruses with other microbes (e.g., free-living 

protozoa and bacteria) as well as specific bacterial cell components (Atanasova et al., 2018; 

Hsueh and Gibson, 2015; Moore and Jaykus, 2018). The overall goal of this review is to present 

the current evidence on virus-microbe interactions as it may relate to the infectivity as well as the 

control and prevention of epidemiologically relevant foodborne viruses within our food systems. 

Therefore, this review is divided into in vivo, in situ, and in vitro implications of virus-microbe 

interactions through discussion of studies investigating the complex relationships between 

human enteric viruses and microbial co-habitants, specifically hNoV and bacteria.  

2. In Vivo Implications of Virus-Bacteria Interactions 

It is established that viruses exist in diverse microbial communities, and it is important to 

understand how these ecosystems impact infectivity and pathogenesis of the viruses within the 

host. Several studies utilizing cell culture model systems over the past decade have investigated 

these interactions, and these data are used here to consider the potential implications to the virus 
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host. Moreover, Berger and Mainou (2018) recently provided an in-depth review on the 

interaction of enteric bacteria with eukaryotic viruses—such as those discussed herein—and the 

impact on the viral infection process. 

a. Infectivity and pathogenesis 

One such study by Kuss et al. (2011) explored interactions of poliovirus (PV; serotype 1, 

Mahoney) with bacteria and bacterial cell components. The authors found that when PV is 

incubated in the presence of gram-negative and gram-positive bacteria, the virus had increased 

viability as determined by plaque assays. The largest increase in viability was seen with the 

gram-positive bacterium Bacillus cereus. Further investigation revealed that B. cereus increased 

adherence of PV to HeLa cells thus aiding the infection process. In addition, Kuss et al. (2011) 

reported an increased yield of plaque forming units (PFU) of polioviruses in the presence of 

bacterial components, such as lipopolysaccharide (LPS) and peptidoglycan (PG). Further 

research was conducted based on that of Kuss et al. (2011) findings. Robinson et al. (2014) 

investigated the mechanisms leading to the increase in yield of poliovirus. More specifically, 

following incubation of PV with LPS, the authors observed that LPS associated with PV binds 

directly to the PV receptor. As a result, PV associated with bacterial cell components had an 

increase in attachment to the host cells. It was also discovered that only a few sites on the viral 

capsid—specifically, the lysine amino acid at position 99 located in the surface exposed BC loop 

region of viral protein 1 (VP1)—had to bind with LPS to lead to an increase in attachment.  

 Another study examined murine norovirus (MNV)—a hNoV surrogate—strain types 1 and 

3, and the ability of MNV to infect B cells in the presence of enteric bacteria (Jones et al., 2014). 

To begin, the authors investigated whether MNV infects B-cells which then led the authors to 

determine whether hNoV (GII.4 Sydney) also infected B-cells. Once it was established that 
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hNoV also infected B-cells, further investigation examined what occurs with the addition of the 

enteric bacteria, Enterobacter cloacae. It has been shown that hNoV can bind to histo-blood 

group antigen (HBGA) like structures (Harrington et al. 2004), and E. cloacae is documented to 

possess the H-type HGBA that allows hNoV to bind (Miura et al., 2013). The results of the study 

by Jones et al. (2014) revealed that enteric bacteria, such as E. cloacae, can act as co-factors to 

aid in the virus’s attachment to and infection in B-cells. These two key studies demonstrate that 

the interactions between viruses and specific bacterial strains have the potential to increase 

infectivity during in vitro studies. However, do these observed interactions and enhanced 

infectivity translate to the infection process in the actual host? The authors of the two cell culture 

studies above did in fact use the mouse host to provide further evidence. Both treated one group 

of mice with antibiotics to deplete the natural microbiota in the gut and then challenged the mice 

with poliovirus or MNV. In both studies, the group of mice treated with antibiotics had a 

reduction in viral replication (Jones et al., 2014; Kuss et al., 2011). These results further support 

the idea that virus-bacteria interactions can potentially impact the infectivity of viruses in a host. 

b. Protection and competitive exclusion 

A further review of gut microbiota and viruses indicates that these principles can translate 

into other hosts including humans. In a study investigating the effectiveness of a vaccine against 

porcine rotavirus (pRV)—an enteric virus that infects swine—the researchers first inoculated 

gnotobiotic pigs with either healthy or diseased children’s feces and then administered the pRV 

vaccine (Twitchell et al., 2016). The diseased feces were from children in Nicaragua that 

demonstrated a high enteropathy score (i.e., an indication of intestinal inflammation and poor 

gastrointestinal health) and had previously received the human rotavirus vaccine. Next, the pigs 

were challenged with infectious pRV particles, and the pigs inoculated with healthy feces 
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demonstrated a lower incidence of infection and a stronger adaptive immunity to the pRV 

vaccine than compared to the pigs inoculated with diseased feces. These results indicate that the 

intestinal microbiota affects the infection process of the virus for better (e.g., protective) or for 

worse (e.g., increased susceptibility) (Twitchell et al., 2016). In an editorial by Iturriza-Gómara 

and Cunliffe (2017), the authors discuss the link between the gut microbiome and the efficacy of 

enteric virus vaccines used in areas with elevated morbidity due to infectious disease. Iturriza-

Gómara and Cunliffe highlight the findings of Harris et al. (2017) who reported significant 

differences in the gut microbiota of infants who responded positively versus that of infants that 

responded poorly to an administered RV vaccine. While the difference could be strictly due to a 

decrease in the immune-modulating capacity of the LPS of the more abundant bacteria in the 

infants with low response to the RV vaccine, another theory is possible. More specifically, 

because the RV vaccine contains live attenuated virus, the gut bacteria in the positive response 

group could be expressing HBGA or other relevant glycans that are necessary for RV cell entry 

and replication; thus, these bacteria are helping to elicit an immune response and future 

protection from infection with wild-type RV (Harris et al., 2017). 

Investigations have also explored the role probiotics may play in host protection from and/or 

during viral infection as observed in the Twitchell et al. (2016) study discussed previously. More 

specifically, Rubio-del-Campo et al. (2014) explored the interaction of hNoV (GI.1 and GII.4) P-

particles—the protruding domain of the viral protein 1 [VP1] capsid protein—with lactic acid 

bacteria including Lactococcus lactis and nine types of Lactobacillus sp. along with Escherichia 

coli strain Nissle 1917. The authors observed varying degrees of ability to bind hNoV P-particles 

among all eleven bacteria assayed with the best and worst binding observed for Lactobacillus 

casei BL23 and the gram-negative E. coli Nissle 1917, respectively. Following confirmation of 
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bacterial cell binding, the investigators explored the effects of bacteria on the binding of hNoV 

GI.1 P-particles to HT-29 enterocyte cultures. These studies revealed that total inhibition of P-

particle binding to HT-29 cells was achieved in the presence of high concentrations (OD550 > 

0.5) of E. coli and less so with L. casei BL23. Of more interest, however, is the observation of 

this inhibitory effect only via competitive exclusion (i.e., simultaneous inoculation of bacteria 

and P-particles) and not when HT-29 cells were pre-treated with bacteria or when P-particles 

were already attached to the cells. In the latter scenario, the addition of bacteria to the cells with 

P-particles already attached actually enhanced P-particle retention on the enterocytes by up to 4-

fold depending on the bacteria type and density. Rubio-del-Campo and co-authors hypothesized 

that during competitive exclusion hNoV GI.1 P-particle association with bacterial cells may limit 

binding to HT-29 cells; however, this simple association may not fully explain the inhibitory 

mechanism, especially in the case of E. coli Nissle 1917. It is plausible that this probiotic strain 

of E. coli could prevent hNoV GI.1 P-particle binding to enterocytes via a non-microbicidal 

substance as was previously shown for preventing invasion of intestinal cells by bacterial 

pathogen (Altenhoefer et al., 2004). 

Along with Rubio-del-Campo et al. (2014), additional studies on the role of probiotics in 

both hNoV and its surrogates binding to host cells have also been published. Li et al. (2016) 

investigated the effect of Bifidobacterium adolescentis against both MNV and hNoV virus-like 

particles (VLP). The authors determined that B. adolescentis primarily decreased MNV 

replication in the murine macrophage cell line (RAW 264.7 cells) as opposed to denaturing the 

MNV protein capsid via lactic acid production or inhibition of host cell binding. With respect to 

hNoV VLPs, the authors observed that B. adolescentis actually did impact the binding of VLPs 

to the cells. More specifically, hNoV GI.1 VLP binding to Caco-2 cells was decreased 
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significantly whereas binding to HT-29 cells was marginally impacted. Interestingly, hNoV 

GII.4 VLP binding to Caco-2 cells was not impacted by the presence of B. adolescentis. 

Additional investigations by Shearer et al. (2014) and Aboubkar et al. (2014) also explored 

probiotic interactions with hNoV surrogates—specifically Tulane virus and MNV as well as 

feline calicivirus, respectively. However, these studies primarily consider cell-free spent media 

from probiotic culture for the purpose of viral inactivation. 

Based on this evidence, researchers have recently considered the role gut microbiota may 

play in hNoV infection. Prior to 2016, the hNoV research community relied on surrogates and 

limited human volunteer studies to understand the mechanisms behind hNoV infection 

processes; however, Ettayebi et al. (2016) published the first evidence of reproducible hNoV 

replication using an ex vivo human intestinal enteroid (HIE) model. Following the lead of Jones 

et al. (2014) who reported MNV as well as hNoV infection of B cells in the presence of enteric 

bacteria, Ettayebi and others claimed that hNoV did not require bacterial co-factors for infection 

nor did LPS promote replication. Although, the investigators acknowledge that hNoV replication 

within the HIEs varied greatly by strain type as well as HIE origin (i.e. FUT2 secretor status of 

the patient from which the biopsy was taken). In the area of hNoV-bacteria interactions within 

this new culture model, more work is needed to characterize the individual requirements for 

infection of each hNoV genotype. This is especially apropos given the nearly parallel (in time) 

publication on the role E. cloacae plays in the shedding of hNoV by gnotobiotic pigs inoculated 

with the hNoV GII.4/200b variant (Lei et al., 2016). The authors support the conclusions of 

Ettayebi et al. (2016) with respect to enterocytes specifically being the site of infection. 

However, Lei et al. (2016) also reported that pigs colonized with E. cloacae inhibited hNoV 

infection by reducing both the concentration of hNoV in the feces and the duration of shedding 
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compared to the control group. Similarly, Rodríguez-Díaz (2017) reported that individuals with a 

greater abundance of certain bacterial families—for example, Ruminococcaceae bacteria—might 

have lower susceptibility to infections with RV and hNoV. However, limitations linked to the 

sample population and the interdependency of gut microbiota composition and secretor status are 

not conducive to generalizability of results to the greater population.  

c. Role in recombination 

Besides directly impacting virus infectivity, virus-bacteria interactions in vivo may also 

indirectly play a role in recombination events that viruses can undergo. Recombination happens 

as viruses interact with other viruses during the replication process within the host, and this 

allows the virus to acquire new genes (Worobey and Holmes, 1999). These newly acquired genes 

can lead to viral evolution and a potential increase in virulence (Bull et al., 2007). These 

recombination events can happen in a variety of ways and settings including during animal 

production. For instance, Mattison et al. (2007) examined swine and cattle fecal samples and 

retail meat (raw chicken, beef, and pork) for the presence of noroviruses—both animal and 

human. It has been established that swine and bovine-specific NoV strains are present in these 

animals and can infect their respective hosts (Scipioni et al., 2008). For this reason, the authors 

were interested in whether hNoV strains could simultaneously be present in livestock, and thus 

possibly cause indirect zoonotic transmission through fecal contamination of retail meat 

products. The authors reported the detection of human-like GII.4 (genogroup II, cluster 4) NoV 

in cattle and swine fecal samples alongside GIII (bovine) and GII.18 (swine). In addition, one 

raw pork meat sample tested positive for a hNoV in the GII.4 cluster. Since hNoV strains were 

found to be in the presence of NoV strains infectious to cattle and swine, Mattison et al. (2007) 

suggested the opportunity for recombination of the virus along with its new virulence factors. 
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More recently, Sisay et al. (2016) confirmed the presence of hNoV GII.1 in collected swine fecal 

samples—demonstrating both zoonotic as well as viral evolutionary potential. 

Other studies have investigated the whole virome—a collection of viruses that make up a 

viral community within a given ecosystem. A study by Shan et al. (2011) looked specifically at 

the virome of food production animals. Here, the authors explored the virome associated with the 

feces of healthy and diarrheic piglets on high density farms. The majority (68%) of classified 

sequences in the piglets’ intestines were viruses with 99% of those being mammalian RNA 

viruses from the families Picornaviridae (kobuviruses, enteroviruses), Astroviridae, 

Coronaviridae, and Caliciviridae (sapoviruses). Shan and co-authors posit that the level of 

presumed co-infection of diverse viruses observed in their study presents favorable conditions 

for viral recombination and viral evolution. In the context of virus-bacteria interactions, what 

role do these interactions play in co-infections and the possibility of allowing accelerated viral 

evolution? Fortunately, an in vitro study by Erickson et al. (2018) took this step forward. The 

authors investigated the bacterial strains that aid in co-infection of cells and found that, when co-

infection occurs, the bacteria 1) aids in recombination events and 2) prevents deleterious 

mutations from occurring, ultimately causing an advantageous impact on the fitness of the virus 

and viral population diversity. The authors established this using poliovirus (serotype 1 

Mahoney) and forty-one bacterial isolates recovered from the feces of healthy mice. Through 

experimental procedures, Erickson and co-authors were able to observe a 4.6-fold increase in 

recombination in the presence of co-infection aiding bacteria over the control group that 

contained no bacteria. 

The research presented above provides evidence that virus-bacteria interactions can increase 

viability and virulence by allowing co-infection and recombination of viruses. There are still 
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many questions on how these interactions affect human viruses since most research is completed 

using virus surrogates. These surrogates represent the human enteric virus well, but do not 

behave completely like the human strains.  

3. In Situ Implications of Virus-Bacteria Interactions 

Besides the interactions within the body, viruses can also form interactions with bacteria in 

the environment, whether on surfaces, conduits, or food. Biofilms are an example where 

microbial communities aid in persistence of microbes which in this case could include viruses. 

Biofilms are composed of microbes that adhere to a surface and include bacteria that secrete 

extracellular polymeric substances (EPS). The EPS act as a binding agent and allows the 

microbes to stay attached and attract other microbes to the biofilm creating a community of 

diverse microbes. Similar to bacteria, viruses can imbed themselves into bacterial biofilms to 

gain protection from desiccation and other environmental stressors (Lacroix-Gueu et al., 2005). 

While previous work is related to bacteriophage in biofilms, it gives merit to the hypothesis that 

these microbial communities present in situ have an impact on foodborne viruses as a result of 

the interactions between human enteric viruses and bacteria. 

a. Food contact surfaces  

Food products have natural microflora—some may be pathogenic, while others are naturally 

occurring (Wang et al., 2017). As food is processed, the ingredients and products encounter non-

porous surfaces where microorganisms can be transferred resulting in adherence to the surface 

and possibly biofilm formation. There have been several studies that look at the development of 

biofilms with bacterial foodborne pathogens such as Staphylococcus aureus, Salmonella, Listeria 

monocytogenes, and Escherichia coli O157:H7 (da Silva Meira et al., 2012; Di Bonaventura et 

al., 2008; Dourou et al., 2011; Yang et al., 2009). Because viruses do not propagate outside of a 
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host, studies on viruses and fomite surfaces have been limited to investigating their persistence 

under varying conditions. For instance, Escudero et al. (2012) examined viral persistence on 

food contact surfaces (stainless steel, ceramic, and formica) and reported that hNoV GI.1 

(Norwalk strain), GII.2 (Snow Mountain strain), and MNV (type 1) were able to survive on 

surfaces for 42 days. These results have been substantiated by other researchers as reviewed by 

Kotwal and Cannon (2014). Unfortunately, most published studies investigate viruses in 

isolation as opposed to in complex microbial systems, such as biofilms, that are present in the 

real-world. This paucity of published data related to interactions between viruses and bacteria on 

surfaces was also previously noted by Vasickova et al. (2010). 

Recently, Schumacher et al. (2016) investigated the spread of porcine epidemic diarrhea 

virus (PEDV)—an animal coronavirus—within an animal food manufacturing facility. The 

authors reported that one batch of feed contaminated with PEDV distributed the virus to both 

animal and non-animal food contact surfaces throughout the facility. Moreover, the control 

measures typically employed for the prevention of cross-contamination of bacterial contaminants 

were not adequate for the control of PEDV. While the authors did not specifically look at the 

interaction of PEDV with bacteria, research has shown that—once diffusion through the biofilm 

occurs—viruses can utilize the protective aspects of the biofilm in order to avoid environmental 

stressors (Bridier et al., 2015; Habimana et al., 2011). It can be speculated that specific 

associations of viruses with bacteria may allow for easier entry of virus particles into the biofilm 

resulting in a reservoir of viruses that are as difficult to remove and inactivate as their bacterial 

counterparts (Belessi et al., 2011; Corcoran et al., 2014; Coughlan et al., 2016). However, 

specific studies on virus-bacteria interactions on food contact surfaces are nearly nonexistent and 

is an area that needs to be further explored.  
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b. Water resources – Biofilms  

Biofilms in our water conveyance systems are not a novel occurrence and have been 

investigated for years. A review by Skraber et al. (2005) examined how viruses in water 

distribution systems can cause health concerns. Another review by Wingender and Flemming 

(2011) discussed research on the ability of pathogenic bacteria to persist in drinking water 

biofilms and act as reservoirs for a variety of pathogenic microorganisms. These reviews point to 

similar references, such as Quignon et al. (1997). The authors of this seminal study demonstrated 

that viruses can incorporate into biofilms within water distribution systems. The researchers 

evaluated how poliovirus-1 (Sabin strain) behaved in a water distribution system and found that 

the virus was always recovered at a higher percentage from the biofilms than from the water 

alone. The main concern within the water industry is that sloughing off of the biofilm can occur 

and result in pathogenic microorganisms reaching the consumer (Ashbolt, 2015). This 

transmission of pathogens via water to the consumer could occur either directly or indirectly. 

Directly from drinking the contaminated water while indirectly via consumption of contaminated 

food products that have come in contact with the water through irrigation or processing (Lynch 

et al., 2009).  

There are several types of microbes that have been detected in irrigation waters, and 

Uyttendaele et al. (2015) recently published a thorough review of irrigation water quality in the 

fresh produce industry. A study conducted in Belgium monitored microbes not only on the 

surface of the produce but also in the irrigation water of several farms (Holvoet et al., 2014). The 

authors found that within the irrigation water E. coli were a regular occurrence with positive 

detection in 75% of the samples and that Campylobacter spp. was occasionally detected with a 

30.9% presence in samples. As indicated by Holvoet and co-authors, the prevalence of both 
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Campylobacter and E. coli was quite high and comparable to previous reports. Of the farms that 

were sampled, six used open wells and two used bore hole water for irrigation, and the samples 

were collected either from the water source or if able, from the outlet of irrigation. While this 

study targeted only bacteria, it provides evidence of the susceptibility of irrigation water sources 

to human pathogens including viruses as reported by Kokkinos et al. (2017). 

Regarding viruses, Kokkinos et al. (2017) investigated the presence of enteric viruses in 

irrigation waters within leafy green and berry production chains in multiple countries. The 

researchers reported Hepatitis E virus and hNoV GII in 1 of 20 and 4 of 28 samples within leafy 

green production, respectively. In berry production, norovirus GII was detected in 2 of 56 

samples. Here, the water samples were collected from a variety of systems in which water was 

most often pumped directly to the produce while some production water sources were stored in 

open basins. In these instances, the contamination could be introduced via direct fecal 

contamination or even association with and detachment from biofilms within the water pipes. For 

instance, Pachepsky et al. (2012) focused on the effect of biofilms in aluminum irrigation pipes 

and observed that the concentration of E. coli was always greater in the biofilm rather than the 

water. Moreover, E. coli concentrations were higher in the sprinkler water, or irrigation output, 

than the intake creek water—indicating the release of microbes from the biofilms. Given that 

viruses can associate with E. coli along with other bacteria within biofilms, one can speculate 

that viruses could enter the irrigation water just as easily as bacteria, especially if physically 

associated with bacteria during biofilm detachment.  

Another less obvious reservoir of human pathogens in water resources used in food 

production are those found in fresh water sediments. Interestingly, sediments contain their own 

biological compartments (i.e., biofilms) and if disturbed via heavy rains, increased flow, or 
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activities occurring within the waterbody, these sediments can significantly contribute to the 

microbial population of the water column (Pachepsky and Shelton, 2011). A study by Yakirevich 

et al. (2013) observed the prolonged release of E. coli after artificial high-water flow events even 

when water levels returned to base flow indicating continued detachment from sediments. 

Unfortunately, this study did not measure levels of pathogens. For some perspective on the 

potential contributions of the sediments to microbial load, Pachepsky and Shelton (2011) 

described sediment densities of E. coli ranging from 1 to 500,000 colony forming units (CFU) or 

most probable number (MPN) per gram of dry weight sediment from an analysis of over 20 

published studies. It is also well-known that viruses associate with particulates in the 

environment including aquatic environments (Gerba, 1984). Although specific to coastal and 

estuarine sediments, Hassard et al. (2016) reviewed the reported abundance of enteric viruses in 

these sediments and listed levels ranging from non-detect to >6,000,000 viruses per 100 grams of 

weight wet sediment. Research in this area has also revealed that protection from degradation is 

conferred to viruses when associated with sediments (Hassard et al. 2016). Therefore, it is 

conceivable that microbial settling and resuspension—including bacteria-associated viruses—are 

essential processes driving microbial contamination of freshwater including water sources used 

for irrigation purposes. 

c. Specialty crops 

As with other natural environments, specialty crops such as fresh produce have their own 

unique microflora. Several studies have investigated the microbial diversity present on the 

phyllosphere—the total above-ground portions of plants—of a variety of fresh produce. Leff et 

al. (2013) observed that, while each produce type has a distinct microbial community, the 

majority of the microorganisms belonged to the family Enterobacteriaceae in the case of sprouts, 
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spinach, lettuce, tomatoes, peppers, and strawberries. Meanwhile, Jackson et al. (2013) reported 

that Pseudomonas spp. were ubiquitous in leafy greens by both culture-dependent and culture-

independent analyses. As reviewed by Deng and Gibson (2017), numerous types of 

microorganisms inhabit leafy green phyllospheres including viruses, some of which may be 

pathogenic to humans. Baert et al. (2011) investigated the prevalence of hNoV on a variety of 

fresh produce: leafy greens, red fruits, cucumbers, and tomatoes. Out of 850 samples, 216 

(25.4%) tested positive for hNoV (GI or GII) by real time, reverse transcription PCR (RT-PCR); 

however, these presumptive positives could not be confirmed via sequencing. Similarly, Stals et 

al. (2011) reported that 18 of 75 (24%) fruit samples tested positive for hNoV (GI and/or GII) 

and also could not confirm their results. 

Looking beyond hNoV, Aw et al. (2016) were the first to characterize the virome of lettuce. 

The researchers collected samples of romaine and iceberg head lettuce from a produce 

distribution center and then conducted viral metagenomic analysis. The authors observed that 

human and animal viruses—rotavirus and picobirnavirus, respectively—were present on the 

samples prior to retail distribution. Aw and co-authors also confirmed presents of numerous 

viruses that require other hosts such as plants, bacteria, invertebrate, amoeba, fungi, and alga. 

Along these lines, the interactions of viruses with fresh produce, specifically leafy greens, in the 

presence of both biotic and abiotic (i.e. flooding, heat stress, mechanical stress) factors have been 

investigated (Esseili et al., 2015; Gao et al. 2016). Deng and Gibson (2017) described various 

interactions that may be occurring including specific binding, non-specific binding, 

internalization, and microbial-assisted binding. 

As discussed in the previous section “Water resources – biofilms”, irrigation water can 

transport and harbor microorganisms and deliver them to crops; thus, irrigation waters also effect 
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the microbiome on the surface of fresh produce. Jongman et al. (2017) applied next generation 

sequencing to characterize the bacterial composition of both irrigation waters and leafy greens in 

South Africa by targeting the V1-V3 hypervariable region of the 16S ribosomal RNA (rRNA) 

gene found in prokaryotes. The authors examined several variables and determined that the 

bacterial microbiome of the fresh produce sample in their study was influenced by water quality, 

similar to the findings of Kokkinos et al. (2012). With both bacteria and viruses being present on 

fresh produce, this could result in interactions as previously speculated (Deng and Gibson, 2017). 

4. In Vitro Implications of Virus-Bacteria Interactions 

Interactions have been demonstrated in vivo and in situ, and the observations by Miura et al. 

(2013) set the stage for investigating these interactions. As mentioned previously, Miura et al. 

(2013) revealed that hNoV virus-like particles (VLPs) bound to the EPS of Enterobacter sp. 

SENG-6 which contained HBGA-like structures similar to A type. The knowledge that bacteria 

have HBGA-like structures that viruses are able to bind to has led to additional investigations on 

how these interactions impact persistence and survival of enteric viruses relevant to human 

health. Li et al. (2015) examined how thermal treatment would affect hNoV VLPs (GI.1 and 

GII.4 strains) associated with bacteria. The authors revealed that, when VLPs were in association 

with bacteria expressing HBGA-like structures, there was a higher antigen integrity versus 

interactions with bacteria not expressing similar structures. This means that hNoV VLPs could 

be detected via antibody-based assays such as direct ELISA and porcine gastric mucin-binding 

assays at greater frequency with associated with an HBGA expressing E. coli than with non-

HBGA expressing E. coli. Conversely, Li et al. (2017) investigated viral infectivity of thermally-

treated Tulane virus (TV)—a hNoV surrogate—in association with the HBGA type B expressing 

bacterium, E. coli O86:H2. Here, the authors revealed that the association of TV with E. coli 
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O86:H2 did not confer any heat resistance to TV compared to a TV+PBS control. Moreover, the 

infectivity of TV due to heat denaturation was reduced in a dose-dependent manner. The 

divergent results of these two similar studies could be due to the use of TV as opposed to hNoV 

VLPs, different bacterial strains, and differences in methods of evaluation (plaque assay for 

infectivity versus antibody-antigen based detection).  

Yet another investigation explored the association of enteroviruses (coxsackievirus A21, 

coxsackievirus B5, echovirus 30, poliovirus) with bacterial cell components (LPS and PG), and 

the impact this association had on common drinking water disinfection strategies (chlorine, 

ultraviolet radiation) as well as thermal treatment. Waldman et al. (2017) demonstrated that LPS 

and PG of bacterial origin could stabilize the capsid of echovirus 30 resulting in enhanced 

thermal protection at 50C for at least 1 h. Based on previous data by Robinson et al. (2014), 

with regard to the specific capsid binding protein for LPS, the authors hypothesized that 

differences would exist amongst the enterovirus serotypes selected for the study based on 

polymorphisms in the BC loop protein sequence across the enterovirus genus within the 

Picornaviridae family. As such there was variability in protection across enterovirus serotypes as 

well as across the LPS and PG of different bacterial origins. Similar to heat treatment, protective 

effects were demonstrated when echovirus 30 was exposed to 0.2 ppm free chlorine over a 

period of 3 to 12 minutes. Meanwhile, these bacterial components did not exert any protective 

effects on echovirus 30 during exposure to UV radiation. Based on these data, Waldman and co-

authors suggest that when inactivation steps target the viral genome (e.g. UV radiation), bacterial 

cell components do not provide a protective effect and that these virus-bacteria interactions may 

only be beneficial when the mechanism of action is for destabilization of viral capsid. Overall, 
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the limited published studies on the protective effect of virus-microbe interactions regarding 

persistence and resistance to common control measure still leave many questions unanswered. 

5. Conclusion 

It has been established that virus-bacteria interactions can happen in a variety of settings: in 

vivo, in situ, and in vitro. Therefore, a key question is how do these interactions impact virus 

prevention and control? There are scientifically-validated strategies available to prevent enteric 

virus transmission, but most of these validated approaches are based on lab-controlled studies 

using viruses within single organism environments. Based on the evidence presented, whole cell 

bacteria as well as their cell components can impact the efficacy of the strategies aimed at the 

prevention and control of viruses. Moreover, virus selection in studies related to bacterial 

interactions – or microbial interactions in general – will be critical as previous work has already 

demonstrated variability between virus types within a given virus family as well as at the genus 

level. These differences are effectively demonstrated by the differing observations of thermal 

stability of viruses in the presence of bacteria reported in Li et al. (2015) and Li et al. (2017) 

where one used hNoV VLPs and the other used Tulane virus—a virus within the same family as 

hNoV—respectively. Another aspect to consider is the role virus-microbe interactions may play 

in downstream virus detection. Can these interactions be capitalized on to aid in virus recovery 

and detection, or do they provide another source of interference and complexity to the already 

tedious methods utilized in foodborne virus research? In conclusion, while human enteric virus 

research is moving into a new frontier, there is clearly more work to be done to further elucidate 

the significance of microbe-microbe interactions within the host as well as the environment. 
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Chapter 3: Inactivation of microorganisms on Boston bibb lettuce and cherry tomatoes by 

aqueous ozone 
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Abstract  

Produce is susceptible to contamination throughout the supply chain. To further protect 

consumers, retail foodservice establishments may treat produce with sanitizing agents, such as 

aqueous ozone, to reduce microorganisms that may be present on the surface of produce. The 

primary objective of this study was to investigate the efficacy of aqueous ozone against viruses 

and bacteria on fresh produce. Boston bibb lettuce and cherry tomatoes were inoculated with 

either viruses (murine norovirus [MNV-1] and MS2 bacteriophage) or bacteria (Enterobacter 

cloacae and Bacillus cereus) and then treated with aqueous ozone or water only in a batch wash 

ozone sanitation system (BWOSS). Virus experiments also compared 90 min and 24 h virus 

attachment times before ozone treatment. Each wash consisted of 40 min with 25 g samples 

taken every 10 min. Ozone concentrations ranged from 0.5 ppm to 1 ppm with water 

temperatures of 3 to 5°C achieved by ice prior to wash. After treatment, samples were processed 

for recovery of plaque forming units (PFU) or colony forming units (CFU), and log reductions in 

PFU/ml or CFU/ml were calculated. The log reduction difference between ozone and water at 

the 24 h attachment time for MS2 and MNV-1 on Boston bibb lettuce after a 40 min wash was 

0.33 and -0.16 log10 PFU/ml, respectively. The difference between ozone and water only wash 

for cherry tomatoes under the same conditions for MS2 and MNV-1 was -0.99 and 0.31 log10 

PFU/ml, respectively. Ozone achieved a 0.55 and 0.93 log10 CFU/ml greater reduction over 

water alone of E. cloacae and B. cereus, respectively, on Boston bibb after a 40 min wash. For 

tomatoes, the difference between ozone treatment and water only for E. cloacae and B. cereus 

was 0.12 and 0.92 log10 CFU/ml, respectively. Overall, there were no significant differences (p-

value > 0.05) between ozone and water only washes for any experimental combinations. Future 



48 
 

studies should focus on continued optimization of aqueous ozone treatment for enhanced 

inactivation of microorganisms on fresh produce. 
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1. Introduction 

It is estimated that there are over 9 million illnesses that are due to foodborne pathogens 

every year (Painter et al., 2013). Of the 9 million illnesses, contaminated produce contributed to 

46% of illnesses with leafy greens associated with 22% of the illnesses alone (Painter et al., 

2013). Produce is at risk for foodborne illness because it is consumed raw unlike other food 

products that have a pathogen kill step in place: pasteurization, cooking, or sterilization (Benson, 

2010). Pathogens that are often associated with produce include: Escherichia coli O157:H7, 

Salmonella, and human norovirus (Grant et al., 2008; Greene et al., 2008; Hall et al., 2012). 

Produce contamination can come from anywhere between farm and fork. Pathogens can be 

transmitted to produce from water, soil, animal excretions, or during preparation at retail 

(Benson, 2010). Retail settings present several opportunities for cross-contamination of fresh 

produce to occur: from mishandling of the product, poor handwashing, or poor hygiene by 

employees. Therefore, it is also important to prevent and control these pathogens at retail prior to 

reaching the consumer. Wash treatments are the primary prevention method considered for fresh 

produce; however, issues arise when wash treatments do not inactivate all of the microbes on the 

produce allowing any remaining viable microorganisms to potentially cross-contaminate a 

subsequent batch of fresh produce (Olaimat and Holley, 2012). Due to this, there is an 

opportunity to implement new processes for inactivation of pathogens on fresh produce in retail 

foodservice settings. One such mitigation strategy includes the addition of ozone—a strong 

oxidant and sanitizer—to wash water used for fresh produce prior to preparation.  

By implementing an ozone wash into the retail setting, this additional control strategy could 

inactivate pathogens potentially present on the produce and ultimately reduce the number of 

foodborne illnesses. When using ozone as a sanitizer, there are several variables that impact 
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efficacy. There are extrinsic factors, such as water temperature, free chlorine, and pH, that effect 

the stability of the ozone and ultimately the efficacy. Besides extrinsic factors, there are intrinsic 

factors that need to considered: concentration and form (gaseous or aqueous) (Jin-Gab Kim, 

Yousef, & Khadre, 2003). When it comes to disinfection, ozone has been shown to reduce 

viruses including murine norovirus, poliovirus, and human rotavirus while in suspension (Lim et 

al., 2010; Roy et al., 1982; Vaughn et al., 1987). Unfortunately, there is very limited research on 

the reduction of viruses in association with food matrices. On the other hand, aqueous ozone has 

been shown to be effective for several different types of bacteria on produce. Examples include 

E. coli on the surface of apples (3.7 log reduction in 3 min); 1 log reduction in 96 s of Listeria 

monocytogenes on the surface of lettuce; and 3.5 log reduction in 16 min of a cocktail of 

Salmonella enterica—including the serovars Agona, Baildon, Gaminara, Michigan, and 

Montevideo—on the surface of blueberries (Achen and Yousef, 2001; Bialka and Demirci, 2007; 

Rodgers et al., 2004).   

Inactivation of various spoilage and opportunistic microbes by ozone has also been 

previously reported.  However, there are still some bacterial strains of interest that have not been 

investigated for ozone inactivation Enterobacter cloacae and Bacillus cereus. B. cereus is a gram 

positive bacterium that can cause illness when the toxins are ingested; it is found in the soil and 

thus has also been found on produce (Stenfors Arnesen et al., 2008). E. cloacae is a gram 

negative rod that is found in the soil and the intestinal tract of humans, and often related to 

nosocomial infections (Harbarth et al., 1999). Similar to B. cereus, E. cloacae has been found on 

the surface of produce (Al-Kharousi et al., 2016). Since these bacteria may naturally occur on the 

surface, they could possibly interact with viruses (Moore and Jaykus, 2018). This interaction 

could result in a change in inactivation of viruses due to the presence of the bacteria (Li et al., 
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2015; Li et al., 2017). In chapter 5, these bacteria will be investigated in association with viruses, 

but prior to investigating the association it was important to establish the impact of ozone on the 

bacteria alone.  

Viral surrogates such as murine norovirus (MNV-1) are often used in place of human 

noroviruses because they are easier to cultivate and may behave similarly to the human strain 

(Wobus et al., 2006). Therefore, the purpose of this research is 1) to evaluate the inactivation of 

viruses and bacteria by aqueous ozone when they are associated with different produce types 

(leafy greens and tomatoes) and 2) to investigate attachment time of viruses to fresh produce and 

its impact on ozone inactivation. 

2. Materials and Methods  

 

a. Microbe cultivation 

i. Viruses 

1. MS2 Bacteriophage 

MS2 stock was generated, as described previously by Gibson, Crandall, and Ricke (2012), 

and aliquoted in small volumes. MS2 was kindly provided by Dr. Stephanie Friedman from the 

United States Environmental Protection Agency (EPA) Gulf Ecology Division in Gulf Breeze, 

FL. Stock was generated by scraping the soft agar layer containing bacteriophage lysed E. coli 

C3000 (ATCC 15597) into centrifuge tubes. The cell lysate was then suspended with 23 ml of 1 

× phosphate buffered saline (PBS), vortexed, and centrifuged at 185 × g for 25 min. The 

supernatant was collected and filtered through a 0.22 µm filter (Millipore Corporation, Billerica, 

MA) and then aliquoted and stored at -80°C. The MS2 stock concentration was determined based 

on titration by double agar layer (DAL) method with bacterial host E. coli C3000. DAL assay 

involves adding 100 μl of sample plus 100 μl of log phase bacterial host (E. coli C3000) to 5 ml 
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of soft agar (0.7% tryptic soy agar (TSA)) and then poured on the top of TSA plates. The soft 

agar was allowed to solidify and then the plates were incubated for 24 h at 37°C. The plaques 

were counted and PFU/ml was then calculated.  

2. Murine norovirus (MNV-1) 

Murine norovirus type 1 (MNV-1) was prepared as described previously by Bae and  Schwab 

(2008) with modifications. MNV-1 was kindly provided by Dr. Kellogg Schwab at Johns 

Hopkins Bloomberg School of Public Health in Baltimore, MD. MNV-1 was propagated in 

monolayers of RAW 264.7 (mouse leukameic monocyte macrophage, ATCC TIB-71) cells. 

Cells were cultured in Dulbecco modified Eagle’s medium (DMEM) (Sigma-Aldrich, St. Louis, 

MO) containing less than 10% low endotoxin, fetal bovine serum (FBS: GibcoLife Technology, 

Gaithersburg, MD), 1% 100 × penicillin-streptomycin solution (GibcoLife Technology), 1% 

HEPES (Sigma-Aldrich), 1% glutamine (Hyclone, Logan, UT), and 1% non-essential amino 

acids (Corning, New York, NY). After reaching 90% confluence, cells were infected with MNV-

1 at a multiplicity of infection (MOI) of 0.05 for virus stock production. The virus was extracted 

from cell lysate after complete cytopathic effect as described by Hsueh and Gibson (2015) with 

modifications. Briefly, culture flasks containing infected cells were subjected to three freeze-

thaw cycles at -80°C and 37°C respectively, followed by centrifugation at 5000 × g for 20 min at 

4°C then filtration with 0.1 μm filter and stored at -80°C. To determine infectious titer, the 

plaque assay as reported by Hsueh and Gibson (2015) was used with modifications. Briefly, six-

well plates were seeded with 2x106 RAW cells per well and grown to 90% confluence in 2 ml of 

complete growth medium. Cell monolayers were inoculated with virus stocks for 1 h at 37°C 

with rocking followed by removal of the inocula. Cells were covered with 2 ml of prepared 

overlay medium containing: 25% of 6% low melting point agarose, 50% 2 × minimum essential 
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medium eagle (MEM) (Corning) (100 ml 10× MEM, 10 ml glutamine, 29.3 ml sodium 

bicarbonate, and 360.7 ml sterile distilled water filtered through 0.22 µm filter (Millipore 

Corporation, Billerica, MA)), 10% low endotoxin FBS, 1% 100 × penicillin-streptomycin 

solution, 1% glutamine, 0.5% HEPES, and 12.5% sterile distilled water. The plates were 

incubated for 72 h. Next, 2 ml of 0.01% neutral red (Sigma-Aldrich) prepared in 1 × phosphate 

buffered saline (PBS) was added to each well to visualize plaques. Plaques were counted after 1h 

to determine virus titer (PFU/ml). 

ii. Bacteria 

Enterobacter cloacae (ATCC 39979) with rifampicin resistance was streaked from a frozen 

50% glycerol stock onto Luria Bertani (LB) agar (Alfa Aesar, Tewksbury, MA) with 100 µg/ml 

of rifampicin (Alfa Aesar) using a sterile inoculation loop and incubated overnight at 37°C. A 

single CFU was selected from the plate, placed in 5 ml of LB broth with 100 µg/ml rifampicin in 

a 50 ml centrifuge tube, and incubated overnight at 37°C with shaking at 150 rpm. Bacillus 

cereus (ATCC 14579) was also streaked from a frozen, 50% glycerol stock onto a nutrient agar 

(NA) plate (Becton, Dickson, and Company, Franklin Lakes, NJ) using a sterile inoculation loop 

and incubated overnight at 30°C. A single CFU was selected from the plate, placed in 5 ml of 

nutrient broth (NB) (Becton, Dickson, and Company) in a 50 ml centrifuge tube, and incubated 

overnight at 30°C with shaking at 150 rpm. Following overnight growth of both bacteria, the 

culture tubes were centrifuged at 5,000 × g for 10 min to pellet the bacterial cells. The 

supernatant was decanted, and the pellet was resuspended in 5 ml of 1 × PBS, vortexed, and 

centrifuged again. This washing step was repeated two more times. After the final wash, the 

bacterial pellet was resuspended in 5 ml of buffered phosphate water (BPW), and the 

concentration of each bacterial culture was determined by spread plate enumeration of 
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microorganisms. LB agar with 100 µg/ml of rifampicin and B. cereus agar (Oxoid, Altrincham, 

Cheshire, England) supplemented with selective supplement (Oxoid) and egg yolk emulsion 

(Dalynn, Calgary, Canada) were used for E. cloacae and B. cereus, respectively.  

b. Produce 

Boston bibb loose leaf lettuce and cherry tomatoes were used. The Boston bibb was grown 

hydroponically and procured from two separate places: 1) grown in a greenhouse at Ozark All 

Seasons in Windsor, AR and purchased from a local grocer and 2) grown in a freight farm—a 

hydroponic farming system that is built into a shipping box—on the University of Arkansas 

Fayetteville campus and donated. In both instances, Boston bibb leaves were placed in a 

sterilized plastic container with a lid and stored at 4°C until use. Cherry tomatoes were received 

from a local produce distributor or from a local grocery store and transported and stored at 4°C 

until use.  

c. Inoculation of Produce 

For virus inoculation, 25 g of Boston bibb leaves were measured out for each sampling time 

point (n=5) for a total of 125 g for each experiment. Each 25 g was then spot inoculated with 100 

µl each of 108 PFU/ml MS2 and 106 PFU/ml MNV-1. For cherry tomatoes, 2 tomatoes (20-25 g) 

were measured out for each sampling point (n=5), and inoculated similarly. For inoculation with 

bacteria, the same amount of produce and similar inoculation methods were used as described for 

viruses. The Boston bibb was inoculated with 100 µl each of 5 × 107 CFU/ml E. cloacae and 6 × 

106 CFU/ml B. cereus. Due to a low recovery of bacteria based on preliminary work, tomatoes 

were inoculated with 100 µl each of 7 × 108 CFU/ml E. cloacae and 3 × 108 CFU/ml B. cereus. 

Following inoculation, the produce was allowed to dry until the surface was visibly dry, 

approximately 1 h. Following the initial 1 h drying period, for virus experiments, the produce 
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was stored overnight and then exposed to the ozone wash or to the water only wash. An 

additional short attachment time of 90 min followed by an ozone wash was also conducted for 

viruses. For bacteria experiments, the produce was stored overnight prior to the ozone wash or to 

the water only wash. 

d. Treatments 

The batch wash ozone sanitation system (BWOSS) utilized in the present study was 

developed by Recycled Hydro Solutions (Rogers, AR). The BWOSS contains a one 

compartment sink measuring 43 cm2 with a depth of 30 cm and fabricated using 16-gauge 

stainless steel. During operation, the sink is filled with water, and once filled, water from the sink 

is passed through a Venturi injector, which creates aqueous ozone continuously. The ozonated 

water is then passed back into the sink basin. The BWOSS has a dissolved ozone meter (Model 

Q46, ATI, Collegeview, PA) which was corroborated by the indigo trisulfonate method (SM 

4500-OS3 B) using a Hach Pocket Colorimeter II (Hach Company, Loveland, CO) and Ozone 

AccuVac Ampules (Hach) (American Public Health Association, American Water Works 

Association, and Water and Environment Federation, 2012).  

The sink holds approximately 34.07 L (9 gallons) of water. Ice was added to the sink to aid in 

stabilization of ozone until the water temperature reached 4°C. The produce was placed in the 

BWOSS once ozone reached a concentration of 0.5 ppm—as indicated by the dissolved ozone 

meter—and the water temperature in the sink was stable at 4°C. The produce samples were 

submersed in the sink for a total of 40 min with subsamples taken every ten minutes.  

e. Microbial analysis 

Following treatment, produce samples were placed in Whirl-pak bags with 75 ml of BPW. 

The bags containing lettuce were then placed in a stomacher (Seward Stomacher 400 Circulator, 
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West Sussex, United Kingdom) for one minute at 260 rpm. The eluate was then serially diluted. 

Based on preliminary data, the cherry tomatoes were hand massaged for 1 min in order to 

prevent the tomatoes from breaking. We speculate that the pH of the eluate dropped when the 

tomatoes broke resulting in interference with the plaque assay leading to inconclusive results due 

to cytopathic effects. The resulting eluate from the hand massaged tomatoes was then serially 

diluted in BPW.  

For MS2, 100 μl of each dilution was plated in duplicate using DAL method. Then the 

plaque forming units (PFU) were counted and PFU/ml was calculated. For MNV-1, plaque assay 

was performed as previously described (Section MNV-1) and PFU were counted in order to 

calculate PFU/ml. Viral experiments were conducted at least in duplicate.  

For bacteria, the eluate was ten-fold serially diluted, and 100 μl of each dilution was plated 

on LB agar with 100 μg/ml of rifampicin and B. cereus agar for detection of E. cloacae and B. 

cereus, respectively. The plates were incubated overnight at 37°C and 35°C, respectively. 

Colonies were counted to determine CFU/ml. All bacterial experiments were conducted in 

duplicate. 

f. Statistical analysis 

Statistical analyses were performed using JMP Pro 13 software (SAS institute, Inc., Cary, 

NC). Significance was determined by a critical p-value 0.05 by one-way analysis of variance 

(ANOVA) for all scenarios. Based on the results, a Tukey-Kramer honestly significant difference 

(HSD) test was conducted to confirm differences between groups.  
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3. Results 

a. Viral Inactivation 

A baseline recovery was used to calculate the amount of virus that can be recovered from 

each produce without any treatment. The average recovery was 107 PFU/ml for MS2 and 105 

PFU/ml for MNV-1 for both Boston bibb and cherry tomatoes. The samples were then compared 

to the baseline recovery to give the log reductions over time for the various treatments.  

MS2 inactivation on Boston bibb did not reveal a significant difference between the ozone 

wash and the water only wash or between the two attachment times (Table 1). There was a small 

observed difference between attachment times where a 90 min attachment resulted in a lower 

reduction in MS2 on Boston bibb compared with a 24 h attachment at all sampling points except 

at 40 min. When comparing ozone washes to water only washes there was a greater reduction 

based on PFU/ml values with ozone achieving a greater reduction of MS2 at both attachment 

times; however, it was not a significant difference.  

MNV-1 inactivation on Boston bibb also did not display a significant difference between the 

ozone wash and the water only wash or between the two attachment times (Table 2).  There was 

a small observed difference between attachment times. However, differing from MS2, there was 

a greater reduction in MNV-1 after a 90 min attachment compared to a 24 h attachment at all 

sampling points. When comparing ozone washes to water only washes, there was a greater 

reduction with ozone than water, except at time 40 min with 24 h attachment. Again, this 

observed trend was not statistically significant.  

In Tables 3 and 4, MS2 and MNV-1 inactivation on cherry tomatoes is reported, respectively. 

Besides at time 10 min, a 90 min attachment time has a higher reduction than a 24 h attachment 

time on cherry tomatoes, which was also seen with Boston Bibb. When comparing the results 
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between the treatments for cherry tomatoes, there is not a trend that can be observed given the 

variation within the data. Again, there is not a significant difference between the treatments. For 

MNV-1, unlike the Boston bibb results, the 24 h attachment on tomatoes had a greater reduction 

than the 90 min attachment when treated with aqueous ozone. There was variability in the trend 

in log reduction of MNV-1 over time when comparing ozone and water only treatments. 

Specifically, water only had a greater log reduction than ozone at 10 and 20 min, but at 30 and 

40 min, ozone washes had a greater log reduction than water.  

b.  Bacterial Inactivation 

A baseline recovery was also used for bacteria in order to calculate the log reduction over 

time. The average recovery from both produce types was 106 CFU/ml for E. cloacae and 105 B. 

cereus. Bacterial inactivation on Boston bibb is shown in Table 5. When comparing ozone and 

water only treatments of lettuce inoculated with both E. cloacae and B. cereus, initially water 

had a greater reduction than ozone at 10 min. However, in general, ozone achieved greater 

reduction than water for the remaining time points. Despite ozone having a greater reduction 

than water, there were no statistically significant differences. With cherry tomatoes, the bacterial 

inactivation is shown in Table 6. Ozone treatment had a higher observed log reduction than water 

only for both bacteria. When comparing the two bacteria on Boston bibb, E. cloacae experienced 

a greater log reduction of 3.33 log CFU/ml after a 40 min exposure compared to B. cereus which 

had a 2.83 log CFU/ml.  Although for tomatoes, B. cereus experienced a greater log reduction of 

2.82 log CFU/ml over the 2.58 log CFU/ml for E. cloacae. 

c. Ozone Concentration 

The average ozone concentration for each treatment is recorded in Table 7. The ozone 

concentration ranges from 0.48-0.99 ppm. The treatments all have an initial concentration of at 
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least 0.48 ppm of ozone. As time increases, the concentration of ozone also increases reaching at 

least 0.90 ppm in all treatments except viruses on tomatoes with a 24 h attachment which 

reached a concentration of 0.69 ppm.  

4. Discussion  

One of the major conclusions from this study was that ozone did not provide a significant 

impact on virus reduction on Boston bibb lettuce or cherry tomatoes when compared to the water 

only treatments. When examining the effects of aqueous ozone on viral inactivation, there are 

very few studies that have investigated the inactivation on fresh produce. Hirneisen et al. (2011) 

reported a more than three-log reduction of MNV-1 after 10 min on lettuce and on green onions. 

Moreover, the authors observed a five-log reduction of MNV-1 inoculated in water after a 10 

min exposure to ozone and concluded that the food matrices played a role in viral inactivation. 

The authors reported that there was a greater log reduction of the viruses in suspension than on 

onions or lettuce. However, Hirneisen and co-authors did not publish the results of a water wash 

only, but rather referenced that a water wash was performed as a control. Through comparison of 

ozone and water only treatments in the present study, it seems these results contradict those 

reported by Hirneisen et al. (2011). More specifically, the present study showed that ozone did 

not have a significant impact on log reduction of viruses. In fact, it may be hypothesized that 

reduction in viruses on produce is primarily due to physical removal followed by actual 

inactivation of viruses in the wash water by aqueous ozone. However, these discrepancies could 

be due to the differing sample sizes, the volume of water the samples were treated with, or the 

concentration of the ozone applied. More specifically, Hirneisen et al. (2011) exposed 5 g of 

produce to an ozone wash in a beaker at a concentration of 6.25 ppm whereas, in the current 

study, 25 g of produce was submerged in a sink of aqueous ozone at a concentration between 0.5 
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ppm and 1 ppm.  Even though there are conflicting results, both studies indicate that food 

matrices play a key role in protecting viruses from ozone inactivation.  

It was also shown in this study that attachment time for viruses does not affect the efficacy of 

ozone. To our knowledge, no other published studies that have investigated the attachment time 

of viruses to fresh produce and the impact on sanitizer efficacy. The results reported here show 

that the attachment time of viruses has no significant effect with respect to ozone inactivation. 

This may indicate that no matter how long the virus has been present, whether that means 

contamination in the retail setting or contamination in the field, aqueous ozone has a similar level 

of efficacy.  

Even though the conclusions are the same for both Boston bibb and cherry tomatoes, there 

was a visible difference in the reductions of microorganisms between the two produce types. 

This could be due to the surface topography of the produce. Lu et al. (2015) looked at the 

influence of the epicuticular surfaces of lettuce and tomatoes as it related to the adsorption of 

rotavirus. The authors found that these surfaces play a role in the effectiveness of sanitation 

treatments and could be the cause of the differences in log reductions of viruses between produce 

types. Interactions of the microbe with the produce may also play a role in the inactivation 

difference between produce types. A majority of human noroviruses are known to bind to histo-

blood group antigens (HBGA) on cells lining the gastrointestinal tract which can lead to 

infections in human. It has been previously observed that lettuce possess HBGA-like 

carbohydrates and other carbohydrate moieties that norovirus particles were able to attach to and 

thus could not be removed by simple washing (Gao et al., 2016). The viral surrogate used in the 

present study, MNV-1, binds to sialic acid, another type of carbohydrate moiety (Taube et al., 
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2009). These types of interactions could be an explanation as to why there was a lower reduction 

of viruses on the lettuce than tomatoes.  

When it comes to bacteria, Takeuchi et al. (2000) observed that species of bacteria (E. coli 

O157:H7, L. monocytogenes, Salmonella Typhimurium, and Pseudomonas fluorescens) attach to 

lettuce differently. The authors found that E. coli and L. monocytogenes attached to cut edges 

while P. fluorescens preferred the surface of the lettuce; meanwhile, Salmonella did not have a 

preference in attachment site. They further explained that these differences are due to the ability 

of the bacteria to bind to the hydrophobic cuticle layer. This could be an explanation as to why 

log reductions are different between the two bacteria for the produce analyzed. In general, the 

present study demonstrates that ozone does not have a significant impact on the removal and/or 

inactivation of E. cloacae and B. cereus on either produce type. Previous studies on ozone 

inactivation of bacteria on fresh produce have reported findings that conflict with those reported 

here. Kim et al. (1999) investigated the inactivation of P. fluorescens on the surface of shredded 

lettuce. The authors found that bubbling ozone into the wash water was significantly different 

from the water only wash for inactivation of P. fluorescens. However, their samples were placed 

in a beaker with 500 ml of water and stirred while the ozone is generated which may have 

impacted the result. The stirring could have increased the physical removal of the bacteria from 

the surface. Similarly, Selma et al. (2007) concluded that ozone significantly reduced Shigella 

sonnei when inoculated on shredded lettuce. This experiment took place in a 50-L tank and the 

sample size was 30 g with the longest exposure time being 5 min at various ozone concentrations 

(1, 2, and 5 ppm). In the present study, the sample size was 25g which is similar to Selma et al. 

(2007) but the studies differ in contact times (5 min compared to 40 min in the current study) and 

in the concentrations of ozone applied (1, 2, and 5 ppm compared to 0.5-1 ppm in the current 
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study). These differences could be a possible explanation for the discrepancies between the 

present study and other published studies. 

The bacteria investigated in the present study where chosen because both bacteria are present 

in the phyllosphere of leafy greens and fresh produce in general (Al-Kharousi et al., 2016; 

Stenfors Arnesen et al., 2008). In addition, these bacteria also represent both gram positive and 

gram negative species. Gram negative bacteria are reportedly more sensitive to ozone due to the 

composition of the cell membrane not containing as much peptidoglycan that is present in gram 

positive bacteria (Kim et al., 1999). Although that was true for gram negative bacteria on Boston 

bibb in the present study, tomatoes had a greater reduction of gram positive bacteria. This could 

mean that produce type may be a key aspect in the inactivation of the microbes. It is also 

important to note that unpublished data has shown that when the sink is drained, microbes were 

left on the surface of the sink with water only washes whereas there were no microbes left on the 

surface of the sink when ozone was used. This indicates that adding ozone to wash water could 

prevent cross contamination during produce washing.  

5. Conclusion 

In conclusion, an ozone wash does not increase inactivation of viruses on fresh produce 

compared to the use of water alone. Additionally, the two different attachment times had no 

significant difference in viral inactivation by ozone. Ozone does, however, have the potential to 

make an impact on bacterial inactivation when compared to water only. The surface of the 

produce could play a key role in the extent of inactivation of microbes and needs to be 

considered when evaluating sanitizers.  
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Appendix 

 

Table 1. Log reduction of MS2 on Boston bibb lettuce after exposure to aqueous ozone or 

water over time. 

Time 

(min) 

Mean Log Reduction in PFU (SD) by Treatment1 

Ozone (90 min) Ozone (24 h) Water (24 h) 

10 2.14 (±0.30) 3.85* (±1.13) 2.02 (±0.42) 

20 2.99 (±0.93) 3.49 (±0.27) 2.64 (±0.55) 

30 2.78 (±0.70) 2.92 (±1.20) 2.14 (±0.09) 

40 2.95 (±0.73) 2.46 (±0.51)  2.13 (±0.47) 

SD = one standard deviation from the mean 
1Ozone (90 min) = exposure to ozone after 90 min drying time for inoculant; Ozone (24 h) = 

exposure to ozone after 24 h drying time for inoculant; Water (24 h) = no ozone exposure after 

24 h drying time for inoculant 

*A sample reached the limit of detection (10 PFU/ml in 75ml sample) 

 

 

 

 

Table 2. Log reduction of MNV-1 on Boston bibb lettuce after exposure to aqueous ozone 

or water over time. 

Time 

(min) 

Mean Log Reduction in PFU (SD) by Treatment1 

Ozone (90 min) Ozone (24 h) Water (24 h) 

10 2.54* (±1.16)  1.12* (±1.08) 0.91 (±1.33) 

20 2.51* (±1.21) 1.50* (±0.90) 1.47 (±0.93) 

30 1.69 (±0.53) 1.53 (±0.52) 1.22 (±0.51) 

40 1.63 (±0.17) 1.47 (±0.31)  1.63 (±0.70) 

SD = one standard deviation from the mean 
1Ozone (90 min) = exposure to ozone after 90 min drying time for inoculant; Ozone (24 h) = 

exposure to ozone after 24 h drying time for inoculant; Water (24 h) = no ozone exposure after 

24 h drying time for inoculant 

*A sample reached the limit of detection (10 PFU/ml in 75ml sample) 
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Table 3. Log reduction of MS2 on cherry tomatoes after exposure to aqueous ozone or water 

over time. 

Time 

(min) 

Mean Log Reduction in PFU (SD) by Treatment1 

Ozone (90 min) Ozone (24 h) Water (24 h) 

10 3.32* (±1.02) 3.64 (±0.70) 2.42 (±0.92) 

20 3.91 (±0.49) 3.36 (±0.33) 3.74 (±0.10) 

30 3.89* (±0.85) 3.54* (±0.84) 3.32 (±0.05) 

40 3.30* (±1.10) 2.71* (±1.33)  3.70 (±0.23) 

SD = one standard deviation from the mean 

1Ozone (90 min) = exposure to ozone after 90 min drying time for inoculant; Ozone (24 h) = 

exposure to ozone after 24 h drying time for inoculant; Water (24 h) = no ozone exposure after 

24 h drying time for inoculant 

*A sample reached the limit of detection (10 PFU/ml in 75ml sample) 

 

 

 

 

 

Table 4. Log reduction of MNV-1 on cherry tomatoes after exposure to aqueous ozone or 

water over time. 

Time 

(min) 

Mean Log Reduction in PFU (SD) by Treatment1 

Ozone (90 min) Ozone (24 h) Water (24 h) 

10 0.99 (±0.52)  1.60 (±0.39) 2.08 (±0.56) 

20 1.85 (±0.65)  2.12 (±0.28) 2.62 (±0.19) 

30 1.87 (±0.08) 2.34 (±0.49) 1.96 (±0.71) 

40 1.74 (±0.36) 2.60 (±0.01)  2.29 (±0.92) 

SD = one standard deviation from the mean 
1Ozone (90 min) = exposure to ozone after 90 min drying time for inoculant; Ozone (24 h) = 

exposure to ozone after 24 h drying time for inoculant; Water (24 h) = no ozone exposure after 

24 h drying time for inoculant 

*A sample reached the limit of detection (10 PFU/ml in 75ml sample) 
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Table 5. Log reduction of Enterobacter cloacae and Bacillus cereus on Boston bibb lettuce after 

exposure to aqueous ozone or water over time. 

Time 

(min) 

Mean Log Reduction in CFU (SD) by Treatment 

E. cloacae B. cereus 

Ozone  Water Ozone Water 

10 1.81 (±0.05) 2.80 (±0.35) 1.61 (±0.32)  2.13 (±0.42) 

20 2.13 (±1.57) 1.67 (±0.02) 2.45 (±0.06)  2.11 (±0.01) 

30 2.41 (±0.60) 1.48 (±0.09) 2.13 (±0.32) 2.15 (±0.28) 

40 3.33* (±0.95) 2.78* (±1.73) 2.83* (±1.08) 1.90 (±0.44)  

SD = one standard deviation from the mean 
*= A sample reached the limit of detection (10 CFU/ml in 75ml sample) 

 

 

 

 

 

 

 

Table 6. Log reduction of Enterobacter cloacae and Bacillus cereus on cherry tomatoes after 

exposure to aqueous ozone or water over time. 

Time 

(min) 

Mean Log Reduction in CFU (SD) by Treatment 

E. cloacae B. cereus 

Ozone  Water Ozone Water 

10 1.58 (±0.33)  1.39 (±0.53) 1.62 (±0.47) 0.36 (±0.23) 

20 1.44 (±0.66)  1.35 (±0.14) 2.06 (±0.22) 1.51 (±0.10) 

30 2.46 (±0.14) 2.01 (±0.76) 2.71 (±1.07) 1.59 (±0.86) 

40 2.58 (±1.11) 2.46 (±0.21)  2.82* (±1.38) 1.90 (±0.21) 

SD = one standard deviation from the mean 
*A sample reached the limit of detection (10 CFU/ml in 75ml sample) 
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Table 7. Mean ozone concentration (ppm) for ozone treatments over time. 

Time 

(min) 

Mean Ozone Concentration in ppm (SD) by Treatment1 

Boston Bibb-Viruses Cherry Tomatoes-Viruses Boston 

Bibb-

Bacteria 

Cherry 

Tomatoes-

Bacteria 90 min 24 h 90 min 24 h 

0 0.51 (±0.02) 0.65 (±0.15) 0.51 (±0.04) 0.48 (±0.05) 0.54 (±0.06) 0.51 (±0.01) 

10 0.78 (±0.01) 0.69 (±0.05) 0.78 (±0.06) 0.76 (±0.03) 0.73 (±0.01) 0.72 (±0.02) 

20 0.91 (±0.02) 0.74 (±0.01) 0.90 (±0.08) 0.89 (±0.03) 0.84 (±0.01) 0.85 (±0.00) 

30 0.94 (±0.04) 0.74 (±0.5) 0.96 (±0.11) 0.96 (±0.06) 0.92 (±0.01) 0.93 (±0.03) 

40 0.96 (±0.02) 0.69 (±0.12) 0.98 (±0.10) 0.99 (±0.07) 0.94 (±0.00) 0.97 (±0.28) 

SD = one standard deviation from the mean 
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Chapter 4: Aqueous ozone inactivation of viruses on stainless steel surfaces 
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Abstract 

Norovirus is a common foodborne illness, most often related to an infected food handler 

transferring the virus directly to food or indirectly to food contact surfaces. Implementing risk 

management strategies, such as aqueous ozone, to reduce viral contamination is important for the 

retail industry. Stainless steel coupons (10 cm2) were spot inoculated with 100 µl of both MNV-1 

and MS2 at 106 and 108 PFU/ml, respectively. The viruses were allowed to dry and attach to the 

coupons for 90 min and then the coupons were placed in a batch wash ozone sanitation system 

(BWOSS) with either an ozone wash or a water only wash. The water was iced to achieve a 

temperature between 3-5°C with an ozone concentration of 0.5 ppm to 1 ppm. The coupons were 

exposed to either treatment for times of 0.5, 3, and 10 min. The coupons were removed from the 

sink and flooded with buffered phosphate water in a sterile petri dish in order to recover the 

viruses. The eluate was serially diluted and processed by double agar layer method and plaque 

assay for MS2 and MNV-1, respectively, to determine PFU/ml. The log reduction difference 

between ozone and water for MNV-1 and MS2 after 10 min was 0.25 and 0.51 PFU/ml. Overall, 

there was no significant difference between an ozone wash and a water only wash for the 

inactivation of MNV-1and MS2 on stainless steel surfaces. 
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1. Introduction 

In Chapter 3, ozone was investigated for its inactivation of viruses and bacteria on fresh 

produce, and ozone was not found to significantly contribute to the inactivation of viruses. Based 

on those results, it was hypothesized that the food matrix may contain structures and other 

compounds that aid in viral attachment and prevent ozone inactivation. For instance, Gao et al. 

(2016) showed that virus like particles (VLPs) of human norovirus GII.4 were able to bind to 

surface carbohydrates in the cell wall of lettuce.  

Viral inactivation on food matrices has been shown to be variable. Hirneisen et al., (2010) 

indicates that the efficacy of ozone on food matrices is greatly affected by variables such as the 

surface topography of the food, the type of microorganism contaminating the food, and the 

strength of association of the microbe to the produce. There are only a few studies that have 

researched viral inactivation on produce by ozone. Hirneisen et al. (2011), researched the 

inactivation of murine norovirus (MNV) and feline calcivirus (FCV) on green onions and lettuce 

by ozone. The researchers did not always have viral inactivation over time there were a few 

cases of variability recorded. However, the researchers recorded at least a 2 log reduction of 

FCV on both produce and over a 3 log reduction of MNV. They concluded that the main 

contributor to variability was due to produce type. The authors believe that the difference in 

organic composition of the produce could be the reason for the variability. Similarly, Chapter 3 

had variability in inactivation of MNV and MS2 bacteriophage on both Boston bibb lettuce and 

cherry tomatoes.  

Due to the variability in virus inactivation observed in Chapter 3, the use of an abiotic 

surface such as stainless steel for the evaluation of ozone efficacy against viruses was considered 

here in order to eliminate the impact of the specific interactions occurring on biotic surfaces.  
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2. Materials and Methods  

 

a. Microbe cultivation 

i. MS2 Bacteriophage 

MS2 stock was generated, as described previously by Gibson, Crandall, and Ricke (2012), 

and aliquoted in small volumes. MS2 was kindly provided by Dr. Stephanie Friedman from the 

United States Environmental Protection Agency (EPA) Gulf Ecology Division in Gulf Breeze, 

FL. Stock was generated by scraping the soft agar layer containing bacteriophage lysed E. coli 

C3000 (ATCC 15597) into centrifuge tubes. The cell lysate was then suspended with 23 ml of 1 

× phosphate buffered saline (PBS), vortexed, and centrifuged at 185 × g for 25 min. The 

supernatant was collected and filtered through a 0.22 µm filter (Millipore Corporation, Billerica, 

MA) and then aliquoted and stored at -80°C. The MS2 stock concentration was determined based 

on titration by double agar layer (DAL) method with bacterial host E. coli C3000. DAL assay 

involves adding 100 μl of sample plus 100 μl of log phase bacterial host (E. coli C3000) to 5 ml 

of soft agar (0.7% tryptic soy agar (TSA)) and then poured on the top of TSA plates. The soft 

agar was allowed to solidify and then the plates were incubated for 24 h at 37°C. The plaques 

were counted and PFU/ml was then calculated.  

ii. Murine Norovirus (MNV-1) 

Murine norovirus type 1 (MNV-1) was prepared as described previously by Bae and  Schwab 

(2008) with modifications. MNV-1 was kindly provided by Dr. Kellogg Schwab at Johns 

Hopkins Bloomberg School of Public Health in Baltimore, MD. MNV-1 was propagated in 

monolayers of RAW 264.7 (mouse leukameic monocyte macrophage, ATCC TIB-71) cells. 

Cells were cultured in Dulbecco modified Eagle’s medium (DMEM) (Sigma-Aldrich, St. Louis, 

MO) containing less than 10% low endotoxin, fetal bovine serum (FBS: GibcoLife Technology, 



74 
 

Gaithersburg, MD), 1% 100 × penicillin-streptomycin solution (GibcoLife Technology), 1% 

HEPES (Sigma-Aldrich), 1% glutamine (Hyclone, Logan, UT), and 1% non-essential amino 

acids (Corning, New York, NY). After reaching 90% confluence, cells were infected with MNV-

1 at a multiplicity of infection (MOI) of 0.05 for virus stock production. The virus was extracted 

from cell lysate after complete cytopathic effect as described by Hsueh and Gibson (2015) with 

modifications. Briefly, culture flasks containing infected cells were subjected to three freeze-

thaw cycles at -80°C and 37°C respectively, followed by centrifugation at 5000 × g for 20 min at 

4°C then filtration with 0.1 μm filter and stored at -80°C. To determine infectious titer, the 

plaque assay as reported by Hsueh and Gibson (2015) was used with modifications. Briefly, six-

well plates were seeded with 2x106 RAW cells per well and grown to 90% confluence in 2 ml of 

complete growth medium. Cell monolayers were inoculated with virus stocks for 1 h at 37°C 

with rocking followed by removal of the inocula. Cells were covered with 2 ml of prepared 

overlay medium containing: 25% of 6% low melting point agarose, 50% 2 × minimum essential 

medium eagle (MEM) (Corning) (100 ml 10× MEM, 10 ml glutamine, 29.3 ml sodium 

bicarbonate, and 360.7 ml sterile distilled water filtered through 0.22 µm filter (Millipore 

Corporation, Billerica, MA)), 10% low endotoxin FBS, 1% 100 × penicillin-streptomycin 

solution, 1% glutamine, 0.5% HEPES, and 12.5% sterile distilled water. The plates were 

incubated for 72 h. Next, 2 ml of 0.01% neutral red (Sigma-Aldrich) prepared in 1 × phosphate 

buffered saline (PBS) was added to each well to visualize plaques. Plaques were counted after 1h 

to determine virus titer (PFU/ml). 

b. Stainless Steel 

Stainless steel sheets were (type 304/16 gauge, unpolished; Rose Metal Products, Springfield, 

Missouri, USA) cut into 10 cm2 coupons. The stainless steel was first autoclaved then 100µl of 
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MS2 at 108 PFU/ml and 100µl of MNV at 106 PFU/ml were spotted on the surface of each 

coupon in 10 µl drops and allowed to dry for 90 min in a biological safety cabinet. 

c. Treatments 

The stainless steel coupons were placed in a batch wash ozone sanitation system (BWOSS). 

The BWOSS utilized in the present study was developed by Recycled Hydro Solutions (Rogers, 

AR). The BWOSS contains a one compartment sink measuring 43 cm2 with a depth of 30 cm 

and fabricated using 16-gauge stainless steel. During operation, the sink is filled with water, and 

once filled, water from the sink is passed through a Venturi injector, which creates aqueous 

ozone continuously. The ozonated water is then passed back into the sink basin. The BWOSS 

has a dissolved ozone meter (Model Q46, ATI, Collegeview, PA) which was corroborated by the 

indigo trisulfonate method (SM 4500-OS3 B) using a Hach Pocket Colorimeter II (Hach 

Company, Loveland, CO) and Ozone AccuVac Ampules (Hach) (American Public Health 

Association, American Water Works Association, and Water and Environment Federation, 

2012).  

The sink holds approximately 34.07 L (9 gallons) of water. Ice was added to the sink to aid in 

stabilization of ozone until the water temperature reached 4°C. The coupons were placed in the 

BWOSS once it reached 0.5 ppm as indicated by the dissolved ozone meter and the water 

temperature in the sink was stable at 4°C. The coupons were in the sink for a total of 10 minutes 

with two samples (n=6) taken at 30 s, 3 min, and 10 min. A water only wash was also conducted 

in the same sink as a control. Experiments were conducted in duplicate.  
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d. Microbial analysis 

The coupons were placed in sterile Petri dishes and flooded with 2 ml of buffered phosphate 

water (BPW), and the coupons were then scraped with a cell scraper. The eluate was serially 

diluted and analyzed. 

For MS2, 100 μl of each dilution was plated in duplicate using DAL method. Then the 

plaque forming units (PFU) were counted, and PFU/ml was calculated. For MNV-1, plaque 

assay was performed as previously described (Section MNV-1), and PFU were counted in order 

to calculate PFU/ml.  

e. Statistical analysis 

Statistical analyses were performed using JMP Pro 13 software (SAS institute, Inc., Cary, 

NC). Significance was determined by a critical p-value 0.05 by one-way analysis of variance 

(ANOVA) for all scenarios. Based on the results, a Tukey-Kramer honestly significant difference 

(HSD) test was conducted to confirm differences between groups.  

4. Results 

A baseline recovery was used to calculate the amount of the viruses that can be recovered 

from stainless steel without any treatment. The average baseline recovery for MNV-1 was 

6.4×104 PFU/ml and for MS2 1.2×107 PFU/ml. The treatment results are the difference between 

the baseline values and the experimental sample values. The average ozone concentration for 0, 

0.5, 3, and 10 min are as follows: 0.52, 0.56, 0.66, 0.80 ppm.  

Both treatments applied to stainless steel coupons resulted in log reductions over time (Table 

1). An observed increase in log reduction of 0.83 to 3.53 PFU/ml over time with ozone was seen 

for MNV-1. Similarly, with a water only wash, the log reduction was 0.57 to 3.28 PFU/ml over 

time for MNV-1. There was a visible difference between the ozone wash and water only wash 
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for MNV-1, though there was not a significant difference. An increase in log reduction from 0.56 

to 4.56 PFU/ml over time with ozone was also observed for MS2. Again, the water wash also 

showed an increase in log reduction over time of 0.34 to 4.05 PFU/ml for MS2. Similar to MNV-

1, MS2 did not have a significant difference between the treatments.  

5. Discussion  

Even though there is not a significant difference between ozone and water wash, it was 

hypothesized that log reductions would increase over time as viruses are inactivated and/or 

physically removed. This was seen with the stainless steel results and not in the produce results 

(See Chapter 3). This is related to the limitations in recovery. Produce was washed in a larger 

volume (75 ml) than the stainless steel (2 ml) which dictates the limit of detection. Recovery 

from produce is also more difficult because of the surface topography hindering the removal of 

the virus in comparison to the smooth surface of the stainless steel (K A Hirneisen et al., 2011). 

Viruses have also been known to form interactions with the surface of lettuce due to surface 

glycans (Gao et al., 2016). However, there are no known studies that have looked at the 

inactivation of viruses by ozone and compared biotic and abiotic surfaces.  

Previous research has reported similar log reductions on abiotic surfaces as are reported here. 

A study showed that a 6-log reduction in the bacteriophage, PRD1, was achieved on the surface 

of a stainless steel ice cream dipper in an aqueous ozone dipper well (Almeida and Gibson, 

2016). The results in the current study are not near a 6-log reduction, but there is still an overall 

log reduction of 3.5 and 4.5 for MNV-1 and MS2, respectively, after a 10 min exposure. There 

are differences between the current study and the study by Almeida and Gibson (2016). The first 

notable difference is the use of a different bacteriophage. PRD1 is a double stranded DNA 

bacteriophage while MS2 is a single stranded RNA bacteriophage (Anders and Chrysikopoulos, 
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2006). DNA and RNA phage are reported to behave differently. When exposed to sanitizing 

practices such as peracetic acid and UV irradiation, DNA phage are more sensitive to 

inactivation than RNA phage (Rajala-Mustonen et al., 1997). Peracetic acid and ozone are both 

strong oxidizers which could indicate that similar tendencies for phages could be seen with 

ozone; conversely, UV irradiation damages the genetic material which could have been the 

reason Rajala-Mustonen et al. (1997) saw that DNA phage were more sensitive than RNA phage. 

Besides the bacteriophage used, the method of inoculation between the two studies was different. 

Almeida and Gibson (2016) dipped the ice cream dipper in the inoculum whereas the current 

study spot inoculated. Moreover, the ice cream dipper was then immediately submerged in the 

ozone wash as opposed to allowing for a drying period. The dip inoculation method is limited 

due to the application of an unknown microbial concentration thus leading to consistency issues  

between inoculation events; meanwhile, a spot inoculation of a known concentration eliminates 

this issue (Beuchat et al., 2001). Last, the ice cream dipper was then swabbed for the presence of 

microorganisms whereas the stainless steel coupons used in the present study were flooded in a 

buffer solution.  This difference in recovery methods affects the limit of detection since the 

eluate volumes also differe. The differences discussed above could certainly account for the 

opposing results.  

6. Conclusion 

By exploring the effect of aqueous ozone on viruses on an abiotic surface, we were able to 

show ozone efficacy without confounding variables that are present on biotic surfaces such as on 

produce. By eliminating confounding variables, the variation in the data was reduced in 

comparison to the produce results in Chapter 3. Surface results show an increase in log reduction 

over time which contrasts what was shown on produce in Chapter 3. Even though there was not a 
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significant difference between the ozone and water washes on the surface of the stainless steel, 

there was a visible difference which indicates that the food matrix plays a critical role in a virus’s 

ability to evade inactivation via ozone.  
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Appendix 

 

Table 1. Log reduction of MNV-1 and MS2 on stainless steel after exposure to aqueous 

ozone or water over time. 

Time 

(min) 

Mean Log Reduction in CFU (SD) by Treatment 

MNV-1 MS2 

Ozone  Water Ozone Water 

0.5 0.83 (±0.09)  0.57 (±0.01) 0.56(±0.14) 0.34 (±0.34) 

3 2.39 (±0.50)  1.89 (±0.15) 1.82 (±1.40) 0.72 (±0.29) 

10 3.53* (±0.03) 3.28* (±0.64) 4.56* (±0.99) 4.05 (±0.50) 

SD = one standard deviation from the mean 

*= A sample reached the limit of detection (10 CFU/ml in a 2ml sample) 
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Chapter 5: Aqueous ozone inactivation of viruses in association with bacteria on Boston 

bibb lettuce 
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Abstract 

Viruses do not exist in monocultures in the environment; they instead exist in microbial 

communities. The extent to which these communities effect virus inactivation is not well known. 

These communities may exist on the surface of fresh produce, and the interaction of human 

enteric viruses with their microbial co-habitants is an under explored area of research. A key 

question is how do these virus-bacteria interactions impact the efficacy of control strategies? 

Therefore, aqueous ozone was applied as a sanitizing agent on Boston bibb lettuce to investigate 

the impact of virus-bacteria interactions on the inactivation of viruses on fresh produce. Samples 

of Boston bibb (25 g) were spot inoculated with 200 µl of a mixture of 100 µl of murine 

norovirus (MNV-1; 106 PFU/ml) and 100 µl of either Bacillus cereus or Enterobacter cloacae 

(106  CFU/ml) that had been allowed to incubate for 1 h at room temperature prior to inoculation. 

The mixture was allowed to dry and attach to the lettuce (90 min) and then the lettuce was placed 

in the batch wash ozone sanitation system (BWOSS) with either an ozone wash or a water only 

wash. The water was iced to achieve a temperature between 3-5°C and the ozone concentration 

was 0.5 ppm to 1 ppm. The lettuce was exposed to either treatment for 10, 20, 30, and 40 min. 

The lettuce was removed from the sink and washed with an antibiotic solution. The eluate was 

serially diluted and processed by plaque assay to determine the concentration of MNV-1 in 

PFU/ml. The log reduction differences between ozone and water for MNV-1 only, MNV-1 with 

B. cereus, and MNV-1 with E. cloacae after 40 min were 0, 0.95, and -0.36 PFU/ml, 

respectively. Overall, there was no significant difference between virus alone and virus 

associated with either bacterium. However, the results from MNV-1 with B. cereus indicate that 

association with bacteria of different gram types (i.e. gram positive versus gram negative) could 

impact viral inactivation by aqueous ozone.  
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1. Introduction 

Throughout the supply chain there are several opportunities for microorganisms to interact 

with microbial co-habitants on the surface of produce. These interactions could possibly create 

stronger resistance to current microbial control strategies thus placing the consumer at an 

increased risk for foodborne illness. Most studies focus on microbes in isolation; however, that is 

not the case as these microbes exist in microbial communities and interact with one another. 

Currently, there is very little research on how existing control strategies respond to these 

interactions, especially viral interactions with bacteria. Enteric viruses, for example human 

norovirus, are often of concern when it comes to food safety. Norovirus and leafy greens have 

the highest number of illnesses when comparing pathogen-commodity pairs (Gould et al., 2013).   

Produce can be contaminated via various routes before reaching the consumer: soil, water, 

animal excrements, and mishandling by workers (Benson, 2010; Strohbehn et al, 2008). Also, the 

produce itself has naturally occurring microbes on its surface (Whipps et al., 2008). Each of 

these could contribute to microbes possibly interacting on the surface of produce. A recent 

review by Deng and Gibson (2017), discuss more specifically the interactions that may occur 

between human noroviruses and the microbial community of leafy greens. Interestingly, Almand 

et al. (2017) reported on the specificity of interactions between noroviruses and bacteria stated 

that these were specific to norovirus strains since other viruses tested did not readily interact with 

bacteria. It has also been reported that noroviruses are able to bind to carbohydrate moieties 

present on the surface of romaine lettuce (Esseili et al., 2015; Gao et al., 2016). 

Of the limited research, it has been shown that when viruses interact with bacteria expressing 

specific surface antigens, histo-blood group antigens (HBGA’s), viruses are more resistant to 

disinfectant processes. For example, when heat is applied, human norovirus particles in 
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association with bacteria had a higher immunoreactivity than human norovirus particles alone (Li 

et al. 2015). Conversely, Li et al. (2017) published results indicating that Tulane virus—a 

cultivable human norovirus surrogate—was not protected from heat while interacting with 

bacteria expressing HBGA-like molecules. These conflicting results raise several questions when 

it comes to the interactions of viruses and bacteria and these may impact virus inactivation under 

specific sanitation practices.  

Murine norovirus and poliovirus (serotype 1, Mahoney) have been shown to interact with 

gram positive and gram negative bacteria including Bacillus cereus, Enterococcus faecalis, 

Escherichia coli, and Enterobacter cloacae (Jones et al., 2014; Kuss et al., 2011). Therefore, this 

study aimed to evaluate the efficacy of aqueous ozone on the inactivation of viruses while in 

association with bacteria often found on the phyllosphere of lettuce. 

2. Materials and Methods 

a. Microbe Cultivation 

i. Virus 

Murine norovirus type 1 (MNV-1) was prepared as described previously by Bae and  Schwab 

(2008) with modifications. MNV-1 was kindly provided by Dr. Kellogg Schwab at Johns 

Hopkins Bloomberg School of Public Health in Baltimore, MD. MNV-1 was propagated in 

monolayers of RAW 264.7 (mouse leukameic monocyte macrophage, ATCC TIB-71) cells. 

Cells were cultured in Dulbecco modified Eagle’s medium (DMEM) (Sigma-Aldrich, St. Louis, 

MO) containing less than 10% low endotoxin, fetal bovine serum (FBS: GibcoLife Technology, 

Gaithersburg, MD), 1% 100 × penicillin-streptomycin solution (GibcoLife Technology), 1% 

HEPES (Sigma-Aldrich), 1% glutamine (Hyclone, Logan, UT), and 1% non-essential amino 

acids (Corning, New York, NY). After reaching 90% confluence, cells were infected with MNV-
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1 at a multiplicity of infection (MOI) of 0.05 for virus stock production. The virus was extracted 

from cell lysate after complete cytopathic effect as described by Hsueh and Gibson (2015) with 

modifications. Briefly, culture flasks containing infected cells were subjected to three freeze-

thaw cycles at -80°C and 37°C respectively, followed by centrifugation at 5000 × g for 20 min at 

4°C then filtration with 0.1 μm filter and stored at -80°C. To determine infectious titer, the 

plaque assay as reported by Hsueh and Gibson (2015) was used with modifications. Briefly, six-

well plates were seeded with 2x106 RAW cells per well and grown to 90% confluence in 2 ml of 

complete growth medium. Cell monolayers were inoculated with virus stocks for 1 h at 37°C 

with rocking followed by removal of the inocula. Cells were covered with 2 ml of prepared 

overlay medium containing: 25% of 6% low melting point agarose, 50% 2 × minimum essential 

medium eagle (MEM) (Corning) (100 ml 10× MEM, 10 ml glutamine, 29.3 ml sodium 

bicarbonate, and 360.7 ml sterile distilled water filtered through 0.22 µm filter (Millipore 

Corporation, Billerica, MA)), 10% low endotoxin FBS, 1% 100 × penicillin-streptomycin 

solution, 1% glutamine, 0.5% HEPES, and 12.5% sterile distilled water. The plates were 

incubated for 72 h. Next, 2 ml of 0.01% neutral red (Sigma-Aldrich) prepared in 1 × phosphate 

buffered saline (PBS) was added to each well to visualize plaques. Plaques were counted after 1h 

to determine virus titer (PFU/ml). 

ii. Bacteria 

Enterobacter cloacae (ATCC 39979) with rifampicin resistance was streaked from a frozen 

50% glycerol stock onto Luria Bertani (LB) agar (Alfa Aesar, Tewksbury, MA) with 100 µg/ml 

of rifampicin (Alfa Aesar) using a sterile inoculation loop and incubated overnight at 37°C. A 

single CFU was selected from the plate, placed in 5 ml of LB broth with 100 µg/ml rifampicin in 

a 50 ml centrifuge tube, and incubated overnight at 37°C with shaking at 150 rpm. Bacillus 
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cereus (ATCC 14579) was also streaked from a frozen, 50% glycerol stock onto a nutrient agar 

(NA) plate (Becton, Dickson, and Company, Franklin Lakes, NJ) using a sterile inoculation loop 

and incubated overnight at 30°C. A single CFU was selected from the plate, placed in 5 ml of 

nutrient broth (NB) (Becton, Dickson, and Company) in a 50 ml centrifuge tube, and incubated 

overnight at 30°C with shaking at 150 rpm. Following overnight growth of both bacteria, the 

culture tubes were centrifuged at 5,000 × g for 10 min to pellet the bacterial cells. The 

supernatant was decanted, and the pellet was resuspended in 5 ml of 1 × PBS, vortexed, and 

centrifuged again. The bacterial pellet was resuspended in 5 ml of 1 × PBS and the concentration 

of each bacterial culture was determined by spread plate enumeration of microorganisms. LB 

agar with 100 µg/ml of rifampicin and B. cereus agar (Oxoid, Altrincham, Cheshire, England) 

supplemented with selective supplement (Oxoid) and egg yolk emulsion (Dalynn, Calgary, 

Canada) were used for E. cloacae and B. cereus, respectively.  

b. Microbe-Microbe Interaction 

Enterobacter cloacae and B. cereus were serially diluted to 106 CFU/ml in 1×PBS. For 

interactions, 100 µl of bacteria was mixed with 100 µl of MNV (106 PFU/ml) at room 

temperature in an Eppendorf tube and allowed to associate for 1 h. An abstract presented at the 

International Association of Food Protection (IAFP) 2017 Annual Meeting in Tampa, FL, 

confirms association of MNV and E. cloacae or B. cereus in the time specified (Almeida and 

Gibson, 2017).  

c. Produce 

Boston bibb loose leaf lettuce was used. The Boston bibb was grown hydroponically by 

Ozark All Seasons in Windsor, AR and purchased from a local grocer. The Boston bibb leaves 

were removed and placed in a sterilized plastic container with a lid and stored at 4°C until use.  
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d. Inoculation of Produce 

For inoculation, 25 g of Boston bibb leaves were measured out for each sampling time point 

(n = 5) for a total of 125 g for each experiment. Each 25 g was then spot inoculated with the 200 

µl of the mixture containing viruses and bacteria. Following inoculation, the produce was 

allowed to dry for 90 min before being treated. 

e. Treatments 

The batch wash ozone sanitation system (BWOSS) utilized in the present study was 

developed by Recycled Hydro Solutions (Rogers, AR). The BWOSS contains a one 

compartment sink measuring 43 cm2 with a depth of 30 cm and fabricated using 16-gauge 

stainless steel. During operation, the sink is filled with water, and once filled, water from the sink 

is passed through a Venturi injector, which creates aqueous ozone continuously. The ozonated 

water is then passed back into the sink basin. The BWOSS has a dissolved ozone meter (Model 

Q46, ATI, Collegeview, PA) which was corroborated by the indigo trisulfonate method (SM 

4500-OS3 B) using a Hach Pocket Colorimeter II (Hach Company, Loveland, CO) and Ozone 

AccuVac Ampules (Hach) (American Public Health Association, American Water Works 

Association, and Water and Environment Federation, 2012).  

The sink holds approximately 34.07 L (9 gallons) of water. Ice was added to the sink to aid 

in stabilization of ozone until the water temperature reached 4°C. The produce was placed in the 

BWOSS once ozone reached a concentration of 0.5 ppm—as indicated by the dissolved ozone 

meter—and the water temperature in the sink was stable at 4°C. The produce samples were 

submersed in the sink for a total of 40 min with subsamples taken every ten minutes.  
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f. Microbial Analysis 

Produce samples were placed in Whirl-pak bags with 75 ml of buffered phosphate water 

(BPW) containing 40 µg/ml of penicillin/streptomycin.  The bags were then placed in the 

stomacher (Seward Stomacher 400 Circulator, West Sussex, United Kingdom) for 1 min at 260 

rpm. A plaque assay was performed as previously described (Virus Section). PFU were counted 

and then PFU/ml was calculated.   

g. Statistical Analysis 

Statistical analyses were performed using JMP Pro 13 software (SAS institute, Inc., Cary, 

NC). Significance was determined by a critical p-value 0.05 by one-way analysis of variance 

(ANOVA) for all scenarios. Based on the results, a Tukey-Kramer honestly significant difference 

(HSD) test was conducted to confirm differences between groups.  

3. Results 

A baseline recovery was used to calculate the amount of virus that can be recovered from the 

surface of Boston bibb. This baseline recovery was then used to calculate the log reduction for 

all time points. In Table 1, the average ozone concentrations are recorded for the treatments. The 

initial concentration of ozone is at least 0.5 ppm and reached a final concentration of at least 0.85 

ppm for all treatments.  

In Table 2, the results from the water wash treatments are displayed. Results from Chapter 3 

are included for comparison. There was no significant difference between MNV only and any of 

the virus-bacteria interactions. If log reduction at 40 min is examined separately, there is no 

visible difference between MNV-1 only (1.63 PFU/ml) and MNV-1 with B. cereus (1.65 

PFU/ml); however, MNV-1 with E. cloacae had a higher log reduction at this time point (2.20 

PFU/ml).  
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The results from the ozone treatment are displayed in Table 3. There was no significant 

difference between MNV-1 only and any of the virus-bacteria interactions with the ozone wash; 

however, there is a visible difference. After 40 min, the log reduction with an ozone wash for 

MNV-1, MNV-1 with B. cereus, and MNV-1 with E. cloacae was 1.63, 2.60, 1.83 PFU/ml, 

respectively. The interaction of MNV-1 and B. cereus had consistently greater log reductions 

over time (30 and 40 min) in comparison to the MNV-1 only log reductions.  

In comparing the results from the interactions separately, MNV-1 with B. cereus, there was a 

significant difference between the ozone and water treatments. This, however, was not the case 

for MNV-1 with E. cloacae which had no significant difference between the treatments.  

4. Discussion 

This is the first study that has investigated the effects of aqueous ozone on the inactivation of 

a norovirus surrogate while in combination with bacteria. As indicated previously, there have 

been studies that have investigated how these interactions impact norovirus and norovirus 

surrogate response to heat stress.  Li et al. (2015) published that when human norovirus virus like 

particles (VLP) were in association with HBGA-like expressing bacteria, the VLP’s had a higher 

antigen integrity than in association with bacteria without the antigen. The researchers indicate 

that this interaction could protect the virus from heat stress. Then  Li et al. (2017) conducted a 

similar study and found that when Tulane virus (TV) was bound to HBGA-like expressing 

bacteria that this interaction did not protect it from heat stress. The conflicting results in these 

two studies can be contributed to the different viruses used, human norovirus VLP’s versus TV. 

The study that utilized VLP’s had the limitation of a binding assay which does not indicate 

infectivity whereas the TV study could measure the virus infectivity to demonstrate if the virus 
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was denatured or not. The discrepancy between the studies testifies to how complex these 

interactions may be. 

The results in this study indicate there is not a significant difference in viral inactivation by 

aqueous ozone while interacting with bacteria; however, there were visible differences noted. 

When MNV-1 was associated with B. cereus and then exposed to the ozone wash, MNV-1 

experienced a greater log reduction than when associated with E. cloacae. This could indicate 

that, when viruses associate with gram positive bacteria, the virus is more susceptible to 

inactivation due to ozone, or that when in association with gram negative bacteria, it neither aids 

or enhances the inactivation. This could be due to the difference in the composition of the cell 

membrane between gram positive and gram negative. Another possibility could be that the 

interaction between MNV-1 and B. cereus has a weaker association than MNV-1 and E. cloacae 

which could lead to the greater reduction that was recorded. Further research is needed in order 

to further understand these interactions.  

5. Conclusion 

Viruses do not exist in a monoculture but rather in microbial communities. The interaction 

between viruses and bacteria had no significant impact on viral inactivation when compared to 

the virus only results. There is a possibility that viruses in association with gram positive bacteria 

may be more susceptible to inactivation by ozone, but this is only speculation and further 

investigation is needed.   
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Appendix 

 

Table 1. Mean ozone concentration (ppm) for ozone treatments over time  

 

Time (min) 
Mean Ozone Concentration in ppm (SD) by Treatment 

MNV only1 MNV + B. cereus MNV+ E. cloacae 

0 0.51 (±0.02) 0.52 (±0.02) 0.54 (±0.06) 

10 0.78 (±0.01) 0.69 (±0.01) 0.70 (±0.02) 

20 0.91 (±0.02) 0.81 (±0.07) 0.81 (±0.01) 

30 0.94 (±0.04) 0.85 (±0.08) 0.82 (±0.03) 

40 0.96 (±0.02) 0.86 (±0.09) 0.86 (±0.02) 

SD=one standard deviation from the mean 
1=Results from Chapter 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Log reduction of MNV-1 on Boston bibb lettuce with only a water wash over time. 

 

Time 

(min) 

Mean Log Reduction in PFU (SD) by water wash 

MNV-1 alone1 MNV-1 and B. cereus 
MNV-1 and E. 

cloacae 

10 0.91 (±1.33) 1.18 (±0.15) 1.41 (±0.01) 

20 1.47 (±0.93) 1.95 (±0.34) 1.64 (±0.08) 

30 1.22 (±0.51) 1.70 (±0.23) 1.67 (±0.27) 

40 1.63 (±0.70) 1.65 (±0.24) 2.20 (±0.51) 

SD = one standard deviation from the mean 
1= Results from Chapter 3  

*= A sample reached the limit of detection (10 CFU/ml in 75ml sample) 
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Table 3. Log reduction of MNV-1 on Boston bibb lettuce by an aqueous ozone wash over 

time. 

 

Time 

(min) 

Mean Log Reduction in PFU (SD) by ozone 

MNV-1 alone1 MNV-1 and B. cereus 
MNV-1 and E. 

cloacae 

10 2.54* (±1.16) 2.04 (±0.07) 1.42 (±0.16) 

20 2.51* (±1.21)  2.38 (±0.07) 2.04 (±0.75) 

30 1.69 (±0.53) 2.77* (±0.04) 2.21 (±0.51) 

40 1.63 (±0.17)  2.60* (±0.13) 1.84 (±0.25) 

SD = one standard deviation from the mean 
1= Results from Chapter 3  

*= A sample reached the limit of detection (10 CFU/ml in 75ml sample) 
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Chapter 6: Overall Conclusion 
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Contaminated produce is responsible for a large portion of foodborne illnesses (Painter et al., 

2013). Produce is susceptible to contamination because it is a ready to eat product that is 

consumed raw, which eliminates common sanitization practices like pasteurization and cooking 

(Benson, 2010). The U.S. Food and Drug Administration (FDA) recommends several practices 

such as separation of products (i.e. meat and produce), washing of hands and equipment, and 

washing of produce to prevent further contamination in the retail setting (U.S. Department of 

Health and Human Services, 2009). 

Produce washes often contain sanitizing agents such as chlorine, ozone, and organic acids 

(Berger et al., 2010). The one of interest for this research is ozone, specifically aqueous ozone. 

Ozone has been demonstrated to be effective against both bacteria and viruses in suspension 

(Khadre and Yousef, 2001; Roy et al., 1982). There is research that shows the efficacy of ozone 

on bacteria on a food matrix (Bialka and Demirci, 2007; Koseki and Isobe, 2006; Selma et al., 

2007). There is very little research on the efficacy of ozone against viruses on a food matrix with 

the only published article being Hirneisen and Kniel (2013) which investigated the inactivation 

of viruses by bubbling ozone on onions. There is no known published research on ozone 

inactivation of viruses in complex scenarios including microbe-microbe interactions.  

The primary objectives of my research were to evaluate the efficacy of aqueous ozone 1) on 

the inactivation of viruses and bacteria on produce; 2) on the inactivation of viruses on stainless 

steel; and 3) against viruses in association with bacteria on produce surfaces. 

To begin with, two types of produce, Boston bibb lettuce and cherry tomatoes, were 

inoculated with either a cocktail of viruses (murine norovirus (MNV) or MS2 bacteriophage) 

with two attachment times (24 h and 90 min) or bacteria (Enterobacter cloacae and Bacillus 

cereus). The produce was then washed in the batch wash ozone sanitation system (BWOSS) with 



99 
 

an ozone wash or a water only wash for 40 min with samples taken every 10 min. Log reductions 

were then calculated for each sample. It was determined there was not a significant difference in 

ozone efficacy between the two different attachment times for viruses. Ozone also did not have a 

significant impact on the reduction of viruses or bacteria in comparison to ozone. It is important 

to note there was a lot of variability among the viral samples which was not seen in the bacterial 

samples.  

Due to the variability in viral data, virus inactivation on stainless steel was conducted to 

eliminate any added variability due to the food matrix. Stainless steel coupons were spot 

inoculated with a viral cocktail of MNV and MS2 bacteriophage and allowed to dry for 90 min 

prior to being placed into the BWOSS for either an ozone wash or a water only wash for a total 

of 10 min with samples taken at 0.5, 3, and 10 min. Log reductions were then calculated for each 

sample. The variability was reduced and log reductions increased over time; however, there was 

not a significant difference between the ozone and water washes. Due to these results it is 

hypothesized that there is a possible interaction that viruses have with the surface of produce that 

aids the virus from deactivation by ozone.  

To evaluate inactivation of viruses in association with bacteria, Boston bibb was spot 

inoculated with a combination of MNV and E. cloacae or MNV and B. cereus. The virus and 

bacteria were allowed to associate for an hour prior to inoculating the produce. Again, the 

produce was placed in the BWOSS with either an ozone wash or a water only wash for 40 min 

with samples taken every 10 min. Viral log reductions were then calculated for each sample. 

There was no significant difference between the ozone and water wash for MNV with E. 

cloacae; however, there was a significant difference for MNV with B. cereus. This could 

indicate that if MNV is in association with B. cereus that the virus is more susceptible to 
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inactivation. When comparing both associations with the viral only wash results, there was no 

significant difference between ozone and water washes with any of the variables.  

Overall, it can be hypothesized that there are interactions that occur between viruses and the 

surface of produce that are preventing complete viral inactivation. Further research is needed to 

fully understand the impact of a food matrix on the inactivation of viruses alone and in 

association with bacteria.  
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