
University of Arkansas, Fayetteville University of Arkansas, Fayetteville 

ScholarWorks@UARK ScholarWorks@UARK 

Graduate Theses and Dissertations 

12-2018 

Fabrication and Characterization of Electrochemical Glucose Fabrication and Characterization of Electrochemical Glucose 

Sensors Sensors 

Mohammed Marie 
University of Arkansas, Fayetteville 

Follow this and additional works at: https://scholarworks.uark.edu/etd 

 Part of the Electronic Devices and Semiconductor Manufacturing Commons, Engineering Physics 

Commons, and the Semiconductor and Optical Materials Commons 

Citation Citation 
Marie, M. (2018). Fabrication and Characterization of Electrochemical Glucose Sensors. Graduate Theses 
and Dissertations Retrieved from https://scholarworks.uark.edu/etd/3027 

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for 
inclusion in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more 
information, please contact uarepos@uark.edu. 

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F3027&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/272?utm_source=scholarworks.uark.edu%2Fetd%2F3027&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/200?utm_source=scholarworks.uark.edu%2Fetd%2F3027&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/200?utm_source=scholarworks.uark.edu%2Fetd%2F3027&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/290?utm_source=scholarworks.uark.edu%2Fetd%2F3027&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/3027?utm_source=scholarworks.uark.edu%2Fetd%2F3027&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:uarepos@uark.edu


 

 
 

Fabrication and Characterization of Electrochemical Glucose Sensors 

 

 

 

 

 

 

A dissertation submitted in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy in Microelectronics-Photonics 

 

 

 

by 

 
 

Mohammed Marie  

University of Baghdad 

Bachelor of Science in Physics, 2001 

University of Tikrit 

Master of Science in Physics, 2007 

 

December 2018 

University of Arkansas 

 

 

This dissertation is approved for recommendation to the Graduate Council. 

 

 

 

 

 

 

 

 

 

 

                                                            

                                                                                      

 

 

 

 

Jingxian Wu, Ph.D.  

Committee Member  
 

Jiali Li, Ph.D.  

Committee Member 

Omar Manasreh, Ph.D.   

Dissertation director  
 

Simon Ang, Ph.D.  

Committee Member  
 

Rick Wise, Ph.D.  

Ex-Officio Member  
 



 

 
 

The following signatories attest that all software used in this dissertation was legally licensed for 

the use by Mohammed Marie for research purposes and publication. 

 

 

 

Mohammed Marie, Student                                      Dr. Omar Manasreh, Dissertation Director 

 

 

This dissertation was submitted to http://www.turnitin.com for plagiarism review by the TurnItIn 

company’s software. The signatories have examined the report on this dissertation that was 

returned by TurnItIn and attest that, in their opinion, the items highlighted by the software are 

incidental to common usage and are not plagiarized material.  

 

 

 

 

 

Dr. Rick Wise, Program Director                         Dr. Omar Manasreh, Dissertation Director 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.turnitin.com/


 

 
 

Abstract  

 Electrochemical sensors based on the nanostructure of the semiconductor materials are 

of tremendous interest to be utilized for glucose monitoring. The sensors, based on the 

nanostructure of the semiconductor materials, are the third generations of the glucose sensors 

that are fast, sensitive, and cost-effect for glucose monitoring.  

Glucose sensors based on pure zinc oxide nanorods (NRs) grown on different substrates, 

such ITO, FTO, and Si/SiO2/Au, were investigated in this research. Silicon nanowire (NW)- 

based glucose sensors were also studied. First, an enzyme-based glucose sensor was fabricated 

out of glass/ITO/ZnO NRs/BSA/GOx/nafion membrane. The sensor was tested amperometrically 

at different glucose concentrations. The device showed a high sensitivity and a lower limit of 

detection in the order of 10.911 mA/cm
2
 mM and 0.22 μM, respectively. In addition, the device 

exhibited a fast and a sharp amperometric time response of ~3 s with different glucose 

concentrations.  

The high surface-to-volume ratio provided by the ZnO NRs was investigated by 

characterizing the sensor with and without the ZnO NRs grown on Si/SiO2/Au substrates. The 

sensor showed almost a negligible amperometric response to the changes in the glucose 

concentrations without ZnO NRs. After applying the ZnO NRs, the sensor exhibited a linear 

response to the glucose concentrations from 1-8 mM. Furthermore, very clear oxidation peaks 

were observed at the scan rates of 100 and 200 mV/s in the presence of 2 mM of the glucose. 

The device showed no dependency on different scan rates without applying the ZnO NRs.  

An enzyme-free glucose sensor was fabricated based on ZnO NRs grown on FTO and 

modified with Fe2O3. The device showed a high sensitivity and a wide amperometric linear 

response on the order of 0.052  μA/cm
2
 and from 100-400 mg/dL, respectively. Reactive ion 



 

 
 

etching and nanosphere lithography methods were utilized to grow the Si NWs vertically on top 

of a silicon wafer. The sensor showed a high linearity from 1-9 mM for changes in glucose 

concentrations. In addition, the high surface-to-volume ratio provided by the Si NWs helped in 

adsorbing higher concentrations of the enzyme.  
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Chapter 1  Introduction 

1.1  Diabetes mellitus  

Millions of people are affected by diabetes mellitus all over the world. Heart attacks and 

kidney failure are direct serious health problems associated with the diabetes [1-6]. The number 

of diabetic people is directly correlated proportional with aging, the growth of population, 

obesity, and the availability of clean and healthy food and water resources [7]. Diabetes mellitus 

is expected to increase rapidly in the coming years especially in the undeveloped countries based 

on the World Health Organization.  In 2005, around 347 million patients were clinically 

diagnosed as diabetic people, and the number is expected to be doubled by 2030 [5].  

 Diabetes mellitus can be mainly categorized into two types, type1 and type 2 diabetes 

[8,9]. The first type of diabetes is the insufficient production of insulin by the pancreas, and it 

requires a continuous compensation of insulin to regulate the glucose level in the blood. The 

destruction of β cells in the blood is a major reason to have a type 1 diabetes mellitus. Beta cells 

are responsible for storing and releasing insulin in the blood to regulate the glucose 

concentrations.  

When the glucose concentration level in the blood is higher than the normal 

concentration, β cells secrete some of their stored insulin [10, 11]. The other type of diabetes is 

classified as insulin resistance and it is known as type 2 diabetes [12, 13]. It occurs when the 

produced insulin is not recognized by the body leading to a high concentration of glucose in the 

blood. Studies showed that this type of diabetes might be controlled by taking some drugs and 

following certain diets and daily physical activities [14].   

 

 



 

  2 
  

1.2  Glucose detection methods 

1.2.1  Invasive method of glucose detection 

Glucose sensors are devices that convert the biological reaction inside the body into an 

electrical signal, which can be detected easily. Those glucose sensors can be wearable, portable, 

or as an installed setup [15-17]. The biological sensors are designed to react with the biological 

elements in the body, such as enzymes, proteins, or other electroactive species in the blood.  

Generally, glucose sensors are nontoxic devices allowing them to be used widely to monitor 

glucose safely and accurately. Glucose concentration in the blood is well-known by glycemia. 

Higher and lower glucose concentrations are known as hyperglycemia and hypoglycemia, 

respectively [18]. There are three major approaches to evaluate the concentrations of glucose in 

the blood: fully invasive, minimally invasive, and noninvasive [19]. The invasive one requires a 

finger prick to extract enough blood from the person with diabetes. The extracted blood is then 

placed on the strip test, which is the glucose sensor, and the strip test is connected to the glucose 

meter to read out the concentrations of the glucose using units of either mg/dL or mmol/L.  

1.2.2  Minimally invasive approaches of glucose sensing 

Minimally invasive approaches relay on subcutaneous glucose monitoring.  This way of 

glucose monitoring is based on analyzing the interstitial fluids which are underneath the skin and 

determining the concentrations of glucose in the extracted fluid. Minimally invasive glucose 

detection focuses on extracting the required fluid underneath the skin without damaging the 

blood vessel [20]. Minimally invasive approaches of glucose detection work based on several 

mechanisms, such as amperometric and enzymatic based sensors [21, 22], microneedle array-

based glucose sensors, carbon nanotube-based sensors, and florescence-based glucose sensors 

[23]. The idea is to extract the interstitial fluids from some less sensitive areas in the body, such 
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as forearm, upper arm, and thigh [24].  

Those areas in the body are less sensitive than the finger prick. Continuous monitoring of 

glucose can be done using either minimally invasive or fully non-invasive methods [25]. One 

way to carry out the minimally invasive method for glucose detection is by analyzing the 

refractive index of the interstitial fluid. To extract the interstitial fluid underneath the skin, the 

skin is treated ultrasonically by applying a continuous source of ultrasound. This procedure helps 

in enhancing the permeability of the skin by creating new passages that the interstitial fluid will 

pass through. The interstitial fluid is then extracted by using a vacuum pump which is connected 

to the resonance sensor. The extracted interstitial fluid is analyzed through the refractive index 

on the surface of the resonance sensor and the concentrations of glucose can be detected easily 

[26]. The time of the ultrasound that the patients need to use for minimally invasive monitoring 

of glucose varies depending on several parameters.  

  Another way to fabricate a minimally invasive glucose sensor is the microneedle array. 

The working electrode of the minimal invasive glucose sensor is designed using a negative 

photoresist called SU8 50 and the design is metallized with platinum to form the working 

electrode [27]. These kinds of devices are produced to monitor the glucose concentrations using 

the interstitial fluid continuously while reducing the pain as low as possible. The microneedle 

array-based minimally invasive method of glucose monitoring can also be inserted underneath 

the skin of the diabetic patients [28, 29]. These kinds of minimally invasive sensors function 

based on the correlation between the concentrations of glucose in the interstitial fluid and the 

concentrations of glucose in the blood [30, 31].  

1.2.3  Fully noninvasive method of glucose detection 

The other approach to monitor diabetes and to measure the concentrations of glucose is 
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the fully noninvasive method. This way to monitor glucose was given tremendous attention since 

glucose concentrations are monitored without extracting blood from diabetic patients [32]. In 

addition, using the fully noninvasive method, diabetic people have the opportunity to monitor 

their glucose concentrations continuously and easily from home without any need to visit their 

doctors regularly. Several different approaches for noninvasively monitoring of glucose have 

been investigated, such as electrochemical, optical, electrical, and ultrasound [33, 34]. Each fully 

noninvasive approach of glucose monitoring has some advantages and disadvantages. Since there 

is no subcutaneous measurement by using the fully noninvasive method to monitor and to detect 

the changes in the glucose concentrations, sensitivity, selectivity, and accuracy are the major 

issues in this method. Furthermore, the lower limit of detection is another problem to be 

determined noninvasively. The most accurate and effective approach of detecting glucose 

noninvasively is by using the electrochemical enzyme glucose sensors [35]. 

 The working mechanism of detecting glucose noninvasively depends mainly on the 

capability of the glucose sensor to detect the sodium ions in the blood [36]. Sodium ions are the 

major molecules in the interstitial fluids underneath the skin. The mechanism of detection is 

well-known by the reverse ionotophoresis by applying a mild electric current into the skin to 

extract the interstitial fluids to the surface of the skin. Due to the natural negative charge of the 

skin at the neutral pH, sodium ions will be attracted to the positive electrode of the sensor that 

sticks on the skin. The sodium ions will extract the other interstitial fluid underneath the skin to 

the surface of the skin [37-39]. Glucose is one of the electroactive species in the interstitial fluid 

underneath the skin. The electrochemical sensors that are used to detect the glucose 

noninvasively among several other electroactive species are the enzymatic based sensors. The 

role of the enzyme in this detection method is to increase the selectivity of the sensor toward 
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glucose molecules to avoid any contamination in the detected signal since the concentrations of 

the glucose in the blood is much higher than the concentration of the glucose in the interstitial 

fluids. Ultrasonic energy is used to determine the concentration of the glucose in the blood. 

However, the drawback of this method is the size of the sensor which makes it difficult to be 

used as a wearable sensor. In addition, the method depends on using a biological sensor, which 

makes it a costly approach for glucose detection [40]. 

 Optical coherence tomography is another noninvasive method for glucose detection. It 

works based on detecting the reflected scattered light from the target molecules. The changes in 

the scattered light due to the changes in the refractive index of the targeted molecules are 

detected and analyzed to determine the concentrations of glucose in the blood [41, 42]. This 

method of glucose concentration detection consists of a low-coherent light, a source, a reference 

arm, and a sensitive detector to detect the backscattered light. Near-infrared light sources are 

used in the optical coherence tomography method. In this method, the infrared light can penetrate 

the skin up to 1 mm. The output signal from the detector can be written as: 

                  Id(τ)=Is+Ir+2(Is Ir)
1/2

Vtc(τ) cos (2πντ),                                 (Equation 1.1) 

where Is is the intensity of the light in the sample, Ir is the intensity of the light in the reference 

arm, Vtc is the temporal coherent function, and ν is the frequency of the incident light [43]. From 

Equation 1, the detected signal is in direct proportion to the intensities of the light in the 

reference arm and the sample that is under investigation. The selectivity is one of the hurdles 

faced when using this method of detection. The changes in the properties of the backscattered 

light can be influenced by other electroactive species in the interstitial fluid in the tissues 

underneath the skin [44]. Thus, the detected signal might not be associated only with the 

concentrations of glucose. In addition, the complex structure, the thickness of the skin, and the 
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big differences between the concentrations of the glucose in the blood and in the interstitial 

fluids underneath the skin make the signal-to-noise ratio very low. Thus, it is difficult to increase 

the sensitivity and the selectivity of such methods of glucose detection.  

1.3  Drawbacks of the minimally and fully noninvasive approaches 

 The low sensitivity and specificity of the minimally and fully noninvasive methods of 

glucose detection is one of the big hurdles that makes it difficult to accurately sense glucose 

concentrations for diabetic people. One of the reasons for the low sensitivity and selectivity is the 

low signal-to-noise ratio. Low signal-to-noise ratio means that the detected signal has a high 

noise because of the influence of the other electroactive species in the blood. To enhance the 

selectivity and the sensitivity of the minimally invasive and fully invasive glucose detection 

methods, a high signal-to-noise ratio must be obtained [45, 46 -25]. The other issue with the fully 

and minimally invasive measurements of glucose is the calibration. Real blood samples must be 

taken from the patient before using the noninvasive devices to monitor glucose. The blood 

samples are used as references to ensure the accuracy of the noninvasive measurement and to 

compare the results. The majority of the minimally and fully invasive measurements of glucose 

require a complex calibration process to ensure the accuracy of the measurement [47]. Three 

hours of calibration and four measuremets each hour  are required to calibrate the NBM-200G 

noninvasive system of glucose detection [48]. Two to three days of calibration are nessesary to 

calibrate another noninvasive system called Pendra [49].  

Predicting the concentrations of glucose multiple times for diabetic people is dificult 

using the noninvasive techniques [50]. This comes from the big difference between the glucose 

in the interstitial fluids and the concentrations of the glucose in the blood. This is a major 

challenge for the minimally and fully noninvasive methods of glucose detection, especially for 
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optical-based noninvasive techniques [51].  Since people with diabetes are required to follow a 

certain diet and medications, it is essential that diabetic people have very accurate data by using 

the continuous glucose monitoring system. Having non-accurate measurements of the 

concentration of the glucose in the blood might lead diabetic people to have several 

complications, such as heart attacks, kidney failure, brain damage, and vision problems.  

Furthermore, all the noninvasive methods of glucose detection require a continuous calibration, 

which means that people with diabetes still have to puncture their fingers to extract a blood 

sample. The physiological differences between the concentrations of glucose in the blood and in 

the interstitial fluids have lead people to come up with other techniques to overcome the 

sensitivity and selectivity problems. One of these techniques is the dynamic concentration 

correction. It is about the ability of transferring the mass of glucose between the interstitial fluids 

underneath the skin and the blood during the noninvasive and optical measurements of the 

glucose [52].  

1.4  The enzyme glucose oxidase, GOx  

 Glucose oxidase, GOx and PQQ-glucose dehydrogenases are two families of enzymes 

that have been used widely in electrochemical glucose sensors. There are several differences 

between the two families of the enzymes, such as their oxidation and reduction potential, their 

chemical structure, their capabilities to react with glucose, their cofactors, and their apparent 

Michaelis-Menten constants [53].  Glucose oxidase is the most commonly used enzyme in the 

electrochemical glucose sensors. The enzyme, GOx, is a biocompatible chemical material that 

can be used safely in biological and electrochemical sensors. It has a complex chemical structure 

and the specificity of the enzyme toward glucose makes it a great candidate to be used in the 

enzymatic glucose sensors. However, the lifetime of the enzyme is an issue that limits the 
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lifetime of the enzymatic glucose sensors. The glucose sensors using the enzyme, GOx, in 

general suffer from a short lifetime since GOx is sensitive to temperature, humidity, and other 

harsh environments. To avoid the degradation of the biological activities of the enzyme glucose 

oxidase due to temperature, humidity, chemical solvents, and other harsh environment 

conditions, the working electrodes of the sensor must be stored in specific places under specific 

conditions.  Because of the biological degradation activities of the enzyme, the reproducibility of 

the enzymatic glucose electrochemical sensors has become a big issue. The protein, flavin 

adenine dinucleotide (FAD), which is in the center of GOx, works as an electron acceptor during 

the electrochemical reaction of glucose sensing.  

1.5  Electrochemical glucose sensors 

 Electrochemical sensors are the most used devices for glucose detection [2]. 

Electrochemical glucose sensors can be divided into three groups based on the measurement 

principles, which are potentiometric measurements, amperometric measurements, and 

impedimetric measurements. In addition, those sensors are categorized into three generations 

according to the electron transfer mechanism, first, second, and third generations. The third 

generation is divided into two groups, enzymatic and non-enzymatic electrochemical sensors.  

1.5.1  The structure of the enzymatic electrochemical glucose sensors  

The enzymatic glucose sensors are the most used devices for glucose sensing and in the 

continuous glucose monitoring systems. The enzymatic glucose sensors consist of three different 

electrodes. The working, or the sensing, electrode is the part of the enzymatic sensor in which 

the electrochemical reaction takes place and it is the electrode that is modified by the enzyme. 

The counter electrode, which is mainly made of a platinum metal, is used in the electrochemical 

glucose sensors to enable the oxidation and reduction reaction on the surface of the working 
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electrode. The third electrode in the electrochemical sensor is the reference electrode. The most 

common used reference electrode is silver/silver chloride (Ag/AgCl). It is very necessary to 

control the oxidation and the reduction potential during the sensing measurement of the glucose 

in the blood in order to assure a high sensitivity and a high selectivity of the electrochemical 

sensor.  

The reference electrode, Ag/AgCl, is well-known by its oxidation potential, which is 

around 0.1 volt. Thus, using Ag/AgCl in the electrochemical sensors during the sensing process 

keeps the electrochemical reaction under control and helps in controlling the applied potential 

over the working electrode. Controlling the applied potential during the sensing measurement 

leads to enhanced selectivity by eliminating the influence of the other electrochemical species in 

the blood besides glucose. At high applied potentials, there is a big chance that other 

components, such as ascorbic acid, uric acid, cholesterol, and so on, will be oxidized and 

influence the sensed signal. This is a main reason for the low signal to noise ratio that most 

glucose sensors suffer from.  

1.5.2  Electrochemical sensors based on the measurement principle 

1.5.2.1  Potentiometric measurement  

 This kind of measurement is utilized when the concentration of glucose in the analytical 

solution under the test is within the physiological range of glucose in the blood. It works based 

on measuring the potential difference between the sensing and the reference electrodes in the 

electrochemical cell at zero current flow between the two electrodes [54-56]. The reference 

electrode is usually made of Ag/AgCl, which has a very stable potential during the 

electrochemical measurements. Whereas, the potential at the working electrode varies depending 

on the concentration of the glucose in the analytical solution. The potential difference between 
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the two electrodes is detected as a function to the glucose concentrations. The recorded potential 

is calculated according to Nernst equation [57]. 

                                                     𝐸 = 𝐸ₒ
𝑅𝑇

ƞ𝐹
𝑙𝑛𝑄                                                        (Equation 1.2) 

In Equation 1.2, 𝐸 is the output potential difference measured at zero, a negligible current 

flows between the two electrodes, 𝐸ₒ is the constant potential provided to the cell by the 

reference electrode, 𝑅 is the universal gas constant, 𝑇 is the temperature in Kelvin, ƞ is number of 

charge, 𝐹 is Faraday constant, and 𝑄 is the ratio of the concentration of ions in the anode and in 

the cathode. Potentiometric measurements are used in MOSFET-based glucose sensors, ion-

selective electrode-based sensors, and so on.  

1.5.2.2  Amperometric measurement 

 Amperometric measurement of electrochemical glucose sensors is one of the most used 

and sensitive methods to characterize these sensors [58]. In these electrochemical measurements, 

the sensed signal is the current that is associated with the concentrations of the targeted 

molecules in the analytical solution. The measurement is carried out by applying a fixed 

potential between the two or three electrodes in the electrochemical cell [59]. In this 

measurement, the glucose is oxidized on the surface of the working electrode and usually these 

types of electrochemical measurements are carried out with three electrodes, which are the 

working (sensing), the reference, and the counter electrodes. The presence of the reference 

electrode is essential to control the potential voltage applied to the surface of the sensing 

electrode. The sensed signal (current) is in direct proportional to the concentrations of the 

glucose in the analytical solution. The linearity of the sensed current out of the amperometric 

measurement reflects the sensitivity of the electrochemical glucose sensor toward the changes in 

the glucose concentrations.  
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1.5.2.3  Impediametric measurements  

The impedance-based glucose sensor is one of the methods that can be used to monitor 

glucose in the electrochemical sensors. The glucose detection mechanism works based on 

detecting the changes in the dielectric constant of the analyte [60]. The changes in the dielectric 

constant of the samples are associated with the changes in the glucose concentrations. The only 

problem that this approach faces is the double-layer capacitor, which is created from the 

interaction between the ions and molecules of the analytical solution with the surface of the 

electrode (electrode-electrolyte interaction). This problem can be solved by reducing the surface 

of the electrodes during the fabrication process [61-63]. The measured impedance is represented 

by the solution resistance, the dielectric capacitance, and the double-layered capacitors as in 

Equations 1.3 and 1.4.  

                            Z1=  √𝑅𝑠𝑜𝑙
2 +

1

(𝜋𝑓𝐶𝑑𝑙)2                                                        (Equation 1.3) 

                            Z2= 
1

2𝜋𝑓𝐶𝑑𝑖
                                                                          (Equation 1.4) 

After taking the measurements of different concentrations of glucose, the output 

impedance is analayzed at three different ranges of frequencies: low, medium, and high. As can 

be seen from Equation 1.3, at the low frequency regime, Z1, the changes in the output impedance 

which are associated with the changes in the glucose concentrations in the analytical solution 

depend on the double layer capacitance 𝐶𝑑𝑙. This might increase the noise in the detected 

impedance. At the high frequency regime, Z2 (Equation 1.4) is the dominant parameter because 

the electric current passes through the solution without being affected by the double layered 

capacitors [62].  In the equivalent circuit in Figure 1.1 below, there are two double layered 

capacitors, Cdl, which are formed by the interference between the electrode and the electrolyte. 

Those capacitors are in series with the solution resistance, Rsol. The double layered capacitors are 
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in parallel with the analytical solution capacitors, 𝐶𝑑𝑖.   

 

 

 

 

Figure 1.1. The equivalent circuit of the impedance analyzer method of glucose detection. 

  

1.6  Electrochemical sensors based on electron transfer mechanism 

1.6.1  The first generation of electrochemical glucose sensors 

 In the first generation of electrochemical glucose sensors, the electrode is modified by the 

enzyme, mostly glucose oxidase. The oxygen is the main mediator in between the electrode and 

the enzyme to help in oxidizing glucose in the analytical solution [64]. The enzyme, GOx, has the 

flavin adenine dinucleotide (FAD) as a co-factor in its chemical structure. The FAD center is the 

responsible protein of the direct transfer of electrons between glucose oxidase and the surface of 

the working electrode in the presence of glucose. The reduction of oxygen to hydrogen peroxide 

is enhanced by several proteins, such as FAD and FADH2. The FAD in the center of the enzyme 

GOx, works as an electron acceptor, so it will be oxidized to FADH2 by accepting the electrons 

from the glucose during electrochemical reaction. 

 Glucose oxidase is the specific enzyme for glucose detection due to its ability to react 

with glucose and produce hydrogen peroxide, H2O2, and gluconolactone. Hydrogen peroxide is 

oxidized to hydrogen, oxygen, and free electrons. The concentration of the hydrogen peroxide is 

associated with the concentration of the glucose in the analytical solution.  Also, the 
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concentration of glucose is determined by the concentration of the reduced oxygen. The 

produced electrons on the surface of the working electrode at different glucose concentrations 

can be detected amperometrically as an output current. The chemical structure of the D-glucose 

is as shown in Figure 1.2, and the electrochemical reaction is represented by Equations 1.5 to 

1.9. In addition, the electrochemical reaction is illustrated schematically in Figure 1.3 [65]. The 

first generation of the electrochemical glucose sensors suffers from the lack of oxygen during the 

electrochemical reaction. This limited the effectiveness of use of these kinds of glucose sensors 

and triggered the attention to find a suitable replacement of the oxygen and to create a way to 

oxidize glucose without depending on the presence and concentration of the oxygen during the 

electrochemical reaction.   

Glucose + FAD-GOx   FADH2-GOx                                                            (Equation 1.5) 

FADH2-GOx + O2  FAD-GOx +H2O2                                                                                       (Equation 1.6) 

H2O2  O2 + 2H
+
 +2e                                                                                     (Equation 1.7) 

The electrochemical reaction can be described as it follows: 

Glucose + O2                           gluconic acid +H2O2                                                                                          (Equation 1.8) 

H2O2                         O2 + 2H
+
 + 2e

-
                                                                                   (Equation 1.9) 

In both sets of electrochemical equations, the final step is that the hydrogen peroxide is oxidized 

to oxygen, hydrogen, and two free electrons.  

 

 

 

Figure 1.2. The chemical struture of D-glucose with the chemical formula C6H12O6. 

GOx 
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Figure 1.3. The electrochemical reaction of the first generation of the enzymatic electrochemical 

glucose sensors on the surface of the working electrode in the presence of different glucose 

concentrations [65].  

 

 

1.6.2  The second generation of electrochemical glucose sensors 

 The second genetation of electrochemical glucose sensors works based on replacing the 

oxygen with artificial mediators [66]. It is not possible to directly tranfer the produced electrons 

by the enzyme itself due to the high barrier surrounding the FAD in the enzyme center created by 

the protein layer in the FAD. Therefore, artificial mediators are used to help in transferring the 

generated electrons from the enzyme center to the surface of the electrode. There are several 

artificial mediators that can be used as electron acceptors in the structure of the electrochemical 

glucose sensors, such as fericyanide, some organic and conductive salts, transition metal 

compounds, and ferrocene [67-69]. The electron transfer process between the center of the 

enzyme and the surface of the working electrode can be described in Figure 1.4 by the schematic 

structure [70]. In Figure 1.4, M(ox) is the oxidation mode of the artificial mediator. Whereas, 

M(red) is the reduction mode of the same mediator. The artificial mediator is oxidized in the 
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surface of the electrode producing free electrons. The concentration of the oxidized mediator is 

in direct proportional to the concentration of glucose in the analytical solution.  

 

 

 

 

 

 

 

 

 

   

Figure 1.4. The electrochemical reaction of the second generation of the enzymatic 

electrochemical glucose sensors on the surface of the working electrode in the presence of 

different glucose concentrations [70]. 

 

   

1.6.3  The third generation of electrochemical glucose sensors 

The working mechanisim of the third generation of electrochemical glucose sensors is to 

transfer the electrons directly from the center of the GOx to the surface of the electrode without 

using a mediator. This direct transfer is achieved by fabricating  nanostructured materials based 

the working electrode [69, 71]. The drawback with the direct electron transfer is the sensitivity 

and selectivity of the enzyme. In the next sections, the third generation of the elctrochemical 

sensors will be discussed, and it will be divided into two groups: enzymatic and non-enzymatic 

glucose sensors.  
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1.7  Silicon nanowire-based enzymatic electrochemical sensors 

 Silicon nanowires have attracted tremendous attention due to their unique optical, 

electrical, and structural properties [72].  Silicon nanowires have been employed to construct 

several nano-devices, such as glucose sensors [73], field effect transistors [74], photodetectors 

[75], and photovoltage devices [76]. Silicon nanowires on silicon substrates can be grown using 

different methods, such as metal-assisted etching, nanosphere lithography, and electroless 

etching. Electrochemical glucose sensors are fabricated out of silicon nanowires arrays [77].  

Silicon nanowires have a high affinity with several metals which enables fabricating modified 

working electrodes to be used in the electrochemical glucose sensors. For instance, the 

successful decoration of gold nanoparticles on the surface of the grown silicon nanowires 

enables construction of an enzymatic electrochemical glucose sensor based on the hybrid 

nanostructure [78].  

Those kinds of enzymatic electrochemical sensors are sensitive, selective, and have a fast 

response to changes in the glucose concentrations. The high selectivity of the electrochemical 

glucose sensors based on the nanostructure of silicon is because of the high specificity of the 

enzyme glucose oxidase towards the glucose. Furthermore, due to the high surface-to-volume 

ratio provided by the silicon nanowires, more GOx is adsorbed by the electrochemical sensing 

area of the sensor. In other words, the silicon nanowires help in enhancing the active area of the 

enzymatic electrochemical sensor [79]. Silicon nanowires can be applied in the electrochemical 

glucose sensors to enhance the performance of the glucose sensors based on MOSFETs [74]. An 

example of Si NW-based glucose electrochemical sensors is illustrated in Figure 1.5.   

 

From the figure, the drain and source are protected by the polydimethylsiloxane (PDMS) 

transparent insulator. The solution that contains the different glucose concentrations should not  
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Figure 1.5. The schematic structure of a silicon nanowire-based enzymatic electrochemical 

glucose sensor that works based on the principle of a metal-oxide-semiconductor field effect 

transistor (MOSFET).   

 

be in contact with the drain and source to avoid any short contact in the circuit during the 

measurements. The thickness of the oxide layer (SiO2) varies and depends on the type of 

measurements and other parameters. The silicon dioxide thickness is usually deposited to be 

from 100-300 nm. The silicon substrate might be either n or p-type depending on the properties 

of the nanostructure of the semiconductor material in between the channel. The drain, source, 

and the gate are formed by depositing gold metal using different methods of deposition, such as 

electron-beam evaporator, sputtering system, or chemical vapor deposition (CVD). During the 

electrochemical measurements, a drain-source potential is applied for glucose detection and the 

MOSFET is biased by applying a fixed voltage to the gate in the back of the structure. The drain-

source current is extracted as a function to either drain-source voltage or as a function to gate-

source voltage.  
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1.8 ZnO  nanorod-based enzymatic electrochemical sensors 

The nanostructures of zinc oxide at different morphologies have been investigated to 

fabricate electrochemical sensors for glucose monitoring. A zinc oxide nanorod (ZnO NR)-based 

working electrode is utilized to detect glucose directly without a mediator. The surface of the as-

grown ZnO NRs is immobilized with GOx and the immobilized structure is covered with a 

nafion membrane to enhance the stability of the structure. Figure 1.6 shows the working 

electrode of the ZnO NR-based electrochemical glucose sensor [80].  

 

 

 

 

 

Figure 1.6. The schematic structure of the working electrode based on ZnO NRs modified with 

GOx on a conductive ITO substrate. Reprinted with permission from Marie et al. [80]. 

 

1.9  The non-enzymatic electrochemical glucose sensors 

 Although the enzymatic electrochemical glucose sensors are sensitive, selective, and easy 

to fabricate, reproducibility is a big problem since the biological activities of the electrochemical 

sensors depend on the enzyme, glucose oxidase [81, 82]. The non-enzymatic electrochemical 

sensors for glucose monitoring have, in general, longer lifetime compared with the enzymatic 

devices. However, the selectivity and the sensitivity of the non-enzymatic glucose sensors are 

lower than those of the enzymatic devices. To overcome the short lifetime of the working 

electrodes of the enzymatic electrochemical glucose sensors, several approaches have been 
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employed. All the efforts are directed toward replacing the enzyme glucose oxidase by 

manipulating the structure of the surface of the working electrode. The working electrode in the 

non-enzymatic electrochemical glucose sensors is modified in different ways to create 

microenvironment areas to host the glucose molecules.  

 Non-enzymatic electrochemical glucose sensors based on the nanostructure of materials 

specifically semiconductor materials, have attracted tremendous attention to produce highly 

efficient, highly selective, and highly sensitive glucose sensors [83]. The nanostructure material- 

based electrochemical glucose sensor is one of the desirable approaches that helps in enhancing 

the performance, increasing the accuracy, reducing the cost, decreasing the harmfulness, 

increasing the flexibility, and providing high level of safety for the users [84]. The nanostructure 

of semiconductor materials has unusual electrical, optical, mechanical, and structural properties 

that can be implemented to replace the enzyme-based glucose sensors. 

1.10  Zinc oxide nanostructure for enzyme-free glucose sensors 

 Many toxic materials can be replaced with ZnO since this material is considered one of 

the nontoxic materials. The position of the interstitial zinc atoms and the vacancies atoms of 

oxygen make n-type is the natural doping of zinc oxide. Zinc oxide is of the group II – VI in the 

periodic table [85]. Different morphologies of zinc oxide nanostructure have been studied along 

with different growth methods. In recent years, the nanostructure of zinc oxide is one of the most 

preferred semiconductor materials for biomedical applications, such as enzymatic and non-

enzymatic electrochemical glucose sensors, DNA sequencing, pH sensors, gas sensors, 

pacemakers, and oximeter sensors. There are two main crystal structures of the ZnO 

semiconductor – the hexagonal wurtzite and cubic zinc blende – and the most stable structure is 

hexagonal wurtzite as shown in Figure 1.7 [86]. Zinc oxide has high sensitivity to chemical 
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materials at room temperature. The surface oxidation due to the oxygen vacancies on the ZnO 

surface has an impact on the optical properties of ZnO nanostructures [87].  Zinc oxide has a 

high isoelectric point (IEP) of 9.5, which makes it a great absorber for materials with lower IEP 

[88]. The high affinity between zinc oxide and other semiconductors and metals enables creating 

different hybrid nanostructures and thus has resulted in many non-enzymatic electrochemical 

glucose sensors. The zinc oxide nanostructure works as a hosting medium that adsorbs other 

nanomaterials, especially nanoparticles such as gold, platinum, and silver. Good examples of the 

high affinity and the hybrid structure are ZnO-CuO, ZnO-Ag, ZnO-Fe2O3, ZnO-nafion, and 

ZnO-Ag and Au nanoparticles.  

 

 

 

 

 

 

 

 

 

Figure 1.7. Hexagonal wurtzite structure of zinc oxide [86]. 

 

 Cubic zincblende of ZnO is a stable structure if it is grown on cubic lattice structured 

substrates [89].  Zinc oxide semiconductor has some favorable features, such as an acceptable 

level of transparency, high electron mobility, and high luminescence at room temperature. Zinc 

oxide has a direct band gap of 3.37 eV; this allows ZnO to absorb the wavelengths at the edge of 
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the visible region [90]. In other words, the photons with high energies and short wavelengths are 

absorbed by the ZnO nanostructure, and this increases the stability of zinc oxide. The 

piezoelectric phenomenon of ZnO makes it a favorable material for biological and medical 

applications. For instance, pacemaker devices that can be injected inside small areas of human 

bodies are considered one of the major applications based on the piezoelectric effect. The 

nanorod and nanotube structure of ZnO have been investigated extensively. The excellent control 

of the synthesis procedure to obtain the nanostructure of zinc oxide makes it very desirable for 

physics, chemistry, and materials science as well [91]. 

Table 1.1 is a comparison between enzymatic and non-enzymatic electrochemical sensors 

using different working electrodes.  

 

Table 1.1 Summary of the different types of electrochemical glucose sensors based on the 

detection method: enzymatic and non-enzymatic. 
 

 

Type of sensing electrode  Sensing method  Sensitivity Linear response  mM 

Si NWs-Ag NPs Enzymatic  - (0.1-0.8) mM [78] 

ZnO NRs-Au 

nanocomposite  

Enzymatic  1492 µA/mM 

cm
2 

(0.1-33) µM [92] 

ZnO NRs-Graphene  

heterostructure  

Enzymatic  17.64 µA/mM  (0.2-1.6) mM [93] 

ZnO NWs-CuO NPs Non-enzymatic 3066.4 µA/mM 

cm
2 

Up to 1.6 mM [94] 

ZnO-Fe2O3-nafion 

membrane 

Non-enzymatic  0.052 µA cm
-2 

(mg/dL)
-1 

(100-400) mg/dL [95] 

ZnO NRs powder surface-

Carbon  

Non-enzymatic  2.97 µA/cm
2 

mM 0.1-10 mM [96] 

CuO nanoparticles inkjet 

printed on electrode  

Non-enzymatic  2762 µA/cm
2 

mM 

0.05-18.45 mM [97] 
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Chapter 2  Materials and devices growth, fabrication, and characterization techniques 

2.1  Introduction 

  Chapter Two is divided into two major sections. The first part of the chapter will be the 

growth and characterization of nanomaterials. Whereas, the second section of the chapter is 

about the fabrication of the devices and techniques used to characterize the fabricated devices. 

The growth of different nanostructures of materials, such as the growth of zinc oxide nanorods 

on different substrate — ITO, FTO, glass, and silicon substrate-coated gold — will be discussed 

in detail. In addition, the modification of ZnO NRs with ferric oxide using the dip-coating 

technique is summarized. The growth of silicon nanowires is explained in the chapter. Different 

growth methods were utilized to grow Si NWs horizontally and vertically. For instance, metal-

assisted wet etching technique and nanospheres lithography method are discussed. In addition, a 

photolithography method was carried out with a photomask to etch silicon substrates 

horizontally. Device fabrication using the photolithography method and the electrochemical set- 

up are covered in this chapter.  

  Materials characterization techniques are discussed in detail. Different characterization 

methods, such as scanning electron microscopy, Raman spectroscopy, UV-visible-near IR 

spectrophotometer, x-ray diffraction, optical profiling, and microscope images were used to 

characterize the grown materials. Device characterization method, such as Keithley series 

Sourcemeter 2410 (Tektronix, Inc, Beaveron, OR), Gamry potentiostat (Gamry Instruments, 

Warninster, PA), and Semiconductor Simulator (Tektronix, Inc, Beaveron, OR) were used to test 

the fabricated devices. An electrochemical set-up consisting of three electrodes configuration 

was constructed to carry out the characterization tests, such as cyclic voltammetry, time 

response, amperometric response, and Michaelis-Menten constant. 
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2.2  Hydrothermal growth of ZnO nanorods 

2.2.1  Growth of seed layer 

  Different growth methods can be utilized to grow ZnO NRs and the hydrothermal 

growth is one of the desired methods. The hydrothermal growth method can be controlled easily 

at low temperatures [98-100, 80]. Controlling the aspect ratio of the as-synthesized ZnO NRs is 

one of the most important parameters that make this method of growth a desirable approach.  In 

the hydrothermal growth method, there are two parameters, the growth time and the growth 

temperature. The method is divided into two parts, the growth of the seed layers and the 

preparation of the growth solution.  

 To prepare the seed layer solution, or sol-gel solution, 0.5 M of the precursor, zinc 

acetate dehydrate (Zn(CH3COOH)2·2H2O), was mixed with 10 mL of methoxyethanol 

(CH3H8O2 99%), which is an organic compound known as a colorless solvent [80]. Both the 

precursor and the organic compound were placed on the hot plate at 75 °C under a continuous 

stirring at 300 rotations per minute (rpm) for one hour. A certain volume of ethanolamine, 0.3 

mL of which is an organic chemical compound with high viscosity, was added to the mixture in 

order to increase the viscosity, to accelerate the dissolvent of the precursor in the organic 

compound, and to stabilize the chemical reaction. The addition of the 0.3 mL of the 

ethanolamine had to be after around 30 minutes of chemical reaction between the precursor zinc 

acetate dehydrate  and the solvent methoxyethanol (CH3H8O2 99%). The addition of the 

ethanolamine was performed very slowly drop-by-drop to ensure the high solubility of the 

precursor zinc acetate dehydrate in the solvent methoxyethanol (CH3H8O2 99%). The mediator 

ethanolamine is also known as 2-aminoethanol or monoethanolamine and it has two 

abbreviations, ETA and MEA. 
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The viscosity of the sol-gel solution is controlled by the volume of the ethanolamine. In 

fact, it is very important to have the sol-gel solution at a certain viscosity in order to ensure a 

high quality film of the seed layer on the surface of the substrate. An ultrasound bath for one 

hour was carried out to ensure the homogeneity of the solution. It is worth mentioning that in 

most of the growth cases, mixing the precursor with the solvent at 300 rpm was not enough to 

ensure that there were no undissolved particles even if after sonication. Another important step 

was carried out which was the filtering of the mixture using 0.25 µm filter. The seed layer 

solution had to be kept at room temperature at least 24 hours before it could be used in the 

synthesis procedure. The seed layer solution had a lifetime around a month after the first 

synthesis. After one month, the seed layer solution started to degrade because of the degradation 

of the precursor zinc acetate dehydrate (Zn(CH3COOH)2·2H2O).  

2.2.2  Synthesis of the growth solution  

To complete the growth of ZnO NRs using the hydrothermal and sol-gel method, the 

growth solution was prepared using two different precursors. Zinc nitrate hexahydrate 

(Zn(NO3)2·6H2O) was used in the synthesis [80]. Zinc nitrate hexahydrate is an inorganic 

chemical compound and it is soluble in water and some other polar solvents. The powder phase 

of the zinc nitrate hexahydrate has a white color and since it has the hexahydrate in its chemical 

structure, it is normal to store it at room temperature. The inorganic chemical compound was 

used without any further purification. The other chemical that was used in the synthesis 

procedure of the growth solution was the hexamethylenetetramine. It is an organic chemical 

compound that has a high solubility in water and other polar solvents. Hexamethylenetetramine 

has a cage-like crystal structure, and it can be used in several applications, such as medical 

applications. It is used in treatments of some urinary tract infections as a medical salt.  
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To prepare the growth solution at 0.05 molarity, 0.025 M of zinc nitrate hexahydrate 

(Zn(NO3)2·6H2O) was dissolved in a 10 mL of deionized water. In addition, a 0.025 M of 

hexamethylenetetramine was also dissolved in 10 mL of deionized water separately. The two 

prepared precursors were placed on a magnetic stirrer are stirred for one hour separately in a 

glass vial container at 300 rpm at room temperature. A micropipette was utilized to mix the two 

precursors together using a dropwise method. The two mixed solutions were stirred together for 

another hour to ensure the homogeneity between them and to ensure that all the salt was 

dissolved completely in the deionized water. It is worth mentioning that the pH of the growth 

solution must be kept at 7 to synthesize ZnO NRs. 

For different morphologies of ZnO nanostructure, such as nanotubes, nanoneedles, and 

nanowires, the pH of the growth solution was increased by using some strong base solutions, 

such as ammonium hydroxide (NH3OH), sodium hydroxide (NaOH), and potassium hydroxide 

(KOH). The lifetime of the prepared solution was very critical and the growth solution had to be 

used immediately to avoid any degradation of its biological activities.  To grow ZnO NRs with 

different aspect ratios, one can manipulate the growth time. A flow chart of the growth of ZnO 

NRs is shown in Figure 2.1. The density and the diameters of the as-grown ZnO NRs were 

controlled by the viscosity and thickness of the sol-gel (seed layer) solution and the annealing 

temperature, whereas the morphology and the length of the as-synthesized ZnO NRs were 

controlled by the pH of the growth solution and the growth time, respectively. 

2.3  Modification of ZnO NRs with ferric oxide 

 The precursor Fe2(NO3)39H2O was utilized to modify the surface of ZnO NRs with ferric 

oxide (Fe2O3) using the dip-coating method. [95]. 0.1g of Fe2(NO3)39H2O was dissolved in 30 

mL of DI water. The mixture was placed on a magnetic stirrer to ensure complete dissolution of  
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Figure 2.1.Flow chart of the synthesis procedure of ZnO NRs consisting of two major steps: (a) 

the seed layer growth; and, (b) the growth solution preparation. 
 

the precursor in the water. To modify the surface of the as-grown ZnO NRs with ferric oxide, the 

dip-coater machine was utilized. After several trial and error methods, the down speed was 

chosen to be 100 mm/min. The up speed was 25 mm/min, which was very important to 

determine the thickness of the ferric oxide on top of the surface of ZnO NRs. The dwell time was 

varied between 60 sec to 3 min, and 1 min dwell time was selected. The dry time was chosen to 

be 180 sec and the recipe was run for one cycle. A one hour annealing time was chosen at 250 °C 

in air. It is worth mentioning that reducing the up speed helped immobilize the surface of the as-

synthesized ZnO NRs uniformly.  
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2.4  Growth of silver nanoparticles 

2.4.1  Growth of Ag NPs in toluene 

  Silver colloidal nanoparticles were grown by two phase synthesis similar to that of gold 

nanoparticle synthesis. Tetraoctylammonium bromide (TOAB) was used as a phase transfer 

agent in order to separate the two phases during the synthesis — the aqueous and the organic 

phases. In order to avoid silver bromide (AgBr) formation, excessive sodium nitrate 

(NaNO3) salt was added. For the synthesis of Ag nanoparticles in toluene: 

1. 30 ml of 5.0 M NaNO3 solution was prepared by dissolving 12.749 g NaNO3 in 30 ml 

deionized water.  

2. For the preparation of the organic phase, 50 ml of tetraoctylammonium bromide (TOAB) 

solution in toluene was prepared by dissolving 1.367 g of TOAB.  

3. The prepared sodium nitrate solution in step one was added slowly to TOAB solution and 

stirred vigorously for 1 to 2 hours. 

4. After the organic and the aqueous phases were dissolved completely and a homogenous 

solution was obtained, the two phases were separated by an extraction step. The aqueous 

phase was discarded from the solution.    

5. The organic phase was washed one more time with deionized water and the phase separation 

step was carried out to separate the two phases of the solution.  

6. The aqueous phase was discarded again. Thus, the bromide ions were removed from the 

organic phase of the synthesis. 

7. Afterwards as a silver precursor, 7.5 mL of 30 mM of silver nitrate (AgNO3) solution was 

added to the organic solution and stirred vigorously to mix the two phases and to transfer the 

silver ions into organic phase that had the tetraoctylammonium bromide. 
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8. Meanwhile, 0.4 M ice cold sodium borohydride (NaBH4) solution was prepared and added 

very slowly drop-wise to the organic phase solution and the final solution was stirred 

vigorously for 1 to 2 hours. 

9. The organic phase turned out to be yellow, and it was extracted and washed several times 

carefully with DI water and the organic phase was separated again.  

10. Finally, to have silver nanoparticles Ag NPs dispersed alone in the toluene solution, the 

organic phase was dried with sodium sulfate (Na2SO4) salt to remove traces of the DI water 

drops from toluene solution. Figure 2.2 shows the growth setup of the Ag NPs.  

 

 

Figure 2.2. The aqueous and the organic phases of the synthesis procedure of silver 

nanoparticles.   

 

2.4.2  Growth of Ag NPs in DI water 

Silver nanoparticles can also be grown in deionized water. The growth procedure of the 

Ag NPs in DI water is simple and cost-effective. Also, the size of the synthesized Ag NPs is 
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under control. However, DI water is still a strong polar solvent and this makes it difficult to 

separate the charges in the Ag NPs. The colloidal growth of Ag NPs was carried out as follows: 

1. 0.02 gm of sodium citrate (C6H5Na3O7.H2O) was dissolved in 2 mL of DI water and stirred 

for one hour to ensure the complete solubility of the sodium citrate in the DI water. 

2. 0.0033 gm, that makes 1mM of silver nitrate (AgNO3), was dissolved in 20 mL of DI water 

and stirred for 30 minutes to ensure the homogenous solubility of the AgNO3 in the DI water. 

3. The solution was heated to boiling with continuous stirring. 

4. Sodium citrate solution was added to silver nitrate solution drop-by-drop and the mixture was 

mixed together for around 30 minutes.  

5. The color of the new mixture turned to bright yellow and this was evidence of the 

accumulation of the positive silver ions Ag
+
 in the solution. Both procedures of synthesizing 

silver nanoparticles were utilized and were successful to produce Ag NPs.  

2.5  Growth of silicon nanowires  

2.5.1  Metal-assisted wet etching of Si NWs 

 Silicon nanowires (Si NWs) were grown using a p-type silicon substrate that had 100 nm 

oxide thicknesses on the surface by using the metal assisted etching (MAE). The oxide layer was 

removed using a concentrated hydrofluoric acid (HF 48%). The samples were immersed in the 

HF solution for 5 seconds followed by cleaning with DI water to stop any further etching. The 

samples then were dried with a nitrogen gas and placed in a plastic box at room temperature. The 

etching recipe and procedure were as follows: 

1. p-type silicon wafers (boron dopant) were utilized for the etching.  

2. The p-type silicon wafer had the following features: crystal orientation was (100) ±0.5
°
, 

resistivity = 1-10 ohm-cm, thickness = 500 ± 25 µm, diameter = 100 ± 0.5 mm.  
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3. The silicon wafers were diced to have areas of 1×1 cm
2
. 

4. The samples were dipped in trichloroethane solution in an ultrasound bath for 10 minutes 

following by etching with DI water. Then, the cleaned samples were sonicated in an 

ethanol solvent for another 10 minutes followed by rising with DI water. Finally, the 

samples were placed in acetone inside the ultrasound bath for 10 minutes and cleaned 

with DI water. 

5. To remove any oxide layer that might formed by the cleaning process, a dilute HF 

solution was prepared by mixing 1:10 ratio of HF: DI water. The samples were immersed 

in the solution for one minute followed by washing with DI water and drying with 

nitrogen. 

6.  A molarity of 4.6 of HF was prepared by taking 5 mL of 48% HF and 27 mL of DI 

water.  

7. A volume of 2 mL of the oxidizer, hydrogen peroxide (H2O2), was added to the final 

solution. 

8. To have the catalyst metal, 0.115 gm, which makes the molarity of AgNO3 equals to 20 

mM, was added to the mixture of HF:DI water: H2O2. The samples were then placed in 

the etching solution at 90 
°
C for different times starting at 10 minutes and depending on 

the desired length and diameter of the silicon nanowires. 

9. The etching rate using this procedure was expected to be 67 nm/min.     

10. To remove the silver metal from the surface of the etched Si NWs, a concentrated nitric 

acid HNO3 was used in the process and the etched samples were immersed in the solution 

for 30 minutes. 

11. The final step in the etching method was washing the etched samples by DI water and 



 

  31 
  

drying with nitrogen. The metal assisted etching method to grow Si NWs is schematically 

illustrated in Figure 2.3.  

 

 

Figure 2.3. The step-by-step metal-assisted etching method to synthesize vertically aligned Si 

NWs using HF and AgNO3 on top of p-type silicon wafers.  

 

2.5.2  Silicon nanowires based on nanospheres lithography method 

 Nanosphere lithography is one of the desired approaches to grow Si NWs using dry and 

wet etching. The nanospheres help in controlling the diameters and the length of the etched Si 

NWs by acting as a photomask.  Synthesis of Si NWs procedure was carried out as the follows:   

1. The n-type silicon samples were treated with RCA cleaning solution to change the 

surface from hydrophobic to hydrophilic. The concentrations used are summarized in 

Table 2.1.  

2. An ultrasound bath was used to clean the samples with different solvents. 

Trichloroethane solvent was used in the cleaning and the silicon wafers were dipped in 

the solution for 10 minutes followed by cleaning with DI water. The ethanol solvent was 

used to clean the samples for another 10 minutes inside the ultrasnic bath followed by 

washing with DI water. Acetone was then used to clean the samples for 10 minutes and 
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the samples were rinsed with DI water then dried with nitrogen.  

3. The nanospheres were diluted with ethanol to the ratio of 2:1 ethanol: nanoshperes. 

4. The nanospheres were placed in an ultrasonic bath for 1 minute to ensure uniform 

dispersion of the nanospheres in the ethanol.   

5. The diluted nanospheres were spun-coated on top of the cleaned silicon samples at 300 

rpm to form the close-packed surface.  

6. The reactive ion etching (RIE) system was used to control the diameter of the 

nanospheres on top of the silicon samples using plasma etching. The plasma etching 

changes the surface of the coated nanospheres from a close packed to a non-close packed 

surface.  

7. The etching recipe used to reduce the diameters of the nanospheres was: RF power of 50 

W, ICP power of 30 W, O2 flow rate of 50 sccm, chamber pressure of 100 mTorr, and 20-

25 minutes etch time.   

8. The e-beam evaporator was used to deposit 15 nm of gold on top of the samples coated 

with the non-close packed surface. 

9. The wet etching method was used to etch the silicon underneath the gold. In other words, 

the areas not protected by the nanospheres were etched by the etching solution. To start 

the procedure, the etchant solution was prepared by adding 27 mL of DI water to 5 mL to 

the 48% HF solution. That brought the molarity of the etchant solution to 4.6 M. The 

etching rate obtained from this process was 67nm/min.   

10. The covered areas with the nanospheres were protected from the etchant solution. The 

areas uncovered by the nanospheres were etched and the remaining un-etched areas 

formed the silicon nanowires on top of the silicon substrates.  
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11. The length of the etched Si NWs was controlled by changing the etching time using the 

HF solution as described above. Whereas, the diameters of the etched Si NWs were 

controlled by the dry etching time. The longer the wet etching time, the smaller the 

diameters were of the Si NWs. 

12. The coated nanospheres were removed by placing the etched samples inside the toluene 

solvent for 30 minutes following by washing the samples with DI water and drying them 

with nitrogen.  

13. The gold thin film was removed from the surface of the samples by using aqua regia 

solution. The solution was prepared as follows: 4 mL of HCl (hydrochloric acid) and 1 

mL of nitric acid (HNO3).  

14. The samples were dipped in the aqua regia solution at 110 
°
C until the gold was 

completely removed from the surface. Table 2.1 is a summary of the aqua regia 

preparation. Afterward, the samples were washed with DI water to stop any further 

reaction and dry with N2. Figure 2.4 is the step by step fabrication method of Si NWs 

using Nanospheres lithography and RIE system. To remove the gold from the surface of 

the sample, aqua regia solution was prepared as summarized in Table 2.2. 

 

Table 2.1. The RCA cleaning to change the surface of the silicon wafers from hydrophobic to 

hydrophilic.   
 

 

 

 

 
 

NH3 (Ammonia) 

25% 

H2O2 hydrogen peroxide 

30% 

H2O Time (min) 

Temperature 

(°C) 

10 mL 8.5 mL X 30 90 
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Table 2.2. The aqua regia solution to remove the gold from the surface of the etched Si NWs.   
 

 
 

 

 

 

 

 

 

 

 

 

Figure 2.4 The schematic diagram of the nanosphere lithography procedure to synthesize 

vertically grown Si NWs on top of a silicon substrate.  

 

 

2.5.3  Horizontal growth of Si NWs by photolithography 

 Silicon nanowires are grown horizontally using a p-type silicon substrate through the 

photolithography process using a photomask. The synthesis of the horizontally aligned Si NWs 

was performed as follows: 

1. A photomask consisting of a horizontally aligned array was designed using chromium on the 

top of the mask. 

2. The length of the Si NWs was 300 µm and the width of each Si NW was 3 µm.The distance 

between the Si NWs was 3 µm as well. 

3. The total area of the Si NWs was calculated to 3000 3997 µm
2
.   

HCl 39% 

(hydrochloric 

acid) 

HNO3 30% (nitric acid) Time (min) Temperature (°C) 

4 mL 1 mL 5 100 
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4. The samples were cleaned with different solvents using an ultrasonic bath. The p-type silicon 

samples were dipped in trichloroethane solution in an ultrasonic bath for 10 minutes following 

by cleaning with DI water. Then, the cleaned samples were placed in an ethanol solvent for 

another 10 minutes inside the ultrasonic bath followed by washing with DI water. The 

samples were placed in acetone inside the ultrasonic bath for another10 minutes followed by 

cleaning with DI water and drying with nitrogen.  

5. A positive photoresist AZP 4330-RS (AZ Electronics USA Corp, Somerville, NJ) was utilized 

and spun coated on top of the cleaned samples using the spin coater machine at 7000 rpm for 

1 minute and a ramp speed of 2000 rpm. The spin coating recipe to deposit the photoresist on 

top of the silicon substrates was optimized based on the designed dimensions of the Si NWs in 

the photomask. A speed of 7000 rpm resulted in 3 µm thickness of the positive photoresist 

used.  

6. The coated samples with photoresist were placed on a hot plate for 3 minutes for soft baking 

at 110 °C to prepare the samples for the ultra violet (UV) light source and to help distribute 

the photoresist evenly on top of the samples.   

7. It is worth mentioning that the silicon samples were located on the surface of the chuck of the 

spin coater directly without using a substrate holder. This helped obtain an even distribution 

of the photoresist and in transferring the pattern effectively and successfully from the 

photomask to the surface of the silicon substrates.  

8. A mask aligner attached to the UV-light source was used to expose the baked photoresist to 

the light. The UV-light went through the uncovered parts of the structure in the photomask.  

9. Since the photoresist used was a positive type, the UV-light broke the bonds of the photoresist 

and it made it easy to develop the exposed photoresist.  
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10. A developer solution was prepared by mixing 300 mL of DI water with 100 mL of the AZ 

400 K developer. The exposed samples were immersed inside the developer solution for 18 

seconds.  

11. It is worth mentioning that the developing time was inversely proportional to the spin coating 

speed of the photoresist. In other words, the thickness of the photoresist was inversely 

proportional to the developing time.    

12. The immersed samples were shaken inside the developer solution very gently to help in 

removing the exposed photoresist from the silicon surface until one could see the pattern on 

top of the silicon substrates 

13. The well-developed samples were placed directly in DI water to stop any further developing 

and to clean the surface of the silicon substrate.  

14. Finally, the pattern on top of the silicon substrates was washed carefully with DI water and 

dried with nitrogen.  

15. The samples were hard-baked on a hot plate for one hour at 150 
°
C. This helped in making 

the photoresist hard enough to resist the etching process by using the sulfur hexafluoride 

(SF6) gas.  

16. The RIE system was used to perform the dry etching process to fabricate the 3 µm width and 

3000 µm length Si NWs. Here, it is very important to note that there was no need to deposit 

any metal, such as gold or silver, to perform the etching on top of the samples. The 

photoresist acts as a mask on top of the silicon wafers.  

17. The dry etching recipe to etch the uncovered areas of the silicon samples by the hard baked 

photoresist was as follows: RF power was 50 W, inductively coupled plasma power (ICP) 

was 30 W, the flow rate of O2 was 50 sccm, the SF6 gas flow rate was 50 sccm, the chamber 
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pressure was 100 mTorr, and the etching time was 5 minutes.  

18. The 5 minutes etching time was chosen based on several trial-and-error attempts. It was 

noticed that an etching time more than 5 minutes etched the entire sample and the hard- 

baked photoresist could not resist the SF6. In addition, less than 5 minutes etching time was 

less effective and did not reach the desired etching depth of the Si NWs.   

19. The obtained Si NWs out of the dry RIE etching method had a sharp edges and a width very 

close to 3µm since the dry etching by RIE system provided anisotropic etching. This was 

very important to increase the electroactive area of the glucose sensor.    

20. The etched samples were immersed in a photoresist stripper solution on a hot plate at 90 °C 

for 1 hour in order to remove all the remaining photoresist on top of the synthesized Si NWs. 

A schematic diagram of the fabrication procedure is shown in Figure 2.5.  

 

 

 

 

 

 

 

 

 

Figure 2.5. The schematic structure of the horizontal growth method of Si NWs using the RIE 

system with SF6 gas.  
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2.6  Materials characterization  

 The grown materials were characterized using different techniques, such as SEM, UV-

visible spectrophotometer, Raman spectroscopy, and x-ray diffraction (XRD). 

2.6.1  Scanning electron microscopy (SEM) 

 FEI xT Nova NanoLab 200 scanning electron microscopy (SEM) (ThermoFisher 

Scientific, Waltham, MA) was utilized to characterize the grown ZnO NRs on top of the ITO 

substrates. An electron metallic filament was used to generate the electrons. The metallic 

filament is known as the gun. The electromagnetic field lenses inside the SEM system were 

utilized to direct the electrons to the surface of the sample. Those electrons formed in a beam 

shape. The electron beam that hits the surface of the sample was accelerated. The energetic 

electrons hit the surface of the sample and there were two possible mechanisms. Some of the 

electrons penetrated the surface of the samples and diffused inside the material as can be seen in 

Figure 2.6. The rest of the electrons reacted with the surface of the material and generated what 

can be called secondary electrons. The generated secondary electrons that reflect from the 

surface of the sample were detected by the detector connected to a display. The detected 

electrons created an image of the surface of the sample. The samples that were tested by the 

SEM system should be conductive. Otherwise, a thin film of a conductive material could be 

deposited on the surface.  

Images of the samples at different magnifications can be obtained by the SEM system to 

analyze the surface structure of the material. The chamber of the SEM system is pumped down 

to avoid any interruption by other molecules inside the SEM chamber. The SEM system provides 

a large area of the surface of the material, which is very important especially for the nanowires 

and nanorods structures. In these nanostructures, the alignment, the length and the diameters are  
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Beam gun 
 

 

 

 

 

 

 

 

 

 

Figure 2.6. Schematic of the SEM system and working principle of taking the SEM images of the 

nanostructures of the materials.  

 

the most important parameters to evaluate the growth of the materials.  It is difficult to observe 

the coupling between two nanostructures of materials when there is a big difference between 

their grain sizes.  It is important to mention that when the accelerated electrons hit the surface of 

the material, different groups of electrons are generated, such as the backscattered electrons, 

Auger electrons, diffracted electrons, and transmitted electrons. The secondary electrons are the 

most important groups in all of these groups because these electrons interacted with the surface 

of the material. High resolution images of the as-synthesized ZnO NRs were obtained by the 

SEM characterization technique, and very important parameters, such as the lengths, the 

diameters, the alignment, and the density of nanorods were precisely measured.    
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2.6.2  UV-visible spectrophotometer characterization  

 UV-visible-near infrared spectroscopy was utilized to characterize the as-synthesized 

ZnO NRs, the grown silver nanoparticles, and the etched silicon nanowires. A schematic of the 

system used is shown in Figure 2.7. The band gap of ZnO nanostructure is in the order of 3.37 

eV and the optical exciton peak should be observed at the edge of the visible region and 

according to Planck’s Equation: 

                                                                    E = hν                                                (Equation 2.1) 

Where E is the energy, h is Planck constant, and ν is the frequency of the light. Since  

                                                                       𝜈 =
𝑐

𝜆
                                                     (Equation 2.2) 

where 𝑐 is the speed of the light and 𝜆 is wavelength of the light, Equation 2.1 can be rewritten 

as: 

         𝐸 =
ℎ𝑐

𝜆
                           (Equation 2.3) 

 The absorbance of the synthesized materials was measured in the range of 200 to 1100 

nm, which covered the entire visible region of the spectrum. The as- synthesized ZnO NRs and 

the etched silicon nanowires were characterized as sold materials. Whereas, the synthesized Ag 

NPs were characterized while they were dispersed in toluene.  It was very important to determine 

the size of the Ag NPs before using them in the fabrication process of a glucose sensor. The 

exciton peak in the absorbance spectrum provided an idea about the size of the synthesized 

nanoparticles. The solid samples were placed in the sample holder and the slit height was 

adjusted to ensure that the spectrum of the light was passing through and hitting the samples. For 

ZnO NRs grown on ITO, the absorbance of a blank ITO was measured as a baseline. Whereas, 

for the etched Si NWs, a bulk silicon sample was utilized as a baseline. The working mechanism 

of UV-visible-near IR spectroscopy is based on Beer-Lambert law:  
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                                                            𝐼 = 𝐼ₒ 𝑒−𝛼𝑥                                                      (Equation 2.4)  

where 𝐼 is the transmitted intensity,  𝐼ₒ is the incident intensity, 𝛼 is the absorption coefficient, 

and 𝑥 is the thickness of the material. Absorbance can be calculated by manipulating the above 

equation, as follows: 

                                                              A = log10
𝐼

𝐼ₒ
                                                     (Equation 2.5) 

Herein, when the transmitted intensity is equal to the incident one, 
𝐼

𝐼ₒ
 = 1 and log 1 is zero, which 

means no absorbance. Figure 2.7 shows the setup of the utilized Cary 500 UV-visible-NIR 

spectrophotometer (Varian, Inc, Palo Alto, CA).  

 

Figure 2.7. The schematic diagram illustrating the working mechanism of the UV-visible-near 

infrared spectrophotometer utilized to characterize the grown nanomaterials.   
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2.6.3  Raman spectroscopy characterization  

 Lattice vibration (phonon vibration) of the ZnO NRs can be studied using Raman 

spectroscopy as illustrated in Figure 2.8. Raman spectroscopy can be explained as an inelastic 

scattering of monochromatic light (usually laser) in the nanostructure of the material. Raman 

scattering is divided into Stoke and anti-Stoke scattering or lines. For Stoke lines, the scattered 

light has energy lower than the incident light. Whereas, for the anti-Stoke lines, the energy of the 

scattered light is higher than the energy of the incident light. Each material has its specific 

vibration or phonon modes and Raman spectroscopy is used as a finger print. For the as-

synthesized ZnO NRs, Raman Spectroscopy type LabRAM HR (Horiba, Edison, NJ) with a blue 

laser that has a wavelength 472 nm was utilized to observe phonon vibrations. The spectrum 

used was determined to be from 200 to 800 cm
-1

 and the noise was reduced by increasing the 

number of cycles. The blue laser was focused as much as possible on the surface of the as-grown 

ZnO NRs and all the obtained peaks were marked based on their different vibrations.  

 

Figure 2.8. A schematic of Raman spectroscopy and the working mechanism. 
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2.6.4  X-ray diffraction (XRD) characterization  

 X-ray diffraction characterization is carried out to determine the crystal structure of the 

synthesized ZnO NRs before and after modification with ferric oxide. A Philips x-ray 

diffractometer (Philips, Amsterdam, Netherlands) with wavelength 1.54 Å was utilized to 

characterize the grown nanostructure of the material. The working mechanism of the XRD 

system is shown in Figure 2.9. The grain size and the crystal structure of the synthesized ZnO 

NRs were determined, which was very important to have the most stable hexagonal wurtzite 

structure of ZnO NRs. In addition, the texture coefficient was calculated from the XRD pattern. 

The impurity level was also investigated from the measurement. The peaks of the conductive 

ITO and FTO substrates were determined from the XRD pattern. Miller indices, which determine 

the crystal planes, were also determined from the peaks of the XRD pattern.  In the XRD 

measurement, the lattice constant of the grown material could be calculated to determine the 

distance between the two atoms of the crystal lattice. The XRD measurement works based on 

Bragg’s law which is  

                                                            nλ = 2dsinθ                                                (Equation 2.6) 

where λ is the wavelength of the incident light, d is the distance between the two atomics layers, 

and n is an integer number. Diffraction occurs when the wavelength of the incident light is equal 

or twice as large as the distance between the two atomic levels.  

 

 

 

Figure 2.9. The working mechanism of the x-ray diffraction measurement based on Bragg’s law.    
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2.7  Device fabrication and characterization 

2.7.1  ZnO NRs grown on ITO-based enzymatic glucose sensor.  

1. Indium tin oxide substrates were cut and cleaned as it was explained in the previous 

section with an area of 1×1 cm
2
 [80].   

2. A small area of the ITO substrate was covered with tape to protect the area for contact 

during the characterization process of the sensor. 

3. Three layers of the prepared sol-gel solution were spun coated on top of the cleaned and 

prepared ITO substrates at 3000 rpm for each layer. After deposition of the first layer on 

top of the ITO substrates, the sample was annealed at 110 
°
C for 5 minutes followed by 

the deposition of the second layer. After deposition of the second layer of the sol-gel 

solution, the sample was annealed at 110 
°
C for 3 minutes followed by deposition of the 

third and final layer. It is worth mentioning that all three layers were deposited at 3000 

rpm using the spin coater machine [80].  

4. After the three layers of the sol-gel solution were deposited, the tape that was used to 

cover a small area for metal contact was peeled off to keep the uncoated area by the sol-

gel solution clean and uncontaminated.  

5. The samples were annealed for 1 hour at 110 
°
C on a hot plate at room temperature.  

6. The annealing step was very crucial since it helped the sol-gel solution be uniformly 

distributed on top of the ITO substrate. Otherwise, the distribution of the seed layers 

solution on the ITO would be random, and this would have affected the growth of the 

ZnO NRs in terms of the density, length, and diameter. SEM images of as-synthesized 

ZnO NRs grown on top of the ITO substrates based on a non-annealed sol-gel solution 

are provided in Chapter 3.  
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7. After one hour of annealing, the samples were left to cool naturally and the coated layers 

could be seen on top of the ITO surface.  

8. A glass slide was cleaned very carefully and the annealed samples were pasted onto the 

glass slide and immersed upside down in the growth solution in a 20 mL screw glass vial, 

before being placed in a furnace. 

9. The growth time and temperature were chosen to be 4 h and 90 
°
C, respectively, and then 

the samples were taken out of the furnace and cooled naturally. 

10. The samples then rinsed with deionized water three to four times to stop any further 

growth of ZnO NRs and the samples were dried at 300 
°
C at room temperature for 15 min 

to evaporate all the water molecules from the surface of the grown samples. 

11. To prepare the working electrode for further treatments, the as-synthesized ZnO NRs on 

top of the ITO substrates were placed in phosphate buffer solution (PBS) with a pH level 

of 7.4, and left in the air to increase the absorbance of the surface of the electrode by 

generating a hydrophilic surface. 

12. Different concentrations of the enzyme glucose oxidase (GOx) were produced and used to 

immobilize the working electrode. An investigation study was carried out to determine 

the best concentration of GOx that could be used to immobilize the surface of the working 

electrode.  

13. A 40 mg/unit of GOx was prepared by dissolving a concentration of 40 mg/mL of GOx in 

0.01 M of PBS. The mixture was stirred on a magnetic stirrer for 1 h to ensure the 

complete solubility of GOx in the PBS. 

14. A volume of 1 µL of the prepared GOx was dropped on top of the surface of the as-

synthesized ZnO NRs using a micropipette and the immobilized working electrode was 
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stored in the refrigerator at 4 °C for 6 h. 

15. The non-adsorbed GOx by ZnO NRs was removed from the surface of the working 

electrode, using a covalent method with a higher ionic solution. A concentration of 4.4 M 

of PBS with pH 7.0 that provides 80 mM of ionic strength was used to remove the excess 

non-adsorbed GOx.  

16. The working electrode was rinsed in the prepared solution five times, for 20 s each time. 

Removing the non-adsorbed GOx helped to increase the stability and the life time of the 

working electrode by decreasing the biological degradation of the enzyme.   

17. The last modification step of the working electrode was completed by covering the 

surface of the electrode with a nafion membrane. A volume of 1 µL of the nafion solution 

was dropped on the surface of the working electrode, and the electrode was left to dry for 

2 h at 4 
°
C. The schematic diagram of the working electrode is illustrated in Figure 2.10. 

 

 

 

 

 

 

 

 

Figure 2.10. The schematic diagram of the fabrication and modification process of the working 

electrode of the enzymatic electrochemical sensor [80].  

 

 

It explains step by step the growth of the ZnO NRs and the modification of the electrode 

with glucose oxidase and nafion membrane. Figure 2.11 shows the three electrodes 
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system used in the electrochemical setup during the electrochemical characterization of 

the fabricated sensors.  

 

 

 

 

 

 

 

 

 

Figure 2.11. The three electrodes used in the electrochemical measurements to test the fabricated 

glucose sensors with different glucose concentrations.   

 

 

2.7.2  ZnO NRs grown on Si/SiO2/Au based enzymatic glucose sensor. 

To fabricate the working electrode of the enzymatic electrochemical sensor, ZnO NRs 

were grown on Si/SiO2/Au substrate [101]. The fabrication process was as follows:  

1. The same cleaning process described in the previous section was carried out to clean the 

Si/SiO2 substrate.  

2. The silicon wafer was coated with a 100 nm SiO2 layer using a thermal oxidation method.  

3. The silicon wafers were diced into 0.5×0.5 cm
2
 specimens and a small area for contact as 

covered with tape to prevent any growth of ZnO NRs on top of it.  
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4. A 100 nm of gold thin film was deposited on the surface of the cleaned samples using an 

e-beam evaporator. The deposition rate was 1.5 Å/s with a pressure 2.5 10
-7

 Torr . 

After a smooth thin film of gold was obtained on the surface of Si/SiO2 substrate, ZnO 

NRs were grown on top of the structure Si/SiO2/Au using the same previously described 

hydrothermal and sol-gel methods of growth.  

5. The working electrode was immobilized with glucose oxidase and a nafion membrane as 

a final modification steps to fabricate the enzyme electrochemical glucose sensor. The 

modifications with GOx and nafion membrane were performed using the same method 

explained in the previous section.  

6. The fabricated working electrode was used with other electrodes to test the 

electrochemical sensor with different glucose concentrations. The schematic diagram of 

the working electrode based on ZnO NRs grown on Si/SiO2/Au is shown in Figure 2.12.  

 

Figure 2.12. The schematic diagram of the working electrode based on the vertically grown ZnO 

NRs on top of Si/SiO2/Au substrate for the enzymatic glucose sensor.  

 

2.7.3  ZnO NR-coated ferric oxide for enzyme-free glucose  

To fabricate a non-enzymatic electrochemical glucose sensor, vertically grown ZnO NRs 

on top of an FTO substrate were modified by the ferric oxide as was explained in the materials 
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growth section (Sec. 2.3). The enzyme, GOx was replaced by ferric oxide to directly oxidize the 

glucose on the surface of the working electrode. The fabricated working electrode was casted 

with a nafion membrane using a drop cast method to increase the stability of the working 

electrode. A three electrode station was utilized to test the enzyme-free electrochemical sensor. 

The schematic diagram of the working electrode is illustrated in Figure 2.13 [95].  

 

 

 

 

 

 

 

Figure 2.13. Schematic diagram of the working electrode of the enzyme-free electrochemical 

sensor based on vertically grown ZnO NRs modified with ferric oxide and coated with a nafion 

membrane. Reprinted with permission from Marie et al. [95]. 

 

 

2.8  Vertically etched Si NWs by nanosphere lithography and RIE based glucose sensor.  

The nanosphere lithography method explained in the materials growth section (2.5.2) was 

utilized to etch Si NWs vertically using a silicon wafer. Nanosphere lithography and the RIE 

method were carried out. The vertically etched Si NWs were modified with the enzyme GOx and 

nafion membrane. To successfully immobilize the etched Si NWs with the enzyme glucose 

oxidase, the grown Si NWs were immersed in the PBS solution to create a hydrophilic surface 

for the enzyme. Afterward, a volume of 1 μL of the enzyme was dropped on top of the Si NWs 

and the samples were kept overnight in the refrigerator at 4 
°
C. Next, the working electrode was 

coated with a nafion membrane to enhance the stability of the electrode and to increase the ion 
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exchange capability between the center of the enzyme and the surface of the working electrode. 

Coating the working electrode with the nafion membrane helped in preventing any unwanted 

reaction by the other electroactive species in the analytical solution. This helped in increase the 

signal-to-noise ratio of the working electrode.    

2.9  Device characterization  

The fabricated electrochemical glucose sensors were characterized using Gamry 

potentiostat, Keithley 2410 SourceMeter and a Keithley 4200 semiconductor characterization 

system. Different tests were carried out to characterize the fabricated devices. Different 

concentrations of glucose were dissolved in a phosphate buffer solution with pH 7.4 to run the 

electrochemical measurements at room temperature. A three electrode station was prepared 

containing the working electrode, the counter electrode, and the reference electrode, which was 

immersed in between the two electrodes inside the electrochemical cell.   

2.9.1  Amperometric response 

The amperometric test was performed to evaluate the performance of the fabricated 

electrochemical sensors for both enzymatic and enzyme-free devices. It is one of the most 

important tests to study the amperometric response of the glucose sensors for different glucose 

concentrations. The test was performed by fixing the potential between the working (sensing) 

electrode, the counter electrode, and the reference electrode at a certain value and changing the 

glucose concentrations continuously. 

2.9.1.1  The sensitivity of the glucose sensor 

 One of the most important factors to evaluate the performance of the glucose sensors that 

can be extracted from the linear amperometric response is the sensitivity of the sensor. From the 

amperometric characterization one can extract the linearity of the fabricated electrochemical 
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glucose sensors for different glucose concentrations. The linear response to high concentrations 

of glucose reflects the high sensitivity of the sensor toward the changes in the glucose 

concentrations. The sensitivity of the glucose sensor is the slope of the linear amperometric 

measurement, which is the current density as a function of the changes in the glucose 

concentration.   

2.9.1.2  Time response 

The time response is another way to characterize the electrochemical sensors. It tests the 

time that the fabricated sensor needs to respond to the changes in the glucose concentration until 

it reaches steady-state current. The time response is extracted from the amperometric 

measurement. Changes in the glucose concentration are made continuously and the average of 

each 20, 30, or 50 values of the sensed current is calculated. The time of each value is set to be 1 

second. It is worth mentioning that the shorter the time response, the higher the ability of the 

glucose sensor to respond to the changes in the glucose concentration.  

2.9.1.3  The apparent Michaelis-Menten constant   

 The apparent Michaelis-Menten constant test is one of the very important tests that can be 

extracted from the amperometric characterization technique of the electrochemical glucose 

sensor. It is performed by fixing the applied potential between the three electrodes and changing 

the concentrations of the glucose continuously. The apparent Michaelis-Menten constant 

provides an indication of the affinity between the enzyme glucose oxidase and the surface of the 

working electrode. In the case of the enzyme-free glucose sensor, the apparent Michaelis-Menten 

constant is used to test the affinity between the surface of the working electrode and the 

nanomaterial used to modify the surface. To extract Michaelis-Menten constant out of the 

amperometric measurement, the inverse of the current density was plotted as a function of the 
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inverse of the changes in glucose concentration. The apparent Michaelis-Menten constant was 

evaluated using the Lineweaver-Burk equation [102, 103]. 

                                                              
1

𝑖
= (

𝐾𝑀
𝑎𝑝𝑝

𝑖𝑚𝑎𝑥
)(

1

𝑐
+

1

𝑖𝑚𝑎𝑥
)                                     (Equation 2.7)                                                        

where 𝑖 is the current, 𝐾𝑀
𝑎𝑝𝑝

 is apparent Michaelis-Menten constant, 𝑖𝑚𝑎𝑥 is the maximum current 

at the saturation region, and 𝑐 is the D-glucose concentrations.  

2.9.2  Cyclic voltammetry characterization  

 Cyclic voltammetry is one of the tests used to examine the oxidation and reduction 

mechanisms of the glucose. In this characterization, the applied potential was swept against the 

reference electrode from -1 to 1 volt. To determine the sensing ability of the sensor, the tests 

were performed in the absence and in the presence of glucose. The testes were carried out at 

different scanning rates of 50, 100, 200, 300, 400, and 500 mV/s. In the absence of glucose in the 

analytical solution, the enzymatic and non-enzymatic sensors exhibited no dependency on the 

level of the swept voltage and on the different scan rates.      
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Chapter 3  Results and discussion  

3.1  Introduction  

 In this chapter, materials characterization results will be discussed in detail as well as 

how the nanomaterials used affected the performance of the fabricated electrochemical sensors. 

The other section of the chapter contains the results of the devices characterized made from 

grown nanomaterials.  

3.2  ZnO characterization results 

3.2.1  Scanning electron microscopy (SEM) 

3.2.1.1  First synthesis trial of ZnO NRs on ITO surfaces 

Scanning electron microscopy (SEM) was utilized to examine the as-synthesized ZnO 

NRs before and after annealing. The alignment, density, lengths, and diameters of the as-

synthesized ZnO NRs are the most crucial parameters that affect the performance of the 

electrochemical glucose sensors fabricated out of ZnO NRs. All these parameters have a direct 

influence on the signal-to-noise ratio of the fabricated sensors and on the amount of the enzyme, 

GOx, that is used to modify the surface of the working electrode. In addition, for the enzyme-free 

glucose sensors, these parameters affect the coupling between the surface of ZnO NRs and the 

other nanostructure semiconductor materials. 

  In the first trial of synthesizing ZnO NRs on top of the ITO substrates to be used as a 

working electrode for the enzymatic electrochemical sensor, the SEM images showed a cloudy 

surface of the ZnO NRs which can be seen in Figure 3.1 a,b, and c for different magnifications. 

The red circles indicate the spots of chemicals which were left on the surface of the synthesized 

nanostructure. To better observe the cloudy spots on the surface, an SEM image was obtained at 

120210 x magnification as can be seen in Figure 3.1c. This cloudy surface was due to the 
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accumulation of the hydroxyl group in the surface during the growth procedure. Also, it was 

because of the long growth time of the as-grown ZnO NRs. The first growth trial was 6.5 hours 

at 120 
°
C, which might have led to formation of an oxide layer on the top surface of the 

nanostructure.  Also, the drying time after the growth of ZnO NRs was very important. For the 

first trial, the ZnO NRs grown on top of ITO substrates were dried at 300 
°
C for 15 minutes. 

Another reason behind the clustered chemicals on top of the as-synthesized ZnO NRs could have 

been the solvent, methoxyethanol. This solvent must be stored in the glove box under nitrogen 

ambient. The chemical was stored at room temperature when it was used to synthesize the seed 

layer solution. As can be clearly seen from Figure 3.1 a, b, and c, the SEM images showed well-

aligned and a highly dense ZnO NRs; the density and alignment of the nanostructure was more 

clear at 65000 x and 120210 x nm magnifications. In addition, for the first synthesis trial, the 

hexagonal structure of the as-synthesized ZnO NRs was very clear in the SEM images. For 

glucose sensing applications, a very clear and uncontaminated surface of the as-synthesized ZnO 

NRs is highly desired. As a result, the growth procedure of ZnO NRs was adjusted by reducing 

the growth time from 6.5 hours to 4 hours followed by a careful cleaning step to clean and 

remove all the residuals from the surface of ZnO NRs.  

3.2.1.2  Second synthesis trial of ZnO NRs on ITO surfaces 

To remove the unwanted chemicals from the surface of the as-synthesized ZnO NRs, a 

second synthesis attempt was carried out. In this trial, the growth temperature was kept at 90 
°
C 

and the growth time was reduced to 4 hours. In addition, the surface of the as-grown ZnO NRs 

was cleaned very carefully four to five times with DI water and dried with nitrogen. 

Furthermore, the drying time was increased from 15 to 30 minutes at 300 
°
C. Another adjustment 

to the growth process of ZnO NRs was storing the organic solvent, methoxyethanol, in the glove  
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Figure 3.1. The scanning electron microscopy images of the first trial of synthesizing ZnO NRs 

using the hydrothermal and sol-gel method explained in Chapter 2.  

 

 

box under nitrogen ambient before it was used to synthesize ZnO NRs on top of the ITO 

surfaces. The surfaces of the as-synthesized ZnO NRs were clear and no chemicals were 

observed to contaminate the surface of the grown nanostructure. Scanning electron microscopy 

images were again taken to evaluate the impact of the adjusted steps on the synthesis recipe. 

Figure 3.2 a and b shows the clear surfaces of the as-grown ZnO NRs at different magnifications. 

It was very important to obtain the new SEM images at the same magnification level that was 

used to obtain the previously shown images. In that case, one could compare between the two 

procedures and easily observe the enhancement in the new images. 
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Figure 3.2.  SEM images of the as-synthesized ZnO NRs on top of ITO substrates dried at 300 
°
C 

for 30 minutes and cleaned very carefully after the growth.  Image (b) is reprinted with 

permission from Marie, et al. [80]. 

 

 From image (b), the as-synthesized ZnO NRs have slight differences in their diameters, 

which reflect the uniform distribution of the seed layer on top of the ITO substrates. It is clear 

from the SEM images in Figures 3.1 and 3.2 of the as-grown ZnO NRs, that the grown 

nanostructure provides a high surface-to-volume ratio which is very significant to fabricate a 

highly sensitive electrochemical glucose sensor. The high surface-to-volume ratio helps increase 

the electroactive area of the electrochemical glucose sensor out of the as-synthesized ZnO NRs. 

This means that more glucose oxidase can be adsorbed by the electroactive area of the as-

synthesized ZnO NRs allowing an efficient direct electron transfer from the center of the enzyme 

to the surface of the working electrode. In addition, higher glucose concentrations are oxidized 

on the surface of the working electrode. As a result, a longer linear response can be observed as a 

function of different glucose concentrations. It is worth mentioning that the clean and 

uncontaminated surfaces of the as-grown ZnO NRs helped increase the selectivity of the 

electrochemical sensor and helped to produce uncontaminated signals during the amperometric 

(a) (b) 
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measurements of the fabricated glucose sensor.  

The density, alignment, diameters, and lengths of the as-synthesized ZnO NRs were 

directly affected by the annealing process after deposition of the three layers of the so-gel 

solution on top of the ITO substrates. The growth of the seed layers on the ITO substrates was 

carried out following exactly the same recipe except there was no annealing after the deposition. 

Scanning electron microscopy images were taken to examine the surface of the grown ZnO NRs 

without annealing. The results in Figure 3.3 (a and b) showed a random distribution of the 

diameters and no alignment was observed. The growth was unsuccessful without the annealing 

as can be seen in Figure 3.3 (a and b). The main reason for that was the accumulation and 

clustering of the seed layer solution on the surface of the substrate.  

 

 

Figure 3.3. SEM images of the as-grown ZnO NRs on top of the ITO substrates without 

annealing the seed layer solution after the deposition of the three layers. Image (a) is reprinted 

with permission from Marie, et al. [104]. 
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3.2.2  Absorbance spectrum of the grown ZnO NRs  

 The absorbance spectrum was measured to support the SEM images and to determine the 

exciton peak. The absorbance spectrum of the as-grown ZnO nanorods was measured after the 

annealing at 150 °C, and it is shown in Figure 3.4. It was very important to reduce the defects in 

the as-grown ZnO NRs and that could be done by annealing the coated seed layers on top of the 

substrate. Consequently, the grown nanostructure absorbed light more efficiently. Furthermore, 

single crystal ZnO NRs could be obtained by increasing the grain size of the as-synthesized ZnO 

NRs after annealing. The exciton peak was observed at 363 nm and that was due to the direct 

band gap of the as-grown ZnO NRs on top of the ITO substrate. The as-synthesized ZnO NRs 

absorbed all the energies higher than the band gap, which is 3.37 eV, and a rapid increase in the 

absorbance was noticed at lower wavelengths. The highest absorbance occurred around the edge 

of the visible region as can be seen in the figure [80].  

 

Figure 3.4. The absorbance spectrum of the as-synthesized ZnO NRs on top of the ITO 

substrates.  Reprinted with permission from Marie, et al. [80]. 
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3.2.3  Raman spectrum of the grown ZnO NRs  

The lattice and phonon vibration modes are shown in Figure 3.5. Raman spectroscopy 

provides information regarding the lattice vibration of the nanostructure materials. Raman 

spectroscopy can be explained as an inelastic scattering of monochromatic light (usually laser) in 

the material. The peak that belongs to the as-grown ZnO NR lattice vibration at 439 cm
−1

 

appears to be sharp and narrow, and it can be assigned as E2 (or high mode). The oxygen vacancy 

peak of the as-synthesized ZnO NRs appeared on the right of the spectrum and it is associated 

with the wavenumber 582 cm
−1

. The other peak at 334.4 cm
−1

 can be assigned as a second-order 

phonon. The weakness of the peak can be explained by the oxygen vacancies during the growth 

process of the as-grown ZnO NRs, and can be an indicator of the high current obtained using the 

immobilized surface of the ZnO NRs as a working electrode. Measuring Raman spectroscopy of 

the as-grown ZnO NRs at low temperatures is very important. It provides an accurate estimation 

of ratio between zinc and oxygen. The natural lattice vibration of the ZnO NRs can be 

investigated at low temperatures because the phonons modes are easily noticed [80].  

3.2.4  X-ray diffraction of the grown ZnO NRs 

A Philips x-ray diffractometer was used to measure the x-ray (XRD) of the as-grown 

ZnO NRs on top of the surface of the ITO substrates. The wavelength of the x-ray used in the 

experiment was 1.54 Å, which was suitable to estimate the grain sizes of the as-synthesized ZnO 

NRs. In addition, x-ray measurement is a valid test to evaluate the purity of the synthesized ZnO 

nanorods. The x-ray pattern of the grown ZnO NRs is shown in Figure 3.6. The strongest peak 

appeared at 34.364°, which belongs to the as-synthesized ZnO NRs. (002) are the Miller indices 

associated to the ZnO peak that appeared at ~ 35
°
. Classical Scherrer equation was utilized to 

calculate the grain size of the as-grown ZnO nanorods [105]. 
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Figure 3.5. Raman spectrum of the as-grown ZnO nanorods on top of the ITO substrates and the 

observed peaks that correspond to the phonon vibration at room temperature. Reprinted with 

permission from Marie, et al. [80].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. The XRD patterns of the as-synthesized ZnO NRs on top of the ITO substrates. 

Reprinted with permission from Marie, et al. [80]. 
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                                                                                                                                    (Equation 3.1) 

 

where 𝑘 is the Scherrer constant that has a value in the order of 0.9. G is the grain size of the 

nanostructure in the unit of Å, 𝜆 is the wavelength of the x-rays, β is the full width at the half 

maximum of the peak, and θ is the angle that is associated with the peaks during the 

measurements. The calculated grain size was on the order of 1.6 nm. The crystallinity of the as-

synthesized ZnO NRs was evaluated to be single crystal based on the obtained grain size. The x-

ray pattern also showed other weak peaks to the right of the main peak in the pattern. Those two 

peaks at 62.756
°
 and 72.429

°
 are associated with the Miller indices (103) and (004), respectively. 

No phases that are due to the impurities were observed from the XRD measurements of the as-

grown ZnO NRs. That was an indication that the hydrothermal growth method was an effective 

approach to grow pure ZnO NRs which could be used to fabricate electrochemical glucose 

sensors [80].   

3.3  The enzymatic glucose sensor based on ZnO NRs coated GOx/BSA/nafion on ITO 

3.3.1  The linear amperometric response of the sensor 

The working electrode of the electrochemical glucose sensor was modified with a Bovine 

Serum Albumin (BSA) to increase the selectivity of the sensor toward different glucose 

concentrations. An amount of 4 g of the protein was dissolved in the PBS solution and dropped 

on top of the as-grown ZnO NRs. The working electrode was left over night at 4 
°
C to dry and to 

adsorb the protein on the surface of the working electrode. Next, GOx and a nafion membrane 

were dropped on top of the modified electrode as it was illustrated in Chapter 2. The fabricated 

enzymatic electrochemical glucose sensor was characterized amperometrically using the 

Keithley SourceMeter 2410 of and the electrochemical Gamry potentiostat.  

The linear response of the fabricated enzymatic electrochemical glucose sensor based on 

𝐺 =
𝑘𝜆

𝛽𝑐𝑜𝑠𝜃
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glass/ITO/ZnO NRs/BSA/GOx/nafion membrane is shown in Figure 3.7. The analytical solution 

used to test the glucose sensor is the phosphate buffer solution (PBS) at pH 7.4. Two electrodes 

were used in the amperometric measurements, the platinum plate as a counter electrode and the 

fabricated working electrode. Both electrodes were placed in the analytical solution (PBS) with a 

fixed distance between them. The concentrations of glucose were increased continuously during 

the amperometric measurement starting with zero glucose concentration. The concentration of 

the glucose was changed from 0.4-2.4 mM to test the linear response of the enzymatic glucose 

sensor. The sensor showed a linear response to changes in the glucose concentration from 0.6 to 

1.4 mM and the slope of the linear response was the sensitivity of the sensors toward changes in 

the glucose concentration. To test the sensing ability of the glucose sensor toward very small 

changes in the glucose concentration, the lower limit of detection 𝐿𝑂𝐷 was calculated using the 

Equation 3.2. 

                                                    𝐿𝑂𝐷 = 3 ×
𝜎

𝑠𝑙𝑜𝑝𝑒
                                         (Equation 3.2)                                                

where 𝜎 is the standard deviation of the intercept. The 𝐿𝑂𝐷 was calculated to be on the order of  

0.22 μM. The smaller the limit of detection meant the higher the ability of the sensors to detect 

small changes in the glucose concentration during the amperometric measurements [80].   

 

 

 

 

 

 

Figure 3.7. The linear response of the fabricated enzymatic electrochemical glucose sensor for 

different glucose concentrations in the PBS solution.  Reprinted with permission from Marie, et 

al. [80]. 
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3.3.2  The cyclic voltammetry measurements   

 Cyclic voltammetry measurements were conducted to evaluate the oxidation and 

reduction potentials of the glass/ITO/ZnO NRs/BSA/GOx/nafion membrane-based enzymatic 

glucose sensor. A Gamry potentiostat was utilized to perform the measurement in the absence 

and the presence of 1 mM and 2 mM concentrations of glucose. Both the working and the 

counter electrodes were placed in the PBS analytical solution at zero glucose concentration.  The 

measurements were conducted at 100 mV/s scan rate. The applied potential was swept from 1 to 

-1 volt to investigate the oxidation and reduction peaks of the glucose on the surface of the 

working electrode. In the absence of glucose in the PBS, the sensor showed no dependency on 

the swept potential, which meant that the sensor had a high selectivity toward the glucose. The 

maximum observed current was on the order of 0.045 μA as shown in Figure 3.8 a. Figure 3.8 b 

is the cyclic voltammetry measurement in the presence of 1 mM glucose in the PBS. The 

potential was swept from 1 to -1 volt in the PBS analytical solution. The maximum current 

observed was 0.8 volt, which is known as the oxidation peak of the sensor. At the reverse 

direction of the swept potential, the glucose sensor exhibited a reduction peak around -0.8 volts.  

The maximum observed current in the presence of 1m M of the glucose in the PBS was on the 

order of 0.11 μA.  

 The electrochemical reaction during the cyclic voltammetry measurements has two 

different directions depending on the oxidation time of the hydrogen peroxide, H2O2, to oxygen, 

hydrogen, and free electrons. In addition, it also depends on the reduction time of hydrogen and 

oxygen to reproduce H2O2. The electrochemical reaction in the presence of glucose can be either 

a forward (oxidation) reaction or backward (reduction) reaction, so it is a reversible reaction. In 

the presence of 2 mM of glucose in the analytical solution, the sensor showed high oxidation and  
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Figure 3.8. Cyclic voltammetry measurements of the enzymatic electrochemical glucose 

sensor, (a) in the absence of glucose, (b) at 1 mM of glucose, and (c) at 2 mM of glucose. 

Reprinted with permission from Marie, et al. [80]. 

 

reduction peaks at 0.8 and -0.8 volts, respectively, as can be seen in Figure 3.8 c. The maximum 

current at 2 mM of glucose was on the order of 0.125 μA. It was an indication that the fabricated 

sensor was sensitive to the changes in the glucose concentrations [80].   

3.3.3  The time response characteristics    

 The amperometric time response measurement was carried out to test the detection 

capability of the enzymatic glucose sensor toward changes in the glucose concentration. This 
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capability to sense changes in the glucose concentration in the analytical solution was translated 

to a current response as a function to the time response. The amperometric time response of the 

sensors is shown in Figure 3.9. A potential on the order of 0.8 volt was applied between the 

working electrode, which is glass/ITO/ZnO NRs/BSA/GOx/nafion membrane, and the counter 

electrode, which is a platinum plate. The amperometric test was conducted using the 

SourceMeter 2410. Continuous changes in the glucose concentrations were made in PBS during 

the amperometric measurement. The constant time interval between each two different glucose 

concentrations was 25 seconds. The software was set to read one value of the current each 

second and the average of the 25 measurements was calculated and plotted as a function of time. 

Each set of 25 values (measurements) represented a certain concentration of glucose in the PBS. 

The amperometric time response of the sensor was calculated to be on the order of 3 seconds. It 

was calculated from the time that the current started to increase after adding a new glucose 

concentration to the time when the amperometric current reaches the steady-state level.  

The sharp and fast time response of the sensor was an indication that the current reaches 

95% of the steady-state value in only 3 seconds. This was an indication of the fast electron 

exchange between the surface of the modified working electrode and the center of the enzyme in 

the PBS. The concentration of the glucose was changed from 1 mM to 4 mM during the 

amperometric measurement in the PBS. The GOx helped in catalyzing the glucose and producing 

hydrogen peroxide, and the latter will oxidize to hydrogen, oxygen, and free electrons. The 

nafion membrane that was used to coat the surface of the working electrode helped in increasing 

the stability of the sensor during the amperometric measurement. As a result, this helped in 

increasing the selectivity of the glucose sensors toward changes in the glucose in the PBS [80].  



 

  66 
  

 

 

 

 

 

 

 

 

 

 

Figure 3.9. Amperometric time response of the fabricated enzymatic electrochemical sensor to 

different concentrations of glucose with 3 s response time. Reprinted with permission from 

Marie et al. [80]. 

 

 
 

3.3.4  Different concentrations of the enzyme, GOx 

 

To study the ability of the as-synthesized ZnO NRs for adsorbing different concentrations 

of the enzyme, GOx, the surface of the fabricated electrochemical sensor was immobilized with 

different amounts of GOx and a fixed amount of the protein, bovine serum albumin (BSA). The 

surface of the working electrode was covered with a nafion membrane to increase the stability of 

the device and to reduce the noise of the detected signal. Figure 3.10 is the current versus 

different glucose concentrations of the immobilized working electrode with different 

concentrations of the enzyme, GOx and without immobilization with GOx. It can be seen clearly 

that the device showed a higher sensitivity with higher amounts of GOx, which meant that higher 

concentrations of the enzyme, GOx, were adsorbed in the three dimensional nanostructural 
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reaction area. The non-immobilized GOx was taken away from the surface of the working 

electrode by the covalent method with a higher ionic solution as was explained in Chapter 2. The 

device showed a higher sensitivity when the working electrode was immobilized with 40 mg of 

GOx. In addition, immobilizing the working electrode with 30 mg of GOx gave almost a similar 

result to the one with 40 mg. It meant that the three dimensional nanostructural area provided by 

the as-grown ZnO NRs was saturated and no more GOx could be adsorbed. Thus, increasing the 

aspect ratio, which is the length over the diameter of the as-synthesized ZnO NRs, helped in 

pushing the saturated level of the three dimensional area and helped in adsorbing higher amounts 

of GOx. The direct growth of ZnO NRs helped in transferring electrons from the center of the 

enzyme to the surface of the as-grown ZnO NRs. The oxidation-reduction reaction of the glucose 

on the surface of the electrode depended on the adsorbed amount of GOx in the three dimensional 

area provided by the as-grown ZnO NRs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. The amperometric measurement of the current on the surface of the working 

electrode as a function of glucose concentration at different concentrations of GOx.  



 

  68 
  

3.4  The enzymatic glucose sensor based on ZnO NRs grown on Si/SiO2/Au substrate 

3.4.1  Introduction 

An enzymatic electrochemical glucose sensor was fabricated by using a silicon substrate 

coated with a silicon dioxide layer. The Si/SiO2 substrate was covered with a 100 nm thin film of 

gold using an e-beam evaporator [101]. ZnO NRs were grown on top of the Si/SiO2/Au substrate 

using the so-gel and hydrothermal method. To characterize the device, amperometric and cyclic 

voltammetry measurements were performed in the phosphate buffer solution at different glucose 

concentrations. Before running the amperometric and cyclic voltammetry measurements, the 

working electrode was coated with the enzyme, GOx, and a nafion membrane. The final structure 

of the working electrode was as Si/SiO2/Au/ZnO NRs/GOx/nafion membrane. All the 

measurements were carried out at room temperature using the Keithley SourceMeter and Gamry 

potentiostat. Si/SiO2/Au/ZnO NRs/GOx/nafion membrane was used as the working electrode, 

while a platinum plate was utilized as the counter electrode in the electrochemical cell.   

3.4.2  Time response measurement 

The time response of the electrochemical sensor was performed in two different ways. 

First, the time response measurement was carried out only for the substrate. In other words, the 

time measurement was done for Si/SiO2/Au/GOx/nafion membrane without growing the ZnO 

NRs on top of the working electrode. The same amperometric time measurements were repeated 

under the same conditions but after the growth of ZnO NRs on top of the Si/SiO2/Au substrate. 

The amperometric time measurements of glucose sensor with and without the as-grown ZnO 

NRs are shown in Figure 3.11. Measurements both with and without the growth of ZNO NRs 

were carried out at different glucose concentrations from 1–20 mM as shown in Figure 3.11. 

Glucose concentrations were increased by adding 1 mM of glucose to the PBS every 50 seconds. 
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Figure 3.11. The time response measurement of the electrochemical glucose sensor with and 

without the growth of ZnO NRs on top of Si/SiO2/Au.  

 

The substrate Si/SiO2/Au/GOx/nafion membrane showed a very small and almost a 

negligible increase in the current density with changes in the glucose concentration (black line). 

The average increase in the current density with different glucose concentrations was on the 

order of ~0.1 mA/cm
2
. A fast and a sharp amperometric time response was observed after 

applying the as-grown ZnO NRs to the surface of the working electrode. The time response of 

the electrochemical glucose sensor with the as-grown ZnO NRs applied to the surface of the 

working electrode was calculated to be on the order of 2 seconds. In addition, the glucose sensor 

based on Si/SiO2/Au/ZnO NRs/GOx/nafion showed a lower level of noise compared with the 

working electrode with the as-grown ZnO NRs. The as-synthesized ZnO NRs helped in 

increasing the signal to noise ratio by adsorbing higher concentrations of the enzyme, GOx, on 

the surface of the working electrode. Furthermore, the response of the Si/SiO2/Au/ZnO 

NRs/GOx/nafion membrane based electrochemical glucose sensor went to saturation at high 

glucose concentrations. The glucose sensor with ZnO NRs showed an average increase in the 

amperometric current density around 0.45 mA/cm
2
. It can be seen in Figure 3.11 (the red line) 

that the time response of the electrochemical sensor did not go to saturation even at high glucose 

concentrations.  
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3.4.3  Cyclic voltammetry measurement 

A Gamry potentiostat was utilized to run the cyclic voltammetry measurements on the 

fabricated glucose sensor after applying the as-synthesized ZnO NRs to the surface of the 

working electrode. The measurements were conducted at different scan rates and in the absence 

and the presence of the glucose. The cyclic voltammetry results with and without the glucose are 

shown in Figure 3.12 a and b. The applied voltages were swept from 1 to -1 volts at scan rates 

50, 100, and 200 mV/s for the working electrode and the counter electrode in the PBS analytical 

solution. The electrochemical sensor showed no dependency on the different scan rates in the 

absence of the glucose. Although there was slight increase in the current density at different scan 

rates, it did not mean that there was a response from the electrochemical sensor. 

 As can be seen in Figure 3.12 a, the oxidation and reduction peaks were not observed in 

the absence of glucose. The oxidation and reduction peaks of the glucose sensor in the presence 

of 2 mM of glucose were clear at different scan rates as shown in Figure 3.12 b. The applied 

potential was swept from 1 to -1 volt at 50, 100, and 200 mV/s. The device showed a clear 

dependency on the scan rates in the presence of 2 mM of glucose. The strongest oxidation peak 

appeared at the scan rate of 200 mV/s with an amperometric current density on the order of 0.4 

mA/cm
2
. The electrochemical reaction could be considered as a forward reaction when H2O2 was 

oxidized to hydrogen, oxygen, and free electrons. It is clear from Figure 3.12 b that the oxidation 

peaks at different scan rates were much stronger than the reduction peaks at the same scan rates. 

The nafion membrane that was used to cover the working electrode helped enhance the stability 

of the sensor during the cyclic voltammetry measurement [101].  

3.4.4  The linear amperometric measurement 

The linear amperometric response of the electrochemical glucose sensor is shown in  
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Figure 3.12. The cyclic voltammetry of the electrochemical glucose sensor based on 

Si/SiO2/Au/ZnO NRs/GOx/nafion in the absence of glucose (a) and in the presence of 2 mM of 

glucose (b) at different scan rates. Reprinted with permission from Marie et al. [101]. 

 

 

Figure 3.13. The working electrode without the growth of ZnO NRs showed a very weak 

response to changes in the glucose concentration. The working electrode without the as-grown 

ZnO NRs was saturated even at the low concentrations of glucose. From the black line in Figure 

3.1, the response of the sensor was almost the same at different glucose concentrations starting 

from 3 mM to 10 mM. After introducing the as-synthesized ZnO NRs to the surface of the 

working electrode, the electrochemical glucose sensor exhibited a linear amperometric response 

to changes in the glucose concentrations as shown in Figure 3.13 (the red line). The device 

showed a linear response to changes in the glucose concentration from 1-8 mM. Comparing the 

amperometric response of working electrodes both with and without the ZnO NRs, one can 

highlight the importance of the electroactive area of the sensor provided by the as-grown ZnO 

NRs. Higher concentrations of the enzyme GOx were adsorbed in the nanostructured area created 

by ZnO NRs. 
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Figure 3.13. The amperometric response of the electrochemical glucose sensor based on 

Si/SiO2/Au/GOx/nafion with and without the growth of ZnO NRs on top of the surface of the 

working electrode. Reprinted with permission from Marie, et al. [101]. 

 

In the absence of ZnO NRs on top of the working electrode, GOx was getting adsorbed on 

the two dimensional area on the surface of the working electrode. Glucose reacted with the 

enzyme, GOx, and produced H2O2 on the surface of the working electrode. Hydrogen peroxide 

was oxidized to H2, O2, and free electrons. The produced electrons transferred from the center of 

the enzyme, GOx, to the surface of the working electrode throughout the as-grown ZnO NRs. 

Since the as-grown ZnO NRs provided high surface-to-volume ratio to the surface of the 

working electrode, more GOx was adsorbed effectively on the electrochemical active area of the 

working electrode. Without the growth of ZnO NRs on top of the working electrode, less GOx 

reacted with glucose since only a lower concentration of the enzyme was getting adsorbed 

effectively by the surface of the gold thin film. The fabricated electrochemical glucose sensor 

based on Si/SiO2/Au/GOx/nafion was saturated at lower glucose concentrations while the device 

with ZnO NRs on top of the gold thin film went to saturation at higher glucose concentrations 

[101].  
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3.5  Enzyme-free electrochemical sensor based on ZnO NRs modified with ferric oxide 

 Although the enzymatic electrochemical glucose sensors are very sensitive to changes in 

glucose concentrations, the lifetime of the enzyme, glucose oxidase, is one of the biggest issues 

that shorten the lifetime of these sensors.  It is because of the biological degradation of the FAD 

in the center of the enzyme with time. Enzyme-free glucose sensors have less selectivity toward 

changes in glucose concentrations. However, those kinds of sensors are more stable with a longer 

lifetime. The fabricated enzyme-free electrochemical glucose sensor was based on ZnO NRs 

coupled with ferric oxide to work as a mediator for the redox of glucose on the surface of the 

nanostructure. The working electrode was coated with a nafion membrane to increase the 

stability of the glucose sensor. The device was characterized amperometrically using Keithley 

SourceMeter and Gamry potentiostat at different glucose concentrations.  

3.5.1  SEM images of ZnO NRs before and after modification with Fe2O3 

 SEM images of the as-synthesized ZnO NRs on top of the FTO substrates with and 

without ferric oxide are shown in Figure 3.14. The images (a) and (b) are the pure ZnO NRs as a 

top view and a cross section, while the pictures in (c) and (d) are the top view and the cross 

section of the modified ZnO NRs with ferric oxide. The grown ZnO NRs have a good alignment 

and a high density. This is a direct reason for having a high volume-to-surface ratio of the 

electroactive area of the fabricated enzyme-free glucose sensor. After modifying the as-

synthesized ZnO NRs with ferric oxide, SEM images were taken to evaluate the coupling 

between ZnO NRs and Fe2O3 as can be seen in images (c) and (d). ZnO NRs provided a three 

dimensional sensing area of the surface of the working electrode. 

 Higher concentrations of ferric oxide were attached successfully to the walls of the as-

grown ZnO NRs on top of the FTO substrates.  Higher concentrations of the glucose reacted with  
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Figure 3.14. SEM images of the pure and modified ZnO NRs with ferric oxide where (a) is the 

top view of the pure as-synthesized ZnO NRs, (b) is the cross section of the pure ZnO NRs, (c) is 

the top view of ZnO NRs after coupling with Fe2O3 and (d) is the cross section of the ZnO 

NRs/Fe2O3. Reprinted with permission from Marie, et al. [95]. 

 

ferric oxide on the surface of the working electrode to produce the free electrons. The three 

dimensional area provided by the as-grown ZnO NRs can be expressed as (No. of ZnO 

NRs/area) × (area of substrate) × (2πrl), where l and r are the length and the radius of the ZnO 

NRs, respectively. The isoelectric point of ZnO NRs is on the order of 10.3, which is higher than 

the IEP of ferric oxide. This provides a good affinity between ZnO NRs and ferric oxide on the 

surface of the working electrode. During the electrochemical reaction, Fe (III) is oxidized to Fe 

(II) in the electroactive area of the electrochemical glucose sensor. The high electrocatalytic 

ability of ferric oxide helped in oxidizing higher concentrations of the glucose on the surface of 

the working electrode. In addition, Fe (II) is reduced to Fe (III) during the electrochemical 

reaction which helped enhance the linear amperometric response of the sensor. As a result, 

higher glucose concentrations were sensed easily and accurately on the surface of the glucose 

sensor [95].  
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3.5.2  XRD measurement of ZnO NRs before and after modification with Fe2O3  

X-ray diffraction measurement was conducted to investigate the crystal structure of the 

as-grown ZnO NRs on FTO substrate after the modification with ferric oxide. The hexagonal 

wurtzite structure of the as-grown ZnO NRs along the c-axis plane showed a peak at 34.4° as 

shown in Figure 3.15. The peak of the wurtzite crystal structure of the ZnO NRs was attributed 

to the plane (002). The peak that belonged to the FTO substrate was observed at 37.8° and it was 

attributed to the (200) plane. The as-grown ZnO NRs on top of the FTO substrate were 

effectively textured to the x-ray radiation with the planes (002) and (200) and that was 

perpendicular to the surface normal, respectively. The texture coefficient, T(hkl), that describes 

the relative degree of the preferred orientation among many different crystal planes is known as:   

 

                                                                                                                     (Equation 3.3) 

 

Where 𝐼
(𝑘ℎ𝑙)

 and 𝐼(𝑘ℎ𝑙) are the standard integrated intensity and the measured intensity for the 

plane (hkl) reflection, respectively, and n is the number of reflections. The texture coefficient, 

T(002), for ZnO NRs was calculated to be on the order of 14. This was an indication that the as-

synthesized ZnO NRs were grown in the c-axis direction. This was the direction normal to the 

surface and (200) planes of the FTO grains. In addition, the Scherrer equation (Equation 3.1) was 

utilized to calculate the lateral coherence lengths of the FTO and the synthesized ZnO NRs. The 

coherence lengths of the FTO substrate and ZnO NRs were on the order of ~30 nm and ~35 nm, 

respectively.  

 The crystal structure of the substrate FTO had an influence on the as-grown ZnO NRs in 

terms of the orientation and  grain size. It is worth mentioning that the ferric oxide that was used  

𝑇(𝑘ℎ𝑙) =
𝐼(𝑘ℎ𝑙)/𝐼
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Figure 3.15. XRD pattern of the ZnO NRs after the coupling with Fe2O3. Reprinted with 

permission from Marie, et al. [95].  

 

 

to modify the as-synthesized ZnO NRs had small grain sizes compared with the grain sizes of 

ZnO NRs and FTO substrates. The x-ray pattern showed that ferric oxide was attached to the 

walls of the as-grown ZnO NRs randomly. This made it difficult to observe the peaks that belong 

to the ferric oxide due to the smaller grain sizes and the random orientation. This is why the 

peaks belonging to ferric oxide were overlapped with the ZnO NR and FTO peaks. The 

advantage of the smaller grain sizes of the ferric oxide was that higher concentrations of ferric 

oxide could be attached to the walls of the ZnO NRs effectively. Because of the mentioned 

reasons, tunneling electron microscopy might have been useful to accurately evaluate the 

modification of as-grown ZnO with ferric oxide [95].  
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3.5.3  Cyclic voltammetry measurement of ZnO NRs modified with Fe2O3 

Cyclic voltammetry measurements were conducted at room temperature to examine the 

modification of the surface of the working electrode with ferric oxide. The measurements were 

carried out the absence and presence of glucose. A three electrochemical cell consisting of 

glass/FTO/ZnO NRs/Fe2O3/nafion membrane as the working electrode, platinum plate and 

silver/silver chloride as the counter and the reference electrodes, respectively, was prepared to 

carry out the measurements. Silver/silver chloride was the reference electrode that the potential 

was swept against. The applied potential was swept from 1 to -1 volt to cover the oxidation and 

reduction peaks of the glucose during the cyclic voltammetry measurements. 

 The electrochemical sensor was tested under two different scan rates, 100 and 200 mV/s. 

Figure 3.16 a shows the cyclic voltammetry measurement at 100 and 200 mV/s scan rates in the 

absence of glucose. The fabricated electrochemical sensor showed no dependency on the two 

different scan rates in the absence of glucose. From Figure 3.16 a, one can see that the same 

current was obtained at the two scan rates meaning that the sensed current did not depend on the 

scan rate in the absence of the glucose. A 100 mg/dL of the glucose was added to the PBS 

analytical solution to evaluate the ability of the enzyme-free glucose sensor to sense the changes 

in the concentration. The cyclic voltammetry measurement was conducted at two scan rates, 200 

and 300 mV/s, in the presence of 100 mg/dL of glucose. An oxidation peak was clearly observed 

around 0.7 volt for the scan rate of 300 mV/s and around 0.4 volt for the scan rate of 200 mV/s 

as shown in Figure 3.16 b. When the direction of the swept potential was reversed, the enzyme-

free glucose sensor exhibited a reduction peak around 0.4 volt at the scan rate of 300 mV/s. 

 The oxidation reaction or the forward reaction, was faster than the reduction reaction or 

the backward reaction. It was an indication that the oxidation of Fe (III) to Fe (II) on the surface  
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Figure 3.16. The cyclic voltametry measurements of the modified enzyme-free glucose sensor at 

different scan rates (100, 200, 300 mV/s) in the absence of  glucose (a) and in the presence of 

100 mg/dL glucose (b). Reprinted with permission from Marie et al. [95]. 

 

of the as-synthesized ZnO NRs was faster than the reduction of Fe (II) to Fe (III) on the same 

surface. When the direction of the swept potential was reversed at the scan rate of 200 mV/s, the 

sensor showed a reduction peak at -0.4 volt. At the scan rate of 200 mV/s, one can see that Fe 

(III) was oxidizing to Fe (II) and Fe (II) was reducing to Fe (III) at the same reaction speed. The 

shift in the peak positions at the scan rates 200 and 300 mV/s in the presence of 100 mg/dL of 

glucose was an indication that the sensor was sensitive to changes in the glucose concentration. 

Since the characterized enzyme-free electrochemical sensor exhibited the maximum glucose 

oxidation peak at 0.7 volt, all other amperometric measurements, such as the amperometric 

response, the time response, and the calculation of the apparent Michaelis-Menten constant, were 

carried out at 0.7 volt [95].   

3.5.4  The time response measurement of ZnO NRs modified with Fe2O3 

An amperometric time response measurement was performed using the Gamry 

potentiostat and the three electrodes setup. The measurement was conducted at different glucose 
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concentrations dissolved in the PBS solution at pH 7.4 as shown in Figure 3.17. The glucose 

concentrations were changed in the phosphate buffer solution from 100 to 900 mg/dL. After 

every 20 seconds, a new concentration of glucose was introduced to the solution during the 

amperometric measurement. The amperometric current was plotted as a function of the 

electrochemical reaction time for each glucose concentration. The average of each 20 values of 

the sensed current was plotted versus time. Each 20 values of the current were associated with 

one concentration of glucose. A sharp and a fast response time, ~1 s, was calculated from the 

amperometric time measurement.   

 

 

 

 

 

 

 

 

 

Figure 3.17. The amperometric time response of the enzyme-free glucose sensors at different 

glucose concentrations from 100 to 900 mg/dL at 7 volt.  Reprinted with permission from Marie 

et al. [95].  
 

 

 The fabricated enzyme-free electrochemical glucose sensor out of glass/FTO/ZnO 

NRs/Fe2O3/nafion exhibited a steady-state current with each glucose concentration. One can see 

from Figure 3.17 that the sensor showed no decay in the current response during the 

measurement indicating the high stability of the sensor toward the changes in the glucose 

concentrations.  There was a slight decay in the current at the 200, 300, and 400 mg/dL of the 
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glucose concentrations.  A steady-state current was noticed during the measurements for the 

other different concentrations of the glucose. The sensing area of the enzyme-free sensor had a 

high surface to volume ratio provided by the as-synthesized ZnO NRs on the surface of the 

working electrode. Consequently, the glucose sensor exhibited a high signal-to-noise ratio that 

can be seen from the time response measurement. In addition, the continous oxidation of  Fe2O3 

which was attached to the walls of the ZnO NRs was another reason for the stability of time 

response. The nafion membrane provided a good isolation to the surface of the working electrode 

and that helped in enhancing the stability of the fbricated sensor during the amperometric time 

measurements [95]. 

3.5.5  The linear response measurement of ZnO NRs modified with Fe2O3  

The amperometric linear response of the modified glucose sensor was measured using the 

amperometric method at different glucose concentrations. The phosphate buffer solution was 

utilized to host the electrochemical reaction and glucose concentrations were changed from 100 

to 900 mg/dL. The measurement was conducted at 0.7 volt extracted from the cyclic 

voltammetry test. Continuous changes were made in the glucose concentrations during the 

amperometric measurements. A working electrode based on pure ZnO NRs on top of the 

glass/FTO coated with a nafion membrane was used in the measurement as can be seen in Figure 

3.18 a (the red line). It can be seen from the figure that the working electrode based on 

glass/FTO/ZnO NRs/nafion membrane exhibited almost no dependency on the changes of the 

glucose concentrations from 100 to 900 mg/dL. The same glucose concentrations from 100 to 

900 mg/dL were used to measure the amperometric response of the modified working electrode 

with Fe2O3. A wide linear response of the modified glucose sensor was observed at different 

glucose concentrations as in Figure 3.18 a (the black line). The linear amperometric response of 
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the modified electrode was observed from 100 to 400 mg/dL. 

 

 

 

 

 

 

 

Figure 3.18. The amperometric response of the glucose sensor where (a) is the response of the 

sensor with and without ferric oxide and (b) is extracted linear response of the sensor. Reprinted 

with permission from Marie et al [95].   

 

 

 The response of the glass/FTO/ZnO NRs/Fe2O3/nafion membrane working electrode 

went to saturation at high glucose concentrations. The high electrocatalyst capability of the 

Fe2O3 helped in oxidizing higher concentrations of glucose which is the direct result of the wide 

linear response of the sensor. The wide amperometric linear response of the sensor covered the 

physiological range of the glucose. The oxidation and reduction ferric oxide on the surface of the 

working electrode helped in producing more free electrons and the numbers of the produced 

electrons was associated with the glucose concentrations. The high surface to volume ratio 

provided by ZnO NRs helped in attaching more ferric oxide to the walls of ZnO NRs on the 

surface of the sensing electrode. Sensitivity on the order of 0.052 µA cm
-2

 (mg/dL)
-1 

was 

calculated from the slope of the amperometric linear response of the enzyme-free glucose sensor. 

The linear amperometric response of the sensor to changes of the glucose concentration was 

extracted from the total amperometric response to changes from 100-900 mg/dL. As shown in 

Figure 3.18 b, the linear response of the sensor was from 100 to 400 mg/dL. The sensitivity was 

calculated using Equation 3.4.  
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                                 Sensitivity=
current density (

µA

cm2)

glucose concentrations (mg/dL)
                                   (Equation 3.4) 

The lower limit of detection of the modified enzyme-free glucose sensor was calculated using 

Equation 3.2 and it was on the order of 17.15 mg/dL which is equivalent to 0.95 mmol/L [95].  

3.5.6  The apparent Michaelis-Menten constant  

The apparent Michaelis-Menten constant is the way to determine the affinity between the 

as-grown ZnO NRs and ferric oxide as in Figure 3.19. The double reciprocals of the current 

versus the glucose concentrations were plotted to examine the attachment of Fe2O3 to the walls 

of ZnO NRs. Before introducing the glucose to the phosphate buffer solution, the concentration 

of ferric oxide was the dominant parameter and small changes in the current were observed. 

When the concentration of glucose equaled the concentration of Fe2O3, the velocity of the 

electrochemical reaction was half the rate of the maximum velocity. The increase in response of 

the sensor was due to the increase in the glucose concentration. At higher glucose concentrations, 

the concentration of glucose became much higher than the concentrations of ferric oxide. As a 

result, the velocity of the electrochemical reaction reached the maximum velocity. At that level, 

the electrochemical sensor worked in the saturation region.  

The apparent Michaelis-Menten constant was calculated utilizing the Lineweaver-Burk 

equation (Equation 2.7) to accurately estimate the affinity between the as-grown ZnO NRs and 

Fe2O3. The extracted data from Figure 3.19 showed a higher correlation coefficient, R
2
, on the 

order of 0.998 (99.8%). In addition, the obtained adjusted R
2
 was on the order of 0.996 (99.6%).  

The small difference between R
2 

and the adjusted R
2
 indicated the high linearity between 

changes in the glucose concentrations and the associated current to those changes. In addition, it 

reflected the high affinity between ferric oxide and ZnO NRs.  
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Figure 3.19. The reversed current as a function of the reversed glucose concentration as a method 

to determine the affinity between ZnO NRs and ferric oxide. Reprinted with permission from 

Marie et al. [95].  

 
 

 

3.5.7  The reproducibility test of the enzyme-free sensor 

The modified working electrode based on glass/FTO/ZnO NRs/Fe2O3/nafion membrane 

was kept at the room temperature before and after performing the amperometric measurements in 

order to evaluate the reusability of the sensor. Four amperometric measurements were conducted 

weekly for one month. Figure 3.20 shows the obtained sensitivity for the modified 

electrochemical glucose sensors as a function of time. At the first amperometric measurement 

which was conducted directly after the fabrication and modification of the glucose sensor, the 

sensor exhibited sensitivity to changes in the glucose concentrations on the order of 0.052 µA 

cm
-2

 (mg/dL)
-1

. 

 For the second week measurement, the sensitivity was calculated to be 0.02 µA cm
-2

 

(mg/dL)
-1

 for the same sensor. For the third week measurement, a further 30% decline in the 

sensitivity had occurred and the calculated sensitivity was on the order of 0.014 µA cm
-2
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Figure 3.20. The reusability test of the enzyme-free glucose sensor for one month. The inset 

showed (a) the bare ZnO NRs, (b) ZnO NRs/Fe2O3 before use, and (c) ZnO NRs/Fe2O3/nafion 

membrane after 4 amperometric measurements for one month. Reprinted with permission from 

Marie et al. [95].  

 

(mg/dL)
-1

. For the last amperometric measurement after one month, the sensitivity of the 

modified electrochemical glucose sensor was ~ 0.0106 µA cm
-2

 (mg/dL)
-1

. The image (a) in the 

inset of Figure 3.20 was the pure ZnO NRs based working electrode before modification with 

ferric oxide. In image (b), one can see the ZnO NR-based working electrode after the 

modification with ferric oxide. In the image (b) of the inset, the modified working electrode was 

not used in any amperometric measurement. Image (c) in the inset of Figure 3.20 shows the 

modified working electrode after 4 amperometric measurements were performed in one month 

[95].  

3.6  Silicon NWs based enzymatic glucose sensors 

 Silicon NWs are of great interest because of their optical, structural, mechanical, and 

electrical properties. Silicon NWs were grown by the nanospheres lithography method using 

both RIE and wet etching. The etching method used to grow the Si NWs was explained in detail 

in Chapter 2.  
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3.6.1  SEM images of the etched Si NWs 

The etched Si NWs using the RIE system and the nanospheres lithography are shown in 

Figure 3.21. A high density of Si NWs were obtained on the surface of the silicon substrate. The 

etched Si NWs showed a uniform distribution in their lengths and diameters. This was a direct 

result of the uniform distribution of the polystyrene nanospheres after they were etched by the 

plasma inside the reactive ion etching system. Figure 3.21 a at 2755 x magnification, shows the 

alignment and the density of the etched Si NWs, while Figure 3.21 b at 25000 x magnification 

shows the distribution of the diameters and the lengths of the Si NWs. The etched Si NWs 

provided a high surface-to-volume ratio which was a crucial factor in glucose sensing. In 

addition, it helped in enhancing the signal-to-noise ratio, which meant increasing the capability 

of the electrochemical sensor to sense small changes in glucose concentrations. The high surface-

to- volume ratio provided by etched Si NWs was the key factor in adsorbing higher amounts of 

the enzyme, GOx, which was essential in glucose detection. Adsorbing higher concentrations of 

the enzyme on the surface of the working electrode (Si NWs/Si) helped in oxidizing higher 

concentrations of the glucose by the electrochemical sensor.  

 

 

 

 

 

Figure 3.21. SEM images of the grown Si NWs etched by the nanosphere lithography using the 

RIE system. The image (a) is at low magnification and (b) at high magnification to show the 

diameters and lengths of the Si NWs.   
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3.6.2  The time response of Si NWs/GOx/nafion glucose sensor  

To run the amperometric measurement over the fabricated electrochemical glucose sensor 

based on Si NWs, the surface of the working electrode was modified with glucose oxidase, GOx, 

and a nafion membrane. The enzyme-treated working electrode (Si NWs/GOx/nafion membrane) 

was left at 4 
°
C for one day. The enzyme helped in increase the sensitivity and selectivity of the 

electrode. To enhance the chemical stability of the working electrode and to increase the ion 

exchange between the glucose dissolved in phosphate buffer solution (PBS) and the surface of 

the electrode, a nafion membrane was spin-coated on the surface of the modified working 

electrode. To test the sensor, a platinum plate was used as a counter electrode, and the 

measurements were performed under 0.8 V. Amperometric measurements were done using a 

Keithley SourceMeter 2410 and Gamry potentiostat. The electrochemical glucose sensor was 

characterized at different glucose concentrations from 1-20 mM.  

The measurements were started by using 1 mM of glucose dissolved in the PBS. After 50 

seconds, the concentration of glucose was increased by adding another 1 mM. The 

concentrations of the glucose were added to the PBS after each 50 seconds. The electrochemical 

glucose sensor showed a fast response time towards changes in the glucose concentrations. The 

result of the time response measurement of the sensor can be seen in Figure 3.22. From the 

graph, one can see that the electrochemical sensor based on Si NWs modified with GOx and 

nafion membrane reached the maximum response in around 2 seconds. This was considered a 

fast and sharp response time to changes in the glucose concentrations.  However, the 

amperometric response declined after it reached the maximum level. This might have been due 

to the chemical wet etching to the Si NWs using the nanospheres lithography.  

The stability of the time response of the Si NWs based glucose sensor was clear from the 

figure. The Si NWs glucose sensor showed a similar behavior during all measurements until all  
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Figure 3.22. The amperometric time response of the fabricated electrochemical glucose sensor 

based on Si NWs/ GOx/nafion tested at 0.8 V for different glucose concentrations.  

 

the glucose concentrations were added to the PBS. At the last measurement, when 20 mM of 

glucose was added to the solution, there was a jump in the time response of the electrochemical 

sensor based on Si NWs/GOx/nafion. This was a result of some damage to the nafion membrane. 

The nafion membrane is very critical during the electrochemical measurement to protect the 

surface of the modified working electrode from the degradation that might occur from the 

chemical solution. It was noticed that the nafion membrane started to become damaged when the 

phosphate buffer solution became very concentrated. The other factor that affected the nafion 

membrane was the applied potential to the electrochemical cell during the amperometric 

measurement. It was desired to use a lower potential during the amperometric measurement to 

protect the nafion membrane and to lower the chance of the other electroactive species from 

being oxidized.  
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3.6.3  The linear response of Si NWs/GOx/nafion glucose sensor 

 The fabricated electrochemical glucose sensor was characterized amperometrically to test 

the linear response of the working electrode at different glucose concentrations. Different 

glucose concentrations were introduced to the solution continuously from 1 to 20 mM. The 

average of each 50 data point set was calculated and plotted as a function to glucose 

concentration. The modified working electrode based Si NWs/GOx/nafion membrane showed a 

linear response to a wide range of changes in the glucose concentration as can be seen in Figure 

3.23 a and b. The high surface-to-volume ratio provided by the silicon nanowires helped in 

adsorbing higher concentrations of the enzyme glucose oxidase. As a result, higher 

concentrations of the glucose were oxidized on the surface of the working electrode.  

 

 

 

 

 

  

Figure 3.23. The amperometric linear response of the fabricated electrochemical glucose sensor 

based on Si NWs/GOx/nafion, where (a) is the whole range of the amperometric response and (b) 

is the linear amperometric response from 1-10 mM.  

 
  

 Silicon nanowires provided the nanoenvironmental area of the glucose molecules since 

the sizes of the glucose molecules and the Si NWs were comparable. This provided a fast 
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electron transfer between the center of the enzyme glucose oxidase and the surface of the etched 

silicon nanowires.  The fabricated glucose sensor showed a linear response to changes in the 

glucose concentrations from 1-10 mM before the amperometric current went to saturation as 

shown in Figure 3.23 b. At the saturation level, all the enzyme glucose oxidase was consumed 

and the amperometric response of the electrochemical sensor did not depend anymore on the 

accumulated concentrations of glucose in the PBS solution. The electrochemical glucose sensor 

showed sensitivity on the order of 0.15 mA cm
-2

 mM
-1

 to changes in the glucose concentration. 

The sensitivity of the measurement is the slop of the amperometric response of the sensors. 
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Chapter 4  Conclusions and future work  

4.1  Conclusions  

  Enzymatic electrochemical glucose sensors were fabricated based on the 

nanostructure of semiconductor materials. Zinc oxide nanorods were synthesized 

hydrothermally using sol-gel solution at low temperatures. The controlled diameters, 

density, and lengths of the as-grown ZnO NRs resulted in synthesizing highly dense and 

well-aligned ZnO NRs. The high surface-to-volume ratio obtained by the as-grown ZnO 

NRs was a direct result to the controlled hydrothermal and sol-gel growth methods. The 

optimized growth method of ZnO NRs was utilized to synthesize ZnO NRs on top of the 

surface of the working electrode of the electrochemical glucose sensor. The 

electrochemical glucose sensors fabricated from the as-synthesized ZnO NRs exhibited 

high signal- to-noise ratio. The high signal-to-noise ratio was an essential parameter for 

glucose detection. The high signal-to-noise ratio meant higher the capability of the 

electrochemical sensor to detect lower concentrations of glucose. In other words, the high 

signal-to-noise ratio helped in reducing the lower limit of detection, which was the lowest 

concentration of the glucose that could be detected by the electrochemical sensor. The 

fabricated enzymatic electrochemical glucose sensors out of ZNO NRs were sensitive to 

small changes of the glucose concentration.  

  The enzymatic electrochemical sensors showed a high sensitivity and selectivity 

toward changes in glucose in the phosphate buffer solution due to the high affinity between 

the enzyme glucose oxidase, GOx, and the glucose. The enzyme, GOx, has the flavin 

adenine dinucleotide (FAD) in its center as an electron acceptor. This makes the electrons 

produced by the oxidation of glucose transfer directly from the center of the enzyme to the 
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surface of the working electrode through the as-grown ZnO NRs. This direct electron 

transfer resulted in a fast amperometric response of the electrochemical glucose sensors. In 

short, the fabricated enzymatic electrochemical glucose sensors were sensitive, selective, 

and had a fast response to the changes in the glucose concentration. However, the lifetime 

of the enzyme makes it difficult to reuse these kinds of the glucose sensors due the 

biological degradation of the enzyme with time.  

  Silicon nanowires were used to fabricate enzymatic electrochemical glucose 

sensors. Nanospheres lithography method was utilized to etch the Si NWs by using the 

reactive ion etching (RIE) system. The obtained Si NWs were dense with a high aspect 

ratio, which is the ratio between the lengths to the diameters of the etched Si NWs. In 

addition, the grown Si NWs showed a high surface-to-volume ratio with good alignment. 

The working electrode fabricated from Si NWs was modified with the enzyme, GOx, and 

casted with the nafion membrane to enhance the stability of the sensor during the 

electrochemical reaction. The fabricated electrochemical sensors showed a high sensitivity 

and selectivity toward changes in the glucose concentration. In addition, the amperometric 

response of the sensors was fast and sharp when higher glucose concentrations were 

introduced to the analytical solution.  

  An enzyme-free electrochemical glucose sensor was fabricated using the as-grown 

ZnO NRs modified with ferric oxide. Ferric oxide, Fe2O3, was prepared and dipped coated 

on top of the as-grown ZnO NRs. ZnO NRs were grown on glass/FTO substrates using the 

same hydrothermal and sol-gel methods. The dip-coater technique was utilized to modify 

the surface of the working electrode with ferric oxide. The glass/FTO/ZnO 

NRs/Fe2O3/nafion membrane structure resulted in an enzyme-free electrochemical glucose 
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sensor. During the electrochemical reaction between the ferric oxide and glucose, Fe (III) 

is oxidized to Fe (II) and produces free electrons. The free electrons produced transfer to 

the surface of the working electrode under the effect of the electrical field. Ferric oxide has 

a high electrocatalytic capability which means that more glucose can be oxidized on the 

surface of the working electrode. The fabricated enzyme-free glucose sensor showed a 

good sensitivity and a longer lifetime compared with the enzymatic glucose sensors 

fabricated using ZnO NRs and Si NWs.  

4.2  Future work 

  Metal oxide semiconductor field effect transistor (MOSFET) based glucose sensor 

is a promising approach to sense glucose efficiently. These kinds of devices are usually 

called BioFET glucose sensors. They depend on changes in the drain current due to the 

charges produced by oxidizing the glucose in the channel between the source and the drain. 

The channel between the source and the drain can be modified by applying either ZnO NRs 

or Si NWs. In addition, a back metallic gate can be easily deposited to induce all the 

possible charges in the channel. These BioFET-based glucose sensors can be characterized 

by sweeping the drain voltage and fixing the gate voltage. The drain current that is 

associated with the concentrations of the glucose can be studied as a function of the drain 

voltages.   

  Impedance-based glucose sensors are another promising approach for glucose 

detection. They work based on changes in the dielectric constant of the analytical solution 

during the electrochemical impedance measurements. The glucose sensor can be designed 

as an interdigital structure with different channel widths. The impedance that is in a direct 

proportion to the concentrations of glucose can be studied as a function of different 
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frequencies. There will be three regions of frequencies: low, medium, and high. In each 

one of these regions, the impedance can be measured and analyzed to determine the 

concentrations of the glucose.  
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Appendix A: Description of Research for Popular Publication 

Diabetes mellitus is one of the main reasons for death and disabilities all around the 

world. It is the main reason for kidney failure, heart attack, high blood pressure, and other 

chronic diseases. It costs people a lot of money and it requires daily glucose checks. In addition, 

a certain diet should be followed to avoid any possible complications. Glucose sensors are the 

tools to measure and test the glucose level in the blood. Tremendous attention has been given to 

fabricating glucose sensors that one can use to measure the glucose level in the blood accurately, 

safely, and cost-effectively. Most of the produced glucose sensors depend mainly on the affinity 

between the glucose and the enzyme, glucose oxidase, and these devices are known as enzymatic 

glucose sensors. The main challenge in fabricating these kinds of glucose sensors is controlling 

the way that the produced electrons can be transferred. A direct electron transfer is the desirable 

approach that could lead to fast, accurate, selective, and sensitive glucose sensors.  

In the recent years, nanostructured materials-based glucose sensor has been studied 

extensively to fabricate electrochemical sensors for glucose monitoring. Different enzymatic 

glucose sensors have been fabricated and used to test glucose levels in the blood. The biological 

degradation of the enzyme, glucose oxidase, is a drawback that shortens the lifetime of the 

fabricated glucose sensors. The sensitivity and the reproducibility of these electrochemical 

glucose sensors needs to be improved, so the enzymatic glucose sensors can be used repeatedly 

with the same sensitivity toward changes in the glucose concentrations.  

Enzymatic and enzyme-free electrochemical glucose sensors based on zinc oxide (ZnO) 

nanorods, (NRs) have been investigated by Mohammed Marie, a Ph.D. student in the 

Microelectronics -Photonics graduate program at the University of Arkansas/Fayetteville. The 

research, conducted in the optoelectronics lab in the Electrical Engineering Department, 

University of Arkansas, was led by Dr. Omar Manasreh. The main focus was on fabricating and 
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characterizing sensitive, selective, fast, and accurate enzymatic and non-enzymatic glucose 

sensors based on pure ZnO NRs, modified ZnO NRs, and modified silicon nanowires. Highly 

sensitive and selective electrochemical glucose sensors were fabricated based on highly dense 

and well-aligned ZnO NRs grown on indium tin oxide (ITO) and fluorine doped tin oxide (FTO) 

and glass coated gold substrates. In addition, zinc oxide nanorods (ZnO NRs) modified with 

ferric oxide was utilized to fabricate enzyme-free electrochemical glucose sensor with high 

sensitivity and selectivity toward glucose. The successful modification of ZnO NRs and ferric 

oxide was the key point in producing an enzyme-free glucose sensor with high sensitivity and 

longer lifetime. Finally, silicon nanowires coupled with the enzyme, glucose oxidase, and 

covered with a nafion membrane were utilized to fabricate glucose sensors with high sensitivity, 

lower detection limit, and high selectivity toward changes in the glucose concentrations.  

 

 

 

 

 

 

 

 

 



 

  104 
  

Appendix B: Executive Summary of Newly Created Intellectual Property 

1- The modification of ZnO NRs with ferric oxide and the fabricated enzyme-free 

electrochemical glucose sensor out of the structure glass/FTO/ZnO NRs/Fe2O3/nafion 

membrane.  

2- The coupling between Si NWs grown by the nanospheres lithography and RIE system, 

glucose oxidase, and nafion membrane has led to a sensitive and selective 

electrochemical glucose sensor.  
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Appendix C: Potential Patent and Commercialization Aspects of Listed Intellectual 

Property Items 

C. 1 Patentability of the newly created intellectual property  

1. The amperometric sensor based on ZnO NRs modified with ferric oxide and casted with 

a nafion membrane is not a patentable newly created intellectual property since the 

growth methods of ZnO NRs are well-known to researchers in the field. The coupling 

between ZnO and ferric oxide is known to researchers in the same field. Furthermore, 

the dip-coating technique used to immobilize the surface of ZnO NRs with ferric oxide 

is known to researchers in the field. The combinations of technologies used in this 

research would be obvious to those skilled in the art.     

2. The etched Si NWs using RIE system and nanosphere lithography cannot be patented 

because it should be known to those skilled in the art.   

C. 2 Commercialization Prospects 

1. The short lifetime of the working electrode makes it difficult to compete with other 

commercialized glucose sensors.  

2. Not applicable. 

C. 3 Possible Prior Disclosure of IP 

1. The results of item one has already been disclosed to the public:  M. Marie, A. 

Manoharan, A. Kuchuk, S. Ang, and M. O. Manasreh, "Vertically grown zinc oxide 

nanorods functionalized with Ferric oxide for in-vivo and non-enzymatic glucose 

detection," Nanotechnology, vol. 29, no. 11, pp. 5501-5509, 2018. 

2. Not applicable.  
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Appendix D: Broader Impact of Research 

D.1 Applicability of Research Methods to Other Problems 

Controlling the growth of ZnO NRs is of interest since the ZnO NRs is a cost-effective, 

biocompatible, environment friendly, and easy to synthesize material. Well-aligned and 

highly dense ZnO NRs grown at low temperatures can be used in different applications, 

such electrochemical glucose sensors, cholesterol sensors, DNA sequencing, and 

pacemakers for heart problems. The coupling between ZnO NRs and ferric oxide is a 

great approach to fabricate enzyme-free sensors that can be sued in different biological 

and electrochemical applications. 

D2. Impact of Research Results on U.S. and Global Society 

 Diabetes mellitus is a widespread disease in the United States and worldwide. Fabricating 

enzyme-free electrochemical glucose sensors based on ZnO NRs and ferric oxide is a 

perfect approach that can be used to sense glucose accurately with a high sensitivity and 

selectivity. The fabricated enzyme-free glucose sensor can be utilized clinically for in-

vivo glucose monitoring. The research was focused on the fabrication of the third 

generation of the glucose sensors. It is extremely important to replace the harmful 

(invasive) method of glucose detection with a less harmful method. Diabetic people need 

to be able to monitor their glucose level easily, accurately, and with less harm. The 

research was directed to investigate different nanostructured semiconductor materials for 

a glucose sensor that can address all the points above.  

D.3 Impact of Research Results on the Environment 

Since ZnO is a biocompatible material, glucose sensors based on ZnO NRs are not toxic 

devices and can be used safely to monitor glucose. In addition, ZnO material can be 
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disposed safely with no environmental issues. The fabricated glucose sensors are 

important for diabetic people and using these kinds of glucose sensors will help in 

reducing some medical tools that might be harmful and difficult to dispose. Furthermore, 

the chemical materials used in the research were organic chemicals that dissolve in water 

without causing problems.   
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Appendix E: Microsoft Project for Ph.D. microEP Degree Plan 
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Appendix F: Identification of All Software Used in Research and Dissertation Generation 

Computer #1: 
 

Model Number: acer  

Serial Number: 14131953217 

Location: ELEG 

Owner: Electrical Engineering department/University of Arkansas 

Software #1: 

Name: Microsoft Office 2010 

Purchased by: Electrical Engineering Department, University of Arkansas 

Software #2: 

Name: Origin 8.6Bit  

Serial number: GF3S4-6078-7604856 

 

Software #3: 

 Name: AutoCad  

 Purchased by Electrical Engineering department, University of Arkansas (Blackmesa). 

 

Software #4: 

 Google SketchUp 

 Downloaded for free from https://www.sketchup.com/download  

Software #5: 

 Name: Gamry Echem Analyst version 5.61 

 Downloaded for free from https://www.gamry.com/support/software-updates-3/  

Computer #2: 

 Model: Dell 

 Serial Number: HZ221F1 

 Location: Electrical Engineering department, Optoelectronics lab. 

 Owner: Electrical Engineering Department.  

Software #1: 

 Name:Varian UV Scan application. 

 Version:  3.00(339).  

Serial number: EL99093019 

Software #2:  

 Name: Microsoft office 2007. 

https://www.sketchup.com/download
https://www.gamry.com/support/software-updates-3/
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Purchased by:  Electrical Engineering department.  

Computer #3: 

 Model: Dell 

 Serial Number: CP9RVV1 

 Location: Electrical Engineering department, Optoelectronics lab. 

 Owner: Electrical Engineering Department.  

Software #1: 

 Name: LabSpec 

 Version: 5.7824 

Computer #4: 

 Model: Trion Minilock Phantom III 

 Serial number: (MNLIII 8423) 

 Location:Electrical Engineering Department, Optoelectronics lab. 

 Owner: Electrical Engineering Department. 

Software #1:  

Name: PLC  
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