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Abstract 
 

Across society, the consistent influx of students enrolling in higher education institutions 

without a comparable increase in degree attainment has produced a heightened awareness and a 

desire to identify the factors related to influencing college success. This dissertation aims to 

develop a greater understanding of three potentially relevant factors and their respective 

influences in facilitating college success at the University of Arkansas. First, I evaluate the 

Student Talent Enrichment Program (STEP) Grant program, designed to fulfill low-income first-

year students’ financial needs and encourage their persistence on to their second year of college. 

Second, I study the effectiveness of the BounceBack Mentoring program; it paired peer-mentors 

with first-year students on academic probation with the goal of changing each student’s 

academic trajectory. Third, I examine the role of non-cognitive skills, such as conscientiousness, 

and students’ subjective expectations about their future performance in helping themselves reach 

their desired goals and in turn, perform beyond their expectations. In general, my findings 

suggest that access to the STEP grant program neither harms nor promotes short-run outcomes. I 

also find that the BounceBack Mentoring program show promise in helping undergraduates who 

are on academic probation improve their academic performance. In addition, I find that students 

who possess non-cognitive skills, such as conscientiousness and grit, are actively performing 

beyond expectations. Such findings are important because they highlight the complications, 

failures, and rewards of building support systems intended to promote, encourage and facilitate 

student success in a heavily diverse college student population. Overall, this dissertation and its 

findings lends itself to the fact that facilitating college success does not come from a single 

source, but likely is a combination of support programs, additional resources, and internal 

mindsets.  
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Introduction 

 

Earning a college degree has a plethora of monetary and non-monetary benefits, such as 

reporting higher levels of job satisfaction, higher lifetime earnings, increased employment 

opportunities, decreases in the probability of ever being arrested and better general health (Ost, 

Pan, & Webber, 2018; Zimmerman, 2014; Oreopolous & Petronijevic, 2013; Oreopoulos & 

Salvanes, 2011; Hout, 2011). Such benefits can introduce individuals to a better way of life, and 

due to these tangible benefits, there has been a call to provide more individuals with access to 

higher education institutions. That call has produced a plethora of programs including: financial 

aid programs to make college more affordable, application support programs to help students 

apply to college, and summer bridge programs to make sure students accepted into college show 

up to their first day of classes after the summer of their senior year in high school (Dynarski, 

2008; Page & Scott-Clayton, 2016).  

As policymakers created policy, as foundations donated money for scholarships, and as 

programs reached into marginalized communities, all with the intention of granting access to 

college, students enrolled. In the U.S., from 2005 to 2014, student enrollment grew from under 

18 million students to about 20 million students or 14 percentage-points (Snyder, de Brey, & 

Dillow, 2018). The growth in enrollment built pathways for individuals who in the past could 

have discounted the value of college, might not have been able to afford to pursue a degree, or 

never even considered higher education as an option.  

Despite the increase in enrollment, the U.S. has not seen the improvements in either 

persistence or graduation rates, as one would hope. For example, according to the National 

Student Clearing House Research Center, since 2009, the first-year persistence rate for incoming 

freshman students has hovered between 70 and 75% (Persistence & Retention-2018, 2018). This 
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statistic means that within the first year of enrolling at a higher education institution, about 30% 

of undergraduates do not continue to their second year of schooling.  

 As you turn to degree completion, the story does not change. In the U.S., only 60% of 

students who enroll in a higher education institution will earn a degree in six-years (Shapiro et 

al., 2017; McFarland et al., 2018). Not only do students in the general population fail to earn 

degrees, disadvantaged subgroups have lower graduation rates than their advantaged 

counterparts. African American and Hispanic students enroll in college and complete degrees at 

lower rates than their white counterparts (Musu-Gillette et al., 2017). Additionally, first-

generation college students finish college at lower rates than students whose parents have 

completed at least some college (Cataldi, Bennett, & Chen, 2018).  

In light of experiencing a continued rise in enrollment rates of students entering into their 

higher education institutions without the proportionate rises in both persistence and graduation 

rates, many colleges and universities are asking: “What is the key to college success?” 

Throughout the past few decades, the most common factor related to college success is prior 

academic performance. Most notably, previous literature has connected academic performance 

measures such as ACT scores (Paszczyk, 1994; Geiser & Studley, 2001), SAT scores (Mattern & 

Wyatt, 2012), and high school GPA (Armstrong & Carty, 2003) to freshman year performance, 

college persistence, and degree completion.  

 However, academically capable students with proven prior academic performance 

continue to pursue degrees but fail to stay on track towards graduation (Beattie, Laliberte & 

Oreopoulos, 2018). Such findings have shifted colleges and universities towards reevaluating 

determinants and barriers to college success. As these institutions move towards facilitating 
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student success, there needs to be greater development in the understanding of what programs, 

factors or mentalities aid in the promotion of college success.  

This dissertation looks at three potential influences: access to need-based financial 

assistance, peer-mentors trained to help undergraduates on academic probation in their transition 

from high school, and the development of character skills, in encouraging short-run college 

outcomes such as GPA and persistence for undergraduates.  

In Chapter 1, I evaluate the University of Arkansas’s Student Talent Enrichment Program 

(STEP) Grant program, using an experimental design strategy. The STEP grant program 

provided first-year students who had high levels of unmet need, (defined as the cost of 

attendance minus all aid and expected family contribution), a one-time, need-based grant ranging 

from $2,500 to $10,000. Previous literature shows access to need-based grants positively 

promotes persistence in undergraduate students (Castleman & Long, 2013; Angrist et al., 2017); 

however, I fail to detect a distinguishable effect of the STEP grant program on GPA and the 

probability of sophomore year retention.  

In Chapter 2, I rigorously evaluate the BounceBack Mentoring Program developed at the 

University of Arkansas using a regression discontinuity design. The BounceBack program 

assigned all first-year students who earned a fall semester GPA below a 2.0 in 2017 and were 

subsequently placed on academic probation, a peer-mentor who met with the student on 

probation bi-weekly throughout the spring 2018 semester. Since peer-mentors have a unique 

potential to influence academic behavior and address non-academic issues, colleges and 

universities are using them as a tool to help undergraduates transition into college (Ellis & 

Gershenson, 2016; Asgari & Carter, 2016). Overall, I do not detect an effect of either assignment 
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to nor receipt of the BounceBack mentoring program on students’ grade performance, 

accumulated credits, their probability of being in good academic standing or persistence. A main 

limitation of the chapter is an inability to disentangle the effect of the program from the effect of 

being placed on academic probation. However, when compared to ten previous cohorts of 

entering freshmen on academic probation who experienced some negative effects of probation, it 

appears that the BounceBack program has diminished the adverse effect of academic probation 

on the probability of being in good academic standing after the spring semester. 

Chapter 3 presents a descriptive analysis of the relationship among character skills or 

non-cognitive skills, subjective expectations, objective expectations, and academic outcomes for 

first-year undergraduate students at the University of Arkansas. A person’s character can be 

defined as his or her principles, values, and mindsets that govern his or her decisions and 

attitudes and are subsequently integrated into every facet of that person’s life. Researchers have 

identified positive associations among character skills, such as conscientiousness and grit, with 

course grades, class attendance, as well as persistence (Conard, 2006; Lounsbury et al., 2003; 

Duckworth et al., 2007). This chapter seeks to answer two simple questions: “Are students 

coming into college with overly high expectations about their potential performance?” and “Are 

character skills important to meeting expectations and succeeding in college?” After first 

surveying over 1,100 college freshmen majoring in business and engineering, I find students who 

performed below objective expectations had the highest levels of idealistic expectations; for 

example, they expected to attain 4.0 GPAs in college, but they were doing 2.0 GPA caliber work. 

Second, I find that students meeting and performing above objective expectations had the highest 

levels of conscientiousness. They valued working hard, and they did not give up so easily when 

faced with challenges.  
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 This dissertation adds to the literatures examining if need-based grants, peer-mentors, and 

non-cognitive skills can impact college success. Chapter 1 adds to the literature on need-based 

grants by providing a rigorous evaluation of a campus-based, need-based grant program. In 

addition, it provides clear evidence of the effects of a cash drop without any addition of support 

services. Chapter 2 adds to the literature of peer-mentors by being the first study to evaluate a 

peer-mentoring program for students on academic probation rigorously. Chapter 3 expands the 

literature of non-cognitive skills by descriptively evaluating their relationships with students’ 

college success inside of a U.S. context. Secondly, it explores the relationship between non-

cognitive skills and both objective and subjective academic expectations.  

 These are important contributions as colleges and universities continue to emphasize 

student success. Student success is not new, but the introduction of rigorous evaluations 

strategies with the new capacity to measure non-academic skills, such as non-cognitive skills, 

provides a platform to build a greater understanding of the keys to college success. 
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Chapter 11 

 

Can You Fulfil an Unmet Financial Need Without Addressing the Actual Need? The 

Impact of Need-Based Grants on First-Year College Students 

Introduction 

 

Over the past decade, colleges and universities have seen substantial increases in 

enrollment without comparable increases in persistence and graduation. While 77% of 

traditionally-aged students in 2011 enrolled full-time into a college or university, only 60% of 

enrollees received a degree four years later (Shapiro et al., 2017). Unfortunately, many of those 

students not persisting through college come from low-income families. College graduation rates 

for students with family incomes in the bottom quartile of the income distribution are about 13 

percentage points lower than their counterparts whose families are in the top quartile of the 

income distribution (Bowen et al., 2009).  

 A primary factor attributed to lower persistence rates for low-income students is an 

inability to pay for college (Krueger, 2003; Castleman & Long, 2013). Expenses such as tuition, 

room, and board, and books are barriers to low-income students in pursuit of their degrees. 

Students unable to meet these expenses have two options: defer their pursuit of a degree until 

they can afford college or investigate financial aid options to pay for accumulated and future 

expenses before continuing their college enrollment. One policy used to make college more 

affordable is need-based grant aid; which is determined by financial need and not required to be 

repaid. A host of studies finds that access to need-based grant aid positively encourages college 

enrollment (Page & Scott-Clayton, 2016; Andrews, Imberman, & Lovenheim, 2017). 

Nevertheless, it is equally important to understand the effectiveness of need-based grant aid 

                                                           
1 This paper was co-authored with Jonathan N. Mills. 
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beyond initial enrollment and on long-term outcomes, such as persistence and degree 

completion.  

 The causal literature evaluating need-based grants on college persistence and degree 

completion is growing and generally shows access to grant aid encourages persistence (Angrist 

et al., 2017; Bettinger, 2015) and degree completion (Castleman & Long, 2013), with some 

exceptions (Bettinger, 2004; Clotfelter, et al 2017). However, much of the previous work centers 

around federal and state-level grant programs, leaving a gap in research on campus-based grant 

programs. Furthermore, recent state switches away from enrollment-based funding of higher 

education institutions and towards performance-based funding, which rewards persistence and 

graduation rates instead of enrollment numbers, provide even further incentives for college and 

universities to develop programs to facilitate student success, with need-based grant programs 

being one of them (Snyder & Fox, 2016; Hillman, Tandberg, & Fryar, 2015; Dougherty & 

Reddy, 2013).  

This chapter looks to evaluate the effectiveness of the Student Talent Enrichment 

Program (STEP) to Success Grant program at the University of Arkansas, one such institution-

based grant aid program. We do so using a highly rigorous research design exploiting random 

assignment of the opportunity to receive a need-based grant. The STEP to Success Grant 

program awarded academically prepared, defined by possessing a high school GPA above 3.0, 

but financially struggling students with a one-time grant in the fall of 2017 ranging from $2,500 

to $10,000 with the intention of improving academic performance and encouraging persistence. 

Overall, we find little evidence indicating receipt of a grant had an observed effect on any of our 

short-run outcomes such as academic performance or persistence. Despite the lack of strong 

evidence, this paper adds to the understanding of need-based grant programs instituted by 
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colleges and universities designed to increase the academic performance and retention rates of 

academically prepared but financially constrained first-year students.  

This chapter proceeds as follows. In the following section, we summarize the existing 

evidence of the effectiveness of need-based grants in the context of higher education. Next, we 

describe the specifics of the STEP to Success Grant program. We then review our research 

design and the data used to estimate the effects of the STEP to Success Grant program. Finally, 

we present our results and a discussion of our findings.  

The Evidence of Need-Based Grant Aid and its Effectiveness in Supporting Collegiate 

Persistence and Completion 

Need-Based Aid and College Enrollment 

 

Researchers have done much work examining the effect of need-based grant aid on 

college enrollment. Generally, the literature shows that access to need-based grants increases the 

likelihood of college enrollment for low-income students (Singell, 2001; Castleman & Long, 

2013; Angrist et al., 2017). Considering the effects of the need-based Florida Student Access 

Grant on a cohort of high school seniors and college students, Castleman and Long, (2013) find 

that for potential college freshmen each additional $1,300 in aid increased the probability of 

enrolling at a public four-year institution by over three percentage points. In addition, exploiting 

changes in policy of the Ohio College Opportunity Grant, Bettinger (2015) finds that increased 

grant-funds improve the likelihood of college enrollment in an Ohio higher education institution. 

However, enrollment is only the initial step to a degree, and need-based aid could have different 

impacts on short-term and long-term outcomes such as persistence and completion. 
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Need-Based Aid, College Persistence, and College Completion 

 

Until recently, rigorous evidence on the effects of need-based grants on college 

persistence and degree attainment has been scant. A major issue facing studies of such programs 

is selection bias; recipients of need-based grant programs are not selected at random, but are 

instead selected on observable factors, such as socioeconomic status and parental education, and 

as well as unobservable factors such as motivation to apply for aid. This lack of randomized 

selection makes it very challenging to distinguish the effects of a need-based grant program from 

those factors determining one’s receipt of the grant in the first place. As a method to solving the 

selection issue, researchers are using quasi-experimental research designs. Various studies are 

taking advantage of variations in financial aid policies or random variations in aid assignment 

and are finding that access to need-based aid generally encourages persistence and degree 

completion (Castleman & Long, 2013; Angrist et al., 2017; Bettinger, 2015; Clotfelter at al., 

2017). 

Taking advantage of discontinuities in family size and the number of family members 

enrolled in college, Bettinger (2004) finds that an increase of $1,000 in Pell Grant aid, the largest 

and most widely distributed need-based grant which awards students who have financial need a 

varying dollar amount to go towards higher education expenses, decreased dropout rates by 

about four percentage points. Similary, exploiting the qualifying expected family contribution2 

(EFC) cutoff for the need-based Florida Student Access Grant, Castleman and Long, (2013) find 

that each additional $1,000 of grant eligibility for college freshmen increases their probability of 

enrolling in the second semester by 3.3 percentage points. Additionally, an increase of $1,300 in 

aid eligibility increases the likelihood of graduating in six-years by 22%. Laslty, Bettinger 

                                                           
2 EFC is an estimation of how much a family can financially contribute to a college education. 
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(2015) uses a difference-in-difference approach to analyze the shift in need-based aid policies in 

Ohio and finds that students awarded larger aid packages due to the shift in policy were less 

likely to drop-out after college enrollment.  

Due to the effectiveness of need-based grants facilitating persistence both at the federal 

and state levels, colleges and universities are moving away from using grants to encourage 

enrollment solely and towards individually providing need-based grants to encourage persistence 

with students academically prepared but financially unprepared for college. This chapter most 

closely relates to the work of Clotfelter and colleagues (2017) and Andrews and colleagues 

(2017), who evaluate campus-based, need-based grant programs and their impact on encouraging 

persistence for low-income students.  

Clotfelter and colleagues (2017) focus on the Carolina Covenant program, developed at 

the University of North Carolina at Chapel Hill, which covered the full cost of attendance for 

incoming high achieving yet low-income students. Using both a regression discontinuity and 

difference-in-difference strategy to exploit variation in eligibility, the researchers find no 

distinguishable effect of the program on academic performance, persistence or degree 

completion. However, after three years of the program’s existence, the program developed a 

comprehensive set of non-financial supports, such as tutoring and professional development and 

the later cohort participants earned higher GPAs and were more likely to be on track for 

graduation. Andrews and coauthors (2017) evaluate both the Longhorn Opportunity Scholars 

(LOS) program at the University of Texas-Austin and the Century Scholars (CS) program at 

Texas A&M, which both provided low-income students additional grants and academic support 

services at each of their respective schools. Using a difference-in-difference strategy exploiting 

variation in program eligibility, Andrews and team (2017) find that participation in the LOS 
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program increased the likelihood of graduating from the University of Texas. This was especially 

the case for women, as their likelihood of graduation increased by about three percentage points. 

However, the team failed to detect an effect of participating in the CS program on any college 

outcomes. Since there is limited and no clear evidence of the effect of need-based grants 

distributed at the college level, we believe these types of programs need more research.  

Our paper contributes to the literature on campus-developed need-based grant programs 

in two ways. Firstly, we exploit randomization in the opportunity to receive aid to evaluate the 

effectiveness of a one-time grant awarded to academically prepared first-year college students 

with high levels of unmet-need, defined as fall cost of attendance minus fall free aid plus 

estimated family contribution, on their academic performance and the probability of persisting in 

college. Secondly, we accompany the work of Clotfelter and team (2017) and evaluate the effect 

of need-based grants in a setting in which they are offered without additional student support 

services.  

The STEP to Success Grant Program 

 

The administration at the University of Arkansas designed the Student Talent Enrichment 

Program (STEP) to Success Grant program to improve retention of first-time, first-year students 

facing many potential barriers to success in college. The STEP grant program is but one of a host 

of new university-led initiatives3 designed to better facilitate student success as the university’s 

funding structure shifted from an enrollment-based to performance-based mechanism. The STEP 

grant program restricted participation to academically promising (i.e., high school GPA above 

                                                           
3 Other university initiatives include a mentoring program for students on academic probation 

and a mentoring/financial aid program for low-income students. To our knowledge there was no 

cross-over between students and these other various programs.  
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3.0) full-time, degree-seeking, first-time freshman with in-state residency and high levels of 

unmet need.4 The program awarded students a one-time non-renewable grant ranging from 

$2,500 to $10,000 towards the end of their first semester (i.e., fall 2017).5 These grants typically 

covered 60% to 100% of students’ unmet need.6  

The STEP program’s administrators identified eligible students, implemented random 

assignment, and selected individuals to receive the grant in the fall of 2017. Once selected to 

receive the grant, program administrators contacted grant recipients via phone and email. Once 

students were contacted by program administrators and acknowledged their upcoming grant 

funds, their respective grants were applied directly to the students’ university financial accounts. 

Students who were not selected to receive the grant were neither notified or informed about their 

potential receipt of a grant.  

Grant awards were applied directly to the student’s university financial account, initiating 

three potential outcomes. First, the grant could cover the full balance of the student's account 

leaving no excess or need. Second, the grant could cover some of the balance, leaving need. 

Alternatively, the award could be larger than the balance, covering the full amount and 

producing excess, in which case a student would receive a refund check for the amount of 

excess.7 In the following section, we describe the research methodology used to determine if the 

STEP grants had any impact on short-run student outcomes. 

                                                           
4 Unmet need is defined as fall cost of attendance minus fall free aid plus estimated family 

contribution obtained from the FAFSA. 
5 Program administrators chose grant amounts of $2,500 to $10,000 because they captured a 

majority of the variation seen in unmet need. 
6 Author’s calculations. 
7 Our data do not indicate the number of students that fell within each of the three categories. 
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Research Methodology 

Experimental Design  

 

A key strength of this study is that we can estimate the effects of STEP Grant program 

using an experimental research design. This research design allows for identification both of the 

casual impacts on short-run college outcomes of being assigned eligibility to receive STEP funds 

as well as the impacts associated with actual STEP grant receipt. The foundation of our causal 

claims is a random assignment process embedded in the STEP grant allocation procedure, a 

process on which we elaborate on here.  

The STEP grant allocation process can broadly be divided into two stages (depicted in 

Figure 1). First, in Stage 1, the opportunity to receive a STEP grant was randomly assigned to a 

subset of program-eligible first-time freshmen at the University of Arkansas in the fall semester 

of 2017. Eligibility for the STEP grants program was restricted to full-time, degree-seeking, first-

time freshman with in-state residency who had completed FAFSA, had fall unmet need of at 

least $2,500, a high school GPA of at least 3.0, and were neither an National Collegiate Athletic 

Association (NCAA) athlete nor a participant in the University of Arkansas’s Engineering Career 

Awareness Program (ECAP)8. A total of 773 of a approximately 5,000 first-time freshmen in fall 

2017 met these eligibility criteria. STEP-eligible freshmen were then stratified into 387 pairs by 

a program administrator built measure of the individual student's probability of one-year 

retention.9 Stage 1 concluded with the random assignment of individuals within these pairs to 

either a treatment condition (opportunity to receive STEP funds) or a control condition (no 

                                                           
8 ECAP is a program that provides minority students with a full academic scholarship to major in 

engineering. 
9 The probability of one-year retention is an exponential function of unmet need, a composite 

academic variable, the number of days enrolled before the semester, housing status, and having a 

financial hold. This measure was created and produced by the STEP program administrators. 
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possibility of receiving STEP funds). In total, 386 students were randomly assigned to the STEP 

treatment group, and 387 students were assigned to the STEP control group.10 

 

Figure 1: The STEP grant allocation process. This figure illustrates the two-stage process 

used to allocate STEP grants. In addition, this figure shows that only a subset of treatment 

students was ultimately awarded grants.  

While all members of the STEP treatment group were eligible to receive STEP grants, the 

program’s allocated $650,000 in funding ultimately was insufficient to cover the unmet need for 

all 386-treatment group members. Instead, in Stage 2, STEP program administrators distributed 

the limited STEP funds to treatment group members in such a way as to maximize the overall 

recipient group’s probability of one-year retention. First, program administrators mechanically 

                                                           
10 There was an odd number of students identified in Stage 1, and therefore one randomization 

pair has only one student. This student was ultimately assigned to the control condition. 
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allocated an imaginary $650k in $2,500 increments to different students to cover the students’ 

unmeet need (up to a maximum of $10,000 per student) and then calculated the resulting change 

in treatment group’s probability of one-year retention11 associated with the particular aid 

allocation. This process was repeated for multiple aid allocations in order to determine the aid 

allocation scheme that produced the maximal change in one-year retention for the 386 students in 

the treatment group. The final aid allocation identified in Stage 2 resulted in a total of 151 

treatment group students ultimately receiving STEP grant funds and 235 treatment group 

students who received neither funding nor contact from the STEP program. 

Data 

 

Data for our analysis were provided to us directly by the STEP program administrators. 

Specifically, we received student-level data for all 773 University of Arkansas first-time 

freshmen eligible for participation in the STEP grant program. The data includes a rich collection 

of student demographics--such as student gender, ethnicity, high school academic performance, 

family educational history, and expected family contribution (EFC)—as well as the probabilities 

of one-year retention calculated by STEP program administrators to assign students to treatment 

or control conditions in Stage 1 and to either receive or not receive funds in Stage 2. The data 

additionally include several outcomes of interest: spring 2018 enrollment, spring 2018 

accumulated credit hours, spring 2018 term GPA, an indicator of being in good academic 

standing after the spring 2018 semester, and fall 2018 enrollment.  

                                                           
11 The probability of one-year retention was calculated by STEP program administrators for each 

individual student as an exponential function of fall unmet need. They tend summed retention 

probabilities across all treatment-group members to determine the overall chance in retention 

probability associated with the given aid allocation. 
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Table 1 presents descriptive statistics for key demographic variables for the sample of 

STEP eligible students identified in Stage 1. The first column in Table 1 contains the sample 

size, and the following columns present the variable’s mean, standard deviation, and both the 

minimum and maximum values, respectively. The sample of STEP eligible students contains 

roughly the same percentage of females (55%) as both the population of full-time University of 

Arkansas freshmen (53%) and all full-time undergraduate students (53%) in the fall of 2017, 

reported by the university12. In contrast, the percentage of STEP eligible students identified as 

white (65%) is noticeably lower than the corresponding university reported percentages among 

all full-time freshmen and full-time undergraduates (77% and 85% white, respectively). 

Interestingly, STEP-eligible students appear somewhat to struggle academically in their first 

semester in college compared to high school, as the sample reports a first-semester average GPA 

of 2.85 despite reporting an average high school GPA of 3.62. Finally, and as expected given the 

STEP program unmet need requirements, the majority of STEP-eligible students come from less 

economically advantaged families, with nearly a third of students with EFC values of less than 

$1. 

Table 1 

Descriptive Statistics for the Full Sample 

  n Mean Std. Dev. Min Max 

Female 773 0.55 0.50 0.0 1.0 

Ethnicity      

 African American  773 0.09 0.29 0.0 1.0 

 White 773 0.65 0.48 0.0 1.0 

 Other 773 0.09 0.29 0.0 1.0 

HS GPA 773 3.62 0.34 3.0 4.4 

First Generation 773 0.47 0.50 0.0 1.0 

Expected Family Contribution Decile      

 Less than $1 772 0.32 0.47 0.0 1.0 

 

                                                           
12 https://oir.uark.edu/students/enrollment-reports.php 
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Table 1 Cont. 

  n Mean Std. Dev. Min Max 

 From $1 to $2,095 772 0.19 0.39 0.0 1.0 

 From $2,096 to $5,683 772 0.17 0.38 0.0 1.0 

 From $5,684 to $10,756 772 0.18 0.38 0.0 1.0 

 From $10,757 to $17,389 772 0.12 0.33 0.0 1.0 

 From $17,390 to $26,040 772 0.02 0.14 0.0 1.0 

Fall 17' Cumulative GPA 773 2.85 1.00 0.0 4.0 

Notes: Other ethnicity includes Asian, Two or More, Foreign, Hawaiian, Indian, Two or 

More, Hispanic, and not reported. Std. Dev represents the standard deviation. 
 

Analytic Strategy 

 

In this section, we lay out our analytic strategy for estimating the effects of the STEP 

grant program on short-run student outcomes. Broadly speaking, we estimate both the causal 

impact of being randomly assigned eligibility to receive a STEP grant as well as the causal 

impact of actual STEP grant receipt. Both sets of analyses leverage the random assignment 

process used to allocate STEP grant eligibility to qualified students to identify causal impacts.  

We first estimate the impact of being randomly assigned to the STEP treatment condition, 

commonly referred to as the intent-to-treat (ITT) estimator. The ITT estimator provides a crisp 

identification of the causal impact of STEP grant assignment by focusing directly on the point of 

random assignment. Operationally, we estimate the ITT effect via ordinary least squares (OLS) 

regressions of the following model:  

𝑌𝑖 = 𝛽0 + 𝛽1𝐴𝑠𝑠𝑖𝑔𝑛𝑖 +  𝑿𝒊
′𝜷𝟐 +  Σ𝛽3𝑅𝑖𝑗 + 𝜀𝑖       (1) 

where Yi is one of our outcomes of interest; Assigni represents being assigned to the treatment 

group, 𝑿𝒊
′ is a vector of various combinations of covariates including a female dummy, ethnicity 

dummies, standardized high school GPA, first generation status, standardized Fall 2017 

cumulative GPA and a EFC decile, where Rij represents a fixed effect for the students stratified 
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pair and εi represents the idiosyncratic error term. The estimted parameter for Assign, 𝛽̂1, is our 

causal ITT effect of interest.  

While the ITT estimator is benefited by strong internal validity, it may not be preferred 

from a policy perspective because it does not identify the effect of actual STEP grant receipt. 

This is exacerbated by the facts that only 39% of students in the treatment group received a grant 

and STEP program administrators did not notify students about the program unless they were 

ultimately selected to receive a grant. We can, however, take advantage of the nontrivial increase 

in the probability of accessing STEP funds generated by being randomly assigned to the STEP 

treatment condition to provide an unbiased estimate of the impact of actually receiving STEP 

funds on short-run outcomes, or the local average treatment effect (LATE). More specifically, 

we estimate the impact of receiving a STEP grant on our outcomes of interest via two-stage least 

squares (2SLS) framework, in which we instrument for actual receipt of a STEP grant with 

assignment to the STEP treatment condition. We employ the following 2SLS model to evaluate 

the effect of receiving the grant on our outcomes of interest: 

First stage:  𝑃(𝐺𝑟𝑎𝑛𝑡𝑖 = 1) = 𝛼0 + 𝛼1𝐴𝑠𝑠𝑖𝑔𝑛𝑖 +  𝑿𝒊
′𝛂𝟐 +  Σ𝛼3𝑗

𝑅𝑖𝑗 + 𝜀𝑖  (2) 

Second stage:  𝑌𝑖 = 𝛽0 + 𝛽1𝐺𝑟𝑎𝑛𝑡̂
𝑖 +  𝑿𝒊

′𝜷𝟐 +  Σ𝛽3𝑗
𝑅𝑖𝑗 + 𝜀𝑖 (3) 

where 𝐺𝑟𝑎𝑛𝑡̂
𝑖 represents the predicted probability of receiving a grant conditional on 

treatment assignment, estimtaed using a linear proability model, and the variables in equation (2) 

and (3) that overlap with those in equation (1) are defined similarly. The estiamted coefficient on 

𝐺𝑟𝑎𝑛𝑡̂
𝑖 in equation (3), 𝛽̂1, represents the estimated LATE of STEP grant receipt; that is the 

effect of receiving a grant for all those who faced random assignment and complied with their 

selection into the treatment selected group.  
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Subgroup Analysis  

 

In addition to our primary analysis, we evaluate to what extent program impacts can be 

differentiated by gender, ethnicity and first-generation status. Previous findings in the college aid 

literature motivate our subgroup analysis. For example, when evaluating a randomly assigned 

need-based grant program in Nebraska, Angrist et al., (2016) found increased effects for non-

white students and first-generation students. On the contrary, Goldrick et al., (2016) found that 

first-generation students receiving a need-based grant in Wisconsin did not see effects on degree 

completion while non-first-generation students did see benefits. The observed differential 

impacts in other grant programs suggests that the STEP program’s impacts could be 

differentiated by subgroups. Specifically, we examine if STEP program effects differ by gender, 

ethnicity, and first-generation status. 

Baseline Equivalence 

 

The validity of our primary analysis hinges on the random assignment process used in 

Stage 1 of the STEP allocation process to divide eligible students into treatment and control 

group conditions. It is important, therefore, to first verify the success of the randomization 

process before proceeding to our primary results. Table 2 presents results for tests of imbalance 

in baseline characteristics between STEP-eligible students randomly assigned to either the 

treatment or control condition. The first column in Table 2 presents the analytical sample size 

and the following two columns present raw averages for the variable of interest for the treatment 

and control groups, respectively. The fourth column presents the adjusted difference in means 

between the treatment and control group, which accounts for student randomization pairs. The 
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final column in Table 1 presents the standard error of the adjusted difference, which accounts for 

group fixed effects. 

Table 2 

Baseline Equivalence of Assignment and Control Groups on Covariates 

    n 

Treatment 

average 

Control 

average 

Adjusted 

difference SE 

Female  387 0.56 0.53 0.03 0.03 

Ethnicity 

     

 
African American   387 0.10 0.09 0.01 0.02 

 
White  387 0.63 0.66 -0.03 0.03 

 
Other  387 0.09 0.10 0.00 0.02 

HS GPA  387 3.62 3.62 0.01 0.02 

First Generation  387 0.51 0.43 0.08** 0.04 

Expected Family Contribution Decile 

     

 
Less than $1  386 0.33 0.31 0.02 0.03 

 
From $1 to $2,095  386 0.19 0.18 0.01 0.03 

 
From $2,096 to $5,683  386 0.17 0.17 0.00 0.03 

 
From $5,684 to $10,756  386 0.18 0.18 0.00 0.03 

 
From $10,757 to $17,389  386 0.11 0.13 -0.03 0.02 

 
From $17,390 to $26,040  386 0.02 0.02 0.00 0.01 

Fall 17' Cumulative GPA  387 2.87 2.84 0.04 0.06 

Notes: Adjusted differences are differences in means that accounts for the group fixed effects.  

SE represents standard errors of the adjusted differences, accounting for group fixed effects. 

Other ethnicity includes Asian, Foreign, Hawaiian, Indian, Two or More, Hispanic, and not 

reported. In addition, the covariates were not jointly significant; joint F-statistic = 0.59 and p = 

0.85. *** p<0.01, ** p<0.05, * p<0.1 

In general, we observe limited evidence of an imbalance in baseline characteristics 

between the STEP treatment and control groups. While STEP treatment students are about eight 

percentage points more likely to be first-generation college students than control group students, 

tests for all other variables indicate differences that are not statistically significant. However, 

because we do see a difference in the first-generation status, we include a first-generation status 

control and other demographic controls in our analysis to account for this difference and improve 

model precision. 



24 

Results 

 

 In this section, we present estimates of the effects of being randomly assigned to 

potentially receive STEP grant funds as well as estimates of the impacts of actual grant receipt 

on student academics and retention. Additionally, we evaluate if effects are differentiated across 

gender, ethnicity, and first-generation status. In brief, it appears that neither assignment to the 

program nor receipt of a grant to cover unmet need has a statistically significant impact on our 

short-run outcomes of interests.   

The Effect of Assignment to the STEP Grant Program.  

 

Table 3 presents the estimated effects of being assigned to the STEP grant treatment 

condition on our five outcomes of interest: spring 2018 enrollment, spring 2018 cumulative 

GPA, spring 2018 credits, the probability of being in good academic standing after the spring 

2018 semester, and fall 2018 enrollment. The first column for each outcome, columns 1, 4, 7, 10, 

and 13 show results for a simple model that only includes stratified pair fixed effects. The second 

column for each outcome, columns 2, 5, 8, 11, and 14 introduce full demographic controls, 

including gender, ethnicity, standardized high school GPA, first-generation status, and EFC in 

addition to stratified pair fixed effects. The final column for each outcome additionally controls 

for the student's fall 2017 cumulative GPA.  

In general, the results presented in Table 2 provide little evidence that assignment to the 

STEP grant program had any statistically distinguishable impact on short-run student outcomes. 

Students assigned to the program saw increases in spring 2018 enrollment, spring 2018 GPA, the 

probability of being in good academic standing and decreases on the probability of enrolling in 

the spring 2018 semester, but all effects are statistically indistinguishable from zero. 
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In contrast, fall cumulative GPA is the only consistent predictor of short-run outcomes 

across our models. For instance, a 1-standard deviation increase in fall cumulative GPA is 

associated with a 22-percentage point increase in the probability of fall 2018 enrollment, which 

is a significant change.  

It is important to keep in mind, however, that fewer than 50% of students assigned to the 

STEP treatment condition, were notified about their funds. Given the important role this plays, 

we evaluate the effect of actual receipt of a grant to cover unmet need in the following section.  
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Table 3 

Estimated Effects of Assignment to the STEP Program 

  

Spring 18' Enrollment Spr 18'  GPA Spr 18' Credits Good Academic Standing Fall 18' Enrollment 

    (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

Assignment 0.008 0.003 0.001 0.027 0.036 0.038 -0.413 -0.415 -0.405 0.006 0.007 0.008 -0.018 -0.023 -0.027 

  

(0.019) (0.019) (0.018) (0.074) (0.070) (0.061) (0.372) (0.370) (0.328) (0.025) (0.025) (0.018) (0.028) (0.029) (0.025) 

Female 

 

0.010 -0.013 

 

0.027 -0.049 

 

-0.722 -1.076** 

 

-0.002 -0.036 

 

0.006 -0.045 

   

(0.028) (0.027) 

 

(0.102) (0.088) 

 

(0.527) (0.479) 

 

(0.036) (0.028) 

 

(0.041) (0.037) 

Ethnicity 

               

 

African 

American  

 

0.035 0.038 

 

-0.053 -0.038 

 

0.272 0.345 

 

0.024 0.031 

 

-0.049 -0.043 

   

(0.052) (0.051) 

 

(0.175) (0.149) 

 

(0.973) (0.846) 

 

(0.059) (0.042) 

 

(0.081) (0.075) 

 

Hispanic 

 

-0.009 -0.021 

 

-0.058 -0.158 

 

0.463 -0.002 

 

0.049 0.005 

 

-0.011 -0.037 

   

(0.041) (0.037) 

 

(0.133) (0.118) 

 

(0.667) (0.623) 

 

(0.051) (0.038) 

 

(0.064) (0.056) 

 

Other 

 

-0.020 -0.013 

 

0.097 0.079 

 

1.513* 1.427* 

 

0.062 0.054 

 

0.050 0.065 

   

(0.050) (0.046) 

 

(0.193) (0.151) 

 

(0.909) (0.763) 

 

(0.069) (0.045) 

 

(0.068) (0.059) 

First Generation 

 

0.031 0.026 

 

-0.083 -0.069 

 

-0.052 0.012 

 

-0.013 -0.007 

 

0.017 0.005 

   

(0.032) (0.030) 

 

(0.103) (0.086) 

 

(0.546) (0.490) 

 

(0.037) (0.027) 

 

(0.046) (0.038) 

Standardized Fall 17' Cum. GPA 

 

0.100*** 

  

0.615*** 

  

2.853*** 

  

0.274*** 

  

0.225*** 

    

(0.021) 

  

(0.057) 

  

(0.305) 

  

(0.020) 

  

(0.021) 

                 
Observations 773 772 772 700 699 699 700 699 699 700 699 699 773 772 772 

Within R-squared 0.000 0.026 0.120 0.000 0.123 0.351 0.004 0.063 0.254 0.000 0.048 0.454 0.001 0.039 0.257 

Pairs 387 387 387 378 378 378 378 378 378 378 378 378 387 387 387 

Notes: All models include fixed effects for the student's stratified pair. Robust standard errors in parentheses are clustered at the pair level, Other ethnicity includes Asian, 

Foreign, Hawaiian, Indian, Two or More, Hispanic, and not reported. All models include controls for standardized HSGPA and EFC dummies. See Table A.1 for remaining 

coefficient estimates. *** p<0.01, ** p<0.05, * p<0.1 
 

2
6
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The Effect of Receipt of the STEP Grant Program.  

 

 Table 4 presents the local average treatment effect of the actual impact of receiving the 

STEP grant on our outcomes of interest. We are estimating these effects employing a 2SLS 

technique, using the assignment to the STEP treatment condition as an instrument for actual 

receipt of a STEP grant. First stage regression results confirm that roughly 40% of those 

randomly selected to the STEP treatment condition received a STEP grant.13  

 The remaining columns in Table 4 present estimates of the impact of receiving a STEP 

grant on student outcomes for three models. The first model includes only controls for stratified 

pair fixed effects; the second model controls for gender, ethnicity, standardized high school 

GPA, first-generation status and EFC decile in addition to stratified pair fixed effects; and the 

final model includes an additional control for the student's standardized fall 2017 cumulative 

GPA. 

The results in Table 4 generally indicate that receipt of a grant failed to significantly 

impact our short-run outcomes of interest. Not only are these results not statistically significant, 

but they are also quite small in magnitude, suggesting a true null effect rather than the result of 

an underpowered analysis. 

                                                           
13 We only encounter one-way non-compliance. There were no non-compliers in the control 

group. 
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Table 4 

The Estimated Effects of Receipt of the STEP Grant Program (LATE) 

  

Spring 18' Enrollment 

 

Spring 18' GPA 

 

Spring 18' Credits 

 

Good Academic Standing 

 

Fall 18' Enrollment 

  

LATE 

 

LATE 

 

LATE 

 

LATE 

 

  LATE   

    (1) (2) (3)   (4) (5) (6)   (7) (8) (9)   (10) (11) (12)   (13) (14) (15) 

Receipt of Grant 0.020 0.007 0.002 

 

0.077 0.101 0.106 

 

-1.157 -1.154 -1.128 

 

0.017 0.020 0.023 

 

-0.046 -0.057 -0.069 

  

(0.049) (0.050) (0.047) 

 

(0.205) (0.197) (0.169) 

 

(1.044) (1.035) (0.925) 

 

(0.069) (0.069) (0.052) 

 

(0.073) (0.073) (0.065) 

Female 

 

0.010 -0.013 

  

0.031 -0.046 

  

-0.763 -1.117** 

  

-0.001 -0.035 

  

0.004 -0.048 

   

(0.029) (0.028) 

  

(0.105) (0.091) 

  

(0.552) (0.495) 

  

(0.037) (0.028) 

  

(0.043) (0.038) 

Ethnicity 

                   

 

African 

American  

 

0.035 0.038 

  

-0.065 -0.050 

  

0.410 0.480 

  

0.021 0.028 

  

-0.045 -0.038 

   

(0.049) (0.047) 

  

(0.181) (0.156) 

  

(0.950) (0.849) 

  

(0.063) (0.048) 

  

(0.072) (0.063) 

 

Hispanic 

 

-0.009 -0.021 

  

-0.058 -0.158 

  

0.458 -0.007 

  

0.050 0.005 

  

-0.013 -0.039 

   

(0.040) (0.039) 

  

(0.149) (0.129) 

  

(0.785) (0.704) 

  

(0.052) (0.040) 

  

(0.059) (0.053) 

 

Other 

 

-0.020 -0.013 

  

0.086 0.067 

  

1.643* 1.554* 

  

0.060 0.052 

  

0.052 0.068 

   

(0.050) (0.047) 

  

(0.182) (0.157) 

  

(0.957) (0.855) 

  

(0.064) (0.048) 

  

(0.073) (0.064) 

   

(0.019) (0.019) 

  

(0.069) (0.061) 

  

(0.362) (0.335) 

  

(0.024) (0.019) 

  

(0.028) (0.026) 

First Generation 

 

0.031 0.026 

  

-0.081 -0.067 

  

-0.070 -0.005 

  

-0.013 -0.006 

  

0.017 0.005 

   

(0.030) (0.028) 

  

(0.110) (0.095) 

  

(0.580) (0.518) 

  

(0.038) (0.029) 

  

(0.044) (0.039) 

Standardized Fall 17' Cum. 

GPA 

 

0.100*** 

   

0.615*** 

   

2.857*** 

   

0.274*** 

   

0.226**

* 

    

(0.016) 

   

(0.059) 

   

(0.322) 

   

(0.018) 

   

(0.022) 

Constant 0.902*** 0.729*** 0.743*** 

 

2.770*** 2.494*** 2.452*** 

 

13.54*** 12.82*** 12.63*** 

 

0.874*** 0.922*** 0.904*** 

 

0.788**

* 

0.767**

* 

0.798**

* 

  

(0.014) (0.100) (0.094) 

 

(0.053) (0.363) (0.313) 

 

(0.267) (1.910) (1.707) 

 

(0.018) (0.127) (0.096) 

 

(0.020) (0.146) (0.129) 

                     Observations 773 772 772 

 

700 699 699 

 

700 699 699 

 

700 699 699 

 

773 772 772 

Pairs 387 387 387   378 378 378   378 378 378   378 378 378   387 387 387 

Note: First stage results are for the fully specified model. Standard errors in parentheses account for clustering at the pair level, Other ethnicity includes Asian, Foreign, Hawaiian, 

Indian, Two or More, Hispanic, and not reported. All models include controls for standardized HSGPA and EFC dummies. See Table A.2 for the first stage results and the 

remaining coefficient estimates *** p<0.01, ** p<0.05, * p<0.1  
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The Effect of Receipt of the STEP Grant Program Across Various Subgroups.  

 

It could be the case that the program had no overall effect while significantly improving 

the outcomes of different subgroups. In this section, in an attempt to capture potential 

heterogeneous effects we estimate differential effects by gender, ethnicity and first-generation 

status. Overall, the findings remain unchanged: we observe little evidence indicating the STEP 

grant program had a distinguishable impact on various subgroups. 

Table 5 presents estimated effects for our three subgroups across our five outcomes on 

interests. The first column (i.e., 1, 4, 7, 10, & 13) for each outcome presents estimates that only 

control for stratified random pair fixed effects. In addition, the second column (i.e. 2, 5, 8, 11, & 

14) controls for gender, ethnicity, standardized high school GPA, first-generation status and EFC 

in addition to the fixed effects; and the final (i.e. 3, 6, 9, 12, & 15) includes a control for the 

student's standardized fall 2017 cumulative GPA. 

Looking at our first subgroup, gender, in general, we fail to find a distinguishable 

estimated differential effect of grant receipt between males and females. However, the lone 

exception is for spring 2018 accumulated credits, seen in column 7. This finding could be 

chance, due to the lack of overall differences and purposely not controlling for student 

demographics and achievement in the model. We observe a similar story when evaluating 

differential effects by ethnicity: African American and non-African American students generally 

did not experience statistically different effects from the STEP grant program when our models 

adequately control for student demographics and achievement. Finally, we observe little 

evidence of differentiated treatment effects between first-generation and non-first generation 
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students; with one exception, spring 2018 GPA. Non-first generation students earn statistically 

significant higher spring GPAs than their first-generation counterparts, observed in column 6. 
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Table 5 

Differential Effects of the STEP Grant Program by Gender, Ethnicity, and First Generation Status 

 
Spring 18' Enrollment 

 

Spring 18'  GPA 

 

Spring 18' Credits 

 

Good Academic Standing 

 

Fall 18' Enrollment 

  (1) (2) (3)   (4) (5) (6)   (7) (8) (9)   (10) (11) (12)   (13) (14) (15) 

Gender Subgroup Analysis 

                   Female 0.007 0.008 0.032 

 

-0.400 -0.170 0.103 

 

-3.849 -3.530 -2.281 

 

-0.105 -0.075 0.047 

 

-0.202 -0.171 -0.118 

 

(0.098) (0.097) (0.097) 

 

(0.415) (0.391) (0.337) 

 

(2.100) (2.055) (1.843) 

 

(0.137) (0.135) (0.104) 

 

(0.146) (0.144) (0.127) 

Male 0.027 0.006 -0.024 

 

0.473 0.343 0.109 

 

1.310 0.980 -0.093 

 

0.123 0.106 0.001 

 

0.081 0.041 -0.027 

 

(0.071) (0.073) (0.070) 

 

(0.299) (0.290) (0.250) 

 

(1.512) (1.525) (1.367) 

 

(0.099) (0.100) (0.077) 

 

(0.106) (0.108) (0.095) 

Difference -0.020 0.002 0.056 

 

-0.873 -0.513 -0.006 

 

-5.159* -4.510 -2.188 

 

-0.228 -0.181 0.046 

 

-0.283 -0.212 -0.091 

 

(0.137) (0.138) (0.132) 

 

(0.584) (0.557) (0.482) 

 

(2.952) (2.929) (2.635) 

 

(0.193) (0.193) (0.149) 

 

(0.205) (0.205) (0.180) 

                    Ethnicity Subgroup Analysis 

                   African American -0.093 -0.041 -0.036 

 

-1.236 -0.729 -0.517 

 

-6.961 -5.325 -4.338 

 

-0.400 -0.342 -0.247 

 

-0.190 -0.070 -0.060 

 

(0.194) (0.193) (0.183) 

 

(0.789) (0.745) (0.642) 

 

(4.024) (3.921) (3.507) 

 

(0.262) (0.258) (0.196) 

 

(0.286) (0.283) (0.250) 

Not African American 0.032 0.013 0.007 

 

0.248 0.203 0.183 

 

-0.431 -0.640 -0.733 

 

0.070 0.065 0.056 

 

-0.026 -0.056 -0.071 

 

(0.056) (0.057) (0.054) 

 

(0.226) (0.216) (0.186) 

 

(1.154) (1.138) (1.017) 

 

(0.075) (0.075) (0.057) 

 

(0.082) (0.083) (0.073) 

Difference -0.125 -0.054 -0.042 

 

-1.484* -0.932 -0.700 

 

-6.530 -4.685 -3.605 

 

-0.470* -0.406 -0.303 

 

-0.163 -0.014 0.011 

 

(0.213) (0.213) (0.203) 

 

(0.850) (0.808) (0.696) 

 

(4.339) (4.249) (3.801) 

 

(0.282) (0.280) (0.212) 

 

(0.314) (0.313) (0.276) 

                    First Gen Subgroup Analysis 

                  First Generation 0.050 0.057 0.027 

 

-0.361 -0.328 -0.522 

 

-2.122 -1.791 -2.690 

 

-0.010  0.002 -0.084 

 

-0.087 -0.083 -0.150 

 

(0.079) (0.078) (0.075) 

 

(0.332) (0.319) (0.280) 

 

(1.696) (1.674) (1.510) 

 

(0.111) (0.111) (0.085) 

 

(0.117) (0.115) (0.101) 

Not First Generation -0.028 -0.046 -0.025 

 

0.531 0.512 0.708** 

 

-0.205 -0.542 0.371 

 

0.052 0.038 0.125 

 

-0.010 -0.030 0.016 

 

(0.089) (0.090) (0.086) 

 

(0.340) (0.331) (0.291) 

 

(1.734) (1.737) (1.567) 

 

(0.113) (0.115) (0.089) 

 

(0.133) (0.132) (0.116) 

Difference 0.078 0.102 0.052 

 

-0.892* -0.840 -1.230*** 

 

-1.916 -1.249 -3.061 

 

-0.061 -0.036 -0.210 

 

-0.077 -0.053 -0.167 

 

(0.136) (0.135) (0.129) 

 

(0.531) (0.516) (0.453) 

 

(2.711) (2.707) (2.439) 

 

(0.177) (0.179) (0.138) 

 

(0.202) (0.199) (0.176) 

                    Controls 

                   Demographic 

 

X X 

  

X X 

  

X X 

  

X X 

  

X X 

Fall 2017 GPA     X       X       X       X       X 

Note: Demographic controls include gender, ethnicity, standardized HS GPA, first-generation status and EFC.  Standard errors in parentheses account for clustering at the pair 

level, First stage regressions indicate that assignment to the STEP program is an adequate instrument for receipt of the grant. *** p<0.01, ** p<0.05, * p<0.1 
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Conclusion 

 

 This study evaluates a one-time, need-based grant awarded to academically prepared 

first-year college students with high levels of unmet need, which was designed to encourage 

academic performance and persistence. As low-income students continue to struggle to obtain a 

degree, it is imperative that we evaluate programs designed to ensure their success. 

 Overall we fail to find statistically distinguishable effects for the STEP Grant Program. 

Neither assignment to potentially receive a grant nor actual receipt improved nor harmed the 

likelihood of spring 2018 enrollment, spring 2018 GPA, spring 2018 credits completed, the 

likelihood of being in good academic standing after the spring semester, nor the likelihood of fall 

2018 enrollment. Additionally, after evaluating the possibility of differential effects of the STEP 

grant program across gender, ethnicity, and first-generation sub-groups, we fail to find sufficient 

heterogeneous effects. The lack of an overall effect in our primary analysis, in addition to an 

indistinguishable differential effect, leads us to believe that the program failed to improve short-

run college outcomes for its participants. 

Such findings are discouraging as program administrators poured effort and resources 

into the program without observing the desired results. However, this study suffers from a small 

sample size that may lead to underpowered effects, and therefore our observed null results 

should be interpreted with caution.  

 From the standpoint of higher education institutions, our findings suggest when colleges 

and universities are needing to direct their scarce resources towards programs that are shown to 

work, in light of the weak evidence presented here, it may not be worthwhile to continue to 

fulfill students unmet needs. Since students who had their unmet need satisfied performed no 
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differently than students who did not have their unmet need met, it could suggest that factors 

beyond the affordability of college are preventing low-income students from persisting through 

and completing college. Such factors could include a failure to connect socially at the university, 

an inability to transition from high school academics to collegiate academics, or the lack of 

developed non-cognitive skills.  

So as universities and colleges develop programs with the goal of meeting a financial 

need, they should consider meeting non-financial needs as well, to adequately promote college 

success.  
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Appendix 

Table A.1 

Remaining Estimated Effects of Assignment to the STEP Program 

  

Spring 18' Enrollment Spr 18'  GPA Spr 18' Credits Good Academic Standing Fall 18' Enrollment 

    (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

Standardized HS GPA 

 

0.011 -0.020 

 

0.265*** 0.096 

 

0.358 -0.423 

 

0.049** -0.027 

 

0.039 -0.030 

   

(0.016) (0.016) 

 

(0.068) (0.060) 

 

(0.411) (0.381) 

 

(0.023) (0.019) 

 

(0.025) (0.023) 

EFC 

               

 

Less than $1 

 

0.156 0.176* 

 

0.100 0.207 

 

0.436 0.931 

 

-0.128** -0.080* 

 

-0.008 0.037 

   

(0.106) (0.100) 

 

(0.396) (0.385) 

 

(1.751) (1.665) 

 

(0.061) (0.048) 

 

(0.126) (0.125) 

 

From $1 to $2,095 

 

0.165 0.161 

 

0.352 0.349 

 

1.594 1.582 

 

-0.026 -0.028 

 

0.089 0.080 

   

(0.108) (0.102) 

 

(0.391) (0.383) 

 

(1.872) (1.813) 

 

(0.053) (0.047) 

 

(0.131) (0.130) 

 

From $2,096 to 

$5,683 

 

0.176* 0.165 

 

0.587 0.485 

 

2.622 2.146 

 

-0.013 -0.09 

 

0.087 0.063 

   

(0.106) (0.102) 

 

(0.408) (0.398) 

 

(1.748) (1.666) 

 

(0.057) (0.049) 

 

(0.131) (0.130) 

 

From $5,684 to 

$10,756 

 

0.177 0.168* 

 

0.297 0.283 

 

1.076 1.011 

 

-0.041 -0.047 

 

0.015 -0.004 

   

(0.107) (0.101) 

 

(0.390) (0.383) 

 

(1.736) (1.674) 

 

(0.059) (0.052) 

 

(0.128) (0.128) 

 

From $10,757 to 

$17,389 

 

0.095 0.107 

 

0.071 0.150 

 

-0.081 0.287 

 

-0.083* -0.048 

 

-0.103 -0.077 

   

(0.108) (0.104) 

 

(0.376) (0.363) 

 

(1.600) (1.514) 

 

(0.050) (0.043) 

 

(0.125) (0.128) 

Observations 773 772 772 700 699 699 700 699 699 700 699 699 773 772 772 

Within R-squared 0.000 0.026 0.120 0.000 0.123 0.351 0.004 0.063 0.254 0.000 0.048 0.454 0.001 0.039 0.257 

Pairs 387 387 387 378 378 378 378 378 378 378 378 378 387 387 387 

Notes: Estimated coefficients correspond to the estimates presented in Table 3. Robust standard errors in parentheses are clustered at the pair level. *** p<0.01, ** p<0.05, * p<0.1 
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Table A.2 

Remaining Estimated Effects of Receipt of the STEP Grant Program (LATE) 

  

Spring 18' Enrollment Spring 18' GPA Spring 18' Credits Good Academic Standing Fall 18' Enrollment 

    

First 

Stage (2) (3) 

First 

Stage  (5) (6) 

First 

Stage  (8) (9) 

 First 

Stage (11) (12) 

 First 

Stage (14) (15) 

Receipt of a Grant 

0.391*** 

(0.025)   

0.359*** 

(0.027)   

0.359*** 

(0.027)   

0.359*** 

(0.027)   

0.391*** 

(0.025)   
Standardized HS 

GPA 
 

0.010 -0.020 

 

0.257*** 0.089 

 

0.445 -0.340 

 

0.047* -0.028 

 

0.043 -0.025 

  

 (0.019) (0.019) 

 

(0.069) (0.061) 

 

(0.362) (0.335) 

 

(0.024) (0.019) 

 

(0.028) (0.026) 

EFC 
 

              

 

Less than $1 
 0.156 0.176* 

 

0.117 0.225 

 

0.240 0.740 

 

-0.124 -0.076 

 

-0.013 0.031 

  

 (0.106) (0.101) 

 

(0.388) (0.334) 

 

(2.039) (1.823) 

 

(0.135) (0.103) 

 

(0.155) (0.137) 

 

From $1 to $2,095 
 0.166 0.161 

 

0.370 0.368 

 

1.387 1.379 

 

-0.023 -0.024 

 

0.083 0.072 

  

 (0.107) (0.102) 

 

(0.392) (0.337) 

 

(2.061) (1.842) 

 

(0.137) (0.104) 

 

(0.157) (0.138) 

 

From $2,096 to 

$5,683 
 

0.176* 0.165* 

 

0.606 0.504 

 

2.409 1.937 

 

-0.009 -0.055 

 

0.083 0.058 

  

 (0.105) (0.100) 

 

(0.387) (0.333) 

 

(2.035) (1.819) 

 

(0.135) (0.103) 

 

(0.155) (0.137) 

 

From $5,684 to 

$10,756 
 

0.178* 0.169* 

 

0.321 0.309 

 

0.802 0.743 

 

-0.036 -0.042 

 

0.007 -0.013 

  

 (0.106) (0.101) 

 

(0.392) (0.337) 

 

(2.061) (1.842) 

 

(0.137) (0.104) 

 

(0.156) (0.138) 

 

From $10,757 to 

$17,389 
 

0.096 0.107 

 

0.086 0.166 

 

-0.254 0.118 

 

-0.080 -0.044 

 

-0.108 -0.083 

  

 
(0.104) (0.099) 

 

(0.383) (0.330) 

 

(2.015) (1.801) 

 

(0.134) (0.101) 

 

(0.153) (0.135) 

Constant 

 0.729**

* 

0.743**

* 

 

2.494*** 2.452*** 

 

12.82*** 12.63*** 

 

0.922*** 0.904*** 

 

0.767*** 0.798*** 

  

 (0.100) (0.094) 

 

(0.363) (0.313) 

 

(1.910) (1.707) 

 

(0.127) (0.096) 

 

(0.146) (0.129) 

  

 

              
Observations 

 772 772 

 

699 699 

 

699 699 

 

699 699 

 

772 772 

Pairs 
 387 387   378 378   378 378   378 378   387 387 

Note: First stage results are for the fully specified model. Standard errors in parentheses account for clustering at the pair level, Other ethnicity includes Asian, Foreign, Hawaiian, 

Indian, Two or More, Hispanic, and not reported. *** p<0.01, ** p<0.05, * p<0.1 
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Chapter 214 

 

Can you BounceBack from Academic Probation? The Effects of Mentoring on 

Undergraduates on Academic Probation 

Introduction 

 

While college enrollment in the U.S. has risen by almost 30% since 2000, college 

completion rates have remained relatively flat in the same period (McFarland et al., 2018). To 

combat the gap between enrollment and degree attainment, colleges and universities are actively 

building support systems for students who are on the verge of not completing their degrees. 

These support programs target students who are currently pursuing degrees and differ from 

programs such as summer melt programs15 (Castleman, Owen, & Page, 2015) or financial aid 

programs (i.e., loans, placed-based grants, and tax credits) (Page & Scott-Clayton, 2016), which 

promote access to college. These post-matriculation programs center around relieving financial 

constraints, correcting academic unpreparedness, and providing transitionary assistance. 

 Prior evidence has shown that programs designed to alleviate additional financial 

expenses incurred after college enrollment have improved the likelihood of a student completing 

a college course, continuing enrollment, and graduating in four years (Goldrick-Rab, Kelchen, 

Harris, & Benson, 2012). The sustainability of such programs is questionable, however, due to 

the finite financial resources of colleges and universities. Also, the evidence on efforts to correct 

academic unpreparedness through remedial coursework, the most common program instituted, 

have been varied (Rhinesmith, 2016; Bettinger & Long, 2009). These facts leave colleges and 

                                                           
14 This paper was co-authored with Jonathan N. Mills.  
15 Summer melt programs introduce high school students to resources and programs in the 

summer after they graduate from high school, with the intention to prevent these students from 

enrolling into a university but not attending in the Fall.  
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universities needing to develop programs that are both sustainable and can impact a student's 

academic and non-academic skills as well.  

 As a result, colleges and universities are developing transitionary programs. Transitionary 

programs provide undergraduate students access to both academic and social support after they 

have enrolled, which aids in their transition to college life. Academic advisors, for example, can 

help students navigate the post-secondary landscape. For instance, community college students 

who met with college-provided academic advisors experienced increases in course registration 

rates (Scrivener & Weiss, 2013). Similar to academic advisors, colleges are using mentors to 

offer support to undergraduates who are on the verge of not earning a degree.  

Students who are on academic probation are a group whom colleges and universities are 

developing and focusing mentoring programs on in order to improve the group’s chances of 

success. First-year college students who are placed on academic probation often enroll in college 

socially unprepared for collegiate life and academically unprepared for college coursework. 

Since students’ academic performance during their first year of college is a crucial determinant 

of their choice to return to college (Braunstein, McGrath, & Pescatrice, 2000), it is imperative to 

understand the effectiveness of mentoring programs on encouraging college persistence.  

Prior literature suggests that undergraduates on academic probation, paired with mentors, 

earn higher GPAs, are less likely to drop out of college, and are more confident in their ability to 

navigate college life (Hanger et al., 2011; Boretz, 2012). However, the observed effects are for 

voluntary programs and are descriptive in nature. Thus, previous literature fails to provide 

rigorous evidence which disentangles the effect of mentoring from other factors that could lead 

to the observed effects, such as student motivation to seek additional support. Without the 
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addition of rigorous research, colleges and universities could continue to develop mentoring 

programs for students on academic probation without an accurate understanding of their true 

effects. Our study hopes to fill this gap in understanding.  

This chapter rigorously evaluates the BounceBack Mentoring program at the University 

of Arkansas, which paired peer-mentors with first-year undergraduates who earned a GPA below 

a 2.0 threshold during their first semester of college (i.e., fall 2017) and were subsequently 

placed on academic probation the following semester (i.e., spring 2018). Peer mentors met with 

their mentees in a one-on-one setting throughout the spring 2018 semester and conversed on 

topics including study skills, time management, and test-taking strategies, with the intention of 

changing the mentees' academic and non-academic behaviors. We evaluate the program’s effect 

on encouraging student persistence and academic success using a regression discontinuity design 

by taking advantage of the program’s use of GPA to assign students either to receive or not 

receive mentoring. 

Overall, we do not find strong evidence of a detectable effect. We find suggestive, but not 

statistically significant, evidence that qualifying for the BounceBack program increased 

participating students spring 2018 semester GPA on average, but decreased the probability of the 

students enrolling for their sophomore year, compared to students just above the 2.0 GPA 

threshold. In addition, we fail to see a statistically significant effect of the BounceBack program 

on spring 2018 accumulated credits or being in good academic standing after the spring 2018 

semester ended. However, because of the BounceBack Mentoring program design, we cannot 

disentangle the effect of the mentoring program from the effect of being on academic probation. 

To combat this limitation, we evaluate the effect of probation absent of the BounceBack 

Mentoring program across previous cohorts of students. Comparing our estimates of the 
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BounceBack program to estimates from previous cohorts, it seems the BouceBack Program has 

diminished any negative effect of academic probation on the probability of being in good 

academic standing. Despite the limitations, as well as the lack of concrete findings, this chapter 

expands the literature of mentoring effects in undergraduates on academic probation by being the 

first one to use a highly rigorous research design in evaluating the effects of peer-mentors on 

undergraduates who are on academic probation.  

 This chapter proceeds as follows. In the next section, we present a review of the relevant 

literature. We then highlight the specifics of the BounceBack Mentoring program. Next, we 

review our research design and the data used to estimate the effects of the BounceBack 

Mentoring program. We then present our results and various robustness checks. Finally, we close 

with concluding remarks. 

 

The Evidence on Mentoring Programs Intended to Ease the Transition to College and 

Encourage Persistence 

 

While previous research has evaluated previous attempts by colleges and universities to 

relieve financial constraints and correct academic unpreparedness as methods to encourage 

persistence in undergraduate students, our study looks to gain a better understanding of the 

effects of mentoring programs. Mentoring programs intend to increase the chances of 

undergraduates obtaining degrees by changing academic behavior and influencing non-academic 

skills. Mentors, who can be peers (Ellis & Gershenson, 2016; Angrist, Lang, & Oreopoulos, 

2009), faculty members (Castellanos et al., 2016), community members (Carruthers & Fox, 

2016), paid mentoring professionals (Bettinger & Baker, 2014; Tovar & Simon, 2006; Page, 
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Castleman, & Sahadewo, 2016) and mental health counselors (Hanger et al., 2011), often provide 

academic support in the form of teaching study skills and setting academic goals (Bettinger & 

Baker, 2014), while also offering advice on social situations, such as overcoming culture shock 

and healthy living choices (Page, Castleman, & Sahadewo, 2016; Clotfelter, Hemelt, & Ladd, 

2017).  

Several studies have evaluated the relationship between mentoring and undergraduate 

student outcomes when mentoring is offered in combination with financial aid (Carruthers & 

Fox, 2016; Scrivener & Weiss, 2013; Clotfelter, Hemelt, & Ladd, 2017). In general, the 

estimated effects of mentoring, paired with financial assistance, range from null to positive 

effects on student academic outcomes, such as GPA and persistence (Carruthers & Fox, 2016; 

Page, Castleman, & Sahadewo, 2016; Clotfelter, Hemelet, & Ladd, 2017). For instance, 

undergraduates enrolled in the Accelerated Study in Associate Programs (ASAP) at various 

community colleges connected to the City University of New York who received a tuition 

waiver, free textbooks, and required comprehensive mentoring saw higher levels of persistence, 

credits acquired, and graduation rates (Scrivener & Weiss, 2013). Clotfelter, Hemelt, and Ladd 

(2017) find suggestive, but not conclusive evidence, of increased grade performance and college 

graduation within four years from entering freshmen assigned to faculty and peer mentors in 

addition to having the financial cost of attendance covered at the University of North Carolina. 

However, despite suggestive evidence that mentoring encourages persistence in undergraduate 

students, mentoring programs paired with financial assistance create black boxes and present 

trouble for the researchers in untangling the effects of mentoring from the effects of receiving 

financial aid. 



44 

 More researchers are beginning to evaluate standalone mentoring programs in order to 

separate the effect of mentoring from the effect of financial assistance. One instance of such an 

occurrence is the evaluation of mentoring via technology-only contact by colleges and 

universities. Technology-only contact, such as sending emails and text messages to students 

encouraging them throughout the semester or providing access to mentors online, seems to help 

undergraduates achieve higher GPAs, matriculate through their degree programs and graduate in 

four years (Bettinger & Baker, 2014; Page, Castleman, & Sahadewo, 2016). Despite the 

affordability and effectiveness of technology-only contact, in-person contact can get at the root 

of longstanding issues and build a level of trust not afforded by technology-only contact and 

presents itself as a more favorable option to colleges and universities (Oreopoulos & 

Petronijevic, 2017). 

 In-person mentoring programs provide undergraduate students’ access to peers, faculty or 

trained professionals who can serve as a support system while students are transitioning into 

college. Faculty members acting as mentors to undergraduates provide students with someone 

who challenges them, someone who provides a level of closeness, someone who is committed to 

his or her wellbeing, and someone who cares (Gullan et al., 2016). Castellanos and colleagues 

(2016), find that minorities assigned to faculty mentors felt a greater connection to the university 

and higher levels of college and life satisfaction. In addition to faculty members, upper-level 

undergraduates are serving as mentors. First-year male arts and sciences students who were 

assigned to male peer-mentors and participated in the mentoring were more likely to persist into 

their second year of college (Ellis & Gershenson, 2016). However, assignment to a mentor failed 

to change outcomes for female students or change subsequent grade performance for both 

genders. Moreover, students randomly assigned a peer mentor in an introductory psychology 
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class performed better on individual tests and overall in the class (Asgari & Carter, 2016). At the 

conclusion of the course, mentored students reported mentors motivated them to work harder and 

imparted them with a confidence in their abilities.  

Due to peer mentors having the ability to influence the academic and social aspects of 

student life, colleges and universities are connecting peer mentors to students on academic 

probation with the hope of encouraging college persistence (Hanger et al., 2011). Since 

undergraduates on academic probation are close to dropping out of college, they are becoming a 

high priority for many colleges and universities. To our knowledge, only two papers have 

evaluated the effects of mentors on undergraduates who are on academic probation. This chapter 

aims to expand this knowledge.  

 Hanger and colleagues (2011) evaluate the effectiveness of a semester-long voluntary 

course that mental health professionals and peer mentors jointly taught to first-year students on 

academic probation at San Diego State University. Observing differences in means, students who 

enrolled in the course and earned course credit had higher GPAs immediately after the program, 

and a larger number of these students persisted into their sophomore and junior years, compared 

to the students who had taken the course but failed it, and the students on academic probation 

who did not enroll in the course. However, due to the voluntary nature of the program, the effects 

do not adequately account for selection bias. So improvements in observed outcomes for students 

who enrolled and earned course credit could be related to unobservable characteristics, such as 

motivation or pressure from parents, and not mentoring.  

 Bortez (2012) descriptively evaluates the effects of a mid-semester Success Workshop 

co-led by academic advisors, professional counselors, and peer mentors for students on academic 
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probation at the University of California-Merced between 2005 and 2010. Reviewing responses 

from self-reported workshop evaluations, participating students reported a greater awareness of 

how to change their performance and felt that interacting with peer-mentors was the most helpful 

part of the workshop. Additionally, a higher rate of students who participated in the workshop 

and were not subsequently dismissed from the university compared to participating students 

subsequently dismissed, felt motivated to succeed and confidence in their ability to handle the 

stresses of college. However, this study is merely descriptive and cannot estimate causal effects 

of mentoring on non-self-reported outcomes that are imperative to persisting, such as semester 

GPA and credit hours accumulated. Altogether, the effects of mentoring programs for students 

on academic probation are limited and lack rigor, and as universities and colleges develop 

programs, there needs to be a greater depth of research literature to guide the development 

process.  

We evaluate a standalone mentoring program where peer-mentors meet one-on-one with 

undergraduates on academic probation, contributing to the literature in two ways. First, we 

expand upon the limited literature on mentoring support programs for students on academic 

probation by being the first to use a highly rigorous research design in evaluating the effects of 

peer-mentors on undergraduates who are on academic probation. Second, to our knowledge, we 

evaluate the first mentoring program for students on academic probation whose sole support is a 

peer mentor as opposed to students supported jointly by mental health professionals, academic 

advisors, and peer mentors. 
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The BounceBack Mentoring Program 

 

In the fall semester of 2017, The University of Arkansas created the Student Talent 

Enrichment Program (STEP) with the goal of improving the retention of first-year students. One 

program developed from STEP was the BounceBack Mentoring Program, which is the focus of 

our review.   

The BounceBack Mentoring program was designed to help facilitate college success for 

students on academic probation, who were on the verge of failure. The university placed students 

who entered the university in the fall of 2017 and earned a GPA below 2.0 in that semester on 

academic probation in the subsequent semester (i.e., spring 2018). After the spring 2018 

semester, the university placed those students who did not raise their term GPA above 2.0 on 

academic suspension, which prevents them from re-enrolling at the university for one semester. 

For those students that earned a spring term GPA above a 2.0, but did not earn a cumulative GPA 

above a 2.0, they were allowed to continue their enrollment at the university while staying on 

academic probation. Lastly, students who earned a spring term GPA above 2.0 and earned a 

cumulative GPA above 2.0 shifted off of academic probation onto good academic standing. 

Program administrators restricted eligibility to full-time, degree-seeking, first-year students at the 

university who in the fall of 2017 earned a GPA below a 2.0 and then enrolled for the spring 

2018 semester.  

At the start of the spring 2018 semester, program administrators contacted all students 

whose fall 2017 GPA was below a 2.0 via phone and email and informed them of their eligibility 

for the BounceBack Mentoring Program. The program then assigned all eligible freshmen a peer 

mentor (either a non-freshman undergraduate or a graduate student at the university) to offer 
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them one-on-one assistance during the spring semester of the 2017-18 academic year. Mentors 

and mentees met in small groups for the first meeting and over the course of the semester met 

one-on-one for bi-weekly meetings, totaling six sessions.16 Meeting topics included goal setting, 

making schedules, using syllabi as semester road maps, organization and time management 

strategies, understanding learning styles, course assignment help, personal reflection, and study 

plans for finals. Mentors reported a summary of the discussion, resources referenced, ideas for 

next steps, and any additional notes to program administrators after each mentor meeting or 

interaction. Overall, mentors reported seeking to be a part of their mentees’ on-campus support 

network by sharing their experiences, success strategies, and advice from their freshman year. 

Our analysis covers program effects on a student’s spring 2018 semester GPA, spring 2018 

accumulated credit hours, the probability of being on good academic standing after the spring 

2018 semester and the probability of persisting to the fall 2018 semester.  

Research Methodology 

Data and Sample 

 

The goal of this evaluation is to determine if qualifying for the BounceBack Mentoring 

program increases a student’s academic performance and his or her probability of continuing in 

college. We use a regression discontinuity design (RDD) because through a continuous forcing 

variable—fall 2017 semester GPA, students are assigned to the program, making an RDD 

appropriate. The RDD assumes that individuals with similar GPAs around the 2.0 GPA cutoff 

are comparable to one another and allows for the estimation of a marginal average treatment 

effect for those undergraduates around the cut-off (Thistlethwaite & Campbell, 1960). 

                                                           
16 Program administrators reported all students participating in the program attended at least one 

session. 
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Program administrators provided us with administrative records for 749 students, and of 

these, 418 were ineligible for the program because they possess a fall 2018 semester GPA above 

a 2.0. The 749 students represent all students from the fall 2018 cohort who earned a fall 2018 

semester GPA below a 2.0 and the next 400 or so students in the entire freshman cohort whose 

GPA was just above the 2.0 cutoff17. The data include student high school academic records, 

demographics, family characteristics, collegiate academic records, collegiate credit 

accumulation, and family financial status. To better control for potential differences among 

students induced by socio-economic status, at times we restricted our sample to Free Application 

for Federal Student Aid (FAFSA) filers. The FAFSA allows an individual to apply for financial 

aid at higher education institutions or career schools. When an individual completes a FAFSA, 

an expected family contribution (EFC), which is an estimation of how much a family can 

financially contribute to a college education, is produced. However, filing a FAFSA was not a 

requirement for the BounceBack program, and the inclusion of such controls reduces our sample 

size and study power, which is a limitation of our study. So in order to increase statistical study 

power, we ran additional analyses including non-FAFSA filers in supplementary robustness 

checks.  

Table 1 reports descriptive statistics for the entire sample. The first column contains the 

sample size, the second column presents the mean, and the final column presents the standard 

deviation. From Table 1, we see that our sample contains more males (58%) than females (42%) 

and is majority white (76%). This is roughly comparable to all full-time freshman at the 

university who enrolled in the fall 2017, who were male (46%) and identified as white (77%).18 

                                                           
17 Program administrators chose this section of students above the cutoff because it encapsulated 

students inside and outside the suggested bandwidth.   
18 https://oir.uark.edu/students/enrollment-reports.php 
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Additionally, just over 25% of our sample are first-generation students, the group has an average 

high school GPA of about 3.4, which is a B average, but their cumulative GPA for the fall 2017 

semester in college is 1.83, just under a C average. Also, about 35% of the sample are in families 

whose EFC is between $0 and $6,000. 

Further, Table 1 shows results from t-tests of the difference in means between the 

qualifying group and the control group for the analytic sample within our preferred (+/- 0.25) 

point bandwidth.19 Column 4 contains the sample size, columns 5 and 6 present qualifying and 

control means, column 7 presents the difference in means, and the final column presents the 

standard errors of those differences. There is no difference between the qualifying and control 

groups on the majority of demographics, excluding fall 2017 cumulative GPA and EFC from 

$10,757 to $17,389. We would expect to see a difference in fall 2017 cumulative GPA because 

of the 2.0 cutoff in qualifying for the program. However, the observed difference in EFC is 

surprising, and we control for the difference in the coming models.  

Table 1 

Descriptive Statistics for the Full Sample and Difference of Means Between the Qualifying 

and Control Groups for the Analytic Sample 

  

Full Sample 

 

Analytic Sample: Bandwidth (+/- 0.25) 

  

N Mean SD 

 

N 

Qualifying 

Mean 

Control 

Mean Difference SE 

    (1) (2) (3)   (4) (5) (6) (7) (8) 

Female 749 0.42 0.49 

 

261 0.488 0.446 0.043 0.066 

Ethnicity 

         

 

African 

American  749 0.07 0.25 

 

261 0.058 0.074 -0.016 0.033 

 
White 749 0.76 0.43 

 

261 0.721 0.703 0.018 0.060 

                                                           
19 A bandwidth of (+/- 0.25) points was chosen following Ost, Pan and Webber (2018) and their 

use of the bandwidth for a sharp RDD design for a sample of low-performing undergraduate 

students. We check the selection following the methods of Calanico et al., 2017 and produce a 

computer-generated optimal bandwidth for a first-order polynomial adjusted for covariates. The 

optimal bandwidth delivered was 0.269, we stay with a 0.25 bandwidth because of the ease of 

interpretation as it relates to GPA units. 
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Table 1 (Cont.) 

  

  

Full 

Sample   

 

Analytic Sample: Bandwidth (+/- 0.25) 

  

N Mean SD 

 

N 

Qualifying 

Mean 

Control 

Mean Difference SE 

    (1) (2) (3)   (4) (5) (6) (7) (8) 

 
Other 749 0.08 0.28 

 

261 0.058 0.114 -0.056 0.039 

HS GPA 749 3.38 0.34 

 

261 3.398 3.400 -0.002 0.044 

ACT 748 24.55 3.35 

 

260 24.430 24.178 0.252 0.440 

First 

Generation 749 0.27 0.44 

 

261 0.302 0.240 0.062 0.058 

Fall 17' 

Cumulative 

GPA 749 1.83 0.68 

 

261 1.854 2.124 -0.270*** 0.010 

Expected 

Family 

Contribution 

         

 

Less than 

$1 596 0.16 0.37 

 

200 0.209 0.128 0.081 0.054 

 

From $1 

to $2,095 596 0.10 0.30 

 

261 0.060 0.090 -0.031 0.041 

 

From 

$2,096 to 

$5,683 596 0.09 0.28 

 

261 0.045 0.068 -0.023 0.036 

 

From 

$5,684 to 

$10,756 596 0.09 0.29 

 

261 0.060 0.113 -0.053 0.044 

 

From 

$10,757 

to 

$17,389 596 0.09 0.28 

 

261 0.179 0.090 0.089* 0.049 

 

From 

$17,390 

to 

$26,040 596 0.10 0.30 

 

261 0.060 0.090 -0.031 0.041 

 

From 

$26,041 

to 

$39,072 596 0.09 0.29 

 

261 0.104 0.113 -0.008 0.047 

 

From 

$39,073 

to 

$68,327 596 0.12 0.32 

 

261 0.104 0.105 -0.001 0.046 

 

More 

than 

$68,328 596 0.16 0.37 

 

261 0.179 0.203 -0.024 0.060 

  
Not 

Reported 749 0.20 0.40   261 0.221 0.240 -0.019 0.056 

Notes: Other ethnicity includes Asian, Foreign, Hawaiian, Indian, Two or More, Hispanic, 

and not reported.  *p<.10. **p<.05. ***p<.01.   
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Analytic Strategy 

 

There are four conditions or features of a research setting that are conducive to a sharp 

RDD (Page, Castleman, & Sahadewo, 2016; Schochet et al., 2010). First, the selection process 

should be transparent, thereby providing a clear understanding of how individuals qualify for 

treatment. Second, program receipt should unwaveringly follow the transparent selection 

process. Following the transparent selection process assures one that other factors are not 

manipulating selection in and out of treatment. Third, jumps in the outcomes of interest around 

the cutoff cannot be associated with other potential mechanisms, besides the mechanism of fall 

2017 GPA. Results may be biased and lead to incorrect interpretations of the impact of 

qualifying when different mechanisms have visible jumps in their densities at the cutoff, which 

suggests that other mechanisms potentially influenced the outcome. Finally, there should be a 

continuity in the density of fall 2017 GPA around the cutoff because a discontinuity in the 

density could suggest a non-random manipulation of fall 2017 GPA.   

Figure 1 shows a visualization of the relationship between the fall 2017 GPA at the 

known cutoff, qualifying, and receipt of the BounceBack Mentoring Program. The solid black 

line represents the 2.0 GPA cutoff, the red triangles represent individuals who have a fall 2017 

GPA below 2.0, and the gold Xs represent individuals who have a fall 2017 GPA above a 2.0. 

The selection process has a high rate of fidelity since 326 of the 331 students whose GPA is 

below a 2.0 participate in the program20. Due to this evidence of strong compliance, we estimate 

our primary models as a sharp RDD. However, to account for non-compliance, we estimate a 

fuzzy RDD as a specification check by instrumenting receipt of the program through qualifying 

                                                           
20 The five non-compliers received 0 credit hours for the fall semester, which via university 

policy exempts them from being placed on academic probation. 



53 

for to the program, defined by having a GPA below 2.0. Overall, there is no substantive 

difference between the two models. 

 

Figure 1: Relationship between Fall 2017 semester GPA and receipt of the BounceBack 

mentoring program. Overall, there is limited evidence of non-compliance. 

 

Figure 2 shows the relationship between fall 2017 GPA and four outcomes of interest: 

spring 2018 GPA, spring 2018 credits, the probability of being in good academic standing after 

the spring 2018 semester, and the probability of fall 2018 retention. We restrict the sample to a 

(+/- 0.75) point bandwidth21 (1.25 GPA to 2.75 GPA) on either side. Here we take an initial look 

at what the effects of the BounceBack program may be, presented using local linear 

regressions22. Qualifying for the program looks to have a moderately positive impact on spring 

2018 GPA and a small positive impact on credits earned, but an adverse impact on being in good 

academic standing after the spring 2018 semester and fall 2018 retention. Since qualifying does 

not equal receipt of the program, these results represent the effect of having a GPA below 2.0 not 

                                                           
21 We choose a bandwidth of 0.75 because it is the largest bandwidth analyzed. 
22 Local linear regressions fit a different individual linear regression function to the observations 

on either side of the cutoff, instead of fitting the same linear function across either side of the 

cutoff. 
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an effects of the BounceBack Mentoring program. Additionally, the figures show the linear 

relationship between our four outcomes and fall 2017 GPA, which guides our subsequent model 

selection.  

 

Figure 2: This figure shows outcome measures regressed on Fall 2017 GPA inside of a (+/- 0.75) 

bandwidth. 

 

Next, we look for the presences of other potential mechanisms influencing the various 

jumps in our outcomes. Possible jumps caused by different mechanisms, such as demographics, 

could reference the presence of manipulation and in turn bias our results. Table 1, presents the 

difference in means of student demographics between the qualifying group and control group in 

our preferred (+/- 0.25) point bandwidth. A statistically significant difference in means would 

suggest manipulation or disproportionate influence of outcomes by student demographics. As 

seen in Table 1, there are no observable differences beyond fall 2017 GPA and EFC of $10,757 

to $17,389.  

Last, we evaluate the density of fall 2017 GPA around the 2.0 cutoff. Figure 3 shows the 

density of individuals around the re-centered GPA cutoff, signified by the solid black line, within 
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0.10 GPA bins. Observing a smooth density of fall 2017 GPA around the cutoff would reduce 

the potential presence of manipulation. Unfortunately, we see a significant bump in density just 

above the cutoff, representing a possible manipulation of the forcing variable. 

 The presence of such an increase in the density of individuals above the 2.0 GPA cutoff 

is not an uncommon occurrence (Ost, Pan, & Webber, 2018). Since it is the university’s standard 

academic policy that a 2.0 GPA is the cutoff for academic probation placement, we can assume 

that students would work hard to maintain it at the very least and professors might be inclined to 

award a 2.0 to help students’ who have shown effort. Nevertheless, due to the failure to detect 

drastic differences in observables seen in Table 1 we believe that students inside our preferred 

bandwidth are similar to one another on observables and unobservables characteristics, and a 

sharp RDD would still be appropriate. However, we conduct a "donut" RDD as a robustness 

check. The donut regression removes those individuals at the bump in density precisely at the 

cutoff from the estimation and produces unbiased estimates accounting for potential 

manipulation of of fall 2017 GPA and possible differences in unobservable characteristics 

(Barreca, Lindo, & Waddell., 2016; Barreca et al., 2011). 

 

Figure 3: This figure shows the density of our recentered Fall 2017 GPA, forcing variable, 

within 0.1 GPA bins. Overall, this figure shows the bump in density just above the cutoff. 
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 Hallmarks of an ideal RDD include a transparent and consistent use of a selection process 

to facilitate receipt of the program, no observable presence of covariate manipulation at the 

cutoff and sufficient density of the forcing variable around the cutoff. While our empirical 

situation does not perfectly satisfy these requirements, our primary analysis employs a sharp 

RDD because we only deviate from these standards slightly. Moreover, we run a series of 

robustness checks in the forthcoming sections to observe if our deviations from the standards 

significantly impact our analysis. Subsequently, we follow previous literature (Page, Castleman, 

& Sahadewo, 2016) and estimate the effect of assignment to the BounceBack Mentoring 

program through the following reduced-form model: 

𝑌𝑖 = 𝛽0 + 𝛽1𝑄𝑢𝑎𝑙𝑖𝑓𝑦𝑖 +  𝛽2𝐶𝑒𝑛𝐺𝑃𝐴𝑖 +  𝛽3(𝑄𝑢𝑎𝑙𝑖𝑓𝑦𝑖 ∗ 𝐶𝑒𝑛𝐺𝑃𝐴𝑖) +  𝑿𝒊
′𝛽4 + 𝜀𝑖       (1) 

where Yi is one of our outcomes of interest; Qualifyi represents qualifying for the 

BounceBack Mentoring program (i.e. having a fall 2017 GPA below 2.0), CenGPAi represents 

fall 2017 GPA recentered at the 2.0 GPA cutoff, X’
i is a vector of covariates identifying student 

gender, ethnicity, standardized high GPA, first-generation status, and EFC, and εi represents the 

error term clustered at the college level. The inclusion of the interaction between Qualifyi and 

CenGPAi allows for the slopes of the regression line to differ on either side of the fall 2017 GPA 

cutoff.  

 We estimate the model using a local linear regression framework. Alternatively, we could 

use quadratic terms to adjust for any non-linearity in our data, but guided by the linear 

relationship between fall 2017 GPA and our outcomes seen in Figure 2; we prefer linear. We 

evaluate the choice between a linear and a quadratic framework using the Akaike Information 
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Criterion (AIC)23 and fail to find the need for the introduction of quadratic terms (Jacob et al., 

2012). Additionally, we do not use higher order polynomials, often introduced to reduce bias in 

large samples (Card et al., 2014) because inside our small sample size using higher order 

polynomials could overfit our data (Gelman & Imbens, 2017; Cattaneo, Idrobo, & Titiunik, 

2018). 

Results 

 

In this section, we present the estimated effects of qualifying for the BounceBack 

Mentoring program on related college outcomes for students whose first semester GPA was 

below the 2.0 threshold. Due to our high rate of compliance, we use a sharp RDD estimation 

approach. In general, we find that qualifying for the BounceBack program has effects that are 

indistinguishable from zero on all outcomes, but we believe that our null findings are reflective 

of low statistical power rather than true null effects. However, because of the program design, we 

cannot distinguish the difference between the effect of academic probation from the BounceBack 

mentoring program. In spite of this limitation, the BounceBack mentoring program could be 

reducing the historical negative effect of academic probation experienced by previous cohorts, 

which is something we explore. In the following section, we present estimated effects of the 

BounceBack program on spring 2018 GPA, spring 2018 cumulative credit hours, the probability 

of being in good academic standing after the spring 2018 semester and the probability of fall 

2018 retention.  

                                                           
23 AIC measures model fit. 
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Table 2 presents the estimated effect of qualifying for the BounceBack program on our 

outcomes of interest inside of our preferred (+/- 0.25) point bandwidth.24 Each estimation 

includes a simple model that does not control for demographics in odd-numbered columns and a 

sophisticated model that includes student demographic covariates in even-numbered columns.  

 On the whole, we observe no statistically significant effects. While effects for spring 

2018 semester GPA suggest a positive effect, the estimated effects are not statistically 

significant. Results suggest positive effects of about a 0.25 point increase in GPA associated with 

the program, however, it is not statistically significant, seen in column 2. Additionally, for our 

complex models, qualifying for the program increased the number of accumulated credit hours 

by 0.32 points and increased the probability of being in good academic standing by about 13 

percentage points, but the effects are not statistically significant. However, qualifying for the 

program reduced the probability of fall 2018 enrollment by about ten percentage points, while 

not being statistically significant. 

                                                           
24 Estimated effects were produced for a computer generated optimal bandwidth and are virtually 

the same as effects inside the preferred bandwidth. Results for the optimal bandwidth can be 

found in Appendix Table A1. 
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Table 2 

RDD Estimated Effects using the Preferred Bandwidth 

 

Spring 18 Term GPA 

Spring 18 Accumulated 

Credits 

Good Academic 

Standing Fall 18 Enrollment 

  (1) (2) (3) (4) (5) (6) (7) (8) 

Qualify 0.212 0.248 -0.222 0.324 0.114 0.131 -0.070 -0.109 

 

(0.320) (0.318) (0.515) (1.474) (0.161) (0.139) (0.106) (0.073) 

Centered Fall 2017 GPA -0.074 0.405 -0.161 3.988 0.521 0.672 -0.609 -0.331 

 

(1.115) (1.334) (6.227) (7.132) (0.308) (0.434) (0.395) (0.222) 

Interaction 1.197 -0.188 -0.151 -8.896 1.126 0.680 1.672* 0.503 

 

(2.886) (2.944) (10.44) (9.095) (1.469) (1.561) (0.699) (0.689) 

Female 

 

0.167 

 

1.183* 

 

0.065 

 

0.050 

  

(0.142) 

 

(0.494) 

 

(0.086) 

 

(0.087) 

African American  

 

-0.259 

 

-2.118 

 

0.100 

 

-0.203* 

  

(0.273) 

 

(1.330) 

 

(0.154) 

 

(0.098) 

Other Race 

 

0.211 

 

1.751 

 

0.049 

 

0.132 

  

(0.258) 

 

(1.224) 

 

(0.124) 

 

(0.109) 

Standardized HS GPA 

 

0.135** 

 

0.535 

 

0.035 

 

0.006 

  

(0.052) 

 

(0.385) 

 

(0.022) 

 

(0.050) 

First Generation 

 

-0.218 

 

-1.064 

 

-0.110 

 

-0.0732 

  

(0.297) 

 

(1.264) 

 

(0.113) 

 

(0.108) 

EFC - Less than $1 

 

-0.152 

 

-1.402 

 

-0.114 

 

-0.169* 

  

(0.135) 

 

(0.696) 

 

(0.104) 

 

(0.072) 

EFC - From $1 to $2,095 

 

-0.080 

 

-1.551 

 

-0.018 

 

0.044 

  

(0.502) 

 

(1.491) 

 

(0.123) 

 

(0.084) 

EFC - From $2,096 to 

$5,683 

 

-0.343** 

 

-2.334** 

 

-0.194 

 

-0.094 

  

(0.111) 

 

(0.777) 

 

(0.137) 

 

(0.135) 

EFC - From $5,684 to 

$10,756 

 

-0.011 

 

-0.729 

 

-0.136 

 

-0.143 

  

(0.339) 

 

(1.102) 

 

(0.085) 

 

(0.101) 

5
9
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Table 2 (Cont.) 

 

Spring 18 Term GPA 

Spring 18 Accumulated 

Credits 

Good Academic 

Standing Fall 18 Enrollment 

  (1) (2) (3) (4) (5) (6) (7) (8) 

EFC - From $10,757 to 

$17,389 

 

-0.341 

 

-2.962** 

 

-0.108** 

 

-0.186* 

  

(0.288) 

 

(0.988) 

 

(0.035) 

 

(0.088) 

EFC - From $17,390 to 

$26,040 

 

-0.129 

 

-1.413 

 

0.036 

 

-0.212 

  

(0.397) 

 

(1.260) 

 

(0.097) 

 

(0.146) 

EFC - From $26,041 to 

$39,072 

 

0.078 

 

-1.544 

 

0.106* 

 

-0.054 

  

(0.109) 

 

(0.897) 

 

(0.048) 

 

(0.101) 

EFC - From $39,073 to 

$68,327 

 

0.153 

 

-1.377 

 

0.050 

 

0.021 

  

(0.316) 

 

(0.728) 

 

(0.086) 

 

(0.060) 

         Bandwidth 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

Observations 261 200 261 200 261 200 261 200 

Notes: Standard errors in parentheses are clustered at the college level (6 clusters). Interaction is the interaction between 

qualify and the recentered Fall 2017 GPA. All models are estimated within a bandwidth of (+/- 0.25) points. *** p<0.01, 

** p<0.05, * p<0.1 
 

6
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Due to the limitations of not being able to distinguish the effect of being on academic 

probation from the effect of the BounceBack mentoring program, we add a supplementary 

analysis evaluating the effect of probation absent of a mentoring program across ten cohorts of 

incoming first-year students. This analysis provides a comparative understanding of the 

individual effect of being on academic probation. Using data for all incoming freshmen at the 

University of Arkansas, whom had in-state residency and entered the university in the fall 

between 2003 to 2012, we estimate model (1)25 on a student’s cumulative GPA in the spring 

semester, the probability of being in good academic standing at the end of their spring semester, 

and the probability of persisting to the fall of their sophomore year.  

 Table 3 presents the estimated effects of qualifying for academic probation (i.e., earning a 

GPA below 2.0) on the aforementioned outcomes of interest inside our preferred (+/- 0.25) point 

bandwidth for entering freshmen from 2003 to 2012. Also, the table contains our original 

estimates from Table 2. As observed, before the introduction of the BounceBack Program, 

qualifying for academic probation had an indistinguishable effect on spring cumulative GPA. 

However, qualifying for probation reduced a student’s probability of being in good academic 

standing after the spring semester by about 11 percentage points, while increasing the probability 

of persisting to their sophomore year by about 4.5 percentage points, both statistically 

significant. Comparing these effects to our original estimates, it appears the BounceBack 

program has softened the negative relationship students experience between being on academic 

probation and the probability of being in good academic standing at the end of their spring 

semester. However, it appears that the program has dissipated any positive effect that previous 

                                                           
25 We control for student gender, ethnicity, first-generation status, Pell grant eligibility, 

standardized high school GPA and cohort year dummies. 
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cohorts experienced in the probability of returning to the University the following year. The 

potential differences across cohorts could explain this counterintuitive finding. 

Table 3  

The Longitudinal Effects of Academic Probation Prior to the BounceBack Mentoring Program  

 

  
Analytic Sample: Bandwidth (+/- 

0.25)   

 

  Freshman Cohorts from 2003 to 2012   

 

Spring Cumulative 

GPA Good Academic Standing 

Sophomore 

Enrollment 

 

(1) (2) (3) 

Qualifying for 

probation 0.044 -0.114** 0.045** 

 

(0.029) (0.040) (0.016) 

    Observations 1,553 1,694 1,694 

 

  Original Estimates   

 

Spring Term GPA Good Academic Standing 

Sophomore 

Enrollment 

  (4) (5) (6) 

Qualifying for 

probation 0.248 0.131 -0.109 

 

(0.318) (0.139) (0.073) 

    Observations 200 200 200 

Notes: All models include controls for gender, ethnicity, standardized HS GPA, first-generation 

status, and EFC deciles or Pell grant eligibility. Standard errors in parentheses are clustered at 

the college level (6 clusters). 

 

Overall, it appears that after one semester of participating in the program, students tend to 

perform no better or worse than students not assigned to the program. Other programs, such as 

financial aid and peer advising designed to improve academic outcomes for undergraduates have 

also failed to make statistically significant changes (Page, Castleman, & Sahadewo, 2016; Ellis 

& Gershenson, 2016) and could be due to the brevity of the program. A student not prepared 

academically or socially for college might need more than six mentor meetings over the course 

of an academic semester to change longstanding habits and mindsets. At the same time, our 
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small sample size could be the source of our failure to detect a distinguishable effect. 

Furthermore, we cannot separate the effects of mentoring from being on probation because of the 

design of the program. However, compared to ten previous cohorts of entering freshmen, it 

appears that the BounceBack program has successfully reduced the negative effect of academic 

probation on the probability of being on good academic standing after the spring semester, but at 

the cost of failing to return their sophomore year. Ultimately, our estimates are indistinguishable 

from zero and should be interpreted as such. In the next section, we evaluate the robustness of 

our results to various specification checks. 

Robustness Checks 

 

 Our study has several limitations. First, estimates are only produced within a limited 

bandwidth, removing a portion of the sample. Second, we have a visible bump in the fall 2017 

GPA density around the cutoff.  Third, we do not have 100% compliance between qualifying and 

receipt of the program. Therefore in this section, we evaluate the robustness of our results via 

four different sensitivity checks: varying bandwidths, “donut” regressions, adjusting for non-

compliance through a fuzzy RDD, and increasing our sample size. On the whole, we largely 

observe statistically non-significant results. At best there may be a positive effect for spring 2018 

GPA.  

 

Varying Bandwidths 

 

 In the following section, we evaluate the robustness of our results across varying 

bandwidths. Since the RDD produces estimates inside of a narrow bandwidth, we are actively 
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reducing our sample size and overall precision in our estimates. Thus intending to increase 

sample size and precision, we expand our bandwidth to various lengths. Estimating the effects 

across various bandwidths gives us a better understanding of the results seen using our preferred 

bandwidth and whether they are true effects or underpowered effects.  

Table 4 shows the effect of qualifying for the BounceBack Program on spring 2018 

cumulative GPA, spring 2018 accumulated credit hours, the probability of being in good 

academic standing after the spring 2018 semester, and the probability of fall 2018 enrollment 

estimated with fully specified model (1) on four different bandwidths; (+/- 0.20) points (1.80 to 

2.20 GPA), (+/- 0.50) points (1.50 to 2.50 GPA), (+/- 0.75) points (1.25 to 2.75 GPA) and (+/- 

0.25) points (1.75 to 2.25 GPA) for reference. Turning to spring 2018 GPA, we have a consistent 

positive effect across all bandwidths, with a statistically significant effect at the (+/- 0.5) point 

bandwidth. When looking at accumulated credits, we observe a positive effect, but the results 

increase in size noticeably to our preferred bandwidth in column 5, while not being statistically 

significant. Thirdly, the effect on the probability of being in good academic standing is 

statistically significant in the smaller band of (+/- 0.20) points but is indistinguishable from zero 

as the bandwidth enlarges. Lastly, the effect on the probability of fall 2018 enrollment is 

negative and statistically non-significant from zero in all bandwidths except the band of (+/- 

0.50) points. In general, the observed effects remain nondistinguishable from zero. However, the 

consistent positive effect observed with spring 2018 GPA is highly suggestive of an 

underpowered positive effect. Nevertheless, the observed effect is still non-significant and 

should be interpreted with caution.  
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Table 4 

RDD Estimated Effects of the BounceBack Mentoring Program Across Various Bandwidths 

 

Spring 18 GPA 

 

Spring 18 Accumulated Credits 

 

Original 

Estimates       

 

Original 

Estimates       

  (1) (2) (3) (4) 

 

(5) (6) (7) (8) 

Qualify 0.248 0.597 0.398*** 0.317 

 

0.324 0.947 1.473 0.995 

 

(0.318) (0.411) (0.051) (0.162) 

 

(1.474) (2.168) (1.073) (0.869) 

Centered 

Fall 2017 

GPA 0.405 0.579 0.511** 0.620** 

 

3.988 7.017 1.583 2.163 

 

(1.334) (1.255) (0.180) (0.203) 

 

(7.132) (7.953) (1.496) (1.414) 

Interaction -0.188 2.854 1.097 0.540 

 

-8.896 -8.753 7.261 3.866 

 

(2.944) (2.805) (0.797) (0.497) 

 

(9.095) (10.17) (5.382) (3.833) 

          Demograph

ic and EFC 

Controls Yes 

 

Yes 

Bandwidth (+/- 0.25) (+/- 0.2) (+/- 0.5) (+/- 0.75) 

 

(+/- 0.25) (+/- 0.2) (+/- 0.5) (+/- 0.75) 

N 200 140 444 490 

 

200 140 444 490 

          

     

 

Good Academic Standing 

 

  Fall 18 Enrollment   

 

Original 

Estimates       

 

Original 

Estimates       

 

(9) (10) (11) (12) 

 

(13) (14) (15) (16) 

Qualify 0.131 0.282** 0.005 -0.050 

 

-0.109 -0.062 0.007 -0.113 

 

(0.139) (0.095) (0.113) (0.078) 

 

(0.073) (0.099) (0.083) (0.059) 

Centered 

Fall 2017 

GPA 0.672 0.779 0.336** 0.347** 

 

-0.331 -1.177 0.032 0.076 

 

(0.434) (0.931) (0.085) (0.090) 

 

(0.222) (0.703) (0.049) (0.046) 

Interaction 0.680 2.162 0.612** 0.333** 

 

0.503 2.210 0.763 0.152 

 

(1.561) (1.440) (0.231) (0.103) 

 

(0.689) (1.221) (0.399) (0.192) 

          Demograph

ic and EFC 

Controls Yes 

 

Yes 

Bandwidth (+/- 0.25) (+/- 0.2) (+/- 0.5) (+/- 0.75) 

 

(+/- 0.25) (+/- 0.2) (+/- 0.5) (+/- 0.75) 

N 200 140 444 490   200 140 444 490 

Notes: All models include controls for gender, ethnicity, standardized HS GPA, first-

generation status, and EFC deciles. Standard errors in Parentheses are clustered at the college 

level (6 clusters). Interaction is the interaction between qualify and the recentered Fall 2017 

GPA *p<.10. **p<.05. ***p<.01. 
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Donut Regression 

 

Due to the observed jump in the density of individuals above the cutoff in Figure 3, we 

follow the work of Barreca, Lindo, and Waddell (2016) and Barreca et al., (2011) and conducted 

a "donut" regression analysis to account for any possible manipulation. The donut regression 

removes those individuals at the bump in density precisely at the cutoff from the estimation and 

produces unbiased estimates accounting for potential manipulation of the forcing variable 

(Barreca, Lindo, & Waddell, 2016). We drop students with precisely a 2.0 GPA, losing 31 

observations or 4.1% of the total sample and 12% of the analytic sample. Table 5 shows results 

for these estimations, applying model (1) to the preferred bandwidth sample, and original 

estimates from Table 2 for reference.  

Spring 2018 GPA, the probability of being in good academic standing and the probability 

of fall 2018 enrollment remain unaffected by the use of the donut regression. For example, 

qualifying for the program increases spring 2018 cumulative GPA by 0.125 points compared to 

0.248 points from the original estimates, but the effect remains statistically non-significant. Next, 

observed in columns 9 and 12, qualifying for the program increases the probability of being in 

good academic standing after the spring 2018 semester, but reduces the probability of returning 

for the fall 2018 semester. Nonetheless, the observed effects are statistically non-significant. 

However, spring 2018 accumulated credit hours appears to be most affected by the removal of 

students at the 2.0 cutoff. When estimating a “donut” regression, the estimates are negative and 

marginally significant. Meaning, students that qualify for the program earn about 1.6 fewer credit 

hours than students that do not qualify. The observed effect could be predictable because 

students who qualify for academic probation are often advised to reduce their course load and 

have a higher probability of dropping challenging classes.
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Table 5 

Estimates employing the Donut Regression 

 

Spring 18 GPA 

 

Spring 18 Accumulated Credits 

 

Good Academic Standing   Fall 18 Enrollment 

 

Original 

Estimates Simple  Complex 

 

Original Estimates Simple Complex 

 

Original 

Estimates Simple Complex 

 

Original 

Estimates Simple Complex 

  (1) (2) (3)   (4) (5) (6)   (7) (8) (9)   (10) (11) (12) 

Qualify 0.248 0.020 0.125 

 

0.324 -2.432* -1.691* 

 

0.131 0.089 0.112 

 

-0.109 -0.030 -0.031 

 

(0.318) (0.399) (0.319) 

 

(1.474) (1.081) (0.830) 

 

(0.139) (0.201) (0.179) 

 

(0.073) (0.136) (0.128) 
Centered Fall 2017 

GPA 0.405 -1.153 -0.733 

 

3.988 -12.63* -9.444 

 

0.672 0.375 0.454 

 

-0.331 -0.384 0.062 

 

(1.334) (1.010) (1.812) 

 

(7.132) (5.715) (9.612) 

 

(0.434) (0.220) (0.425) 

 

(0.222) (0.482) (0.624) 

Interaction -0.188 2.276 1.424 

 

-8.896 12.32 6.867 

 

0.680 1.272 0.973 

 

0.503 1.447 0.161 

 

(2.944) (2.505) (3.415) 

 

(9.095) (7.934) (13.78) 

 

(1.561) (1.284) (1.585) 

 

(0.689) (0.799) (1.173) 

Female 0.167 

 

0.029 

 

1.183* 

 

0.611 

 

0.065 

 

0.038 

 

0.050 

 

0.040 

 

(0.142) 

 

(0.214) 

 

(0.494) 

 

(0.404) 

 

(0.086) 

 

(0.100) 

 

(0.087) 

 

(0.092) 

African American  -0.259 

 

-0.162 

 

-2.118 

 

-2.212 

 

0.100 

 

0.242 

 

-0.203* 

 

-0.196 

 

(0.273) 

 

(0.344) 

 

(1.330) 

 

(1.529) 

 

(0.154) 

 

(0.133) 

 

(0.098) 

 

(0.115) 

Other Ethnicity 0.211 

 

0.113 

 

1.751 

 

1.656 

 

0.049 

 

0.040 

 

0.132 

 

0.116 

 

(0.258) 

 

(0.241) 

 

(1.224) 

 

(1.171) 

 

(0.124) 

 

(0.095) 

 

(0.109) 

 

(0.103) 
Standardized HS 

GPA 0.135** 

 

0.115 

 

0.535 

 

0.517 

 

0.035 

 

0.034 

 

0.006 

 

0.005 

 

(0.052) 

 

(0.062) 

 

(0.385) 

 

(0.378) 

 

(0.022) 

 

(0.025) 

 

(0.050) 

 

(0.051) 

First Generation -0.218 

 

-0.283 

 

-1.064 

 

-1.159 

 

-0.110 

 

-0.157 

 

-0.073 

 

-0.084 

 

(0.297) 

 

(0.321) 

 

(1.264) 

 

(1.259) 

 

(0.113) 

 

(0.107) 

 

(0.108) 

 

(0.118) 

EFC - Less than $1 -0.152 

 

-0.032 

 

-1.402 

 

-0.537 

 

-0.114 

 

-0.122 

 

-0.169* 

 

-0.136 

 

(0.135) 

 

(0.114) 

 

(0.696) 

 

(0.585) 

 

(0.104) 

 

(0.074) 

 

(0.072) 

 

(0.095) 
EFC - From $1 to 

$2,095 -0.080 

 

-0.127 

 

-1.551 

 

-1.916 

 

-0.018 

 

-0.087 

 

0.044 

 

0.038 

 

(0.502) 

 

(0.587) 

 

(1.491) 

 

(1.559) 

 

(0.123) 

 

(0.176) 

 

(0.084) 

 

(0.102) 
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Table 5 (Cont.) 

 

Spring 18 GPA 

 

Spring 18 Accumulated Credits 

 

Good Academic Standing   Fall 18 Enrollment 

 

Original Estimates Simple Complex 

 

Original Estimates Simple Complex 

 

Original 

Estimates Simple Complex 

 

Original 

Estimates Simple Complex 

  (1) (2) (3)   (4) (5) (6)   (7) (8) (9)   (10) (11) (12) 

EFC - From $2,096 to 

$5,683 -0.343** 

 

-0.226 

 

-2.334** 

 

-1.726* 

 

-0.194 

 

-0.150* 

 

-0.094 

 

-0.086 

 

(0.111) 

 

(0.136) 

 

(0.777) 

 

(0.692) 

 

(0.137) 

 

(0.063) 

 

(0.135) 

 

(0.153) 
EFC - From $5,684 to 

$10,756 -0.011 

 

-0.009 

 

-0.729 

 

-0.308 

 

-0.136 

 

-0.161 

 

-0.143 

 

-0.176 

 

(0.339) 

 

(0.402) 

 

(1.102) 

 

(1.312) 

 

(0.085) 

 

(0.107) 

 

(0.101) 

 

(0.107) 
EFC - From $10,757 to 

$17,389 -0.341 

 

-0.324 

 

-2.962** 

 

-2.779* 

 

-0.108** 

 

-0.120*** 

 

-0.186* 

 

-0.218 

 

(0.288) 

 

(0.243) 

 

(0.988) 

 

(1.159) 

 

(0.035) 

 

(0.028) 

 

(0.088) 

 

(0.109) 
EFC - From $17,390 to 

$26,040 -0.129 

 

0.105 

 

-1.413 

 

-0.650 

 

0.036 

 

0.080 

 

-0.212 

 

-0.167 

 

(0.397) 

 

(0.312) 

 

(1.260) 

 

(2.013) 

 

(0.097) 

 

(0.070) 

 

(0.146) 

 

(0.192) 
EFC - From $26,041 to 

$39,072 0.078 

 

0.116 

 

-1.544 

 

-1.602 

 

0.106* 

 

0.136** 

 

-0.054 

 

-0.079 

 

(0.109) 

 

(0.128) 

 

(0.897) 

 

(1.110) 

 

(0.048) 

 

(0.051) 

 

(0.101) 

 

(0.091) 
EFC - From $39,073 to 

$68,327 0.153 

 

0.072 

 

-1.377 

 

-1.485 

 

0.050 

 

0.004 

 

0.021 

 

0.031 

 

(0.316) 

 

(0.331) 

 

(0.728) 

 

(0.835) 

 

(0.086) 

 

(0.087) 

 

(0.060) 

 

(0.065) 

                
Observations 200 230 176   200 230 176   200 230 176   200 230 176 

Notes: Standard errors in parentheses are clustered at the college level, (6 clusters). Other ethnicity includes Asian, Foreign, Hawaiian, Indian, Two or More, Hispanic, and not 

reported. Interaction is the interaction between qualify and the recentered Fall 2017 GPA. *p<.10. **p<.05. ***p<.01.   
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Accounting for Non-Compliance Through a Fuzzy RDD 

 

 We conducted our primary analysis as a sharp RDD despite evidence of non-compliance. 

Even though we have about 98% compliance between qualifying and receiving treatment, the 

sharp RDD produces effects measuring the impact of qualifying for the program independent of 

receiving the treatment. Thus to adjust for students who qualified for the program but did not 

participate; we conduct a fuzzy RDD. In the fuzzy RDD, qualifying for the program first predicts 

receipt of the mentoring program and is estimated inside our preferred bandwidth using the 

following model: 

 

𝑅𝑒𝑐𝑒𝑖𝑝𝑡𝑖 = 𝛽0 + 𝛽1𝑄𝑢𝑎𝑙𝑖𝑓𝑦𝑖 +  𝛽2𝐶𝑒𝑛𝐺𝑃𝐴𝑖 +  𝛽3(𝑄𝑢𝑎𝑙𝑖𝑓𝑦𝑖 ∗ 𝐶𝑒𝑛𝐺𝑃𝐴𝑖) + 𝛽4𝑋𝑖 + 𝜀𝑖      (2) 

𝑌𝑖 = 𝛽0 + 𝛽1𝑅𝑒𝑐𝑒𝑖𝑝𝑡̂
𝑖 + 𝛽2𝐶𝑒𝑛𝐺𝑃𝐴𝑖 +  𝛽3(𝑄𝑢𝑎𝑙𝑖𝑓𝑦𝑖 ∗ 𝐶𝑒𝑛𝐺𝑃𝐴𝑖) + 𝛽4𝑋𝑖 + 𝜀𝑖      (3) 

 

where Receipti represents assignment to a mentor in the program and 𝑅𝑒𝑐𝑒𝑖𝑝𝑡̂
𝑖 represents the 

causal effect of participating in the BounceBack program. The additional variables are consistent 

with the specifications explained in model (1).  

Table 6 shows the first stage results of our fuzzy RDD analysis. As expected we see that 

assignment to the program is a strong predictor of receipt ranging from about 95% to 97%. 

Additionally, we have adequate joint F-statistics across all models according to Staiger and 

Stock’s (1997) recommended standard of 10, suggesting instrument relevance. 

 

 



70 

Table 6 

First Stage Regression Results           

 

Spring 18 GPA 

Spring 18 Accumulated 

Credits Good Academic Standing Fall 18 Enrollment 

  (1) (2) (3) (4) (5) (6) (7) (8) 

Qualify 0.968*** 0.953*** 0.968*** 0.953*** 0.968*** 0.953*** 0.968*** 0.953*** 

 

(0.019) (0.026) (0.019) (0.026) (0.019) (0.026) (0.019) (0.026) 

         Demographic 

and EFC 

Controls 

 

X 

 

X 

 

X 

 

X 

Joint F-Statistic  2549.33 1349.68  2549.33 1349.68 2549.33 1349.68  2549.33 1349.68 

Observations 261 200 261 200 261 200 261 200 

R-squared 0.983 0.979 0.983 0.979 0.983 0.979 0.983 0.979 

Notes: All models include recentered Fall 2017 GPA, an interaction term between qualify and 

the recentered Fall 2017 GPA. Demographic and EFC controls include gender, ethnicity, 

standardized HS GPA, first-generation status, and EFC deciles. Standard errors in parentheses 

are clustered at the college level, (6 clusters). All models have Joint F-Statistics above 10. 

*p<.10. **p<.05. ***p<.01. 
 

Table 7 shows the estimates of actual receipt of the BounceBack program. As compared 

to the sharp RDD estimates, the estimates shown here account for students whose GPA was 

below 2.0 but did not participate in the program. Results for the fully specified models almost 

mirror the results found in Table 2 but are larger in magnitude because of the adjustment for non-

compliance. While we do not have a true sharp RDD, the results for the fuzzy RDD justify that 

we are close to a sharp RDD and that non-compliance does not overly influence our original 

estimates. Such consistency is promising for our main model specification results, especially so 

for spring 2018 cumulative GPA because it suggests true program effects not influenced by non-

compliers.
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Table 7 

Estimated Effect of Receipt of the BounceBack Program  

 

Spring 18 Term GPA 

 

Spring 18 Accumulated Credits 

 

Good Academic Standing 

  

Fall 18 Enrollment 

 

Original 

Estimates Simple Complex 

 

Original 

Estimates Simple Complex 

 

Original 

Estimates Simple Complex 

 

Original 

Estimates Simple Complex 

  (1) (2) (3)   (4) (5) (6)   (7) (8) (9)   (10) (11) (12) 

Receipt 

 

0.219 0.260 

  

-0.229 0.340 

  

0.118 0.137 

  

-0.072 -0.114 

  

(0.312) (0.346) 

  

(1.662) (1.868) 

  

(0.143) (0.162) 

  

(0.136) (0.153) 

Qualify 0.248 

   

0.324 

   

0.131 

   

-0.109 

  

 

(0.318) 

   

(1.474) 

   

(0.139) 

   

(0.073) 

  Centered Fall 2017 

GPA 0.405 -0.074 0.404 

 

3.988 -0.161 3.987 

 

0.672 0.521 0.672 

 

-0.331 -0.609 -0.331 

 

(1.334) (0.908) (0.989) 

 

(7.132) (4.830) (5.338) 

 

(0.434) (0.415) (0.463) 

 

(0.222) (0.394) (0.437) 

Interaction -0.188 1.228 -0.125 

 

-8.896 -0.184 -8.813 

 

0.680 1.143 0.713 

 

0.503 1.662* 0.475 

 

(2.944) (1.963) (2.132) 

 

(9.095) (10.45) (11.50) 

 

(1.561) (0.898) (0.997) 

 

(0.689) (0.852) (0.943) 

Female 0.167 

 

0.168 

 

1.183* 

 

1.184 

 

0.065 

 

0.066 

 

0.050 

 

0.050 

 

(0.142) 

 

(0.135) 

 

(0.494) 

 

(0.730) 

 

(0.086) 

 

(0.063) 

 

(0.087) 

 

(0.060) 

African American  -0.259 

 

-0.264 

 

-2.118 

 

-2.125 

 

0.100 

 

0.097 

 

-0.203* 

 

-0.201* 

 

(0.273) 

 

(0.261) 

 

(1.330) 

 

(1.407) 

 

(0.154) 

 

(0.122) 

 

(0.098) 

 

(0.115) 

Other Ethnicity 0.211 

 

0.208 

 

1.751 

 

1.747 

 

0.049 

 

0.047 

 

0.132 

 

0.134 

 

(0.258) 

 

(0.231) 

 

(1.224) 

 

(1.246) 

 

(0.124) 

 

(0.108) 

 

(0.109) 

 

(0.102) 

Standardized HS 

GPA 0.135** 

 

0.138* 

 

0.535 

 

0.538 

 

0.035 

 

0.036 

 

0.006 

 

0.005 

 

(0.052) 

 

(0.073) 

 

(0.385) 

 

(0.393) 

 

(0.022) 

 

(0.034) 

 

(0.050) 

 

(0.032) 

First Generation -0.218 

 

-0.215 

 

-1.064 

 

-1.059 

 

-0.110 

 

-0.108 

 

-0.073 

 

-0.075 

 

(0.297) 

 

(0.164) 

 

(1.264) 

 

(0.887) 

 

(0.113) 

 

(0.077) 

 

(0.108) 

 

(0.073) 

EFC - Less than $1 -0.152 

 

-0.143 

 

-1.402 

 

-1.390 

 

-0.114 

 

-0.109 

 

-0.169* 

 

-0.173 

 

(0.135) 

 

(0.249) 

 

(0.696) 

 

(1.341) 

 

(0.104) 

 

(0.116) 

 

(0.072) 

 

(0.110) 

EFC - Less than $2,095 -0.080 

 

-0.080 

 

-1.551 

 

-1.551 

 

-0.018 

 

-0.018 

 

0.044 

 

0.044 

 

(0.502) 

 

(0.272) 

 

(1.491) 

 

(1.468) 

 

(0.123) 

 

(0.127) 

 

(0.084) 

 

(0.120) 

 

 

7
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Table 7 (Cont.) 

 

Spring 18 Term GPA 

 

Spring 18 Accumulated Credits 

 

Good Academic Standing 

 

Fall 18 Enrollment 

 

Original 

Estimates Simple  Complex 

 

Original 

Estimates Simple  Complex 

 

Original 

Estimates Simple  Complex 

 

Original 

Estimates Simple  Complex 

  (1) (2) (3)   (4) (5) (6)   (7) (8) (9)   (10) (11) (12) 

EFC - Less than 

$5683 -0.343** 

 

-0.343 

 

-2.334** 

 

-2.335 

 

-0.194 

 

-0.194 

 

-0.094 

 

-0.094 

 

(0.111) 

 

(0.310) 

 

(0.777) 

 

(1.674) 

 

(0.137) 

 

(0.145) 

 

(0.135) 

 

(0.137) 

EFC - Less than 

$10,756 -0.011 

 

-0.010 

 

-0.729 

 

-0.727 

 

-0.136 

 

-0.135 

 

-0.143 

 

-0.144 

 

(0.339) 

 

(0.259) 

 

(1.102) 

 

(1.395) 

 

(0.085) 

 

(0.121) 

 

(0.101) 

 

(0.114) 

EFC - Less than 

$17,389 -0.341 

 

-0.343 

 

-2.962** 

 

-2.964** 

 

-0.108** 

 

-0.109 

 

-0.186* 

 

-0.186* 

 

(0.288) 

 

(0.239) 

 

(0.988) 

 

(1.289) 

 

(0.035) 

 

(0.112) 

 

(0.088) 

 

(0.106) 

EFC - Less than 

$26,040 -0.129 

 

-0.129 

 

-1.413 

 

-1.413 

 

0.036 

 

0.036 

 

-0.212 

 

-0.212* 

 

(0.397) 

 

(0.275) 

 

(1.260) 

 

(1.482) 

 

(0.097) 

 

(0.128) 

 

(0.146) 

 

(0.121) 

EFC - Less than 

$39,072 0.078 

 

0.0782 

 

-1.544 

 

-1.545 

 

0.106* 

 

0.106 

 

-0.054 

 

-0.054 

 

(0.109) 

 

(0.243) 

 

(0.897) 

 

(1.312) 

 

(0.048) 

 

(0.114) 

 

(0.101) 

 

(0.108) 

EFC - Less than 

$68,327 0.153 

 

0.153 

 

-1.377 

 

-1.376 

 

0.050 

 

0.050 

 

0.021 

 

0.021 

 

(0.316) 

 

(0.247) 

 

(0.728) 

 

(1.332) 

 

(0.086) 

 

(0.115) 

 

(0.060) 

 

(0.109) 

                Observations 200 261 200   200 261 200   200 261 200   200 261 200 

Notes: Standard errors in parentheses are clustered at the college level, (6 clustered). Other ethnicity includes Asian, Foreign, Hawaiian, Indian, Two or More, Hispanic, and not 

reported. Interaction, is the interaction between qualify and the recentered Fall 2017 GPA. *p<.10. **p<.05. ***p<.01. 

7
2
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Sample Expansion 

 

In this section, we attempt to improve our study power by increasing our sample size 

using two approaches. In our first attempt to increase our sample size, we include students who 

did not file a FAFSA. FAFSA completion is not required to enroll at the University nor to 

participate in the program. Thus some students within our specified bandwidth lack an expected 

family contribution, produced by filing a FAFSA, which serves as a control for socioeconomic 

status, and are not included in our analytic sample. We include these observations while 

estimating models with dummy variables identifying filing a complete FAFSA, starting to file 

but not completing the FAFSA, and neither starting or filing a FAFSA26. This approach allows 

us to include students previously excluded from the analysis. In our last attempt to expand our 

sample size, we run various specifications of model (1), disregarding specific bandwidths to 

include everyone in our full sample. 

Sample Expansion Including Non-FAFSA Fillers 

 

Table 8 shows results for model specification (1), including an additional 61 non-FAFSA 

filers within our preferred (+/- 0.25) point bandwidth. The effect on spring 2018 GPA remains 

similar to our main findings in Table 2; the effect on spring 2018 credits is negative and non-

significant compared to the original estimates which were positive and non-significant; the effect 

on good academic standing is positive and non-significant, similar to the original estimates and, 

the effect on fall 2018 enrollment reduces in magnitude but does not switch direction. Overall, it 

appears that students not included in the original estimation have a small impact on our findings, 

but the effects remain indistinguishable from zero.

                                                           
26 Neither starting or filling a FAFSA represents the reference category in the analysis.  



74 

Table 8 

RDD Analysis Including non-FAFSA fillers             

 
Spring 18 GPA   Spring 18 Accumulated Credits   Good Academic Standing 

 

Fall 18 Enrollment 

 

Original Estimates   

 

Original Estimates   

 

Original Estimates   

 

Original Estimates   

  (1) (2)   (3) (4)   (5) (6)   (7) (8) 

Qualify 0.248 0.151 

 

0.324 -0.237 

 

0.131 0.083 

 

-0.109 -0.064 

 

(0.318) (0.286) 

 

(1.474) (0.737) 

 

(0.139) (0.154) 

 

(0.073) (0.071) 

Centered Fall 2017 GPA 0.405 -0.211 

 

3.988 -0.274 

 

0.672 0.409 

 

-0.331 -0.593 

 

(1.334) (0.776) 

 

(7.132) (4.320) 

 

(0.434) (0.238) 

 

(0.222) (0.354) 

Interaction -0.188 0.844 

 

-8.896 -0.534 

 

0.680 1.068 

 

0.503 1.619*** 

 

(2.944) (2.026) 

 

(9.095) (8.444) 

 

(1.561) (1.318) 

 

(0.689) (0.336) 

Female 0.167 0.245 

 

1.183* 1.167 

 

0.065 0.103 

 

0.050 0.003 

 

(0.142) (0.122) 

 

(0.494) (0.587) 

 

(0.086) (0.065) 

 

(0.087) (0.092) 

African American  -0.259 -0.175 

 

-2.118 -2.263 

 

0.100 0.080 

 

-0.203* -0.239* 

 

(0.273) (0.248) 

 

(1.330) (1.281) 

 

(0.154) (0.148) 

 

(0.098) (0.099) 

Other Race 0.211 0.326 

 

1.751 1.659 

 

0.049 0.088 

 

0.132 0.097 

 

(0.258) (0.243) 

 

(1.224) (0.834) 

 

(0.124) (0.146) 

 

(0.109) (0.109) 

Standardized HS GPA 0.135** 0.088 

 

0.535 0.362 

 

0.035 0.029** 

 

0.006 0.002 

 

(0.0519) (0.049) 

 

(0.385) (0.400) 

 

(0.022) (0.011) 

 

(0.050) (0.030) 

First Generation -0.218 -0.266 

 

-1.064 -1.220 

 

-0.110 -0.141 

 

-0.073 -0.101 

 

(0.297) (0.202) 

 

(1.264) (0.830) 

 

(0.113) (0.095) 

 

(0.108) (0.062) 

FAFSA Completed 

 

0.239 

  

2.673** 

  

0.099* 

  

0.144 

  

(0.153) 

  

(0.735) 

  

(0.039) 

  

(0.098) 

FAFSA Incomplete 

 

0.323** 

  

1.744 

  

0.000 

  

0.153 

  

(0.125) 

  

(0.991) 

  

(0.108) 

  

(0.097) 

Constant 

 

1.959*** 

  

8.973*** 

  

0.606*** 

  

0.781*** 

  

(0.230) 

  

(1.265) 

  

(0.094) 

  

(0.093) 

            Observations 200 261   200 261   200 261   200 261 

Notes: Standard errors in parentheses are clustered at the college level, (6 clusters). Other ethnicity includes Asian, Foreign, Hawaiian, Indian, Two or More, Hispanic, and not 

reported. Interaction, is the interaction between qualify and the recentered Fall 2017 GPA. All models are for a bandwidth of (+/- 0.25) *p<.10. **p<.05. ***p<.01. 
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Sample Expansion Including All Available Records  

 

Finally, we attempt to address concerns about limited statistical power in our primary 

analyses by expanding the sample. Since a linear model could not adequately identify the 

relationship between fall 2017 GPA27 and our outcomes of interest while simultaneously 

controlling for potential differences between students with fall 2017 GPAs far away from the 

cutoff as we expand our sample, we introduce higher order polynomial functions of fall 2017 

GPA using the following quadratic model:28  

 

Yi = β0 + β1Qualifyi +  β2CenGPAi + β3(𝑄𝑢𝑎𝑙𝑖𝑓𝑦𝑖 ∗  𝐶𝑒𝑛𝐺𝑃𝐴𝑖) +  β4CenGPAi
2

+ β5 (𝑄𝑢𝑎𝑙𝑖𝑓𝑦𝑖 ∗  𝐶𝑒𝑛𝐺𝑃𝐴𝑖
2) + 𝛽5𝑿𝒊

′ + εi      (4) 

 

where CenGPA2
i represents a second-order polynomial function of the recentered GPA around 

the 2.0 cutoff, and the variables in equation (4) that overlap with those in equation (1) are 

defined similarly. 

 Table 9 shows estimates using model (4) on the effect of qualifying for the program on 

our outcomes of interest. The impact on spring 2018 GPA and spring 2018 credits increases in 

magnitude and is statistically significant compared to the results found in Table 2. In addition, as 

we add more flexibility to the model, the observed positive effect on the probability of being in 

                                                           
27 The results for the linear model can be found in the Appendix Table A2. 
28 Upon visual inspection of the relationship between the outcome variables and the centered 

cutoff across the entire sample, we chose a more flexible model over a liner model. We refrain 

from using higher order polynomials following the work of Gelman & Imbens, (2017) and 

Cattaneo, Idrobo, & Titiunik, (2018). 
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good academic standing after the spring 2018 semester in our original estimates is no longer 

present. Lastly, the negative effect observed with fall 2018 enrollment becomes marginally 

significant.
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Table 9 

RDD Estimates Including All Available Records 

 
Spring 18 GPA 

 

Spring 18 Accumulated Credits 

 

Good Academic Standing 

 

Fall 18 Enrollment 

 

Original 

Estimates Simple Complex 

 

Original 

Estimates Simple Complex 

 

Original 

Estimates Simple Complex 

 

Original 

Estimates Simple Complex 

  (1) (2) (3)   (4) (5) (6)   (7) (8) (9)   (10) (11) (12) 

Qualify 0.248 0.236** 0.231** 

 

0.324 0.888 0.821* 

 

0.131 0.002 -0.002 

 

-0.109 -0.140* -0.147** 

 

(0.318) (0.063) (0.068) 

 

(1.474) (0.442) (0.388) 

 

(0.139) (0.060) (0.057) 

 

(0.073) (0.058) (0.056) 

Centered Fall 2017 

GPA 0.405 1.547** 1.477*** 

 

3.988 6.541*** 6.009** 

 

0.672 0.525*** 0.497*** 

 

-0.331 -0.108 -0.136 

 

(1.334) (0.397) (0.346) 

 

(7.132) (1.575) (1.661) 

 

(0.434) (0.081) (0.060) 

 

(0.222) (0.093) (0.083) 

Interaction -0.188 -0.725 -0.798 

 

-8.896 -1.480 -1.514 

 

0.680 0.426* 0.420** 

 

0.503 0.402* 0.394 

 

(2.944) (0.643) (0.614) 

 

(9.095) (2.294) (2.701) 

 

(1.561) (0.196) (0.161) 

 

(0.689) (0.192) (0.218) 

Squared Centered Fall 2017 GPA -1.678** -1.668** 

  

-8.140** -8.000** 

  

-0.251 -0.246** 

  

0.325** 0.330** 

  

(0.548) (0.575) 

  

(2.346) (2.662) 

  

(0.126) (0.091) 

  

(0.095) (0.108) 

Squared Interaction 

 

1.670** 1.622** 

  

8.426*** 8.137** 

  

0.567*** 0.556*** 

  

-0.312*** -0.328*** 

  

(0.426) (0.455) 

  

(1.872) (2.058) 

  

(0.083) (0.064) 

  

(0.060) (0.058) 

Female 

  

0.122 

   

0.327 

   

0.062 

   

0.035 

   

(0.078) 

   

(0.243) 

   

(0.036) 

   

(0.033) 

African American  

  

-0.087 

   

-1.023* 

   

-0.023 

   

-0.073** 

   

(0.126) 

   

(0.439) 

   

(0.093) 

   

(0.025) 

Other Race 

  

0.130 

   

0.139 

   

0.022 

   

-0.037 

   

(0.183) 

   

(0.488) 

   

(0.070) 

   

(0.048) 

Standardized HS 

GPA 

  

0.164* 

   

0.763** 

   

0.039* 

   

0.030** 

   

(0.066) 

   

(0.276) 

   

(0.017) 

   

(0.009) 

First Generation 

  

-0.176 

   

-1.051** 

   

-0.080* 

   

-0.068* 

   

(0.101) 

   

(0.348) 

   

(0.032) 

   

(0.027) 

FAFSA Completed 

  

-0.018 

   

0.746* 

   

0.046* 

   

0.008 

   

(0.100) 

   

(0.305) 

   

(0.019) 

   

(0.042) 

FAFSA Incomplete 

  

0.112 

   

0.377 

   

0.013 

   

-0.001 

   

(0.085) 

   

(0.734) 

   

(0.052) 

   

(0.070) 

Observations 200 749 749   200 749 749   200 749 749   200 749 749 

Notes: Standard errors in parentheses are clustered at the college level, (6 clusters). Other ethnicity includes Asian, Foreign, Hawaiian, Indian, Two or More, Hispanic, and not 

reported. Interaction is the interaction between qualifying and the recentered Fall 2017 GPA. *p<.10. **p<.05. ***p<.01. 

 

7
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Conclusion 

 

Our study aims to understand the impacts of a university mentoring program developed 

to pair undergraduates on academic probation with peer mentors with the goal of improving 

academic performance and persistence. As more students enroll in higher education and fail to 

earn a degree, colleges and university are actively developing support services for these students. 

Students on academic probation are one group in need of support services to help them overcome 

their experienced challenges in academic and overall transition into collegiate life.  

 Overall, we do not find strong evidence indicating the BounceBack Mentoring program 

improved or harmed student academics. Undergraduates who qualified for the BounceBack 

Mentoring program do not perform any better or worse on spring 2018 GPA, spring 2018 

accumulated credits, the probability of being on academic probation after the spring 2018 

semester, or enrolling in fall 2018. However, after various sensitivity checks, we find suggestive 

but not conclusive evidence that qualifying for the program did increase spring 2018 GPA, but 

reduced the probability of persisting to their sophomore year. This could signify that our null 

results are indicative of low statistical power and not true effects.  

 Despite the lack of concrete evidence that the BounceBack Mentoring program improved 

academic outcomes, the suggestive positive effect on GPA is promising for colleges and 

universities considering implementing peer mentoring programs to improve the academic 

performance of students on academic probation. As institutions continue to develop mentoring 

programs with the hopes of addressing issues with student persistence, the evaluation of the 

programs’ effectiveness is imperative if colleges and universities are going to close the gap 

between enrolling and earning a degree.  
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Appendix 

Table A1. 

RDD Estimated Effects Using the Optimal Bandwidth 

 

Spring 18 GPA 

Spring 18 Accumulated 

Credits 

Good Academic 

Standing Fall 18 Enrollment 

  (1) (2) (3) (4) (5) (6) (7) (8) 

Qualify 0.210 0.300 -0.355 0.367 0.085 0.139 -0.117 -0.125 

 

(0.303) (0.312) (0.430) (1.404) (0.159) (0.131) (0.087) (0.063) 

Centered Fall 2017 

GPA 0.276 0.896 1.057 5.813 0.560 0.762 -0.542 -0.242 

 

(1.345) (1.631) (6.845) (8.224) (0.321) (0.444) (0.437) (0.281) 

Interaction 0.592 -0.577 -3.359 -11.67 0.802 0.596 1.145 0.211 

 

(2.837) (2.804) (11.06) (10.29) (1.444) (1.367) (0.748) (0.561) 

Female 

 

0.131 

 

1.021** 

 

0.057 

 

0.040 

  

(0.146) 

 

(0.383) 

 

(0.085) 

 

(0.085) 

African American  

 

-0.289 

 

-2.227 

 

0.097 

 

-0.208* 

  

(0.280) 

 

(1.293) 

 

(0.152) 

 

(0.098) 

Other Race 

 

0.172 

 

1.606 

 

0.038 

 

0.127 

  

(0.262) 

 

(1.170) 

 

(0.126) 

 

(0.106) 

Standardized HS GPA 

 

0.153** 

 

0.608 

 

0.038 

 

0.010 

  

(0.059) 

 

(0.403) 

 

(0.022) 

 

(0.048) 

First Generation 

 

-0.148 

 

-0.808 

 

-0.107 

 

-0.058 

  

(0.254) 

 

(1.070) 

 

(0.103) 

 

(0.098) 

EFC - Less than $1 

 

-0.158 

 

-1.429* 

 

-0.110 

 

-0.173** 

  

(0.154) 

 

(0.677) 

 

(0.106) 

 

(0.066) 

EFC - Less than 

$2,095 

 

-0.091 

 

-1.520 

 

-0.038 

 

0.058 

  

(0.496) 

 

(1.381) 

 

(0.131) 

 

(0.080) 

EFC - Less than $5683 

 

-0.218* 

 

-1.847 

 

-0.166 

 

-0.076 

  

(0.091) 

 

(1.022) 

 

(0.121) 

 

(0.141) 

EFC - Less than 

$10,756 

 

-0.021 

 

-0.777 

 

-0.137 

 

-0.147 

  

(0.347) 

 

(1.117) 

 

(0.086) 

 

(0.100) 

EFC - Less than 

$17,389 

 

-0.332 

 

-2.930** 

 

-0.105** 

 

-0.185* 

  

(0.279) 

 

(0.999) 

 

(0.034) 

 

(0.088) 

EFC - Less than 

$26,040 

 

-0.124 

 

-1.412 

 

0.038 

 

-0.214 

  

(0.387) 

 

(1.279) 

 

(0.096) 

 

(0.146) 

EFC - Less than 

$39,072 

 

0.095 

 

-1.394 

 

0.126 

 

-0.041 

  

(0.099) 

 

(0.935) 

 

(0.066) 

 

(0.106) 

EFC - Less than 

$68,327 

 

0.225 

 

-1.125 

 

0.060 

 

0.035 

  

(0.279) 

 

(0.725) 

 

(0.080) 

 

(0.064) 

         
Observations 266 204 266 204 266 204 266 204 

Notes: Standard errors in parentheses are clustered at the college level, (6 clusters). Interaction 

is the interaction between qualify and the recentered Fall 2017 GPA. All models are for a 

bandwidth of (+/- 0.269) *** p<0.01, ** p<0.05, * p<0.1 
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Table A2.  

RDD Estimates Including All Available Records with a Linear Model 

 
Spring 18 GPA 

Spring 18 Accumulated 

Credits 

Good Academic 

Standing Fall 18 Enrollment 

  (1) (2) (3) (4) (5) (6) (7) (8) 

Qualify 0.100 0.118 0.044 0.074 -0.200*** -0.200*** -0.120 -0.121 

 

(0.086) (0.090) (0.434) (0.443) (0.042) (0.039) (0.064) (0.071) 

Centered Fall 

2017 GPA 0.402 0.339 0.989 0.547 0.354*** 0.328*** 0.114 0.089 

 

(0.330) (0.280) (1.227) (1.041) (0.042) (0.036) (0.058) (0.045) 

Interaction 0.437 0.435 3.493* 3.669** -0.046 -0.039 0.155* 0.163** 

 

(0.351) (0.292) (1.497) (1.280) (0.033) (0.024) (0.066) (0.049) 

Female 

 

0.120 

 

0.318 

 

0.063 

 

0.036 

  

(0.079) 

 

(0.282) 

 

(0.039) 

 

(0.033) 

African 

American  

 

-0.084 

 

-1.016* 

 

-0.030 

 

-0.074** 

  

(0.123) 

 

(0.433) 

 

(0.094) 

 

(0.023) 

Other Race 

 

0.126 

 

0.115 

 

0.016 

 

-0.037 

  

(0.176) 

 

(0.460) 

 

(0.070) 

 

(0.048) 

Standardized 

HS GPA 

 

0.165* 

 

0.767** 

 

0.042** 

 

0.030** 

  

(0.066) 

 

(0.273) 

 

(0.014) 

 

(0.009) 

First 

Generation 

 

-0.179 

 

-1.060** 

 

-0.077* 

 

-0.068* 

  

(0.098) 

 

(0.331) 

 

(0.032) 

 

(0.028) 

FAFSA 

Completed 

 

-0.014 

 

0.761* 

 

0.041* 

 

0.007 

  

(0.093) 

 

(0.318) 

 

(0.019) 

 

(0.040) 

FAFSA 

Incomplete 

 

0.119 

 

0.411 

 

0.012 

 

-0.002 

  

(0.075) 

 

(0.686) 

 

(0.056) 

 

(0.073) 

Constant 2.207*** 2.182*** 11.500*** 11.050*** 0.719*** 0.678*** 0.790*** 0.795*** 

 

(0.124) (0.119) (0.429) (0.604) (0.015) (0.026) (0.016) (0.042) 

         
Observations 749 749 749 749 749 749 749 749 

R-squared 0.192 0.229 0.193 0.224 0.368 0.387 0.196 0.209 

Notes: Standard errors in parentheses are clustered at the college level, (6 clusters). Other 

includes Asian, Foreign, Hawaiian, Indian, Two or More, Hispanic, and not reported. 

Interaction is the interaction between qualify and the recentered Fall 2017. *p<.10. **p<.05. 

***p<.01. 
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Chapter 329 

 

College Readiness, Student Expectations, and Success: The Role of Non-Cognitive Skills 

Introduction 

 

 Since Gary Becker’s groundbreaking work in 1962, Investment in Human Capital: A 

Theoretical Analysis, human capital investments have been evaluated for their monetary and 

non-monetary returns on those investments. In the U.S., the investment returns from higher 

education have consistently grown over time even as college costs have risen and the percentage 

of high school graduates enrolling in college has increased (Goldin & Katz, 2007; Oreopoulos & 

Petronijevic, 2013). However, the rate at which students graduate from college remains relatively 

flat. Shapiro and team (2012) estimate that the current U.S. population includes over 31 million 

adults who enrolled in college during the past 20 years but left before completing a degree. One 

reason for students electing not to complete a degree could be that something happened between 

the time the student enrolled in college and when he or she dropped out that caused another 

alternative to have a higher rate of return, such as a full-time employment offer at a higher wage 

or an unexpected change in family obligations. However, it is also possible that the initial 

enrollment decision was revealed to be suboptimal once the student had more complete 

information regarding the costs and benefits of a college degree. Also the reality of highly 

demanding coursework or unexpected educational expenses could also contribute to college 

drop-out rates. 

The growing number of college non-completers is not entirely problematic. Previous 

studies have found positive returns for attending college, even for students who do not graduate 

(Greenstone & Looney, 2013). However, there is some public concern about the high level of 

                                                           
29 This paper was co-authored with Gema Zamarro Rodriguez and Julie Trivitt 
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student loan debt and the perception that it is particularly burdensome for students who do not 

complete a degree (Tompor, 2017) and are then more likely to default on their student loans 

(Delisle, 2014).  

Recognizing the value of a college degree, policy makers are encouraging institutions to 

design programs and tools to facilitate and inform students of their likelihood of success. Thus 

far, most of the interventions intended to help graduation rates such as, tutoring, remediation, and 

online information, have proven to be somewhat ineffective (Page & Scott-Clayton, 2016). In 

addition, the ineffectiveness of the programs evauated in Chapters 1 and 2 could suggest the 

traditional barriers to college success, such as academic ability and credit constraints, are no 

longer the only prominent barriers and administrators need better tools to identify and support 

students at risk of leaving college before graduation.  

In this chapter, we explore the survey responses of over 1,100 undergraduate students 

majoring in business and engineering at the University of Arkansas. In addition to the usual 

academic performance data, cognitive ability measures, and demographics, our survey includes 

measures of non-cognitive skills and personality traits as well as student expectations about 

college success. The collection of self-reported expectations allows us to identify students’ 

subjective expectations about their future success in college, whether these expectations are 

realistic, and to what extent non-cognitive skills are associated with these expectations. 

Moreover, we compare student’s subjective expectations to their academic progress, given their 

demographic background and preparation at entrance. We identify students performing both 

below and above objective expectations and the non-cognitive skills related to their objective 

performance. We find that non-cognitive skills are associated with subjective expectations and 

objective performance in college, even after controlling for cognitive ability and time spent 
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studying, but that the relationship among specific non-cognitive skills, academic expectations, 

and academic performance varies by discipline. 

The remainder of this chapter is organized as follows: the next section reviews the 

relevant literature on non-cognitive skills, subjective expectations, and college success. We then 

discuss the data collection process and resulting dataset. Next, we lay out the empirical strategy 

for understanding the determinants of students’ subjective expectations by predicting their 

expected academic performance based on their background and preparation at college entrance. 

We refer to them as “objective expectations” or “objective academic expectations”. Then, we 

discuss student subjective expectations relative to their actual performance at the end of the first 

year and identify characteristics associated with having unrealistic subjective expectations and 

performing above (or below) what is objectively expected, based on their background and 

preparation at entrance. Finally, we discuss the implications of our results and present our 

conclusions.   

 

The Evidence on Existing and Novel Predictors of College Success 

 

Cognitive Skills, Non-Cognitive Skills, and College Outcomes 

 

There is considerable recent research on the factors relevant in predicting college success, 

including socio-economic status, gender, family background, and cognitive ability (Richardson, 

Abraham & Bond, 2012; Poropat, 2009; Cheng, Hitt & Mills, 2013; Stephan et al., 2015; Kuh, 

Cruce, Shoup & Kinzie, 2008). In particular, cognitive ability is one of the most widely used 

metrics in predicting college achievement, often measured through high school grade point 
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average (HSGPA), ACT, and SAT scores (Frey & Determan, 2004; Bettinger, Evans & Pope, 

2013). More recently, however, researchers and policymakers have begun to explore other 

factors associated with college success in light of stagnating persistence rates despite increasing 

enrollment rates (Turner, 2004). 

Another strand of research studies the predictive power of non-cognitive or character 

skills on desirable later life outcomes, beyond those of cognitive measures. Non-cognitive skills 

such as conscientiousness, neuroticism, and grit have been found to be associated with economic, 

academic and health outcomes (Lleras, 2008; Heckman, Stixrud & Urzua, 2006; Almlund et al., 

2011). These effects have been measured at various stages of life including childhood (Heckman 

et al., 2013), adolescence (Duckworth & Quinn, 2009), adulthood (Borghans et al., 2008) and 

late adulthood (Jackson et al., 2015). Because of their inherent relevance to a variety of desirable 

outcomes and populations, this chapter contributes along with those analyzing their impacts of 

non-cognitive skills in a higher education setting.  

The Big Five Personality traits: agreeableness, neuroticism, openness, extraversion, and 

conscientiousness, have become some of the most pertinent non-cognitive traits in predicting 

relevant life outcomes (Kyllonen et al., 2014; Conard, 2006). Conscientiousness, defined as how 

organized, efficient, and dutiful a person is, has been found to be an important determinant of 

success among the college population. In a sample of undergraduates at the University of 

California, Riverside, Wagnerman and Funder (2007) discovered that self-reported 

conscientiousness accounted for 18% of the variation in freshman year GPA and 37% of the 

variation in senior year GPA. Conard (2006) similarly found conscientiousness to be predictive 

of college GPA, course performance, and class attendance even after controlling for SAT scores 

in a sample of undergraduate students.  
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On the other hand, other Big Five Personality traits, such as neuroticism, the emotional 

instability of a student, and extraversion, the sociability of a student, are consistently shown to be 

negatively related with college outcomes, both inside and outside of the U.S. (Poropat, 2009; 

Burks et al., 2015; Komarraju, Karau & Schmeck, 2009; Chamorro-Premuzic & Furnham, 2003; 

O’Connor & Paunonen, 2007). However, the results are less clear for agreeableness defined as 

how trusting or cooperative a student is. In a sample of undergraduate students at the University 

of Minnesota, Morris, agreeableness was shown to be positively associated with graduating in 

both four and six years (Burks et al., 2015). Paradoxically, agreeableness has been shown to have 

no relationship with exam grades for students enrolled at the University of London (Chamorro-

Premuzic & Furnham, 2003), but both positive and negatives relationships with GPA for both 

students inside and outside the U.S. (Komarraju, Karau & Schmeck, 2009; Poropat, 2009). 

Finally, although the literature on openness is relatively small, it also suggests possible positive 

associations with short-run outcomes such as course grades (Lounsbury et al., 2003). 

Additionally, non-cognitive skills and attitudes, including grit and growth mindset, have 

been shown to be salient in predicting higher education academic outcomes. In a sample of 

undergraduates attending an ivy league college, Duckworth et al. (2007) found grit, defined as 

persistence in accomplishing long-term goals, to be associated with college GPA (r=0.34), even 

after controlling for SAT performance. Within a sample of freshmen attending Columbia 

University, growth mindset, the perception that one’s ability is malleable and not fixed, was 

associated with higher intrinsic motivation, predicted a higher final course grade and more 

importantly, predicted grade improvement from the first exam to the final exam in a chemistry 

course (Grant & Dweck, 2003). Overall, the research highlights the relevance of non-cognitive 
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skills in important college outcomes, but to our knowledge, the literature to date has not 

examined how the effect of these skills vary across sub-groups of the college student population.  

Motivation, Subjective Expectations, and College Success 

 

Additional research looks at students’ college goals, expectations, and motivation (Hall & 

Sverdlik, 2016; Beattie, Laliberte & Oreopoulos, 2018; Komarraju, Karau & Schmeck, 2009; 

Clark & Schroth, 2010; Beattie, Laliberté, Michaud- Leclerc & Oreopoulos, 2017) and explores 

how well students perform in college based on past performance and how their own goals or 

subjective expectations set them up for success or failure. Only three studies, to our knowledge, 

look at the relationship between subjective academic expectations and subsequent performance.  

 Hall and Sverdlik (2016) look at the effects of a motivational intervention on subjective 

expectations for students in science, technology, engineering, or mathematics (STEM) majors. 

Intervention participants were given tools to help calibrate their subjective expectations, which 

were measured by students’ reports of how well they expected to do at the university on a 1 to 10 

Likert scale, as well as their expected GPA at the end of the current semester.30 The results were 

somewhat paradoxical. Participants showed higher subjective expectations and optimism but 

lower actual GPAs than the control group. This finding, suggests that participants failed to match 

their higher subjective expectations after treatment to the requirements of their field of study.  

Our study is more closely related to the work of Beattie, Laliberte, and Oreopoulos 

(2018) and the complementing work of Beattie, Laliberté, Michaud-Leclerc and Oreopoulos 

(2017) who studied the relationships among past performance, objective expected performance 

                                                           
30 Hall and Sverdlik (2016) collected an additional measure of subjective expectations measured 

by their expected GPA by the coming fall semester (i.e. cumulative GPA).  
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based on a student’s background, student experiences, mental health, and non-cognitive skills in 

a sample of about 6,000 first-year college students studying economics in Canada. Their dataset, 

like ours, included information on high school academic performance, college performance, and 

non-cognitive skills, which the authors used to study the characteristics of “divers” and 

“thrivers.” Divers were defined as students who, given their background, are expected to perform 

academically well but do not meet those objective expectations and thrivers are those who 

perform beyond their academic objective expectations, given their background and preparation. 

Beattie and coauthors (2018) find that divers are more likely to procrastinate and rate themselves 

as less conscientious. Thrivers spend more hours studying and have higher expectations for their 

GPA at the end of the current school year. While Beattie and coauthors (2017) find that thrivers 

are more likely to use university resources and divers often face personal issues beyond the 

issues experienced at the university.  

Overall, there is scant literature on the relationship between subjective expectations and 

actual performance. However, since a student's subjective expectations of their future earnings 

influence their college enrollment decision (Anttanasio & Kauftmann, 2017; Anttanasio & 

Kauftmann, 2014) and high school persistence (Jensen, 2012), it is apparent that subjective 

expectations actively influence behavior. Since a student’s subjective expectations about his 

ability and the difficulty of his degree program can play an essential role in preventing or 

rebounding from failure (Stinebrickner & Stinebrickner, 2012), we believe the pertinent issue of 

connecting subjective expectations and actual performance deserves more study. Our paper 

contributes to the field in three ways. First, we study how freshmen students form their 

subjective expectations of college success and to what extent non-cognitive skills are associated 

with such subjective expectations. Second, we expand the work of Hall and Sverdlik (2016) and 
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Beattie, Laliberte, and Oreopoulos (2018) to analyze the extent to which student subjective 

expectations are realistic or unrealistic given their current academic trajectory. Lastly, we 

complement the work of Beattie, Laliberte, and Oreopoulos (2018) by analyzing the relationship 

between non-cognitive skills and the variation of college performance above and below objective 

expectations, given student background and high school performance, in the context of U.S. 

students majoring in two different fields of study, business and engineering. These are all 

important contributions, given the heterogeneity of the student body across different fields of 

study and countries, and the importance of better understanding how a student’s subjective 

expectations relate to actual performance and non-cognitive skills. Once the relationships are 

better understood, targeted interventions can be developed to promote college persistence and 

graduation.  

Data 

 

We collected data for this project from students majoring in business and engineering in 

the fall semester of 2016 at the University of Arkansas. Previous attempts at asking freshmen to 

voluntarily complete surveys were disappointing. To obtain a larger and more representative 

sample for this project, the online survey was part of a voluntary class assignment for extra 

credit31 in the freshman business course (FBC) or the freshman engineering course (FEC), 

respectively. A total of 1,183 surveys were collected.32 Survey results were combined with 

administrative records to get the outcomes of interest and relevant control variables. Eleven 

                                                           
31 Students had to go through all of the questions and get a completion code to get credit for the 

assignment, although they were not required to answer any of the questions for class credit. 
32 We have a take-up rate of 23.8% for all first time degree-seeking freshmen, but a take-up rate 

of 47% for all freshmen enrolled in the college of business and college of engineering.   
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students were subsequently dropped from the sample for having a major other than business or 

engineering, giving us an analytic sample of 1,172 students.  

Survey  

 

 Our survey was deployed during the 2016-2017 academic year and contains questions 

pertaining to the students’ non-cognitive skills, their subjective expectations for their college 

career, and general background characteristics. Out of 217 total questions, on average 96% of 

questions received a response. The non-cognitive measures include conscientiousness, 

agreeableness, neuroticism, openness, and extraversion, which come from the Big Five Inventory 

of personality traits (John, Donahue & Kentile, 1991). Other non-cognitive measures collected 

include grit33, growth mindset34, and locus of control35 (Duckworth & Quinn, 2009; Wellborn et 

al., 1989). These non-cognitive survey questions ask students to rate how well various statements 

describe themselves using variations of a five-point Likert-type scale (i.e., Strongly Disagree, 

Disagree, Neither Agree or Disagree, Agree, Strongly Agree). Each response was averaged to 

develop a total score for a given trait ranging from 1 to 5, with higher scores representing higher 

levels of that particular trait. Items were reverse coded when the statements are phrased to 

indicate a lack of that trait. We evaluate the reliability of each measure using Cronbach's alpha as 

can be seen in Appendix Table A.1 alongside more detailed information on all non-cognitive 

skills survey questions. The reliability of the measures ranged from 0.64 – 0.83 in business and 

0.63 – 0.88 in engineering, compared to the acceptable standard of 0.70.  

                                                           
33 The grit scale used is the eight-item Grit-S scale modeled from Duckworth and Quinn (2009). 
34 The growth mindset scale used in a two-item scale modeled from the Education Longitudinal 

Study of 2002. 
35 The locus of control scale used is a six-item scale developed from the Students’ Perception of 

Control Questionnaire (SPOCQ) (Wellborn et al., 1989). 
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Included in the survey are students’ subjective expectations of their expected GPA at the 

completion of their college career, which is a key outcome of interest. The subjective expectation 

measure is the response to the following question from the survey, “What overall GPA do you 

predict to have by the time you finish your undergraduate education?” It is measured on a 0 to 4 

scale.  

In addition, the survey collected direct measures of cognitive ability through a Numeracy 

Ability Test (NAT) on a 0 to 8 scale (Lipkus, Samsa & Rimer, 2001) and a Cognitive Reflection 

Test (CRT) on a 0 to 5 scale (Toplak, West & Stanovich, 2014). The CRT is designed to measure 

a participant’s ability to reflect on decisions before making them, i.e., critical thinking, while the 

Numeracy scale measures the ability to solve problems involving basic probability and 

mathematical concepts. We also incorporate a measure of study habits, assessed as the self-

reported number of hours spent studying per week, ranging from 0 to 12 hours or more.36 

Finally, the survey includes questions covering student demographics such as gender, ethnicity, 

private school attendance, homeschool attendance, mother’s education, and father’s education. 

Administrative Data 

 

We link our survey data to student administrative records to gather information on our 

outcome variables of interest and additional controls, including students’ end of freshman year 

cumulative grade point average or their May 2017 cumulative GPA (measured on a 0 to 4 scale). 

As a control for students’ cognitive ability in some models, we use information on ACT scores 

and high school GPA (HSGPA), measured on a 0 to 36 scale and a 0 to 4 scale, respectively. We 

also collect information about students’ high school location, allowing us to create regional state 

                                                           
36 Hours spent studying is measured on a 1 to 5 point scale, where 1-5 represents 0-2 hours, 3-5 

hours, 6-8 hours, 9-11 hours, and 12+ hours, respectively.  
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dummies to control for variation in high school quality that could affect HSGPA. In addition, we 

created dummy variables signifying if the student completed the survey before early progress 

grades. Early progress grades are designed to give students feedback on their academic 

performance while the semester is in progress and grades can still be improved, which could 

influence their reported subjective expectations on final college GPA. Lastly, we include a 

measure of total credit hours accumulated at the end of the first spring semester after starting 

school, which was May 2017. 
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Summary Statistics  

 

 Table 1 shows summary statistics for our sample of 1,172 college freshmen, by 

comparing the 684 students majoring in business to the 488 students majoring in engineering. 

Business students are less likely to be male but more likely to be white. Students majoring in 

engineering have significantly higher academic performance and cognitive ability, as seen by 

their higher HSGPAs, ACT, CRT and NAT scores.  

Most students, over 88%, completed the survey before early progress grades were 

released, which reduces the potential bias in reported subjective expectations. In terms of college 

academics, business students have significantly lower end of freshman year GPAs, and 

subjective expected GPAs at graduation and fewer accumulated credit hours. Students in both 

majors report the same average amount of time spent studying per week. 

Table 1 

Summary Statistics of Student Characteristics and College Performance   

    Business Students Engineering Students   

  Variable Mean Std. Dev. Mean Std. Dev. Diff. 

Demographics 

     

 

Male 0.59 0.49 0.71 0.46 -0.12*** 

 

White 0.78 0.41 0.73 0.44 0.05** 

 

Black 0.05 0.21 0.03 0.16 0.02* 

 

Hispanic 0.05 0.22 0.07 0.26 -0.02 

 

Asian 0.03 0.16 0.06 0.25 -0.04*** 

 

Native American 0.01 0.09 0.00 0.05 0.01 

 

Two or More 0.09 0.28 0.10 0.31 -0.02 

 

HSGPA 3.54 0.35 3.87 0.37 -0.33*** 

 

ACT 24.60 2.71 28.65 4.01 -4.04*** 

 

Private School Attendance 0.35 0.48 0.32 0.47 0.04 

 

Homeschool Attendance 0.03 0.17 0.05 0.23 -0.02** 

 

Cognitive Reflection Test 0.81 0.99 1.86 1.52 -1.05*** 

 

Numeracy Ability Test 3.93 1.68 5.15 1.86 -1.23*** 
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Table 1 (Cont.) 

    Business Students  Engineering Students  

  Variable Mean Std. Dev. Mean Std. Dev. Diff. 

 

Coll. Deg. Highest Edu - Mother 0.71 0.46 0.64 0.48 0.06** 

 

Coll. Deg. Highest Edu - Father 0.70 0.46 0.63 0.48 0.07** 

 

First Generation College Student 0.11 0.31 0.18 0.38 -0.07*** 

Survey Taken 

     

 

Before Early Progress Grades 0.80 0.40 1.00 0.00 -0.20*** 

College Academics 

     

 

Total Semesters 1.97 0.29 2.01 0.25 -0.04** 

 

GPA - May 2017 3.07 0.68 3.25 0.76 -0.19*** 

 

Accumulated Credit Hours 26.21 6.51 27.40 5.88 -1.19*** 

 

Subjective Expected GPA 3.50 0.27 3.59 0.29 -0.09*** 

  Study Hours Per Week 3.03 1.07 3.03 1.06 0.00 

Notes:  Std. Dev represents the standard deviation.  Diff. represents the difference in means 

between business and engineering students.  *** p<0.01, ** p<0.05, * p<0.1 

 

Table 2 shows summary statistics for students’ self-reported non-cognitive skills. There 

are no significant differences in reported levels of conscientiousness, agreeableness, neuroticism, 

or growth mindset between business and engineering students. Business students do report 

significantly lower levels of openness and grit than engineering students, while engineering 

students report significantly lower levels of extraversion and locus of control. 

Table 2 

Summary Statistics of Students’ Non-Cognitive Skills 

 Business Students  Engineering Students  

 Mean Std. Dev. Alpha Obs.  Mean Std. Dev. Alpha Obs. Diff. 

Conscientiousness 3.52 0.51 0.77 674  3.51 0.53 0.78 478 0.00 

Agreeableness 3.77 0.47 0.73 674  3.72 0.51 0.75 478 0.04 

Neuroticism 2.83 0.59 0.77 674  2.81 0.63 0.78 478 0.02 

Openness 3.42 0.48 0.77 674 

 

3.48 0.46 0.74 478 -0.06** 

Extraversion 3.47 0.64 0.83 674 

 

3.16 0.76 0.88 479 0.31*** 

Grit 3.19 0.46 0.65 669 

 

3.24 0.52 0.74 474 -0.05* 

Growth Mindset 3.97 0.59 0.69 668 

 

3.91 0.57 0.63 469 0.06 

Locus of Control 2.72 0.51 0.64 670   2.66 0.51 0.66 476 0.06* 

Notes: Std. Dev represents the standard deviation. Diff. represents the difference in means 

between business and engineering students. *** p<0.01, ** p<0.05, * p<0.1 
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Pairwise correlations between the non-cognitive skills and the outcomes of interest are 

shown in Table 3. The top portion of Table 3 shows these correlations for business students and 

as expected conscientiousness, grit, and reported study hours are each positively correlated with 

both May 2017 cumulative GPA and subjective expectations. Smaller but significant positive 

and negative correlations are observed between May 2017 cumulative GPA and with 

agreeableness and extraversion, respectively. Surprisingly, locus of control has a small but 

negative correlation with both May 2017 cumulative GPA and subjective expectations. In 

contrast, we do not see similar patterns for engineers. Conscientiousness is the only measure that 

shows a positive and significant correlation with May 2017 cumulative GPA among engineers. 

Again, locus of control is shown to be negatively correlated with our outcomes of interest. 

Overall, these findings show the potential heterogeneous effects of non-cognitive skills across 

majors, which is a possibility we explore in our analysis.  
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Table 3 

Pairwise Correlations between GPA, Subjective Final GPA, and Non-Cognitive Measures for Business and Engineering Students  

  2 3 4 5 6 7 8 9 10 11   

1. GPA - May 2017 0.306* 0.246* 0.078* -0.001 -0.137* -0.082* 0.131* 0.034 -0.120* 0.121* 

B
u

sin
ess  

2. Subjective Final GPA 1.000  0.195* 0.086* -0.013 0.101* 0.115* 0.105* 0.086* -0.039 0.126* 

3. Conscientiousness 

 

1.000  0.353* -0.236* 0.145* 0.106* 0.605* 0.169* -0.345* 0.181* 

4. Agreeableness 

  

1.000 -0.285* 0.195* 0.189* 0.252* 0.236* -0.193* 0.068 

5. Neuroticism 

   

1.000 0.074 -0.178* -0.329* -0.043 0.299* -0.042 

6. Openness 

    

1.000  0.246* 0.058 0.127* -0.030 0.106* 

7. Extraversion 

     

1.000 0.129* 0.043  -0.128* 0.084* 

8. Grit 

       

0.119* -0.321* 0.152* 

9. Growth Mindset 

       

1.000 -0.117* 0.016 

10. Locus of Control 

        

1.000 -0.027 

11. Study Hours Per Week                   1.000 

                        

1. GPA - May 2017 0.463* 0.125* 0.060 -0.044 0.016 -0.034 0.077 0.032 -0.100* -0.020 

E
n

g
in

eerin
g
 

2. Subjective Final GPA 1.000  0.157* 0.086 -0.073 0.095* 0.041 0.078 0.066 -0.124* -0.043 

3. Conscientiousness 

 

1.000 0.333* -0.237* 0.067 0.143* 0.647* 0.120* -0.341* 0.171* 

4. Agreeableness 

  

1.000 -0.272* 0.136* 0.218* 0.288* 0.173* -0.218* 0.039 

5. Neuroticism 

   

1.000 0.153* -0.360* -0.268* -0.071 0.211* 0.019 

6. Openness 

    

1.000 0.105* 0.046 0.149* 0.013 -0.006 

7. Extraversion 

     

1.000 0.149* 0.097* -0.037 0.172* 

8. Grit 

       

0.042 -0.264* 0.226* 

9. Growth Mindset 

       

1.000 -0.166* -0.024 

10. Locus of Control 

        

1.000 -0.006 

11. Study Hours Per Week                   1.000 

Notes: * p<0.05 or better 

 

 

9
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Empirical Strategy 

Subjective Expectations of college GPA at graduation  

 

 By examining our initial analysis, our goal is to identify how students form their 

subjective expectations about college success as they enter college. Students’ subjective 

expectations could be influenced by past academic experiences in high school as well as non-

cognitive skills that they possess and perceive to be relevant to reach their expectations. Because 

of the concerns of high correlation between grit and conscientiousness, as the literature has 

argued, grit could be a sub-factor of conscientiousness (Credé, Tynan & Harms, 2017). 

Therefore, we run separate models including either all five of the Big Five personality traits or 

“grit” using equations 1 and 2 shown below, respectively. In each equation, the non-cognitive 

and cognitive skills measures are standardized, to have mean zero and standard deviation one, to 

ease interpretation. Since business and engineering students appear to be different on the 

summary statistics presented above, we estimate separate models for each major with both 

following these linear regression models:  

 

𝑆𝑢𝑏𝑗𝐺𝑃𝐴𝑖 =  𝛽0 + 𝛽1𝐻𝑆𝐺𝑃𝐴𝑖 +  𝛽2𝐴𝐶𝑇𝑖 +  𝐵𝑖𝑔5𝑖
′𝛽3  +   𝛽4𝐺𝑀𝑖 + 𝛽5𝐿𝑂𝐶𝑖 +  𝛽6𝑁𝑢𝑚𝑖 +   𝛽7𝐶𝑅𝑇𝑖  

+  𝑋𝑖
′𝛽8 + 𝑅𝑒𝑔𝑖𝑜𝑛𝐷𝑢𝑚𝑚𝑖𝑒𝑠𝑖

′𝛽9 +  𝜀𝑖   (1) 

𝑆𝑢𝑏𝑗𝐺𝑃𝐴𝑖 =  𝛽0 +  𝛽1𝐻𝑆𝐺𝑃𝐴𝑖 + 𝛽2𝐴𝐶𝑇𝑖 +   𝛽3𝐺𝑟𝑖𝑡𝑖  +  𝛽4𝐺𝑀𝑖 + 𝛽5𝐿𝑂𝐶𝑖 +  𝛽6𝑁𝑢𝑚𝑖 +  𝛽7𝐶𝑅𝑇𝑖  

+  𝑋𝑖
′𝛽8 +  𝑅𝑒𝑔𝑖𝑜𝑛𝐷𝑢𝑚𝑚𝑖𝑒𝑠𝑖

′𝛽9 + 𝜀𝑖  (2) 

where SubjGPAi is the reported subjective expected final GPA at graduation for student i, 

HSPGAi is their actual high school GPA, ACTi is the ACT composite score, Big5i represents all 

five self-reported Big 5 personality traits, Griti represents self-reported grit, GMi represents self-
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reported growth-mindset, LOCi represents self-reported locus of control, Numi is the student’s 

score on the numeracy ability test, CRTi is the students’s score on the cognitive reflection test, 

and Xi is a vector of student level characteristics including gender, ethnicity, taking the survey 

before early progress grades and two dummies indicating if the student’s mother and father 

completed college. RegionDummiesi is a vector of region level dummies indicating the state of 

high school attendance, and εi is an idiosyncratic error.  

Expected Performance Based on Background Characteristics 

 

In this analysis, our goal is to differentiate students performing below and above 

objective expectations. To accomplish this goal, we follow the methodology of Beattie, 

Laliberte, and Oreopoulos (2018) and classify students as meeting or not meeting their objective 

expected level of performance based on past academic performance and various student-level 

characteristics.  

To identify students who are meeting or not meeting their objective expected level of 

performance, we regress their May 2017 cumulative GPA on the set of high school academic 

variables (i.e. ACT and HSGPA), demographic variables, regional dummies and background 

characteristics that have been found to be predictive of college GPA (Beattie, Laliberte & 

Oreopoulos, 2018; Cheng, Hitt & Mills, 2013; Geiser & Santelices, 2007; Kuh, et al., 2008), 

separately for each major using the following equation: 

 

𝐺𝑃𝐴𝑖 =  𝛽0 +  𝛽1𝐻𝑆𝐺𝑃𝐴𝑖 +  𝛽2𝐴𝐶𝑇𝑖 +   𝛽3𝑍𝑖 +  𝛽4𝑅𝑒𝑔𝑖𝑜𝑛𝐷𝑢𝑚𝑚𝑖𝑒𝑠𝑖 + 𝜀𝑖 (3) 
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where GPAi is the May 2017 cumulative GPA for student i and Zi is a vector of student-level 

characteristics including gender, race, and two dummies indicating if the student’s mother and 

father completed college. The variables in equation (3) that overlap with those in equations (1) 

and (2) are defined similarly. 

Using the estimated coefficients from equation (3), student level residuals are computed 

and represent the amount of current academic performance not explained by past performance 

and student level characteristics. We standardize the estimated residual values to have mean zero 

and a standard deviation of one. Standardized residuals are then grouped into quartiles. Students 

in the bottom quartile of the standardized residuals are labeled as “Below Objective Academic 

Expectations,” students in the top quartile are labeled as “Above Objective Academic 

Expectations,” and students in the middle 50% of the distribution represent “Meeting Objective 

Academic Expectations.”  

Unrealistic Subjective Expectations 

 

 As a supplementary analysis to the investigation on students’ subjective expectations 

described above, we study to what extent students’ subjective expectations could be considered 

realistic by comparing their reported subjective expectations with their actual academic 

trajectory at the end of the freshman year. Because enough time has not elapsed since data 

collection during the 2016-2017 academic year, GPA at graduation is still unavailable. To 

overcome this limitation, we compare their subjective expectations of GPA at graduation to a 

projected final GPA that is a function of current performance and course load to determine to 

what extent their reported subjective expectations can be considered unrealistic.  
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To estimate projected final GPA at graduation given end of freshman year performance, 

we use data from about 15,000 freshmen across nine cohorts from 2004 to 2012 at the same 

institution from which our data were collected. 37 Using this data, we then run the following 

regression for business and engineering students separately: 

 

𝐹𝑖𝑛𝑎𝑙𝐺𝑃𝐴𝑖 =  𝛽0 + 𝛽1𝐺𝑃𝐴𝑖  + 𝛽2𝐻𝑜𝑢𝑟𝑠𝑖 +  𝜀𝑖  (4) 

where FinalGPAi is the cumulative GPA at graduation for student i, GPA is the cumulative GPA 

at the end of freshman year for student i and Hoursi is the total hours accumulated by the end of 

the freshman year. The estimated coefficients (𝛽0̂, 𝛽1̂ 𝑎𝑛𝑑 𝛽2̂) from equation (4) allow us to 

predict cumulative GPA at graduation for business and engineering students within our analytic 

sample. This predicted cumulative GPA at graduation would represent the final GPA for each 

student in our sample if they continue on the academic trajectory shown during freshman year. 

We then subtract this predicted cumulative GPA at graduation from the student’s reported 

subjective GPA at graduation to result in a measure of unrealistic subjective expectations. 

Essentially, unrealistic subjective expectations are measured as the distance between what 

students report they are expecting as a final GPA and what trajectory their current academic 

achievement predicts them to be on. Positive numbers represent greater levels of unrealistic 

subjective expectations in final GPA at graduation and negative numbers capture an under 

confidence in their subjective expectations. For example, a student who has a subjective 

expectation of a 4.0 GPA upon graduation and a predicted GPA of 3.0 at graduation, given their 

freshman year performance, is considered to have a 1.0-unit of unrealistic subjective expectation. 

                                                           
37 The data for each individual cohort contributes to the use of 4 and 6-year graduation rates and 

were the source of analysis for Cheng, Hitt and Mills (2013).  
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A student who has a subjective expectation of 2.0 GPA but has a predicted GPA at graduation of 

3.0 would have -1.0 units of unrealistic subjective expectation, meaning that student is on track 

to meet (or surpass) his personal goal or subjective expectations.  

Unrealistic Subjective Expectations and Non-cognitive Skills 

 

 Additionally, we explore what skills, traits, or actions are associated with the amount of 

unrealistic subjective expectations a student possesses. To evaluate this relationship, we estimate 

the following two equations separately for business and engineering students: 

 

𝑈𝑛𝑟𝑒𝑎𝑙𝑖𝑠𝑡𝑖𝑐𝐸𝑥𝑝𝑖 =  𝛽0 +  𝐵𝑖𝑔5𝑖
′𝛽1  + 𝛽2𝐺𝑀𝑖 + 𝛽3𝐿𝑂𝐶𝑖 + 𝛽4𝑁𝑢𝑚𝑖 +  𝛽5𝐶𝑅𝑇𝑖 + 𝛽6𝐻𝑊𝑖 + 𝜀𝑖  (5) 

𝑈𝑛𝑟𝑒𝑎𝑙𝑖𝑠𝑡𝑖𝑐𝐸𝑥𝑝𝑖 =  𝛽0 +   𝛽1𝐺𝑟𝑖𝑡𝑖  +   𝛽2𝐺𝑀𝑖 + 𝛽3𝐿𝑂𝐶𝑖 +  𝛽4𝑁𝑢𝑚𝑖 +   𝛽5𝐶𝑅𝑇𝑖 +  𝛽6𝐻𝑊𝑖 + 𝜀𝑖  (6) 

where UnrealisticExpi represents the amount of unrealistic subjective expectations produced in 

the previous section and HWi is the student’s reported number of study hours per week. The 

variables in equations (5) and (6) that overlap with those in equations (1) and (2) are defined 

similarly. 

Characteristics of Students Below and Above Objective Academic Expectations 

 

 Finally, we also study what non-cognitive skills characterize students performing below 

and above objective academic expectations, as estimated following the strategy presented above. 

To measure the association among various non-cognitive skills, cognitive skills, and student 

performance (above, below or at objective academic expectations) we use a set of multinomial 

logistic regression models shown below. In each equation, the non-cognitive and cognitive 
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measures are standardized to ease interpretation (i.e., presented in terms of standard deviation 

changes).  

𝑃 (𝑌 = 𝑗 1,2,3| 𝑁𝑜𝑛𝑐𝑜𝑔𝑠 + 𝐶𝑜𝑔𝑠) = ln (
𝑃(𝑌 = 𝑗)

𝑃(𝑌 = 2)
)

=  𝛽0 +  𝐵𝑖𝑔5𝑖
′𝛽1 + 𝛽2𝐺𝑀𝑖 + 𝛽3𝐿𝑂𝐶𝑖 +  𝛽4𝑁𝑢𝑚𝑖 + 𝛽5𝐶𝑅𝑇𝑖 + 𝛽6𝐻𝑊𝑖 + 𝜀𝑖  (7) 

𝑃 (𝑌 = 𝑗 1,2,3| 𝑁𝑜𝑛𝑐𝑜𝑔𝑠 + 𝐶𝑜𝑔𝑠) = ln (
𝑃(𝑌 = 𝑗)

𝑃(𝑌 = 2)
)

=  𝛽0 +   𝛽1𝐺𝑟𝑖𝑡𝑖  + 𝛽2𝐺𝑀𝑖 + 𝛽3𝐿𝑂𝐶𝑖 +  𝛽4𝑁𝑢𝑚𝑖 + 𝛽5𝐶𝑅𝑇𝑖 +  𝛽6𝐻𝑊𝑖 + 𝜀𝑖   (8) 

where 𝑌 takes value 1 if a student i is classified as performing below objective academic 

expectations at the end of the freshman year, given his/her high school performance and 

background, value 2 if the student is performing at objective academic expectations, and 3 if 

performing above objective academic expectations. Big5i represents self-reported Big 5 

personality traits, Griti represents self-reported grit scale, GMi represents self-reported growth-

mindsets, LOCi represents self-reported locus of control, Numi is the individual’s score to the 

numeracy ability test, CRTi is the individual’s score to the cognitive reflection test, HWi is the 

student’s reported number of study hours per week and εi is the idiosyncratic error assumed to 

follow a logistic distribution.  

We present estimated coefficients as relative odds ratios, which provide us with an 

estimate of the proportionate change in the probability of performing either above or below 

objective expectations relative to meeting objective expectations when the explanatory variable 

changes by one unit.  
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Results 

 

Subjective Expectations on GPA at Graduation 

 

 Table 4 shows the relationship among a student’s reported subjective expected GPA at 

graduation, past high school academic performance, and self-reported non-cognitive skills for 

business and engineering students separately. Overall, we observe that students both in business 

and engineering are coming into college with high initial reported subjective expectations. 

Across both business and engineering, the average student is reporting to expect a 3.6 and a 3.8 

GPA at graduation, respectively, shown by the estimate of the constant. These high subjective 

expectations are found to increase with past high school academic performance as measured by 

HSGPA and ACT. For instance, across columns 1 through 5, in business, a one standard 

deviation increase in HSGPA and ACT score is associated with 0.040 to 0.043 point and a 0.062 

to 0.066 point increases in subjective GPA at graduation, respectively. The estimates are even 

larger in engineering with effects for HSGPA and ACT scores ranging from 0.078 to 0.088 

points and 0.075 to 0.085 points, respectively. 
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Table 4 

The Relationship between Subjective Expectations, Cognitive Ability, and Non-cognitive Skills  

 

  Business Students    

 

  Engineering Students   

    
Subjective Expected GPA 

   

 

(1) (2) (3) (4) (5)   (6) (7) (8) (9) (10) 

HSGPA 0.043*** 0.041*** 0.042*** 0.040*** 0.041*** 

 

0.088*** 0.082*** 0.081*** 0.079*** 0.078*** 

 

(0.012) (0.012) (0.012) (0.012) (0.012) 

 

(0.016) (0.016) (0.016) (0.016) (0.016) 

ACT 0.062*** 0.064*** 0.065*** 0.064*** 0.066*** 

 

0.075*** 0.082*** 0.082*** 0.085*** 0.085*** 

 

(0.012) (0.012) (0.012) (0.012) (0.012) 

 

(0.018) (0.020) (0.020) (0.020) (0.020) 

Conscientiousness 

 

0.037*** 0.040*** 

    

0.030** 0.029** 

  

  

(0.011) (0.011) 

    

(0.012) (0.013) 

  Agreeableness 

 

-0.003 -0.005 

    

0.007 0.007 

  

  

(0.011) (0.011) 

    

(0.013) (0.013) 

  Neuroticism 

 

-0.005 -0.009 

    

-0.020 -0.019 

  

  

(0.011) (0.011) 

    

(0.014) (0.014) 

  Openness 

 

0.014 0.013 

    

0.022* 0.023* 

  

  

(0.010) (0.010) 

    

(0.013) (0.012) 

  Extraversion 

 

0.018* 0.019* 

    

0.008 0.009 

  

  

(0.010) (0.010) 

    

(0.012) (0.012) 

  Grit  

   

0.029*** 0.029** 

    

0.029** 0.025** 

    

(0.011) (0.011) 

    

(0.013) (0.013) 

Growth Mindset 

  

0.018 

 

0.021* 

   

-0.006 

 

0.001 

   

(0.011) 

 

(0.011) 

   

(0.013) 

 

(0.013) 

Locus of Control 

  

0.018 

 

0.010 

   

-0.007 

 

-0.014 

   

(0.012) 

 

(0.012) 

   

(0.013) 

 

(0.012) 

 

 

 

1
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7
 

 



108 

Table 4 (Cont.) 
Business Students Engineering Students 

Subjective Expected GPA 

z-scores (1) (2) (3) (4) (5)   (6) (7) (8) (9) (10)

Numeracy Ability Test -0.015 -0.016 -0.012 -0.014 -0.018 -0.018 -0.018 -0.021

(0.013) (0.013) (0.013) (0.014) (0.020) (0.020) (0.020) (0.020) 

Cognitive Reflection Test 0.013 0.014 0.014 0.015 0.011 0.010 0.015 0.016 

(0.012) (0.012) (0.012) (0.012) (0.016) (0.017) (0.017) (0.017) 

Constant 3.687*** 3.596*** 3.625*** 3.641*** 3.665*** 3.829*** 3.839*** 3.837*** 3.838*** 3.833*** 

(0.082) (0.087) (0.084) (0.088) (0.086) (0.058) (0.064) (0.065) (0.057) (0.058) 

Controls Yes Yes 

Observations 641 641 641 641 641 441 441 441 441 441 

R-squared 0.196 0.229 0.235 0.209 0.215 0.312 0.344 0.345 0.323 0.325 

Notes: Controls include gender dummies, ethnicity dummies, parental education levels, region dummies, and a before early progress grade dummy. Heteroskedasticity-robust 

standard errors in parentheses, explanatory variables are standardized to have a mean of zero and a standard deviation of one, and *** p<0.01, ** p<0.05, * p<0.1.  

1
08
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Further, estimates of the predictive power of our reported non-cognitive skills in 

predicting reported subjective GPA at graduation appear to be statistically significant. In 

business, reported conscientiousness, extraversion, grit and growth mindset, show significant 

positive associations. In column 3, a one standard deviation increase in conscientiousness is 

associated with a 0.04-point increase in reported subjective GPA at graduation. Similar patterns 

are seen in engineering. Conscientiousness, openness, and grit are all positively related to 

subjective expectations. For example, in column 10, a one standard deviation increase in grit is 

associated with a 0.025-point increase in reported subjective GPA at graduation. These results 

suggest students are forming their subjective expectations of GPA at graduation based on their 

academic experiences in high school and perceived non-cognitive skills. Students seem to 

recognize the importance of non-cognitive skills to succeed.  

 

Objective Expected Performance Based on Background at College Entrance 

 

 Table 5 shows the regression results for the model presented in equation (3) of the 

relationship among end of the freshman year cumulative GPA, past high school academic 

performance, and background characteristics, for business and engineering students separately. 

This analysis studies students’ actual GPA performance at the end of their freshman year and 

differentiates students performing below and above objective expectations. We then study the 

relationship between students’ reported non-cognitive skills and the probability of each student 

performing at each of these levels. 

High school GPA and ACT scores are significant predictors of May 2017 cumulative 

GPA across both samples. For instance, a one standard deviation increase in HSGPA is 



110 

associated with a statistically significant 0.26-point increase in May 2017 cumulative GPA for 

students majoring in business and a 0.43-point increase for students majoring in engineering. 

Overall, student demographics and preparation at college entrance allow us to explain about 27% 

and 45% of the variation in May 2017 cumulative GPA for business and engineering students, 

respectively. This result is consistent with those found in previous literature (Kuh et al., 2008; 

Stephan et al., 2015).   

Table 5 

Objective Expected Performance Based on Background Characteristics 

 

Business Students    Engineering Students 

 

GPA - May 2017 

 

(1)   (2) 

HSGPA 0.264*** 

 

0.434*** 

 

(0.034) 

 

(0.050) 

ACT 0.110*** 

 

0.086** 

 

(0.030) 

 

(0.049) 

    Constant 3.124*** 

 

2.689*** 

 

(0.304) 

 

(0.252) 

    Controls Yes 

 

Yes 

Observations 608 

 

432 

R-squared 0.268   0.453 

Notes: Heteroskedasticity-robust standard errors in parentheses and *** p<0.01, ** 

p<0.05, * p<0.1. Controls include gender dummies, ethnicity dummies, parental 

education levels, and region dummies. Explanatory variables are standardized to 

have a mean of zero and a standard deviation of one. 
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Unrealistic Subjective Expectations on College GPA at Graduation 

 

 In this section, we study the relationship between students’ reported subjective 

expectations of final college GPA at graduation and their expected actual GPA based on their 

observed May 2017 cumulative GPA. This evaluation allows us to get a better understanding of 

the degree to which students enter college with realistic (or unrealistic) expectations of their 

performance. Understanding students’ expectations entering college is important because 

students with larger amounts of unrealistic subjective expectations would need to overcome the 

challenge of performing at their desired reported GPA at graduation.  

We first estimate an equation for the relationship between objective cumulative GPA at 

the end of freshman year and final college GPA, based on data from 9 cohorts of students 

observed from freshman year to graduation during the years 2004 and 2012, as described in 

equation (4) above. Table 6 shows the estimated coefficients from the regression equation 

presented in model (4). The results from both business and engineering majors indicate that 

cumulative GPA at the end of the freshman year and the number of credit hours completed by 

then are significant predictors of actual college GPA at graduation, explaining almost 80% of the 

variation.  

Table 6 

Regression Analysis on Projected Final GPA     

 
Business Students   Engineering Students 

 
Final GPA 

 

(1)   (2) 

2nd Sem. Cumulative GPA 0.819*** 

 

0.841*** 

 

(0.0122) 

 

(0.0142) 

Accumulated Credit Hours 0.0104*** 

 

0.00462** 

 

(0.00167) 

 

(0.00195) 

Constant  0.264*** 

 

0.306*** 

 



112 

Table 6 (Cont.) 

 Business Students   Engineering Students 
 Final GPA 

 (1)   (2) 

 

(0.0342) 

 

(0.0372) 

    Observations 2,593 

 

2,193 

R-squared 0.790   0.789 

Notes: Heteroskedasticity-robust standard errors are presented in parentheses, explanatory 

variables are standardized to have a mean of zero and a standard deviation of one and *** 

p<0.01, ** p<0.05, * p<0.1 

 

 Using these regression coefficients, we predict expected objective GPA at graduation, 

given May 2017 cumulative GPA for students in our sample. Table 7 shows descriptive statistics 

for these projected college GPAs at graduation based on the estimated coefficients of model (4) 

presented earlier. We use these estimates to compare freshmen students’ subjective college GPA 

at graduation with their objective predicted GPA, based on the actual performance at the end of 

their freshman year. This comparison allows us to study whether students hold realistic or 

unrealistic subjective expectations of their college success. To do so, we compute the difference 

of a student’s reported subjective GPA at graduation and the projected expected actual GPA at 

graduation as the amount of unrealistic expectations and study the results for students in both 

majors and for all three objective freshman year performance categories identified above (i.e. 

students performing below objective expectations, meeting expectations or above objective 

expectations). In column 1 of Table 7, we observe business students performing below objective 

expectations are averaging over one point lower in projected objective college GPA compared to 

students performing above expectations. In column 3, those same students are found to have 

significantly larger amounts of unrealistic subjective expectations on their college GPA at 

graduation, averaging around one point of unrealistic expectations. This result means that 

students who are performing below expectations are reporting they expect to perform almost a 

full grade point better than their current performance would predict. 
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 The second half of Table 7 shows a similar pattern for students majoring in engineering. 

Engineering students performing below objective expectations are projected to have a college 

GPA over a point lower at graduation and present higher amounts of unrealistic subjective 

expectations, compared to students performing above objective expectations.  

Table 7 

Projected Final GPA and Unrealistic Expectations 

 
Business Students 

 

Projected GPA at Grad. Unrealistic Expectation 

  (1) (2) (3) (4) 

 

Mean  Std. Dev. Mean Std. Dev. 

All 3.05 0.59 0.45 0.57 

Meeting  3.16 0.42 0.34 0.42 

Below 2.37 0.41 1.06 0.58 

Above 3.50 0.26 0.07 0.30 

     
Difference between 

Below and Above 
-1.13*** 

 
0.99*** 

 

  
     

 

Engineering Students 

 

Projected GPA at Grad. Unrealistic Expectation 

 

Mean  Std. Dev. Mean Std. Dev. 

All 3.17 0.66 0.42 0.59 

Meeting  3.28 0.55 0.33 0.47 

Below 2.52 0.69 1.00 0.63 

Above 3.57 0.32 0.06 0.30 

     
Difference between 

Below and Above 
-1.06*** 

 
0.95*** 

     

Notes: Std. Dev represents the standard deviation. *** p<0.01, ** p<0.05, * p<0.1 
 

Figures 1 and 2 show the distribution of unrealistic subjective expectations for business 

and engineering students, respectively. Even though all groups have some amount of unrealistic 

subjective expectations, students performing below objective expectations seem to have the 

highest levels of unrealistic subjective expectations and students above expectations seem to 
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have the lowest levels. This finding suggests incoming freshmen, in general, may have overly 

optimistic subjective expectations about college performance. It is therefore important to study 

the characteristics and non-cognitive skills possessed by these students, whose freshman year 

performance does not meet their subjective expectations. If this level of optimism among 

students performing under objective expectations is not supplemented with the characteristics 

and non-cognitive skills displayed by students meeting or exceeding objective expectations, 

these students are likely to have a difficult time meeting their high subjective expectations in 

college. 

 

 

Figure 1: Distribution of Unrealistic Subjective Expectations for Business Students. This figure 

shows that students performing below objective academic expectations have the greatest levels 

of unrealistic expectations. 
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Figure 2: Distribution of Unrealistic Subjective Expectations for Engineering Students. This 

figure shows that students performing below objective academic expectations have the greatest 

levels of unrealistic expectations.  

 

Unrealistic Subjective Expectations and Non-cognitive Skills 

 

 Table 8 shows the relationship among unrealistic subjective expectations, cognitive 

measures, non-cognitive skills, and study hours for business and engineering students. Evident 

within the table are the heterogeneous effects of non-cognitive skills across majors. For business 

students, as presented in column 3, a one standard deviation increase in conscientiousness and 

neuroticism is associated with a 0.09 and a 0.05 point decrease in the amount of unrealistic 

subjective expectations, respectively. Alternatively, increases in openness, extraversion, and 

locus of control are positively related to unrealistic subjective expectations. Turning to grit, a one 

standard deviation increase is associated with a 0.05-point decrease in the amount of unrealistic 

subjective expectation, as seen in column 4. The grit effect is no longer statistically significant, 

however, when we control for reported study hours per week. Lastly, scores on the numeracy 

ability test consistently show a negative relationship with unrealistic subjective expectations 
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across all models. In contrast, for engineering students, not a single non-cognitive skill is 

statistically related to unrealistic subjective expectations. However, increases in the cognitive 

reflection test performance showed a consistent negative relationship with the amount of 

unrealistic subjective expectations. 
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Table 8 

Relationship between Unrealistic Subjective Expectations, Cognitive Measures, Study Hours, and Non-Cognitive Skills 

 

  
Business Students 

     

 

  
Engineering Students 

      

      
Unrealistic Expectations 

     

 

(1) (2) (3) (4) (5) (6)   (7) (8) (9) (10) (11) (12) 

Conscientiousness -0.109*** -0.098*** -0.093*** 

    

-0.045 -0.044 -0.042 

   

 

(0.022) (0.023) (0.023) 

    

(0.030) (0.029) (0.030) 

   Agreeableness -0.018 -0.017 -0.016 

    

-0.007 -0.005 -0.005 

   

 

(0.022) (0.022) (0.022) 

    

(0.030) (0.030) (0.030) 

   Neuroticism -0.040* -0.052** -0.051** 

    

0.000 0.004 0.006 

   

 

(0.022) (0.022) (0.023) 

    

(0.032) (0.032) (0.032) 

   Openness 0.113*** 0.106*** 0.112*** 

    

0.027 0.019 0.019 

   

 

(0.022) (0.022) (0.022) 

    

(0.030) (0.030) (0.030) 

   Extraversion 0.055** 0.057*** 0.058*** 

    

0.032 0.029 0.032 

   

 

(0.022) (0.022) (0.022) 

    

(0.026) (0.025) (0.028) 

   Grit  

   

-0.052** -0.043* -0.039 

    

-0.036 -0.034 -0.033 

    

(0.022) (0.024) (0.024) 

    

(0.030) (0.030) (0.031) 

Growth Mindset 

 

0.018 0.015 

 

0.023 0.023 

  

0.001 0.000 

 

0.003 0.003 

  

(0.021) (0.021) 

 

(0.022) (0.022) 

  

(0.026) (0.026) 

 

(0.027) (0.027) 

Locus of Control 

 

0.040* 0.042* 

 

0.040* 0.042* 

  

-0.007 -0.006 

 

0.001 0.001 

  

(0.022) (0.022) 

 

(0.022) (0.022) 

  

(0.030) (0.030) 

 

(0.028) (0.028) 

Numeracy Ability 

Test -0.085*** -0.091*** -0.090*** -0.104*** -0.100*** -0.098*** 

 

-0.040 -0.031 -0.032 -0.034 -0.038 -0.038 

 

(0.025) (0.026) (0.026) (0.026) (0.027) (0.027) 

 

(0.042) (0.042) (0.042) (0.041) (0.042) (0.041) 

 

  

 

1
1
7
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Table 8 (Cont.) 

 

 

  
Business Students 

      

 

  
Engineering Students 

      

 

 

     
Unrealistic Expectations 

     
z-scores  (1) (2) (3) (4) (5) (6)   (7) (8) (9) (10) (11) (12) 

Cognitive Reflection Test  0.017 0.028 0.025 0.029 0.031 0.028 

 

-0.106*** -0.106*** -0.108*** -0.106*** -0.103*** -0.103*** 

 

 (0.025) (0.024) (0.024) (0.026) (0.026) (0.026) 

 

(0.037) (0.038) (0.038) (0.037) (0.037) (0.038) 

Study Hours Per Week  

  

-0.036 

  

-0.028 

   

-0.012 

  

-0.006 

 

 

  

(0.022) 

  

(0.022) 

   

(0.031) 

  

(0.029) 

 

 

             

 

 

             
Constant 

 0.444*** 0.441*** 0.443*** 0.443*** 0.442*** 0.444*** 

 

0.424*** 0.419*** 0.419*** 0.419*** 0.419*** 0.419*** 

 

 (0.021) (0.021) (0.021) (0.022) (0.022) (0.022) 

 

(0.027) (0.027) (0.027) (0.026) (0.027) (0.027) 

 

 

             Observations  637 630 626 632 630 626 

 

467 458 458 463 458 458 

R-squared 
 0.103 0.109 0.114 0.033 0.039 0.042   0.063 0.055 0.055 0.051 0.051 0.051 

Notes: Explanatory variables are standardized to have a mean of zero and a standard deviation of one, heteroskedasticity-robust standard errors in parentheses and *** p<0.01, ** 

p<0.05, * p<0.1 

 

 

1
1
8
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Characteristics of Students Below and Above Objective Academic Expectations 

 

 Finally, we study the characteristics of students who perform below and above objective 

expectations in their freshman year based on their background at college entrance. Tables 9 and 

10 show the relative odds ratios of performing below or above objective expectations relative to 

meeting expectations for business and engineering majors, respectively. As can be seen in the 

tables, non-cognitive skills vary on their effect within major and across major. In column 5 of 

Table 9, a one-standard-deviation increase in conscientiousness decreases the relative odds of 

performing below expectations compared to meeting expectations by about 0.77 times for 

business students. Conversely, a one-standard-deviation increase in conscientiousness increases 

the relative odds of performing above expectations compared to meeting expectations by about 

1.4 times, seen in column 6. Higher openness also increases the relative odds of performing 

below expectations, suggesting that students who are more imaginative and open to new ideas 

are more likely to underperform academically at the end of their freshman year in business. 

Similar patterns exist for grit. In Table 9, column 12, a one-standard-deviation increase in grit 

increases the relative odds of performing above rather than meeting expectations by about 1.2 

times. Neither the cognitive measures nor study hours per week show relevance in predicting 

performance placement for business majors.  

 For engineering students, a different story emerges, as seen in Table 10. Only one non-

cognitive measure shows relevance in characterizing student performance in engineering, 

extraversion. Being more outgoing or extraverted increases the relative odds of performing 

below expectations by about 1.2 times, seen in column 5. The only other consistent finding is the 

positive influence of the cognitive reflection test on meeting expectations versus performing 

below expectations. This result is important because of the negative relationship the cognitive 
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reflection test has on the amount of unrealistic expectations seen in Table 8. These results imply 

that engineering students who critically think about their decisions are more successful in 

navigating college.  
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Table 9  

Non-Cognitive and Cognitive Skills Associated with Students Performing Below and Above Objective Academic Expectations: Business 

 

Below 

Expectations 

Above 

Expectations   

Below 

Expectations 

Above 

Expectations 

Below 

Expectations 

Above 

Expectations   

Below 

Expectations 

Above 

Expectations   

Below 

Expectations 

Above 

Expectations 

Below 

Expectations 

Above 

Expectations 

z-scores (1) (2)   (3) (4) (5) (6)   (7) (8)   (9) (10) (11) (12) 

Conscientiousness 0.770** 1.509*** 

 

0.761** 1.492*** 0.773** 1.447*** 

        

 

(0.085) (0.166) 

 

(0.087) (0.172) (0.089) (0.169) 

        Agreeableness 0.966 1.028 

 

0.953 1.006 0.960 1.013 

        

 

(0.106) (0.114) 

 

(0.106) (0.114) (0.108) (0.115) 

        Neuroticism 0.886 1.063 

 

0.891 1.059 0.899 1.072 

        

 

(0.096) (0.111) 

 

(0.098) (0.114) (0.100) (0.116) 

        Openness 1.177 0.873 

 

1.184 0.870 1.199* 0.857 

        

 

(0.123) (0.092) 

 

(0.125) (0.092) (0.128) (0.092) 

        Extraversion 1.149 1.081 

 

1.151 1.086 1.165 1.081 

        

 

(0.122) (0.110) 

 

(0.122) (0.111) (0.125) (0.111) 

        Grit  

        

0.901 1.302*** 

 

0.905 1.281** 0.920 1.247** 

         

(0.090) (0.126) 

 

(0.096) (0.133) (0.098) (0.131) 

Growth Mindset 

   

1.018 1.102 1.002 1.103 

    

1.007 1.107 0.998 1.104 

 

 

 

1
2
1
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Table 9 (Cont.) 

 

Below 

Expectations 

Above 

Expectations   

Below 

Expectations 

Above 

Expectations 

Below 

Expectations 

Above 

Expectations   

Below 

Expectations 

Above 

Expectations   

Below 

Expectations 

Above 

Expectations 

Below 

Expectations 

Above 

Expectations 

 

(1) (2)   (3) (4) (5) (6)   (7) (8)   (9) (10) (11) (12) 

    (0.101) (0.116) (0.102) (0.117)     (0.097) (0.112) (0.098) (0.113) 

Locus of Control 

   

1.001 1.032 1.004 1.023 

    

1.012 0.993 1.016 0.990 

    

(0.106) (0.115) (0.107) (0.114) 

    

(0.104) (0.106) (0.105) (0.106) 

Numeracy Ability 

Test 0.844 0.918 

 

0.830 0.907 0.835 0.903 

 

0.811* 0.940 

 

0.815* 0.934 0.822* 0.926 

 

(0.097) (0.111) 

 

(0.0967) (0.111) (0.098) (0.110) 

 

(0.093) (0.112) 

 

(0.094) (0.112) (0.096) (0.112) 

Cognitive Reflection 

Test 0.989 1.092 

 

1.001 1.106 0.989 1.115 

 

1.002 1.089 

 

1.002 1.093 0.989 1.102 

 

(0.117) (0.122) 

 

(0.119) (0.124) (0.118) (0.125) 

 

(0.117) (0.121) 

 

(0.117) (0.122) (0.116) (0.123) 

Study Hours Per 

Week 

     

0.867 1.140 

      

0.877 1.158 

      

(0.090) (0.115) 

      

(0.088) (0.115) 

                Constant 0.390*** 0.385*** 

 

0.397*** 0.391*** 0.397*** 0.392*** 

 

0.412*** 0.406*** 

 

0.414*** 0.408*** 0.414*** 0.408*** 

 

(0.039) (0.039) 

 

(0.040) (0.040) (0.040) (0.040) 

 

(0.040) (0.040) 

 

(0.041) (0.040) (0.041) (0.041) 

Observations 674 674   667 667 663 663   669 669   667 667 663 663 

Notes: Explanatory variables are standardized to have a mean of zero and a standard deviation of one. Coefficients are relative odds ratios, standard errors in parentheses and *** 

p<0.01, ** p<0.05, * p<0.1 

 

  

 
1
2
2
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Table 10 

Non-Cognitive and Cognitive Skills Associated with Students Performing Below and Above Objective Academic Expectations: Engineering 

 

Below 

Expectations 

Above 

Expectations   

Below 

Expectations 

Above 

Expectations 

Below 

Expectations 

Above 

Expectations   

Below 

Expectations 

Above 

Expectations   

Below 

Expectations 

Above 

Expectations 

Below 

Expectations 

Above 

Expectations 

 

(1) (2)   (3) (4) (5) (6) 

 

(7) (8)   (9) (10) (11) (12) 

Conscientiousness 1.051 1.164 

 

1.015 1.123 1.017 1.101 

        

 

(0.134) (0.146) 

 

(0.134) (0.147) (0.136) (0.146) 

        Agreeableness 0.872 0.901 

 

0.870 0.903 0.869 0.902 

        

 

(0.112) (0.115) 

 

(0.113) (0.117) (0.113) (0.117) 

        Neuroticism 0.988 0.848 

 

0.986 0.849 0.988 0.836 

        

 

(0.132) (0.113) 

 

(0.133) (0.114) (0.134) (0.114) 

        Openness 0.920 1.082 

 

0.928 1.098 0.927 1.101 

        

 

(0.111) (0.131) 

 

(0.114) (0.135) (0.114) (0.136) 

        Extraversion 1.235* 1.012 

 

1.242* 1.023 1.246* 0.996 

        

 

(0.158) (0.128) 

 

(0.160) (0.131) (0.164) (0.130) 

        Grit  

        

1.031 1.200 

 

1.021 1.178 1.016 1.154 

         

(0.121) (0.138) 

 

(0.125) (0.142) (0.127) (0.142) 

Growth Mindset 

   

1.050 0.983 1.050 0.989 

    

1.040 0.999 1.040 1.002 

 

 

 

1
2
3
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Table 10 (Cont.) 

 

Below 

Expectations 

Above 

Expectations   

Below 

Expectations 

Above 

Expectations 

Below 

Expectations 

Above 

Expectations   

Below 

Expectations 

Above 

Expectations   

Below 

Expectations 

Above 

Expectations 

Below 

Expectations 

Above 

Expectations 

 

(1) (2)   (3) (4) (5) (6) 

 

(7) (8)   (9) (10) (11) (12) 

    (0.129) (0.118) (0.129) (0.119)     (0.124) (0.117) (0.124) (0.118) 

Locus of Control 

   

0.934 0.917 0.934 0.917 

    

0.954 0.911 0.953 0.909 

    

(0.120) (0.120) (0.120) (0.120) 

    

(0.118) (0.115) (0.118) (0.115) 

Numeracy Ability Test 1.340* 1.194 

 

1.232 1.113 1.233 1.121 

 

1.293 1.168 

 

1.221 1.109 1.223 1.115 

 

(0.219) (0.197) 

 

(0.211) (0.192) (0.212) (0.193) 

 

(0.214) (0.194) 

 

(0.209) (0.189) (0.209) (0.191) 

Cognitive Reflection Test 0.726** 1.003 

 

0.738* 1.010 0.737* 1.026 

 

0.723** 1.025 

 

0.736* 1.036 0.739* 1.050 

 

(0.117) (0.157) 

 

(0.119) (0.159) (0.120) (0.162) 

 

(0.115) (0.159) 

 

(0.117) (0.161) (0.118) (0.165) 

Study Hours Per Week 

     

0.990 1.127 

      

1.024 1.103 

      

(0.122) (0.138) 

      

(0.124) (0.133) 

                
Constant 0.400*** 0.403*** 

 

0.415*** 0.418*** 0.414*** 0.415*** 

 

0.411*** 0.410*** 

 

0.420*** 0.419*** 0.420*** 0.417*** 

 

(0.047) (0.047) 

 

(0.049) (0.049) (0.049) (0.049) 

 

(0.048) (0.048) 

 

(0.049) (0.049) (0.049) (0.049) 

Observations 478 478   469 469 469 469   474 474   469 469 469 469 

Notes: Coefficients are relative odds ratios, standard errors in parentheses and *** p<0.01, ** p<0.05, * p<0.1 

 

 

 

1
2
4
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Robustness Checks 

 

 As a robustness check to the analysis performed on objective expectations, unrealistic 

expectations, and the characteristics of students below and above objective expectations, we 

estimated two additional specifications. In the first alternative specification, we define 

performing above objective expectations as being in the top 15% and performing below 

objective expectations as being in the bottom 15% of the residual distribution produced from 

equation (3), instead of considering the top and bottom quartiles as we did previously. In the 

second specification, we define performing above and below objective expectations as being in 

the top 5% and bottom 5% of the distribution, respectively.  

For business students, we find little evidence of change in the interpretation of the results 

presented above using the first alternative specification. Students performing below expectations 

have the greatest amount of unrealistic expectations and the possession of conscientiousness and 

grit both increase the likelihood of performing above expectations. However, study hours per 

week gained significance in increasing the likelihood of performing above expectations. In the 

second alternative specification, the direction of the results discussed around unrealistic 

expectations and the characteristics of students performing above and below objective 

expectations remained unchanged, but are now non-distinguishable from zero. This lack of 

statistical significance found by the second specification could be explained by the small sample 

size located in the top and bottom 5% of the distribution. 

For engineers, under both alternatives specifications for defining students performing 

above, below, and meeting objective expectations, the results from above remain qualitatively 

the same; however, various non-cognitive skills become statistically significant in both 
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specifications. In the first alternative specification, agreeableness decreases your likelihood of 

performing below expectations, while students who are open to new experiences are more likely 

to perform above expectations. Similar to the findings for business students, an increase in study 

hours increases the chances of performing above expectations. In the second specification, 

openness remains a significant predictor of performing above expectations while neuroticism 

decreases those chances. Results for both specifications using the full models of equations (7) 

and (8) in business and engineering can be found in the Appendix Tables A.2 and A.3, 

respectively. 

Conclusion 

 

This chapter contributes to the literature on non-cognitive skills and college success in 

three ways. First, we try to understand what factors are related to students’ subjective 

expectations of college success, whether those subjective expectations are realistic, given 

performance at the end of their freshman year, and whether non-cognitive skills are associated 

with these subjective expectations. Second, we study the extent to which students are performing 

above or below objective expectations, based on their previous performance and background, 

and whether or not they have realistic or unrealistic subjective expectations about their future 

performance. Lastly, we complement the work of Beattie, Laliberte, and Oreopoulos (2018) by 

analyzing the relationship between non-cognitive skills and a wide distribution of first-year 

college outcomes, but within the context of the U.S. and for both students majoring in business 

and engineering, compared to students majoring in economics in Canada. 

Among the factors related to students’ reported subjective GPA at graduation, we find 

that across both majors students’ high school academic performance plays a big role in 
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influencing the subjective expectations among freshmen students. In addition, through 

heterogeneous in their effects across majors, non-cognitive skills, such as conscientiousness and 

grit, are also found to be significantly associated with students’ reported subjective GPA at 

graduation.  

 We then compare students’ reported subjective GPA at graduation to their predicted 

objective GPA, given actual performance at the end of the freshman year, and build measures of 

unrealistic subjective expectations. Students performing below objective expectations have the 

greatest amounts of unrealistic subjective expectations on their GPA at graduation as compared 

to students meeting objective expectations and performing above objective expectations. These 

students average about a full grade point of idealistic expectations about their GPA. It appears 

that students on the cusp of being unsuccessful in college are the students with the greatest levels 

of unrealistic subjective expectations. To put this finding in perspective, let’s take a student at 

the end of his freshman year who has a 2.0 GPA, 30 completed credit hours, projected to have a 

2.0 GPA at the end of their college career, but expects to have a 3.0 GPA when he graduates. To 

overcome a grade point of unrealistic subjective expectations and to reach a 3.0 GPA at 

graduation, it will require this student to take at least 16 credit hours for each of the next two 

semesters and attaining 4.0 GPAs for both semesters. Once the 3.0 GPA is achieved, the student 

will have to maintain his performance for the rest of his college career to meet his desired 

subjective expectations. This task is daunting for students without the necessary non-cognitive 

skills.  

How can we better help students achieve their ambitious goals? One possible intervention 

would be to partner with students in promoting the effort and non-cognitive skills, such as 

conscientiousness and time management, necessary to reaching their subjective expectations and 
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succeeding in their respective fields (Hall & Sverdik, 2016). Thus it is imperative to identify and 

understand what skills are required to succeed in college.  

Our results suggest there is no single pattern of non-cognitive skills that characterize 

students with large amounts of unrealistic subjective expectations or students performing below 

or above objective expectations in both fields of study. In addition, we corroborate results by 

Beattie, Laliberte, and Oreopoulos (2018) among business students. In this case, being more 

organized and reliable or conscientious is found to be significantly associated with lower 

amounts of unrealistic subjective expectations a student has and higher odds of performing above 

objective expectations. Similar patterns are observed for grit, or not giving up so easily, reduces 

the amount of unrealistic subjective expectations while increasing the odds of performing above 

objective expectations.  

However, results are very different among engineering students. For our main 

specification in engineering, only a single non-cognitive skill identified students in either tail. 

Students who self-report higher levels of extraversion, have higher relative odds of performing 

below objective expectations. However, with a more restrictive definition of performing below 

and above objective expectations, greater levels of openness increased the odds of performing 

above expectations while increased neuroticism decreased those odds. 

This lack of a consistent pattern may reflect self-selection of students into engineering 

and business, or they could be due to the differing requirements by major. The engineering 

college at the university requires all students to meet weekly with a peer mentor to cover the 

behaviors required (i.e., high school college transition, academic success strategies, and personal 

wellness) to achieve success in their respective engineering program. Mentoring could mask the 
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influence of non-cognitive skills behind the influence of peer advice on how to be successful in 

engineering. For university administrators, this finding alludes to the need of analyzing groups of 

students separately to better identify the skills needed to help students achieve success within 

their respective degree fields. Therefore, the results we saw from previous work on economics 

students in Canada, by Beattie, Laliberte, and Oreopoulos (2018) and Beattie, Laliberté, 

Michaud- Leclerc, and Oreopoulos, (2017) might not fit all students in all fields. 

We propose not to judge whether a student’s subjective expectations are too high but to 

determine if their performance, attitudes, and non-cognitive skills can be developed to prepare 

them to reach those optimistic subjective expectations. For the reason that if this level of 

optimism among students performing under expectations is not combined with the levels of 

effort and non-cognitive skills required to meet or exceed expectations, these students may have 

a difficult time satisfying their high expectations in college. 
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Appendix 

Table A.1 

Survey Questions of all Non-cognitive Skills  

  

 

  Alpha 

 Construct Introduction to Construct Question Likert-Scale Business Engineering Authors 

Conscientiousness 

Here are a number of questions 

about yourself; there are no right 

or wrong answers. Please answer 

to the best of your ability. Indicate 

your level of agreement with the 

following statements: 

1. I am someone who does a thorough 

job 

2. I am someone who can be somewhat 

careless 

3. I am someone who is a reliable 

worker 

4. I am someone who tends to be 

disorganized 

5. I am someone who tends to be lazy 

6. I am someone who perseveres 

until the task is finished 

7. I am someone who does things 

efficiently 

8. I am someone who makes plans 

and follows through with them 

9. I am someone who is easily 

distracted 

(1) Strongly Disagree  

(2) Disagree  

(3) Neither Agree nor 

Disagree  

(4) Agree  

(5) Strongly Agree 

0.77 0.78 

John, Donahue and Kentile (1991) 

Agreeableness 

1. I am someone who tends to find fault 

with others 

2. I am someone who is helpful and 

unselfish with others 

3. I am someone who starts quarrels 

with others 

4. I am someone who has a forgiving 

nature 

5. I am someone who is generally 

trusting 

6. I am someone who can be cold 

and aloof 

7. I am someone who is considerate 

and kind to almost everyone 

8. I am someone who is sometimes 

rude to others 

9. I am someone who likes to 

cooperate with others 

0.73 0.75 

Neuroticism 

1. I am someone who is depressed, blue 

2. I am someone who is relaxed, 

handles stress well 

3. I am someone who can be tense 

4. I am someone who worries a lot 

5. I am someone who is emotionally 

stable, not easily upset 

6. I am someone who can be 

moody 

7. I am someone who prefers work 

that is routine 

8. I am someone who gets nervous 

easily 

0.77 0.78 

Openness 

1. I am someone who is original, comes 

up with new ideas 

2. I am someone who is curious about 

many different things 

3. I am someone who is ingenious, a 

deep thinker 

4. I am someone who has an active 

imagination 

5. I am someone who is inventive 

6. I am someone who values 

artistic, aesthetic experiences 

7. I am someone who remains calm 

in tense situations 

8. I am someone who likes to 

reflect, play with ideas 

9. I am someone who has few 

artistic interests 

10. I am someone who is 

sophisticated in art, music, or 

literature 

0.77 0.74 

1
3
4
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Table A.1 (Cont.) 

  
 

  Alpha 
 

Construct Introduction to Construct Question Likert-Scale Business Engineering Authors 

Extraversion 
 

1. I am someone who is talkative 

2. I am someone who is reserved 

3. I am someone who is full of energy 

4. I am someone who generates a lot of 

enthusiasm 

5. I am someone who tends to be quiet 

6. I am someone who has an assertive 

personality 

7. I am someone who is sometimes 

shy, inhibited 

8. I am someone who is outgoing, 

sociable 

 
0.83 0.88 

 

Grit 

On the following pages you will see 

a number of statements that may or 

may not apply to you. When 

responding, think of how you 

compare to most people -- not just 

the people you know well, but most 

people in the world. There are no 

right or wrong answers, so just 

answer honestly! 

1. New Ideas and projects sometimes 

distract me from previous ones 

2. Setbacks don’t discourage me 

3. I have been obsessed with a certain idea 

or project for a short time but later lost 

interest 

4. I am a hard worker 

5. I often set a goal but later choose to 

pursue a different one 

6. I have difficulty maintaining my 

focus on projects that take more than 

a few months to complete 

7. I finish whatever I begin 

8. I am diligent 

(1) Strongly Disagree  

(2) Disagree  

(3) Neither Agree nor 

Disagree  

(4) Agree  

(5) Strongly Agree 

0.65 0.74 (Duckworth and Quinn, 2009) 

Growth Mindset 

Whether a person does well or 

poorly in college may depend on a 

lot of different things. In the 

questions that follow, you may feel 

that some of these things are easier 

for you to change than others. In 

college, how possible is it for you to 

change: 

1. Being talented 

2. Liking a subject 

3. Your level of intelligence 

4. Putting forth a lot of effort 

5. Being attentive in class 

6. How easily you give up 

(1) Not at all possible to 

change  

(2) A little possible to 

change  

(3) Somewhat possible to 

change  

(4) Quite possible to change   

(5) Completely possible to 

change 

0.69 0.63 

Developed from from the 

Classroom Mindset from the 

Panorama Student Survey. 

Locus of Control 

How much do you agree or disagree 

with each of the following statements 

about yourself? Remember, this is 

not a test and there are no right or 

wrong answers: 

1. Good luck is more important than hard 

work for success 

2. Every time I try to get ahead, something 

or somebody stops me 

3. Planning only makes a person unhappy 

since plans hardly ever work out anyway 

4. People who accept their condition in 

life are happier than those who try to 

change things 

5. I often feel like I don’t have control 

over my life 

6. When I make plans, I am almost 

certain I can make them work 

(1) Strongly Disagree  

(2) Disagree  

(3) Neither Agree nor 

Disagree  

(4) Agree  

(5) Strongly Agree 

0.64 0.66 

Developed from the Students' 

Perception of Control 

Questionnaire (SPOCQ). 

Wellborn et al., (1989) 

1
3
5
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Table A.2  

Non-Cognitive and Cognitive Skills Associated with Students Performing Below and Above 

Objective Academic Expectations: Business 

 

    15%   

 

    5%   

 

B.E A.E.   B.E A.E   B.E A.E   B.E A.E 

 

(1) (2)   (3) (4)   (5) (6)   (7) (8) 

Conscientio

usness 0.651*** 1.302*         0.598** 1.139       

 

(0.089) (0.176) 

    

(0.131) (0.245) 

   Agreeablen

ess 0.863 1.066 

    

0.866 1.139 

   

 

(0.114) (0.143) 

    

(0.182) (0.244) 

   Neuroticis

m 0.896 1.133 

    

0.777 1.247 

   

 

(0.118) (0.143) 

    

(0.168) (0.261) 

   
Openness 1.410*** 0.934 

    

1.362 0.865 

   

 

(0.179) (0.118) 

    

(0.274) (0.175) 

   Extraversio

n 1.127 0.897 

    

1.111 1.121 

   

 

(0.145) (0.107) 

    

(0.229) (0.221) 

   
Grit  

   

0.823 1.260* 

    

0.804 1.064 

    

(0.105) (0.157) 

    

(0.165) (0.214) 

Growth 

Mindset 1.045 1.161 

 

0.877 0.942 

 

0.963 1.071 

 

0.923 1.093 

 

(0.125) (0.149) 

 

(0.119) (0.133) 

 

(0.182) (0.215) 

 

(0.167) (0.213) 

Locus of 

Control 1.046 0.935 

 

0.976 0.948 

 

1.078 0.824 

 

1.132 0.843 

 

(0.127) (0.124) 

 

(0.134) (0.131) 

 

(0.211) (0.179) 

 

(0.214) (0.176) 

Numeracy 

Ability Test 0.916 0.906 

 

1.025 1.163 

 

0.852 0.806 

 

0.841 0.819 

 

(0.126) (0.128) 

 

(0.118) (0.144) 

 

(0.188) (0.176) 

 

(0.184) (0.178) 

Cognitive 

Reflection 

Test 0.960 0.960 

 

1.103 0.972 

 

1.283 0.825 

 

1.273 0.828 

 

(0.135) (0.133) 

 

(0.130) (0.123) 

 

(0.268) (0.208) 

 

(0.260) (0.207) 

Study 

Hours Per 

Week 0.944 1.298** 

 

0.953 1.295** 

 

0.751 0.963 

 

0.760 0.971 

 

(0.115) (0.154) 

 

(0.113) (0.152) 

 

(0.151) (0.187) 

 

(0.148) (0.188) 

            
Constant 0.168*** 0.172*** 

 

0.185*** 0.176*** 

 

0.041*** 0.045*** 

 

0.046*** 0.047*** 

 

(0.021) (0.021) 

 

(0.022) (0.021) 

 

(0.009) (0.009) 

 

(0.009) (0.009) 

Observatio

ns 663 663   663 663   663 663   663 663 

Notes: Explanatory variables are standardized to have a mean of zero and a standard deviation of 

one. Coefficients are relative odds ratios, standard errors in parentheses and B.E and A.E 

represent below expectations and above expectations, respectively.  

*** p<0.01, ** p<0.05, * p<0.1 
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Table A.3 

Non-Cognitive and Cognitive Skills Associated with Students Performing Below and Above 

Objective Expectations: Engineering 

 

    15%   

 

    5%   

 
B.E A.E.   B.E A.E   B.E A.E   B.E A.E 

 

(1) (2)   (3) (4)   (5) (6)   (7) (8) 

Conscientio

usness 0.871 0.914         0.851 0.747       

 
(0.139) (0.141) 

    

(0.226) (0.179) 

   Agreeablen

ess 0.705** 0.981 

    

0.701 0.996 

   

 
(0.108) (0.152) 

    

(0.178) (0.248) 

   
Neuroticism 0.901 0.838 

    

1.120 0.627* 

   

 
(0.145) (0.135) 

    

(0.294) (0.163) 

   
Openness 1.043 1.347** 

    

0.970 1.797** 

   

 
(0.153) (0.201) 

    

(0.232) (0.469) 

   Extraversio

n 1.250 1.008 

    

1.264 0.769 

   

 
(0.194) (0.158) 

    

(0.311) (0.207) 

   
Grit  

   

0.911 1.226 

    

1.008 1.038 

    

(0.135) (0.183) 

    

(0.239) (0.258) 

Growth 

Mindset 1.145 0.878 

 

1.110 0.926 

 

1.250 0.989 

 

1.189 1.138 

 
(0.171) (0.123) 

 

(0.159) (0.126) 

 

(0.314) (0.244) 

 

(0.284) (0.265) 

Locus of 

Control 0.924 1.071 

 

0.993 1.143 

 

0.668 1.090 

 

0.762 1.210 

 
(0.137) (0.163) 

 

(0.145) (0.168) 

 

(0.165) (0.268) 

 

(0.190) (0.275) 

Numeracy 

Ability Test 1.272 1.243 

 

1.236 1.198 

 

1.134 1.431 

 

1.105 1.312 

 
(0.261) (0.256) 

 

(0.252) (0.241) 

 

(0.376) (0.494) 

 

(0.358) (0.441) 

Cognitive 

Reflection 

Test 0.671** 0.836 

 

0.692* 0.900 

 

0.538* 0.518* 

 

0.555* 0.606 

 

(0.132) (0.160) 

 

(0.132) (0.169) 

 

(0.178) (0.174) 

 

(0.178) (0.197) 

Study 

Hours Per 

Week 1.172 1.282* 

 

1.192 1.218 

 

0.675 1.076 

 

0.670 0.978 

 
(0.171) (0.185) 

 

(0.169) (0.173) 

 

(0.170) (0.263) 

 

(0.167) (0.231) 

            
Constant 

0.174**

* 

0.177**

* 

 

0.183**

* 

0.180**

* 

 

0.040**

* 

0.038**

* 

 

0.043**

* 

0.046**

* 

 
(0.026) (0.026) 

 

(0.026) (0.026) 

 

(0.012) (0.011) 

 

(0.011) (0.011) 

Observation

s 469 469   469 469   469 469   469 469 

Notes: Explanatory variables are standardized to have a mean of zero and a standard deviation of 

one. Coefficients are relative odds ratios, standard errors in parentheses and B.E and A.E 

represent below expectations and above expectations, respectively.  

*** p<0.01, ** p<0.05, * p<0.1 
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Conclusion 

 

This dissertation looks at three components that could help promote college success for 

undergraduates students: access to need-based grants, access to peer mentors paired with first-

year students on academic probation, and possessing non-cognitive skills such as 

conscientiousness and grit. 

Chapter 1 rigorously evaluates a one-time, need-based grant awarded to low-income, but 

academically promising, undergraduate students with high amounts of unmet need, intended to 

encourage high grade performance and persistence. Despite previous findings suggesting that 

both federal and state-developed need-based grant programs encourage year-to-year persistence 

and academic performance and persistence, access to these particular need-based grants failed to 

positively influence GPA, accumulated credits, or sophomore year enrollment. 

 Chapter 1 is not without limitations despite the ability to estimate the effects of the STEP 

grant program using an experimental research design. First, the presented effects could be 

underpowered effects due to the relatively small sample size for an experimental research design. 

The presented null effects could be a statistical power issue and not true effects. Secondly, since 

the STEP grant program was produced on campus for a select group of students with specific 

characteristics, the estimated effects might not be generalizable to other universities.  

Chapter 2 rigorously examines the BounceBack mentoring program where freshmen 

students on academic probation were assigned a peer mentor to help change their academic and 

non-academic behavior during their first semester on academic probation. I fail to find a 

distinguishable effect of the program on term GPA, accumulated credits, or the probability of 

returning to their second year of school. However, after various robustness checks, I 
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paradoxically find suggestive evidence that the BounceBack program increased spring term 

GPA, but reduced the probability of students returning for their sophomore year of college. 

When compared to ten previous cohorts of first-year students on academic probation without 

adding supports, it seems that the BounceBack program has alleviated the previously seen 

adverse effects of the probability of returning to good academic standing, but as the cost of 

returning their sophomore year.  

 Chapter 2 suffers from three main limitations. First, since the regression discontinuity 

design produces estimates inside a limited bandwidth, the estimated effects of the mentoring 

program cannot be extrapolated to those outside of the specified bandwidth. Such design 

prevents the declaration of an effect of the entire program and only gives us the confidence of the 

effect on individuals in a limited bandwidth. Second, this chapter suffers from sample size 

concerns. The small size of the program, in addition to the use of a limited bandwidth, reduces 

statistical power and the precision of our estimates. Lastly, similar to the caveat of Chapter 1, 

due to the uniqueness of the University of Arkansas and the targeted student population, the 

estimated effects could lack generalizability to other higher education contexts.  

Chapter 3 provides a descriptive look at the relationship among non-cognitive skills, 

objective academic expectations, subjective academic expectations, and student success. I find 

no single pattern of non-cognitive skills characterizing students performing below or above 

objective expectations across majors. However, those students who are performing below 

objective expectations possess the highest levels of unrealistic expectations about their future 

performance.  



142 

Chapter 3 is limited by the sole use of self-reported non-cognitive measures. Though 

these survey results are readily used and convenient, they are susceptible to potential biases such 

as students providing socially desirable answers or using varying reference groups (Duckworth 

& Yeagar, 2015). Additionally, the focus on a subset of college-going students limits the 

exportability of our results to the wider university population and other colleges and universities.  

 Despite the comprehensive set of limitations, Chapter 1 builds on the scant amount of 

literature devoted to campus-developed, need-based grant programs by evaluating a new need-

based grant program using an experimental research design. Chapter 2 adds to the descriptive 

research of peer-mentoring effects on students on academic probation by being the first to 

rigorously research a peer-mentoring program for first-year students on academic probation. 

Chapter 3 expands our understanding of the relationship among non-cognitive skills, subjective 

expectations, and objective expectations in the context of undergraduates attending a public U.S. 

university.  

Taking the contributions of literature together, this dissertation expands our 

understanding of the multifaceted nature of college success when placed inside of the context of 

each respective student group being educated in a higher education institution. “College success” 

is a vague term, especially when universities have various requirements for specific degree 

programs and student populations each with a prescribed definition of student success. 

The goal is not to distill the various definitions of success into one definition. The goal is 

to continue to develop support programs with the intention of aligning student success with the 

continued creation, building, and execution of such programs. Being able to retain each student 

who enters the university will not emerge from a single program or a single tuition check. It will 
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occur when the holistic approach of supporting the student academically by providing a group of 

peers to connect with, and by instilling the values of hard work, time management, and life 

balance.  
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