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Abstract 

 Samples collected at five different large bird poultry processing facilities over a period of 

7 months from prescald to post debone locations were enumerated for Enterobacteriaceae, 

Salmonella spp., and Campylobacter spp. and the results were used to create Quantitative 

Microbial Risk Analyses (QMRA) models for parts, ground, and mechanically separated chicken 

(MSC) products. Sensitivity analyses indicated the points in the process at which reductions would 

be most advantageous to the endpoint and simulation models were run to test reductions required 

to meet the current USDA performance standards. 

 These data were analyzed to determine the reductions from one node (location) to the next 

and including outside variables (line speed, presence of a post-pick cabinet, pH, and chemical 

concentration) in the process that may affect the efficacy of these applications in the process. 

Stepwise regression analyses were used to determine if there was a relationship between the 

reductions and these variables. If the relationship was significant, then it was further explored with 

linear estimation to find the most beneficial point at which each of these factors influenced the 

largest reduction in either Salmonella spp. or Campylobacter spp. 

 Data on poultry products during processing was analyzed to identify for 

Enterobacteriaceae, Salmonella spp., and Campylobacter spp. for each sample. These samples 

were then compared to determine if there existed a statistically significant relationship between 

Enterobacteriaceae and Campylobacter spp. and/or Salmonella spp. at first processing and for 

several post-debone products (parts, ground, frames, and MSC). 

 Results from these analyses indicated that the parts product should be able to meet USDA 

FSIS Agency standards, but that ground and MSC product would require reductions (starting from 

pre-scald) that may not be reasonably likely to occur at a processing facility. The use of the 



intervention analysis should aid in determining the best intersect of pH and chemical concentration 

in removing these pathogens from the first process whole bird carcass rinse (WBCR) samples. 

Analysis of Enterobacteriaceae as an indicator organism resulted in a justification for the use of 

Enterobacteriaceae as a predictor organism for first processing WBCR samples. 
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Chapter 1 Introduction 
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1.1 Poultry Production and Foodborne Pathogens  

Interest in foodborne pathogens has been strongly focused upon the meat industry (Fegan 

and Jenson, 2018). The poultry production industry has specifically been associated with 

increased risk of Salmonella and Campylobacter infection (Crotta et al., 2017). Recent Agency 

standards (USDA FSIS, 2016) for these pathogens have been created in an attempt to mitigate 

the risks associated with consumption of poultry products, claiming to help reduce 

approximately 50,000 illnesses annually (Consumer Federation of America, 2016). As 

Salmonella and Campylobacter are two of the most documented foodborne pathogens in the 

United States, the focus on these pathogens in poultry production is justified (CDC, 2018). 

Salmonella and Campylobacter load in poultry products may be the result of either initial 

contamination at grow-out or cross-contamination during processing. Birds come to the 

processing facility from broiler farms after being crated on a truck for the transport to the 

facility. Any pathogens that are on the birds at grow-out will continue on to the facility, as well 

as any cross-contamination that may occur on the truck (Skarp et al., 2016). 

As birds are brought into the processing facility they are off-loaded onto a platform that 

merges into a belt where there may be contact between contaminated and uncontaminated 

animals. As the belt runs into the live-hang area, birds are shackled, and after harvesting are 

moved into the scalder, where hot water flows at a countercurrent to clean physical 

contamination off the bird carcasses. The scalder and the consecutive picker location are both 

places where contamination can be spread from one bird to another (Seliwiorstow et al., 2016). 

The bird carcasses remain shackled while they go through evisceration and more 

interventions, such as inside-outside bird washers (IOBW) and the on-line reprocessing cabinet 
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(OLR). Once the OLR treatment is complete the birds are un-shackled and immersed in the 

chiller apparatus, after which they may go through deboning and further processing. The chiller 

exit is the end of first processing at the facility. Carcasses then go on to debone, where they may 

be cut into parts, and some of these parts may go to ground product, while frames from the 

carcasses will go into mechanically separated chicken (MSC) product. 

Bird rinses or product samples may be taken throughout this process to monitor pathogen 

levels at each stage of the process. Bio mapping studies show that counts may be expected to 

decrease from the pre-scald location to post-chill, and rarely increase at any points thereafter. 

Although cross-contamination can occur in a process, the flow of the process is rapid and it is 

unlikely that bacterial load would have time to increase to a meaningful degree. Excluding 

specific processing situations, the ambient temperature after first processing is such that any 

research can justifiably consider the predominance of pathogen load recovered as the result of 

initial contamination of the carcass.  

The ground and MSC processes are different from others in that product from multiple 

carcasses is homogenized and, at these locations, mean log10 Salmonella and Campylobacter 

count have been known to be higher than the load found on the product prior to processing in the 

grinder or beehive. Determining how to reduce bacterial counts for parts post-debone and in 

ground and MSC product has become a problem that researchers in the poultry industry have 

sought to solve.  

1.2 Quantitative Microbial Risk Analyses 

The first quantitative microbial risk analyses (QMRA) were completed to follow the 

presence of Salmonella enteritidis in eggs (Whiting and Buchanan, 1997) and to follow E.coli 
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0157:H7 through a ground beef process (Cassin et al., 1998). These models linked distributions 

that represented separate events in a process and then used an iterative sampling technique to create 

a final distribution from which predicted exposure could be determined. Most QMRA exercises 

follow this format, with many adding an analysis at the end of the exposure endpoints to attempt 

to forecast the risk of infection through a dose-response, although the power of these projections 

has been questioned (Fegan and Jenson, 2018).   

 There have been many QMRA analyses completed for Salmonella spp. in poultry and most 

likely more for Campylobacter spp. as a result of the Campylobacter Risk Management and 

Assessment (CARMA) project in the Netherlands (Havelaar, 2004), the results of which helped to 

further define the nodular format often used in current QMRA designs. In this stochastic approach, 

locations, or nodes, where counts could increase or decrease due to several factors (intervention, 

cutting, mixing, or cross-contamination), are investigated with distributions which are linked with 

a modular design (Nauta and Schaffner, 2008).  

 The most difficult aspect of creating a QMRA that is representative of a process is the 

integrity of the data used for its construction (Pradhan, 2001). Most QMRA models are, by 

necessity, built with data from multiple prior studies or samples from different flocks or facilities. 

A QMRA built from samples collected as they run through the process would be of benefit to 

better understand foodborne pathogens in poultry processing. 

1.3 Analyzing Pathogen Reduction by Intervention Type and Chemical Concentration 

 A large section of the literature on the efficacy of specific poultry processing interventions 

in reducing microbial load is focused on a specific chemical applied at a specific location. Samples 

are taken before and after application and then the bactericide’s success is determined by the 
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amount of reduction exhibited after application. Many of these studies are completed in a 

laboratory setting or a pilot plant, where conditions are controlled and media may be inoculated. 

These are beneficial to understanding the mechanism of an intervention on products but cannot 

alone indicate if the products being tested will work effectively in a processing environment.  

 However, sampling to test an intervention at processing is not without its own set of 

difficulties. Recovery at some locations, specifically post-chill, is considered suspect by some 

researchers in that the landscape of the bird carcass can hold onto cells even at rinsing (Lillard, 

1988; Williams et. al, 2010). Currently there is concern that the use of non-neutralized buffered 

peptone water in bird rinses may also allow interventions to continue to destroy cells up to 

recovery. With refined processes, both Campylobacter and Salmonella have been reduced in the 

processing environment to an extent that they are difficult to find.  

 Analysis of these datasets presents even more difficulty when a large frequency of 0’s, or 

indeterminable results, are left to the researcher to define. Because log10 transformation of 0 results 

are undefined, it is left to the researcher to transform these values to a meaningful result. When 

sampling is costly and datasets are small, there is some difficulty in teasing out meaningful answers 

regarding the efficacy of interventions at processing. 

1.4 Enterobacteriaceae as an indicator organism for Salmonella and Campylobacter 

 The use of indicator organisms has proven useful in detecting and defining the behavior of 

foodborne pathogens in poultry processing (Roccato et al., 2018; Schaffner and Smith, 2004). 

Indicator organisms act as a gauge from which the increase or decrease of a pathogen, if it were 

present and had been recovered, it could be predicted. Such information allows researchers to 

determine if an intervention or process would be successful in inactivating these pathogens without 
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the cost of extensive laboratory experiments while taking advantage of the variable nature of the 

processing environment.  

 Enterobacteriaceae has long been considered an indicator organism (USDA, 2012). It is 

relatively inexpensive to enumerate (in relation to more costly methods, such as MPN 

methodology for recovering Salmonella). Enterobacteriaceae is found in greater numbers than 

either Campylobacter or Salmonella so reductions can be readily monitored. As Salmonella falls 

within the large Enterobacteriaceae family it is reasonable to consider it as a reliable indicator 

organism for this pathogen. The goal is to find a relationship, if one exists between 

Enterobacteriaceae and Campylobacter, or Enterobacteriaceae and Salmonella, and to define 

these terms to an extent that the load these pathogens may be inferred from the indicator organism.  

1.5 Elements of the Dissertation 

 Chapter 2 includes the entirety of the literature review for this dissertation. Included in this 

section are a discussion of the current industry environment with regard to Salmonella and 

Campylobacter and an overview of where these pathogens have been found in poultry procesing. 

Also covered are the current USDA Salmonella and Campylobacter performance standards and 

the progression of these guidelines (FSIS, 2015,2016). 

 Chapter 2 outlines different types of models that have been used to try and predict the 

behavior of microbes, from primary models that include only one variable such as temperature, to 

secondary models that include an additional variable, to QMRA analyses that use multiple 

distributions to arrive at a predicted frequency of a pathogen in the final product. A discussion of 

interventions commonly used at poultry processing facilities is included as well as an overview of 

the use of indicator organisms and their utility in poultry processing follows.  
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Chapter 3 includes the experimental design and collection details for QMRA models built 

to represent three product types (parts, ground, and MSC). An analysis of variance was used to 

separate the data by seasonal cohorts, if necessary, and the uncertainty was included in the models. 

Sensitivity analyses were used to determine points in the process that most defined the output. 

Estimated reductions were discussed at points that would allow output performance similar to 

those defined by Agency guidelines and shown in Table 2.1 (FSIS, 2016).  

 Chapter 4 is an analysis of select factors present in a poultry production process such as 

line speed and presence of a post-pick steam cabinet. Included in this study are the pH and 

concentration of chemical interventions and where the greatest reductions of Salmonella spp. and 

Campylobacter spp. occurred within these parameters. Stepwise regression tests were used to 

define the point at which multiple factors were most beneficial to microbial reduction. 

 Chapter 5 is a consideration of Enterobacteriaceae as an indicator organism for Salmonella 

spp. and Campylobacter spp. in a poultry production process. Samples collected at production 

facilities were prepared for enumeration of all three organisms on the same product. These data 

were fit to linear models and, if applicable, relationships between the Enterobacteriaceae organism 

and each of the selected pathogens was further defined.  

 Chapter 6 is a discussion of the results of the previous chapters and how all three studies 

complement one another. Sources of error are discussed as well as recommendations for research 

to further define the information provided in this dissertation.  
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2.1 Food Safety Implications of Salmonella spp. and Campylobacter spp. in Poultry Product 

The presence of Salmonella and Campylobacter bacteria in poultry product is of 

considerable concern for the poultry industry as consumption of incorrectly prepared poultry that 

harbors these pathogens has been associated with human illness (Bailey et al., 2001; Bryan and 

Doyle, 1995; Finstad et al., 2012, Waldroup, 1996). Both Salmonella and Campylobacter may be 

found in a variety of environments, but the warm digestive tract of mammals is a particularly 

welcome host to the microbes. 

 Salmonella enterica belongs to the Enterobacteriaceae family, and has been linked to at 

least 1.2 million human illnesses a year in the United States (CDC, 2018), with poultry products 

being associated with approximately 30% of these infections (Foley et al., 2011; McEntire et al., 

2014). The incubation period for Salmonella illness in humans ranges from 12 to 72 hours post-

ingestion and can continue from 4 to 7 days, with physical symptoms of infection including 

vomiting, abdominal pain, lethargy, and diarrhea (CDC, 2015).  The infectious dose for healthy 

individuals is at approximately 6 log10 (Baird-Parker, 1990), with lower amounts resulting in 

illness or death among the very young or very old and immune-compromised individuals 

(Kennedy et al., 2004).  

Campylobacter, most specifically, Campylobacter jejuni, is also a major source of 

gastrointestinal illness, and, like Salmonella, may be found at a high frequency in raw poultry 

(Blaser, 1997). Campylobacter is currently the third most common cause of gastrointestinal 

illness behind Salmonella and E. coli 0157:H7 (Mattia et al., 2018), and is often contracted from 

large-scale preparation environments, such as cafeterias or restaurants (Friedman et al., 2004). 

Campylobacter illnesses often occur sporadically, rather than in outbreaks which makes it 
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difficult to trace to origin of contamination (Corry and Atabay, 2001), and infection can occur 

anywhere from 2.9 to 6 log10 MPN/g (Acheson and Allos, 2001). 

Campylobacter illness can occur 2 to 5 days after ingestion and may be quite mild, only 

lasting 24 hours, or exhibit more serious symptoms of gastrointestinal illness which can last up to 

10 days (Blaser, Taylor, and Feldman, 1983; Food Safety.gov, 2015). Infection can occur at 

doses as low as 3 log10 (Teunis et al., 2018), and is often associated with undercooked, or poorly 

prepared poultry (Tauxe, 1992). 

Salmonella and Campylobacter have both been found in every point in the poultry 

production process, with colonization possible from the breeder facilities throughout production. 

Vertical transmission of Salmonella has been documented at breeder locations, with the bacteria 

transferred to eggs from colonized laying hens (Berchieri et al., 2001), and studies have 

documented cross-colonization from eggs at the hatchery (Bailey, Cox, and Berrang, 1994). 

Some studies suggest that Campylobacter does not appear to transmit easily from breeder to 

progeny (Callicott et al., 2006; Shanker et al., 1985), but others indicate that the bacteria can be 

transmitted from hens to broiler flocks (Cox et al., 2002). 

The same Salmonella serovars found in feed mills have been shown to exist in broiler 

houses and at processing facilities (Corry et al., 2002), whereas the presence of Campylobacter 

doesn’t appear until 2 to 3 weeks after chick placement, even though it is assumed that birds 

have been exposed to the organism (Newell and Fearnley, 2003). Transfer of both pathogens to 

the processing facility is evident, with the production facility utilizing a variety of interventions 

to reduce loadings of the organism on broiler carcasses prechill.  
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Second processing steps at the broiler facilities are focused on lowering the incidence of 

raw product cross-contamination as it progresses through value-added steps such as deboning, 

cut-up, grinding, or mechanical separation. Each successive production step increases exposure 

to belts, storage bins and handling, along with increased time at temperatures that may be 

conducive to microbial growth.  

Traditionally, process analyses have accepted that levels of Salmonella and 

Campylobacter are low postchill, and that any increase in mean counts throughout the process 

are indicative of cross-contamination. However, recent studies have questioned the accuracy of 

post-chill rinse results and whether low counts are simply the result of residual kill from chiller 

intervention chemicals rather than a reduction in carcass load. There is also evidence that 

bacterial load on carcasses post-chill may be under represented due to the way bacteria can lodge 

in skin and muscle surface (Lillard, 1989). 

Poultry consumption has increased significantly in the United States since the 1960’s due 

to increased availability of both raw and value-added products and its lower price-per-pound in 

relation to other protein sources (Goodwin, 2005; Thurman, 1987; Windhorst, 2006). Along with 

increased production is consumer emphasis on food safety which, in turn, requires better 

methods of defining  food processing methods. 

2.2 USDA Pathogen Standards for Campylobacter and Salmonella in Poultry Processing 

In 2012, in response to an outbreak of Salmonella Heidelberg in ground, NRTE turkey 

product, the USDA-FSIS issued new pathogen performance standards, incorporating parts, 

ground, and comminuted poultry into its Salmonella Verification Sampling Program for Raw 

Meat and Poultry product, and requiring all facilities producing comminuted NRTE product to 
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reassess their HAACP plans (FSIS, 2012; FSIS, 2013). A second specification was the 

commencement of the NRTE Comminuted Poultry Sampling Program, which increased the 

established 25 gram sampling parameter to 325 grams (FSIS, 2013).  

 At the same time, USDA began the collection of a baseline dataset (from January to 

August, 2012 for parts, and from June 2013 to January 2014 for comminuted product), the results 

of which were used in determining performance parameters for both Salmonella and 

Campylobacter presence in poultry product which was published in January, 2015 (FSIS 2013; 

FSIS, 2014; FSIS, 2015a). Performance standards were based on the goal of a 30% reduction for 

Salmonella and a 32% reduction for Campylobacter resultant foodborne illnesses by 2017. The 

result was further reduction of the acceptable rate of positives for the poultry industry (FSIS, 

2015a). (Table 2.1). 

Table 2.1. USDA Salmonella and Campylobacter Performance Standards 

Product Type Salmonella prevalence Campylobacter prevalence 

 

Chicken Parts (4 lb.) 

15.4% 7.7% 

 

Ground and 

MSC  

 

25% 

 

1.9% 

 

The established discrete (presence/absence) Salmonella and Campylobacter performance 

standards in raw poultry products have limitations: First, collecting data from products at various 

facilities, and then making decisions on the average of positive samples found is predicated on 

the idea that there is a specific tolerance level of Salmonella and Campylobacter positives in a 

sample set, above which the risk of public exposure exceeds the gain of the food entering the 
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market. Second, the inherent assumption in this sampling strategy is that these pathogens are 

going to be homogenously distributed throughout each sample, and that every constituent gram 

within a sample will exhibit the same enumerative pattern (Corry et al., 2007). In fact, evidence 

suggests that if one were to separate a 325 gram portion into 50, 1-gram samples, only a portion 

of those 1 gram samples would contain enough Salmonella to result in a positive test (Zelenka, 

2014). Also of note is that the limit of detection (LOD) used to determine Campylobacter 

frequency positives in the baseline data for ground/comminuted chicken product was 6 cfu/g 

(FSIS, 2015), which increased the probable frequency of non-detects in the distribution. This 

number may only be lowered by lowering the LOD (Busschaert et al., 2010). 

 Reducing the frequency of Salmonella or Campylobacter positives does not necessarily 

mean that the level of pathogen on the product has been decreased. Conversely, a high 

percentage of positive results does not automatically indicate an increase in count. Studies with 

regard to Salmonella enumeration on raw poultry show that variation of the counts in a sample 

are made up of a preponderance of low counts (Mead et al., 2010; Waldroup,1996), and a very 

small frequency of higher end results (>1 cfu/g) which may be reduced through intervention or 

thermal inactivation. Thus, further intervention may decrease the load in the process, but may not 

necessarily decrease the frequency of positives. One would have to reduce the load to less than 

the LOD before a significant reduction in the number of positives would be exhibited.  

 In addition, the implementation of performance standards for Campylobacter spp. and 

Salmonella spp. follows the assumptions that all strains (14 for Campylobacter, and > 2000 for 

Salmonella) have the same likelihood of occurrence and pathogenicity. In reality only a portion 

of the serotypes for these pathogens will cause illness, with some more likely to result in illness 

than others (Lianou, 2017; Silva et al., 2011) 
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Measures of prevalence in comminuted poultry are also not sufficient to guide 

investigators through reductions in the process (Brichta-Harhay et al., 2007). Studies focused on 

reduction of counts, rather than elimination of positives, by nature tend to be more informative, 

as it is not clear what range of counts is encompassed within a “positive” sample. Enumeration 

allows for examination of reductions through the process, as it is questionable as to whether 

pathogen load will ever be 100% eliminated (Mead et al., 2010). Additionally, a reduction in 

frequency does not necessarily equate to a reduction in risk (Duarte et al., 2016; Pouillot et al., 

2015).  

 There has been significant support that agency guidelines for poultry product should be 

based upon Salmonella enumeration, most specifically count reduction, as opposed to 

presence/absence measures (McEntire et al., 2014; Singer, 2014). However, obtaining 

enumeration data is costly and time consuming. Investigations of both ground poultry and parts 

for Campylobacter also suggest that it is the drop in numbers of a pathogen, as opposed to the 

percent positive, that will reduce risk (Nauta and Schaffner, 2008). 

2.3 Risk/Reduction Analyses in Poultry Processing 

Traditional analyses for microbial load on poultry detect the presence or verify the 

efficacy of process interventions by comparing rates between locations or treatment types 

(Parveen et al., 2007; Whyte et al., 2002). For studies where Salmonella or Campylobacter are 

enumerated, the mean counts between locations, or between control and treated samples are 

compared (Corry and Atabay, 2001; Jorgensen et al., 2002). However, in the past twenty years, 

the use of inferential statistics to predict the risk of pathogen load on poultry product has become 

increasingly common, and the methods utilized in these investigations has become well-defined 

in the industry as Quantitative Microbial Risk Assessments (QMRA) (Buchanan and Whiting, 
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1996; Whiting, 1995). These models allow researchers to predict either increase (through cross-

contamination or harborage), or reduction of microbes in a product or process. Fitting these 

models to appropriate distributions can allow presumptions to be made about populations from 

which samples were selected.  

Analysis of distributions or product samples, rather than point estimates (Duarte et al., 

2016), allow for scenarios that include the variability found at a processing facility and the 

uncertainty of both sampling and plating methodologies. Models using enumerative data are 

more illustrative of the impact of reductions in a process as continuous distributions highlight the 

cumulative probability of specific loads of pathogens as opposed to presence or absence at a 

specific LOD.  

2.3.1 Predictive Microbiology  

 Initial microbial models were used to follow the growth or inactivation of organisms 

under controlled conditions (Fakruddin et al., 2011; Lopez et al., 2004). Empirical functions 

derived from these early analyses allowed the researcher some level of predictive confidence to 

the behavior of microorganisms under a fixed temperature through time. Primary growth models 

utilized a number of forms (linear, logistic, and sigmoidal-shaped distributions), and were 

capable of mathematically describing the stationary, lag, and growth phases of microbes 

(Baranyi et al., 1993; Vijay et al., 2006). The basic equation (Equation 1) for exponential 

microbial growth (or inactivation, if multiplied by -1) describes an increase through time as 

influenced by temperature: 

  
dN

dt
= μN,                     (2.1) 

Where, N indicates the number of micro-organisms (log10 transformed cfu/ml), t represents 

elapsed time, and µ is the (constant) rate of growth through time (Baranyi and Roberts, 1995). 
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However, bacteria go through the lag, exponential, and decreasing phases throughout its life; this 

has been described by 3-phase functions, such as the modified Gompertz in figure 2.1 

(Zwietering et al., 1990). 

Conversely, inactivation (thermal processing) models have been used to predict the rate 

of decline of a microbe. These models may be used to determine D-values (decimal reduction), 

and are an indicator of the time it takes for an organism to be reduced at a specific temperature 

by 1-log, or 90%. Linear models provide a good fit as the decrease in viable organisms is 

somewhat consistent at each time cohort (Whiting, 1995). Thermal inactivation models are the 

reverse of the growth models. 

Secondary, or dynamic, models took factors from the primary models and added other 

variables, such as pH, Aw, or fluctuating temperatures in order to determine their effect on 

microbial growth or inactivation. In these models, the level of contamination was the target 

variable which was influenced by the levels of each of the other factors. Ratkowsky et al. (1983) 

or Gompertz (Winsor, 1932) equations were commonly used to create these secondary models.  

Both growth and death curves were created to predict microorganism behavior in a variety of 

substrates until the 1990’s, when questions arose regarding to their applicability to processing 

environments (Dennis et al., 2002). As the growth and inactivation models were almost entirely 

constructed from data based on the behavior of pathogens in broth, their benefit was questioned 

as there was a higher temperature resistance (higher D-value) of certain microbes, such as 

Salmonella or Listeria innocua, in chicken product in a plant as opposed to those in broth 

(Murphy et al., 1999; 2000). Although some researchers felt that if all other variables were 

similar the influence of broth as opposed to a factory environment was negligible (Fakruddin et 

al., 2011), it was suggested that models built in a laboratory environment were devoid of 
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Table 2.2 Examples of Growth and Inactivation Models 

 
Function Type Source 

√𝑟 = 𝑏(𝑇 − 𝑇𝑚𝑖𝑛){1 − exp[𝑐(𝑇 − 𝑇𝑚𝑎𝑥)]} Growth Ratkowsky (Ratkowsky et al.,1983)1 

𝑔(𝑡) = 𝑎 + 𝑐𝑒−𝑒𝑏(𝑡−𝑚)  Growth Gompertz (Baranyi and Roberts, 1995)2 

 

 

𝑦 = 𝐴𝑒𝑥𝑝{ − exp [
𝜇𝑚 ∗ 𝑒

𝐴
 (𝜆 − 𝑡) + 1]} 

 

Growth (3-phase) Modified Gompertz (Zwietering et al., 1990)3 

 

𝑙𝑜𝑔10(𝑁) = 𝑙𝑜𝑔10 (𝑁𝑂) −
𝑘𝑚𝑎𝑥 ∗ 𝑡

ln(10)
 

  

Inactivation Log-linear (Scanlon et al., 2013)4 

𝑙𝑜𝑔10 𝑆(𝑡) =  −𝑏(𝑇)𝑡𝑛(𝑇)
 Inactivation Weibull (Corradini and Peleg, 2009)5 

1 where √𝑟 is the constant rate of growth, b is the regression coefficient of rate of growth at xi degrees K, 

and c is a constant by temperature. 
2where, g(t) is the log10 count, xmax is the maximum value of x at time (t), c=Gompertz function constant, 

and x(t) is value of x at time (t). 
3 where µm is the maximum growth rate, λ is the lag time, and A is the maximum value reached.  
4 where 𝑘𝑚𝑎𝑥 is the maximum inactivation rate. 
5 where S(t) is the survival rate at time t, and b(T) and n(T) are shape parameters. 

  

competitive exclusion seen in the wild, resulting in a false inflation of the microbe count (Oscar, 

2006). 

 Both growth and death curves were created to predict microorganism behavior in a 

variety of substrates until the 1990’s, when questions arose regarding to their applicability to 

processing environments (Dennis et al., 2002). As the growth and inactivation models were 

almost entirely constructed from data based on the behavior of pathogens in broth, their benefit 

was questioned as there was a higher temperature resistance (higher D-value) of certain 

microbes, such as Salmonella or Listeria innocua, in chicken product in a plant as opposed to 

those in broth (Murphy et al., 1999; 2000). Although some researchers felt that if all other 

variables were similar the influence of broth as opposed to a factory environment was negligible 

(Fakruddin et al., 2011), it was suggested that models built in a laboratory environment were 
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devoid of competitive exclusion seen in the wild, resulting in a false inflation of the microbe 

count (Oscar, 2006). 

These formulas were the result of fitting a curve to the data, and they have been described 

more as functions than models (Baranyi and Roberts, 1995), as they were only applicable to the 

environment of a specific experimental design and made certain mathematical presumptions 

about a process (for instance, as time increases, growth or decline will occur at a constant rate). 

Creating a predictive model of bacterial load required that these data be collected and analyzed 

as a mechanistic process. Attempts to apply predictive knowledge to food processing systems, 

and to predict risk based on process data resulted in the creation of systems to define food 

production processes in a mechanistic structure. 

Researchers began to combine these primary and secondary type modeling exercises and 

added data that were directly from the process (mechanistic) as opposed to entirely from the 

laboratory and theoretical analyses (empirical) to attempt to answer questions about food 

production processes.  

2.4 Quantitative Microbial Risk Analysis (QMRA)  

Quantitative Microbial Risk Analysis (QMRA) models combine the structural concept of 

growth and inactivation models with process data to predict risk at the endpoint of production. 

The first QMRA analyses for poultry were conducted to forecast the threat of Salmonella 

enteritidis in eggs (Whiting and Buchanan, 1997). These earliest exercises focused on combining 

earlier empirical growth and inactivation models with statistical simulations in an attempt to 

control for the variability found in microbe distributions (Lammerding and Fazil, 2000; Oscar, 

1998).  
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Although there is some difference in their order of appearance in contemporary research, 

there is general consensus with regard to the categories included in a risk analysis (Zwietering 

and Van Gerwen, 2000). The accepted schematic is represented in Figure 2.2. For most QMRA 

analyses, hazard identification has already been completed at the point of initial design. Hazard 

characterization aids in defining the critical process points for microbial load, and exposure 

assessment is defined by the output of the distributions. Dose-response may be used at the output 

to determine relative risk at consumption. An exposure assessment may be defined in lieu of a 

dose-response analysis when the risk levels have yet to be defined, or when the researcher is 

hesitant to attach a risk to a specific microbial load. In these cases, the researcher illuminates the 

risk and weight of exposure and the target is focused on reduction of the same (Zwietering and 

Nauta, 2007).  

Traditional methods for QMRA analysis include the fitting of distributions for each 

variable, or link in the process, in which the microbial load has an opportunity to change. These 

nodes are then linked, and the data therein randomly chosen from each distribution through an 

iterative simulation process. The form is as follows: 

∫ (𝑥𝑒 ) = ∫ (𝑥𝑖1
, 𝑥………..𝑛1

)  ± ∫ (𝑥𝑖2
, 𝑥………..𝑛2

) ± ∫ (𝑥𝑖𝑛 ,𝑥………..𝑛𝑛
)+ Ɛ123…n                           (2.2) 

where,∫ (𝑥𝑒) is the final distribution at process end. The final outcome is the result of the 

iterative selections from each of the nodes in the process (xi1…xi2...xn) in addition to the error in 

the modeling process. 

The approach seeks to capture probabilities of pathogen occurrence within a system 

(Nauta, 2002). For instance, Cassin (1998) followed the load of toxin-shedding E.coli through a 

series of steps in a ground hamburger process, and Nauta (2000) fit empirical Campylobacter 

data at specified “modules” throughout a poultry production schemata. Each of these analyses 
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focused on the change in count distribution through a fluid process, rather than the change in 

bacterial count in a static environment. 

 

 

Figure 2.1 Components of a Risk Analysis 

 These “pathway” (Nauta, 2002) models may then be used to determine risk at process 

output (see Table 2.2 for examples). Different process mechanisms, such as chemical 

intervention or mixing, or grinding, that result in changes in both count/frequency of pathogen 

and distribution of the same may be fit and placed within the framework of the process to allow 

prediction of output. Further, the researcher may be able to infer the overall impact of increase or 

production at different stages in the production line.  

What process flow that a researcher may choose will depend as much upon available data 

or sampling opportunity as upon the research question of interest. Some cross-contamination 

studies focus on the end of production and work to assess consumer risk (Carrasco et al., 2012; 

• Determine the hazard that most influences food safety risk.

• Most likely already determined in food safety analyses. 

Hazard Identification 

• How will the hazard of interest effect the host?

• What is the expected load in the process?

• How will the pathogen react to external factors?

Hazard characterization

• What is the likelihood of exposure?

• What is the exposure/serving or population? 

Exposure assessment

• What is the risk of illness? (Dose-reponse)

Risk Assessment
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Possas et al., 2017). Others focus on the transfer of microbes within a process (Yang et al., 

2002). These analyses use available finished product data, but, due to lack of available within-

flock data, must rely on cobbling together records from several analyses to predict risk at 

handling or consumption. 

Many studies are considered “farm to fork” as they follow data from grow-out to the end 

of production, to consumption. Other efforts begin with the process at the facility, as companies 

are consigned to deal with the load that comes in the door. Overall, the research question should 

be the driver for the design, and the data collection should follow this process (Havelaar et al., 

2008; Zwietering and Nauta, 2007). For all QMRA research, the focus is on risk (Zwietering and 

Nauta, 2007), whether that is risk of exposure at the end of a process or risk of consumption at 

retail. 

Early QMRA studies were assessed with available point estimates (mean, standard 

deviation) from which distributions were chosen based on either assumption or a priori 

knowledge. Later models became more complicated, with multiple distributions being fit for 

different elements in the research design. Each of these distributions represented a different 

location where the microbial load could either be increased, reduced, or the distribution changed 

in some way, such as blending, partitioning, or cross-contamination (Nauta, 2001). Whether they 

were named Process Risk Models (Cassin, 1998), or Modular Process Risk Models (MPRM) 

(Nauta, 2002; Nauta and Schaffner, 2008), or even a Dynamic Flow Tree Model (Marks et al., 

1998), the object was to partition the points where the pathogen load (or distribution) would be 

expected to vary from the successive step and model each of these nodes with a different 

distribution. 
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The majority of these analyses have used data amassed over multiple studies and a 

considerable period of time, without the luxury of data collected throughout the same process. 

Data are usually combined from many different studies, with locations being chosen by available 

data, not a priori knowledge of the most valuable places to collect (Zwietering and Van Gerwen, 

2000). The reason for this is twofold: Most QMRA researchers don’t have access to a processing 

facility, and most processing facility employees are not collecting data to complete a risk 

analysis. As such, a process model derived from data collected through each specific process 

flow is of significant value to the food processing industry. 

QMRA processing models have traditionally focused on each step in the process in which 

the bacterial count of interest may reduce, increase, become homogenized, or contaminate other 

product. These points in the process are helpful in designating process flow, although the flow 

length analyzed is often influenced by the time and money required to collect samples. Many 

QMRA studies exist that were created with data collected from several processes, over different 

time periods. Although these provide utility for food safety research, a similar study, completed 

with each sampling event consisting of product from the same process, would arguably provide 

more valuable information with regard to changes within a process. 

Process flow is the natural result of the research question, and decisions need to be made 

based on physical limits for sampling within a facility (Havelaar et al., 2008; Zwietering and 

Nauta, 2007). If the desirable outcome is to provide information on specific levels of 

contamination at specific points, then a “farm-to-fork” model may be the best choice. Cross-

contamination studies will follow the process, focusing on locations where microbial transfer 

could occur (debone belt or blending). Industry research often focuses on the most desirable 

point in the process to reduce pathogen load to achieve a specific endpoint (usually an internal or 
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Agency guideline). If reductions are not being determined at the farm level, then the most 

efficacious pathway would run from the beginning of processing (plant entrance) to the end of  

 

Table 2.3 QMRA research on poultry processes 

Origin Product Microbe Pathway Source 

United States Liquid eggs Salmonella 

enteritidis 

“farm to table” Whiting and 

Buchanan, 

1997 

 

United Stated Whole 

Broilers 

Salmonella Retail/Transport/Cooking/

Serving/Consumption 

Oscar, 1998 

Netherlands Whole 

Broilers 

Campylobacter Cross-contamination Van der Fels-

Klerx et al., 

2005 

Netherlands Chicken 

fillet and 

table eggs 

 

Campylobacter 

and Salmonella 

spp. 

Retail to consumption Evers and 

Chardon, 2009 

Japan Whole 

Broilers 

Campylobacter 1st processing/Cross-

contamination 

Hayama et al., 

2011 

Denmark Whole 

Broilers 

Campylobacter 

spp. 

Small samples at retail Christensen et 

al., 2013 

 

Canada Whole 

Broilers 

Escherichia coli Red water at Chiller Munther et al., 

2016 

 

MCMC = Markov Chain Monte Carlo 

 

production, choosing locations where microbial counts are most likely to increase or decrease 

(Havelaar et al., 2008). 

2.5 QMRA and Poultry Processing 

 QMRA analyses for poultry processes began in the late 1990’s with predictive models 

being built for egg production (Whiting and Buchanan, 1997). These models were developed 
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further when a Campylobacter Risk Management and Assessment (CARMA) task force was 

formed to address the issue of Campylobacter infection in the European Union (Havelaar, 2004, 

Nauta et al., 2009). For these models, researchers from multiple disciplines used available data to 

create both empirical and mechanistic models to predict risk of illness from Campylobacter 

consumption. Many of these studies focused specifically on grow-out and/or first and second 

processing, cross-contamination, preparation and consumption, the results of which were used to 

determine guidelines of logistic slaughter practices to reduce microbial load at the end of the 

process.  

 Later, modular flows were created to both identify locations of high pathogen risk and to 

predict distributions of Listeria monocytogenes, Campylobacter spp., and Salmonella spp. on 

poultry products after differing intervention strategies. Many of these analyses used either 

empirical data, or data from several different studies for one modeling pathway. Some of these 

models included attempts to add a cross-contamination element during processing steps, 

although the functions used to describe such events would be based on a priori knowledge of 

cross-contamination in a process.  

The use of QMRA in poultry processing is not novel. Multiple studies have been 

conducted to address levels of both Campylobacter and Salmonella in poultry products. The 

desire to develop an applicable farm-to-fork model for poultry processing has been soundly 

voiced. However, the complexity of following such a large amount of data through the process is 

both cost-prohibitive, and problematic, given that theoretical statisticians don’t often get to 

sample in chicken plants, and poultry processing managers don’t often build QMRA models.   

 In order to continuously meet new pathogen standards while maintaining quality control, 

it becomes necessary to develop a mechanistic processing model that is comprised of samples 
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from one flock (or on a flock by flock basis) that are followed through the actual plant process. 

Studies that use a patchwork of sampling activities are certainly of use in making inferences 

about the behavior of microorganisms during poultry processing. A continuous model that 

follows multiple birds through the process which encompasses data from multiple flocks, 

facilities, days, and seasons may prove a valuable addition to a larger food safety arsenal. 

2.5.1 Process Flow in Poultry Production Facilities and Food Safety 

 Poultry plants produce product from birds transported from grow-out facilities, meaning 

that birds enter the production process with (more or less, depending on transport conditions) the 

same level of contamination at which they left the farm. Once the birds are received at the plant 

they are harvested and sent to the scalder for cleaning. 

Birds that enter the scalder water after electric stimulation indubitably introduce bacteria 

into the warm water in the troughs. The scalder is a suggested physical vector for cross-

contamination in at the processing facility (Russell, 2012). Scalder water temperature can be 

used to reduce the incoming load on the birds, but temperatures above 150º F may result in 

discoloration of the bird and cause fat to dissolve in the water (Barbut, 2016). This, in turn, may 

buffer Salmonella cells from the heat and result in higher d-values required for expected biocidal 

impact. Temperatures high enough to melt fat may also affect the retail value of the bird as yield 

is lost in the scalder.  

 The high temperature of scalder water loosens the feathers which are then detached by 

the picking mechanism. This could also result in cross-contamination of the bird carcasses 

(Russell, 2015), although the movement of the rubber picker fingers across the carcass may also 

serve to dislodge organisms from the product (Sams, 2016). Post-pick dip tanks with a variety of 

interventions are currently being used in an attempt to lower loads going into evisceration. 
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 Throughout first processing (from the unloading of the birds at the facility to 

evisceration) there are a variety of interventions that may be employed, and are utilized at the 

discretion of individual facilities. Inside-outside bird washers (IOBW) are presented as a cabinet, 

where hot water is sprayed around the carcasses while they run through the line. An on-line 

reprocessing cabinet (OLR) is a cabinet with an intervention chemical (usually an acid) spray 

that is implemented before the immersion chiller. At this stage the bird carcass is still intact, but 

the viscera have been removed.  

 The birds are dropped into the first stage of the chiller, which serves to remove any 

material from the outside carcass. Depending on the facility there may be two or three chiller 

stages; the final stage consists of an intervention (often a chlorine or acid) and water chilled to a 

temperature of ≤ 40ºF. As the preponderance of carcass rinse results are negative for Salmonella 

or E. coli organisms post-chill, USDA sampling has focused primarily on these results as 

indicators of food safety. It is often assumed that the chiller intervention takes the product to a 

level of zero and is thus the most important intervention in the processing flow.  

Some studies have suggested, however, that the low counts after the chiller are not 

indicative of the actual load, rather, that it is recovery of the microbes that lowers to zero. 

Scanning electron micrographs of post-chill carcasses exhibit multiple Campylobacter cells 

lodged in crevices of the skin and muscle, which may later be expressed in product samples 

during secondary processing (Chantarapanont et al., 2003). Birds that have been repeatedly 

rinsed (Lillard, 1989), or, cut-up directly after the chiller also show higher Salmonella counts 

than what have been expressed from carcass rinses. It is also thought that residual kill of 

microbes in the rinse bags due to acid interventions may be masking the actual counts on the 



29 

 

carcasses, leading to the USDA suggestion of a 1-minute drip time and replacement of 

neutralized buffered peptone water for carcass rinses (USDA, 2015b).  

Secondary processing (post-chill to pack-out) interventions consist of dip tanks and spray 

rinses. Unique to each facility, sprays are implemented on lines, particularly debone and cut-up, 

and dip tanks are employed for cut-up parts to control cross-contamination that may occur during 

processing activities. Sprays are often placed over chicken frames as they enter the initial grinder 

before the mechanically separated (MSC) process, or on whole leg or breast trim before going 

into the grinder. The efficacy of parts dip tanks in a processing environment has not been 

thoroughly tested, although recent use has resulted in counts low enough that baseline standard 

reassessments have been suggested.  

2.5.1.2 Interventions 

Interventions may be divided into physical and chemical types, and chemical treatments 

may be further divided into categories of organic acids, chlorine, or phosphate interventions. The 

efficacy of all interventions are dependent upon concentration, water temperature, pH, contact 

time, and organic load at application (Buncic and Sofos, 2012). Combinations of interventions, 

tailored to the specifics of the process and facility are utilized to lower pathogen counts on the 

final product. 

Physical interventions are most likely as much a part of a facility’s sanitation procedures 

as chemical treatments and are the first line of defense against organic detritus left on the line 

during production. Hot water sprays and steam applications are used on belts to reduce bacteria 

and may be combined with manual scrubbing to lower the likelihood of biofilm formation and 

clean crevices in equipment.  
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Other physical interventions include the use of temperature to lower microbe counts on 

carcasses. Hot water used in scalder and picker locations in first processing are used to lower 

fecal bacteria and can also kill heat-susceptible Salmonella cells. Hot water bird washers may be 

used to lower counts in primary production after picking and before the chiller. The <4 °C chiller 

water is useful outside of the chemicals used the in process to kill pathogens at lower 

temperatures. 

Organic acids have pH reliant chemistries and have shown promise in reducing bacterial 

populations. Acetic, citric, lactic, propionic, and malic acids have been used to reduce 

Salmonella in poultry processing, and become more effective at lower pH levels (Mani-Lopez et 

al., 2012). These treatments are effective and considered safe for use for both Salmonella and 

Campylobacter reduction (Zweifel and Stephan, 2012). Peracetic acid (PAA), a mixture of acetic 

acid and hydrogen peroxide, is commonly used in poultry processing in sprays, dips and 

immersion interventions to knock down microbe counts. 

 Chlorine-based treatments have demonstrated efficacy in reduction of both Salmonella 

and Campylobacter in immersion chillers and sprays in first processing. Chlorine interventions 

are inexpensive (relative to other chemicals) but their effectiveness may be quickly spent in the 

presence of high organic loads (Buncic and Sofos, 2012). Studies have shown the highest 

Salmonella reduction from chlorine application came from sprays (Loretz et al., 2010). The 

lower effectiveness in the chiller could be due to the potential for organic build-up during dwell-

time, and, as such would require continuous level checks to remain effective (Zweifel and 

Stephan, 2012).  

 Tri-sodium phosphate has been used in poultry processing for decades and has resulted in 

reductions in both Salmonella and Campylobacter on carcasses (Zweifel and Stephan, 2012).  
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Phosphate-based interventions have proven useful in reducing Salmonella and Campylobacter 

counts with both sprays and immersion. However, the use of phosphates can result in higher pH 

values of the medium, making sampling difficult, and can leave a slick surface on the product. 

2.5.2. Challenges to Poultry Processing QMRA Models 

Poultry processing presents a few novel issues for the application of risk analysis. Each 

poultry production facility is unique, by geographic location and product type being produced, 

and processing methodologies can differ. Chemical and physical interventions may differ by 

both facility and process location, with levels of application differing throughout the day 

(although within specific parameters). Biological load, which can be influenced by bird size, 

flock size, or season, can cumulatively affect the efficacy of chemicals used to reduce pathogen 

count in bird washers, reprocessing tanks or immersion chillers.  

Laboratory challenges are also of note when attempting a QMRA for a poultry process. 

First, lab supplies and recovery techniques are expensive and become more cost-prohibitive as 

sample size increases. (Without the use of a corporate lab, where multiple samples can be plated 

throughout a number of days, the chance of recovering a representative sampling of a process 

would not be possible.) Movement of samples from one location to another, multiple persons in 

charge of plating the samples and error associated with MPN methodology may all result in 

decreased accuracy in recovered organisms.  

2.5.2.1 Modeling a dynamic system 

 Risk analyses completed on processing (dynamic) systems require a modeling approach 

that allows for both the random nature of plant flow and the fact that the microbes being sampled 

are not exactly the same in their response to environmental influence (Brul et al., 2007). 

Deterministic mathematics, used in earlier primary models to predict death of a microbe at a 
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specific time and temperature, are not applicable to processes where there is a great deal of 

variability (Rodriguez et al., 2016). For process models, the design is driven by the distribution 

at input and subsequent changes in pathogen load that culminate to the final probability of 

occurrence and load at output. This type of pattern is a Markov Chain process, where the prior 

location always influences the condition of the subsequent location. However, in order to make 

predictions of probability with this type of process, the researcher must add an element of 

variability. Otherwise the results are nothing more than one deterministic model feeding into 

another. For this process type, a stochastic model, capable of addressing the randomness inherent 

in the process is required (Nauta, 2002). Sampling from one location to the next in the process 

and fitting these distributions results in a chain of distributions, each representing a change in the 

probability of occurrence and the load distribution of the product. Distribution at the end of one 

location becomes the beginning distribution at the next location.  

 This randomized sampling can be completed by using multiple draws from each 

population. A large sample of draws is required; use of computer simulations for the exercise is 

implemented. Frequently, Monte Carlo simulation has been used to simulate the variability found 

naturally in a process. The Monte Carlo algorithm uses repetitive and random sampling that is 

and allows the researcher to make inferences of the probability of occurrence based on the 

outcome distributions of multiple draws.  

 Vose (2000) suggests that even though the Monte Carlo method is “unadulterated”, it 

uses a method based on a uniform distribution draw, so that the intended distribution fit is not 

necessarily honored in the sampling choices. Thus, Monte Carlo simulations can be useful for 

introducing model uncertainty. Another selection algorithm, the Latin Hypercube replaces 

samples after a draw, dividing the distribution into intervals of similar probability (Vose, 2000). 
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The shape of the chosen distributions is more likely to be maintained using the Latin Hypercube 

rather than the Monte Carlo simulation method.  

2.5.2.2 Sampling Error 

 One source of error for a QMRA at a poultry facility is error between samples. Multiple 

carcass or product rinses, taken over a period of days and months, have the potential to result in 

differing sampling methods among researchers. As sampling technique may increase variably, 

analyses (such as the Gauge R and R) that measure within sample difference, might be 

advantageous. It would be beneficial to industry if a QMRA were completed with all samples 

assuredly collected with the same method. 

 To date, there is no published QMRA that uses data collected by the same researcher for 

each sample. This is indubitably due to the fact that this type of research would take a great deal 

of time to complete. First, the researcher would have to put aside a year for sampling in order to 

capture seasonality. And, the quick flow of a poultry processing pathway would require the 

researcher to move quickly to capture the line of each flock as it moved through the process. This 

would result in only a small amount of samples being rinsed for each process node each day. 

 Another issue is shipment time of samples after collection. To get the samples back to a 

laboratory in a timely manner (in which the researcher could be assured that the microbe count 

was representative of what was collected at the facility), the samples would have to be quickly 

moved or shipped after collection. Any delay in this process could result in recovery error once 

the product arrives at the laboratory.  

 An additional impediment to successful sampling for a QMRA analysis is the focus on 

biosecurity at food production facilities. Any production plant will be focused on protecting 

output from outside tampering or contamination. Poultry processing facilities have these issues 
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as well as the added concerns of outside interests gaining access to plants to film activities in 

sensitive areas, such as the live-hang area. For the samples to be collected through the process 

flow, a researcher would need to have access to a high level of security within the production 

facility. 

2.5.2.3 Recovery Error 

A key source of error in microbe recovery is recovery methodology and correct counting of 

colonies, if such are present in the sample. Buffered peptone rinse water (BPW) from poultry 

carcass rinses (BPW rinsate) was added to product and massaged before plating. Sample plates 

may then be read for colony count or may be further processed for positive samples (as in the 

case of MPN analysis). During any of these steps samples may be contaminated or even lost 

(Duarte and Nauta, 2015).  

 Some pathogens, such as Campylobacter spp., are fragile and, even if present, may be 

destroyed before recovery can occur. If samples become too warm after collection, resulting 

counts may not be representative of what was on the bird at the facility. If samples are plated in 

an environment that is not completely dry, then growth could occur that would not necessarily 

have resulted during processing. An anaerobic environment at sample preparation may result in 

the destruction of cells that require oxygen for survival, thus influencing risk analysis outcome 

for that product (USDA-FSIS, 2016).  

 Recovery error may also occur at the production facility, which may be the case when 

cells are destroyed during sampling. It has been postulated that the low counts recovered post-

chill are not necessarily the result of counts being knocked back to negligible frequency, but 

rather, are the result of cells being lodged deeply in the skin and muscle. Lillard (1989) found 

that multiple carcass rinses post-chill resulted in continuous Salmonella spp. positive results, 
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often after a rinse that did not yield a positive result. Industry studies have shown that carcass 

rinses post-chill were negative, yet, skin samples taken from the same carcasses were positive for 

Salmonella spp.  

 Another source of error is residual kill that can result when a chemical intervention 

continues to work inside a rinse bag along with the sample and rinse water. Some interventions 

used specifically to reduce counts on product can continue to do their job while sampling is 

taking place, resulting in a count that is lower than what was actually on the product. Some 

researchers argue that the intervention would have reduced counts to the same level in the 

process, so that the residual drop in counts should not be of concern. However, industry studies 

have shown that a 1 or 2 minute drip-time for product before rinsing resulted in a significantly 

different mean Salmonella count from samples that were not dripped before rinsing 

(Anonymous, 2014). Agency response to these concerns have resulted in use of neutralized 

buffered peptone water (NPPW) for the parts sampling program (USDA-FSIS, 2015). Sampling 

taking this possible source of error into account would need to either utilize NBPW as a rinsate, 

or maintain a drip-time of 1 to 2 minutes for each product before rinsing.  

2.5.2.4 Distribution Fitting 

 A reliable QMRA model is predicated upon the chosen distributions being representative 

of the overall population. The degree to which the theoretical distribution is similar to the actual 

distribution is an important measure of assumptions made from the model. Model “fit” can be 

measured by a number of equations (Table 2.4), all which rely upon some measure of the overlap 

between expected and actual (“observed”) results. Occam’s razor states that the less complex a 

system the better. The more the model has to be tailored to the sample data (or “over fit”), the 
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less likely the model will be for the population. Oftentimes choices have to be made between a 

better “fit” or ease of use.  

 The Pearson chi-square goodness-of-fit test is used to compare observed and expected 

results in data that are categorized into bins for continuous data or categories for discrete data. 

The chi-square comparison is a good choice when the researcher is interested in specific portions 

of the distributions being aptly represented. The Anderson-Darling test weighs more heavily to 

the tails of the distribution and is useful when dealing with exposure, as the right tail of the 

distribution is where the most risk lies. The Akaike (information criteria) test evaluates the fit of 

distributions in comparison to one another and is useful when multiple distributions are being 

considered for the model. 

2.5.2.5 Dealing with Zeroes  

Another element that may add to the error in a modeling analysis can occur when 

sampling groups contain a high percentage of either non-detects (ND), zeroes, or <xi, (with x 

being the limit of detection for the assay. These results may either represent a “true” zero, 

(absence of the organism), a more rare occurrence where a pathogen is present at the LOD but 

not detected, or, a situation where the pathogen is present, but at a small enough amount so that it 

is below the limit of assay detection. As microbial risk assessments have evolved, differing 

methods to work with distributions that have a high frequency of zeros (otherwise known as 

“censored” or “over dispersed”) have been introduced in the body of research (Barron et al., 

2014; Busschaert et al., 2010; Gonzales-Barron et al, 2010; Helsel, 2006, 2009; Lorimer and 

Kiermeier, 2007; Williams et al., 2012). 

In many modeling exercises, counts recorded as less-than the limit of detection (LOD) 

have been handled by imputation, where the unknown values (which are assumed to include both 
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“true” zeros and those values that are less than the limit of detection) are all replaced with a 

value chosen by the researcher. Depending on the researcher, the value is often the LOD itself, or 

1 log lower than the LOD, or, half the LOD. These methods can be successfully applied when 

there is a low frequency of values below the LOD, but may result in the creation of an artificial 

threshold in the dataset and skew the distribution at higher frequencies of ‘zeros’. Imputation 

may also cause artificial inflation of the mean and move the standard deviation closer to the 

center of the distribution (Busschaert et al., 2010). As such, this method may not be the most 

advantageous in datasets with a high frequency of zeros.  

 The “hurdle method” has been used in recent years to account for the frequency of zeros, 

or non-detects (ND), by fitting a discrete distribution that accounts for the values below the level 

of ND (“negatives”), then fitting a continuous distribution to the values above the LOD 

(“positives”). The hurdle method is one of two types of “zero-inflated” distributions, where the 0 

occurrences (negatives, or zeros) are handled in one distribution, a probit, and the count data 

(positives) are handled in another, a logit. The probit function calculates the odds that any 

sampled value is at, or less than, the LOD, whereas the logit function models the values above 

the LOD and is truncated (or, left-censored) at this level. As such, only the probability of “true” 

zeros are included in this model type. This method may be used with a large frequency of zero or 

ND values, but, the resultant distribution will still exhibit an artificial threshold above the LOD 

value.   

 Another type of zero-modified approach (Duarte, 2013; Helsel, 2009) uses both a discrete 

and continuous distribution, but the threshold for the continuous data is not set at the LOD, 

allowing for excess zeros outside the frequency distribution. These models are better able to 
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handle changes in the frequency of samples less than the LOD than the hurdle or imputation 

methods (Duarte and Nauta, 2015). 

 The hurdle approach and the various zero-inflated methods result in output that can be 

difficult to define if there is a large enough division between the “less than” distribution and the 

continuous one. Also, the resulting distributions from these models will still exhibit an artificial 

threshold for the less-than LOD occurrences. This becomes problematic if the frequency of 

negative values decreases throughout the processing flow, as is the case with some ground and 

MSC chicken product. In this situation, the researcher is left to determine what the increase 

actually is when a negative becomes a positive, as these situations are separated in the 

distributions.  

There is one method to address, where the frequency below the LOD and the data above 

are all represented in a single distribution. In this technique, an assumed shape of the population 

distribution (often lognormal or Poisson) is created using a MLE (maximum likelihood 

estimation) analysis, where the frequency of non-known, but less than the LOD values is applied, 

and the most probable mean and standard deviation of the chosen distribution are determined 

through a series of bootstrap samplings with replacement. Thus, the most-likely point estimates 

from the distribution of interest are approximated and the resultant distribution is used to 

determine the values of the ND samples. Several analyses have compared this to the others and 

concluded these estimations are the most reliable in inferring the true mean and standard 

deviations of distributions (Helsel, 2009; Hewett and Ganser, 2007; Lorimer and Kiermeier, 

2007; Pesonen et al., 2015; Shorten et al., 2006).  

The MLE approach does require the researcher to make assumptions with regard to the 

shape of the distribution, given the values below the LOD are included. Previous studies have 
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used Poisson-based distributions, such as the Poisson-lognormal or Poisson-gamma (a Poisson 

distribution where λ and Γ, respectively, are determined by a lognormal distribution), or the 

lognormal distribution, with the parameters of these distributions determined by a MLE formula 

that identifies the most likely outcome based on the probability of occurrence below the LOD. 

This is completed by a series of iterations, each seeking the best scenario and using the 

constraints of the chosen distribution with a specified frequency below the LOD assumed. 

The Poisson-lognormal has exhibited successful inferential strength for higher count 

distributions, and the Poisson-gamma distribution appears to work well with lower count 

samples (Duarte, 2013). These mixed distributions allow for more variability than can be 

achieved by the use of the Poisson distribution alone (Williams and Ebel, 2012). However, the 

lognormal distribution remains the suggested choice for analysis of microbial populations 

(Busschaert et al., 2010; Barren et al., 2014; Lorimer and Kiermeier, 2007), although some posit 

that the lognormal is more valuable in risk prediction for samples with higher microbial counts 

(Barron et al., 2014).  

2.5.2.6 Variability and Uncertainty  

 Variability is the natural and expected distance between points in a distribution and 

represents the stochastic nature of a sample population. Any modeling exercise should include 

the process variability. Uncertainty is the error in estimating the distribution parameters that 

result from unknown information about the process. Variability represents the random nature of 

the process, whereas uncertainty represents the error that may be present in estimates of 

parameters. (Aren and Zio, 2011; Gongouli and Koutsoumanis, 2015; Vose, 2000). Although 

variability for the most part indicates between sample differences in the process, it may, to an 
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extent, be reduced by a tighter research design. Conversely, uncertainty can be contracted by a 

larger sample size or more study (Zwietering and Nauta, 2007; Vasquez et al., 2014). 

 Many QMRA models have modeled variability and uncertainty together. However, more 

recent studies have acknowledged the need to define the separate influences of these two 

components of the analysis, as it allows the researchers to determine the effect of each on the 

model’s pathway (Gongouli and Koutsoumanis, 2015; Nauta, 2002; Pouillot and Delignette-

Miller, 2010; Vose, 2000). There are two ways to effectively separate variability and uncertainty. 

Variability may be put in the model as a formula and then uncertainty can be added in the 

simulation, or, variability can be simulated and uncertainty added in the model as a series of 

hyper-parameters based on simulated samples from the original population (Vose, 2000; 

Vasquez et al, 2014). If the researcher is able to use a formula for the distribution then it is easy 

to accommodate uncertainty, but most QMRA analyses use simulation software for the 

variability and uncertainty parameters must then be added to the simulation.  

2.5.2.7 Sensitivity Analyses 

 Sensitivity analyses determine what inputs have the most influence on model outputs by 

using either regression or Spearman (rank-order) correlation indices to determine the strength 

certain variables have on the end distribution. In a sensitivity analysis, the effect of changes 

made to input variables on the outcome distribution are calculated and the variables with the 

largest influence are identified (Vose, 2000). By stretching the parameters of the input 

distributions to reasonable limits one can simulate the endpoint, leading to valuable information 

about the most beneficial location to reduce microbe counts in the process. Forecasting the effect 

of processing interventions can determine target reductions to reach a desired endpoint. 
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2.6 Processing Interventions 

 Birds that enter the scalder water after electric stimulation introduce bacteria into warm 

water. The scalder is a suggested vector for cross-contamination in at the processing facility 

(Russell, 2012). Scalder water temperature can be used to reduce the incoming load on the birds, 

but temperatures above 65º C may result in discoloration of the bird and cause fat to dissolve in 

the water (Barbut, 2016). This, in turn, may protect Salmonella cells from the heat and result in 

higher d-values required for expected biocidal impact. Temperatures high enough to melt fat may 

also affect the retail value of the bird through yield loss in the scalder.  

 The high temperature of the scalder water loosens feathers that are then detached by the 

picking mechanism. This could also result in cross-contamination of bird carcasses (Russell, 

2015), although movement of the rubber picker fingers across the carcass may also serve to 

dislodge organisms from the product (Sams, 2016). Post-pick dip tanks with a variety of 

interventions are currently being used in an attempt to lower bacterial loads going into 

evisceration. 

 Throughout first processing (from the unloading of birds to evisceration) a variety of 

interventions may be employed, utilized at the discretion of individual facilities. Inside-outside 

bird washes (IOBW) are presented as a cabinet in which hot water is sprayed around the 

carcasses while they run through the line. An on-line reprocessing cabinet (OLR) is a cabinet 

with an intervention chemical (usually an acid) spray that is implemented before the immersion 

chiller. At this stage the bird carcass is still intact, but the viscera have been removed.  

 Birds are dropped into the first stage of the chiller, which serves to remove any material 

from outside the carcass. Depending on the facility, there may be two or three chiller stages, the 

final one consists of an intervention (often a chlorine or acid) and water chilled to a temperature 
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≤ 4 ºC. As the preponderance of carcass rinse results are negative for Salmonella or E. coli 

organisms post-chill, USDA sampling has focused primarily on postchill results as food safety 

indicators. It is often assumed that chiller intervention takes the product to a level of zero and is 

thus the most important intervention in the processing flow.  

 Some studies have suggested, however, that low counts after the chiller are not indicative 

of the actual load, rather, but rather it is microbe recovery that lowers to zero. Scanning electron 

micrographs of post-chill carcasses exhibit multiple Salmonella cells lodged in crevices of the 

skin and muscle, which are later expressed in product samples during secondary processing. 

Birds that have been repeatedly rinsed (Lillard, 1989), or cut-up directly after the chiller, also 

show counts higher than that from carcass rinses. It is also thought that residual kill of microbes 

in rinse bags due to acid interventions may be masking the actual counts on carcasses, leading to 

USDA’s suggestion of a 1-minute drip time and replacement of neutralized buffered peptone 

water for carcass rinses (USDA, 2016).  

 Secondary processing (post-chill to pack-out) interventions consist of dip tanks and spray 

rinses. Unique to each facility, sprays are implemented on lines, particularly debone and cut-up, 

and dip tanks are employed for cut-up parts to control cross-contamination that may occur during 

processing activities. Sprays are often placed over bird frames as they enter the initial grinder 

before the mechanically separated (MSC) process, or on whole leg or breast trim before going 

into the grinder. Parts dip tank efficacy in a processing environment has not been thoroughly 

tested, although recent use has resulted in counts low enough that baseline standard 

reassessments have been advised.  

 The most common intervention chemicals used for secondary processing are acid blends, 

such as peroxyacetic acid (PAA), Acidified Sodium Chlorite, and Hypochlorous acid. Studies 
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completed in laboratory settings are predominately focused on pre-dip vs. post-dip reductions, 

whether this is percentage of positive results or a log reduction of enumeration Campylobacter or 

Salmonella counts. Again, these reductions have not been followed throughout the mechanistic 

process flow and may be difficult to define if the load during processing is too low to determine 

a significant decrease in pathogens. The concentration of intervention (in ppm) is often noted and 

differing levels have been tested for efficacy. However, as standards become more defined it 

becomes necessary for industry to find the right combination of concentration and pH for the 

largest impact of any given intervention chemical.  

2.7 Indicator Organisms 

 The use of indicator organisms is beneficial when the organism of interest is found at 

very low levels or low frequency during experimental sampling. Often, when attempting to 

answer questions with regard to level of contamination before and after an intervention step, an 

inoculation study will be completed. However, when dealing with pathogenic organisms the 

research must be conducted in a laboratory setting. Although laboratory experiments may be 

useful tools in assessing the efficacy of different reduction strategies, they are not a viable 

method to capture the mechanistic process that occurs in processing facilities.  

 An indicator organism should be found in a readily available quantity in order to be 

useful. Counts should be high enough that a reduction can be determined if an intervention is 

applied. Such an organism should also be similar enough to the bacterium of study that they 

would react the same way to treatments or environment under study or increase in count in a 

similar fashion (Shaffner and Smith-Simpson, 2014). Of particular benefit to the processing 

industry would be acceptance of indicator organisms which are more easily recovered and 
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quantified than pathogens which currently require more extensive methods of count 

determination.  

 Index and indicator organisms have been used with varied success. Indicator organisms 

are often sampled as a yardstick for determining process cleanliness. Index organisms are 

substituted for an organism that could affect food safety. For instance, Aerobic Plate Count 

(APC), as well as Aeromonas are indicator organisms for process hygiene, or overall cleanliness, 

in a facility (Saini et al., 2011; Shaffner and Smith-Simpson, 2014). Generic E. coli is considered 

indicative of fecal contaminant (Handley et al., 2015), and thus, may be used as an index 

organism for pathogenic bacteria.  

 Enterobacteriaceae (EB) assays include not one, but many organisms that may be a good 

indicator of an increase or decrease in microbial activity (Kornacki, 2011). EB is most 

commonly utilized as a hygiene indicator as its assay recovery will include multiple organisms, 

such as coliforms, fecal coliforms, E. coli 0157:H7, and Salmonella spp. The Salmonella spp. 

and EB relationship is of interest in this research, and the research design will be structured to 

test for efficacy of EB as an index organism for Salmonella.  

EB also has several characteristics that make up a good index organism for Salmonella, 

such as; being present along with Salmonella; its habit of occurring in higher numbers than the 

requisite organism; and enumeration of EB is more convenient than that of Salmonella (Bonde, 

1966).  Earlier studies have indicated a positive correlation between EB and Salmonella spp. 

reduction (Anonymous, 2015). A relationship between EB and Salmonella would be a financially 

beneficial method for the poultry industry to utilize in making inferences about the levels of 

Salmonella on both product and equipment.  
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2.7.1 Relationship between Enterobacteriaceae and Salmonella concentration 

 The relationship between Enterobacteriaceae and Salmonella on raw poultry has been 

suggested (ILSI Europe), but has not been successfully established to date. Salmonella positive 

results on specific raw pork cuts were associated with higher mean Enterobacteriaceae counts, 

than those for negative samples (Biasino et al., 2017), but a significant positive correlation has 

been found between EB and Salmonella reduction on bird carcass rinses in 1st processing 

(Anonymous, 2015). 

 

Figure 2.2 Relationship of Microbial Organism 

From Schaffner and Smith-Simpson, 2014 

 

 As Salmonella are part of the Enterobacteriaceae microbial family; an increase in one 

would be expected to result in an increase in the other. However, the strength and shape of that 

relationship has not yet been defined for carcasses, parts or other poultry products. As 

Enterobacteriaceae is a hygiene indicator organism and Salmonella a pathogen, one would need 
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to act with caution about making any inference based upon the presence or absence of the 

indicator.  

In summary, a quantitative microbial exposure analysis of poultry parts, ground product, 

and MSC for both Salmonella spp. and Campylobacter spp. counts is intended to underscore the 

importance of defining the most beneficial process location. It is expected the results of this 

study will determine that the locus of greatest reduction in the processes is in first processing 

locations, and it is proposed that the exposure likelihood can be reduced to a reasonable level if 

further reductions can be realized in these locations.  

Analysis of chemical interventions used in the QMRA sampling distributions should aid 

the researcher in making assumptions about the expected level of reduction in specific processes. 

This, in turn, will allow for construction of plausible scenarios where Salmonella and 

Campylobacter may be reduced to acceptable Agency food performance standards. If a 

relationship can be found between Enterobacteriaceae and Salmonella occurrence and counts, 

then reductions could be predicted based upon this less costly recovery methodology. 

It is expected that results of this study will be of benefit to the poultry industry and will 

guide further research to help the industry by isolating the most beneficial locations for pathogen 

reduction and the best intervention concentration and pH level to achieve a targeted reduction for 

the final product. Results may then be used to find the most cost-effective way to achieve such 

reductions by removing interventions in locations in which they are not helpful. Results of this 

study may invite further discourse about the most advantageous method of increasing the 

efficacy of food safety measures in the poultry industry.  
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Chapter 3 Quantitative Microbial Models for Salmonella spp. and Campylobacter spp. on 

Parts, Ground, and Mechanically-Separated Poultry Product 
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3.1 Abstract 

Campylobacter spp. and Salmonella spp. levels on poultry product are a source of 

concern for food safety professionals seeking to bring microbial loads to required pathogen 

standards. Quantitative microbial risk analyses may be used on poultry product processes to 

predict the output level of pathogens given differing interventions throughout production.  

 Data from five poultry processing facilities over a series of flocks, during three seasons 

were collected to determine the expected output load for parts, ground, and mechanically 

separated chicken (MSC) product. Sensitivity analyses were utilized to determine the most 

beneficial locations for reduction in the process in order to arrive at pathogen loads that met 

current agency performance standards (USDA-FSIS, 2015). Simulated reduction scenarios were 

employed to determine what reduction levels were required to meet these standards. 

 Due to the large frequency of negative pathogen samples, analyses consisted of multiple 

lognormal distributions fit to the expected frequency of values below the LOD, utilizing a 

maximum likelihood estimation (MLE) technique to determine point estimates. Reduction 

distributions were employed between distributions in a Markov Chain format in order to reduce 

chaos in the Monte Carlo simulations. 

 Results indicate that parts standards could be reasonably met with pathogen reductions 

during the process, whereas much higher reductions, some that may not be reasonable given 

current intervention limitations, were necessary to bring MSC and ground product microbial 

levels down to expected parameters. Unexpectedly, results indicated that the frequency of 

positive samples were higher for the spring/summer and spring/winter seasons for the ground 

and MSC product than for their summer cohorts. 
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3.2 Introduction 

 Microbial modeling in the poultry industry has been used to predict the risk of illness or 

exposure more frequently since development of computing systems built for sampling large 

datasets. The results of these analyses have been used to refine processes and predict changes 

made to lower microbial loads on products. Previous studies have focused upon microbial load at 

output, the possibility and impact of increase as a result of cross-contamination and risk that may 

occur from inadequate cooking before consumption (Boysen et al., 2013; Hartnett et al., 2001; 

Mylius et al., 2007; Nauta and Christensen, 2011; Nauta et al., 2005; Van der Fels-Klerx et al., 

2005).  

 Salmonella is a Gram-negative, rod-shaped pathogenic organism that has been linked to 

foodborne illness in an estimated 1 million people per year in the US (CDC, 2012). After 

ingestion of the pathogen, an individual may begin to develop diarrhea, vomiting, or fever within 

12 to 72 hours. Salmonella has been found in multiple food sources, but is commonly associated 

with raw poultry products as the organism has been shown to thrive in the digestive tract of the 

birds.  

 Campylobacter spp. also thrives in the chicken gut and the hot, humid environment of 

first processing. Symptoms of Campylobacter illness include nausea and vomiting, diarrhea, 

fever, and possibly bloody stools and can occur between one and seven days of infection.  

 Both Salmonella and Campylobacter are of concern in poultry product processing and 

models that help predict output loads are desired for every product type. Quantitative microbial 

risk models (QMRA) have been developed for many poultry processes but most have been 

forced to use data from a mixture of prior studies which have not utilized both flock and facility-
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specific data. There are no known microbial risk or exposure analyses for mechanically separated 

chicken (MSC) product processes. 

 Microbial risk assessment flows were developed for MSC, ground, and poultry parts 

(drum and breast) product processes with data collected from multiple flocks and facilities, with 

each flock being followed throughout the process, from first to the end of second processing. 

Models were created using the @RISK add-in for Microsoft Excel version 6.3.1. The resultant 

models were used to create scenarios in which the output may be expected to meet the 

Salmonella and Campylobacter performance parameters set by USDA, shown in Table 3.1. 

3.3 Materials and Methods 

 The sampling design followed three product processes (MSC, ground, and parts) from 

facility entrance to the end of the process line before pack-out. Sampling was completed 

throughout an 8 month period (December 2015 to July 2016) in order to account for seasonality 

in the model (Boysen et al., 2013; Williams et al., 2012). Sample season cohorts were spring/fall 

(temperate weather), summer (hot weather), and winter (cold weather). Each sampling event 

(day) consisted of 5 samples per location, each of which was analyzed for Salmonella spp. and 

Campylobacter spp.  

3.3.1 Process Flow 

The sampling scheme for the MSC, ground, and parts product began in the live-hang area, 

directly after bleed-out and before the scalder.  This was to capture the microbial load on the 

birds as they came into the processing facility. Carcasses were then sampled after the picker, 

followed by samples taken directly after the OLR cabinet, right before the chiller.   
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Table 3.1 Maximum Allowable Pathogen Standards as Set by USDA FSIS (2015) 

Product Type Campylobacter spp. Salmonella spp. 

MSC/Ground (325 g.) 1.9% 25.0% 

Parts (4 lb.) 7.7% 15.4% 

 

Approximately two hours later (after the birds had completed the chiller intervention) samples 

from the same flock were taken at the end of the chiller.  For the MSC flow, frame rinses were 

taken post debone and then MSC samples were selected randomly from the output chute. For the 

ground product, whole leg and trim product samples were rinsed, followed by ground product 

being randomly selected from different sections of the combo.  For parts, boneless-skinless 

breast and drum product was sampled after the dip-tank at the end of the debone line (Figure 

3.1). In instances where drum product was not being processed that day, whole leg product was 

sampled in its place. 

Product was followed throughout the process for each sampling exercise to ensure the 

data was from the same flock (Table 3.1). Each sample collection was randomly selected.  

Sampling flow by product type are represented in multiple facilities over a period of 8 months to 

incorporate differing processing methods, seasonality and intra-flock differences. Five samples 

were taken at each location for every day of sampling. 
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Figure 3.1 Sampling Flow by Product Type 

(Locations of each sample taken throughout each process. Number of samples taken in parentheses) 
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Table 3.2 Number of Samples Collected by Season, Facility, Day and Location 

(Number of separate sampling facilities and days by season and overall samples taken) 

 

Product Type Season Number of 

Facilities 

Represented 

Samples per Day Number of 

Sampling Days 

Number of Samples 

Recovered  

(all locations and facilities) 

 

MSC 

Fall/Spring 

Summer 

Winter 

3 

2 

3 

 

30 

5 

4 

3 

145* 

120 

89* 

 

 

Ground 

Fall/Spring 

Summer 

Winter 

2 

2 

2 

 

30 

3 

2 

3 

90 

60 

90 

Parts (each type) Fall/Spring 

Summer 

Winter 

3 

3 

3 

 

25 

3 

5 

3 

75 

120 

75 

*Not all samples were suitable for analysis
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3.3.2 Sampling Methods 

For each carcass rinse, a whole bird without giblets (WOG) was collected with an 

inverted, sterile bag. Carcass samples taken after a chemical intervention were drained, with the 

carcass drained in an inverted bag for approximately 1-2 minutes each to avoid residual kill of 

potential microbes during the rinse. Frames and parts product were also drained for 

approximately 1-2 minutes in order to account for the possibility of intervention holdover on 

recovery. 

Four hundred ml of cooled buffered peptone water (BPW) were poured into the bag, with 

the liquid saturating both the inside and outside of the carcass. The bag was then twisted to close, 

and the bag and sample were rocked back and forth for 1 minute.  The carcass was then removed 

from the bag and the remaining solution was poured into the original, sterile sample container, 

which was then iced and taken immediately to the corporate laboratory for testing.   

For the frame rinses, 1 frame each was selected in an inverted sterile bag, with 200 ml of 

cooled BPW used to rinse the product. Parts were randomly selected out of the combo at 4 lbs. 

per rinse with 400 ml of cooled BPW used for the rinse.  

3.3.3 Recovery Methods 

 Temperatures for all samples were immediately assessed upon arrival at the corporate 

laboratory to assure that none of the sample bottle contents had increased above 8ºC, and that 

none of them had frozen.  Resulting data indicated that samples were stored at 2 to 4ºC.  Samples 

were tested for presence/absence of Salmonella spp. using polymerase chain reaction (PCR) 

screening on DuPont Qualicon BAX® methodology. All Salmonella spp. positive results were 

then enumerated using the most probable number (MPN) method. Campylobacter was 
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enumerated via chromogenic agar plates (specific for Campylobacter jejuni and Campylobacter 

coli). 

Salmonella qualitative analysis was prepared by aseptically transferring 20 ml of rinsate 

and 30 ml of fresh BPW into a sterile specimen cup for each of the samples. Ground product and 

MSC samples were weighed at 325 grams each in a filter bag and diluted with 1625 ml of 

buffered peptone solution and stomached for 30 seconds.  All bags were labeled by batch. 

Controls were prepared and were incubated for determination. 

 Samples that tested positive for Salmonella spp. were then set for MPN.  For carcass and 

parts rinses, samples were directly tubed.  For MSC and ground samples, 65g of sample were 

stomached for 2 minutes in a 585 ml enrichment broth. The 10 ml, 1 ml, and 0.1 ml samples 

were then set in triplicate tubes.  If necessary, .01 ml and .001 ml samples were set in the same 

manner. Prepared controls and samples were incubated for determination.   

 Campylobacter rinses were kept on ice until plating with the rinsate representing a 1:1 

dilution, whereas ground and MSC product were diluted in 1650 ml of BPW and stomached.   

For each of 2 plates, 0.50 ml was spread with a sterile instrument across the surface of the agar 

until the plate appeared to be dry.  The inoculum was allowed to dry completely before 

incubation. Product was incubated at 42 ºC for 36 to 48 hours.  At 48 +/- 2 hours the plates were 

examined for colonies, with the sum of both plates being the reportable count.  Presumptive 

positives were then confirmed.   

3.3.4 Modeling Methods 

 Data were separated for each of the following locations (nodes): prescald, postpick, 

prechill, directly after the on-line reprocessing (OLR) rinse, postchill, frames (at the end of the 

debone line), drums and breast product (directly after the parts dip tank), and pre-grind product 
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(whole leg or trim) directly before the grinder. These nodes were included in the model based 

upon the designated process flow (parts, ground, or MSC product). Data for each node and 

product type were separated by season (winter, summer, or fall/spring), and an analysis of 

variance using (Proc GLM in SAS) was evaluated with season as the main effect. Interaction by 

facility was not analyzed as one flock per facility visit was collected, resulting in low sample 

size. Data were log10 transformed for analysis, and negative samples were designated as 0.02 (as 

the LOD was 0.03) for Salmonella spp., and 0.1 (as the LOD was 1 for Campylobacter spp.) 

because the log10 transformation of 0 is undefined. If there was a significant difference between 

seasons (p ≤ 0.05), then the data were sequestered in the model, with separate seasons taking 

different pathways from the node at which they separated. 

The raw parts model, consisting of the boneless-skinless breast and drums data may be 

represented by the following formula:  

P(f) = CIµ + (-DP)i + (-Dpc)j + (-Dc)k + (-Dpt)l + eijkl, where:                                                             (3.1) 

P(f) is the probability of a specific final cumulative distribution at the end of process; CI is the 

contamination on the bird carcass before the scalder (incoming load); DP is the reduction 

distribution after the picker, Dpc, the reduction distribution on the carcass prechill;  Dc is the 

reduction distribution after the chiller; Dpt is the reduction distribution of pathogen counts on the 

parts after the dip tank; and eijklmn is the random error term.  

The ground product and MSC models are similar except that frames were sampled before the 

MSC grinder and whole leg or trim product was sampled before the grinder. The models for both 

are as follows: 

Ground: P(f) = CIµ + (-DP)i + (-Dpc)j + (-Dc)k + (-Dpt)l + (-Dg)m + eijklm,                                                   (3.2) 

MSC: P(f) = CIµ + (-DP)i + (-Dpc)j + (-Dc)k + (-Df)l +(-Dm)m +  eijklm, where:                                     (3.3) 
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Where, P(f) is the probability of a specific final cumulative distribution at the end of 

process; CI is the contamination on the bird carcass before the scalder (incoming load); DP is the 

reduction distribution after the picker; Dpc is the reduction distribution on the carcass prechill; Dc 

is the reduction distribution after the chiller; Dpt is the reduction distribution on the whole leg or 

trim product (ground model); Dg is the reduction distribution on the ground product (ground 

model); Df is the reduction distribution of counts on the frame (MSC model); Dm is the reduction 

distribution on MSC product (MSC model); and eijklmn is the random error term. 

3.3.5 Distribution Fitting with a High Frequency of Zero Samples 

The sampled and recovered data were fit to distributions that best exemplified the spread 

of data for each location, as well as capturing the frequency of positive values to the whole. 

There are several ways to handle over dispersed data in quantitative studies. Some modeling 

exercises have omitted the negative values altogether, which has proven to greatly skew the 

output. Substituting a value for each of the 0 (or negative) values results in overestimation of the 

mean and underestimation of the standard deviation (Busschaert et al., 2013; Croghan and 

Egeghy, 2003; Gonzales-Barron et al., 2010; Helsel, 2006; 2009). Other researchers have chosen 

the hurdle methodology, a log-probit model where the pathogen frequency of is represented by a 

discrete function, which is held at 0, with the count data being funneled to a model of best 

representation (Clark et al., 2008). 

Zero-inflated models have also been used to fit distributions with a high frequency of 

“less than” values. Zero-inflated models, such as the zero-inflated negative binomial, or the zero-

inflated poisson-lognormal, use a logit function to model the odds of negative results (or zeros) 

which flows into a probability distribution of the positive counts. The difference between the 

hurdle model and its zero-inflated counterpart is that in a zero-inflated distribution the count 
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model is not held at zero. As a result, “true” zeros are handled in the discrete distribution and 

other zeros that may occur are handled in the continuous counterpart, which can be more flexible 

given changes in frequencies in a distribution (Duarte et al., 2014; Duarte and Nauta, 2015). 

However, a zero-inflated model also requires that the dataset be split into a discrete and 

continuous format that, at some point, must be modeled together to make inferences about the 

impact of load reduction at specific points in the process. 

For these analyses, a maximum-likelihood estimation (MLE) method was chosen as the 

best for data fitting. MLE algorithms seek to use a previously defined distribution and to 

determine the most reasonable parameters based upon the available data. Programs such as 

Solver in Excel, or Goal Seek in the @Risk software may be used to assess the possible 

parametric iterations until a reasonable solution is reached. In this case, when more than 15% of 

the sample distribution consisted of samples less than the level of detection (“negatives”) the 

Solver program in Excel was used to determine the parameters of lognormal distributions. 

The MLE was chosen specifically as it allowed the use of a single distribution to 

approximate the distribution of both the “less than” values and the count values and has proven 

to be effective in QMRA literature (Busschaert et al., 2010; Hewett and Ganser, 2007). As the 

Markov Chain format of the simulations requires the nodes to flow into one another, use of a 

hurdle or zero-inflated approach resulted in bimodal distributions from which simulations of 

reductions could not be approached. Also, the assumption that any value below the LOD is an 

absolute “zero” is simply not justifiable and may be influenced by a number of factors such as 

small concentration of pathogens in product, a too-small sample substrate, splitting samples for 

testing, or utilization of a test with a high recovery threshold (Duarte et al., 2014; Lorimer and 

Kiermeier, 2007). In order to model both frequency and count with one distribution, a value was 
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designated as the LOD threshold, at which any value below that number would also be 

considered a negative. In the case of Campylobacter spp., the LOD was 1 cfu/gram, thus, 0.1 

cfu/gram was designated as the highest negative value possible in the distribution. For 

Salmonella spp., 0.03 cfu/gram was the LOD, and 0.02 cfu/gram was designated as the highest 

possible negative value. The threshold for the frequency of negative samples in a cumulative 

distribution was then -1.00 log for Campylobacter spp., and -1.70 for Salmonella spp.  

The lognormal distribution was the distribution of choice, as microbial data is well-

defined by this treatment (Duarte and Nauta, 2015). Some researchers posit that lognormal 

distributions are not beneficial to modeling low count data, as the 0 count is undefined in log 

transformations and that only discrete numbers should be used for modeling bacteria 

(Jongenberger et al., 2012).  However, as bacteria are recovered from products that are parts of a 

larger sample, and it is the result of ingestion of a larger sample that is of interest, it is not 

necessarily incorrect to calculate the increase and reduction of the sample as fractions of a whole. 

And, the use of the lognormal for all over dispersed data sets in the models allows for 

comparison of the distribution means between locations in the model (Lorimer and Kiermeier, 

2007). 

The use of two models (one to represent the frequency, and another to represent count 

values) does not lend itself to simulations where reduced counts are increased throughout the 

process. When all negative counts are imputed to be one value it is not only unrealistic, but it 

makes the change from ‘positive’ to ‘negative’ more difficult to model. In the case of this 

analysis, only the positive samples were enumerated; thus, it makes sense to model with the 

assumption that many of these negative values are not zero, but are simply counts too low to 

define (Duarte, 2013). Using MLE to back into a reasonable distribution allows for a more 
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reasonable output of likely values after simulation. A list of the best fits for the distributions for 

all models may be seen in Table 3.3. 

3.3.6 Handling reduction in the models 

The use of Monte Carlo simulations when handling increase or reduction in a chain of 

distributions can result in a chaotic output if the model does not manage the relationship between 

successive nodes (Vose, 2000). If a statistically significant relationship between nodes can be 

established, then a correlation matrix may be used to establish these dependencies. However, the 

Spearman correlation analysis (PROC CORR in SAS) required imputation of negative or “less-

than” values. The high frequency of these values in these datasets resulted in relationships 

between nodes that may not have been meaningful due to the transformation. As a result, 

reduction distributions were created to define the relationships between nodes.  

A normal distribution of log10 transformed data represented the difference between the 

mean and standard deviation of neighboring distributions, as((𝜇𝑥2 − 𝜇𝑥1), (
𝜎2𝑥1

𝑛
 +

𝜎2𝑥2

𝑛
)), where 

n represented the number of simulations used to define the measurement uncertainty for final 

distributions (n=100). Using a reduction distribution allowed the chain of events to be connected,  

without the assumption of a significant correlation between locations, which could not be 

justified due to the multiple transformations at a censored value. Using reduction distributions 

also allowed the relationship between locations to be illustrated with introducing results that 

could be meaningless due to the iterative reductions available in an unrestrained Markov Chain 

Monte Carlo simulation (Table 3.4).  
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Table 3.3 Selected Model Distributions 

 

Parts Process/Campylobacter spp. 
Prescald 

 

 

Normal(Normal 

(4.40,0.054),0.98) 

Postpick 

Summer: Extreme value 

(2.39,0.74) 

Winter/Spring: Extreme 

minimum value (2.45,1.07) 

Prechill 

Summer: Extreme 

minimum value 

(1.73,0.47) 

Winter/Spring: 

Normal 

(-0.58,0.47) 

Postchill 

 

 

Normal 

(2.58,0.77) 

Drums/Breast 

 

 

Normal(-2.58,0.77) 

Parts Process/Salmonella spp. 
Prescald 

Summer: 

Normal(Normal 

(1.13,0.71), 1.24) 

Winter/Spring: 

(Normal(Normal 

(0.15,0.80),1.35) 

Postpick 

Summer: Normal 

(-1.43,1.04) 

Winter/Spring: Normal 

 (-1.35,0.90) 

 

Prechill 

Summer: Normal 

(-1.56,0.80) 

Winter/Spring: 

Normal 

(-2.00,0.20) 

Postchill 

 

Normal 

(2.22,0.30) 

Drums 

 

Normal 

(3.00,0.50) 

Breast 

 

Normal 

(2.31,0.61) 

MSC Process/Campylobacter spp. 

Prescald 

 

 

Normal(Normal 

(4.22,0.51),1.28 

Postpick 

 

 

Triangular(1.86,4.5,4.05) 

Prechill 

Summer: 

Normal 

(1.64,0.34) 

Winter/Spring: 

Normal 

(-0.12,2.00) 

Postchill 

 

 

Normal 

(2.00,0.53) 

Frames 

 

 

Normal 

(1.72,0.53) 

 

MSC 

Summer: 

Normal 

(0.28,0.08) 

Winter/ 

Spring: 

Normal 

(0.61,0.13) 

 

MSC Process/Salmonella spp. 
Prescald 

 

 

Normal(Normal 

(0.52,0.64),1.31) 

Postpick 

 

 

Normal(-1.98,1.12) 

Prechill 

 

Summer: Normal 

(2.28,0.462) 

 

Winter/Spring: 

Normal 

(-1.35,0.92) 

Postchill 

 

 

Normal 

(2.03,0.22) 

Frames 

 

 

Pert 

(-3.29, 

-

2.7,1.03) 

MSC 

Summer: 

Uniform 

(0.189,2.1,051) 

Winter/ 

Spring: 

Triangular 

(-2.36,-

1.7,1.997) 

Ground Process/Campylobacter spp. 
Prescald 

 

Winter/Summer: 

Normal(Normal 

(5.24,0.47),0.80) 

 

Spring: 

Normal(Normal 

(3.42,0.88),1.36) 

Postpick 

 

Winter/Summer: 

Triangular 

(1.76,1.76,6.39) 

 

Spring: 

Uniform(0.94,9.35) 

Prechill 

 

 

Triangular 

(-1.79,2.34,2.83) 

Postchill 

 

 

Normal 

(3.03,0.99) 

Pregrind 

 

Beta-

Binomial  

< -1.00: 

Normal 

(1.75,0.62)  

> -1.00: 

Uniform 

(1.8,3.0) 

 

Ground 

Product 

 

 

Normal 

(2.00,0.92) 

Ground Process/Salmonella spp. 
Prescald 

 

Normal(Normal 

(-0.945,.54),1.44)) 

Postpick 

 

Normal(-1.72,1.81) 

Prechill 

 

Normal 

(-2.41,1.62) 

Postchill 

 

Normal 

(-2.5,0.46) 

Pregrind 

 

Normal 

(1.56,0.87) 

Ground  

 

Normal 

(-1.55,0.80) 
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Table 3.4 Reduction Distributions by Pathway 

Distributions of the mean reduction from the prior sampling location. 

 

Parts Process/Campylobacter spp. Reduction 
Postpick 

Summer: Normal 

(-1.59,0.15) 

Winter/Spring: 

Normal 

(-2.57,0.18) 

Prechill 

Summer: Normal 

(-1.35,0.11) 

Winter/Spring:  

(-2.41,0.18) 

Postchill 

Summer: Normal 

(-4.04,0.10) 

Winter/Spring: 

Normal 

(-2.00,0.13) 

Drums 

 

No change 

Breast 

 

No change 

Parts Process/Salmonella spp. Reduction 
Postpick 

Summer: Normal 

(-2.56,0.17) 

Winter/Spring: 

Normal 

(-1.20,0.18) 

Prechill 

Summer: Normal 

(-0.12,0.13) 

Winter/Spring: 

Normal 

(-0.65,0.22) 

Postchill 

Summer: Normal 

(-0.67,0.09) 

Winter/Spring: 

Normal 

(-0.22,0.40) 

Drums 

 

Normal 

(-0.78,0.05) 

Breast 

 

Normal(-0.09,0.07) 

MSC Process/Campylobacter spp. Reduction 
Postpick 

 

Normal(-2.14,0.20) 

Prechill 

Summer: Normal 

(-0.44,0.14) 

Winter/Spring: 

Normal 

(-2.20,0.24) 

Postchill 

Summer: Normal 

(-3.64,0.53) 

Winter/Spring: 

Normal 

(-1.88,0.21) 

Frames 

 

Normal(0.28,0.07) 

MSC 

Summer: Normal 

(-0.28,0.08) 

Winter/Spring: 

Normal(0.61,0.13) 

MSC Process/Salmonella spp. Reduction 
Postpick 

 

Normal(-2.50,0.18) 

Prechill 

Summer: 

Normal(0.64,0.15) 

Winter/Spring:  

Normal(-0.30,0.12) 

Postchill 

Summer: Normal 

(-0.69,0.10) 

Winter/Spring: 

Normal(0.25,0.05) 

Frames 

 

Normal 

(-0.22,0.06) 

MSC 

Summer: 

Normal(1.66,0.11) 

Winter/Spring: 

Normal(3.20,0.09) 

Ground Process/Campylobacter spp. Reduction 
Postpick 

Winter/Summer: 

Normal 

(-1.94,0.14) 

Spring: 

Normal(0.02,0.22) 

Prechill 

Winter/Summer: 

Normal 

(-2.17,0.15) 

Spring:  

Normal(-2.31,0.18) 

Postchill 

 

Normal(-4.16,0.14) 

Pregrind 

 

Normal(2.10,0.19) 

Ground 

 

Normal(-1.08, 0.2) 

Ground Process/Salmonella spp. Reduction 
Postpick 

Normal(-0.78,0.24) 

Prechill 

Normal(-0.69,0.24) 

Postchill 

Normal(-0.09,0.17) 

Pregrind 

Normal(0.95,0.10) 

Ground 

Normal(0,0.12) 

 

3.3.7 Variability and Uncertainty 

 Variability in model building is the result of natural differentiation between samples 

within a population. Uncertainty (or error) is the variation that occurs as a result of unknown 

influences upon the variable parameters. Variability is expected in any process and the shape of 

the models attempts to define the distribution of that variability (Nauta et al., 2005). Uncertainty 
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is a lack of knowledge with regard to parametric estimations and must be addressed in the model 

so that decisions are made with knowledge of factors that may be influencing output (Vose, 

2000). In general, variability can be reduced by further sampling and uncertainty may be 

decreased through a tighter rein on experimental design (Zwietering and Nauta, 2007). 

Variability is the natural, stochastic nature of the process, and is reflected in the models 

by way of distributions.  Randomization was enacted with Monte Carlo simulations using 

random seed inputs, with each iteration representing a different flock. Between-flock variability 

was exhibited for each model by adjusting the incoming node (pre-scald) through the use of a 

lognormal distribution in which the mean was variable, based upon a lognormal distribution of 

the overall mean and the mean of the individual flock standard deviations, with the variation 

being represented by the overall node standard deviation.  

 Measurement uncertainty was included into the models by running 100 simulations of the 

original distributions, from which the means for each simulation were recorded and input into the 

final simulations as respective distribution parameters. This allowed the models to incorporate 

both variation and uncertainty in the simulations, while still allowing for visualization of 

uncertainty on the location outputs (see Figures 3.2a- 3.2o. Separating these two types of error is 

important to target and lower uncertainty in future analyses Gougouli and Koutsoumakis, 2015; 

Vose, 2000), and can prevent confusion between them (Pouillot and Delignette-Miller, 2010). 

3.4 Campylobacter spp. and Salmonella spp. Model Results 

From 100 simulations with 1000 iterations, 10 simulation pathways were randomly 

chosen and charted for each product pathway (Figures 3.2a-3.2o). The Campylobacter spp. 

pathway revealed that there was very little measurement uncertainty in the winter drum and 

breast processes. The only node at which parameter uncertainty was evident was at the postpick 
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location for the summer models. For the MSC winter/spring process, there was not an evident 

amount of measurement uncertainty in the chosen simulations, and there was only a small  

  
 

  
 

Figures 3.2a- 3.2d Mean Log10 Counts by Location and Pathogen Type 

10 random samples taken from population (100 simulations with 1000 iterations). Each chart 

represents a specific process, with variation within each node indicating uncertainty in the model 

at that location. 
aMean Log10  Drum Flow for Campylobacter spp.by Location/Summer 
bMean Log10 Breast Flow for Campylobacter spp. by Location/Summer 
cMean Log10 Drum Flow for Campylobacter spp. by Location/Winter-Spring 
dMean Log10 Breast Flow for Campylobacter spp. by Location/Winter-Spring 
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Figure 3.2a
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Figure 3.2b
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Figures 3.2e-3.2h Mean Log10 Counts by Location and Pathogen Type (cont.) 

10 random samples taken from population (100 simulations with 1000 iterations). Each chart 

represents a specific process, with variation within each node indicating uncertainty in the model 

at that location. 
eMean Log10  MSC Flow for Campylobacter spp. by Location/Summer 
fMean Log10 MSC Flow for Campylobacter spp. by Location/Winter-Spring 
gMean Log10 Ground Flow for Campylobacter spp. by Location/Winter-Summer  
h Mean Log10 Ground Flow for Campylobacter spp. by Location/Spring 
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Figures 3.2i-3.2l Mean Log10 Counts by Location and Pathogen Type (cont.) 

10 random samples taken from population (100 simulations with 1000 iterations). Each chart 

represents a specific process, with variation within each node indicating uncertainty in the model 

at that location. 
I Mean Log10 Drum Flow for Salmonella spp. by Location/Summer 
jMean Log10 Drum Flow for Salmonella spp. by Location/Winter-Spring 
k Mean Log10 Breast Flow for Salmonella spp. by Location/Summer 
lMean Log10 Breast Flow for Salmonella spp.by Location/Winter-Spring 
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Figures 3.2m-3.2o Mean Log10 Counts by Location and Pathogen Type (cont.) 

10 random samples taken from population (100 simulations with 1000 iterations). Each chart 

represents a specific process, with variation within each node indicating uncertainty in the model 

at that location. 
m Mean Log10 MSC Flow for Salmonella spp. by Location/Summer 
n Mean Log10 MSC Flow for Salmonella spp. by Location/Winter-Spring 
o Mean Log10 Ground Flow for Salmonella spp.by Location 

 
 

amount visible at the postpick location for the summer MSC pathway. The ground process was 

separated differently by season, with the winter/summer pathway exhibiting measurement 

variability at the postpick, prechill, and pregrind locations. The spring pathway appears to have 

the least variation at postpick, and the greatest at pregrind. 

For Salmonella spp. parts pathways there was very little variation, although a small 

amount was evident in the summer drums pathway at the prescald and postpick locations. The 

winter/spring flow revealed a small amount of measurement uncertainty in the prescald node. For 

-3.00

-2.00

-1.00

0.00

1.00

P
re

sc
al

d

P
o

st
p
ic

k

P
re

ch
il

l

P
o

st
ch

il
l

F
ra

m
es

M
S

C

L
o

g
1
0

A
v
er

ag
e

Figure 3.2m

-3.00

-2.00

-1.00

0.00

1.00

P
re

sc
al

d

P
o

st
p
ic

k

P
re

ch
il

l

P
o

st
ch

il
l

F
ra

m
es

M
S

C

L
o

g
1
0

A
v
er

ag
e

Figure 3.2n

-3.00

-2.50

-2.00

-1.50

-1.00

-0.50

0.00
P

re
sc

al
d

P
o

st
p
ic

k

P
re

ch
il

l

P
o

st
ch

il
l

P
re

g
ri

n
d

G
ro

u
n

d

L
o

g
1
0

A
v
er

ag
e

Figure 3.2o



 

77 

 

the breast product, the Salmonella spp. means by node reveal slight variation at the prescald 

location for the winter/spring pathway. There was a good deal more uncertainty between the 

mean Salmonella spp. values for the frame location for both the summer and winter models, with 

the variation still evident for the MSC product at the end of the summer flow. There was some 

variation for prescald and postpick locations for the Salmonella spp. flow for the ground product, 

but neither exhibited a significant difference between seasonal pathways (p ≤ 0.05).   

3.4.1 Pathogen Pathway Outputs 

 For illustrative purposes, the output for simulation #10 (out of the 100 

simulations) was chosen for each cumulative display (Figures 3.3a-3.3f). The Campylobacter 

spp. parts pathway resulted in identical output for the drum and breast product, so these results 

were combined. Both the summer and winter seasonal output for both part types resulted in 

approximately 9% positive samples at the endpoints. This result was actually quite close to the 

performance standards established by USDA at 7.7%. The MSC models resulted in a 25.2% 

positive Campylobacter spp. rate in the summer and a 47.4% rate in the winter, a much higher 

positive rate than that predicated by the USDA pathogen standards. For ground Campylobacter 

spp. product, the simulations resulted in a 15.8% frequency of positives during the 

Summer/Winter seasons, and a 30.7% rate of positive Campylobacter spp. occurrence during the 

spring process simulation. 

For Salmonella spp. there were 17.5% positive results in the simulation outputs for the 

drum product during summer and 17.6% for the winter. The summer breast product was at a 

positive frequency of 32.8% and the winter/spring at 31.9% at output.  For the MSC flow, there 

was a 77% rate of Salmonella spp. positives at output for the summer model, and a 96% 
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frequency of Salmonella spp. positives for the winter/spring output. The ground product model 

(all seasons) exhibited a distribution with 55% positive Salmonella spp. samples at output. 

 

 

Figure 3.3a-3.3d Cumulative Distribution Output by Part/Season Pathway 
Each output displays simulation #10 from 100 simulations/1000 iterations. Line at -1.00 for 

Campylobacter and -1.70 for Salmonella designates the cut-off for a positive result. The 

percentages in the white box represent the expected frequency of negative results and the 

percentages on the right represent the expected percent positive. 
a Final Output Parts/Campylobacter spp. 
b Final Output Ground/Campylobacter spp. 
c Final Output Drums/Salmonella spp. 
d Final Output MSC/Campylobacter spp. 
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Figure 3.3e-3.3h Cumulative Distribution Output by Part/Season Pathway 
Each output displays simulation #10 from 100 simulations/1000 iterations. Line at -1.00 for 

Campylobacter and -1.70 for Salmonella designates the cut-off for a positive result. The 

percentages in the white box represent the expected frequency of negative results and the 

percentages on the right represent the expected percent positive. 
e Final Output Breast/Salmonella spp. 
f Final Output MSC/Salmonella spp. 
g Final Output Ground/Salmonella spp. 
 

 

3.4.1.1 Goodness of Fit for Simulation Outputs 

The Chi square goodness of fit test was used to compare the simulation output results to 

that of the final product results from the raw data. The comparisons were made with binned data, 

with the frequency data within each bin being compared. Bins were of equal size with the 

exception of the frequency of values that resided below the LOD for both microbial classes, 
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which were handled as one single bin, regardless of size. With the following formula used to 

determine the Chi square score for each bin: 

𝑋2 = ∑(𝑂𝑖  − 𝐸𝑖  )
2

/𝐸𝑖   where;                                                                                                 (3.4) 

Ei is the expected frequency of positive samples for each bin, and Oi is the observed frequency of 

positive samples for each bin. The degrees of freedom value used to ascertain critical limit for 

each category was quantified as k-1, where, k is the number of bins used for comparison of the 

two distributions (see Table 3.5).  

Table 3.5 Chi Square Goodness of Fit Results for Campylobacter spp. Model Outputs 

Pathogen Type Pathway X2 value  

 

 

 

 

Campylobacter 

spp. 

Parts 0.00 (All values for compared distributions 

were < -1.00) 

 

MSC (Winter/Spring) 

MSC (Summer) 

 

0.12 

0.48 

 

Ground 

(Winter/Summer) 

Ground (Spring) 

 

0.03 

0.19 

 

 

 

 

Salmonella spp. 

Drums (Summer) 

Drums (Winter/Spring) 

Breast (Summer) 

Breast (Winter/Spring) 

0.23 

0.25 

0.11 

0.02 

MSC (Winter/Spring) 

MSC (Summer) 

0.06 

0.33 

Ground (all seasons) 0.07 

None of the pathways exhibited a significant difference between actual results at endpoint and 

output simulated data (df = 5, p ≤ 0.01, t-crit = 0.554). 

 

For each of the pathways, there was no significant difference between the frequencies of 

positive values by bin for the observed distribution (original fit) and expected distribution (final 

output of simulated data). These results indicate that the simulated data adequately represent the 
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actual collected data for frequency of positive values and, it can be expected that simulated 

reduction exercises for these pathways would also be representative of the actual process. 

3.4.2. Sensitivity Analyses for Product Pathway by Pathogen Type 

 Sensitivity analyses were run for each pathway, with results showing the weight 

of each sample location (node) on the output distribution. In Figures 3.4a to 3.4m, the Spearman 

rank correlation coefficient for each node with relation to the model output is displayed. In all 

pathways, the prescald location was most influential upon the final pathogen distribution.  

followed by samples taken directly after the OLR cabinet, right before the chiller.   

For the parts product summer flow, the location with the next highest weighting was the 

prechill node, whereas the postpick location had the most influence during the winter-spring 

season. The MSC product showed the second most beneficial location of reduction to be at 

postchill during the summer, whereas the prechill node was the best spot for reduction in the 

winter/spring pathway. The ground product output was most influenced by prescald for both the 

winter/summer and spring pathways. However, as this analysis was an attempt to discover the 

most beneficial places to reduce counts before production end, the next highest scoring location, 

pregrind for winter/spring, and postpick for summer, was used for reduction simulations.  
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Figures 3.4a-3.4d Sensitivity Analyses by Pathogen Type and Pathway 
a Spearman Rank Correlation for Campylobacter spp. Parts Process (all)/Summer 

b Spearman Rank Correlation for Campylobacter spp. Parts Process (all)/Winter-Spring 
c Spearman Rank Correlation for Campylobacter spp. MSC Process/Summer 
d Spearman Rank Correlation for Campylobacter spp. MSC Process/Winter-Spring 
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Figures 3.4e-3.4h Sensitivity Analyses by Pathogen Type and Pathway 
e Spearman Rank Correlation for Campylobacter spp. Ground Process/Winter-Summer 
f  Spearman Rank Correlation for Campylobacter spp. Ground Process/Spring 
g Spearman Rank Correlation for Salmonella spp. Drums Process/Summer 

h Spearman Rank Correlation for Salmonella spp.Drums Process/Winter-Spring 
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Figures 3.4i-3.4l Sensitivity Analyses by Pathogen Type and Pathway 

i Spearman Rank Correlation for Salmonella spp. Breast Process/Summer 
j Spearman Rank Correlation for Salmonella spp. Breast Process/Winter-Spring 
k Spearman Rank Correlation for Salmonella spp. MSC Process/Summer 
l Spearman Rank Correlation for Salmonella spp. MSC Process/Winter-Spring 
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Figure 3.4m Sensitivity Analyses by Pathogen Type and Pathway 
m Spearman Rank correlation for Salmonella spp. Ground Process 
 

For all product types and pathways the prescald location most significantly influenced the 

endpoint product Salmonella spp. distribution. The drums and breast product both exhibited a 

secondary influence of the postpick node for the summer months and for the prechill node during 

the winter/spring season. The MSC product pathway for both the summer and winter/spring 

seasons was most heavily influence (after the prescald node) by the postpick location 

distribution. For the ground product, the prechill was the second weightiest influencer of 

endpoint results for Salmonella spp. load.  

3.4.3 Simulated Reductions for Campylobacter spp. Models 

 Based on the results of the sensitivity analyses, three simulated reductions for the two 

most heavily weighted locations were applied to the models. For each of the three simulations, 

1000 iterations were processed using a Monte Carlo Latin Hypercube algorithm. Final 

simulations were chosen based upon the most beneficial reductions to arrive at or below the 

pathogen frequency allowances set by the USDA.  

 For the simulations, reduction distributions were developed that were to represent the 

changes that occurred between each node. Each reduction was normally distributed with the 
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mean being the mean reduction being a reasonable choice, subjectively based upon the current 

distributions, with the standard deviation being the mean standard deviation of the 100 simulated 

reductions from the original model. This assumed that the model variation would be the same for 

the simulated model as it was for the actual model. 

For the parts product, the Campylobacter spp. drum and breast pathways were combined 

as there was not a statistically significant difference between the two outputs. The summer and 

winter parts model reductions were isolated to the prescald locations as these simulations 

brought the levels of Campylobacter spp. in the simulated product distributions to levels well 

within the USDA performance parameters. Additional reductions of between 1.75  

And 2.25 log10 resulted in Campylobacter spp. frequencies of 0.4% to 1.8% for summer and 

0.8% to 1.6% for winter produced parts product (Figures 3.5a-3.5m). 

The Campylobacter spp. models for MSC required additional reductions from 1.50 to 

2.00 log prescald for the summer pathways and from 2.00 to 2.50 for the winter pathways, along 

with postchill mean reductions of 1.00 log in the summer, and from 0.75 to 1.00 log means  

reductions at prechill during winter processing. For the summer/winter season ground product, 

additional reductions of 1.50 to 2.50 log at prescald and from 0.50 to 0.75 pregrind resulted in a 

frequency of Campylobacter spp. positives from 0.4% to 1.0%, whereas extra reductions of 3.00 

log at prescald and from 2.00 to 2.50 log at postpick resulted in MSC outputs exhibiting 1.3% to 

0.8% Campylobacter spp. positive carcasses during the winter pathway. 

The Salmonella spp. parts simulations with additional reductions of 0.75 to 1.25 prescald 

and 0.50 postpick for both the summer and winter/spring drums pathways resulted in output 

frequency positives from 3.7 to 1.4% and from 5.0% to 2.6%, respectively. For the breast 



 

87 

 

product simulations, adding reductions of 1.00 to 1.75 prescald, 0.50 postpick (summer) and 0.50 

prechill (winter/spring) ended in output distributions reflecting 3.3 to 7.0% positive results for 

the summer months and 3.2 to 6.1% positive for the winter/spring season. 

 The summer model for the MSC product required additional mean reductions of 2.00 to 

2.75 log10 prescald and then another 0.75 log10 reduction postpick to meet the USDA standards 

with output of Salmonella spp. frequency between 11.46% to 20.02% positive. The winter/spring 

pathway required even higher added reductions from 2.50 to 3.00 log10 prescald and 1.50 log10 

postpick to arrive at positive frequencies quite close to the established parameters (18.21% to 

24.27%). 

All seasons were modeled together for the Salmonella spp. load on ground product as 

there was no significant difference between these samples (p ≤ 0.05). Additional reductions were 

only needed at the prescald node to achieve simulated output within required parameters. Mean 

reductions from 1.25 to 2.00 resulted in simulation output for ground product at 11.8% to 24.0% 

positive for Salmonella spp. 
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1. Prescald/Normal(-1.75,0.98)      1. Prescald/Normal(-1.75,0.98) 

2. Prescald/Normal(-2.00,0.98                 2. Prescald/Normal(-2.00,0.98) 

3. Prescald/Normal(-2.25,0.98)                 3. Prescald/Normal(-2.25,0.98) 

  
1.Prescald/Normal(-1.50,0.20)        1.Prescald/Normal(-2.00,0.20)  

   Postchill/Normal(-1.00,0.53)                               Prechill/Normal(-1.00,0.21) 

2. Prescald/Normal(-1.75,0.20)                           2.Prescald/Normal(-2.25,0.20) 

    Postchill/Normal(-1.00,0.53)                     Prechill/Normal(-1.00,0.21) 

3. Prescald/Normal(-2.00,0.20)                           3.Prescald/Normal(-2.50,0.20)  

    Postchill/Normal(-1.00,0.53)                     Prechill/Normal(-1.00,0.21) 
 

Figure 3.5a-3.5d Results of Simulated Reduction Models by Pathogen and Product 

Pathway Line at -1.00 for Campylobacter and -1.70 for Salmonella designates the cut-off for a 

positive result. The percentages in the white box represent the expected frequency of negative 

results and the percentages on the right represent the expected percent positive. 
a Summer Parts Simulations/Campylobacter spp. 
b Winter/Spring Parts Simulations/Campylobacter spp 
c Summer MSC Simulations/Campylobacter spp. 
d Winter/Spring MSC Simulations/Campylobacter spp. 
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1.Prescald/Normal(-1.50,1.50)                          1. Prescald/Normal(-3.00,1.50) 

  Pregrind/Normal(-0.75,1.50)         Postpick/Normal(-2.00,1.50)     

2 Prescald/Normal(-2.00,1.50)                          2. Prescald/Normal(-3.00,1.50) 

Pregrind/Normal(-0.50,1.50)                                Postpick/Normal(-2.25,1.50) 

3.Prescald/Normal(-2.50,1.50)                          3. Prescald/Normal(-3.00,1.50) 

   Pregrind/Normal(-0.50,1.50)                    Postpick/Normal(-2.50,1.50) 

 

 
1.Prescald/Normal(-0.75,1.42)                          1.Prescald/Normal( -0.75,1.42) 

   Postpick/Normall(-0.50,0.30)                           Prechill/Normal(-0.50,0.30)  

2.Prescald/Normal(-1.00,1.42)                          2.Prescald/Normal(-1.00,1.42) 

   Postpick/Normal(-0.50,0.30)                             Prechill/Normal(-0.50,0.30) 

3.Prescald/Normal(-1.25,1.42)                          3.Prescald/Normal(-1.25,1.42) 

   Postpick/Normal(-0.50,0.30)                             Prechill/Normal(-0.50,0.30) 

 

Figure 3.5e-3.5h Results of Simulated Reduction Models by Pathogen and Product 

Pathway (cont.) Line at -1.00 for Campylobacter and -1.70 for Salmonella designates the cut-off 

for a positive result. The percentages in the white box represent the expected frequency of 

negative results and the percentages on the right represent the expected percent positive. 
e Summer/Winter Ground Simulations/Campylobacter spp. 
f Spring Ground Simulations/Campylobacter spp. 
g Summer Drum Simulations/Salmonella spp. 
h Winter/Spring Drum Simulations/Salmonella spp. 
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1.Prescald/Normal(-1.00,1.42)                          1.Prescald/Normal(-1.25,1.42) 

   Postpick/Normal(-0.50,0.30)                             Prechill/Normal(-0.50,0.30) 

2.Prescald/Normal(-1.25,1.42)                          2.Prescald/Normal(-1.50,1.42) 

   Postpick/Normal(-0.50,0.30)                             Prechill/Normal(-0.50,0.30) 

3.Prescald/Normal(-1.50,1.42)                          3.Prescald/Normal(-1.75,1.42) 

   Postpick/Normal(-0.50,0.30)                             Prechill/Normal(-0.50,0.30) 

 

1.Prescald/Normal(-2.00,1.45)                         1.Prescald/Normal(-2.50,1.45) 

   Postpick/Normal(-0.75,0.18)                            Postpick/Normal(-1.50,0.18) 

2.Prescald/Normal(-2.25,1.45)                         2.Prescald/Normal(-2.75,1.45) 

   Postpick/Normal(-0.75,0.18)                            Postpick/Normal(-1.50,0.18) 

3.Prescald/Normal(-2.75,1.45)                         3.Prescald/Normal(-3.00,1.45) 

   Postpick/Normal(-0.75,0.18)                            Postpick/Normal(-1.50,0.18) 

 
 

Figure 3.5i-3.5l (cont.) Results of Simulated Reduction Models by Pathogen and Product 

Pathway (cont.)  
Line at -1.00 for Campylobacter and -1.70 for Salmonella designates the cut-off for a positive 

result. The percentages in the white box represent the expected frequency of negative results and 

the percentages on the right represent the expected percent positive. 
i Summer Breast Simulations/Salmonella spp. 
j Winter Breast Simulations/Salmonella spp 
k Summer MSC Simulations/Salmonella spp. 
l Winter/Spring MSC Simulations/Salmonella spp. 
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                              1.Prescald/Normal(-1.25,1.50) 

                                         2.Prescald/Normal(-1.50,1.50) 

        3.Prescald/Normal(-2.00,1.50) 
 

Figure 3.5m (cont.) Results of Simulated Reduction Models by Pathogen and Product 

Pathway  

Line at -1.00 for Campylobacter and -1.70 for Salmonella designates the cut-off for a positive 

result. The percentages in the white box represent the expected frequency of negative results and 

the percentages on the right represent the expected percent positive. 
m Ground Simulations/Salmonella spp. 

 

3.5 Conclusion 
 

Fit for all the models was appropriate, given that the “negative” (<-1.00 for 

Campylobacter and <-1.70 for Salmonella) bins were larger for all models than all other bins. 

Results for all pathogen and product pathways were expressed with cumulative distribution 

outputs of predicted product distributions (Figures 3.3a-3.3f). Given these results, none of the 

products would have met USDA pathogen performance standards for either Campylobacter spp. 

or Salmonella spp. standards, despite the fact that the counts were consistently reduced 

throughout the processes (with the exception of the slight increase seen at the grinder and frames 

for ground and MSC product, respectively).  

 Sensitivity analyses (Figures 3.4a-3.4m) indicate reductions taken at the prescald location 

would be the most advantageous to lowering pathogen load in the final product, pointing to the 

importance of mitigation strategies at grow-out (Berghaus et al., 2013).  
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Results from the models were illustrated by distributions incorporating a wide range of possible 

values. Reportable counts were for a 1 gram sample and the models were representative of this. 

However, extrapolation of these results to incorporate the actual risk of consumption should 

incorporate the predicted serving size, for instance, a 100 gram sample. 

3.5.1. Campylobacter spp. 

The parts pathways for Campylobacter spp. are similar by season for both parts types in 

that they decrease up to the end of the process, where counts plateau. The MSC summer season 

product pathway exhibits a decrease at postpick, does not decrease again until postchill and then 

evens off at this point. For the winter/spring model the mean Campylobacter spp. load goes 

down at the postpick location and does not decrease again, instead increasing at the frame 

location and again in the final product.  

The parts models for Campylobacter spp. reveal outputs similar to the USDA FSIS 

pathogen standards for all seasons, but the MSC product had a much higher frequency of 

Campylobacter spp. positive results in the winter/spring season than for the summer. The ground 

product model for Campylobacter spp. for winter/summer revealed reductions through the 

process to postchill, and then increased at pregrind, with some decrease once it arrived to the 

ground stage. For the spring product there was less of a load decrease at postpick, with a larger 

reduction at prechill and again at postchill, but then increased at pregrind, with a small decrease 

at the end of the process.  

Overall the frequency of positive results for Campylobacter spp. were higher in the 

spring season for ground product and for winter/spring seasons for both ground and MSC 

product. Models for the Campylobacter spp. pathways for all product types showed only slight 
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amounts of measurement uncertainty throughout the process, with the most being exhibited in 

the drum and breast parts product prescald and postpick nodes. 

3.5.2. Salmonella spp. 

For the Salmonella spp. parts pathway, the drums product goes down throughout the 

entire process for both seasons, with the breast product going down at postpick and plateauing at 

all other downstream locations. For MSC product counts go down postpick, but up prechill, 

going back down postchill and back up at the final product endpoint. The ground product goes 

down postpick and prechill and then back up during the pregrind process, leveling off at the final 

ground product.  

Salmonella spp. loads at output for drum product were similar by season for drum and 

breast product, with the breast product having a higher pathogen load at endpoint. The MSC 

product had a much higher frequency of Salmonella spp. positive product for the winter/spring 

season, whereas the ground product had a similar load throughout the year. The most uncertainty 

for Salmonella spp. load was exhibited in the prescald and postpick nodes for the ground product 

pathway.  

Reduction simulations resulted in expectations of output product that would sufficiently 

meet USDA-FSIS pathogen standards. However, the reductions needed to meet these standards 

can approximate quite large expectations of intervention capabilities and may not be reasonable-

or quantifiable- in a processing environment.  

At this juncture, a discussion of the level of reduction necessary to meet the USDA 

pathogen performance standards must be addressed. Although the simulated reductions required 

to meet the standards may be achieved with what appear to be reasonable reductions, these 
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reductions are additive to reductions already being achieved by the current process. For instance, 

in order to meet the performance standards required specified for Salmonella spp. load on MSC 

product, a facility would have to reduce the mean level on carcasses going into the picker by 

4.50 to 5.25 log10 during the summer months and by 5.00 to 5.50 log10 during the winter. This is 

not an unsubstantial amount. Considering that the mean level on carcasses for each of these 

seasons is 0.52 log, these reductions appear unreasonable, not to mention unquantifiable at the 

processing level.  This is somewhat due to the large amount of variation in the data (a standard 

deviation of 1.45 indicates that counts can range from -3.77 to 4.69 log at the 99% confidence 

interval), but the point remains that these levels of reduction may not be achievable in a 

processing environment.  

Suggestions for further analyses would include a similar data collection where samples 

resulting in a negative lab result would be further enumerated in order to ascertain what 

percentage of negative results could be expected to be counts that were simply below the level of 

detection. Sampling where a larger number of rinses could be recovered at each node for each 

flock would also be beneficial in further refining the variation present at each location within a 

flock.  

In addition, the fact that the incoming load (prescald) was the predominate factor 

influencing output distribution indicates that reducing counts before entering the production 

facility is essential for reduction of Campylobacter and Salmonella counts in parts, ground, and 

MSC poultry product. Data should be collected from live production on flocks before they enter 

the production facility in order to refine the reduction scenario that would result in the most 

desirable scenario at production endpoint. 
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Chapter 4: Analysis of Salmonella and Campylobacter reduction by location in First 

processing: Targeting beneficial intervention application in poultry facilities 
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4.1 Abstract 

Physical and chemical interventions during poultry processing may be used to reduce 

pathogen load on product. Although cidal agents may be used at almost every step in the 

processing flow, some application locations have proven to be more beneficial than others at 

reducing micro-organisms of interest at product endpoints. Isolating the chemical substances, 

and levels of these substances, at which the highest pathogen reductions occur may be used with 

existing pathogen reduction models to identify the most efficient means of controlling microbial 

levels during poultry processing.  

 Data at first processing locations from four poultry facilities were analyzed to determine 

the impact of intervention type, concentration and pH on log10 reduction for Salmonella spp. and 

Campylobacter spp. on product. Analysis of variance (ANOVA) tests for the impact of class 

variables on reduction, and multiple regression analyses by pH and ppm for each intervention 

were analyzed by Salmonella spp. or Campylobacter spp.  

 Results revealed line speed did not significantly affect pathogen reduction (although the 

Salmonella spp. reduction was statistically significant, the difference was quite small, a result of 

a high frequency of negative results). The presence of a post-pick cabinet resulted in a higher 

reduction for Campylobacter spp. and a lower reduction for Salmonella spp. samples than for 

samples without a cabinet present.  

 Using the results of ANOVA and multiple regression analyses, reductions were placed 

into existing models to infer reductions at specific locations during poultry processing. Use of 

these models may be beneficial in reducing pathogen load in poultry products. 
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4.2 Introduction 

  Campylobacter, one of the most common sources of foodborne illness (Stella et al., 

2017) has been linked to consumption of poultry products (Crotta et al., 2017). Campylobacter, 

like most bacteria, likes warm temperatures, and a wet environment with a bit of food, provided 

by the organic matter left by poultry processing (Garcia-Sanchez et al., 2017). Campylobacter 

spp. has been associated with process events such as unsuccessful picking or venting, and poorly 

executed evisceration and lower scalding temperatures (Seliwiorstow et al., 2014). 

 Ingestion of Campylobacter doses between 2 to 4 log10 have been associated with 

infection and illness (Hunt et al., 2001). Symptoms include in diarrhea and/or vomiting and, in a 

few cases, become a precursor to Guillian-Barre syndrome, an autoimmune disorder that may 

further result in paralysis (Garcia-Sanchez et al., 2017).  

There are not widely accepted methods of Campylobacter reduction at grow out (Ysunza 

and Le Ven, 2016). Researchers have found that jejuni was the most frequently recovered 

Campylobacter serotype at processing (Jones et al., 1991),interventions during processing have 

proven effective as cidal agents on poultry carcasses, although complete eradication of 

Campylobacter in poultry is not considered a reasonable expectation (Alter, 2017; Havelaar et 

al., 2007).  

From the family Enterobacteriaceae, the genus Salmonella consists of many serotypes 

(approximately 2600), each which thrive in unique environments, making it difficult to target 

reductions for the entire group (De Cesare, 2018; Merino et al., 2017). Serotypes most 

commonly associated with poultry are Enteritidis, Hadar, Heidelberg, Infantis, Kentucky, 

Montevideo, Typhimurium, Swarzengrund, and Seftenberg (Narayan et al., 2017).  Typhimurium 
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and Enteritidis are most frequently associated with human illness (Antunes et al., 2016). 

Although the most common serotype found in broiler processing was Kentucky, often 

comprising between 25-49% of samples taken (Finstad et al., 2012); it is not highly associated 

with human infection through consumption (Ricke et al., 2015).  

Foodborne illnesses attributed to Salmonella spp. are estimated at approximately 1.2 

million cases per year (CDC, 2018). The non-typhoidal form of Salmonella spp. is considered 

the source of about 35% of foodborne illnesses associated with poultry consumption (Nagel et 

al., 2013), and, as such, has historically been targeted during poultry production as a pathogen 

for reduction. Antunes et al., (2016) suggested loads of up of 106 to 108 of Salmonella are 

required for healthy adults to exhibit symptoms of illness. However, much lower concentrations 

of the pathogen may result in infection of children, or adults with compromised immune systems. 

The intensity of Salmonella spp. infection in humans depends upon the general health and 

immunity of the host, and as such, it becomes difficult to predict toxicity levels across 

populations.  

Ingestion of pathogenic strains of Salmonella can result in any of a group of 

gastrointestinal issues, the severity of which may range from asymptomatic to life threatening. 

Most illnesses result in symptoms at 12 to 72 hours after consumption of the pathogen (CDC, 

2018), which either resolve on their own or may result in hospitalization. A few cases may result 

in a form of arthritis, which may last for years.  

Salmonella, like Campylobacter, prefer warm, damp environs and can thrive in 

processing environments. Salmonella levels may be influenced by variables other than just 

exposure, such as the age and stress level of the birds, the serotype and the genetic composition 
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of the host (Ricke et al., 2015). As Salmonella are looking for food, the gastrointestinal tract of 

birds is an opportune environment (Ricke et al., 2015; Rohmer et al., 2011).  

Salmonella have historically been problematic to remove during poultry processing. For 

one, bacteria concentrations are highly variable and their reaction to cidal agents may not always 

be similar (Rodriguez et al., 2016). Adding to the difficulty of eradicating Salmonella is that the 

cells can congregate and form a biolfilm on processing equipment. Chemical interventions must 

be consistently monitored to ensure adequate concentration or the bacterial load can quickly 

increase (Corradini and Peleg, 2006).  

Physical and chemical interventions have been utilized in poultry processing facilities to 

remove both debris and bacteria from bird carcasses. At almost any juncture in the plant 

environment an intervention may be applied to meet Agency or internal pathogen standards. The 

type and amount of intervention applied may be dependent upon efficacy, allowable limits, and 

financial considerations. Choices may also be made with respect to the chemical makeup of the 

facility’s groundwater and/or organic load coming in from the grow-out facilities.  

Data were collected as part of a process pathway analysis and, as such, intervention type 

was limited to what was implemented at participating facilities. Peracetic acid (PAA) is a 

frequently utilized intervention in both first and second processing, so it is heavily weighted in 

the analysis. PAA is composed of acetic acid and hydrogen peroxide, which makes it a safe 

choice for both sprays and dip applications, both on equipment and on poultry carcasses. Its use 

is considered less environmentally harmful, and more oxidizing, than chlorine (USDA, 2018).  



 

102 

 

Results indicate that PAA can be more effective than chlorine at reducing both Salmonella and 

Campylobacter (Nagel et al., 2013), which may be the result of PAA being more successful at 

negating an increased pathogen load (Brinez et al., 2006). 

Chlorine is a much less expensive alternative than PAA, but can lose effectiveness in the 

presence of high organic loads (Buncic and Sofos, 2012) and reduce product quality if its 

concentration is too high. Chlorine tends to be most efficacious when there is an opportunity for 

continuous exposure to product, such as in an immersion chiller (McKee, 2012), although some 

studies have shown that it is not as effective in the chiller as in other locations (Buhr et al, 2005). 

Despite the usefulness of chlorine, its presence on poultry product is banned in several countries, 

thus making application an impossibility if product is destined for international sale. FreshFX®; a 

mixture of citric, phosphoric, or sulfuric acids can reduce pathogen loads in spray cabinets and 

has been used with success during processing. Cecure®, trade name for cetylpyridium chloride 

(CPC) was approved for use in 2004 for prechill spray cabinet or dip applications (Gilbert et al., 

2015; Heiberg, 2004) and although not as common in use as PAA or chlorine, is still being 

utilized at processing facilities.  

The objective of this study will focus on the influence of line speed and presence of a 

brush cabinet on Campylobacter and Salmonella reductions at the postpick location. 

Additionally, the reduction of these pathogens at the prechill, main chill, and postchill locations 

will be assessed as the result of recorded combinations of intervention concentration and pH. 

Results will be useful as an addition to the current literature on the efficacy of these interventions 

under specific conditions and locations.  
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4.3 Materials and Methods 

 Data were separated for each of the following locations (nodes): prescald, postpick, 

prechill, directly after the on-line reprocessing (OLR) rinse, postchill, frames (at the end of the 

debone line), drums and breast product (directly after the parts dip tank), and pre-grind product 

(whole leg or trim) directly before the grinder. These nodes were included in the model based 

upon the designated process flow (parts, ground, or MSC product).Samples from five poultry 

processing facilities were collected and recovered for Campylobacter spp. and Salmonella spp. 

over three seasonal cohorts (spring/fall, summer, and winter). Five samples each were taken at 

each of the locations during each sampling event (day) and reductions were taken by subtracting 

each individual value for a location from the mean of all samples from the prior location. This 

provided individual values of reduction while maintaining the within-flock data flow. 

 Values were log10 transformed before evaluation. Before transformation, values of less 

than the LOD were given the value of 1 log less than that value (e.g., <10 would be transformed 

to 1). Conversely, values that were recorded as greater then a number were given the value of 1 

log greater than that number (e.g., >250 would be transformed to 2500). For Campylobacter, 

values of 0 were imputed to 0.1, and for Salmonella <0.03 was changed to 0.02 as the log10 

transformation of 0 is indeterminable. 

 Whole bird carcass rinse (WBCR) samples were sent to a corporate laboratory and stored 

(from 2 hours to overnight) at a temperature range of 35.6 to 39.2ºF. The Salmonella samples 

were prepared by aseptically transferring 20 ml of rinsate and 30 ml of fresh buffered peptone 

water (BPW) into a sterile specimen cup for each of the samples. All bags were labeled by batch 

and controls were prepared and all were incubated for determination. 
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Presence/absence tests were conducted with polymerase chain reaction (PCR) screening 

using the DuPont Qualicon BAX® method. Salmonella spp. samples with positive results were 

directly tubed and enumerated with most probable number (MPN) analysis and Campylobacter 

spp. was enumerated with chromogenic agar plates (specific for Campylobacter jejuni and 

Campylobacter coli). Campylobacter rinses were set with a 1:1 dilution, with .50 ml each of 

dilution spread across 2 agar plates. The inoculum was allowed to dry completely before 

incubation and dishes were examined at 48 +/- 2 hours, with the sum of both plates being 

reported.  

Results from first processing were chosen for analysis as previous sensitivity analyses 

indicated that pathogen loads at process end were most heavily affected by reductions that 

occurred up to the end of the immersion chiller (Chapter 3). For each of three locations, post-

pick, prechill (after the OLR cabinet), and postchill, reductions were collected for the attributes 

listed in Table 4.1. 

An Analysis of Variance (Proc GLM) in SAS (Statistical Analysis Software) was 

conducted to determine if there was a significant difference between the mean log10 counts for 

line speed and cabinet type (post-pick location) and intervention type (prechill and postchill 

locations). Plant location was included so that these differences were accounted for in the model.   

The analysis was designed with the following formula: 

 Rijk = 𝜇 + Ci + Lj + Tk + LCl+ 𝜖ijkl  where;                                                                         (4.1) 

Rijk is 𝜇, the overall mean; Ci is the effect of the cabinet type, (cabinet or no cabinet); Lj is the 

effect of the jth line speed (105 or 140); Tk is the effect of the kth treatment (PAA, chlorine, mixed 
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acid, or Cecure®); LCl  is the effect of the lth sampling location, and 𝜖ijkl  is the model error. Due 

to sample size, interactions were not introduced into the model.  

 Table 4.1 Factors analyzed by location and attributes. 

Location Factor Attribute 

 

Postpick 

Line speed 105 bpm 

140 bpm 

Post-pick steam cabinet cabinet 

no cabinet 

 

Prechill 

Intervention PAA 

FreshFX® 

pH continuous 

ppm continuous 

 

Postchill 

Intervention (main chill) chlorine 

PAA 

Intervention (Finishing chill) FreshFX® 

PAA 

Cecure® 

pH (Main chill) 

pH (Finishing chill) 

continuous 

ppm (Main chill) 

ppm (Finishing chill) 

continuous 

 

 Models were analyzed using Multiple regression analyses (Proc REG) models for each 

intervention type and location combination to determine if pH and ppm levels could be used as 

predictors for pathogen levels at output. The linear model was fit as follows: 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝜖𝑥1,𝑥2….𝑥𝑛, where:                                                                 (4.2) 

 𝛽0 is the intercept;  𝛽1𝑥1 is the pH of the intervention;  𝛽2𝑥2  is the concentration (ppm), and 

𝜖𝑥1,𝑥2….𝑥𝑛 is the error for each factor. A stepwise regression model analysis was used to remove 

factors from the model if needed, in which case only a single regression model was fit. 
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4.4 Results 

4.4.1 Postpick reductions 

 Mean log10 Campylobacter spp. reductions at the postpick location were not significantly 

different by line speed category, but there was a significant difference between Salmonella spp. 

reductions, with slower line speeds resulting in larger decreases (Table 4.2). However, the 

numerical log difference is actually quite small (.03 log10), indicating that the presence of a 

postpick steam cabinet resulted in a significantly higher reduction of Campylobacter spp. 

Conversely, Salmonella spp. exhibited a higher decrease at post-pick at facilities without cabinet 

addition.  

4.4.2 Prechill reductions 

At the prechill location, the PAA intervention resulted in a higher Campylobacter spp. 

reduction from the previous location than the product treated with the FreshFX®. However, 

FreshFX® was more successful in reducing Salmonella spp. load than was PAA in the on-line 

reprocessing (OLR) station (Table 4.3). 

The slope for the prechill Salmonella spp. reduction model was positive and significant 

for FreshFX® for both Campylobacter spp. and Salmonella spp. and for PAA for Salmonella 

spp. There was not a statistically significant relationship between the pH of the PAA application 

and Campylobacter spp. reduction. For the FreshFX® intervention, Salmonella spp. reduction 

was significant for pH (ppm is not collected to monitor this intervention), although the model fit 

was somewhat weak (R2= 0.21). This was also the case for the Campylobacter spp. reduction as 

a result of the pH influence the FreshFX® application, which was significant, but quite weak as 
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Table 4.2 Mean Log10 reductions by line speed and cabinet use at the postpick location 

Pathogen type BPM 105 BPM 140 

Mean log10 Campylobacter spp. 

reduction 

2.00a 2.11a 

Mean log10 Salmonella spp. 

reduction 

1.63a 1.60b 

   

 Cabinet No Cabinet 

Mean log10 Campylobacter spp. 

reduction 

2.17a 1.94b 

Mean log10  Salmonella spp. 

reduction 

1.35b 1.88a 

ab Differing superscripts within each row were significantly different (p ≤ 0.05). 

 

 

 

 

Table 4.3 Mean Log10 reductions by prechill treatment 

Pathogen type PAA FreshFX® 

Mean log10 Campylobacter 

spp. reduction 

1.54a 1.04b 

Mean log10  Salmonella spp. 

reduction 

0.27b 0.84a 

ab Differing superscripts within each row were significantly different (p ≤ 0.05). 
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y = -13.60 + 8.23x , R2 = 0.21 P > |t| = 0.0004 

 

Figure 4.1 Salmonella spp. reduction for FreshFX® application at prechill 

 

 

 

 

 

 

 
y =  -4.72 + 3.28x , R2 = 0.08 P > |t| = 0.042 

 

Figure 4.2 Campylobacter spp. reduction for FreshFX® application at prechill  
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y = 0.83 + 0.08x1 – 0.005x2, R

2= 0.28 ppm Pr > F =0.0014, pH Pr > F = 0.014 

 

Figure 4.3 Salmonella spp. reduction for PAA application at prechill 
 

well (R2= 0.08). For the PAA intervention, the stepwise regression analysis kept both pH and 

ppm in the model with a lower strength relationship (R2 =0.28). 

Results of the reductions indicated that for the FreshFX® intervention an increase in the 

pH resulted in an increase in both Salmonella spp. and Campylobacter spp. reduction (Figures 

4.1 and 4.2), an increase in the pH resulted in an increase in both Salmonella spp. and  

 

Table 4.4 Mean log10 reductions by factor type at the main chiller 

Pathogen type Chlorine PAA 

Mean log10 Campylobacter 

spp. reduction 

2.64a 1.83b 

Mean log10  Salmonella spp. 

reduction 

0.43a 0.19b 

ab Differing superscripts within each row were significantly different (p ≤ 0.05). 
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y = 4.41 + -0.63x1 , R

2 = 0.43. Pr > F = 0.0001 
 

Figure 4.4 Salmonella spp. reduction using chlorine at the main chiller 

 

 
y = 0.29 + 0.55x1 – 0.46x2, R

2 = 0.82 ppm P > F= <0.0001, pH P > F = 0.006 

 

Figure 4.5 Campylobacter spp. reduction using chlorine at the main chiller 

 

4.1 and 4.2). For the PAA intervention at the prechill location, the log10 Salmonella spp.  

Campylobacter spp. reduction. For the PAA intervention at the prechill location, the log10 

Salmonella spp. reduction was highest at the intersection of lower concentration of PAA and 

high levels of pH (Figure 4.3).  
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4.4.3 Main chiller reductions 

Pathogen reductions at the exit of the main chiller were significantly higher for the 

chlorine intervention than for the use of PAA in the chill water (Table 4.4). Linear estimates of 

the reduction were also significant for the chlorine intervention (Figures 4.4 and 4.5), with pH 

being retained in the stepwise analysis for the Salmonella spp. model and both pH and chlorine 

concentration in the Campylobacter spp. model. Neither of the PAA intervention models at the 

main chiller water were significant for the reduction of either Salmonella spp. or Campylobacter 

spp. and were, therefore, not included in the model. 

Regression results indicated that for chlorine in the main chiller, Salmonella reductions 

decreased as pH levels increased (Figure 4.4). Conversely, Campylobacter spp. reductions 

increased as the result of higher pH and lower chlorine concentration (Figure 4.5). The 

relationship between Salmonella and pH was moderately strong (R2= 0.43), whereas the weight 

of the relationship between Campylobacter reduction and pH and chlorine concentration is much 

more robust (R2= 0.82) 

4.4.4 Finishing chill reductions 

At the finishing chiller, the highest reduction of Campylobacter spp. was the result of application 

of FreshFX®. There was not a statistically significant difference for the Salmonella spp. 

reduction between the use of FreshFX® and Cecure® (Table 4.5). However, both reductions were 

higher than that for PAA at the finishing chiller, the use of which resulted in the lowest cidal 

activity for both pathogens. 
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Table 4.5 Mean log10 reductions by factor type at finishing chiller 

Pathogen Type FreshFX® PAA Cecure® 

Mean log10 

Campylobacter spp. 

reduction 

2.67a 1.83b 1.59b 

Mean log10  

Salmonella spp. 

reduction 

0.46a 0.01b 0.57a 

ab Differing superscripts within each row were significantly different (p ≤ 0.05). 

 
y = -0.09 + -0.08x1 + 0.0005x2 , R

2 = 0.78 pH Pr > F = <0.0001, ppm Pr > F = <0.0001 

 

Figure 4.6 Salmonella spp. reduction for PAA application at the finishing chiller. 

 
y = 6.25 + -16.77x1 + 7.35x2, R

2 = 0.97 pH Pr > F = <0.0001, ppm Pr > F = 0.0001 

 

Figure 4.7 Salmonella spp. reduction for Cecure® application at the finishing chiller 
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y = -25.99x1 + 16.75x2 + 7.78, R2 = 0.68 pH Pr > F = <0.0001, ppm Pr > F = 0.0001 

 

Figure 4.8 Campylobacter spp. reduction for Cecure® application at the finishing chiller 

 

At the finishing chiller, the relationship between Salmonella spp. and Campylobacter spp. 

reduction, pH level, and FreshFX® concentration was not significant (Figures 4.7 and 4.8). For 

the PAA intervention, Salmonella spp. reduction was highest at lower pH and a stronger 

concentration. (There was not a significant relationship for the PAA treatment and 

Campylobacter pH and concentration.)  The Cecure® intervention was most effective against 

Salmonella spp. and Campylobacter spp. when the pH was low and concentration was high.  

4.5. Conclusion 
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significant difference between line speeds for the Campylobacter spp. mean reduction. The 

Salmonella spp. mean reduction was significantly higher statistically for the lower line speed, but 

the difference was so small (.03 log10) that it may not be biologically significant. 

 Introduction of a post-pick steam cabinet to the pre-evisceration process did result in a 

significantly higher Campylobacter spp. reduction at the post-pick location than for those 

facilities that did not have a steam cabinet. This situation was reversed for the pattern of 

Salmonella spp. reduction where the presence of a steam cabinet resulted in a lower mean 

decrease than without. There is no indication as to why the steam cabinet would be more 

effective at Campylobacter spp. reduction than for Salmonella spp. It is possible that the fragile 

nature of the Campylobacter bacterium (Silva et al., 2011) was more affected by the heat of the 

steam cabinet than that of Salmonella.  

 Salmonella spp. exhibited a higher reduction for PAA than for the mixed acid at the 

prechill location, whereas Campylobacter spp. had a larger reduction with the FreshFX® 

intervention. Reduction in Salmonella spp. and Campylobacter spp. from the post-pick to the 

prechill location (directly out of the OLR) increased as the pH increased for the mixed acid 

applications (FreshFX®). For the PAA intervention at the same location, reductions were highest 

at the junction of higher pH (3.1 to 4.2) and lower concentration (80-95 ppm) where Salmonella 

spp. reductions were between ~ 0.62 to 0.72 log10. There was not a statistically significant 

relationship between either pH or ppm for the Campylobacter spp. reduction model. 

 Use of the chlorine intervention in the main chiller resulted in a significantly higher 

reduction for both Salmonella spp. and Campylobacter spp. than for PAA. A linear model for the 

chlorine intervention showed the highest Campylobacter spp. reductions when the pH was high 

(6.8 to 7.1) and the concentration was lower (1.4 to 1.8), resulting in decreases of 3.4 to 3.6 log10. 
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Conversely, for Salmonella spp., chlorine at the main chiller resulted in a higher reduction when 

pH decreased, with a 0.75 log10 decrease when the pH was lowered to 5.9. Neither pH nor 

concentration was significantly related to pathogen reduction for both Campylobacter and 

Salmonella. 

 FreshFX® applied in the finishing chiller resulted in the highest reduction for 

Campylobacter spp. postchill, with reductions resultant from PAA and Cecure® application not 

being significantly different from one another (P > 0.05). For Salmonella spp. in the finishing 

chiller, FreshFX® and Cecure® application exhibited reductions that were significantly higher 

than those for the PAA intervention. Neither of the pH or concentration were included in a model 

for the FreshFX® application for reduction of either pathogen or for the Campylobacter spp. 

reduction for PAA use. 

 Salmonella spp. reduction as a result of the PAA intervention in the finishing chiller was 

highest when the pH was low (3.16 to 3.40) and the concentration was high (1530 to 1630 ppm), 

resulting in reductions from 0.45 to 0.47 log10. For the use of Cecure® in the finishing chiller, 

both pathogen reductions were increased by maintaining a low pH (0.48 to 0.49) along with a 

higher concentration (0.56-0.58 ppm), resulting in a possible 4.5 to 4.99 log10 reduction for 

Campylobacter spp. and approaching a 2.20 to 2.44 log10 reduction for Salmonella spp. 

4.5.1 Sources of error 

 Even though the results of this analysis are of note, the sample sizes were small for each 

factor level. A power analysis assuming a 0.75 log10 (biologically significant) difference between 

groups, a standard deviation of 1.00 (a level of variation commonly found in processing facility 

samples), and the traditionally accepted power of 0.80 would require a sample size of 58. 



 

116 

 

However, the experimental design for this study was limited both by time and cost factors with 

sample sizes varying by location and intervention type from 20 to 50. In addition, the factor 

types were delineated along the same lines as specific processing facilities, which may have 

introduced multiple confounding variables to the analyses. The significant cost of sampling and 

collection made larger sample collections infeasible so following flock through the process was 

the most logical decision for these models. 

 The difference from one location to the next in the process was calculated by subtracting 

each individual bird rinse (n = 5), randomly selected, from the mean of bird rinses (n = 5) from 

the previous node, which were also randomly selected. Although this method had limitations, it 

enabled the use of the samples from the location of interest as individual values, resulting in 

larger sample sets than if mean differences were calculated. It also enabled a collection scheme 

that was much more physically reasonable than attempting to follow the same birds throughout 

the process. However, this may have resulted in less variation between reductions as may have 

been found if the samples had been collected from the same birds.  

 Due to the very low levels of pathogens in the processing environment, it was necessary 

to impute high frequencies of <1 for Campylobacter spp. and <0.03 for Salmonella spp. These 

high frequencies of low values resulted in very little variation in y (reduction) within each 

location and may have shifted the actual mean of the analysis. In addition, in a few cases (as 

these were not the same birds from one location to another) there were increases in individual 

rinses at a location. These values were adjusted to a reduction of 0, which may have aided in 

model fit, but skewed the interpretation.  
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 The use of buffered peptone water (BPW) to rinse the bird carcasses may have resulted in 

lower counts, specifically for PAA in the rinsate. Recent studies have shown that neutralized 

BPW (nBPW) may be more efficient in estimating existing bacterial counts in bird rinses where 

PAA has been utilized as an intervention (Taylor and Vuia-Riser, 2017). In this case, nBPW was 

not available so carcasses were drained for approximately1 minute before rinsing. It is possible 

that using nBPW would have resulted in more recovery and, thus, more variability between 

samples. 

4.5.2 Suggestions for further research 

 The experimental methodology used for the reduction analysis could be more beneficial 

when applied to a much larger sampling design. Specifically, more processing facilities and more 

samples at each location should be represented. In this study, the results were assumed to be 

generalized for the entire industry as there were not enough samples by location for each facility 

cohort, and, the models could not be blocked by plant. Cost restrictions will make it necessary 

for a study of this nature to accommodate data from several researchers over time, but following 

individual flocks through a process is integral to understanding the intersectional role of 

intervention type, pH, and concentration in pathogen reduction. 

 The use of nBPW may prove necessary to a more representative recovery of pathogens, 

at least when PAA is the intervention used at a location. As more research into the use of nBPW 

on carcass rinses becomes available a relationship between the two methodologies may be 

further defined, making predictions about recovery error with BPW possible. 

 A controlled study with inoculated product would be one way to approach the best 

combination of factors while starting with enough microbial load to understand how these 
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reductions actually work. However, valuable information from a mechanistic process may be lost 

when the study is taken outside of the processing environment. One way to incorporate the 

processing environment along with dealing with multiple zeros found naturally would be to 

define a relationship between a pathogen of interest and an indicator organism.  Models for 

poultry pathogen reduction will continue to be refined for benefit of the industry. 
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Chapter 5 Consideration of Enterobacteriaceae as an Indicator Organism for 

Campylobacter spp. and Salmonella spp. in Poultry Processing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

123 

 

5.1 Abstract 

 The use of indicator organisms as a gauge for food safety and sanitation has been 

employed in the poultry industry for over twenty years (Mead, 2007, Roccato et. al., 2018; 

Schaffner and Smith-Simpson, 2014; Williams et al., 2017; Zeitoun et al., 1994). 

Enterobacteriaceae has been traditionally used as an indicator of process sanitation, with less 

emphasis given to the possibility of utility as an indicator of pathogen activity in meat 

processing, with Escherichia coli more often employed for this purpose (Dehalle et al, 2009; 

Wages et al., 2014; Williams et al., 2017). However, some studies have indicated that the 

Enterobacteriaceae group contains more microorganisms of concern to food safety (Mossel and 

Struijk, 1995).   

 Samples taken directly from a mechanized poultry process were followed through first 

and second processing, with each sample being processed for recovery of Enterobacteriaceae, 

Salmonella spp., and Campylobacter spp. The sampling design included samples from different 

processing facilities and flocks in order to adequately represent multiple processes. Counts were 

analyzed with a generalized linear model analysis by location/part type for Enterobacteriaceae 

by Salmonella spp. and Campylobacter spp.   

 Results revealed that there was a significant relationship between Enterobacteriaceae and 

Salmonella spp. for pre-scald and post-chill whole bird carcass rinses (WBCR’s), and for parts 

(consisting of drums, breast, and whole leg samples). Enterobacteriaceae and Campylobacter 

spp. counts were also significantly correlated for the pre-scald and pre-chill location WBCR’s. 

However, for all these results, the correlation coefficients were low (less than 0.50), suggesting 

variation for the pathogens of interest was not highly affected by the level of Enterobacteriaceae 



 

124 

 

in the product. Future studies will require more focused sampling at each location throughout the 

process.  

5.2 Introduction 

 Internationally, reported infections from foodborne Salmonellosis are responsible for 

approximately 80 million reported cases of illness each year (Hansen and Malorny, 2016). 

Salmonella enteritidis and Salmonella typhimurium are the serovars most highly linked to human 

illness from consumption of poultry product. The infective dose of the pathogen is a matter of 

opinion, with most studies suggesting a range between 103 to 104 organisms (Hansen and 

Malorny, 2016), although virulence of these bacteria may be more complicated than previously 

considered, depending on multiple factors not entirely dependent on host susceptibility (Bumann 

and Cunrath, 2017). 

 Campylobacter spp. is the 2nd most common cause of bacterial illness in United States, 

behind Salmonella (CDC, 2018; Lourdes Garcia-Sanchez et al., 2018; Roccato et al., 2018), with 

poultry consumption being impugned with the majority of cases (EFSA, 2011). Of the genus 

Campylobacter, C. jejuni is of the most concern for poultry processors as it is most associated 

with illness via consumption (Newell et al., 2017; Gruntar et al., 2015).  

 Indicator organisms in meat and poultry are often used to make predictions about the 

behavior of pathogenic bacteria in a process (Habib et al., 2012; Mead 2007; Roccato et al., 

2017; Schaffner and Smith-Simpson, 2014; Wages et al., 2014; Zeitoun et al., 2004). As 

foodborne pathogens are often found in extremely low concentrations in the processing 

environment (< 1 cfu/g), reduction studies may not be meaningful (Bollerslev et al., 2017). 

However, laboratory experiments (where product may be inoculated with the micro pathogen) 
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cannot adequately represent the variability encountered in processing situations. Using an 

organism that can be sampled as a substitute for a foodborne pathogen while still being found in 

large enough counts to determine a possible reduction is needed.  

 Mead (2007), and Schaffner and Smith (2004) listed some requirements for a useful 

indicator organism, such as, that the indicator must be recoverable when the pathogen of interest 

is found in a product or process. Even so, the indicator microbe must also be commonly found so 

that a reduction of the same can be measurable between locations or interventions. Naturally, the 

two organisms must have a strong relationship with one another so that reduction (or increase) in 

one will be mirrored in the other. Last, it is beneficial that the indicator organism is easy to 

recover in the lab, so that it is cheaper and easier to enumerate than the pathogen of interest.   

 Enterobacteriaceae is often used as an indicator of poor sanitation practices (Altekruse, 

et al., 2009; Biasino et al., 2018; Halkman and Halkman, 2014; Williams et al., 2014), but has 

also been considered as a gauge for fluctuation of pathogen levels (Guenther et al., 2010; 

Roccato et al., 2018). As part of a large system of gram-negative facultative anaerobes, including 

Salmonella, Enterobacteriaceae may be useful in representing pathogenic bacteria found in the 

gut of animals at slaughter. As the bacteria may be commonly found in poultry processing, and 

in larger numbers than either Salmonella spp., it supplies the recommended experimental design 

of following reductions in the process. It is certainly much easier to incubate and recover in the 

laboratory than Salmonella. There are no available studies where Enterobacteriaceae has been 

investigated as an indicator for Campylobacter. 

 Cibin et al., (2014), and later, Roccato et al., (2018) evaluated the efficacy of 

Enterobacteriaceae in determining both the presence and count of Campylobacter on poultry 

neck skin and found that increasing levels of Enterobacteriaceae corresponded with increasing 
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levels of Campylobacter at 2 points in the system (post-evisceration and post-chill). However, 

Belluco et al., (2015) did not find a significant change in Enterobacteriaceae counts after post-

pick and washing (because this was an EU study so the samples were air-chilled rather than 

processed through an immersion system).  

 A study of the relationship between Enterobacteriaceae and Salmonella presence in a pig 

slaughter processes (Biasino et al, 2018; Delhalle et al., 2008) found a positive correlation 

between Enterobacteriaceae counts and Salmonella presence on certain portions of pork 

carcasses. Handley et al., (2016) suggests that Enterobacteriaceae may be a useful indicator of 

the Salmonella cells that manage to burrow inside the skin of poultry carcasses.  

 In this study, Enterobacteriaceae counts on raw poultry product in first and second 

processing are compared to Salmonella spp. and Campylobacter spp. counts and analyzed to 

determine if process increases are significantly correlated to one another. Chilled and stored and 

frozen product were not considered for this analysis as previous work has indicated that a 

psychotropic species of Enterobacteriaceae can grow in this environment and is not a good 

predictor of either Salmonella or Campylobacter in poultry product (Zeitoun et al., 1994).   

5.3 Materials and Methods 

5.3.1. Sampling Methods 

Poultry product samples from 5 separate production facilities and 22 flocks were 

collected over a period of 7 months (January to July, 2016). For each flock, 5 samples were taken 

from several locations (prescald, postpick, prechill, postchill, frames, mechanically separated 

chicken product (MSC), ground product, and parts product), with the overall pathway differing 

by sampling event.  
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 For the prescald, postpick, prechill, and postchill samples, whole bird carcass rinses 

(WBCR’s) were collected by randomly selecting and aseptically collecting a poultry carcass off 

the line and rinsing in 400 ml of cooled buffered peptone water in an arcing motion for a period 

of approximately 1 minute. For the frame samples, one frame was randomly selected at the end 

of debone and rinsed in 200 ml of buffered peptone water, while the MSC and ground samples 

were collected in approximately1 lb. samples and sent to the laboratory for stomaching before 

analysis. Parts product consisted of approximately 4 lbs. of either breast, drums, or whole leg 

product rinsed in 400 ml of buffered peptone water.  

5.3.2 Recovery Methodology 

Samples were sent to the corporate laboratory and stored at a temperature range of 35.6 to 

39.2º F. For Enterobacteriaceae recovery, samples were allowed to come to room temperature 

and 1 ml of diluted samples was directly applied to 3M® Enterobacteriaceae petrifilm  and 

incubated at 35 ± 1º C for 22-26 hours, after which time colonies were counted and recorded.  

 Salmonella spp. samples were first analyzed for presence/absence with polymerase chain 

reaction (PCR) screening using DuPont Qualicon BAX® methodology. Positive MSC and 

ground sampless were then tested with most probable number (MPN) analysis by diluting 65 g of 

sample in 585 ml of enrichment broth in a 1:10 dilution and stomached for 2 minutes. These 

samples, along with the rinse samples were added in 10 ml increments to 3 tubes, which were 

then further diluted to create three 1 ml tubes and again in three 0.1 ml tubes. Table references 

were used to determine counts according to BAM (Bacteriological Analytical Manual) 

procedures (Blodgett, 2010). Campylobacter rinses were diluted 1:1, and each dilution was 

swabbed across chromogenic agar plates (specific for Campylobacter jejuni and Campylobacter 
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coli). At 48 ± 2 hours, with the samples having dried, plates were enumerated and counts 

recorded.  

5.3.3. Data analysis 

Counts were log10 transformed in order to prepare data for linear regression analysis. As 

the log10 transformation of 0 is undefined, Enterobacteriaceae and Campylobacter spp. 0 cfu/ml 

results were imputed to 0.1 before transformation. Salmonella spp. positives that were recorded 

as < 0.03 cfu/ml were transformed to 0.03 and negatives were changed to 0.02. Values that were 

recorded as greater than a given value were given a value of 1 log greater than that value. 

Estimated values were given the reported value.  

 Although data were collected by flock (which ran on the same line as processing facility), 

there was not enough data sampled at each opportunity for the model to be analyzed in this 

manner. An analysis of variance was evaluated by location in the process (Table 5.1) in order to 

delineate the changes in counts by pathogen and location type. Linear regression analyses were 

run by location for Salmonella spp. and Campylobacter spp. by Enterobacteriaceae to determine 

if there was a significant relationship between the indicator and pathogenic organisms.   

5.4 Results 

 Descriptive statistics for all three microbial categories (Figure 5.1) by location indicate 

the highest counts were found at the pre-scald location, which is not surprising, as no 

interventions had yet been placed on the product. Enterobacteriaceae counts appear to go down 

throughout first processing in tandem with Campylobacter spp. counts whereas Salmonella spp. 

counts appear to slightly flatten at the post-pick location. Variation for all three groups was 

numerically highest in the MSC product, which is the result of multiple 0 results along with a  
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Table 5.1 Mean Log10 microbial values by location 

 
  Log10 EB Log10  

Campylobacter spp. 

Log10  

Salmonella spp. 
Location/Type N Mean SD Mean SD Mean SD 

Pre-scald 110 4.99ax 0.46  4.32ay 1.25  0.57az 1.50 

Post-pick 110 2.89cx 0.64  2.27by 1.53 -1.15bz 1.03 

Pre-chill 111 1.79dx 0.55  1.06cy 1.24 -1.44cz 0.60 

Post-chill 112 -0.42fx 0.87 -0.97ey 0.20 -1.69cz 0.04 

Frames 64 1.05ex 0.90 -0.90ey 0.34 -1.56cz 0.40 

Parts 156 0.84ex 1.11 -0.86ey 0.61 -1.52cz 0.47 

Ground 35 1.85dx 0.83 -0.86ey 0.36 -1.42cz 0.45 

MSC 55 3.18bx 0.55 -0.30dy 1.10  0.38az 1.27 

        

abcdef Differing superscripts by column indicate a significant difference by location for pathogen 

type (p ≤ 0.05). 
xyz Differing superscripts by row indicate a significant difference by pathogen type for location (p 

≤ 0.05). 

 

 

few higher counts. This higher variation has been suggested to increase risk (Duarte et al, 2015; 

Nauta et. al, 2005) when reduction at that location is low. Analysis of the counts within location 

by pathogen type show that Enterobacteriaceae counts were significantly higher than those for 

Campylobacter spp., which were higher than those for Salmonella spp. for every location. 

A line chart of the means through first processing (Figure 5.1) show that as the log10 

mean Enterobacteriaceae counts decrease the Campylobacter spp. mean log10 counts did as well. 

The Salmonella spp. mean log10 counts decreased along with the Enterobacteriaceae counts until 

the post-pick location, where it appears to flatten, trending slightly downward to postchill. 

Enterobacteriaceae counts were consistently higher than those for Campylobacter, which were 

consistently higher than those for Salmonella. 
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Figure 5.1 Mean log10 values by pathogen type for Enterobacteriaceae, Salmonella spp., and 

Campylobacter spp. for first processing WBCR’s. 

  

 After first processing, the mean log10 Enterobacteriaceae counts are all positive (> 0) and 

are higher for the MSC and ground product than they are for the frames and parts product 

(Figure 5.2). However, the mean log10 Salmonella spp. and Campylobacter spp. counts were 

consistent for all part types (meaning that they were negative), with the exception of the MSC 

product, where both of the mean log10 values of these pathogens increased. This indicates that 

there is an aspect of the MSC process that is either resulting in an increase in pathogen counts, or 

the counts are more recoverable after this treatment.  

As there were a preponderance of negative results for the Salmonella spp. and 

Campylobacter spp. samples, Tobit models were assessed for the first processing WBCR’s and 

the other product types to determine if there was a relationship between Enterobacteriaceae and 

Campylobacter spp. and Salmonella spp. Proc Lifereg in SAS (statistical analysis software) was 

employed to create the models, which were used to define the relationship between these 

pathogens and Enterobacteriaceae.  
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Figure 5.2 Mean log10 values by pathogen type and part type for Enterobacteriaceae, 

Salmonella spp., and Campylobacter spp. after first processing. 

 

 
Y’= 0.99x -4.65 (x=Enterobacteriaceae count). AIC = 910.02. 

 

Figure 5.3 Mean log10 Enterobacteriaceae*Salmonella spp. counts for WBCR’s at first 

processing. Includes actual and predicted counts with 99% confidence intervals. 
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Y’ = 1.26x – 1.77 (x= Enterobacteriaceae count). AIC = 1272.47. 

 

Figure 5.4 Mean log10 Enterobacteriaceae*Campylobacter spp. counts for WBCRs at first 

processing with a Tobit regression. Includes actual and predicted counts with 99% confidence 

intervals.   

 
Y’=1.42x -5.03 (x = Enterobacteriaceae). AIC = 159.12. 

 

Figure 5.5 Mean log10 Enterobacteriaceae*Salmonella spp. counts for parts with a Tobit 

regression. Includes actual and predicted counts with 99% confidence intervals. 
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Tobit models (Tobin, 1958) may be used to fit models when there are either left or right 

censored values that have been arbitrarily assigned due to lack of knowledge about the actual 

value. As such, the predicted values were based on both the probability of the occurrence of a 

positive and the predicted value of that positive rather than the predicted value of censored 

observations. The Tobit (or, censored regression) model is described by the following formula: 

      Y𝑖 = 0 if Y𝑖
′  ≤ 0         (5.1) 

                                                             Y𝑖 = Y𝑖
′ if Y𝑖

′ > 0                                                            (5.2) 

  

if, Y is the pathogen value, Y’ (in this case) is the estimated pathogen value assuming a normal  

 

distribution. The predicted values depend upon whether the sample value is above or below the  

 

level of censoring and parameters for the distribution above the censored value are determined  

 

with a maximum likelihood estimator (MLE) methodology.The relationship between 

Enterobacteriaceae and Salmonella spp. for first processing WBCR samples (Figure 5.3) was 

statistically significant, indicating that variation that occurred in the Salmonella spp. counts 

could be explained by a change in Enterobacteriaceae with an Akaike Information Criterion 

(AIC) measure of fit of 910.02. (The AIC is a relative measure of model quality, with the smaller 

the score the better the fit.) The relationship between Campylobacter spp. and Enterobactericeae 

was also significant (Figure 5.4) for both slope and intercept (AIC = 1272.47). The starting point 

for the two pathogens was significantly different from the Enterobacteriaceae samples, with the 

Enterobacteriaceae samples always exhibiting higher counts. 

There was a significant relationship between Enterobacteriaceae and Salmonella spp. for 

the parts product (Figure 5.5), with an AIC fit statistic of 159.12. These results, although 

statistically significant, are most likely the result of almost all 0 counts for both 

Enterobacteriaceae and Salmonella spp. on the parts product. Although the Tobit model created 
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a latent variable for these many zero counts, they nevertheless resulted in very low counts, with 

little variation in the model. 

Table 5.2 Regression analyses of relationship between Enterobacteriaceae reduction and 

pathogen reduction by type: Salmonella spp. or Campylobacter spp. 

Product Enterobacteriaceae* 

Salmonella spp. reduction 

 Pr > (t)  

intercept/model 

Enterobacteriaceae* 

Campylobacter spp. reduction 

 Pr > (t)  

intercept/model 

 

First Processing 

WBCR’s 

 

0.0003*/0.0961 

 

<0.0001*/<0.0001* 

 

Comparison of reductions through the process from one location to the next in first 

processing resulted in a significant relationship between Enterobacteriaceae and Campylobacter 

spp., with a corresponding significant difference in intercepts (Figure 5.6). An analyses could not 

be completed for post-debone products due to low sample size.  These results differ from prior 

analyses, where a weak, but significant relationship was found between Enterobacteriaceae and 

Salmonella spp. WBCR reductions at first processing (Anonymous, 2015).  

Comparison of reductions through the process from one location to the next in first 

processing was combined due to the similarity in sampling type (WBCR), the increase in sample 

size, and the applicability of the model to future reduction investigations.  Reductions were 

determined by taking the individual values at one location from the mean of the individual values 

(n=5) from the preceding location. This methodology, although not without its own inaccuracies, 

allowed for the investigation to follow the reductions through a specific flock.  
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y=0.92x -0.45, R2 = 0.71 (x = Enterobacteriaceae). 

 

Figure 5.6 Mean log10 Enterobacteriaceae*Campylobacter spp. reduction counts for WBCR’s at 

first processing. Includes actual and predicted counts with 99% confidence intervals. 

 

Results exhibited a significant relationship between Enterobacteriaceae and 

Campylobacter spp., with a corresponding significant difference in intercepts (Figure 5.6). An 

analyses could not be completed for post-debone products due to low sample size.  These results 

differ from prior analyses, where a weak, but significant relationship was found between 

Enterobacteriaceae and Salmonella spp. WBCR reductions at first processing (Anonymous, 

2015).  

Analysis of variance results exhibited the highest mean log10 counts were at the pre-scald 

location with counts going down significantly from this location to post-debone products for 

Campylobacter spp. Conversely, for Enterobacteriaceae the mean log10 count for MSC was 

significantly lower than that of the pre-scald carcass rinses, but was higher than that of the other 

products. For Salmonella spp., the mean log10 count for MSC was not significantly different 
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from the pre-scald mean log10 count and was significantly higher from all the other product 

types. 

5.5 Conclusion 

 Employing indicator organisms at food production facilities is often considered a 

reasonable method of following the behavior of pathogens without the risk of inoculation or the 

cost of difficult recovery procedures. In this study, product was sampled at multiple poultry 

processing facilities over a period of 7 months (to capture a representative cross-section of 

seasonality). These samples were collected at multiple locations in first processing and for 

several product types at or after debone, with counts being recovered for Enterobacteriaceae and 

Campylobacter spp. for each sample collected, with Salmonella spp. presence/absence and count 

(if positive) being recovered from the same sample.  

 An analysis of variance showed that for Enterobacteriaceae, the prescald WBCR had a 

significantly higher mean log10 cfu/ml than the other parts/locations, with MSC having the 

second highest mean count, higher than product from locations earlier in the process. A similar 

pattern was seen for Salmonella spp., for which pre-scald and MSC were significantly higher 

than all other products sampled, but not different from one another. Conversely, Campylobacter 

spp. mean log10 counts decreased successively throughout the process.  

 Tobit regression analyses were performed on log10 transformed counts to determine if a 

significant relationship between Enterobacteriaceae and either Campylobacter spp. or 

Salmonella spp. existed.  First processing WBCR samples, taken at the prescald, postpick, 

prechill, and postchill locations were grouped as the rinse and recovery methodology was the 

same for these trials. Results revealed a significant linear relationship between log10 transformed 
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Enterobacteriaceae and Salmonella spp. cfu/ml counts and log10 transformed 

Enterobacteriaceae and Campylobacter spp. cfu/ml counts. For post-debone samples there was a 

significant relationship between Enterobacteriaceae and Salmonella spp. for parts product. 

 Previous studies exhibited a relationship between Enterobacteriaceae and Salmonella 

spp. reduction (from a previous location) in first processing (Anonymous, 2015). Results from 

this comparison did not show statistically significant results. Further investigation of this 

association would be a beneficial part of explaining the behavior of Salmonella spp. in first 

processing, specifically after application of interventions.  

 Results of this analysis should be considered a valid indication that a relationship 

between Enterobacteriaceae and Campylobacter spp. needs further exploration. The relative 

ease of Enterobacteriaceae recovery in comparison to that of Salmonella spp. enumeration, 

along with the higher counts of the non-pathogenic organism make it an excellent indicator if the 

reliability of the relationship can be solidified.   

 It is suggested that tandem research be completed in a laboratory setting, where 

Salmonella spp. and Campylobacter spp. can be inoculated in higher counts than are found in the 

processing environment. Results from this research were doubtless influenced by the high 

frequency of 0 results as the low counts found during processing make it difficult to determine if 

an increase or decrease in one microbe results in a similar change in another, or, if a reduction 

has transpired through the process. 

 The recovery process is open to counting error, and, the MPN enumerative method is 

known to be imprecise. The use of buffered peptone water has been recently brought into 

question and the use of neutralized buffered peptone water has been suggested to counteract 
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residual kill in product rinses. In this process, product was allowed to drip for approximately 1 

minute, but the efficacy of such a method is still being investigated. 

 Limitations from the small size of each sampling event (day) by location (n=5) may limit 

the impact of the strength of the relationship between Enterobacteriaceae as an indicator 

organism for Salmonella spp. and Campylobacter spp., but the pattern remains and suggests 

further study. Although the sample sizes were small, the overall impact of randomizing both 

facility and season worked to seam together a representative sample of the microbial population 

in a poultry processing environment. 
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Poultry processing has been incorrectly impugned in both Salmonella spp. and 

Campylobacter spp. foodborne illnesses. Sundry physical and chemical interventions have been 

introduced at the processing facilities in an attempt to reduce bacterial load on the incoming 

product. Despite efforts to lower pathogen counts, and evidence that this effort has been 

successful, reported illnesses have not decreased. As a result, models of the poultry process, from 

grow-out to retail are needed to make predictions about the efficacy of choice and concentration 

of intervention in the process.  

 Quantitative microbial risk analyses (QMRA’s) have been used for several decades to 

infer behavior of microbes in specific situations. Initial microbial risk models focused on single 

processes and attempted to determine change in microbe load by time, sometimes with an added 

element (temperature). As models became more complex, and iterative software was developed, 

multiple processes could be modeled as separate distributions and these models could be 

connected in a Markov chain, representing an entire process. 

 The QMRA models developed in this research focused on processes that resulted in three 

different product types (parts, ground, and MSC). These models are unique in that the current 

library of quantitative analyses for poultry processing in the samples were followed through 

poultry processes, instead of utilizing data from multiple data sources. This mechanistic 

approach resulted in data that was representative of the actual process, rather than assuming the 

relationship from one location to the next. 

 QMRA models were separated by season when analysis of variance test (ANOVA) tests 

exhibited a difference between groups. Results from the QMRA analyses revealed that 

Campylobacter spp. parts (breast and drum) were similar across pathways, with counts going 

down through the process to almost all 0 counts at endpoint. Ground product for the combined 
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winter/summer season revealed Campylobacter spp. reductions to postchill, than increases 

occurring at pre-grind, with another decrease in counts for the ground product. The spring season 

model exhibited the largest reduction across seasons at prechill and postchill, with an uptick in 

the pregrind product.  

 Salmonella spp. parts models show the drum process decreasing in counts throughout the 

entire process, with the breast product decreasing to a mean of 0 and post-pick and staying at that 

level for the rest of the process. For ground and MSC product the process counts for Salmonella 

spp. tick upward at the grinder or beehive.  

 Parts products reduce to a level at endpoint that stay within USDA FSIS pathogen 

standards. Ground and MSC products for both pathogens exhibit an increase in Salmonella once 

the product is homogenized.  Reduction simulations that resulted in acceptable levels of these 

products required very large decreases at prescald or postpick and it is uncertain whether these 

reductions can be realized in processing or if they will need to be instigated at grow-out. 

 An exhaustive catalogue of research has been recorded on interventions to reduce 

Campylobacter and Salmonella counts at multiple locations in poultry production. Most of these 

studies were undertaken in a laboratory (in order for inoculation to occur) or were focused on 

one location at a facility. In this study, multiple locations were considered along with some 

environmental factors or interventions in the process.  

 In order to determine the most useful combination of treatments and/or chemical 

interventions to provide reductions in poultry processing, several factors used in multiple poultry 

processes were analyzed against the reductions that occurred at the postpick, prechill, and 
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postchill locations. A stepwise regression analysis was used to provide the relationship among 

the two or three variables, depending upon the location being analyzed.  

 Results revealed that a slower line speed resulted in larger mean log10 cfu/ml reductions 

of Salmonella spp. at postpick (although the magnitude of the difference was small), whereas 

Campylobacter spp. reductions were not significantly influenced by this variable. A steam 

cabinet resulted in higher Campylobacter spp. reductions, whereas Salmonella spp. exhibited 

higher mean log10 cfu/ml reductions when no cabinet was present.  

 At the pre-chill location, reductions were significantly higher for Campylobacter spp. 

when (Peracetic acid) PAA was used, but higher for Salmonella spp. reduction when FreshFX® 

was applied. Results of stepwise analyses revealed that FreshFX® application resulted in higher 

reductions when the pH was increased for both Salmonella spp. and Campylobacter spp. For the 

PAA intervention at prechill, the log10 Salmonella spp. reduction was highest at a low 

concentration, coupled with higher levels of pH.  

 Chlorine resulted in the higher reductions at the chiller for both Salmonella spp. and 

Campylobacter spp. than did the PAA application. The highest Campylobacter spp. reductions 

occurred when pH was high and concentration was low. For Salmonella spp., higher reductions 

occurred when pH went down. FreshFX® resulted in the highest reductions of Campylobacter 

spp. at the finishing chiller, with this intervention not being significantly different statistically 

from the reductions after application of Cecure® for Salmonella spp. at the same location. 

 As recovery of pathogens during processing can be difficult and costly, use of indicator 

organisms is accepted to predict the reduction or increase of counts. This study focused on the 

questions that arise when very low counts, if any, of pathogens are found in a process. One way 
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to address low frequency and concentration of pathogens in research is use of an indicator 

organism.  

 Product was sampled at multiple poultry production facilities in a 7-month period 

throughout first processing and post-debone and the relationship between Enterobacteriaceae 

and Salmonella spp. and Campylobacter spp. was analyzed with a least squared regression. For 

the first processing whole bird carcass rinse (WBCR) samples there was a statistically significant 

relationship between Enterobacteriaceae and Salmonella spp., and an even stronger relationship 

between Enterobacteriaceae and Campylobacter spp.  

 Analysis of the relationship between Enterobacteriaceae and Salmonella spp. or 

Campylobacter spp. counts in first processing WBCR samples resulted in a significant 

relationship between the Campylobacter spp. and the indicator organism. The relationship 

between Enterobacteriaceae and Salmonella spp. reductions in first processing was not 

significant. It is suggested that future research attempts to tie these pathogens with 

Enterobacteriaceae with laboratory studies, where product can safely be inoculated with the 

pathogens of interest and starting quantities are known. 

 Future research would benefit from a combination of studies of the efficacy of 

intervention type, concentration, and pH, along with QMRA modeling to determine not only 

what reduction is to be predicted based upon intervention, but where in the process that these 

reductions should take place. Results from the QMRA in this research suggest that reductions 

needed to meet USDA guidelines at process endpoint for ground and MSC product are actually 

higher than may be possible if begun at the door of processing environments. For this reason it is 

suggested that microbial models add a component from the grow-out facilities that could be 

added to the existing production models in this study. 
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 Sample size was limited in this study due to the significant cost associated with the 

sampling and recovery design. Replication of this study, with more samples taken per sampling 

event and location would be beneficial to further definition of the relationship between the 

different locations in the process and pathogen load. The end result of these studies suggest that 

QMRA models, coupled with intervention analyses and the use of indicator organisms may be 

beneficial for understanding the behavior of  Salmonella and Campylobacter in the poultry 

production process.  
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