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Abstract 

Belitic calcium sulfoaluminate cement (BCSA) is a hydraulic, rapid setting alternative to 

ordinary portland cement (OPC) with reduced energy demands and CO2 emissions. BCSA 

cement has numerous current and potential applications including transportation repair and 

precast manufacturing. Currently, limited research exists regarding the structural performance of 

CSA cements, restricting its potential implementation. Thus, the purpose of this research is to 

provide insight into the flexural performance and behavior of reinforced BCSA concrete beams. 

Overall, BCSA concrete had similar cracking and loading behavior to the OPC  beams, with 

increased moment capacity for compression controlled specimens. Furthermore, BCSA concrete 

showed increased tensile strength and ductility when compared to OPC. Overall, the flexural 

strength of the BCSA concrete exceeded the predicted flexural strengths, indicating the current 

flexural strength equations are applicable for BCSA reinforced concrete design. 
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1.   Introduction 

  Belitic calcium sulfoaluminate (BCSA) cement is a hydraulic, rapid hardening alternative 

to ordinary portland cement (OPC) with reduced environmental impact. Calcium sulfoaluminate 

cements exhibit different properties depending on their chemical composition but are generally 

classified as either shrinkage compensating (such as type K cement) or rapid setting/hardening 

(such as BCSA). BCSA cements have lower energy demands and CO2 emissions due to 

decreased kiln temperatures (1250°C vs 1500°C)1 and lower limestone requirements1, 2 during 

the sintering process compared to OPC. Overall, BCSA cements take 25-60%1, 3, 4 less energy 

and reduce CO2 emissions by 20-40%1, 4, 5 compared to OPC. Moreover, potential increases in 

dimensional stability and increased fatigue life can improve the sustainability of BCSA concrete 

systems1. The rapid setting behavior of BCSA cements is characterized by an initial setting time 

of 10-20 minutes. Food-grade citric acid is currently the preferred retarding admixture, allowing 

for a setting time approaching 1 hour3. Even with retardation, BCSA cements can produce 

concrete with a strength of 4000 psi (27.5 MPa) in 2-4 hours. This rapid strength gain is due to 

differences in the initial hydration products for BCSA concrete. BCSA concrete develops 

ettringite crystals rapidly during hydration; these crystals are responsible for the decreased 

setting time and increased early age strength when compared to OPC concrete3.  

The rapid hardening behavior of BCSA cement creates opportunities for numerous 

applications. BCSA cement has been incorporated in pavements in the United States since the 

1990s and is currently used by 10 state DOTs for patching, highway repair, and bridge repair6, 7. 

However, other potential uses include precast concrete, disaster relief, 3D concrete printing, cold 

weather concreting, and energy storage8. The largest detriment to BCSA implementation is cost; 

BCSA cement is approximately 4 times more expensive than Type I/II portland cement3. 
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However, increased production and demand are likely to reduce the cost in the future3. 

Furthermore, as taxes on CO2 emissions are enacted or increased, CSA cement becomes a more 

attractive option4. 

Most of the research on BCSA cements has focused on material characterization, material 

properties, and durability9-11. In order to use it for structural applications, research is needed on 

its structural properties, behavior, and performance. Specifically, flexural research would help 

determine the potential viability of BCSA cements for prestressed and precast concrete members 

as well as whether it is suitable for structural repairs or new construction. The American 

Concrete Institute (ACI) 318 Building Code Requirements for Structural Concrete12 provides a 

strength design methodology to calculate the nominal moment capacity of reinforced concrete 

beams made with OPC. Therefore, the objective of this research is to investigate the flexural 

behavior and moment capacity of reinforced concrete beams made with BCSA cement and 

determine if the ACI flexural strength procedure is appropriate for BCSA cements. 

1.1. Research Significance 

Cement production currently accounts for approximately 5-10% of the world’s total CO2 

emissions4, 13. Current estimates show a 30-40%14, 15 increase in cement consumption by 2050. 

Incorporating BCSA cements when appropriate can help mitigate concrete’s contribution to CO2 

production. This research is intended to begin analyzing CSA cements for use in structural 

systems, specifically reinforced concrete flexural members. 
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2.   Experimental Procedure 

2.1.  Materials and Specimens 

A commercially available BCSA cement was used in this work. This cement is a 

standalone complete replacement for OPC. For the control specimens, a type-I OPC was used. 

The OPC concrete was provided by a local ready-mix company, and the BCSA mixtures were 

batched in the laboratory. The mix design for the BCSA specimens was devised to roughly 

match the proportions for the OPC concrete and both mix designs are shown in Table 1. The 

OPC mix utilized a larger weight of fine aggregate due to the difference between the specific 

gravities of the cements (2.96 for BCSA cement versus 3.15 for OPC) and a decreased 

water/cement ratio (w/c) in the OPC mix. BCSA cement requires a higher w/c to ensure 

complete hydration9, 16, 17. A high range water reducer (HRWR) was used to increase the slump 

of the BCSA cement mixture to facilitate easier placement in the forms, given the shorter 

working time. Food grade citric acid was implemented as a retarder to increase the set time of the 

BCSA cement mixes. A solution of 5 lbs. of citric acid per gallon of water was prepared and 

dosed at a rate of 9 fl. oz. per 100 lb. of cement (oz/cwt).  This dosage is equivalent to 0.0035 

pounds of citric acid per pound of cement, or 0.35% by weight of cement. The goal of the mix 

designs was to provide a highly workable concrete with adequate retardation to ensure placement 

and finishing prior to initial set.   
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Table 1: Mix Design Criteria 

  BCSA  Portland Cement   
Cement 658 660 lbs/CY 

Coarse Aggregate 1782 1775 lbs/CY 
Fine Aggregate 1156 1340 lbs/CY 
Water Reducer 18* 4 oz/cwt 

Citric Acid 9 - oz/cwt 
W/C Ratio 0.48 0.40   

                  *The first BCSA mix (BCSA TD1) used 12 oz/cwt of HRWR 

 

Grade 60 rebar was used in this study. Two tension tests on samples of the rebar were 

performed, as shown in Figure 1. The steel samples exceeded their nominal yield strength of 60 

ksi, with an average yield strength of 71 ksi.  The modulus of elasticity, E, varied between tests 

and was estimated to be 26000 ksi and 29700 ksi. 

 

Figure 1: Stress-strain relationship of reinforcing steel 
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A total of 12 reinforced concrete beams were cast, 4 were cast with OPC and 8 were cast 

with BCSA concrete. All 4 OPC concrete beams were poured from the same batch and flexural 

strength tests were performed at 35 days of age. The 8 BCSA beams were batched individually at 

the University of Arkansas Engineering Research Center using a tilting drum mixer. Flexural 

strength tests for the BCSA beams were performed at either 1 day of age or 2-5 hours after 

concrete placement to determine the effects, if any, of age of the BCSA cement concrete on its 

flexural performance. The 2-5 hour flexural tests were performed as soon as the concrete 

strength allowed the beams to be demolded and placed in the testing frame. 

The flexural reinforcement was designed to provide tension controlled or compression 

controlled behavior. Two compression controlled and two tension controlled beams were cast for 

each test case (OPC, 2-5 hour BCSA, and 1-day BCSA). The naming convention denotes the 

type of cement used, tension or compression controlled, time of test, and specimen number. For 

example, BCSA TD1 is the first BCSA tension controlled 1-day break. Each beam was 12 ft. 

long, 12 in. deep, and 6 in. wide. The tension controlled beams consisted of a single layer of two 

#6 bars placed approximately 1.5 in. from the bottom of the beam resulting in a reinforcement 

ratio of 0.0140. The compression controlled beams contained four #7 bars placed in two layers, 

the first layer at approximately 1.5 in. and the second at 3.3 in. from the bottom. The 

compression controlled beams had a reinforcement ratio of 0.0418. Both beam designs included 

compression steel, consisting of two #3 bars located approximately 9 in. above the lowest layer 

of steel. The shear reinforcement consisted of #3 shear stirrups. Stirrup spacing was 4 in. except 

for the middle sixth of the beam, in which stirrup spacing was 8 in. The shear reinforcement was 

designed to force a compression controlled or tension controlled flexural failure. The 

reinforcement layout and beam cross sections are shown in  Figure 2 and Figure 3. 
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 Figure 2: Beam loading and reinforcement layout  

 

Figure 3: Beam cross section for the tension controlled beams (left) and the compression 
controlled beams (right) 

 

Flexural testing was conducted using third point loading shown in  Figure 2. This loading 

produced a constant maximum moment in the middle third of the span with zero shear between 

load points. This load arrangement was selected to encourage flexural failures in the middle 

portion of the span. A hydraulic ram applied load onto a calibrated load cell atop a steel spreader 

beam. Leather strips atop semi-circular load points were used to evenly apply load across the 

width of the beams. Beams were loaded until failure, defined as crushing of the concrete. Linear 

Variable Differential Transformers (LVDTs) were placed on either side of the beam at both load 

points to continuously measure deflections throughout the test.  
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3.   Results 

3.1. Compressive Strength and Slump 

The slump, compressive strength, and temperature of each concrete mixture is shown in 

Table 2. Due to the limited capacity of the mixer, each CSA specimen was composed of two 

concrete batches. Three cylinders were tested per batch and the 6 cylinders were averaged to 

determine the overall compressive strength of the specimen, f’c. Slump was also tested for both 

batches and was typically between 7-11 inches. The second slump test was consistently higher, 

this is assumed to be due to additional moisture and coating of the mixer. Concrete temperature 

was measured for the first batch and compared to ambient temperature. The setting time of the 

BCSA cement mixture was sensitive to ambient and concrete temperature, so ice was added to 

the mixing water, and care was taken to avoid batching concrete during hot times of the day. The 

time of testing indicates the period between concrete placement and the beginning of loading. 

Table 2: Concrete properties for all specimens 

Beam Slump (in) Concrete 
Strength, f'c (ksi) 

Concrete 
Temperature (°F) 

Ambient 
Temperature 

(°F) 

Time of 
Testing 

PC 6.75 6.64 77 67 35 days 
BCSA 
TH1 9.00 9.50 4.35* N/A 84 5 hours 

BCSA 
TH2 8.50 9.00 3.96 70 77 3 hours 

BCSA 
TD1 4.00** 7.91 68 73 1 day 

BCSA 
TD2 7.25 9.50 6.70 66 75 1 day 

BCSA 
CH1 7.50 9.25 3.85 62 73 2.25 hours 

BCSA 
CH2 9.00 9.50 3.83 68 73 2.5 hours 

BCSA 
CD1 8.50 10.50 6.49 68 74 1 day 

BCSA 
CD2 9.75 10.25 5.85 62 76 1 day 

*BCSA TH1 contained additional retarder in the first layer of the beam, therefore the layers 
were averaged for compressive strength 
**BCSA TD1 contained less HRWR than the rest of the beams 
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3.2. Cracking diagrams 

Cracks were marked on the beam surface throughout loading and at the conclusion of the 

tests. Afterwards, cracks were retraced from photos of the tests to compare the crack patterns. 

These results are shown in Figure 4 for the tension controlled beams and Figure 5 for the 

compression controlled beams. The BCSA and OPC beams appeared to have similar crack 

spacings and crack heights. Additionally, most cracks in the beams were flexural or flexural 

shear cracks. Flexural-shear cracking primarily occurred for compression controlled specimens, 

where the shear forces were higher due to a larger moment capacity. None of the tests resulted in 

a shear failure. Black shaded areas indicate where concrete crushing occurred. For all beams, the 

test was ended when crushing occurred, and the concrete always crushed between the load 

points, indicated by arrows. This seems to indicate that the failures were indeed flexural failures.  
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Figure 4: Cracking diagram for tension controlled beams 
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Figure 5: Cracking diagram for compression controlled beams 

3.3. Load-deflection Relationships 

Load-deflection graphs were plotted to examine the behavior of the beams throughout 

testing. The graphs were used to estimate the cracking load, yield strength, ultimate strength, 

yield deflection, and ultimate deflection. Figure 6 shows the load-deflection curves for the 

tension controlled beams. The tension controlled beams exhibited similar elastic behavior 

(indicated by the linear portion of the curve prior to yielding), indicating similarities in stiffness 

between OPC and BCSA specimens. The load at yielding for all tension controlled beams were 

within 10% of each other and the ultimate load reached was within 12%, despite the varying 

compressive strengths between beams. 
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Figure 7 displays the compression controlled load-deflection behavior. The cracking 

loads and slopes of the elastic portion of the compression controlled beams were less similar 

between specimens, indicating a higher influence of the concrete compressive strength on the 

behavior of the beams. This is further corroborated by the ultimate strengths, as the multi-hour 

BCSA beams displayed just over a 20% reduction in ultimate strength compared to the BCSA 1 

day beams. Conversely, the BCSA specimens tested at 1 day of age had lower compressive 

strengths compared to the OPC beams but had approximately 11% higher flexural strengths. 

While this result is based on the limited tests reported here, it does seem to suggest there is a 

difference in the flexural strength of BCSA beams compared to OPC beams. When combined 

Figure 6: Load-deflection for tension controlled reinforced beams 
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with the comparisons to nominal moment capacities and ductility indices (described in the 

following sections), this may indicate BCSA beams provide a greater ultimate strength for a 

given compressive strength.  

 

 

Figure 7:Load-deflection for compression controlled reinforced beams 

 

Table 3 shows the information obtained from the load versus deflection graphs. Cracking 

load was estimated from the graphs (indicated by the first change in slope) and was used to 

calculate a cracking moment for each beam. This was compared to the predicted cracking 

moment using the ACI modulus of rupture equation (7.5*(f’c)0.5) in Section 19.2.3.1 of ACI 318-

14. The 7.5 coefficient in this equation is based on historical testing on OPC concrete. Overall, 
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the predicted cracking moment correlated well with the actual cracking moment for the OPC 

beams but consistently underestimated the cracking moment of the BCSA beams. In Table 4 the 

coefficient for the modulus of rupture equation is estimated based on the measured cracking 

moment. All the CSA beams had a corresponding coefficient of 7.79 or higher, and the 

coefficient increased with compressive strength. This indicates a potentially higher tensile 

strength for BCSA concrete compared to OPC concrete. More work is needed to characterize this 

behavior, but it is theorized that the ettringite in hardened BCSA cement concrete may contribute 

to a higher tensile strength compared to OPC which gains most of its strength from other 

hydration products. 

Table 3: Cracking, yield, and ultimate strength estimates 

Beam 
Concrete 

Strength, f'c 
(ksi) 

Cracking 
Load 
(kips) 

Cracking 
Moment 

(k-in) 

Predicted 
Cracking Moment  

[based on 
7.5(f'c)0.5]  

(k-in) 

Yield 
Load 
(kips) 

Yield 
Deflection 

(in) 

Ultimate 
Load 
(kips) 

Ultimate 
Deflection 

(in) 

PCT1 6.64 3.80 91.20 88.01 23.87 0.81 25.68 1.23 

PCT2 6.64 3.50 84.00 88.01 23.34 0.78 25.65 1.22 

BCSA 
TH1 4.35 3.10 74.40 64.75 22.83 0.74 25.19 1.48 

BCSA 
TH2 3.96 3.50 84.00 67.92 22.64 0.79 24.27 1.56 

BCSA 
TD1 7.91 6.00 144.00 96.07 23.77 0.70 26.51 1.72 

BCSA 
TD2 6.70 7.00 168.00 88.37 24.85 0.72 27.13 1.71 

PCC1 6.64 3.90 93.60 88.01 N/A N/A 44.10 1.06 

PCC2 6.64 4.10 98.40 88.01 N/A N/A 44.92 1.11 

BCSA 
CH1 3.85 2.90 69.60 67.03 N/A N/A 38.74 1.15 

BCSA 
CH2 3.83 3.30 79.20 66.86 N/A N/A 39.95 1.03 

BCSA 
CD1 6.49 5.20 124.80 87.03 N/A N/A 53.07 1.23 

BCSA 
CD2 5.85 4.80 115.20 82.63 N/A N/A 46.97 1.10 
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Table 4: Modulus of rupture coefficient calculation 

Beam Concrete Strength, 
f'c (ksi) 

Cracking Moment 
(kips) fr (psi) Coefficient Average 

PCT1 6.64 91.2 633.33 7.77 
7.47 

PCT2 6.64 84 583.33 7.16 
BCSA TH1 3.60 74.4 516.67 8.62 

8.95 
BCSA TH2 3.96 84 583.33 9.28 
BCSA TD1 7.91 144 1000.00 11.24 

12.75 
BCSA TD2 6.70 168 1166.67 14.26 

PCC1 6.64 93.6 650.00 7.98 
8.18 

PCC2 6.64 98.4 683.33 8.39 
BCSA CH1 3.85 69.6 483.33 7.79 

8.34 
BCSA CH2 3.83 79.2 550.00 8.88 
BCSA CD1 6.49 124.8 866.67 10.75 

10.61 
BCSA CD2 5.85 115.2 800.00 10.46 

 

3.4. Comparisons to Nominal Moment Capacity 

Nominal moment capacities for all beams were calculated using the ACI strength design 

procedures outlined in section 22.3 of ACI 318-14 and compared to the actual moment capacities 

determined from flexural testing. Nominal moment capacities were calculated using measured 

concrete strengths and measured steel yield strength. Strength reduction factors were not 

included in this analysis. Figure 8 compares the results for the tension controlled beams. The 

tension controlled beams showed consistent results between the two beams tested for each case, 

and all beams failed at loads 21-28% higher than those predicted by the nominal moment 

capacity.  The nominal moment capacities gave conservative capacities for all test cases, and the 

ACI equations appear to be adequate for predicting the strength of BCSA reinforced beams. 



 

15 

 

Figure 8: Ratio of ultimate to nominal moment capacity for tension controlled beams 

 

The results for the compression controlled beams are displayed in Figure 9 and are more 

variable. The ratio of experimental capacity to nominal capacity for the OPC specimens averaged 

5% higher than the predicted capacity but lower than the OPC tension specimens. The 

compression controlled BCSA specimens failed at moments 16-27% above the predicted 

capacity with an average of 23%. This could be explained by an increased maximum 

compressive strain of for BCSA concrete compared to the estimated 0.003 ultimate compressive 

strain for OPC recommended in ACI 318-14 section 22.2.2.1. If the maximum compression 

strain for BCSA is higher, it would result in a larger moment capacity in compression controlled 

members, as observed in this study. More research is needed to corroborate this finding, but it is 

possible that the ettringite formed in the BCSA concrete results in a more ductile structure at 
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early ages. As more reaction products are formed in the BCSA cement matrix this compression 

behavior may change and more closely align with that of OPC. All beams still failed at a moment 

higher than the predicted capacity, exhibiting the conservative nature of the ACI 318-14 nominal 

moment capacity procedures. 

 

 

Figure 9: Ratio of ultimate to nominal moment capacity for compression controlled beams 

3.5. Ductility Index 

Ductility index is defined as the ratio of the deflection at ultimate load or moment and the 

deflection at the yield load or moment. Ductility index provides an indication to the amount of 

bending or warning before beam failure. Therefore, a higher ductility index is preferable. Figure 

10 shows the ductility indices of all tension controlled beam specimens. The OPC beams had the 
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lowest ductility indices, achieving an average ductility index of 1.55. In comparison, the average 

ductility index for the BCSA 2-5 hour beams and BCSA 1 day beams were 1.98 and 2.41, 

respectively. Compression controlled beams were not included in this analysis as there was no 

yielding before failure. Generally, a higher compressive strength should produce a higher 

ductility index, because the concrete will take more load to crush for a given beam cross section. 

However, the BCSA 2-5 hour beams were able to outperform the OPC beams with a 

compressive strength approximately 2000 psi lower than the OPC specimens. This may be due to 

the theorized increase in maximum compressive strain for BCSA concrete postulated in the 

previous section. The larger ductility indices in the tension controlled beams and increased 

moment capacity in compression controlled beams can both be explained by this rationale. More 

testing is needed to determine if this is true, and it is possible that this behavior may change at 

later ages, as the microstructure of the initially ettringite dominated BCSA matrix is filled in with 

different reaction products at later ages.  



 

18 

 

Figure 10: Ductility index for portland cement, BCSA 2-5 hour, and BCSA 1 day tests 
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4.   Conclusions 

This study compared the flexural performance of tension controlled and compression 

controlled beams made with OPC and BCSA concrete. Early age strength of the BCSA was 

compared to the later age strength of OPC.  

1) Overall, cracking behavior and performance during testing was similar between CSA and 

OPC concrete beams. The extent and distribution of cracking was similar for OPC and 

BCSA.  

2) The ratio of experimental and nominal flexural strength was similar for tension controlled 

BCSA and tension controlled OPC beams, indicating that the flexural strength procedures 

from the ACI 318-14 code are adequate for BCSA cement. These ratios for the 

compression controlled beams differed between OPC and BCSA, with BCSA beams 

outperforming the ACI 318-14 estimates. This may be due to an increased ultimate 

compression strain for BCSA concrete at early ages. It is hypothesized that the 

microstructure of BCSA cement, being dominated by ettringite, may deform more than 

would be expected for OPC. As BCSA concrete ages this behavior may change, and more 

testing is needed to observe this phenomenon. 

3) The cracking moment for BCSA specimens appeared to be generally greater than for the 

OPC beams. It is hypothesized that the ettringite in the hardened BCSA cement matrix 

contributes to a slightly higher tensile strength compared to OPC. More work is needed to 

characterize this behavior, but based on the work presented here, the modulus of rupture 

of the BCSA beams varied between 7.79 and 14.26 times the square of the compressive 

strength. 
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4) BCSA concrete beams had higher ductility indices compared to the OPC concrete beams, 

including when the compressive strengths were lower. This is theorized to be caused by 

an increased maximum compressive strain of BCSA concrete compared to the 0.003 

strain given by ACI 318-14 section 22.2.2.1 for OPC concrete. Further research is needed 

to confirm and estimate the maximum compressive strain of CSA concrete. It is possible 

that this maximum strain capacity changes with age as the ettringite microstructure of 

BCSA concrete is filled in with other hydration products over time. 

5) Overall BCSA cement performed at least as well as OPC in terms of its flexural strength 

for the beams tested in this study. The ACI 318-14 flexural strength procedures in section 

22.3 appear to be applicable to BCSA concrete. 
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