Interfacial Tailoring of Lithium-ion Batteries by Atomic/Molecular Layer Deposition

Qian Sun
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/etd
Part of the Electro-Mechanical Systems Commons, and the Energy Systems Commons

Recommended Citation
Sun, Qian, "Interfacial Tailoring of Lithium-ion Batteries by Atomic/Molecular Layer Deposition" (2018). Theses and Dissertations. 3040.
https://scholarworks.uark.edu/etd/3040

This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu, ccmiddle@uark.edu.
Interfacial Tailoring of Lithium-ion Batteries by Atomic/Molecular Layer Deposition

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering

by

Qian Sun
Shaanxi University of Science and Technology
Bachelor of Engineering in Applied Chemistry, 2013
Northwest University
Master of Engineering in Chemical Engineering, 2016

December 2018
University of Arkansas

This thesis is approved for recommendation to the Graduate Council.

Xiangbo Meng, Ph.D
Thesis Director

Min Zou, Ph.D
Committee Member

Steve Tung, Ph.D
Committee Member
ABSTRACT

Lithium-ion batteries (LIBs) are promising energy storage devices, which play significant roles in addressing problems related to fossil fuels depletion and environmental pollution. Since the 1990s, LIBs have attracted great attention for many applications. Nowadays, LIBs are dominating portable electronics, having several advantages over their forerunners, such as high voltage (3.3~4.2 V) [1,2], low self-discharge (< 5~10% /month) [3,4], wide operation temperature (-20~60 °C) [5,6], and fast charge/discharge rate [7,8]. However, LIBs deliver an energy density of 100-220 Wh/kg in practice to date, which is far from their theoretical ones, thus hindering their further applications in electric vehicles. Additionally, LIBs have been plagued by other problems, such as intolerance to overcharge/overdischarge, low heat resistance, lithium dendrites growth, large volume change of the silicon anode, large polarization and even safety problems.

Atomic layer deposition (ALD) and molecular layer deposition (MLD) are two important techniques, both proceeding in self-limiting gas-solid reactions and exhibiting excellent capabilities for ultra-thin films, conformal coatings, and controllable growth. They can be employed to address the problems of LIBs mentioned above by surface coatings, electrode designs, and solid-state electrolyte preparations. In this thesis, ALD is utilized to modify the interface between the electrolyte and Si anode in LIBs and to improve the performance of LIBs. ZnO coating deposited by ALD using precursors of diethylzinc (DEZ) and H₂O was found to be effective in accommodating the volume expansion of Si during charging-discharging process and preventing the direct Si-electrolyte contact, thus improving the performance of Li/Si-G battery. Additionally, effects of ALD coatings (Al₂O₃ and ZnO) on stabilizing lithium metal are investigated.
In chapter 1, the background of LIBs is introduced, as well as ALD and MLD. Chapter 2 investigates the growth properties of different coatings (Al₂O₃, ZnO, TiO₂, AlGL and ZnGL) using quartz crystal microbalance (QCM) method. Chapter 3 reports the modification of Si-electrolyte interface via ALD coatings and the performance of Li/Si-G (silicon-graphite) batteries. Chapter 4 investigates the stabilization of lithium metal using ALD coatings. Conclusions are shown in chapter 5. Future work and promising developments are given in chapter 6.
ACKNOWLEDGEMENTS

It is a great honor for me to express my deepest and honest appreciation to my thesis advisor, Dr. Xiangbo Meng. He gave me many suggestions and guidance towards my experiments and thesis writing. Dr. Meng’s group focuses on smartly controllable nanosynthesis using ALD and MLD, and development of next-generation, high-performance, advanced, battery technologies. I feel grateful to join his group and conduct my research. The experience during my Master studies (January 2017 - December 2018) will be extremely helpful for my future development.

Also, I want to thank the rest of my thesis committee, Dr. Min Zou and Dr. Steve Tung, for their support, encouragement and comments about my experimental skills and independent thinking ability.

Besides my thesis committee, I would like to thank Dr. Darin W. Nutter for his support and the professors who have taught my courses (Dr. Rick J. Couvillion, Dr. Ing Chang Jong, Dr. Jim Leylek, Dr. Ingrid Fritsch, and Dr Lance Edward Miller).

Additionally, I would like to thank my colleague, Mr. Jiyu Cai for his help and advice to my research. Discussion with him always inspired me to move forward in my experiments.

Finally, I want to thank my friends and family. They supported and encouraged me, especially my parents.
TABLE OF CONTENTS

1 INTRODUCTION ... 1

1.1 Lithium Ion Batteries (LIBs) .. 1

1.2 Atomic Layer Deposition (ALD) .. 9
 1.2.1 Introduction of ALD ... 9
 1.2.2 Mechanism .. 10

1.3 Molecular Layer Deposition (MLD) ... 13
 1.3.1 Introduction of MLD ... 13
 1.3.2 Mechanism .. 15

1.4 Motivation and Objective ... 19

1.5 References .. 21

2 GROWTH PROPERTIES OF DIFFERENT COATINGS .. 45

2.1 Materials .. 45

2.2 ALD/MLD Deposition Parameters ... 45

2.3 ALD Coatings ... 47
 2.3.1 Al₂O₃ film growth .. 47
 2.3.2 TiO₂ film growth ... 51
 2.3.3 ZnO film growth ... 53

2.4 MLD Coatings ... 57
 2.4.1 AlGL film growth .. 57
 2.4.2 ZnGL film growth .. 59
2.5 Summary .. 61

3 MODIFICATION OF SI-ELECTROLYTE INTERFACE ... 62

3.1 Introduction of Si Electrode .. 62

3.2 Experimental Materials and Equipment .. 64

3.2.1 Materials ... 64

3.2.2 Equipment ... 65

3.3 Deposition of ZnO on Si-G Electrode ... 66

3.4 Preparation of Li/Si-G batteries .. 66

3.5 Results Discussion ... 67

3.5.1 AFM picture .. 67

3.5.2 SEM and EDX pictures ... 68

3.5.3 XRD result ... 71

3.5.4 Electrochemical behavior of Si-G electrode ... 72

3.6 Summary ... 76

3.7 References ... 77

4 STABILIZATION OF LITHIUM METAL VIA ALD COATINGS ... 81

4.1 Introduction of Li Metal Anode .. 81

4.2 Materials .. 85

4.3 Deposition of Al₂O₃ and ZnO .. 85

4.4 Preparation of Bare Li/Ni Foam (or Cu), Bare Li/ALD Coated Ni Foam (or ALD Coated Cu), and ALD Coated Li/Ni Foam (or Cu) Batteries .. 86
4.5 Results Discussion ... 88

4.5.1 SEM pictures ... 88

4.5.2 Electrochemical behavior .. 92

4.6 Summary ... 99

4.7 References .. 101

5 CONCLUSIONS .. 106

6 FUTURE WORK AND PROMISING DEVELOPMENTS ... 108

6.1 Future Work and Promising Developments .. 108

6.2 References .. 110
LIST OF FIGURES

1 INTRODUCTION

Figure 1. The components of a typical lithium-ion battery and the electrochemical processes in charging and discharging. The typical cathode and anode materials are LiCoO$_2$ and graphite respectively [71]. Reprinted (adapted) with permission from ref. [71]. Copyright (2009) Royal Society of Chemistry. ... 3

Figure 2. (a) A model ALD process for depositing Al$_2$O$_3$ using TMA and water as precursors: (1) the initial substrate covered by hydroxyl groups, (2) TMA molecules reacting with hydroxyl groups, leading to a new intermediate layer, (3) the substrate covered with a newly created intermediate layer, (4) H$_2$O molecules reacting with the intermediate layer, leading to new hydroxyl groups, and (5) the substrate again covered by hydroxyl groups [194]. Reprinted (adapted) with permission from ref. [194]. Copyright (2012) John Wiley and Sons; (b) Proposed mechanism for Lewis base catalysis of SiO$_2$ ALD during the SiCl$_4$ reaction and the H$_2$O reaction [223]. Reprinted (adapted) with permission from ref. [223]. Copyright (1997) The American Association for the Advancement of Science; (c) Schematic diagram of hydrogen radical-enhanced ALD using a metal reactant and hydrogen radicals [241]. Reprinted (adapted) with permission from ref. [241]. Copyright (2009) American Chemical Society. 13

Figure 3. (a) Schematic representation of MLD using self-limiting surface chemistry and an AB binary reaction sequence [294]. Reprinted (adapted) with permission from ref. [294]. Copyright (2009) American Chemical Society; (b) Illustration of surface chemistry for two-step alucone MLD using TMA and EG as reactants [270]. Reprinted (adapted) with permission from ref. [270]. Copyright (2008) American Chemical Society; (c)
Illustration of surface chemistry for PPTA MLD using ClCOC₆H₄COCl (TC) and NH₂C₆H₄NH₂ (PD) as reactants [294]. Reprinted (adapted) with permission from ref. [294]. Copyright (2009) American Chemical Society; (d) Illustration of surface chemistry for three-step alucone. MLD with TMA, EA, and MA as reactants [301]. Reprinted (adapted) with permission from ref. [301]. Copyright (2009) American Chemical Society; (e) Suggested growth sequence for the Zn–AP film over a thin seed layer of ZnO on a Si substrate. The surface was left covered with –NH₂ groups [302]. Reprinted (adapted) with permission from ref. [302]. Copyright (2003) Royal Society of Chemistry.

2 GROWTH PROPERTIES OF DIFFERENT COATINGS

Figure 1. ALD/MLD system.. 47

Figure 2. (a) Mass gain of Al₂O₃ deposited at 50 °C using the recipe of (TMA-purge-H₂O-purge, 0.015-15-0.015-15 s); (b) Three consequential cycles of Al₂O₃ deposited at 50 °C using the recipe of (TMA-purge-H₂O-purge, 0.015-15-0.015-15 s); (c) Film thickness of Al₂O₃ deposited at 50 °C using the recipe of (TMA-purge-H₂O-purge, 0.015-15-0.015-15 s); (d) Mass gain of Al₂O₃ deposited at 75 °C using the recipe of (TMA-purge-H₂O-purge, 0.015-10-0.015-10 s); (e) Three consequential cycles of Al₂O₃ deposited at 75 °C using the recipe of (TMA-purge-H₂O-purge, 0.015-10-0.015-10 s); (f) Film thickness of Al₂O₃ deposited at 75 °C using the recipe of (TMA-purge-H₂O-purge, 0.015-10-0.015-10 s); (g) Mass gain of Al₂O₃ deposited at 100 °C using the recipe of (TMA-purge-H₂O-purge, 0.015-5-0.015-5 s); (h) Three consequential cycles of Al₂O₃ deposited at 100 °C using the recipe of (TMA-purge-H₂O-purge, 0.015-5-0.015-5 s); (i) Film thickness of Al₂O₃ deposited at 100 °C using the recipe of (TMA-purge-H₂O-purge, 0.015-5-0.015-5 s);
s); (j) Mass gain of Al₂O₃ deposited at 150 °C using the recipe of (TMA-purge-H₂O-purge, 0.015-5-0.015-5 s); (k) Three consequential cycles of Al₂O₃ deposited at 150 °C using the recipe of (TMA-purge-H₂O-purge, 0.015-5-0.015-5 s); (l) Film thickness of Al₂O₃ deposited at 150 °C using the recipe of (TMA-purge-H₂O-purge, 1-5-1-5 s); (m) Mass gain of Al₂O₃ deposited at 150 °C using the recipe of (TMA-purge-H₂O-purge, 1-5-1-5 s); (n) Three consequential cycles of Al₂O₃ deposited at 150 °C using the recipe of (TMA-purge-H₂O-purge, 1-5-1-5 s); (o) Film thickness of Al₂O₃ deposited at 150 °C using the recipe of (TMA-purge-H₂O-purge, 1-5-1-5 s).

Figure 3. SEM pictures of (a) bare NGS and ALD-Al₂O₃ deposited on N-doped single layer graphene (NGS) at 100 °C using (b) 1x, (c) 3x, and (d) 5x ALD cycles. (e) The recipe of 1x ALD-Al₂O₃ on NGS is as the following: TMA dosing—ten times of (pulse 0.2s-stop valve closed-wait 2s-stop valve open-wait 2s) and H₂O dosing—ten times of (pulse 0.2s-stop valve closed-wait 2s-stop valve open-wait 2s).

Figure 4. (a) Mass gain of TiO₂ deposited at 150 °C using the recipe of (TTIP-purge-H₂O-purge, 1-5-1-5 s); (b) Three consequential cycles of TiO₂ deposited at 150 °C using the recipe of (TTIP-purge-H₂O-purge, 1-5-1-5 s); (c) Film thickness of TiO₂ deposited at 150 °C using the recipe of (TTIP-purge-H₂O-purge, 1-5-1-5 s).

Figure 5. SEM pictures of (a) bare NGS and ALD-TiO₂ deposited on N-doped single layer graphene (NGS) at 100 °C using (b) 3x, (c) 15x, (d) 30x, and (e) 60x ALD cycles. (f) The recipe of 3x ALD-TiO₂ on NGS is as the following: 1x cycle is composed of TTIP dosing—ten times of (pulse 0.2s-stop valve closed-wait 2s-stop valve open-wait 2s) and H₂O dosing—ten times of (pulse 0.2s-stop valve closed-wait 2s-stop valve open-wait 2s), repeating the 1x cycles three times we get the recipe of 3x ALD-TiO₂ on NGS.
Figure 6. (a) Mass gain of ZnO deposited at 150 °C using the recipe of (DEZ-purge-H₂O-purge, 1-5-1-5 s); (b) Three consequential cycles of ZnO deposited at 150 °C using the recipe of (DEZ-purge-H₂O-purge, 1-5-1-5 s); (c) Film thickness of ZnO deposited at 150 °C using the recipe of (DEZ-purge-H₂O-purge, 1-5-1-5 s).

Figure 7. SEM pictures of (a) bare NGS and ALD-ZnO deposited on N-doped single layer graphene (NGS) at 100 °C using (b) 1x, (c) 5x, (d) 10x, and (e) 20x ALD cycles. (f) The recipe of 1x ALD-ZnO on NGS is as the following: DEZ dosing--ten times of (pulse 0.2s-stop valve closed-wait 2s-stop valve open-wait 2s) and H₂O dosing--ten times of (pulse 0.2s-stop valve closed-wait 2s-stop valve open-wait 2s).

Figure 8. SEM pictures of ZnO deposited on N-doped single layer graphene (NGS) at 250, 200, 150, 100 and 80 °C using 100, 200, 300, 400 ALD cycles. The recipe is (DEZ-purge-H₂O-purge, 0.015-5-0.015-5 s), the growth rate is 0.7-2.5 Å/cycle. (Samples were prepared by Jiyu Cai. SEM pictures were taken by him and me.)

Figure 9. (a) Mass gain of AlGL deposited at 50 °C using the recipe of (TMA-purge-GL-purge, 0.015-20-2-60 s); (b) Three consequential cycles of AlGl deposited at 50 °C using the recipe of (TMA-purge-GL-purge, 0.015-20-2-60 s); (c) Mass gain of AlGL deposited at 75 °C using the recipe of (TMA-purge-GL-purge, 0.015-15-2-40 s) and (TMA-purge-GL-purge, 0.015-60-2-60 s); (d) Three consequential cycles of AlGl deposited at 75 °C using the recipe of (TMA-purge-GL-purge, 0.015-15-2-40 s) and (TMA-purge-GL-purge, 0.015-60-2-60 s).

Figure 10. (a) Mass gain of ZnGL deposited at 50 °C using the recipe of (DEZ-purge-GL-purge, 0.015-20-2-60 s); (b) Three consequential cycles of ZnGL deposited at 50 °C using the recipe of (DEZ-purge-GL-purge, 0.015-20-2-60 s); (c) Mass gain of ZnGL deposited at
75 °C using the recipe of (DEZ-purge-GL-purge, 0.015-15-2-40 s); (d) Three consequential cycles of ZnGL deposited at 75 °C using the recipe of (DEZ-purge-GL-purge, 0.015-15-2-40 s). .. 59

Figure 11. SEM pictures of (a) (b) bare NGS and (c) (d) 5x ZnGL coated NGS, (e) (f) 10x ZnGL coated NGS, and (g) (h) 15x ZnGL coated NGS. ZnGL was deposited at 50 °C using a recipe of (DEZ-purge-GL-purge, 0.03-20-4-60s). .. 60

Figure 12. AFM of ZnGL deposited on Si wafer at 150 °C using 150 cycles of (DEZ-purge-GL-purge, 1 s-60 s-1 s-60 s). .. 61

3 MODIFICATION OF SI-ELECTROLYTE INTERFACE

Figure 1. Failure mechanisms of a Si anode: (a) material pulverization and volume change of the Si electrodes, (b) morphology change of Si electrodes, and (c) SEI formation [1]. Reprinted (adapted) with permission from ref. [1]. Copyright (2015) John Wiley and Sons.. 64

Figure 2. An Integrated System Combining Atomic/Molecular Layer Deposition with Glove Box; (b) (c) Battery Cycler 1; (d) Battery Cycler 2; (e) Coin Cell Crimper; (f) SP-200 BioLogic Science Instrument; (g) FEI Nova Nanolab 200 Dual-Beam Workstation.. 65

Figure 3. (a) Schematic illustration of Li/Si-G cell; (b) CR2032 coin cell; (c) Li metal; (d) Separator (polypropylene, polyethylene materials and additives). 67

Figure 4. AFM picture of ALD-ZnO deposited on Si wafer at 150 °C using 150 ALD cycles of (DEZ-purge-H₂O-purge, 0.015-5-0.015-5 s). ... 68

Figure 5. SEM pictures of bare Si-G electrode with magnifications of (a) (x200000), (b) (x99974), and (c) (x50000) before battery cycling; EDX results of (d) C, (e) Si, and (f) O distribution for (c). .. 69
Figure 6. SEM pictures of 6 nm ALD-ZnO (deposited at 150 °C) coated Si-G electrode with magnifications of (a) (x200000), (b) (x99977), and (c) (x50000) before battery cycling; EDX results of (d) C, (e) Si, (f) O, and (g) Zn distribution for (c).

Figure 7. EDX mapping results of (a) bare Si-G, (b) 2nm ZnO coated Si-G, (c) 4nm ZnO coated Si-G, (d) 6nm ZnO coated Si-G, (e) 8nm ZnO coated Si-G, and (f) 10nm ZnO coated Si-G before battery cycling, which correspond to their SEM pictures with magnification of (x50000).

Figure 8. SEM pictures of (a) (e) bare Si-G electrode and (b) (f) 6 nm, (c) (g) 8 nm, (d) (h) 10 nm ZnO (deposited at 150 °C) coated Si-G electrodes before and after 100 discharge-charge cycles. Recipe of ALD-ZnO is (DEZ-purge-H₂O-purge, 0.015-5-0.015-5 s), the growth rate is 1.0 Å/cycle.

Figure 9. XRD of Si-G electrode and 6 nm ALD-ZnO (deposited at 150 °C) coated Si-G anode.

Figure 10. Discharge capacity of bare Li/Si-G and Li/ZnO coated Si-G batteries with (a) 10 µL electrolyte and (d) saturated electrolyte; Capacity retention of bare Li/Si-G and Li/ZnO coated Si-G batteries with (b) 10 µL electrolyte and (e) saturated electrolyte; Voltage-capacity profile for first two cycles of (c) bare Li/Si-G and Li/6 nm ZnO coated Si-G batteries with 10 µL electrolyte and (f) that of Li/6 nm ZnO coated Si-G batteries with saturated electrolyte.

Figure 11. EIS results of (a) bare Li/Si-G and Li/ZnO coated Si-G battery using 10 µL electrolyte (G2/FEC, 9:1, wt:wt) after 100 charge-discharge cycles; (b) bare Li/Si-G battery using 20 µL electrolyte (G2/FEC, 9:1, wt:wt) after 8, 15 and 20 charge-discharge cycles; (c) Li/6 nm ZnO coated Si-G battery using 20 µL electrolyte (G2/FEC, 9:1, wt:wt) after
11, 21 and 27 charge-discharge cycles; (d) Li/6 nm ZnO coated Si-G battery using saturated electrolyte after 0, 7, 14, 21 and 28 charge-discharge cycles. 75

4 STABILIZATION OF LITHIUM METAL VIA ALD COATINGS

Figure 1. Schematic representations of (a) Li-ion [58]. Reprinted (adapted) with permission from ref. [58]. Copyright (2014) American Chemical Society. (b) Li-S [10]. Reprinted (adapted) with permission from ref. 13. Copyright (2015) American Chemical Society. (c) Li-O₂ cells [15]. Reprinted (adapted) with permission from ref. 18. Copyright (2012) American Chemical Society. .. 81

Figure 2. Scheme of dilemma for Li metal anode in rechargeable batteries [21]. Reprinted (adapted) with permission from ref. 68. Copyright (2017) American Chemical Society. .. 83

Figure 3. (a) Schematic illustration of bare Li/Cu or bare Li/Ni foam cell; (b) Cu; (c) Ni foam; (d) CR2032 coin cell; (e) Separator; (f) Li metal. ... 87

Figure 4. SEM pictures of (a) (b) bare Li, (c) (d) Li electrode in Li/Cu cell after Li deposition at 0.5 mA/cm² for 2000 s, (e) (f) Li electrode in Li/Ni foam cell after Li deposition at 0.5 mA/cm² for 2000 s, (g) (h) Li positive electrode in Li/Li cell after Li deposition at 0.5 mA/cm² for 2000 s, (i) (j) Li negative electrode in Li/Li cell after Li deposition at 0.5 mA/cm² for 2000 s, (k) (l) Li electrode in bare Si-G/Li cell after 100 discharge-charge cycles (first 3 cycles at 1/20 C, last 97 cycles at 1/3 C, 1C = 808 mA/g). 90

Figure 5. (a) (b) bare Cu, (c) (d) Cu in Li/Cu cell after Li deposition at 0.5 mA/cm² for 2000 s, (e) (f) Cu in Li/Cu cell after Li deposition at 1 mA/cm² for 4000 s, (g) (h) bare Ni foam, (i) (j) Ni foam in Li/Ni foam cell after Li deposition at 0.5 mA/cm² for 2000 s, (k) (l) Ni foam in Li/Ni foam cell after Li deposition at 1 mA/cm² for 4000 s. 91
Figure 6. (a) Coulombic efficiency of bare Li/Cu, bare Li/Ni foam, Li/Cu + 10 nm Al₂O₃, Li/Ni foam + 10 nm Al₂O₃ (30 µL 1M LITFSI in DOL/DME, 1:1, V:V); (b) Coulombic efficiency of bare Li/Cu, bare Li/Ni foam, Li/Cu + 10 nm Al₂O₃, Li/Ni foam + 10 nm Al₂O₃ (30 µL 4M LITFSI in DME); (c) Coulombic efficiency of bare Li/Cu (30 µL 1M LITFSI in DOL/DME, 1:1, v:v), and bare Li/Cu (30 µL 4M LITFSI in DME); (d) Coulombic efficiency of Li/Cu + 10 nm Al₂O₃ (30 µL 1M LITFSI in DOL/DME, 1:1, v:v), and Li/Cu + 10 nm Al₂O₃ (30 µL 4M LITFSI in DME); (e) Coulombic efficiency of Li/Cu + 10 nm Al₂O₃ (30 µL 1M LITFSI in DOL/DME, 1:1, v:v), and Li/Cu + 10 nm Al₂O₃ (30 µL 4M LITFSI in DME); (f) Coulombic efficiency of Li/Ni foam (30 µL 1M LITFSI in DOL/DME, 1:1, v:v), and bare Li/Ni foam (30 µL 4M LITFSI in DME); (g) Coulombic efficiency of Li/Ni foam + 10 nm Al₂O₃ (30 µL 1M LITFSI in DOL/DME, 1:1, v:v), and Li/Ni foam + 10 nm Al₂O₃ (30 µL 4M LITFSI in DME); (h) Coulombic efficiency of bare Li/Ni foam, x nm Al₂O₃ coated Li/Ni foam (x=2, 4, 6, 8, 10nm) (30 µL 1M LITFSI in DOL/DME, 1:1, v:v); (i) Coulombic efficiency of bare Li/Ni foam, bare Li/Cu, 4nm Al₂O₃ coated Li/Ni foam, 4nm Al₂O₃ coated Li/10nm Al₂O₃ coated Li Ni foam, 4nm Al₂O₃ coated Li/10 nm ZnO coated Li Ni foam (30 µL 1M LITFSI in DOL/DME, 1:1, v:v). Above batteries were tested with Li deposition at 0.5 mA/cm² for 2000 s and Li stripping up to 1 V.

Figure 7. Voltage profiles of Li/Cu, Li/Cu +10 nm Al₂O₃, Li/Ni foam, Li/Ni foam +10 nm Al₂O₃, Li/Ni foam batteries with (a) 1M LITFSI and (b) 4M LITFSI electrolyte; (c) ALD Al₂O₃ coated Li/Ni foam and bare Li/Ni foam; (d) ALD Al₂O₃ coated Li/Cu and bare Li/Cu. All batteries were tested with Li deposition at 0.5 mA/cm² for 2000 s and Li stripping up to 1 V.
Figure 8. EIS results of (a) Li/Li symmetric cell before and after 20 cycles; (b) Li/Cu and 4 nm Al$_2$O$_3$ coated Li/Cu after 20 cycles; (c) Li/Ni foam and 4 nm Al$_2$O$_3$ coated Li/Ni foam after 20 cycles. Electrolyte: 30 µL 1M LiTFSI in DOL/DME (1:1, v:v). 99
LIST OF TABLES

1 INTRODUCTION

Table 1. Growth mechanism of different ALD processes .. 12
Table 2. Growth mechanism of different MLD processes ... 17

2 GROWTH PROPERTIES OF DIFFERENT COATINGS

Table 1 Summary of needed chemicals (1) .. 45
Table 2. Deposition parameters of different coatings ... 46
Table 3. Summary of percentage of ALD-Al₂O₃ in total mass of Al₂O₃+NGS 51
Table 4. Summary of percentage of ALD-TiO₂ in total mass of TiO₂+NGS 53
Table 5. Summary of thickness of ALD-ZnO film .. 55
Table 6 Summary of percentage of ALD-ZnO in total mass of ZnO+NGS 56

3 MODIFICATION OF SI-ELECTROLYTE INTERFACE

Table 1. Summary of assembled batteries (1) .. 67
Table 2. Discharge capacities for first 3 cycles of batteries ... 73
Table 3. Simulated EIS results of bare Li/Si-G and Li/ZnO coated Si-G batteries using 10 µL electrolyte (G2/FEC, 9:1, wt:wt) ... 76

4 STABILIZATION OF LITHIUM METAL VIA ALD COATINGS

Table 1. Summary of needed chemicals (2) .. 85
Table 2. Summary of assembled batteries (2) ... 88
Table 3. Calculated nucleation overpotential of batteries ... 97
Table 4. Summary of overpotential of batteries for first Li deposition/stripping cycle 98
LIST OF PUBLISHED PAPERS

LIST OF UNPUBLISHED PAPERS

1 INTRODUCTION

1.1 Lithium Ion Batteries (LIBs)

Modern societies are experiencing several issues with the escalating energy demands, including limited fossil fuels [9-13], environmental problems [14-18], and global warming [19-23]. In this regard, renewable clean energies [24-28] such as wind and solar powers are highly regarded for addressing these challenges. However, they operate intermittently for generating electricity, due to their dependence to daily weather conditions. To achieve continuous energy supply, many kinds of electrical energy storage (EES) devices have been studied and practiced, such as primary batteries (Daniell cell [29,30], Leclanché cell [31-33], and Alkaline batteries [34-37]), specialty batteries (for military/medical [38,39]), and rechargeable batteries or secondary batteries (Lead-acid batteries [40-43], Ni-Cd batteries [44-46], Ni-MH batteries [47-50], LIBs [38,51-55]). Among them, LIBs are very promising and represent the highest level of rechargeable batteries to date [56].

In 1991, LIBs were firstly commercialized by Sony Corporation [57]. Since then, LIBs have been widely applied in many fields, including portable electronics (smartphones, laptops, cameras, flashlights and electronic cigarettes), electric vehicles (hybrid vehicles, electric cars, and electric bicycles), smart grids, and autonomous devices (M/NEMS, sensors, actuators). For lithium ion batteries, there are mainly three kinds of anode materials, including conversion anode (metal oxides, metal sulfides, metal nitrides, metal phosphides and metal fluorides) [58-62], intercalation/de-intercalation anode (graphite, TiO₂, Li₄Ti₅O₁₂) [63-65] and alloy/de-alloy anode (Si, Ge, Sn, SiO₂, SnO₂) [66-68]. The metal oxide cathode materials of LIBs such as LiCoO₂, LiFePO₄, and LiMn₂O₄ [69] are commonly used. Besides the electrode materials, an electrically insulating polymeric separator and a non-aqueous electrolyte are needed to assemble a LIB. A
typical electrolyte [70] is prepared by dissolving a lithium salt (such as lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), lithium hexafluorophosphate (LiPF₆), and LiClO₄) in a carbonate-based solvent (ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), dimethyl carbonate (DMC)) or an ether-based solvent (dimethoxyethane (DME)). The electrolyte provides an ionically conductive medium for Li⁺ to move from anode to the cathode during discharging and back during charging. And the electrode materials undergo electrochemical reactions in the operation process of a LIB. For example, in a LiCoO₂/LiC₆ battery as shown in Figure 1 [71-74], the cathode half-reaction, anode half reaction and full reaction are given in Equations (1), (2), (3) as following:

\[
\begin{align*}
\text{Li}_{1-x}\text{CoO}_2 + \text{Li}^+ + e^- & \quad \xrightarrow{\text{discharging}} \quad \text{LiCoO}_2 \quad (x \leq 0.5) \\
\text{xLiC}_6 & \quad \xrightarrow{\text{discharging}} \quad \text{xC}_6 + x\text{Li}^+ + xe^- \\
\text{Li}_{1-x}\text{CoO}_2 + \text{xLiC}_6 & \quad \xrightarrow{\text{discharging}} \quad \text{LiCoO}_2 + x\text{C}_6
\end{align*}
\]

However, the full reaction has limits. Once over-discharged, the battery will produce Li₂O irreversibly as shown in the following Equation (4) [75]. Over-discharging to 5.2 V results in the production of CoO₂ as given in Equation (5), which is confirmed by x-ray diffraction [74].

\[
\begin{align*}
\text{Li}^+ + e^- + \text{LiCoO}_2 & \rightarrow \text{Li}_2\text{O} + \text{CoO} \\
\text{LiCoO}_2 & \rightarrow \text{Li}^+ + \text{CoO}_2 + e^-
\end{align*}
\]
Figure 1. The components of a typical lithium-ion battery and the electrochemical processes in charging and discharging. The typical cathode and anode materials are LiCoO$_2$ and graphite respectively [71]. Reprinted (adapted) with permission from ref. [71]. Copyright (2009) Royal Society of Chemistry.

Besides the insertion reaction mechanism of anodes as discussed above, two other mechanisms (Li-alloy reaction mechanism and conversion reaction mechanism) can be described as Equations (6) and (7), respectively.

Li-alloy mechanism:

$$M + zLi^+ + ze^- \rightarrow Li_zM$$

(6)

Conversion mechanism:

$$M_xO_y + 2yLi^+ + 2ye^- \rightarrow xM + yLi_2O$$

(7)

The performance of LIBs is affected by the applied electrodes, electrolyte, and the electrolyte-anode or electrolyte-cathode interfaces. LIBs can exhibit a volumetric energy density of 250-620 Wh/L (900-2230 J/cm3) [76] and an energy density of 100-220 Wh/kg [55,77], far from their theoretical ones.
LIBs are plagued by several challenges as follows:

(I) Formation of unstable solid electrolyte interphase (SEI) on anode [52] will increase impedance, consume electrolyte and consume lithium. For example, during lithiation, SEI at the Si anode-liquid electrolyte can be broken, which leads to the re-exposure of fresh Si to electrolyte and continuous growth of SEI [78]. While SEI on cathode (LiNi_{0.8}Co_{0.2}O_{2}) [79] forms because of oxidation of carbonate electrolyte [80,81], leading to increases in resistance.

(II) The Si/G anode used in LIBs exhibit huge volume expansion (graphite 100%, silicon 400%) during charging-discharging of batteries. For Si anode, the volume change during lithiation/delithiation will lead to electrode peel-off and failure [78]; The stresses induced by the volume change result in Si cracking and pulverization, thereby losing electrical contact and leading to capacity fading eventually [78].

(III) Sn-based anodes exhibit poor cycling performance because of pulverization [82]. Besides, conversion anodes suffer from the issues of large volume change and low electrical conductivity [62]. This can be solved by using carbon materials based materials such as graphene.

(IV) The cell capacity of LIBs is restricted by the low capacity of cathodes materials. LiMn_{2}O_{4}, LiFePO_{4} and LiCoO_{2} exhibit low specific capacities of 148 (120), 170 (160) and 272 (140) mAh/g. Future cathodes with high capacity should avoid expensive and toxic elements such as Co and Ni, in this case, Mn- and Fe- based cathodes should be considered [82].

(V) LIBs are easy to exhibit safety issues because of heat and gas generation. Heat is generated when Li^{+} transfer from cathode to anode during charging and back during discharging. For
example, cobalt oxide used in LIBs is easy to appear “thermal runaway”. Once heated up, cobalt oxide will self-heat and produce CO₂ and O₂ [83,84], resulting in fire and explosion.

(Ⅵ) LIBs cannot stand over-discharge or over-charge. When over-discharged (< 3.0 V), the excessive embedded Li⁺ will be fixed in the crystal lattice and cannot be released again, resulting in shortened life. Deep discharge is more likely to damage the battery. When overcharged, too many Li⁺ are embedded in the electrode without being replenished in time, which can lead to lattice collapse and irreversibly reduce the power storage.

Additionally, other problems such as cost, durability and uniformity restrict further application of LIBs in electric vehicles. Besides, temperature and voltage windows of electrode materials pose limitations on LIBs. For example, most automotive LIBs (graphite/LiMn₂O₄, C/LiCo₃Ni₂Mn₂O₁₂, C/LiFePO₄, C/LiNi₀.₈Co₀.₁₅Al₀.₀₅O₂) exhibit fast-charging within 0-45 ºC and discharging at -20-55 ºC. Li₄Ti₅O₁₂ anode allows a low charge temperature of -30 ºC. Normally, most LIBs display an operating voltage of 1.5-4.2 V [85].

To address these challenges and achieve high-performance LIBs, several strategies play significant roles.

(Ⅰ) Developing nanostructured electrodes for LIBs [86,87]. Firstly, nanostructured materials exhibit large surface areas and many active sites, providing large spaces and active sites for Li intercalation/deintercalation reactions, which can be employed to enhance the anode capacity and energy densities of the batteries. With stable SEI layer and large contact areas between electrode and electrolyte, nanostructured electrodes provide effective Li⁺ and e⁻ pathways, thereby leading to increased electrochemical charging/discharging rates and power densities. With flexible structures, nanomaterials can accommodate huge volume expansion/contraction during charge-
discharging process, improving cycling performance of batteries. Moreover, nanostructured anodes involving conductive matrices (carbon components) are effective in lowering the interface resistances, thereby obtaining higher specific capacities at high charge/discharge rates [88-91]. For example, nanocarbons (carbon nanotube (CNT) [92-94], carbon nanofibers (CNFs) [95-97], graphene [98-100], porous carbon [101-103]), atomic layer deposition (ALD)-SnO$_2$ coated aluminum oxide (AAO) [104], ALD-TiO$_2$ on GNS [105], TiO$_2$ nanoribbons by ALD [106], ALD TiO$_2$-(Ni-TMV) core-shell structure [107] have been explored to improve the LIBs’ performance in terms of Coulombic efficiency, cycling stability and rate capability. Nanostructured cathodes [108] including LiNi$_{0.5}$Mn$_{1.5}$O$_4$ [109,110], V$_2$O$_5$ [111,112], and MnO$_2$ [113,114] have been synthesized to develop LIBs with high energy density and electrochemical performance.

(Ⅱ) Applying solid-state electrolytes. Liquid electrolytes used in rechargeable LIBs suffer from issues of leakage, poor electrochemical stability, and flammability. Solid-state electrolytes are found to be effective in avoiding these problems [115-119]. Because solid-state electrolytes are highly Li$^+$ conductive at ambient temperature, mechanically and electrochemically stable, and exhibit low interfacial resistance and good adhesion to electrodes. Generally, there are two kinds of solid-state electrolytes for LIBs, inorganic ceramics [120] and organic polymers [120-122]. Ceramics are used for designing rigid batteries (thin-film devices) because of their high elastic moduli and can work at high temperature. Commonly used ceramics are sulfides (Li$_2$S-P$_2$S$_5$ glass [123], Li$_3$PO$_4$-Li$_2$S-Si$_2$ [124], Li$_2$S-Ga$_2$S$_3$-GeS$_2$ [125], Li$_2$S-Sb$_2$S$_3$-GeS$_2$ [126], Li$_2$S-GeS$_2$-P$_2$S$_5$ [127], Li$_2$Zn$_{0.1}$Zr$_{1.9}$S$_3$ [128]), oxides (LiTaO$_3$ [129], Li$_5$La$_3$Ta$_2$O$_{12}$ [130], Li$_{5+x}$Ba$_x$La$_{3-x}$Ta$_2$O$_{12}$ [131], Li$_6$La$_2$CaTa$_2$O$_{12}$ [132], Li$_6$La$_2$ANb$_2$O$_{12}$ (A=Ca, Sr) [133], Li$_2$Nd$_5$TeSbO$_{12}$ [134], Li$_3$BO$_{2.5}$N$_{0.5}$ [135], Li$_{2-2x}$Mg$_{2x}$TiO$_{3+x}$ [136], Li$_2$Zn$_{2-3x}$Ti$_{1+x}$O$_4$ [137]), and phosphates
(Li$_{1+x}$Al$_x$Ge$_{2-x}$(PO$_4$)$_3$ (LAGP) [138], Li$_{1+x}$Ti$_{2-x}$Al$_x$(PO$_4$)$_3$ (LTAP) [139], Li$_x$AlZr(PO$_4$)$_3$ [140], Li$_3$Fe$_2$(PO$_4$)$_3$ [141], LiPON [142]). Different from ceramics, polymer electrolytes usually exhibit low elastic moduli and can be used for developing flexible batteries. Some polymeric electrolytes are polymers (poly(ethylene oxide) (PEO) [143,144], poly(ethylene oxide) methyl ether methacrylate (PEOMA) [145], poly(acetyl-oligo(ethylene oxide) acrylate) (PAEOA) [120], polyester diacrylate(PEDA)-PEG copolymers [146], poly(ethylene glycol) dimethacrylate (PDE) [147], poly(ethylene glycol) methacrylate (PME) [147], poly(ethylene glycol) methyl ether methacrylate (PEGMA) [148]), polymer gel electrolytes (poly(vinylidene fluoride)-hexafluoropropylene (PVdF-HFP) [149], poly(acrylonitrile)-poly(methylmethacrylate (PAN-PMMA) [150]).

(III) Functionalizing separators of LIBs. Separators physically separate cathode and anodes while enabling free Li$^+$ flow [151]. Separators should have chemical and electrochemical stability against electrolyte and electrode, strong mechanical ability to strive against large tension from battery assemble, and appropriate porosity to absorb liquid electrolyte for the ionic conductivity [152]. Normally, microporous polymer membrane (polypropylene(PP) [153,154], polyethylene (PE) [155,156], polystyrene (PS)-PP [157]), non-woven mats (celluloses [158], polyester non-woven [159], poly(vinyl acetate) (PVAc) coated PVDF [160]) and inorganic composite membranes (TiO$_2$/PVDF-HFP [161], Al$_2$O$_3$/PVDF [162], Boehmite sol/polyvinyl alcohol/poly(ethylene terephthalate) (PET) composite separator [163]) are used as separators in LIBs. Modifying separators is effective in improving battery performance. Surface modification of polylefin separators (ethylene carbonate (EC), propylene carbonate (PC) and γ-butyrolactone (GBL)) can be performed using wetting agents (surfactants) [164] to improve wettability or using hydrophilic functional groups (hydroxyl, carbonyl, carboxyl, amino, imino, sulfonyl)
[165,166] to increase electrolyte retention. Besides, coating polymer on separator surface is effective in improving the interfacial contact of separator and electrodes. This is also favorable to achieve even current distribution and suppress Li dendrites generation on negative electrode. For example, gellable acrylonitrile-methyl methacrylate copolymer was coated on both sides of PE separator. With the obtained separator (14 µm), lithium-ion polymer cell (mesocarbon microbead (MCMB)/LiCoO₂) exhibited good capacity retention and excellent rate performance [167]. Additionally, modifying separators using ALD attracts many interests. For example, ALD-Al₂O₃ (10 nm) [168] and TiO₂ [169] coatings on porous polypropylene (PP) separators could significantly improve thermal stability and safety of the batteries.

(IV) Improving SEI properties for LIBs. The anode surface should be covered entirely by SEI to prevent electrolytes from unwanted degradation that consumes Li⁺. Li⁺ loss from cathode and electrolyte salts affects the first-cycle irreversible capacity and power density of batteries, respectively [70,170]. Continuous SEI growth on anodes will result in increases in cell resistance and anode potential, which further induces increased cathode potential and affects negatively the stability of cathode crystal structure. Thus, building stable SEI layers on electrode surface is necessary. Optimized SEI layers should have high selectivity and permeability of Li⁺, good electrolyte diffusion resistance, and neglected electrical conductivity [171]. Introduction of additives (vinyl carbonate (VC) [172], diphenyloctyl phosphate [173], acetyl caprolactam, 3-fluoro-1,3-propane sultone [174], prop-1-ene-1,3-sultone [175]) into electrolyte is favorable to form stable SEI. Moreover, surface coatings (ALD-Al₂O₃ [176-178], ALD-TiN [179], ALD-TiO₂ [180]) over anode active materials (Si anode [178], graphene [177,180], Li₄Ti₅O₁₂ powder [179], LiCoO₂ powders [176]) are confirmed to protect anode effectively. Additionally, chemical modification for carbon surface (Li₂CO₃ pretreated graphite [181], n - butyl lithium treated
carbon black electrodes [182], HNO$_3$ and (NH$_4$)$_2$S$_2$O$_8$ oxidized graphite [183], aryl functional groups modified graphite [184,185]) is feasible in building stable SEI. Finally, high first charging rate (0.05 C-0.2 C) is normally beneficial for porous and highly resistive SEI layers [186,187].

1.2 Atomic Layer Deposition (ALD)

As a thin film technique, ALD can grow films on a substrate by alternatively exposing its surface to gas-phase precursors. Different from chemical vapor deposition (CVD), where the precursors are mixed in the chamber to react continuously to grow films, the precursors in ALD are introduced by a series of iterated sequential, non-overlapping self-saturating deposition cycles [188]. ALD can prepare uniform films without inferior discontinuities because of nucleation [189]. Therefore, ALD films are pinhole-free and stress-free. However, CVD and physical vapor deposition (PVD) initiate films by nucleation. This is followed by grain growth, finally influencing the film thickness [190,191] by CVD and PVD. Those films exhibit properties of pinholes and compressive stress. ALD exhibit great potential for preparing ultrathin films with precise control over film quality and thickness at atomic scale, based on a self-limiting growth mechanism [177,192-196]. More detailed explanation will be given in the following parts.

1.2.1 Introduction of ALD

ALD was developed independently by two groups in Finland (named atomic layer epitaxy (ALE), 1974) and Soviet Union (named molecular layering (ML), 1960s) [197]. In the 1970s, ALD was initiated by Suntola et al for developing thin-film electroluminescent displays (TFEL) [198,199]. The first successful practice was for depositing ZnS using elements Zn and S [198,200]. Now, ALD has been utilized for many more applications, including renewable clean energies (e.g., batteries, solar cells, supercapacitors, high permittivity memory capacitor
dielectrics (water splitting) [194,196,201-204], surface engineering [205], catalysis [206], biomedical [207], and many others [208-210]. All these applications are attributed to ALD’s abilities to prepare films on complex substrates with accurate control over film thickness and quality at the atomic level. Additionally, ALD has many other capabilities: (1) ALD can be employed to deposit various inorganic materials, including metal nitrides [211], metal fluorides [212,213], metal sulfides [214], elements [211,215,216], complex compounds [217-219] and metal oxides [220,221]; (2) The growth rate of ALD multilayer films is straightforward; (3) ALD exhibits low growth temperature (≤ 400 °C, even down to room temperature) [222-225], which is much lower than that of CVD (600-1000 °C); and (4) ALD can be used to tune the compositions of deposition films. Researchers have prepared stoichiometric deposition of metal oxides such as Al₂O₃ [226], Gd₂O₃ [227] and HfO₂ [228].

1.2.2 Mechanism

Typically, an ALD cycle of binary compounds consists of two half self-limiting gas phase reactions and two purge steps. Taking the deposition of Al₂O₃ (precursors: TMA + H₂O) for example, there are four repetitive steps [192-196,229]. Firstly, as shown in Figure 2(a2) [194] and Equation (8A) [230-233], introducing TMA to react with a substrate surface on which has reactive sites such as -OH (Figure 2(a1)). Secondly, performing a purging step to evacuate excessive TMA and the byproduct CH₄(Figure 2(a2)(a3) generate the byproduct of CH4). Then, introducing H₂O to react with reactive groups -CH₃ (Figure 2(a4) [194], Equation (8B) [230-233]). In this procedure, Al₂O₃ and new reactive sites -OH are produced (Figure 2(a5) [194]). Finally, conducting another purging step to remove excessive H₂O and the byproduct CH₄.

\[
\text{AlOH}^* + \text{Al(CH₃)₃} (g) \rightarrow \text{AlO-Al(CH₃)₂}^* + \text{CH₄} (g) \quad (8A)
\]

\[
\text{AlCH₃}^* + \text{H₂O} (g) \rightarrow \text{AlOH}^* + \text{CH₄} (g) \quad (8B)
\]
Where “*” stands for the surface species. “g” demonstrates the gaseous phase of precursors or byproducts.

These two surface reactions are very self-limiting and efficient driven by the formation of Al-O bond. The overall reaction for ALD-Al₂O₃ is given by Equation (9).

\[2\text{Al(CH}_3)_3 + 3\text{H}_2\text{O} \rightarrow \text{Al}_2\text{O}_3 + 6\text{CH}_4 \quad \Delta H = -376 \text{ kcal} \] (9)

This reaction has the highest reaction enthalpy of -376 kcal encountered for any ALD reaction [234].

Repeating these four steps can deposit Al₂O₃ in a layer by layer mode, Al₂O₃ growth exhibited a linear relationship with the number of ALD cycles. QCM indicated that the growth rate of ALD Al₂O₃ was 1.1-1.2 Å/cycle [235].

Besides the growth mechanism of model ALD Al₂O₃, there are also many other literatures devoted to the growth mechanism of different ALD processes as given in Table 1 [223,236-247].
Table 1. Growth mechanism of different ALD processes

<table>
<thead>
<tr>
<th>Process</th>
<th>Surface reactions</th>
<th>Overall reaction</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalytic SiO₂</td>
<td>SiOH* + SiCl₄ → SiOSiCl₃* + HCl</td>
<td>SiCl₄ + 2H₂O → SiO₂ + 4HCl</td>
<td>[223,234,247]</td>
</tr>
<tr>
<td>(Figure 2(b))</td>
<td>SiCl* + H₂O → SiOH* + HCl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>¹ ALD W</td>
<td>WSiF₂H* + WF₆ → WWF₃* + SiF₃H</td>
<td>WF₆ + Si₂H₆ → W + SiF₃H + 2H₂</td>
<td>[234,245,246]</td>
</tr>
<tr>
<td></td>
<td>WF₅* + Si₂H₆ → WSiF₂H* + SiF₃H + 2H₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>² ALD Ru</td>
<td>(A) RuOₓ* + Ru(Cp)₂ → RuRu(Cp) * + 5CO₂ + 5/2H₂O</td>
<td>Ru(Cp)₂ + 25/2O₂ → Ru + 10CO₂ + 5H₂O</td>
<td>[244]</td>
</tr>
<tr>
<td></td>
<td>(B) RuCp* + yO₂ → RuOₓ* + 5CO₂ + 5/2H₂O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>² ALD Ti</td>
<td>(A) Ta* + TaCl₅ → TaTaCl₅*</td>
<td>TaCl₅ + 5H⁻ → Ta + 5HCl</td>
<td>[241-243]</td>
</tr>
<tr>
<td>(Figure 2(c))</td>
<td>(B) TaCl₅* + 5H⁻ → Ta* + 5HCl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>² ALD Si</td>
<td>(A) Si* + SiH₂Cl₂ → SiSiCl₂* + H₂</td>
<td>SiH₂Cl₂ + 2H → Si + 2HCl</td>
<td>[238-240]</td>
</tr>
<tr>
<td></td>
<td>(B) SiCl₂* + 2H → Si* + 2HCl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>³ ALD ZnO</td>
<td>(A) Zn(C₂H₅)₂ + *OH → *O-Zn(C₂H₅) + C₂H₆</td>
<td>Zn(C₂H₅)₂ + H₂O → ZnO + 2C₂H₆</td>
<td>[237]</td>
</tr>
<tr>
<td></td>
<td>(B) *O-Zn(C₂H₅) + H₂O → *O-Zn(OH) + C₂H₆</td>
<td></td>
<td></td>
</tr>
<tr>
<td>³ ALD HfO₂</td>
<td>(A) -OH* + (C₂H₆N)₄Hf(g) → *-O-Hf-(C₂H₆N)₃ + CH₃NHCH₃(g)</td>
<td>(C₂H₆N)₄Hf(g) + 3H₂O → HfO₂ + 4CH₃NHCH₃(g)</td>
<td>[248]</td>
</tr>
<tr>
<td></td>
<td>(B) *-O-Hf-(C₂H₆N)₃ + 3H₂O(g) → *-O-Hf-(OH)₃ + 3CH₃NHCH₃(g)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>³ ALD TiO₂</td>
<td>(A) *2(-OH) (s) + TiCl₄ (g) → *(O-)₂TiCl₂ (s) + 2HCl (g)</td>
<td>TiCl₄ + 2H₂O → TiO₂ + 4HCl</td>
<td>[236]</td>
</tr>
<tr>
<td></td>
<td>(B) *(O-)₂TiCl₂ (s) + 2H₂O → *(O-)₂Ti(OH)₂ (s) + 2HCl (g)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: ¹ Metal ALD; ² Hydrogen radical-enhanced or plasma ALD; ³ Thermal ALD.
We should know that ALD film growth is denoted by three parameters of substrate, temperature, and precursor. Wisely choosing these parameters is crucial to optimize the growth of deposited materials [241,249-253]. As a surface-controlled vapor-phase process, ALD outperforms CVD (semi-surface controlled gas-phase process) [254] and PVD (source controlled gas-phase process) [254] in terms of depositing films, displaying excellent uniformity, conformality, and precise thickness controllability at atomic scale.

Figure 2. (a) A model ALD process for depositing Al₂O₃ using TMA and water as precursors: (1) the initial substrate covered by hydroxyl groups, (2) TMA molecules reacting with hydroxyl groups, leading to a new intermediate layer, (3) the substrate covered with a newly created intermediate layer, (4) H₂O molecules reacting with the intermediate layer, leading to new hydroxyl groups, and (5) the substrate again covered by hydroxyl groups [194]. Reprinted (adapted) with permission from ref. [194]. Copyright (2012) John Wiley and Sons; (b) Proposed mechanism for Lewis base catalysis of SiO₂ ALD during the SiCl₄ reaction and the H₂O reaction [223]. Reprinted (adapted) with permission from ref. [223]. Copyright (1997) The American Association for the Advancement of Science; (c) Schematic diagram of hydrogen radical-enhanced ALD using a metal reactant and hydrogen radicals [241]. Reprinted (adapted) with permission from ref. [241]. Copyright (2009) American Chemical Society.

1.3 Molecular Layer Deposition (MLD)

1.3.1 Introduction of MLD

As the sister technique of ALD, MLD was initiated in 1991 by Yoshimura et al for preparing organic or inorganic-organic hybrid materials [255,256]. To date, MLD has exhibited excellent
capabilities of producing polymer materials (polyimide-polyamides, polyamide, polythiourea, polyurethane, polyazomethine, polyethylene terephthalate, polyester, poly(3,4-ethylenedioxythiophene), polyurea) [257-268], hybrid materials including metalcones (hafnicone, alucone, titanicone, zincone, zircone, mangancone, vanadicone) [269-275], metal tetracyanoethylenes [276,277], and metal quinolones [278,279], metal-organic frameworks (MOFs) [280-282], and lithium terephthalates [283]. MLD can be widely applied in catalysis [284], microelectronics [285], batteries [286,287], organic magnets [285], surface engineering [288,289], luminescent devices [290], and many others [290,291]. MLD exhibits many advantages because of the organic part in films. Firstly, MLD films have high flexibility against straining that can be tuned by changing the length of carbon chain in the organic parts [275,292]. Secondly, MLD films exhibit less density than ALD metal oxides [293,294]. Thirdly, metalcone alloy materials by MLD have excellent mechanical properties (density, elastic modulus, hardness) that can be optimized by changing the contents of organic parts [295], good electrical conductivity and high dielectric constants [295-297]. Fourthly, heat treatment or chemical process for the metalcones can be employed to prepare highly porous metal oxides [298,299]. Besides these advantages, MLD also has some shortcomings. (1) Organic precursors used in MLD process are restricted by their low vapor pressure and limited thermal stability [300], thereby requiring a long pulsing time to realize saturated growth. (2) Most EG-based metalcones don’t have satisfactory stabilities against water and oxygen [273,290]. (3) Gas-phase reactants could diffuse into the polymer attributed to the porosity of MLD films [294]. (4) Precursors employed in MLD process using a fluidized bed reactor are easy to agglomerate [300].
1.3.2 Mechanism

Analogous to ALD, MLD also belongs to a surface-controlled vapor-phase process. ALD is employed for growing inorganic films, while MLD exhibits capabilities of preparing purely organic or inorganic-organic hybrid materials. Similar to the ALD process, a MLD cycle of binary compounds is also composed of two half self-limiting gas phase reactions and two purge steps, as illustrated in Figure 3(a) [294]. A specific example of depositing alucone AlEG with TMA and ethylene glycol (EG, HOCH₂CH₂OH) as precursors is described in Equations (10A) and (10B) (Figure 3(b) [230,270]).

\[
\text{OH}^* + \text{Al(CH₃)}₃ \rightarrow \text{O-Al(CH₃)₂}^* + \text{CH₄ (g)} \quad (10A)
\]

\[
\text{O-Al(CH₃)₂}^* + 2\text{HOCH₂CH₂OH (g)} \rightarrow \text{OAl(OCH₂CH₂OH)}₂ + 2\text{CH₄ (g)} \quad (10B)
\]

where “*” demonstrates the surface species. “g” stands for the gaseous phase of precursors or byproducts. Comparing with the atomic part of –O– in the ALD-Al₂O₃, the molecular fragment of –OCH₂CH₂O– in alucone is much larger, making a much faster growth of alucone AlEG than ALD Al₂O₃.

Besides the two-step AB MLD process, researchers also investigated the growth mechanism of three-step ABC MLD process and combined ALD-MLD process. Some MLD processes and their growth mechanisms are summarized in Table 2 [230,258,259,270,293,294,301]. Byunghoon et al [301] deposited inorganic-organic alucone polymer using precursors of TMA, ethanolamine (EA), and maleic anhydride (MA) (Figure 3(d)). The surface reactions in this process can be described as Equations (11A), (11B) and (11C).

\[
\text{S-COOH}^* + \text{Al(CH₃)}₃ \rightarrow \text{S-COO-Al(CH₃)₂}^* + \text{CH₄} \quad (11A)
\]

\[
\text{S-AlCH₃}^* + \text{HO(CH₂)₂-NH₂} \rightarrow \text{S-Al-O(CH₂)₂NH₂}^* + \text{CH₄} \quad (11B)
\]
\[S\text{-NH}_2^* + C_4H_2O_3(\text{MA}) \rightarrow S\text{-NH-C(O)CHCHCOOH}^* \] \hspace{1cm} (11C)

Where, “S” indicates the substrate.

Anjali et al [302] employed a combined ALD-MLD method to prepare inorganic-organic hybrid films (-Zn-O-C_6H_4-NH-) by sequentially introducing DEZ and 4-aminophenol (AP) as precursors. Prior to the hybrid film deposition, inorganic ALD-ZnO (precursors: DEZ + H_2O) was deposited on Si(100) firstly as a seed layer to keep uniform and homogeneous film thickness. The reaction for the whole process was shown in Figure 3 (e).
Table 2. Growth mechanism of different MLD processes

<table>
<thead>
<tr>
<th>Process Description</th>
<th>Surface Reactions</th>
<th>References</th>
</tr>
</thead>
</table>
| Poly(p-phenylene terephthalamide) (PPTA) (Figure 3(c)) | (A) \(\text{SNH}_2^* + \text{ClCOC}_6\text{H}_4\text{COCl} \rightarrow \text{SNHCOC}_6\text{H}_4\text{COCl}^* + \text{HCl} \)
(B) \(\text{SNHCO(CH}_2\text{)}_4\text{COCl}^* + \text{H}_2\text{NC}_6\text{H}_4\text{NH}_2 \rightarrow \text{SNHCOC}_6\text{H}_4\text{CONH(CH}_2\text{)}_6\text{NH}_2^* + \text{HCl} \) | [258] |
| Nylon 66 | (A) \(\text{SNH}_2^* + \text{ClCO(CH}_2\text{)}_4\text{COCl} \rightarrow \text{SNH-CO(CH}_2\text{)}_4\text{COCl}^* + \text{HCl} \)
(B) \(\text{SNHCO(CH}_2\text{)}_4\text{COCl}^* + \text{H}_2\text{N(CH}_2\text{)}_6\text{NH}_2 \rightarrow \text{SNHCOC}_6\text{H}_4\text{CONH(CH}_2\text{)}_6\text{NH}_2^* + \text{HCl} \) | [259] |
| General two-step AB cycles using homo-bifunctional precursors | (A) \(\text{SR}'\text{Y}^* + \text{XRX} \rightarrow \text{SR}'\text{-RX}^* + \text{XY} \)
(B) \(\text{SRX}^* \rightarrow \text{YR}'\text{Y} \rightarrow \text{SR}-\text{R}'\text{Y}^* + \text{XY} \) | [294] |
| Alucone | (A) \(\text{SOAl-OH}^* + \text{Al(CH}_3\text{)}_3 \rightarrow \text{SOAlOAl(CH}_3\text{)}_2^* + \text{CH}_4 \)
(B) \(\text{SOAlO-Al(CH}_3\text{)}_2^* + \text{HOC}_6\text{H}_4\text{OH} \rightarrow \text{SOAlOAl-OC}_6\text{H}_4\text{OH}^* + 2\text{CH}_4 \) | [230,293] |
| General two-step interaction between metal alkyls and diols | (A) \(\text{SR}'\text{'OH}^* + \text{MRx} \rightarrow \text{SR}'\text{O-MR}_x^* + \text{RH} \) (g)
(B) \(\text{SMR}^* + \text{HOR}'\text{OH} \rightarrow \text{SM-OR}'\text{OH}^* + \text{RH} \) (g) | [230,270] |
| General two-step AB cycles using hetero-bifunctional precursors | (A) \(\text{SR}'\text{Z}^* + \text{WRX} \rightarrow \text{SR}'\text{-RX}^* + \text{ZW} \)
(B) \(\text{SRX}^* + \text{YR}'\text{Z} \rightarrow \text{SR}-\text{R}'\text{Z}^* + \text{XY} \) | [294] |
| General three-step ABC cycles using hetero-bifunctional precursors | (A) \(\text{SR}'\text{Z}^* + \text{TRV} \rightarrow \text{SR}'\text{-RV}^* + \text{ZT} \)
(B) \(\text{SRV}^* + \text{WR}'\text{X} \rightarrow \text{SR}-\text{R}'\text{X}^* + \text{VW} \)
(C) \(\text{SR}'\text{X}^* + \text{YR}'\text{Z} \rightarrow \text{SR}'\text{-R}'\text{Z}^* + \text{XY} \) | [294,301] |

Note: ¹ Organic polymer; ² Inorganic-organic hybrid polymer; ³ Organic or inorganic-organic hybrid polymers.
Figure 3. (a) Schematic representation of MLD using self-limiting surface chemistry and an AB binary reaction sequence [294]. Reprinted (adapted) with permission from ref. [294]. Copyright (2009) American Chemical Society; (b) Illustration of surface chemistry for two-step alucone MLD using TMA and EG as reactants [270]. Reprinted (adapted) with permission from ref. [270]. Copyright (2008) American Chemical Society; (c) Illustration of surface chemistry for PPTA MLD using ClCOC₆H₄COCl (TC) and NH₂C₆H₄NH₂ (PD) as reactants [294]. Reprinted (adapted) with permission from ref. [294]. Copyright (2009) American Chemical Society; (d) Illustration of surface chemistry for three-step alucone. MLD with TMA, EA, and MA as reactants [301]. Reprinted (adapted) with permission from ref. [301]. Copyright (2009) American Chemical Society; (e) Suggested growth sequence for the Zn–AP film over a thin seed layer of ZnO on a Si substrate. The surface was left covered with –NH₂ groups [302]. Reprinted (adapted) with permission from ref. [302]. Copyright (2003) Royal Society of Chemistry.

Many ALD/MLD reviews [194,230,285,286,291,303] indicated that both ALD and MLD realize precise control over film quality (uniformity, conformality) and thickness. They are effective in
improving the performance of different battery systems (lithium ion batteries, sodium-ion batteries, Li-S batteries) by protecting electrode surface, designing novel electrodes, preparing solid-state electrolytes, modifying separators and building stable SEI layers.

1.4 Motivation and Objective

Currently, in modern societies, demanding energy requirements and environmental problems attributed to fossil fuels combustion drive the battery development. In this case, the whole society is prone to use cleaner and more renewable energy sources, which can be realized by energy technology conversation through energy storage devices. Therefore, batteries are significantly important. Lithium-ion batteries are considered as promising technology. They are widely applied in our daily life, such as telephones, clock-radios, security alarms, smoke detectors, portable fluorescent, portable tools, portable test meters, hedge trimmers, lawnmowers, portable radios, TVs, toothbrushes, hearing aids, watches and cameras. High performance lithium ion batteries are effective in providing stable energy supply, which can solve the problem of limited energy. ALD and MLD can be employed to develop high performance LIBs by surface coating, electrode design, solid state electrolyte preparation and separator modification.

In this thesis, I will work on three parts as the following: (1) Investigating the growth properties of different ALD/MLD films (Al₂O₃, ZnO, TiO₂, AlGL and ZnGL) using quartz crystal microbalance QCM. SEM was employed to characterize the morphology of deposited films; (2) Modifying the Si anode-electrolyte interface in LIBs using ALD-ZnO; and (3) Studying the effects of ALD coatings (Al₂O₃, ZnO) on stabilizing lithium metal. Different types of batteries (bare Li/Cu, bare Li/Ni foam, Al₂O₃ coated Li/Cu, Al₂O₃ coated Li/Ni foam, ZnO coated Li/Cu, ZnO coated Li/Ni foam) were assembled and their electrochemical behavior were studied. 4nm Al₂O₃ could effectively stabilize lithium metal. And 4nm Al₂O₃ coated Li/Ni foam achieved the
highest Coulombic efficiency. In this section, SEM and EDX were used to characterize the morphology of Li metal before and after battery cycling. These three parts will be respectively discussed in Chapter 2, 3, and 4.
1.5 References

[67] N. Liu, H. Wu, M.T. McDowell, Y. Yao, C. Wang, Y. Cui, A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes, Nano letters 12 (2012) 3315-3321.

[78] H. Wu, Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano Today 7 (2012) 414-429.

[85] L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, A review on the key issues for lithium-ion battery management in electric vehicles, J. Power Sources 226 (2013) 272-288.

[125] W. Yao, S.W. Martin, Ionic conductivity of glasses in the M$_2$S (0.1Ga$_2$S$_3$+0.9GeS$_2$) system (M= Li, Na, K and Cs), Solid State Ionics 178 (2008) 1777-1784.

[126] Z. Nagamedianova, A. Hernández, E. Sánchez, Conductivity studies on LiX-Li$_2$S-Sb$_2$S$_3$-P$_2$S$_5$ (X= LiI or Li$_3$PO$_4$) glassy system, Ionics 12 (2006) 315-322.

[131] R. Murugan, V. Thangadurai, W. Weppner, Lithium ion conductivity of Li$_{5x}$Ba$_x$La$_2$-xTa$_2$O$_{12}$ (x= 0-2) with garnet-related structure in dependence of the barium content, Ionics 13 (2007) 195-203.

[137] I. Leonidov, O. Leonidova, R. Samigullina, M. Patrakeev, Structural aspects of lithium transfer in solid electrolytes Li$_{2x}$Zn$_{2-3x}$Ti$_{1+x}$O$_4$ (0.33 ≤ x ≤ 0.67), Journal of Structural Chemistry 45 (2004) 262-268.

[173] I. Park, T. Nam, J. Kim, Diphenyloctyl phosphate as a solid electrolyte interphase forming additive for Li-ion batteries, J. Power Sources 244 (2013) 122-128.

[177] M. Yu, A. Wang, Y. Wang, C. Li, G. Shi, An alumina stabilized ZnO-graphene anode for lithium ion batteries via atomic layer deposition, Nanoscale 6 (2014) 11419-11424.

[178] Y. He, X. Yu, Y. Wang, H. Li, X. Huang, Alumina-coated patterned amorphous silicon as the anode for a lithium-ion battery with high Coulombic efficiency, Adv Mater 23 (2011) 4938-4941.

[184] Q. Pan, H. Wang, Y. Jiang, Covalent modification of natural graphite with lithium benzoate multilayers via diazonium chemistry and their application in lithium ion batteries, Electrochemistry Communications 9 (2007) 754-760.

[204] X. Meng, Towards high-energy and durable lithium-ion batteries via atomic layer deposition: elegantly atomic-scale material design and surface modification, Nanotechnology 26 (2014) 020501.

[275] K. Van de Kerckhove, F. Mattelaer, J. Dendooven, C. Detavernier, Molecular layer deposition of “vanadicone”, a vanadium-based hybrid material, as an electrode for lithium-ion batteries, Dalton Transactions 46 (2017) 4542-4553.

[283] M. Nisula, M. Karppinen, Atomic/molecular layer deposition of lithium terephthalate thin films as high rate capability Li-ion battery anodes, Nano letters 16 (2016) 1276-1281.

[286] C. Ban, S.M. George, Molecular layer deposition for surface modification of lithium-ion battery electrodes, Advanced Materials Interfaces 3 (2016) 1600762.

[291] K. Gregorczyk, M. Knez, Hybrid nanomaterials through molecular and atomic layer deposition: Top down, bottom up, and in-between approaches to new materials, Progress in Materials Science 75 (2016) 1-37.

2 GROWTH PROPERTIES OF DIFFERENT COATINGS

2.1 Materials

Glycerol (GL), Titanium isopropoxide (TTIP), H₂O were purchased from Sigma Aldrich. TMA and DEZ were bought from Strem Chemicals, Inc. N-doped graphene (NGS) was purchase from ACS Materials LLC. These chemicals were summarized in Table 1.

Table 1. Summary of needed chemicals (1)

<table>
<thead>
<tr>
<th>Chemicals</th>
<th>CAS#</th>
<th>Formula</th>
<th>Molecular weight</th>
<th>Flash point</th>
<th>Melting point</th>
<th>Boiling point</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycerol (GL)</td>
<td>56-81-5</td>
<td>500 mL (one bottle)</td>
<td>0</td>
<td>1</td>
<td>0 °C</td>
<td>/</td>
<td>Sigma aldrich</td>
</tr>
<tr>
<td>Deionized water</td>
<td>7732-18-5</td>
<td>/</td>
<td>18.02</td>
<td>/</td>
<td>0 °C</td>
<td>100 °C</td>
<td>Sigma aldrich</td>
</tr>
<tr>
<td>N-doped graphene (NGS)</td>
<td>7782-42-5</td>
<td>(graphite)</td>
<td>C</td>
<td>/</td>
<td>3650 °C</td>
<td>/</td>
<td>ACS material LLC</td>
</tr>
<tr>
<td>Trimethylaluminum (TMA)</td>
<td>75-24-1</td>
<td>C₃H₉Al</td>
<td>144.18 g/mol</td>
<td>-17°C</td>
<td>15.4 °C</td>
<td>127 °C</td>
<td>Strem chemicals. INC</td>
</tr>
<tr>
<td>Diethylzinc (DEZ)</td>
<td>557-20-0</td>
<td>(C₂H₅)₂Zn</td>
<td>123.51 g/mol</td>
<td>-18°C</td>
<td>-28 °C</td>
<td>124 °C</td>
<td>Strem chemicals. INC</td>
</tr>
<tr>
<td>Titanium isopropoxide (TTIP)</td>
<td>546-68-9</td>
<td>Ti[OCH(CH₃)₂]₄</td>
<td>284.22 g/mol</td>
<td>45 °C</td>
<td>14-17 °C</td>
<td>232 °C</td>
<td>Sigma aldrich</td>
</tr>
</tbody>
</table>

2.2 ALD/MLD Deposition Parameters

Different coatings (Al₂O₃, ZnO, TiO₂, AlGL and ZnGL) were deposited on Si wafer and their growth properties were investigated using quartz crystal microbalance (QCM) method. The parameters of ALD were summarized in Table 2. These coatings were deposited by the
Savannah S200 atomic layer deposition systems (Ultratech/Cambridge nanotech) as shown in Figure 1.

Table 2. Deposition parameters of different coatings

<table>
<thead>
<tr>
<th>Method</th>
<th>Coatings</th>
<th>Precursors</th>
<th>Deposition conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALD</td>
<td>Al₂O₃</td>
<td>Trimethylaluminum (TMA), H₂O</td>
<td>TMA-purge-H₂O-purge (0.015-15-0.015-15 s), 50 °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TMA-purge-H₂O-purge (0.015-10-0.015-10 s), 75 °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TMA-purge-H₂O-purge (0.015-5-0.015-5 s), 100 °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TMA-purge-H₂O-purge (0.015-5-0.015-5 s), 150 °C</td>
</tr>
<tr>
<td></td>
<td>TiO₂</td>
<td>titanium tetraisopropoxide (TTIP), H₂O</td>
<td>TTIP-purge-H₂O-purge (1-5-1-5 s), 150 °C</td>
</tr>
<tr>
<td></td>
<td>ZnO</td>
<td>Diethylzinc (DEZ), H₂O</td>
<td>DEZ-purge-H₂O-purge (1-5-1-5 s), 150 °C</td>
</tr>
<tr>
<td>MLD</td>
<td>AlGL</td>
<td>TMA, glycerol (GL)</td>
<td>TMA-purge-GL-purge (0.015-20-2-60 s), 50 °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TMA-purge-GL-purge (0.015-15-2-40 s), 75 °C</td>
</tr>
<tr>
<td></td>
<td>ZnGL</td>
<td>DEZ, GL</td>
<td>DEZ-purge-GL-purge (0.015-20-2-60 s), 50 °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DEZ-purge-GL-purge (0.015-15-2-40 s), 75 °C</td>
</tr>
</tbody>
</table>
2.3 ALD Coatings

2.3.1 Al₂O₃ film growth

Al₂O₃ was deposited on Si wafer by ALD using TMA and H₂O as precursors. QCM was employed to investigate the growth property of ALD-Al₂O₃. According to the mass gain of three consecutive ALD cycles, we could find that using the recipe of (TMA-purge-H₂O-purge, 0.015-15-0.015-15 s, 50 °C) leads to mass gains of 37, 36 and 35 ng, respectively. Correspondingly, TMA contributed 23, 24 and 22 ng, while H₂O contributed 14, 12 and 13 ng (Figure 2(b)). Introducing the recipe of (TMA-purge-H₂O-purge, 0.015-10-0.015-10 s, 75 °C) generated mass gains of 30, 35 and 36 ng. TMA gave mass gains of 21, 27 and 19 ng. H₂O contributed 9, 8 and 7 ng (Figure 2(e)). Employing the recipe of (TMA-purge-H₂O-purge, 0.015-5-0.015-5 s, 100 °C) resulted in mass gains of 24, 25 and 24 ng (Figure 2(h)). In this case, the growth rate was 1 Å/cycle (Figure 2(i)). When Al₂O₃ was deposited at a higher temperature of 150 °C, the recipe of (TMA-purge-H₂O-purge, 0.015-5-0.015-5 s) gave mass gains of 40, 39 and 38 ng (Figure 2(k)),

Figure 1. ALD/MLD system
while the recipe of (TMA-purge-H₂O-purge, 1-5-1-5 s) leaded to mass gains of 49, 49 and 48 ng (Figure 2(n)). Additionally, mass gain of the whole ALD-Al₂O₃ process using different recipes and corresponding film thickness curves were shown in Figure 2.
Figure 2. (a) Mass gain of Al₂O₃ deposited at 50 °C using the recipe of (TMA-purge-H₂O-purge, 0.015-15-0.015-15 s); (b) Three consequential cycles of Al₂O₃ deposited at 50 °C using the recipe of (TMA-purge-H₂O-purge, 0.015-15-0.015-15 s); (c) Film thickness of Al₂O₃ deposited at 50 °C using the recipe of (TMA-purge-H₂O-purge, 0.015-15-0.015-15 s); (d) Mass gain of Al₂O₃ deposited at 75 °C using the recipe of (TMA-purge-H₂O-purge, 0.015-10-0.015-10 s); (e) Three consequential cycles of Al₂O₃ deposited at 75 °C using the recipe of (TMA-purge-H₂O-purge, 0.015-10-0.015-10 s); (f) Film thickness of Al₂O₃ deposited at 75 °C
using the recipe of (TMA-purge-H₂O-purge, 0.015-10-0.015-10 s); (g) Mass gain of Al₂O₃ deposited at 100 °C using the recipe of (TMA-purge-H₂O-purge, 0.015-5-0.015-5 s); (h) Three consequential cycles of Al₂O₃ deposited at 100 °C using the recipe of (TMA-purge-H₂O-purge, 0.015-5-0.015-5 s); (i) Film thickness of Al₂O₃ deposited at 100 °C using the recipe of (TMA-purge-H₂O-purge, 0.015-5-0.015-5 s); (j) Mass gain of Al₂O₃ deposited at 150 °C using the recipe of (TMA-purge-H₂O-purge, 0.015-5-0.015-5 s); (k) Three consequential cycles of Al₂O₃ deposited at 150 °C using the recipe of (TMA-purge-H₂O-purge, 0.015-5-0.015-5 s); (l) Film thickness of Al₂O₃ deposited at 150 °C using the recipe of (TMA-purge-H₂O-purge, 0.015-5-0.015-5 s); (m) Mass gain of Al₂O₃ deposited at 150 °C using the recipe of (TMA-purge-H₂O-purge, 1-5-1-5 s); (n) Three consequential cycles of Al₂O₃ deposited at 150 °C using the recipe of (TMA-purge-H₂O-purge, 1-5-1-5 s); (o) Film thickness of Al₂O₃ deposited at 150 °C using the recipe of (TMA-purge-H₂O-purge, 1-5-1-5 s).

Al₂O₃ was deposited on NGS at 100 °C by ALD using TMA and H₂O as precursors. 1x ALD-Al₂O₃ on NGS consisted of a TMA dosing--ten times of (pulse 0.2s-stop valve closed-wait 2s-stop valve open-wait 2s) followed by H₂O dosing--ten times of (pulse 0.2s-stop valve closed-wait 2s-stop valve open-wait 2s) as shown in Figure 3(e). SEM picture indicated that bare NGS exhibited a wrinkled and smooth morphology (Figure 3(a)), while small particles of Al₂O₃ can be detected for ALD-Al₂O₃ coated NGS, especially for 3x and 5x ALD-Al₂O₃ coated NGS samples (Figure 3 (c)(d)), indicating successful deposition of Al₂O₃ by ALD. Percentage of ALD-Al₂O₃ in total mass of Al₂O₃+NGS was calculated and the result was shown in Table 3. The percentage of ALD-Al₂O₃ increased from 1.66 % to 45.76 % as the ALD cycles grew from 1x to 10x.
Figure 3. SEM pictures of (a) bare NGS and ALD-Al2O3 deposited on N-doped single layer graphene (NGS) at 100 °C using (b) 1x, (c) 3x, and (d) 5x ALD cycles. (e) The recipe of 1x ALD-Al2O3 on NGS is as the following: TMA dosing--ten times of (pulse 0.2s-stop valve closed-wait 2s-stop valve open-wait 2s) and H2O dosing--ten times of (pulse 0.2s-stop valve closed-wait 2s-stop valve open-wait 2s).

Table 3. Summary of percentage of ALD-Al2O3 in total mass of Al2O3+NGS

<table>
<thead>
<tr>
<th>Al2O3 on NGS</th>
<th>ALD Cycles</th>
<th>before coating m1 (mg)</th>
<th>after coating m2 (mg)</th>
<th>m2-m1 (mg)</th>
<th>(m2-m1)/m2 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1x</td>
<td>19.50</td>
<td>19.83</td>
<td>0.33</td>
<td>1.66</td>
</tr>
<tr>
<td></td>
<td>3x</td>
<td>21.00</td>
<td>23.78</td>
<td>2.78</td>
<td>11.69</td>
</tr>
<tr>
<td></td>
<td>5x</td>
<td>20.30</td>
<td>27.45</td>
<td>8.15</td>
<td>28.65</td>
</tr>
<tr>
<td></td>
<td>10x</td>
<td>20.00</td>
<td>36.87</td>
<td>16.87</td>
<td>45.76</td>
</tr>
</tbody>
</table>

2.3.2 TiO2 film growth

TTIP and H2O were employed as precursors to deposit TiO2 on Si wafer at 150 °C using the recipe of (TTIP-purge-H2O-purge, 1-5-1-5 s). QCM was utilized to investigate the growth
property of ALD-TiO\textsubscript{2}. We could observe that TTIP contributed a mass gain of 28, 27 and 27 ng for the three consecutive cycles respectively. Correspondingly, the introduction of H\textsubscript{2}O gave a mass gain of 13, 14 and 15 ng (Figure 4(b)). Therefore, the mass gain for the three consecutive ALD-TiO\textsubscript{2} cycles were calculated to be 15, 13 and 12 ng. Film thickness was given in Figure 4(c).

![Figure 4](image)

Figure 4. (a) Mass gain of TiO\textsubscript{2} deposited at 150 °C using the recipe of (TTIP-purge-H\textsubscript{2}O-purge, 1-5-1-5 s); (b) Three consequential cycles of TiO\textsubscript{2} deposited at 150 °C using the recipe of (TTIP-purge-H\textsubscript{2}O-purge, 1-5-1-5 s); (c) Film thickness of TiO\textsubscript{2} deposited at 150 °C using the recipe of (TTIP-purge-H\textsubscript{2}O-purge, 1-5-1-5 s).

TiO\textsubscript{2} was deposited on NGS at 100 °C by ALD using TTIP and H\textsubscript{2}O as precursors. 1x ALD-TiO\textsubscript{2} on NGS stood for a TMA dosing--ten times of (pulse 0.2s-stop valve closed-wait 2s-stop valve open-wait 2s) followed by H\textsubscript{2}O dosing--ten times of (pulse 0.2s-stop valve closed-wait 2s-stop valve open-wait 2s) as shown in Figure 5(f). 3x, 15x, 30x and 60x ALD cycles were performed. No obvious morphological difference was observed between bare NGS and ALD-TiO\textsubscript{2} coated NGS (Figure 5(a)-(e)). Percentages of ALD-TiO\textsubscript{2} were 4.2 wt\%, 26.21 wt\%, 55.89 wt\%, and 80.21 wt\% for 3x, 15x, 30x and 60x ALD-TiO\textsubscript{2} coated NGS samples (Table 4).
Figure 5. SEM pictures of (a) bare NGS and ALD-TiO$_2$ deposited on N-doped single layer graphene (NGS) at 100 °C using (b) 3x, (c) 15x, (d) 30x, and (e) 60x ALD cycles. (f) The recipe of 3x ALD-TiO$_2$ on NGS is as the following: 1x cycle is composed of TTIP dosing—ten times of (pulse 0.2s-stop valve closed-wait 2s-stop valve open-wait 2s) and H$_2$O dosing—ten times of (pulse 0.2s-stop valve closed-wait 2s-stop valve open-wait 2s), repeating the 1x cycles three times we get the recipe of 3x ALD-TiO$_2$ on NGS.

Table 4. Summary of percentage of ALD-TiO$_2$ in total mass of TiO$_2$+NGS

<table>
<thead>
<tr>
<th>TiO$_2$ on NGS</th>
<th>ALD Cycles</th>
<th>before coating m$_1$ (mg)</th>
<th>after coating m$_2$ (mg)</th>
<th>m$_2$-m$_1$ (mg)</th>
<th>(m$_2$-m$_1$)/m$_2$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3x</td>
<td>23.10</td>
<td>24.11</td>
<td>1.01</td>
<td>4.20</td>
</tr>
<tr>
<td></td>
<td>15x</td>
<td>23.40</td>
<td>31.71</td>
<td>8.31</td>
<td>26.21</td>
</tr>
<tr>
<td></td>
<td>30x</td>
<td>20.60</td>
<td>46.70</td>
<td>26.10</td>
<td>55.89</td>
</tr>
<tr>
<td></td>
<td>60x</td>
<td>23.20</td>
<td>117.23</td>
<td>94.03</td>
<td>80.21</td>
</tr>
</tbody>
</table>

2.3.3 ZnO film growth

ZnO was deposited on Si wafer by ALD at 150 °C using the recipe of (DEZ-purge-H$_2$O-purge, 1-5-1-5 s). Growth property of ALD-ZnO was measured by QCM. Figure 6(b) demonstrated that in
the three continuous ALD cycles, DEZ contributed mass gain of 125, 124 and 125 ng, while H₂O gave the mass gain of 4, 5 and 4 ng. Therefore, the mass gain of the three continuous cycles was 129, 129 and 129 ng. Film thickness of ZnO was shown as Figure 6(c).

![Figure 6](image)

Figure 6. (a) Mass gain of ZnO deposited at 150 °C using the recipe of (DEZ-purge-H₂O-purge, 1-5-1-5 s); (b) Three consequential cycles of ZnO deposited at 150 °C using the recipe of (DEZ-purge-H₂O-purge, 1-5-1-5 s); (c) Film thickness of ZnO deposited at 150 °C using the recipe of (DEZ-purge-H₂O-purge, 1-5-1-5 s).

ZnO was deposited on NGS at 100 °C using precursors of DEZ and H₂O. The recipe of depositing 1x ALD-ZnO on NGS was composed of DEZ dosing--ten times of (pulse 0.2s-stop valve closed-wait 2s-stop valve open-wait 2s), followed by H₂O dosing--ten times of (pulse 0.2s-stop valve closed-wait 2s-stop valve open-wait 2s) as indicated by Figure 7(f). Different cycles of 1x, 5x, 10x, and 20x ALD cycles were conducted. SEM results indicated that with the increasing ALD cycles, more ZnO particles on NGS could be observed (Figure 7(b)-(e)). The thicknesses of ZnO layer tested by SEM were 0.57, 2.06, 3.89 and 5.61 nm for 1x, 5x, 10x, and 20x ALD-ZnO coated NGS samples, which agreed well with the calculated thickness based on growth rate (0.4508, 2.0178, 3.8329 and 5.4503 nm for 1x, 5x, 10x and 20x ALD-ZnO samples) (Table 5). According to Table 6, percentages of ALD-ZnO were 6.76 wt%, 30.27 wt%, 57.49 wt%, and 81.75wt% for 1x, 5x, 10x and 20x ALD-ZnO coated NGS samples, respectively.
Figure 7. SEM pictures of (a) bare NGS and ALD-ZnO deposited on N-doped single layer graphene (NGS) at 100 °C using (b) 1x, (c) 5x, (d) 10x, and (e) 20x ALD cycles. (f) The recipe of 1x ALD-ZnO on NGS is as the following: DEZ dosing--ten times of (pulse 0.2s-stop valve closed-wait 2s-stop valve open-wait 2s) and H₂O dosing--ten times of (pulse 0.2s-stop valve closed-wait 2s-stop valve open-wait 2s).

<table>
<thead>
<tr>
<th>ALD Cycles</th>
<th>Calculated ALD-ZnO layer Thickness (nm) based on growth rate</th>
<th>SEM Tested ALD-ZnO/NGS Thickness (nm)</th>
<th>Tested ALD-ZnO thickness (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnO on NGS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x</td>
<td>/</td>
<td>9.49</td>
<td>/</td>
</tr>
<tr>
<td>1x</td>
<td>0.4508</td>
<td>10.63</td>
<td>0.57</td>
</tr>
<tr>
<td>5x</td>
<td>2.0178</td>
<td>13.60</td>
<td>2.06</td>
</tr>
<tr>
<td>10x</td>
<td>3.8329</td>
<td>17.26</td>
<td>3.89</td>
</tr>
<tr>
<td>20x</td>
<td>5.4503</td>
<td>20.7</td>
<td>5.61</td>
</tr>
</tbody>
</table>

Table 5. Summary of thickness of ALD-ZnO film
Table 6. Summary of percentage of ALD-ZnO in total mass of ZnO+NGS

<table>
<thead>
<tr>
<th>ZnO on NGS</th>
<th>ALD Cycles</th>
<th>before coating m₁ (mg)</th>
<th>after coating m₂ (mg)</th>
<th>m₂-m₁ (mg)</th>
<th>(m₂-m₁)/m₂ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x</td>
<td>23.30</td>
<td>24.99</td>
<td>1.69</td>
<td>6.76</td>
<td></td>
</tr>
<tr>
<td>5x</td>
<td>23.80</td>
<td>34.13</td>
<td>10.33</td>
<td>30.27</td>
<td></td>
</tr>
<tr>
<td>10x</td>
<td>23.60</td>
<td>55.52</td>
<td>31.92</td>
<td>57.49</td>
<td></td>
</tr>
<tr>
<td>20x</td>
<td>20.60</td>
<td>112.90</td>
<td>92.30</td>
<td>81.75</td>
<td></td>
</tr>
</tbody>
</table>

Additionally, ZnO was deposited on NGS by ALD at different temperatures of 80, 100, 150, 200 and 250 °C using the recipe of (DEZ-purge-H₂O-purge, 0.015-5-0.015-5 s). Morphology of the samples deposited using 100, 200, 300 and 400 ALD cycles was investigated. And SEM results were given in Figure 8. We could summary that at same temperature, larger ALD cycles leaded to a denser morphology. Besides, rice-like surface could be detected for the samples deposited at 80-150 °C. The morphology of samples deposited at 200 °C looked like diamond and rice. Samples deposited at 250 °C performed a diamond-like surface.
Figure 8. SEM pictures of ZnO deposited on N-doped single layer graphene (NGS) at 250, 200, 150, 100 and 80 °C using 100, 200, 300, 400 ALD cycles. The recipe is (DEZ-purge-H\textsubscript{2}O-purge, 0.015-5-0.015-5 s), the growth rate is 0.7-2.5 Å/cycle. (Samples were prepared by Jiyu Cai. SEM pictures were taken by him and me.)

2.4 MLD Coatings

2.4.1 AlGL film growth

AlGL films were deposited on Si wafer by MLD and their growth property was studied by QCM. The mass gain curve of three consecutive cycles was extracted from the stable mass gain curve of the whole MLD process. When using the recipe of TMA-purge-GL-purge (0.015-20-2-60 s,
50 °C), TMA generated mass gains of 40, 49 and 49 ng, while GL contributed 67, 72 and 84 ng for the three continuous cycles (Figure 9(b)). When using the recipe of (TMA-purge-GL-purge, 0.015-15-2-40 s, 75 °C), we calculated that the mass gains of TMA for the three consecutive cycles were 37, 39, and 48 ng. And the mass gains of GL were 54, 50 and 67 ng. When the recipe of (TMA-purge-GL-purge, 0.015-60-2-60 s, 75 °C) was employed, we found that for the three continuous cycles, TMA gave mass gains of 48, 44 and 30 ng, while GL contributed 52, 50 and 40 ng (Figure 9(d)).

Figure 9. (a) Mass gain of AlGL deposited at 50 °C using the recipe of (TMA-purge-GL-purge, 0.015-20-2-60 s); (b) Three consequential cycles of AlGL deposited at 50 °C using the recipe of (TMA-purge-GL-purge, 0.015-20-2-60 s); (c) Mass gain of AlGL deposited at 75 °C using the recipe of (TMA-purge-GL-purge, 0.015-15-2-40 s) and (TMA-purge-GL-purge, 0.015-60-2-60 s); (d) Three consequential cycles of AlGL deposited at 75 °C using the recipe of (TMA-purge-GL-purge, 0.015-15-2-40 s) and (TMA-purge-GL-purge, 0.015-60-2-60 s).
2.4.2 ZnGL film growth

ZnGL was deposited on Si wafer by MLD. QCM was used to investigate their growth property. Based on the mass gain curve of three consecutive cycles, for the recipe of (DEZ-purge-GL-purge, 0.015-20-2-60 s, 50 °C), we calculated that DEZ contributed mass gains of 38, 35 and 34 ng and GL generated mass gains of 24, 23 and 23 ng (Figure 10(b)). For the recipe of (DEZ-purge-GL-purge, 0.015-15-2-40 s, 75 °C), we found that the mass gains of TMA were 49, 59 and 45 ng and that of GL were 41, 37 and 35 ng (Figure 10(d)).

Figure 10. (a) Mass gain of ZnGL deposited at 50 °C using the recipe of (DEZ-purge-GL-purge, 0.015-20-2-60 s); (b) Three consequential cycles of ZnGL deposited at 50 °C using the recipe of (DEZ-purge-GL-purge, 0.015-20-2-60 s); (c) Mass gain of ZnGL deposited at 75 °C using the recipe of (DEZ-purge-GL-purge, 0.015-15-2-40 s); (d) Three consequential cycles of ZnGL deposited at 75 °C using the recipe of (DEZ-purge-GL-purge, 0.015-15-2-40 s).
ZnGL was deposited on NGS at 50 °C by MLD using a recipe of (DEZ-purge-GL-purge, 0.03-20-4-60 s). SEM results indicated that no obvious morphological difference between bare NGS (Figure 11(a)(b)) and 5x ZnGL coated NGS (Figure 11(c)(d)) were observed. Small particles of ZnGL can be detected for 10x and 15x ZnGL coated NGS (Figure 11(e)-(h)).

Figure 11. SEM pictures of (a) (b) bare NGS and (c) (d) 5x ZnGL coated NGS, (e) (f) 10x ZnGL coated NGS, and (g) (h) 15x ZnGL coated NGS. ZnGL was deposited at 50 °C using a recipe of (DEZ-purge-GL-purge, 0.03-20-4-60s).

AFM was also employed to characterize the surface roughness of ZnGL. The ZnGL sample for AFM test was deposited on Si wafer at 150 °C using 150 cycles of (DEZ-purge-GL-purge, 1-60-1-60 s). The arithmetical mean deviation (Ra) of the assessed 600 × 600 nm² area was 0.118 nm. And the room-mean-squared (RMS) surface roughness for a 1 × 1 µm² area averaged 0.112 nm (Figure 12).
Figure 12. AFM of ZnGL deposited on Si wafer at 150 °C using 150 cycles of (DEZ-purge-GL-purge, 1 s-60 s-1 s-60 s).

2.5 Summary

In this chapter, I deposited Al₂O₃, TiO₂, ZnO by ALD on Si wafer and employed QCM to investigate their growth properties. MGPC and GPC were analyzed. Similarly, AlGL and ZnGl were deposited by MLD on Si wafer to study their growth properties. MGPC was analyzed. Additionally, SEM was employed to investigate the morphologies of the deposited materials on NGS.
3 MODIFICATION OF SI-ELECTROLYTE INTERFACE

3.1 Introduction of Si Electrode

In recent years, LIBs are becoming more and more important in electric vehicles (EVs), hybrid-electric vehicles (HEVs) and energy storage of renewable sources (wind, solar) [1]. However, traditional electrodes materials [2] exhibit low storage capacity, plaguing LIBs. Different types of anode materials are intensively investigated, for example, intercalation/de-intercalation (graphite), alloy/de-alloy (Si), and conversion anodes (metal sulfides). A graphite/LiCoO₂ battery operates with an electrochemical mechanism based on Li⁺ intercalation [3,4]. But graphite and LiCoO₂ have low theoretical capacities of 372 and 147 mAh/g [5]. Compared with intercalation/de-intercalation anodes, alloy/de-alloy anode materials usually achieve higher capacity. And alloying reaction can also store more lithium than intercalation reaction [6]. Since 1971, Dey [7] indicated that Li can alloy with Sn, Al, Mg and Cu at room temperature in organic electrolytes. Si becomes the main research material attributed to its high capacity in Li alloy-based anode materials [8]. In 1966, Inhoffen [9] firstly discovered Li_{22}Si₅, demonstrating the mechanism of Si lithiation. Later, researchers found that Li_{12}Si₇, Li_{14}Si₆, Li_{13}Si₄, and Li_{22}Si₅ alloys formed because of the alloying process in Si anodes [10,11]. During discharge, crystal Si transited to lithiated amorphous LiₓSi, and then suddenly turned to Li_{15}Si₄ at 50 mV. While during charge, a reversible transition from Li_{15}Si₄ to Si (amorphous) happened. These could be described as Equations (1) and (2) [12-14].

During dealloying (lithiation, discharge):

\[
\text{Si(crystalline) + xLi}^+ + xe^- \rightarrow \text{Li}_x\text{Si(amorphous) + (3.75-x) Li}^+ + (3.75-x)e^- \text{ (Suddenly)}
\]

\[
\rightarrow \text{Li}_{15}\text{Si}_4 \text{ (crystalline)} \quad (1)
\]

During alloying (delithiation, charge):
Li$_{15}$Si$_4$ (crystalline) \rightarrow Si(amorphous) + yLi$^+$ + ye$^-$ + Li$_{15}$Si$_4$ (residue) \hspace{1cm} (2)

Si exhibits a high theoretical value of 4200 mAh/g [15], which makes it a promising anode material for LIBs. However, Si anodes suffer from several challenges. (1) Si exhibits large volume change of 400% during charge-discharge process because of the Li insertion and extraction [1,11]. The volume expansion of Si by Li insertion will lead to large elastic strain and structural pulverization [16-18] (Figure 1(a)). (2) After several charge-discharge cycles, stress induced by the volume expansion/contraction of Si will lead to morphological change (fracture) of Si electrode [19]. Si crumbles away from the electrode, thereby lowering the electrode capacity [1,20] (Figure 1(b)). (3) There is continuous growth of SEI between Si and electrolyte ascribed to the large volume change of Si, consuming electrolyte and lithium [1,21] (Figure 1(c)).

Several strategies can be employed to address these problems, including applying nanostructured Si anodes (nanotubes [22,23], nanowires [24,25], nanocomposite [26], thin films [27,28], nanoporous structures [29,30]), alloying Si with other materials [31], and modifying Si-electrolyte interface [32,33]. Among these efforts, ALD is confirmed to be effective in modifying Si anodes. Different ALD coatings were deposited on Si-based anodes, such as ALD-Al$_2$O$_3$ [34,35], ALD-TiO$_2$ [36], ALD-ZnO [37], ALD-TiN [38], and ALD-HfO$_2$ [39,40]. These coatings can effectively improve the electrochemical performance of Si-based anodes.
Figure 1. Failure mechanisms of a Si anode: (a) material pulverization and volume change of the Si electrodes, (b) morphology change of Si electrodes, and (c) SEI formation [1]. Reprinted (adapted) with permission from ref. [1]. Copyright (2015) John Wiley and Sons.

3.2 Experimental Materials and Equipment

3.2.1 Materials

DEZ was purchased from Strem chemicals. INC. H₂O was purchased from Sigma Aldrich. The silicon-graphite (Si-G) electrodes were obtained from Oak Ridge National Laboratory (ORNL). The Si-G electrode was composed of 15 wt% Si/73 wt% graphite/2 wt% C65 carbon black/10 wt% LiPAA. Therefore, the effective materials in Si-G electrode account for 88 % (15 % Si+73 % graphite). The electrode loading was 3.6 mg/cm². Lithium polyacrylate (LiPAA) was titrated from PAA to pH=7 corresponding to about 80 % of proton being replaced by Li. It’s water soluble and thermally stable up to 190-200 °C. In comparison, PAA started decomposing at 150 °C. The electrolyte consisted of 90 wt% G2 (1.2 M LiPF₆ in EC/EMC (3:7, wt:wt)) with 10 wt% fluoroethylene carbonate (FEC), provided by ORNL.
3.2.2 Equipment

The Savannah S200 atomic layer deposition systems (Ultratech/Cambridge nanotech) was integrated with the glove box as shown in Figure 2(a). Electrochemical behavior of batteries was tested using the Xinwei battery testing station (BTS) as shown in Figure 2(b)(c)(d). Coin Cell Crimper was shown in Figure 2(e). Electrochemical impedance spectroscopy (EIS) was measured by SP-200 BioLogic Science Instrument as shown in Figure 2(f). SEM and EDX pictures were taken by FEI Nova Nanolab 200 Dual-Beam Workstation at University of Arkansas, as indicated in Figure 2(g). The accelerating voltages were 200 V to 30 kV for electrons and 5 to 30 kV for ions. Detectors were In-Lens SE and BSE Detector and Bruker XFlash 5010. SEM resolutions were 1.0 nm @ 15 kV and 2.5 nm @1 kV.

Figure 2. An Integrated System Combining Atomic/Molecular Layer Deposition with Glove Box; (b) (c) Battery Cycler 1; (d) Battery Cycler 2; (e) Coin Cell Crimper; (f) SP-200 BioLogic Science Instrument; (g) FEI Nova Nanolab 200 Dual-Beam Workstation.
3.3 Deposition of ZnO on Si-G Electrode

ZnO was deposited on Si-G electrode at 150 °C using DEZ and H2O as precursors. The recipe was (DEZ-purge-H2O-purge, 0.015-5-0.015-5 s) and the growth rate was 2.5 Å/cycle. Thicknesses of ZnO films were 0, 2, 4, 6, 8 and 10 nm controlled by 0, 8, 16, 24, 32 and 40 ALD cycles respectively. The obtained electrode was signed as ALD-ZnO coated Si-G.

3.4 Preparation of Li/Si-G batteries

Li/Si-G cell was prepared in the glove box. The components of Li/Si-G battery and order of their assembly into a CR2032 coin-type cell were shown in Figure 3. Firstly, Li metal was put on the cap, followed by adding electrolyte (G2:FEC, 9:1, wt:wt). Then, separator (polypropylene, polyethylene materials and additives) was put. On separator, electrolyte (G2:FEC, 9:1, wt:wt) was added to saturate the battery. Next, Si-G anode or ALD-ZnO coated Si-G was put. After which, spacer, cone spring, gasket and can was put sequentially. Finally, the coin cell was crimped, put in the glove box (10 h) for electrochemical behavior tests. Batteries were assembled and summarized in Table 1.
Figure 3. (a) Schematic illustration of Li/Si-G cell; (b) CR2032 coin cell; (c) Li metal; (d) Separator (polypropylene, polyethylene materials and additives).

Table 1. Summary of assembled batteries (1)

<table>
<thead>
<tr>
<th>Battery</th>
<th>Electrolyte: G2/FEC (9:1, wt:wt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Group1</td>
</tr>
<tr>
<td>Bare Li/Si-G</td>
<td></td>
</tr>
<tr>
<td>Li/2 nm ZnO coated Si-G</td>
<td>10 µL</td>
</tr>
<tr>
<td>Li/4 nm ZnO coated Si-G</td>
<td></td>
</tr>
<tr>
<td>Li/6 nm ZnO coated Si-G</td>
<td></td>
</tr>
<tr>
<td>Li/8 nm ZnO coated Si-G</td>
<td></td>
</tr>
<tr>
<td>Li/10 nm ZnO coated Si-G</td>
<td></td>
</tr>
</tbody>
</table>

3.5 Results Discussion

3.5.1 AFM picture

AFM was employed to determine the surface roughness of the ALD ZnO. ZnO was deposited directly on Si at 150 °C by 150 ALD cycles of (DEZ-purge-H₂O-purge, 0.015-5-0.015-5 s) for
AFM test. The result indicated that Ra for a 600 × 600 nm2 area was 0.802 nm and RMS surface roughness for a 1 × 1 µm2 area averaged 1.041 nm (Figure 4).

![AFM picture of ALD-ZnO deposited on Si wafer at 150 °C using 150 ALD cycles of (DEZ-purge-H$_2$O-purge, 0.015-5-0.015-5 s).](image)

Figure 4. AFM picture of ALD-ZnO deposited on Si wafer at 150 °C using 150 ALD cycles of (DEZ-purge-H$_2$O-purge, 0.015-5-0.015-5 s).

3.5.2 SEM and EDX pictures

SEM results demonstrated the morphology of bare Si-G electrode (Figure 5(a)-(c)). And EDX confirmed C, Si and O distribution for bare Si-G electrode (Figure 5(d)-(f) for Figure 5(c)).

Compared with the bare Si-G, small particles of ZnO can be observed in the 6 nm ZnO coated Si-G electrode, as shown in Figure 6(a)-(c). C, Si, Zn and O distribution confirmed by EDX (Figure 6(d)-(g) for Figure 6(c)) also demonstrated successful deposition of ZnO on Si-G electrode.
Figure 5. SEM pictures of bare Si-G electrode with magnifications of (a) (x200000), (b) (x99974), and (c) (x50000) before battery cycling; EDX results of (d) C, (e) Si, and (f) O distribution for (c).

Figure 6. SEM pictures of 6 nm ALD-ZnO (deposited at 150 °C) coated Si-G electrode with magnifications of (a) (x200000), (b) (x99977), and (c) (x50000) before battery cycling; EDX results of (d) C, (e) Si, (f) O, and (g) Zn distribution for (c).

According to the peak heights of Zn in EDX mapping for bare Si-G and ZnO coated Si-G samples (Figure 7(a)), we conclude observe that the thicker the ZnO layer was, the larger peak value of Zn in EDX mapping would be.
Figure 7. EDX mapping results of (a) bare Si-G, (b) 2nm ZnO coated Si-G, (c) 4nm ZnO coated Si-G, (d) 6nm ZnO coated Si-G, (e) 8nm ZnO coated Si-G, and (f) 10nm ZnO coated Si-G before battery cycling, which correspond to their SEM pictures with magnification of (x50000).

Bare Si-G and ZnO coated Si-G were paired with Li metal to assemble batteries. Before battery cycling (first 3 cycles at 1/20 C, last 97 cycles at 1/3 C, 1C = 808 mA/g), we could observe thin layers on Si-G electrodes, indicating successful deposition of ZnO (Figure 8(a)-(d)). While after 100 discharging-charging cycles, morphologies of samples changed greatly. White parts in Figure 8(e)-(h) referred to SEI, therefore we could conclude that the effects of ZnO on improving Si-G was ordered as 6 nm ZnO coated Si-G > bare Si-G > 8 nm ZnO coated Si-G > 10 nm ZnO.
coated Si-G. The reason why this happened would be given in **3.5.4 Electrochemical behavior** of Si-G electrode.

Figure 8. SEM pictures of (a) (e) bare Si-G electrode and (b) (f) 6 nm, (c) (g) 8 nm, (d) (h) 10 nm ZnO (deposited at 150 °C) coated Si-G electrodes before and after 100 discharge-charge cycles. Recipe of ALD-ZnO is (DEZ-purge-H₂O-purge, 0.015-5-0.015-5 s), the growth rate is 1.0 Å/cycle.

3.5.3 XRD result

X-ray diffraction (XRD) was employed to identify the crystal orientation of ZnO. As shown in Figure 9, ZnO deposited at 150 °C exhibited a crystal of Zn (101).

Figure 9. XRD of Si-G electrode and 6 nm ALD-ZnO (deposited at 150 °C) coated Si-G anode.
3.5.4 Electrochemical behavior of Si-G electrode

3.5.4.1 Discharge capacity, retention and voltage-capacity profile of bare Si-G electrode and ZnO coated Si-G

Electrochemical behavior of bare Li/Si-G and Li/ZnO coated Si-G batteries were tested using Xinwei battery testing station (BTS) (first 3 cycles at 1/20 C, last 97 cycles at 1/3 C, then back to 1/20 C, 1 C = 808 mA/g). Electrochemical behavior of bare Si-G and ZnO coated Si-G was compared, the discharge capacity and capacity retention of these electrodes were sequenced as 6 nm ZnO coated Si-G > 4 nm ZnO coated Si-G > 2 nm ZnO coated Si-G > bare Si-G > 8 nm ZnO coated Si-G > 10 nm ZnO coated Si-G (Figure 10(a)(b)(d)(e)). 6 nm ZnO was optimal to improve the performance of Si-G electrode by protecting Si-G electrode and suppressing the side reaction between Si-G electrode and electrolyte, which was followed by 4 nm ZnO. 2 nm ZnO was too thin to cover the Si-G surface completely, it can increase the capacity less effectively than 4 nm and 6 nm ZnO. Too thick ZnO layers (8, 10 nm) blocked ion transfer, thus leading to worse electrochemical performance than bare Si-G. Electrolyte volume was important to the performance of Li/Si-G batteries, we can observe that batteries using 10 µL G2/FEC (9:1, wt/wt) exhibited faster capacity fading and worse capacity retention than those saturated by electrolyte. Li/6 nm ZnO coated Si-G with 10 µL electrolyte displayed a discharge capacity of 907.14856 mAh/g initially, and 860.01816 mAh/g for the second cycle, higher than the capacities of 834.46502 (first cycle) and 796.56928 (second cycle) mAh/g of bare Li/Si-G with 10 µL electrolyte (Figure 10(c)). Li/6 nm ZnO coated Si-G (saturated electrolyte) also exhibited higher discharge capacity than bare Li/Si-G (saturated electrolyte) for the first two cycles. Discharge capacities of batteries for the first three cycles were summarized in Table 2.
Figure 10. Discharge capacity of bare Li/Si-G and Li/ZnO coated Si-G batteries with (a) 10 µL electrolyte and (d) saturated electrolyte; Capacity retention of bare Li/Si-G and Li/ZnO coated Si-G batteries with (b) 10 µL electrolyte and (e) saturated electrolyte; Voltage-capacity profile for first two cycles of (c) bare Li/Si-G and Li/6 nm ZnO coated Si-G batteries with 10 µL electrolyte and (f) that of Li/6 nm ZnO coated Si-G batteries with saturated electrolyte.

Table 2. Discharge capacities for first 3 cycles of batteries

<table>
<thead>
<tr>
<th>Battery</th>
<th>Electrolyte</th>
<th>Discharge capacity (mAh/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1st cycle</td>
</tr>
<tr>
<td>Bare Li/Si-G</td>
<td>10 µL G2:FEC, (9:1, wt:wt)</td>
<td>834.46502</td>
</tr>
<tr>
<td>Li/6 nm ZnO coated Si-G</td>
<td></td>
<td>907.14856</td>
</tr>
<tr>
<td>Bare Li/Si-G</td>
<td>saturated</td>
<td>801.37143</td>
</tr>
<tr>
<td>Li/6 nm ZnO coated Si-G</td>
<td>G2:FEC, (9:1, wt:wt)</td>
<td>801.46302</td>
</tr>
</tbody>
</table>
3.5.4.2 EIS result

Electrochemical impedance spectroscopy (EIS) was utilized to evaluate the performance of batteries. Figure 11(a) compared the electrochemical impedance of bare Li/Si-G and Li/ZnO coated Si-G (10 µL electrolyte). Equivalent circuits were inserted in Figure 11(a), and the measured impedance curves consisted of depressed semicircles in the high frequency region representing the charge transfer resistance on electrode/electrolyte interface (Rct) and sloping lines in the low frequency range representing the interfacial diffusion resistance of ions at the interface of electrolyte and anode (Warburg impedance, W) [41,42]. The simulated results were given in Table 3, the impedance was ordered as 10 nm ZnO coated Si/G > 8 nm ZnO coated Si/G > bare Si/G > 2 nm ZnO coated Si/G > 4 nm ZnO coated Si/G > 6 nm ZnO coated Si/G, confirming the performance of batteries as 6 nm ZnO coated Si/G > 4 nm ZnO coated Si/G > 2 nm ZnO coated Si/G > bare Si/G > 8 nm ZnO coated Si/G > 10 nm ZnO coated Si/G.

Bare Li/Si-G (20 µL electrolyte) delivered a smaller impedance after 8 cycles than that after 15 and 20 cycles. After 20 cycles, the bare Li/Si-G exhibited a semicircle (the first one) that is related to SEI in the high frequency. And the second semicircle is related to the electron transfer in particles of active materials. The linear part was related to the solid diffusion process of Li⁺ in the inside of particles of active materials (Figure 11(b)). The Li/6 nm ZnO coated Si-G (20 µL electrolyte) delivered larger impedance after 27 cycles than that after cycling 11 cycles. After 21 cycles, there exhibited two semicircles related to SEI (high frequency) and the electron transfer in particles of active materials, respectively. After 27 cycles, the impedances increased greatly (Figure 11(c)).

For Li/6 nm ZnO coated Si-G (saturated electrolyte), the impedance was ordered as after 28 cycles > after 0 cycles > 7 cycles > 14 cycles > 21 cycles (Figure 11(d)). This probably because
ZnO started exhibiting obvious effect of lowering impedance after 7 cycles. With the increase of charging-discharging cycles, this effect faded, thereby leading to increased impedance.

Figure 11. EIS results of (a) bare Li/Si-G and Li/ZnO coated Si-G battery using 10 µL electrolyte (G2/FEC, 9:1, wt:wt) after 100 charge-discharge cycles; (b) bare Li/Si-G battery using 20 µL electrolyte (G2/FEC, 9:1, wt:wt) after 8, 15 and 20 charge-discharge cycles; (c) Li/6 nm ZnO coated Si-G battery using 20 µL electrolyte (G2/FEC, 9:1, wt:wt) after 11, 21 and 27 charge-discharge cycles; (d) Li/6 nm ZnO coated Si-G battery using saturated electrolyte after 0, 7, 14, 21 and 28 charge-discharge cycles.
Table 3. Simulated EIS results of bare Li/Si-G and Li/ZnO coated Si-G batteries using 10 μL electrolyte (G2/FEC, 9:1, wt:wt)

<table>
<thead>
<tr>
<th>Batteries</th>
<th>Rs(ohms)</th>
<th>Rct(ohms)</th>
<th>CPE1 (F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bare Li/Si-G</td>
<td>/</td>
<td>135.4</td>
<td>/</td>
</tr>
<tr>
<td>Li/2 nm ZnO coated Si-G</td>
<td>85.62</td>
<td>135.1</td>
<td>0.5619E-6</td>
</tr>
<tr>
<td>Li/4 nm ZnO coated Si-G</td>
<td>65.76</td>
<td>129.2</td>
<td>0.7162E-6</td>
</tr>
<tr>
<td>Li/6 nm ZnO coated Si-G</td>
<td>61.02</td>
<td>123.2</td>
<td>0.7502E-6</td>
</tr>
<tr>
<td>Li/8 nm ZnO coated Si-G</td>
<td>60.73</td>
<td>136.3</td>
<td>0.7907E-6</td>
</tr>
<tr>
<td>Li/10 nm ZnO coated Si-G</td>
<td>69.12</td>
<td>150.2</td>
<td>0.7144E-6</td>
</tr>
</tbody>
</table>

3.6 Summary

In this chapter, ALD ZnO was deposited using DEZ and H₂O as precursors at 150 °C to modify the interface between Si-G and electrolyte. 2, 4, 6, 8 and 10 nm ZnO were deposited on Si/G, then the obtained ZnO coated Si-G electrodes were paired with Li metal to assemble batteries. AFM was used to determine the surface roughness of ZnO on silicon wafer. SEM and EDX were employed to characterize the morphology and bare Si-G and ZnO coated Si-G electrodes. XRD was utilized to indicate that ZnO deposited at 150 °C exhibited a crystal orientation of Zn (101). Then, electrochemical behavior of bare Li/Si-G and Li/6 nm ZnO coated Si-G was investigated. 6 nm ZnO coated Si-G exhibited the best electrochemical performance in terms of discharge capacity and capacity retention, which was followed by 4 nm ZnO coated Si-G. 2 nm ZnO was too thin and cannot cover the Si-G surface completely, thereby improving the battery performance less effectively than 4 nm and 6 nm coated Si-G. 10 nm ZnO was too thick and blocked ion transfer, leading to worse electrochemical behavior than bare Si-G. Finally, EIS was used to evaluate the performance of batteries.
3.7 References

[32] Y. Chen, M. Nie, B.L. Lucht, A. Saha, P.R. Guduru, A. Bose, High capacity, stable silicon/carbon anodes for lithium-ion batteries prepared using emulsion-templated directed assembly, ACS applied materials & interfaces 6 (2014) 4678-4683.

[37] B. Zhu, N. Liu, M. McDowell, Y. Jin, Y. Cui, J. Zhu, Interfacial stabilizing effect of ZnO on Si anodes for lithium ion battery, Nano Energy 13 (2015) 620-625.

[40] Q. Zhang, L. Han, J. Pan, Z. Chen, Y. Cheng, Chemically stable artificial SEI for Li-ion battery electrodes, Appl. Phys. Lett. 110 (2017) 133901.

4 STABILIZATION OF LITHIUM METAL VIA ALD COATINGS

4.1 Introduction of Li Metal Anode

Since commercialized in the early 1990s [1-5], lithium ion batteries (LIBs) have dominated the field of portable electronics. However, LIBs exhibit low energy density of 100-220 Wh/kg [4,6], which is not favorable for their further developments in electric vehicles. Meanwhile, LIBs also have other problems such as stability and safety. In this case, lithium metal attracts much interests because of its high theoretical capacity (3860 mAh/g [7], much higher than 372 mAh/g of graphite anode in LIBs [2,8]), low density of 0.59 g/cm3, and low electrochemical potential of −3.04 V vs standard hydrogen electrode [7]. Li metal was employed as promising anodes in novel lithium metal batteries, such as Li-S [9] and Li-O$_2$ batteries. Li-S batteries exhibit a theoretical specific energy of ~2600 Wh/kg, which is five to ten times higher than that of LIBs (Figure 1 (b)) [9,10]. Li-O$_2$ batteries (Figure 1 (c)) display theoretical energy densities of 3600 Wh/kg based on the reaction of $2\text{Li}^+ + \text{O}_2 \leftrightarrow \text{Li}_2\text{O}_2$ ($E^0 = 2.96$ V) and 12000 Wh/kg based on the mass of Li metal only [11-15].

![Figure 1. Schematic representations of (a) Li-ion [58]. Reprinted (adapted) with permission from ref. [58]. Copyright (2014) American Chemical Society. (b) Li-S [10]. Reprinted (adapted) with permission from ref. [13]. Copyright (2015) American Chemical Society. (c) Li-O$_2$ cells [15]. Reprinted (adapted) with permission from ref. [15]. Copyright (2012) American Chemical Society.](image-url)
However, lithium metal suffered from many issues such as poor cyclability, inferior reversibility and safety risks. One serious problem is the growth of lithium dendrites, because of inhomogeneous Li$^+$ deposition. Li dendrites will decrease the Coulombic efficiency, lower the cycling performance, and affect the structure of interface of Li/electrode. In order to calculate the initiation time of dendrite growth near solid electrolyte interphase (SEI), Henry J. S. [16] proposed “Sand's time” (τ_s) in 1901 as shown in Equation 1.

$$\tau_s = \pi D \left(\frac{C_0 e z_c}{2J} \right)^2 \left(\frac{\mu_a + \mu_c}{\mu_a} \right)^2$$

(1)

Where μ_a and μ_c are anionic and cationic mobilities, e is electronic charge, J stands for effective electrode current density, C_0 is the initial concentration of Li salt. D is the diffusion coefficient, $D = (\mu_a D_c + \mu_c D_a)/(\mu_a + \mu_c)$, where D_c and D_a are cationic and anionic diffusion coefficients.

This equation indicates that large immigration rate of Li$^+$ (D and μ_c) and small current density (J) leads to large Sand's time” (τ_s), meaning that the battery exhibits a long cycling life before Li dendrite growth.

There are three kinds of lithium dendrites, including needle-like [17], mossy-like [18] and fractal-like [19]. Needle-like dendrites usually formed at a current density lower than 0.5 mA/cm2 in LiPF$_6$ DMC/EC 1:1. They depended on many factors such as the electrolyte components, current density and substrate [17]. Needle-like dendrites grew in both diameter and length at the same time, being prone to cause shorted lithium metal batteries. Mossy-like dendrites generated at higher current density. Due to the increased surface area of Li dendrites, the cell potential decreased [18]. In this regard, the high ionic flux leaded to more SEI fractures and Li exposure to the electrolyte. Fractal-like dendrites happened at the Li/electrolyte interfaces where the Li ion concentration was zero and the potential fluctuated unstably all the times [20]. It needed to
mention that fractal-like dendrites would penetrate the separator, leading to shorted cell and even explosion.

There are several issues generated by Li dendrites (Figure 2) [13,21].

(1) Li anode displays huge volume change because of its hostless property, compared with the volume change of intercalated anodes (graphite (100%), silicon (400%)). This volume expansion will result in SEI cracks where lithium dendrites grew.

(2) Dead Li evolved from lithium dendrites. Li dendrites blocked ion transfer. Removal of Li from the roots of the dendrites generates dead Li, thereby decreasing Coulombic efficiency.

(3) Li dendrites growth will increase the surface area of Li and induce more parasitic reactions of lithium and the electrolyte.

(4) Li dendrites exhibit with porous structure increased diffusion pathway and resistance of Li$^+$ and e$, leading to an increased polarization.

(5) Large-scale Li dendrites can penetrate the separator, short the battery, and lead to safety issues such as the electrolyte combustion and cell explosion.

Figure 2. Scheme of dilemma for Li metal anode in rechargeable batteries [21]. Reprinted (adapted) with permission from ref. [21]. Copyright (2017) American Chemical Society.
In order to address these problems, several strategies are proposed, including modifying electrolyte via additives (LiNO$_3$ [22], CO$_2$ [23,24], fluorinated compounds (HF) [25,26], 2-methylyfur [27], vinylene carbonate (VC) [28], metal ions (Cs$^+$, Na$^+$, Mg$^{2+}$) [29-31] and organic aromatic compounds [32]) and high concentration salt [33-35], applying solid-state electrolyte [38-40] such as inorganic ceramic electrolytes (e.g., Li$_{10}$GeP$_2$S$_{12}$ and Li$_7$La$_3$Zr$_2$O$_{12}$) [41,42] and polymer electrolytes (e.g., PEO-LiTFSI, PEA-LiTF-SI, LAGP-PEO) [43], building artificial SEI (Li$_3$PO$_4$ layer [44], Cu$_3$N+ styrene-butadiene rubber [45], Li polyacrylic acid (LiPAA) layer [46], ALD-Al$_2$O$_3$ layer [47]), modifying separators via SiO$_2$ modified separator [48] and copper thin film [49], and employing electrode framework (glass fibers [50], Kimwipe paper [51], nitrogen (N) doped graphene [52], and lithiophilic graphene oxide (GO) [53], Li$_7$B$_6$ framework [54], 3D Cu foam [55], Li-Ni foam composite electrode [56]). All these methods are effective in obtaining dendrite-free lithium, thereby improving the electrochemical performance of batteries.
4.2 Materials

Electrolyte solvents (DOL, DME), and lithium salt (LITFSI) were purchased from Sigma Aldrich. These chemicals were summarized in Table 1.

Table 1. Summary of needed chemicals (2)

<table>
<thead>
<tr>
<th>Chemicals</th>
<th>CAS#</th>
<th>Formula</th>
<th>Molecular weight</th>
<th>Flash point</th>
<th>Melting point</th>
<th>Boiling point</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 3-Dioxolane (DOL)</td>
<td>646-06-0</td>
<td>C$_3$H$_6$O$_2$</td>
<td>74.08 g/mol</td>
<td>-3 °C</td>
<td>-95 °C</td>
<td>75-76 °C at 1013 hPa</td>
<td>Sigma Aldrich, USA</td>
</tr>
<tr>
<td>1,2-Dimethoxyethane (DME)</td>
<td>110-71-4</td>
<td>C4H${10}$O$_2$</td>
<td>90.12 g/mol</td>
<td>-2 °C</td>
<td>-58 °C</td>
<td>85 °C</td>
<td>Sigma Aldrich, USA</td>
</tr>
<tr>
<td>Bis(trifluoromethane)sulfonimide lithium salt (LITFSI)</td>
<td>90076-65-6</td>
<td>C$_2$F$_6$LiN O$_4$S$_2$</td>
<td>287.09 g/mol</td>
<td>/</td>
<td>234 ~238 °C</td>
<td>/</td>
<td>Sigma Aldrich</td>
</tr>
</tbody>
</table>

4.3 Deposition of Al$_2$O$_3$ and ZnO

Al$_2$O$_3$ was deposited on Li metal by ALD at 100 °C using the recipe of (TMA-purge-H$_2$O-purge, 0.015-5-0.015-5 s). The growth rate was 1 Å/cycle. Thicknesses of Al$_2$O$_3$ films were 0, 2, 4, 6, 8 and 10 nm controlled by 0, 20, 40, 60, 80 and 100 ALD cycles respectively. The obtained electrode was signed as Al$_2$O$_3$ coated Li.

10 nm Al$_2$O$_3$ was deposited on Ni foam and Cu at 100 °C, respectively. The obtained samples were signed as Ni foam + 10 nm Al$_2$O$_3$ and Cu + 10 nm Al$_2$O$_3$.

ZnO was deposited on Li metal by ALD at 100 °C using the recipe of (DEZ-purge-H$_2$O-purge, 0.015-5-0.015-5 s). The growth rate was 1.7 Å/cycle. Thicknesses of ZnO films were 0, 2, 4, 6, 8,
and 10 nm controlled by 0, 12, 24, 36, 48 and 60 ALD cycles respectively. The obtained electrode was signed as ZnO coated Li.

10 nm ZnO was deposited on Ni foam at 100 °C. The obtained samples were signed as Ni foam + 10 nm ZnO.

4.4 Preparation of Bare Li/Ni Foam (or Cu), Bare Li/ALD Coated Ni Foam (or ALD Coated Cu), and ALD Coated Li/Ni Foam (or Cu) Batteries

Batteries were prepared in the glove box. Figure 3 showed the components of bare Li/Ni foam (or Cu) battery and order of their assembly into a CR2032 coin-type cell. Firstly, Li metal was put on the cap, followed by adding electrolyte (1M LITFSI in DOL/DME, 1:1, v:v). Then, separator (polypropylene, polyethylene materials and additives) was put. On separator, electrolyte (1M LITFSI in DOL/DME, 1:1, v:v) was added. Next, bare Ni foam or Cu was put. After which, spacer, cone spring, gasket and can was put sequentially. Finally, the coin cell was crimped, put in the glove box (10 h) for electrochemical behavior tests. The prepared batteries were signed as bare Li/Ni foam, bare Li/Cu battery.

Additionally, Li/Ni foam + 10nm Al₂O₃ (1M LITFSI in DOL/DME, 1:1, v:v), Li/Cu+ 10nm Al₂O₃ (1M LITFSI in DOL/DME, 1:1, v:v), Li/Ni foam + 10nm Al₂O₃ (4M LITFSI in DME), Li/Ni foam + 10nm ZnO (4M LITFSI in DME), Li/Cu + 10nm Al₂O₃ (4M LITFSI in DME), x nm Al₂O₃ coated Li/Cu (x=2, 4, 6, 8, 10 nm, 30 µL 1M LITFSI in DOL/DME, 1:1, v:v), x nm ZnO coated Li/Cu (x=2, 4, 6, 8, 10 nm, 30 µL 1M LITFSI in DOL/DME, 1:1, v:v), and x nm ZnO coated Li/Ni foam (x=2, 4, 6, 8, 10 nm, 30 µL 1M LITFSI in DOL/DME, 1:1, v:v) were assembled. Assembled batteries were summarized in Table 2.
Figure 3. (a) Schematic illustration of bare Li/Cu or bare Li/Ni foam cell; (b) Cu; (c) Ni foam; (d) CR2032 coin cell; (e) Separator; (f) Li metal.
Table 2. Summary of assembled batteries (2)

<table>
<thead>
<tr>
<th>Battery</th>
<th>Electrolyte</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Li/Cu</td>
<td>Li/Ni foam</td>
<td>30 µL</td>
</tr>
<tr>
<td>Li/Cu +10 nm Al₂O₃</td>
<td>Li/Ni foam +10 nm Al₂O₃</td>
<td>1M LITFSI in DOL/DME, 1:1, v:v</td>
</tr>
<tr>
<td>Li/Cu</td>
<td>Li/Ni foam</td>
<td>30 µL</td>
</tr>
<tr>
<td>Li/Cu +10 nm Al₂O₃</td>
<td>Li/Ni foam +10 nm Al₂O₃</td>
<td>4M LITFSI in DME</td>
</tr>
<tr>
<td>2 nm Al₂O₃ coated Li/Cu</td>
<td>2 nm Al₂O₃ coated Li/Ni foam</td>
<td></td>
</tr>
<tr>
<td>4 nm Al₂O₃ coated Li/Cu</td>
<td>4 nm Al₂O₃ coated Li/Ni foam</td>
<td></td>
</tr>
<tr>
<td>6 nm Al₂O₃ coated Li/Cu</td>
<td>6 nm Al₂O₃ coated Li/Ni foam</td>
<td></td>
</tr>
<tr>
<td>8 nm Al₂O₃ coated Li/Cu</td>
<td>8 nm Al₂O₃ coated Li/Ni foam</td>
<td></td>
</tr>
<tr>
<td>10 nm Al₂O₃ coated Li/Cu</td>
<td>10 nm Al₂O₃ coated Li/Ni foam</td>
<td></td>
</tr>
<tr>
<td>2 nm ZnO coated Li/Cu</td>
<td>2 nm ZnO coated Li/Ni foam</td>
<td></td>
</tr>
<tr>
<td>4 nm ZnO coated Li/Cu</td>
<td>4 nm ZnO coated Li/Ni foam</td>
<td></td>
</tr>
<tr>
<td>6 nm ZnO coated Li/Cu</td>
<td>6 nm ZnO coated Li/Ni foam</td>
<td></td>
</tr>
<tr>
<td>8 nm ZnO coated Li/Cu</td>
<td>8 nm ZnO coated Li/Ni foam</td>
<td></td>
</tr>
<tr>
<td>10 nm ZnO coated Li/Cu</td>
<td>10 nm ZnO coated Li/Ni foam</td>
<td></td>
</tr>
<tr>
<td>Li/Li symmetric cell</td>
<td>4 nm Al₂O₃ coated Li/Ni foam +10 nm Al₂O₃</td>
<td></td>
</tr>
<tr>
<td>Li/Li symmetric cell</td>
<td>4 nm Al₂O₃ coated Li/Ni foam +10 nm ZnO</td>
<td></td>
</tr>
</tbody>
</table>

4.5 Results Discussion

4.5.1 SEM pictures

SEM was performed to observe the morphology of electrodes in Li/Cu, Li/Ni foam, Li/Li and Li/Si-G batteries. For comparison, bare Li metal, bare Cu, and bare Ni foam were also characterized using SEM, as shown in Figure 4 and 5. We can observe that bare Li metal
revealed a crack-free morphology (Figure 4(a)(b)). Li electrode in Li/Cu cell after Li deposition at 0.5 mA/cm2 for 2000s indicated some concave spots in the surface (Figure 4(c)(d)). Li electrode in Li/Ni foam cell after Li deposition at 0.5 mA/cm2 for 2000s (Figure 4(e)(f)) also demonstrated some concave spots in the surface but shallower than those on Li surface in Li/Cu battery, attributed to the 3D Ni foam framework accommodating the Li volume change during deposition. Figure 4(g)(h) showed the morphology of Li positive electrode in Li/Li symmetric cell after Li deposition at 0.5 mA/cm2 for 2000s. Correspondingly, Li negative electrode in Li/Li symmetric (Figure 4(i)(j)) exhibited a very rough and textured surface. Finally, Figure 4(k)(l) showed a very rough, cracked and textured surface for Li electrode in bare Si-G/Li cell after 100 discharge-charge cycles (first 3 cycles at 1/20 C, last 97 cycles at 1/3 C, 1C = 808 mA/g), this Li electrode was covered with lithium dendrites.
Figure 4. SEM pictures of (a) (b) bare Li, (c) (d) Li electrode in Li/Cu cell after Li deposition at 0.5 mA/cm² for 2000 s, (e) (f) Li electrode in Li/Ni foam cell after Li deposition at 0.5 mA/cm² for 2000 s, (g) (h) Li positive electrode in Li/Li cell after Li deposition at 0.5 mA/cm² for 2000 s, (i) (j) Li negative electrode in Li/Li cell after Li deposition at 0.5 mA/cm² for 2000 s, (k) (l) Li electrode in bare Si-G/Li cell after 100 discharge-charge cycles (first 3 cycles at 1/20 C, last 97 cycles at 1/3 C, 1C = 808 mA/g).

Compared with the smooth morphology of bare Cu (Figure 5(a)(b)), Cu electrode in Li/Cu after Li deposition at 0.5 mA/cm² for 2000 s indicated a textured and porous surface (Figure 5(c)(d)). Increasing the time of Li deposition at 0.5 mA/cm² to 4000 s gave a much more textured Cu surface as shown in Figure 5(e)(f). Interesting phenomena were detected for Ni foam (Figure 5(g)(h)), after Li deposition at 0.5 mA/cm² for 2000 s, we could observe that some shiny Li metal was successfully deposited on Ni foam (Figure 5(i)(j)). However, Li was only deposited on the surface of Ni foam. A longer Li deposition time of 4000 s at 0.5 mA/cm² leaded to much more Li dendrites on Ni foam surface because of non-uniform Li nucleation and distribution.
In this case, lithiophilic coatings such as ZnO should be deposited on 3D Ni foam to realize uniform Li nucleation for obtaining dendrite-free lithium metal anodes [52,56-58]. Fu et al [59] discovered that ZnO layer could electrochemically reacted with Li$^+$ to generate LiZn alloys during Li coating process, as described in Equations 2 and 3.

$$\text{ZnO} + 2\text{Li}^+ + 2\text{e}^- \leftrightarrow \text{Zn} + \text{Li}_2\text{O}$$ \hspace{1cm} (2)

$$\text{Zn} + \text{Li}^+ + \text{e}^- \leftrightarrow \text{LiZn}$$ \hspace{1cm} (3)

Figure 5. (a) (b) bare Cu, (c) (d) Cu in Li/Cu cell after Li deposition at 0.5 mA/cm2 for 2000 s, (e) (f) Cu in Li/Cu cell after Li deposition at 1 mA/cm2 for 4000 s, (g) (h) bare Ni foam, (i) (j) Ni foam in Li/Ni foam cell after Li deposition at 0.5 mA/cm2 for 2000 s, (k) (l) Ni foam in Li/Ni foam cell after Li deposition at 1 mA/cm2 for 4000 s.
4.5.2 Electrochemical behavior

4.5.2.1 Coulombic efficiency

Coulombic efficiency (CE) of different batteries was investigated with Li deposition at 0.5 mA/cm² for 2000s and Li stripping up to 1V. The results were shown in Figure 6. According to Figure 6(a), when using the electrolyte of 30 µL1M LITFSI in DOL/DME (1:1, v:v), we could observe that 10 nm Al₂O₃ on Cu or Ni foam did not improve the CE of Li/Cu or Li/Ni foam very effectively, probably a 10 nm Al₂O₃ layer was too thick. The Li/Cu or Ni foam + 10 nm Al₂O₃ exhibited a less stable and lower CE curve than Li/Cu or Ni foam batteries. When applying the electrolyte of 30 µL 4M LITFSI in DME, 10 nm Al₂O₃ on Cu could not enhance the CE of Li/Cu, for Li/Ni foam batteries, the CE was ordered as Li/Ni foam + 10 nm Al₂O₃ > Li/Ni foam + 10 nm ZnO > Li/Ni foam (Figure 6(b)). High salt concentration electrolyte (4M LITFSI) can improve the CE of batteries but leaded to faster and earlier falling of CE compared with low salt concentration of 1M LITFSI (Figure 6(c)-(f)). For example, CE of Li/Ni foam with 4M LITFSI electrolyte displayed fell after 50 charge-discharge cycles, which was shorter than that of Li/Ni foam with 1M LITFSI electrolyte (150 charge-discharge cycles) (Figure 6(e)). CE of Li/Ni foam + 10 nm Al₂O₃ with 4M LITFSI electrolyte stabilized till about 50 charge-discharge cycles, while that of Li/Ni foam + 10 nm Al₂O₃ with 1M LITFSI electrolyte stabilized to approximately 170 charge-discharge cycles (Figure 6(f)).

In order to investigate the effects of ALD-Al₂O₃ and ALD-ZnO on stabilizing lithium metal electrode and improving CE of Li/Cu and Li/Ni foam batteries, different thickness of ALD coatings (2, 4, 6, 8, 10 nm) were deposited directly on Li metal. And then the ALD coated Li was paired with Cu or Ni foam to assemble batteries with the electrolyte of 30 µL 1M LITFSI in DOL/DME (1:1, v:v) for testing the electrochemical behavior. Batteries were tested with Li
deposition at 0.5 mA/cm² for 2000 s and Li stripping up to 1 V. The results were shown in Figure 6(g)(h). From Figure 6(g), we could observe that CE of the batteries were sequenced as 4 nm Al₂O₃ coated Li/Ni foam > 2 nm Al₂O₃ coated Li/Ni foam > bare Li/Ni foam > 6 nm Al₂O₃ coated Li/Ni foam > 8 nm Al₂O₃ coated Li/Ni foam > 10 nm Al₂O₃ coated Li/Ni foam. Because 4 nm Al₂O₃ was proper to completely cover Li metal surface and favorable to protect Li electrode, 4 nm Al₂O₃ coated Li/Ni foam exhibited the most stable and highest CE among all the batteries, almost twice CE of the bare Li/Ni foam battery. A thinner thickness of 2 nm could improve CE less effectively than 4 nm Al₂O₃. But thicker Al₂O₃ layers (6, 8, 10 nm) exhibited worse effects on CE based on bare Li/Ni foam battery, the thicker the Al₂O₃ layer was, the earlier and faster CE dropped. Figure 6(h) indicated that ALD-Al₂O₃ coatings did not work effectively on improving Li/Cu batteries, all Li/Cu batteries displayed similar CE. 4 nm Al₂O₃ coated Li/Ni foam exhibited the best performance. Therefore, 4 nm Al₂O₃ coated Li was chosen as the optimal electrode and paired with 10 nm Al₂O₃ coated Ni foam or 10 nm ZnO coated Ni foam to prepare batteries. Their CE was compared in Figure 6(i) and ordered as 4 nm Al₂O₃ coated Li/Ni foam > 4 nm Al₂O₃ coated Li/10 nm Al₂O₃ coated Ni foam > 4 nm Al₂O₃ coated Li/10 nm ZnO coated Ni foam. ZnO coatings did not work as effectively as Al₂O₃ coatings.
Figure 6. (a) Coulombic efficiency of bare Li/Cu, bare Li/Ni foam, Li/Cu + 10 nm Al₂O₃, Li/Ni foam + 10 nm Al₂O₃ (30 µL 1M LITFSI in DOL/DME, 1:1, V:V); (b) Coulombic efficiency of bare Li/Cu, bare Li/Ni foam, Li/Cu + 10 nm Al₂O₃, Li/Ni foam + 10 nm Al₂O₃ (30 µL 4M LITFSI in DME); (c) Coulombic efficiency of bare Li/Cu (30 µL 1M LITFSI in DOL/DME, 1:1, V:V), and bare Li/Cu (30 µL 4M LITFSI in DME); (d) Coulombic efficiency of Li/Cu + 10 nm Al₂O₃ (30 µL 1M LITFSI in DOL/DME, 1:1, V:V), and Li/Cu + 10 nm Al₂O₃ (30 µL 4M LITFSI in DME); (e) Coulombic efficiency of bare Li/Ni foam (30 µL 1M LITFSI in DOL/DME, 1:1, V:V), and bare Li/Ni foam (30 µL 4M LITFSI in DME); (f) Coulombic efficiency of Li/Ni foam + 10 nm Al₂O₃ (30 µL 1M LITFSI in DOL/DME, 1:1, V:V), and Li/Ni foam + 10 nm Al₂O₃ (30 µL 4M LITFSI in DME); (g) Coulombic efficiency of bare Li/Ni foam, x nm Al₂O₃ coated Li/Ni foam (x=2, 4, 6, 8, 10nm) (30 µL 1M LITFSI in DOL/DME, 1:1, V:V); (h) Coulombic efficiency of bare Li/Cu or Ni foam, x nm Al₂O₃ coated Li/Cu or Ni foam (x=2, 4, 6, 8, 10nm) (30 µL 1M LITFSI in DOL/DME, 1:1, V:V); (i) Coulombic efficiency of bare Li/Ni foam, bare Li/Cu, 4nm Al₂O₃ coated Li/Ni foam, 4nm Al₂O₃ coated Li/10nm Al₂O₃ coated Li Ni foam, 4nm Al₂O₃ coated Li/10 nm ZnO coated Li Ni foam (30 µL 1M LITFSI in DOL/DME, 1:1, V:V). Above batteries were tested with Li deposition at 0.5 mA/cm² for 2000 s and Li stripping up to 1V.
4.5.2.2 Voltage profiles

Voltage profiles of Li/Cu, Li/Cu + 10 nm Al₂O₃, Li/Ni foam and Li/Ni foam + 10 nm Al₂O₃ using the electrolyte of 30 µL 1M LITFSI in DOL/DME (1:1, v:v) were given in Figure 7(a). Li/Cu battery exhibited a sharp voltage drop to -0.067 V at the beginning of the Li plating, which was associated with the nucleation of metallic Li. After which, the voltage increased to a voltage platform of -0.0260 V, this was called mass-transfer-controlled overpotential. Difference between these two voltages was the nucleation overpotential [52], which was 0.0387 V for Cu electrode. The nucleation voltage of Li/Cu + 10 nm Al₂O₃, Li/Ni foam and Li/Ni foam + 10 nm Al₂O₃ were 0.1464, 0.1371, and 0.0784 V as shown in Table 3.

Voltage profiles of Li/Cu, Li/Cu + 10 nm Al₂O₃, Li/Ni foam and Li/Ni foam + 10 nm Al₂O₃ with electrolyte of 4M LITFSI in DME were shown in Figure 7(b). And voltage profiles of bare Li/Ni foam or Cu and Al₂O₃ coated Li/Ni foam or Cu with 30 µL 1M LITFSI in DOL/DME (1:1, v:v) were also compared and shown in Figure 7(c)(d). The overpotentials of the first deposition/stripping cycle were summarized in Table 4.
Figure 7. Voltage profiles of Li/Cu, Li/Cu +10 nm Al₂O₃, Li/Ni foam, Li/Ni foam +10 nm Al₂O₃, Li/Ni foam batteries with (a) 1M LITFSI and (b) 4M LITFSI electrolyte; (c) ALD Al₂O₃ coated Li/Ni foam and bare Li/Ni foam; (d) ALD Al₂O₃ coated Li/Cu and bare Li/Cu. All batteries were tested with Li deposition at 0.5 mA/cm² for 2000 s and Li stripping up to 1 V.
Table 3. Calculated nucleation overpotential of batteries

<table>
<thead>
<tr>
<th>Battery</th>
<th>Electrolyte</th>
<th>Sharp tip voltage (V)</th>
<th>Mass-transfer-controlled overpotential (V)</th>
<th>Nucleation overpotential (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li/Cu</td>
<td>30 µL 1M LITFSI in DOL/DME, 1:1, v:v</td>
<td>-0.0647</td>
<td>-0.0260</td>
<td>0.0387</td>
</tr>
<tr>
<td>Li/Cu + 10 nm Al₂O₃</td>
<td>in DOL/DME, 1:1, v:v</td>
<td>-0.2077</td>
<td>-0.0613</td>
<td>0.1464</td>
</tr>
<tr>
<td>Li/Ni foam</td>
<td></td>
<td>-0.2105</td>
<td>-0.0734</td>
<td>0.1371</td>
</tr>
<tr>
<td>Li/Ni foam + 10 nm Al₂O₃</td>
<td></td>
<td>-0.1447</td>
<td>-0.0663</td>
<td>0.0784</td>
</tr>
</tbody>
</table>
Table 4. Summary of overpotential of batteries for first Li deposition/stripping cycle

<table>
<thead>
<tr>
<th>Battery</th>
<th>Electrolyte</th>
<th>Overpotential (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li/Cu</td>
<td>30 µL 4M LITFSI in DME</td>
<td>135</td>
</tr>
<tr>
<td>Li/Cu + 10 nm Al₂O₃</td>
<td></td>
<td>266</td>
</tr>
<tr>
<td>Li/Ni foam</td>
<td></td>
<td>156</td>
</tr>
<tr>
<td>Li/Ni foam + 10 nm Al₂O₃</td>
<td></td>
<td>139</td>
</tr>
<tr>
<td>Li/Ni foam + 10 nm ZnO</td>
<td></td>
<td>189</td>
</tr>
<tr>
<td>Bare Li/Cu</td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>2 nm Al₂O₃ coated Li/Cu</td>
<td></td>
<td>96</td>
</tr>
<tr>
<td>4 nm Al₂O₃ coated Li/Cu</td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>6 nm Al₂O₃ coated Li/Cu</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>8 nm Al₂O₃ coated Li/Cu</td>
<td></td>
<td>87</td>
</tr>
<tr>
<td>10 nm Al₂O₃ coated Li/Cu</td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>Bare Li/Ni foam</td>
<td>30 µL 1M LITFSI in DOL/DME, 1:1, v:v</td>
<td>113</td>
</tr>
<tr>
<td>2 nm Al₂O₃ coated Li/Ni foam</td>
<td></td>
<td>130</td>
</tr>
<tr>
<td>4 nm Al₂O₃ coated Li/Ni foam</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>6 nm Al₂O₃ coated Li/Ni foam</td>
<td></td>
<td>109</td>
</tr>
<tr>
<td>8 nm Al₂O₃ coated Li/Ni foam</td>
<td></td>
<td>108</td>
</tr>
<tr>
<td>10 nm Al₂O₃ coated Li/Ni foam</td>
<td></td>
<td>106</td>
</tr>
</tbody>
</table>

5.4.2.3 EIS

Before cycling, Li/Li symmetric cell gave a impedance curve composed of a large semicircle and a small semicircle, this was because of interaction of lithium metal and electrolyte. After 20 Li deposition/stripping cycles, charge transfer impedance semicircle and Warburg impedance line...
can be detected (Figure 8(a)). After 20 cycles, 4 nm Al₂O₃ coated Li/Cu exhibited smaller charge transfer resistance than bare Li/Cu (Figure 8(b)). And 4 nm Al₂O₃ coated Li/Ni foam also displayed smaller charge transfer resistance than bare Li/Ni foam (Figure 8(c)). These indicated the effect of ALD-Al₂O₃ on lowering battery impedance and improving the battery performance.

Figure 8. EIS results of (a) Li/Li symmetric cell before and after 20 cycles; (b) Li/Cu and 4 nm Al₂O₃ coated Li/Cu after 20 cycles; (c) Li/Ni foam and 4 nm Al₂O₃ coated Li/Ni foam after 20 cycles. Electrolyte: 30 µL 1M LiTFSI in DOL/DME (1:1, v:v).

4.6 Summary

In this chapter, firstly, SEM was utilized to study the morphology of Li metal electrode in Li/Cu and Li/Ni foam after Li deposition at 0.5 mA/cm² for 2000 s, Li metal in Si-G/Li cell after 100 discharge-charge cycles (first 3 cycles at 1/20 C, last 97 cycles at 1/3 C, 1C = 808 mA/g). The results indicated after Li deposition at 0.5 mA/cm² for 2000s, based on the crack-free bare Li metal, Li electrode in Li/Ni foam cell displayed shallower concave spots than that in Li/Cu battery, because of the 3D Ni foam framework accommodating the Li volume change during
deposition. Li negative electrode in Li/Li symmetric exhibited a very rough and textured surface after Li deposition at 0.5 mA/cm² for 2000 s. Lithium dendrites covered Li metal was detected in bare Si-G/Li cell after 100 discharge-charge cycles (first 3 cycles at 1/20 C, last 97 cycles at 1/3 C, 1C = 808 mA/g).

Additionally, ALD coatings (Al₂O₃, ZnO) were deposited on Cu, Ni foam, Li metal, respectively. Different batteries were assembled to investigate the effects of ALD coatings on stabilizing lithium metal electrode and improving electrochemical behavior of batteries. ALD coatings (10 nm Al₂O₃, 10 nm ZnO) on Cu or Ni foam did not work very effectively to improve the CE of Li/Cu or Li/Ni foam batteries using 1M LITFSI electrolyte, attributed to too thick ALD layers. When using a high salt concentration electrolyte (4M LITFSI), it needed to mention that ALD coatings could increase CE of Li/Ni foam batteries, and 10 nm Al₂O₃ outperformed 10 nm ZnO, but still did not improve the CE significantly. Also, high salt concentration electrolyte resulted in earlier and faster falling of CE. 4 nm Al₂O₃ coated Li/Ni foam exhibited the best electrochemical performance among all the Al₂O₃ coated Li/Ni foam and bare Li/Ni foam batteries. CE of these batteries was ordered as 4 nm Al₂O₃ coated Li/Ni foam > 2 nm Al₂O₃ coated Li/Ni foam > bare Li/Ni foam > 6 nm Al₂O₃ coated Li/Ni foam > 8 nm Al₂O₃ coated Li/Ni foam > 10 nm Al₂O₃ coated Li/Ni foam. Thicker Al₂O₃ layer (6, 8, 10 nm) on lithium will lead to faster and earlier drop of CE for Al₂O₃ coated Li/Ni foam batteries. Al₂O₃ coatings outperformed ZnO coatings in terms of improving CE of batteries.

Finally, voltage profiles of batteries were analyzed. EIS was also employed to evaluate the electrochemical performance of the assembled batteries. These results indicated the effectiveness of ALD-Al₂O₃ on improving the battery performance.
4.7 References

5 CONCLUSIONS

This thesis is motivated to investigate the following three goals: (1) Growth properties of ALD films (Al₂O₃, ZnO, TiO₂) and MLD films (AlGL, ZnGL) were measured by QCM. Morphology of deposited films were characterized by SEM. (2) The interface between silicon-graphite (Si-G) electrode and electrolyte was modified with ALD-ZnO. Bare Li/Si-G and Li/ZnO coated Si-G batteries were assembled and their electrochemical behavior were determined using BTS equipment and EIS measurement. (3) Effects of ALD coatings (Al₂O₃, ZnO) on stabilizing lithium metal were studied. Bare Li/Cu or Ni foam, Al₂O₃ coated Li/Cu or Ni foam, ZnO coated Li/Cu or Ni foam and Li/Al₂O₃ coated Cu or Ni foam batteries were assembled to study their electrochemical performance.

Some key conclusions were summarized as the following:

(1) Growth rate of Al₂O₃ deposited at 100 °C using the recipe of (TMA-purge-H₂O-purge, 0.015-5-0.015-5 s) was 1 Å/cycle.

(2) Morphology of ZnO on NGS is easier to observe than that of Al₂O₃ on NGS and TiO₂ on NGS. ZnO was deposited on NGS by 100, 200, 300 and 400 ALD cycles using the recipe of (DEZ-purge-H₂O-purge, 0.015-5-0.015-5 s). Samples exhibited rice-like, diamond and rice-like, and diamond-like morphologies at 80-150, 200 and 250 °C.

(3) ZnGL deposited at 150 °C by 150 cycles of (DEZ-purge-GL-purge, 1-60-1-60 s) exhibited a Ra of 0.118 nm for a 600 × 600 nm² area and a RMS surface roughness of 0.112 nm for a 1 × 1 μm² area. ZnO deposited at 150 °C by 150 cycles of (DEZ-purge-H₂O-purge, 0.015-5-0.015-5 s) displayed a Ra of 0.802 nm for a 600 × 600 nm² area and a RMS surface roughness of 1.041 nm for a 1 × 1 μm² area.
(4) ZnO deposited at 150 °C exhibited a crystal orientation of Zn (101).

(5) Discharge capacity and capacity retention of bare Si-G and ZnO coated Si-G electrodes were sequenced as 6 nm ZnO coated Si-G > 4 nm ZnO coated Si-G > 2 nm ZnO coated Si-G > bare Si-G > 8 nm ZnO coated Si-G > 10 nm ZnO coated Si-G. 6 nm ZnO coated Si-G exhibited the optimal electrochemical performance, followed by 4 nm ZnO coated Si-G. Thin layer as 2 nm ZnO cannot completely cover the Si-G surface and improved the battery performance not so effectively as 4 nm and 6 nm coated Si-G. Thick layer such as 10 nm ZnO blocked ion transfer, thereby resulting in inferior discharge capacity and capacity retention than bare Si-G.

(6) CE of bare Li/Ni foam and Al₂O₃ coated Li/Ni foam was ordered as 4 nm Al₂O₃ coated Li/Ni foam > 2 nm Al₂O₃ coated Li/Ni foam > bare Li/Ni foam > 6 nm Al₂O₃ coated Li/Ni foam > 8 nm Al₂O₃ coated Li/Ni foam > 10 nm Al₂O₃ coated Li/Ni foam. Thicker Al₂O₃ layer (6, 8, 10 nm) on Li will lead to faster and earlier drop of CE.
6 FUTURE WORK AND PROMISING DEVELOPMENTS

6.1 Future Work and Promising Developments

Following this thesis, I will focus on assembling symmetric cells, including bare Li/Li, 4 nm Al₂O₃ coated Li/4 nm Al₂O₃ coated Li, 4 nm ZnO coated Li/4 nm ZnO coated Li, 4 nm AlGL coated Li/4 nm AlGL coated Li, 4 nm ZnGL coated Li/4 nm ZnGL coated Li. Electrolyte volume and lithium salt concentration in electrolyte (1M, 2M, 3M, 4M) will be investigated.

Besides, multilayers of ALD/MLD will be deposited on lithium metal electrode or Si-G electrode, such as Al₂O₃/AlGL/Al₂O₃, ZnO/ZnGL/ZnO, AlGL/Al₂O₃/AlGL, ZnGL/ZnO/ZnGL, Al₂O₃/ZnO/TiO₂, AlGL/ZnGL/AlGLP. Their properties (hardness, structural and thermal stability, modulus, electrochemical stability) will be investigated firstly. And then effects of these deposited films on improving performance of LIBs will be studied.

For the future developments of LIBs by ALD or MLD, several aspects should be considered. Firstly, solid-state electrolyte is favorable to improve the electrochemical performance of LIBs in terms of capacity, coulombic efficiency, and capacity retention. Several reports have been devoted to solid-state electrolytes by ALD/MLD, such as lithium tantalum oxide [1,2], LiₓAlᵧS [3], lithium aluminosilicate (LiAlSiO₄) [4], lithium phosphate (LiPO₃) [5], and lithium phosphorusoxynitride (LiPON) [6,7]. Secondly, ALD/MLD can be used to prepare nanostructured electrodes for LIBs. Because nanostructured electrodes can provide large spaces and active sites for Li intercalation/deintercalation reactions, effective Li⁺ and e⁻ pathways, and flexible structures to accommodate huge volume change of anodes such as Si. Some nanostructured electrodes have been explored by ALD/MLD, including SnO₂ coated aluminum oxide (AAO) [8], TiO₂ on GNS [9], TiO₂ nanoribbons [10], TiO₂-(Ni-TMV) core-shell structure [11], LiCoO₂ (LCO) [12], LiFePO₄ (LFP) [13], and Li₂Q [7]. Thirdly, ALD/MLD coatings can
be used to work as protection layers on electrode surface, which suppressed the side reaction between electrode materials and organic liquid electrolytes, thereby enhancing the battery performance. For example, Al$_2$O$_3$ [14-16], TiN [17] and TiO$_2$ [18] were deposited on Si anode [16], graphene [15,18], Li$_4$Ti$_5$O$_{12}$ powder [17] and LiCoO$_2$ powders [14] to protect these materials. Furthermore, ALD-Al$_2$O$_3$ (10nm) [19] and TiO$_2$ [20] have been employed to functionalize polypropylene (PP) separators, which are confirmed to be effectively increasing the thermal stability and safety of LIBs. Therefore, ALD/MLD was promising methods to develop high performance LIBs.
6.2 References

[16] Y. He, X. Yu, Y. Wang, H. Li, X. Huang, Alumina-coated patterned amorphous silicon as the anode for a lithium-ion battery with high coulombic efficiency, Adv Mater 23 (2011) 4938-4941.

