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Abstract

Emerging computer architectures and advanced computing technologies, such as Intel’s Many

Integrated Core (MIC) Architecture and graphics processing units (GPU), provide a promising

solution to employ parallelism for achieving high performance, scalability and low power con-

sumption. As a result, accelerators have become a crucial part in developing supercomputers.

Accelerators usually equip with different types of cores and memory. It will compel application

developers to reach challenging performance goals. The added complexity has led to the develop-

ment of task-based runtime systems, which allow complex computations to be expressed as task

graphs, and rely on scheduling algorithms to perform load balancing between all resources of the

platforms. Developing good scheduling algorithms, even on a single node, and analyzing them can

thus have a very high impact on the performance of current HPC systems. Load balancing strate-

gies, at different levels, will be critical to obtain an effective usage of the heterogeneous hardware

and to reduce the impact of communication on energy and performance. Implementing efficient

load balancing algorithms, able to manage heterogeneous hardware, can be a challenging task,

especially when a parallel programming model for distributed memory architecture.

In this paper, we presents several novel runtime approaches to determine the optimal data and

task partition on heterogeneous platforms, targeting the Intel Xeon Phi accelerated heterogeneous

systems.
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Chapter 1

Introduction

High-performance computing is critical to process large volumes of data in the big data

area. With the advancement of technologies, high-resolution data become available. For exam-

ple, satellites can generate high-quality images with a resolution less than 0.5 meter. However,

high-resolution data bring lots of challenges and complexities. Traditional desktop-based software

have become inefficient and impossible to process large-scale data. While the computer provides

a large memory for data processing, some software has limitations to usage of computer memory.

People has to partition the source data into many parts for analyzing. Given the growing

quantity of available data and finite resources to analyze them, it is expected that data can be ex-

ploited effectively for timely delivery of accurate information and for knowledge discovery. High

performance computing (HPC) can allow people to solve complicated big data problems in various

regions, such as engineering, science and business. Many top supercomputers are hybrid systems

including both multicore CPUs and accelerators. Performance optimization mechanisms are crit-

ical for large-scale applications to achieve the best performance on these hybrid systems. These

techniques include optimal workload distribution between the host processors and the accelerators,

overlapping computation and communication to reduce the communication overhead, among oth-

ers. As a part of high-performance computing, accelerators are becoming popular. Compared with

traditional CPUs, accelerators can provide an orders-of-magnitude improvement in performance.

Many computer architectures have been implemented. They provide good platforms to employ

parallelism for achieving performance and scalability.

Emerging computer architectures and advanced computing technologies, such as Intel’s Many

Integrated Core (MIC) Architecture [5] (brand-named Xeon Phi) and graphics processing units

(GPUs) [28], provide a promising solution to employ parallelism for achieving high performance,

1



scalability and low power consumption. The combination of host processors and accelerators1,

such as GPUs and Intel Xeon Phi coprocessors, has been applied in many cases to achieve orders

of magnitude performance improvement.

With the development of graphic processing unit (GPU), it is becoming normal to use GPU

as a modified form of stream processor for general purposes. GPU can get several orders of mag-

nitude higher performance than CPU when processing massive vector operations. Therefore, high

performance computers that are based on GPUs become a significant role in large scale model-

ing. GPUs are typically used as accelerators in high-performance computer clusters. However,

it should be clear now that GPUs are designed as numeric computing engines, and they will not

perform well on some tasks on which CPUs are designed to perform well. If different threads in

a warp(parallel units) need to do different things, all threads will compute a logical predicate and

several predicated instructions. This is called warp divergence. All threads execute conditional

branches, so execution cost is sum of both branches. Warp divergence can lead to a big loss of

parallel efficiency. Another problem are arising in learning and development on domain-specific-

languages (DSLs) of GPU. For example, CUDA, implemented by NVIDIA, is a DSL for parallel

programming on GPU. A 40× speedup can be achieved in comparison to CPU solutions, but a

11× learning curve is needed on CUDA study.

Intel MIC provides another option for augmenting the computer clusters for high perfor-

mance and low power consumption. The MIC has demonstrated the high performance, the scal-

ability, and the high memory bandwidth. The current Intel MIC architecture has up to 61 pro-

cessing cores. These cores are connected through a high-speed ring bus. Because every core is a

low-weight classic processor, the MIC can support traditional parallel programming models, such

as OpenMP and MPI. The Xeon Phi coprocessors typically co-exist with multicore CPUs, such as

Intel Xeon processors, in a heterogeneous computer platform. One of classic programming mod-

els on such multicore/manycore heterogeneous architectures is to use host processors to manage

the execution context while the computation is offloaded to the accelerators. Effectively leverag-

1In this work, we use accelerator and coprocessor interchangeably.
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ing such platforms not only achieves high performance and good scalability, but also increases

the energy efficiency. Although it is easy to implement application on MIC, traditional parallel

programming models has their own bottlenecks.

The heterogeneous platform provides the potential for high performance and energy effi-

ciency, but the classic offload model on GPU or MIC platforms leaves the host processors unuti-

lized. This means this approach does not take advantage of the computing capacity of the host

processors and is likely to give away too much performance potential of the whole system. Asyn-

chronous data transfer and computation have been proposed as a solution to decrease the host-

device2 communication cost and to increase the utilization of host processors [19, 34]. In asyn-

chronous mode, the host processor sends workload to the accelerator. Then the host processor

continues the execution of other workload until it is requested to wait for a kernel running on the

accelerator to finish. In this case, both host processors and accelerators can work in parallel to

undertake a computation task.

Ideally, the scheduler should partition work between host processors and accelerators auto-

matically and efficiently without any input from the application developer. However, it is hard

to determine the right data partition and task parallelism on heterogeneous platforms given a new

application. There are some evidences showing that choosing the right configurations, i.e., the

number of for-loops needed to be parallelized and the number of concurrent tasks in for-loops, has

a significant impact on the application’s performance on Xeon Phi coprocessors [23, 14, 33]. How-

ever, exhaustive manual search would be ineffective to find the optimal workload partition between

host CPU and the accelerator and the optimal task distribution on accelerators, because the range

of the possible configurations is huge. Therefore, we need to design a technique that is capable

of automatically determining the optimal configurations for any application in an efficient manner.

This thesis focuses on asynchronous calculation and efficiently utilizing all available resources to

achieve performance improvement, targeting the Xeon Phi coprocessor. Besides, a novel runtime

approaches to determining the optimal data and task partition automatically would be proposed in

2host: host processor; device: accelerator/coprocessor.
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this work.

The thesis consists of 7 chapters. It is organized based on the specific accelerators that

are used to accelerate some applications. The first two chapters give an introduction and related

work to high-performance computing and accelerators. A detailed study of parallel programming

models are discussed in Chapter 3. Chapter 4 and Chapter 5 demonstrate performance optimization

through load balancing by using different methods. A novel runtime approach to determining the

optimal data and task partition automatically is discussed in Chapter 6. Chapter 7 concludes the

whole thesis.
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Chapter 2

Background

2.1 Parallel Programming

Traditional software code, such as C and C++, is written for sequential computation. It is

normal for people to break a problem and solve it step by step. Only one instruction is executed

at a particular moment and those instructions are executed in a sequence [8]. Figure 2.1 shows a

simple serial process.

Nowadays, parallelism is becoming ubiquitous, and parallel programming is becoming main-

stream in the programming world. Parallelism at multiple levels is the driving force of architecture

design. There are two fundamental types of parallelism in applications: Task parallelism and Data

parallelism Task parallelism arises when there are many tasks or functions that can be operated

independently and largely in parallel. Task parallelism focuses on distributing functions across

multiple cores. Data parallelism arises when there are many data items that can be operated on at

the same time. Data parallelism focuses on distributing the data across multiple cores.

In parallel computing, multiple pieces of data will be processed simultaneously using differ-

ent processing resources. It means that the problem will be partitioned to several parts and these

parts can be executed concurrently. Figure 2.2 demonstrates a parallel processing scenario. When

using parallel model to break down a problem, it is necessary to consider the accuracy of result.

Sometimes, processors need to share results among each other, therefore introducing communica-

tions among processors.

2.1.1 MPI

Message Passing is a parallel programming model where communication between processes

is done by interchanging messages. This is a natural mode for a distributed memory system,
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Figure 2.1: Serial Processing.

Figure 2.2: Parallel Processing.

where communication cannot be achieved by sharing variables. Message Passing Interface (MPI)

processes executed in parallel have separate memory address spaces. The same program runs on

all processes (Single Program Multiple Data, or SPMD). This is no restriction compared to the

more general MPMD (Multiple Program Multiple Data) model as all processes taking part in a

parallel calculation can be distinguished by a unique identifier.

The program is written in a sequential language like Fortran, C or C++. Data exchange, i.e.,

sending and receiving of messages, is done via calls to an appropriate library. Communication

occurs when part of the address space of one process is copied into the address space of another

process. This operation is cooperative and occurs only when the first process executes a send

operation and the second process executes a receive operation.

The workload partitioning and task mapping have to be done by the programmer. The pro-

grammer need to know how to utilize hardware resource efficiently for performance and scalability

to unveil any problems connected to parallelization. Besides, some issues still need to be addressed,
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Figure 2.3: Parallel Processing.

such as serial execution (Amdahls Law), load imbalance, unnecessary synchronization, and other

effects that impact all parallel performance.

In summary, MPI is well suited for applications where portability, both in space (across dif-

ferent systems existing now) and in time (across generations of computers), is important. MPI is

also an excellent choice for task-parallel computations and for applications where the data struc-

tures are dynamic.

2.1.2 OpenMP

OpenMP is a shared memory application programming interface (API) [15] whose aim is to

ease shared memory parallel programming. Shared memory opens the possibility to have immedi-

ate access to all data from all processors without explicit communication. Unfortunately, POSIX
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threads are not a comfortable parallel programming model for most scientific software, which is

typically loop-centric. For this reason, a joint effort was made by compiler vendors to establish a

standard in this field, called OpenMP.

The OpenMP multithreading interface is specifically designed to support high performance

computing (HPC) programs. It is also portable across shared memory architectures. OpenMP is a

set of directives to a compiler. When a compiler recognizes OpenMP directives, then the directives

are interpreted to give direction on how to create parallel tasks in order to speed execution of a

program through parallelism.

In any OpenMP program, a single thread, the master thread, runs immediately after startup.

Truly parallel execution happens inside parallel regions, of which an arbitrary number can exist in

a program. Between two parallel regions, no thread except the master thread executes any code.

This is also called the fork-join model, as shown in Figure 2.3.

Inside a parallel region, a team of threads executes instruction streams concurrently. The

number of threads in a team may vary among parallel regions [46, 47]. For example, omp get thread num()

can fork a specified number of threads and system can allocate these threads to a task. OpenMP can

assign the number of threads on environment variable, or can use function of OpenMP to assign

threads’ number at the code. Each thread has an ID. Every ID is integer type and the ID of master

thread is 0. These threads can execute concurrently. For example, there is a “for” loop for addition

operations (sum[i]=a[i]+b[i]). Each thread can do a part of addition at the same time.Working-

sharing constructs can allocate part of task to different threads so that they can execute the work

concurrently. Each thread cannot be disturbed by others. So if the code is not independent, there

will be a problem when using working-sharing constructs. When the execution of parallelized code

is done, these threads join back to master thread. And the master thread will continue executing

the rest of program until it meets next parallel section or the end of program.
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2.2 CUDA

CUDA stands for Compute Unified Device Architecture. It is a specific parallel program-

ming language implemented by NVIDIA. CUDA is a parallel programming model and computing

platform. When using CUDA for programming, the developers can access the memory of com-

putational elements, such as global memory, shared memory and local memory. Like OpenCL,

CUDA has its own application programming interfaces. This approach is known as Stream Pro-

cessing. GPU has a different architecture than CPU. It contains hundreds to thousands of process-

ing cores for parallel processing. CUDA supports both C/C++ and Fortran. CUDA also supports

other computing interfaces such as OpenCL and OpenGL. CUDA provides two levels of API, low-

level API and high-level API. Usually it is enough for programmers to only use high-level API to

allocate memory of GPU and launch a kernel to GPU. When you need more specific function to

your program, you need to use low-level API to allocate and run your program. Basically, CUDA

supports most of GPUs provided by NVIDIA, such as GeForce, Quadro and Tesla series. CUDA

is supported on multiple operating systems, such as Windows and Linux system.

CUDA programming is especially well-suited to address problems that can be expressed as

data parallel computations. Many applications that process large data sets can use a data-parallel

model to speed up the computations. Data-parallel processing maps data elements to parallel

threads.

2.3 Parallel Computing Hardware

2.3.1 Multi-core Processor

A multi-core processor is a processor with multiple independent processing cores. With the

development of computer architecture, central processing unit has changed a lot, such as design

technology and the implementation of CPU. However, the basic operation keeps much the same.

Most computers have multi-core processors, such as 8-core CPU and 16-core CPU. It is better for
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multi-core processor to use different cores to deal with different processing. Multi-core processor

can run faster and bring a better performance to users. Programmers can use parallel library such

as OpenMP and MPI to take full advantage of all cores and get a better performance. Of course, not

all of computing system only depend on multi-core processor. A number of hardware accelerators

are provided, such as GPU, FPGA and MIC in the distributed architecture, but multi-core processor

still plays an important role.

2.3.2 GPU

GPU architecture has been developed for many years and different companies have gone

through many generations. For example, NVIDIA generates different architecture of GPU, such

as G80→GT200→Fermi→Kepler→Pascal. With the development of graphic processing unit, it is

becoming normal to use GPU as a modified form of stream processor for general purposes. This

concept changes GPU from a modern graphics accelerators into a general purpose accelerator.

Therefore, high performance computers that are based on GPUs become a significant role

in large scale modeling [49]. Nowadays, the two major GPU designers are NVIDIA and AMD.

NVIDIA develops CUDA to support GPU programming.

OpenCL [58] is also supported by NVIDIA’s GPU. OpenCL is designed to work for archi-

tectures of multiple types, such as CPUs, GPU and DSP. Both programming languages allow a

program to launch a kernel on GPU and run the parallel program on its stream processors. And

programmer can make a decision about which part is running on GPU or CPU. It can take advan-

tage of the ability of GPU and CPU to perform their own appropriate work.

2.3.3 MIC

Intel demonstrated a new hardware architecture called Many Integrated Core(MIC) [4] as

accelerators for high-performance computing domain. It provides another option for augmenting

the computer clusters for high performance and low power consumption [42, 57, 26]. The MIC
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Figure 2.4: Spectrum of Programming Models.

has demonstrated the high performance, the scalability, and the high memory bandwidth. An

evaluation of the scalability on the Intel MIC based graph algorithms shows that MIC can be

programmed easily and scaled gracefully on graph algorithm [54].

The commercially available Intel coprocessor based on the MIC architecture is Xeon Phi.

Xeon Phi contains up to 61 scalar processing cores with vector processing units. Further, each

core can execute four threads in parallel. The communications between the cores can be realized

through the shared memory programming models, e.g. OpenMP. In addition, each core can run

MPI to realize communication. Direct communication between MIC processors across different

nodes is also supported through MPI. And Intel coprocessors supports several programming mod-

els to meet application needs, as shown in Figure 2.4.
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2.4 Programming models

2.4.1 MPI+CPU

MPI-based parallel implementation is shown in Figure 2.6(a). The Intel Xeon CPU works

for data processing. The resource used on CPU is a single-thread process. Each MPI process runs

on a single CPU. If m MPI processes are established in the parallel application, m CPU processors

are used. A sample code is shown in Algorithm 1.

2.4.2 MPI+GPU

GPU-based parallel implementation on high performance system is shown in Figure 2.6(b).

Each MPI process runs on Intel Xeon CPU. Every Xeon CPU offloads data to one GPU processor.

If m MPI processes are used in application, m CPU processors and m GPU processors are allocated.

12



Data

Data

Xeon

Xeon

GPU

GPU

MPINetwork

(a) CPU parallel implementation.

Data

Data

Xeon

Xeon

GPU

GPU

MPINetwork

Offload

(b) GPU and CPU parallel implementation.

Figure 2.6: MPI parallel implementation on Keeneland

ALGORITHM 1: MPI+CPU Programming model
Function Transition(Array A,Array B)

MPI Init();
MPI Comm rank();
MPI Comm size();
for i = 0→ k−1 do

A[i]← B[i];

MPI Finalize();

The host CPU works for the MPI communication and collecting results. The GPU is responsible

for data processing. A sample code is shown in Algorithm 2.

2.4.3 MIC Native mode

The native model runs the calculation procedures entirely on an Intel Xeon Phi coprocessor.

The Intel Xeon Phi coprocessor has its own operation system, such as Linux, IP address, a high-

performance network connection and memory domain. The coprocessor is an x86-based SMP-on-

a-chip with over many cores. Some MICs have 59 cores, and others may have more than 60 cores.

Each MIC core has multiple hardware threads, and 512-bit SIMD instructions. The Intel Xeon Phi

looks like an independent compute node. Users can log into any Xeon Phi installed in production

system by a terminal window and compile programs with the mmic switch to target launch and
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ALGORITHM 2: MPI+GPU Programming model
Function Transition(Array A,Array B)

MPI Init();
MPI Comm rank();
MPI Comm size();
Allocate GA and GB on GPU memory;
Copy A and B to GA and GB;
Launch GPU kernel;
for i = 0→ k−1 do

A[i]← B[i];

Copy GA back to A;
MPI Finalize();

ALGORITHM 3: MPI@MIC+OpenMP Programming model
Function Transition(Array A,Array B)

MPI Init();
MPI Comm rank();
MPI Comm size();
#pragma omp parallel f or omp set num threads(4);
for i = 0→ k−1 do

A[i]← B[i];

MPI Finalize();

execution directly on the coprocessors, as shown in Figure 2.5.

Supercomputer provides a heterogeneous environment, including host Xeon CPUs and Xeon

Phi coprocessors. MIC-based parallel implementation on high performance system is shown in

Figure 2.7. Applications that are already implemented by MPI can use this model by distributing

MPI ranks across the coprocessors natively. In the native model, MPI can be run natively on the

coprocessors without any modification on the original source code. Each MIC core directly hosts n

(up to 4) MPI processes. Therefore, if m Xeon Phi coprocessors are used, m n 60 MPI processes

are created in the parallel implementation. However, no job is dispatched on the host Xeon CPU.

Besides, each MPI process create 4 threads to run OpenMP program as shown in Algorithm 3.
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2.4.4 MIC offload mode

The offload mode, as shown in Figure 2.8, provides an alternative approach to utilize the MIC

coprocessors. In this case, a MPI program running on the host CPU can optionally launch part of

work to a MIC coprocessor on the same platform. The developer just identifies lines or sections of

code that are best suited for the many cores on MIC coprocessor by inserting commands to invoke

the parallel capability.

The offload model uses the keyword pragma to specify code sections and to offload data to the

MIC.In this model, the application starts on the host CPU. When an offload region is encountered,

the offload region and data are transferred to run on the target device (MIC).The MPI processes

are allocated on the host CPU cores, while the data and computation are dispatched to the MIC

coprocessors. The MPI process specifies the number of threads to the MIC that uses OpenMP to

handle data and calculation.

The code is just compiled for the host processor. When offload commands are encountered

and the coprocessor is running and available, the required data and code is automatically transferred

between the host and coprocessor as needed. If no MIC coprocessor is running or available, the

15



Data

Data

Xeon

Xeon

MIC

MIC

MPINetwork

Offload

Figure 2.8: Offload parallel implementation on Beacon

command line or block of code will be executed on the host. This means that even though MIC

may not work properly (such as connection problem between MIC and host CPU), the program

still works on the host.

Offloading could simply be thought of an inline code that may be run on a coprocessor, as

shown in Algorithm 4. The program executes the first pragma offload command to initialize all

MIC devices. This initialization will load the MIC program on to each device, set up a data transfer

between CPU and the device, and create a MIC thread to handle offload requests from the CPU

thread. The host CPU processor and MIC coprocessors do not share the same system memory.

As a result, the variables used by the code must be duplicated so that distinct copies exist on both

the host processor and coprocessor. As shown in the following example, the pragma command

uses specifiers to define the variables to copy between the host processor and coprocessor. The in

specifier defines a specific variable as an input to the coprocessor. The value is not copied back

to the host processor. The out specifier defines a specific variable as an output of the coprocessor.

The host processor does not copy the variable to the coprocessor. The inout specifier defines a

specific variable that is both copied from the host processor to the coprocessor and back from the

coprocessor to the host processor.
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ALGORITHM 4: MPI@MIC+OpenMP Programming model
Function Transition(Array A,Array B)

MPI Init();
MPI Comm rank();
MPI Comm size();
#pragma o f f load target(mic) in(var) out(Out put1 : length(Out put1.size)
inout(Out put2 : length(Out put2.size);

#pragma omp parallel f or omp set num threads(4);
for i = 0→ k−1 do

A[i]← B[i];

Memory copy back to host;
MPI Finalize();
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Chapter 3

Study of parallel programming models with Intel MIC coprocessors

In this chapter, we conduct a detailed study regarding the performance and scalability of 5

execution modes on Intel MIC processors. In the first mode, the MPI process is directly run on

each MIC core. In the second mode, we try to take advantage of the internal processing parallelism

on each MIC core. Therefore, we launch 4 threads in each MPI process using OpenMP. Each MPI

process is still run on a MIC core. In the third mode, only one MPI process is issued onto each

MIC processor. Then OpenMP is used to launch threads to MIC cores. In the fourth mode, the

MPI processes are run on the CPUs. The data processing is offloaded to the MIC processors using

OpenMP. Only one thread is scheduled to one MIC core. The fifth mode is a variant of the fourth

one. Four threads are scheduled to one MIC core in the fifth mode. We use two geospatial appli-

cations, i.e., Kriging interpolation and Cellular Automata, to test the performance and scalability

of a single MIC processor and a computer cluster with hybrid nodes.

3.1 Introduction

The Intel MIC architecture contains many low-weight processing cores, as shown in Fig-

ure 3.1. These cores are connected through a high-speed ring bus. Each core can run 4 threads in

parallel. Because each core alone is a classic processor, traditional parallel programming models,

such as MPI and OpenMP, are supported on each core. The MIC processors typically co-exist with

multicore CPUs, such as Intel Xeon CPU, in a hybrid computer node as coprocessors/accelerators.

In the remainder of this chapter, a single MIC card or device will be called a MIC processor or

MIC coprocessor. The constituent processing core on a MIC card will be called a MIC core.

Through this study, we have the following findings. (1) The native MPI programming model

on the MIC processors is typically better than the offload programming model, which offloads the
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Figure 3.1: The architecture of Intel Xeon Phi coprocessor (MIC) [5].

workload to MIC cores using OpenMP. (2) On top of the native MPI programming model, multi-

threading inside each MPI process can further improve the performance for parallel applications

on computer clusters with MIC coprocessors. (3) Given a fixed number of MPI processes, it is

a good strategy to schedule these MPI processes to as few MIC processors as possible to reduce

the cross-processor communication overhead when the capacity of the on-board memory is not a

limiting factor. (4) We also evaluate a hybrid MPI programming model, which is not officially

supported by the Intel MPI compiler. In this hybrid model, the data processing is distributed to

both the MIC cores and the CPU cores. The benchmarking results show that the hybrid model

outperforms the native model.

The remainder of this chapter is organized as follows. The Intel MIC architecture and the two

major programming models are discussed in Section 3.2. We discuss the details of the benchmarks

and the experiment platform in Section 3.3. In Section 3.4, we show the experiment results on

a single MIC device. We also compare the performance of a single MIC device with a single

Xeon CPU and the latest GPUs. Then we expand the experiment on two geospatial benchmarks to

the Beacon cluster using many computer nodes in Section 3.5. We discuss some related work in

Section 3.6. Finally, we give the concluding remarks in Section 3.7.
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3.2 Intel MIC architecture and programming models

The commercially available Intel coprocessor based on Many Integrated Core architecture is

Xeon Phi, as shown in Figure 3.1. Xeon Phi contains more than 50 scalar processing cores with

vector processing units. These cores are connected through a high-speed bi-directional, 1024-bit-

wide ring bus (512 bits in each direction). In addition to the scalar unit inside each core, there

is a vector processing unit to support wide vector processing operations. Further, each core can

execute 4 threads in parallel. The communications between the cores can be realized through

the shared memory programming models, e.g., OpenMP. Additionally, each core can run MPI to

realize communication. Direct communication between MIC processors across different nodes is

also supported through MPI.

This work uses two approaches to parallelizing applications on computer clusters equipped

with MIC processors. The first approach is the native model. In this model, the MPI processes

directly run on the MIC processors. There are two variants under this model. (1) Let each MIC

core directly host one MPI process. In this way, the 60 cores on the Xeon Phi 5110P, which is used

in this work, are treated as 60 independent processors while sharing the 8 GB on-board memory.

(2) Only issue one MPI process on one MIC card. This single MPI process then spawns threads

running on many cores using OpenMP. The second approach is to treat the MIC processors as

clients to the host CPUs. The MPI processes will be hosted by CPUs, which will offload the

computation to the MIC processors. Multithreading programming models such as OpenMP can be

used to allocate many MIC cores for data processing in the offload model.

In this work there are 5 different parallel implementations in these 2 models as follows.

• Native model: In this model, MPI processes directly execute on MIC processors. There are

further 3 implementations.

– Native-1 (N-1): Issue one MPI process onto each MIC core. If n MIC cores are allo-

cated, then n MPI processes are issued. Each MPI process contains only one thread.
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(a) Problem space. (b) Kriging interpolation. (c) Game of Life.

Figure 3.2: Data partition and communication in two benchmarks. In Kriging interpolation there
is no communication among MPI processes (i.e., P(I) in the figure) during computation. In Game
of Life, MPI processes need to communicate with each other in the computation.

– Native-2 (N-2): Issue one MPI process onto each MIC core. Each MPI process contains

4 threads.

– Native-3 (N-3): Issue only one MPI process onto each MIC card. Then allocate many

MIC cores using OpenMP. On each MIC core, issue 4 threads.

• Offload model: In this model, the CPU offloads the work to the MIC processor using

OpenMP. There are further 2 implementations.

– Offload-1 (O-1): Issue one thread onto each MIC core. If n MIC cores are allocated,

then n threads are issued.

– Offload-2 (O-2): Issue 4 threads onto each MIC core. If n MIC cores are allocated,

then 4×n threads are issued.

21



3.3 Experiment setup

3.3.1 Benchmarks

Two geospatial applications are chosen to represent two types of benchmarks in high-performance

computing: the embarrassingly parallel case and the intense communication case.

Embarrassingly parallel case – Kriging Interpolation

Kriging is a geostatistical estimator that infers the value of a random field at an unobserved

location [24]. Kriging is based on the idea that the value at an unknown point should be the average

of the known values of its neighbors.

Kriging can be viewed as a point interpolation that reads input point data and returns a raster

grid with calculated estimations for each cell. Each input point is in the form (xi, yi, Zi) where xi

and yi are the coordinates and Zi is the value. The estimated values in the output raster grid are

calculated as a weighted sum of input point values as in (3.1).

Ẑ(x,y) =
k

∑
i=1

wiZi, (3.1)

where wi is the weight of the i-th input point. Theoretically the estimation can be calculated by

the summation through all input points. In general, users can specify a number k so that the

summation is over k nearest neighbors of the estimated point in terms of distance. This decrease

of computation is due to the fact that the farther the sampled point is from the estimated point, the

less impact it has in the summation. For example, the commercial software ArcGIS [2] uses the 12

nearest points (i.e., k = 12) in the Kriging calculation by default. In this benchmark, embarrassing

parallelism can be realized since the interpolation calculation over each cell has no dependency on

the others.

In the Kriging interpolation benchmark, the problem space as shown in Figure 5.8(a) is evenly
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for(each data set in the 4 data sets) {
/*The following for loop can be parallelized*/
for(each point in the 1,440x720 output grid) {

Scan the whole data set to find the 10 closest
sampled points;

Use Equation (1) to estimate the value of the
unsampled point;

}
}

Figure 3.3: Pseudocode of Kriging interpolation. The inner for loop can be parallelized while the
4 data sets in the out for loop are processed in sequence.

partitioned among all MPI processes as shown in Figure 5.8(b), in which we use 4 processes as

an example. The computation in each MPI process is purely local, i.e., there is no cross-process

communication.

The input size of this benchmark is 171 MB, consisting of 4 data sets with the respective

sizes of 29 MB, 37 MB, 48 MB, and 57 MB. Each data set has 2,191, 4,596, 6,941, and 9,817

sample points, respectively. The output raster grid for each data set has a consistent dimension of

1,440×720. In other words, each data set will generate a 1,440×720 grid. The value of each point

in the output grid needs to be estimated using those sample points in the corresponding input data

set. In our experiments, the value of an unsampled point will be estimated using the values of the

10 closest sample points, i.e., k = 10. These 4 data sets are processed in a sequence. For each data

set, the generation of its corresponding output grid is evenly distributed among all MPI processes.

In order to generate the value of a point in the output grid, all the sampled points in the data set

need to be scanned to find the 10 closest sample points. The pseudocode of Kriging interpolation

is illustrated in Figure 3.3.

Intense communication case – Cellular Automata

Cellular Automata (CA) are the foundation for geospatial modeling and simulation. Game

of Life (GOL) [22], invented by British mathematician John Conway, is a well-known generic

Cellular Automaton. It consists of a collection of cells that can live, die or multiply based on a few

mathematical rules.
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for(iteration=0;iteration <100; iteration++) {
/*The following for loop can be parallelized*/
for(all cells in the universe) {

Update the status of cell[i,j] based on the
statuses of cell[i,j] and its 8 neighbors;

}
}

Figure 3.4: Pseudocode of Game of Life.

The universe of the Game of Life is a two-dimensional square grid of cells, each of which is

in one of two possible states, alive (‘1’) or dead (‘0’). Every cell interacts with its eight neighbors,

which are the cells that are horizontally, vertically, or diagonally adjacent. At each step in time,

the following transitions occur:

• Any live cell with fewer than two live neighbors dies, as if caused by under-population.

• Any live cell with two or three live neighbors lives on to the next generation.

• Any live cell with more than three live neighbors dies, as if by overcrowding.

• Any dead cell with exactly three live neighbors becomes a live cell, as if by reproduction.

In this benchmark, the status of each cell in the grid will be updated for 100 iterations. In

each iteration, the statuses of all cells are updated simultaneously. The pseudocode is illustrated in

Figure 3.4. In order to parallelize the updating process, the cells in the square grid are partitioned

into stripes along the row-wise order. Each stripe is handled by one MPI process. At the beginning

of each iteration, each MPI process needs to send the statuses of the cells along the boundaries of

each stripe to its neighbor MPI processes and receive the statuses of the cells of two adjacent rows

as shown in Figure 5.8(c).

3.3.2 Experiment Platform

We conduct our experiments on the NSF sponsored Beacon supercomputer [3] hosted at the

National Institute for Computational Sciences (NICS), University of Tennessee.

The Beacon system (a Cray CS300-AC Cluster Supercomputer) offers access to 48 compute
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nodes and 6 I/O nodes joined by FDR InfiniBand interconnect, which provides a bi-directional

bandwidth of 56 Gb/s. Each compute node is equipped with 2 Intel Xeon E5-2670 8-core 2.6-GHz

processors, 4 Intel Xeon Phi (MIC) 5110P coprocessors, 256 GB of RAM, and 960 GB of SSD

storage. Each I/O node provides access to an additional 4.8 TB of SSD storage. Each Xeon Phi

5110P coprocessor contains 60 1.053-GHz MIC cores and 8-GB GDDR5 on-board memory. Alto-

gether Beacon contains 768 conventional cores and 11,520 accelerator cores that provide over 210

TFLOP/s of combined computational performance, 12 TB of system memory, 1.5 TB of coproces-

sor memory, and over 73 TB of SSD storage.

The compiler used in this work is Intel 64 Compiler XE, Version 14.0.0.080 Build 20130728,

which supports OpenMP. The MPI library is intel-mpi 4.1.0.024.

3.4 Experiments and results on a single device

Since a single Intel Xeon Phi 5110P processor is a 60-core processor, it is worthwhile to

investigate the performance and scalability of a single MIC processor alone.

3.4.1 Scalability on a single MIC processor

When MPI programming model is used to implement the Kriging interpolation application,

the workload is evenly distributed among MPI processes. In this benchmark, there are 4 data sets.

For each data set, the output is a 1,440×720 raster grid. In the MPI implementation, we increase

the number of MPI processes from 10 to 60 with a stride of 10 processes. The computation of 720

columns of the output grid is evenly distributed. The 50-process configuration is skipped because

720 columns cannot be distributed among 50 processes equally. For the offload programming

model, we use OpenMP to parallelize the for loops in the program. The OpenMP APIs will

automatically distribute workload to the MIC cores evenly.

The detailed execution times of the Kriging interpolation benchmark under both program-
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Table 3.1: Performance of Kriging interpolation on a single MIC processor (unit: second).
Execution mode: Native-1

Number of MIC cores
10 20 30 40 50 60

Read 0.65 0.60 0.66 0.72

NA∗

0.79
Interpolation 2734.45 1353.48 921.76 664.74 455.34

Write 9.44 9.21 11.04 8.04 7.95
Total 2744.54 1363.30 933.46 673.50 464.09

Execution mode: Offload-1
Number of MIC cores

10 20 30 40 50 60
Read 0.04 0.05 0.04 0.04 0.04 0.04

Interpolation 2758.22 1570.75 1040.44 784.30 632.65 548.15
Write 1.77 1.99 1.65 1.44 1.45 1.57
Total 2760.03 1572.78 1042.12 785.78 634.14 549.75

∗The workload could not be distributed among 50 cores evenly.

ming models while each MIC core hosts only one thread are listed in Table 3.1. By looking at

the time curves in Figure 3.5, we can find that both models show a good strong scalability for this

application. Their performance in terms of interpolation time is very close too. The reason we do

not include the write time in Figure 3.5 is that the write time may become dramatically lengthy

when the number of MPI processes increases. In the Kriging interpolation application, each output

raster grid is written into a file. When many MPI processes try to write to the same file, their writes

need to be serialized. Further, the arbitration takes a lot of time. This effect is not very significant

when one MIC processor is used. Later, we will find that the write time can become extremely

significant when many MIC processors are allocated.

For Game of Life three different grid sizes are tested, i.e., 8,192×8,192, 16,384×16,384,

and 32,768×32,768. However, we encounter either out-of-memory error or runtime error for the

32,768×32,768 case when only one MIC processor is used. From the results in Table 3.2, it can be

found that the native model consistently outperforms the offload model for this intense communica-

tion case. By looking at the performance curves in Figure 3.6, we can find that both programming
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Figure 3.5: Performance of Kriging interpolation on a single MIC processor. For both implemen-
tation, only one thread runs on a MIC core. The native implementation outperforms the offload
one with a small margin.

Table 3.2: Performance of Game of Life on a single MIC processor (unit: second).
Execution mode: Native-1

Problem Size
Number of MIC cores

10 20 30 40 50 60
8192×8192 82.85 42.27 32.56 24.91 21.37 23.15

16384×16384 338.57 173.57 131.10 103.30 94.41 56.31
Execution mode: Offload-1

Problem Size
Number of MIC cores

10 20 30 40 50 60
8192×8192 152.06 71.9 51.23 38.88 29.1 31.33

16384×16384 627.94 313.88 223.54 171.33 131.14 131.72

models show strong scalability when the number of cores increases from 10 to 20. Beyond that,

both models lose the strong scalability although the total computation time still decreases. For

both problem sizes, the reduction of workload is gradually offset by the increase of communica-

tion overhead when the number of cores increases. Further, when more cores are allocated, the

memory access demand increases as well. Eventually, the communication and memory bandwidth

become the limiting factors for the performance.
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(a) 8,192×8,192.
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(b) 16,384×16,384.

Figure 3.6: Performance of Game of Life on a single MIC processor. The native model outper-
forms the offload model with a big margin when only a few cores are used. The performance gap
decreases as more cores are allocated.

Table 3.3: Performance of Kriging interpolation on single devices (unit: second).
MIC CPU Nvidia

(60 cores) (Xeon E5-2670) GPU
N-1 N-2 N-3 O-1 O-2 8-thread16-threadC2075 K20

Read 0.79 1.03 0.45 0.04 0.42 0.01 0.01 0.01 0.01
Intp. 455.34173.895147.95548.15225.93 330.11 182.60 23.87 10.90
Write 7.95 8.57 16.71 1.57 1.38 9.85 10.27 1.68 1.68
Total 464.09183.495165.11549.75227.72 339.96 192.86 25.55 11.77

3.4.2 Performance comparison of single devices

As an emerging new technology, it is worthwhile to compare the performance of the Intel

MIC processor with the other popular accelerator, i.e., GPU. Furthermore, it is a routine to include

very powerful multicore CPUs in supercomputers. Therefore, we conduct a comparison among

these three technologies at the full capacity of a single device. For Intel Xeon Phi 5110P, we use

all 60 cores under two programming models for 5 different implementations. For the 8-core Xeon

E5-2670 CPU on Beacon cluster, we use OpenMP to issue either 8 threads or 16 threads. For GPU,

we test two devices, the Nvidia Tesla C2075 based on Fermi architecture [43] and the Tesla K20

based on Kepler architecture [44]. The CUDA version is 5.5.

The execution times of Kriging interpolation on various devices are listed in Table 3.3. It
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Figure 3.7: Performance of Kriging interpolation on single devices (excluding Native-3 implemen-
tation on Intel MIC device).

Table 3.4: Performance of Game of Life on single devices (unit: second).
MIC CPU Nvidia

(60 cores) (Xeon E5-2670) GPU
N-1 N-2 N-3 O-1 O-2 8-thread16-thread C2075 K20

81922 23.1518.2211.23 31.33 19.53 12.03 8.13 15.36 3.25
163842 56.3182.6641.12131.7279.93 48.22 32.65 58.44 12.58
327682 NA 217.33 114.98 274.0346.99

can be found that the performance of the MIC processor and the CPU is at the same order of

magnitude. When running at the full capacity, the performance of the Intel Xeon Phi 5110P is

equivalent to the Xeon E5-2670. By increasing the number of threads in an MPI process to 4, the

Native-2 implementation is able to improve the performance by 3 times compared with Native-1

implementation. However, the Native-3 implementation, i.e., one MPI process with 240 threads,

has the much worse performance. We varied the number of threads in the MPI process and found

that the performance did not change significantly. We speculate that the OpenMP library does not

work well with the Kriging interpolation under Native-3 programming model. For Xeon CPU the

16-thread CPU implementation is almost 2 times faster than the 8-thread implementation because
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Table 3.5: Performance of Kriging interpolation under various execution modes on multiple MIC
processors(unit: second).

Number of Native-1 Native-2 Native-3
Processors Read Inter.∗ Write Total Read Inter.1 Write Total Read Inter.1 Write Total

2 1.24 232.43 12.24 245.90 0.57 60.43 8.82 69.82 0.33 2563.07 12.53 2575.97
4 1.27 116.34 16.44 134.05 0.51 36.54 122.53 159.59 0.33 1284.93 10.04 1305.35
8 1.23 61.48† 54.43 117.14 0.50 20.432 240.33 261.26 0.33 730.58 9.37 740.29

16 1.31 36.742 300.23 338.28 0.52 12.332 210.45 223.30 0.34 377.95 9.10 387.39

Number of Offload-1 Offload-2
Processors Read Interpolation∗ Write Total Read Interpolation∗ Write Total

2 0.18 280.83 1.60 282.61 0.39 91.65 1.88 95.79
4 0.04 141.03 1.27 142.33

System does not return result.8 0.04 74.30 1.19 75.53
16 0.04 38.54 5.94 44.51

∗The interpolation time includes both the time spent on data processing and the time spent on
communication.

†Only 360 or 720 MIC cores are used in the computation with 8 or 16 processors, respectively.

each CPU core can execute two threads simultaneously. Both GPUs are able to improve the perfor-

mance by one order of magnitude. Further, K20 is more than 2 times faster than C2075, as shown

in Figure 3.7.

The performance results of Game of Life on three different types of processors are listed in

Table 3.4. The performance of both models on the MIC processor is at the same order of magni-

tude as the implementations on the CPU and the C2075. All 5 implementations work quite well

on MIC and the native model is typically better than offload model. The Native-3 implementation

has the best performance compared with other 4 implementations on MIC. Overall the K20 imple-

mentation is generally one order of magnitude better in terms of performance compared with other

implementations.
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Table 3.6: Performance of Game of Life under various execution modes on multiple MIC proces-
sors (unit: second).

Number of 8,192×8,192 16,384×16,384 32,768×32,768
Processors N-1 N-2 N-3 O-1 O-2 N-1 N-2 N-3 O-1 O-2 N-1 N-2 N-3 O-1 O-2

2 14.56 7.99 92.94 20.40 13.66 48.39 33.11 275.87 78.71 48.59 194.15 149.43 964.62 308.01 184.72
4 11.63 8.04 44.41 11.57 8.58 46.31 24.06 172.04 42.65 26.31 169.54 104.14 544.44 155.99 96.75
8 7.84 9.28 23.26 12.32 8.08 39.78 22.98 108.01 42.08 28.86 157.73 106.24 317.24 154.56 99.26

16 7.18 8.74 21.46 13.52 9.39 35.30 23.60 107.01 47.91 34.19 128.40 110.99 300.68 176.73 105.82

3.5 Experiments and results using multiple MIC processors

We also conduct the experiments using multiple MIC processors to demonstrate the scalabil-

ity of the parallel implementations for those two geospatial applications. For both benchmarks we

have 5 parallel implementations on the Beacon computer cluster using multiple nodes.

We want to show the strong scalability of the parallel implementations as the case on the

single device. Therefore, the problem size is fixed for each benchmark while the number of partic-

ipating MPI processes is increased.

3.5.1 Comparison among five execution modes

Kriging Interpolation

We allocate 2, 4, 8, and 16 MIC processors for 4 different implementation cases. For the

Native-1 and the Native-2 implementations, m×60 MPI processes are created if m MIC processors

are used. For the Native-3, Offload-1, and Offload-2 execution modes, m MPI processes are created

if m MIC processors are used. As mentioned before, for each output raster grid, the generation of

the 720 columns is evenly distributed among the MPI processes. Therefore, only 360 or 720 MPI

processes, which execute on 360 or 720 MIC cores, are created when 8 or 16 MIC processors are

allocated, respectively, for both Native-1 and Native-2 cases.

The detailed results of the five execution modes for Kriging interpolation are listed in Ta-

ble 3.5. It is noticed that the system does not return results when more than 2 MIC processors are
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Figure 3.8: Performance of Kriging interpolation under various execution modes on multiple MIC
processors (excluding Native-3 execution mode).

used for Offload-2 execution mode. We can find that the write time grows dramatically when more

MIC processors are used for both Native-1 and Native-2 execution modes. As mentioned before,

the serialization of the write and the arbitration among the numerous MPI processes contribute to

the lengthy write process. Therefore, we only include the interpolation time, which includes both

the time spent on data processing and the time spent on cross-processor communication, when

comparing the performance of the four execution modes in Figure 3.8. We do not include Native-3

in Figure 3.8 because its interpolation time is significantly larger than other execution modes al-

though it obeys the strong scalability. It can be found that the Native-1 and the Offload-1 execution

modes have the very close performance for this benchmark. When the multithreading is applied

in each MPI process on the native MPI programming model, the performance can be improved

by roughly 3 times. This case shows that it is not enough to only parallelize application to all the

cores on MIC processors. It is equally important to increase the parallelism on each MIC core to

further improve the performance.
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(b) 16,384×16,384.
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Figure 3.9: Performance of Game of Life under various execution modes on multiple MIC proces-
sors.

Conway’s Game of Life

For Game of Life on multiple MIC processors, three different grid sizes are tested, i.e.,

8,192×8,192, 16,384×16,384, and 32,768×32,768. By observing the performance results in Ta-

ble 3.6 and Figure 5.10, it can be found that the behavior is quite different from the performance

behavior of Kriging interpolation. First, the strong scalability does not hold for all five execution

modes. Although the offload execution modes are still able to reduce the computation time to half

when moving from 2-processor implementation to 4-processor implementation, the performance

plateaus afterwards. For Native-1 and Native-2 execution modes, it almost stops scaling when

more processors are allocated. Apparently, for this communication dense application, there is not

much performance gain when increasing the number of MIC processors from 4 to 8 and 16. When
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Table 3.7: Performance of Game of Life using MPI@MIC Core+OpenMP execution mode (unit:
second).

Number of 8,192×8,192 16,384×16,384 32,768×32,768
Processors 4 threads 8 threads 4 threads 8 threads 4 threads 8 threads

2 7.99 10.94 33.11 32.92 149.43 110.37
4 8.04 9.03 24.06 27.94 104.14 109.79
8 9.28 8.39 22.98 25.69 106.24 100.79

16 8.74 10.77 23.60 27.11 110.99 110.67

the grid is partitioned into m×60 MPI processes on m MIC processors, the performance gain from

the reduced workload on each MIC core is easily offset by the increase of the communication cost

among the cores. Therefore, it is critical to keep a balance between computation and communi-

cation for achieving the best performance. For Native-3 execution mode, there is a big increase

of computation time from one-processor implementation to multiple-processor implementation.

Native-3 execution mode is not officially mentioned in the programming guide on Beacon com-

puter cluster. Therefore, we speculate that the library support for Native-3 execution mode on

multiple devices is premature at this moment.

3.5.2 Experiments on the MPI@MIC Core+OpenMP execution mode

For the implementations using the Native-2 execution mode in Section 3.2, the number of

threads running on each MIC core is 4, which is the number of threads a MIC core can physically

execute in parallel. We also want to check the potential of performance improvement by running

more threads on a single core. Therefore, in addition to the case of 4, we double the number of

threads to 8 for the Game of Life benchmark. The results are listed in Table 3.7. It can be found that

the benefit of adding more threads to MIC cores is very marginal. For small problem sizes, e.g.,

8,192×8,192, the 8-thread OpenMP implementation actually has a worse performance than the

4-thread OpenMP implementation for most cases. For this communication-intensive benchmark,

partitioning the computation into more threads introduces more cross-thread communication over-

head. For large problem sizes, it is still possible to achieve some performance benefit if each MPI
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Table 3.8: Performance of Game of Life (32,768×32,768) using Offload-1 execution mode (unit:
second).

Number of # of OpenMP threads offloaded to each MIC processor
Processors 10 20 30 40 50 60

2 1,375.37 730.96 478.81 382.15 317.84 308.01
4 709.70 382.15 258.39 196.05 158.40 155.99
8 687.71 351.86 240.56 184.40 149.45 154.56

16 689.78 367.11 244.26 193.79 160.14 176.73
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Figure 3.10: Performance of Game of Life (32,768×32,768) using Offload-1 execution mode. The
number of threads on a MIC processor is increased from 10 to 60.

process is given a relatively large amount of data, e.g., 32,768×32,768 partitioned into 120 MIC

cores.

3.5.3 Experiments on the Offload-1 execution mode

For the implementations using the Offload-1 execution mode in Section 3.2, the number of

OpenMP threads offloaded to the a MIC processor by an MPI process, which runs on the CPU, is

60, i.e., one OpenMP thread per MIC core. In this experiment, we change the number of threads

offloaded to the MIC processor by the MPI process from 10 to 60, as shown in Table 3.8 and
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Figure 3.11: Performance of Game of Life (32,768×32,768) under different MPI configurations
using Native-1 execution mode. Given 120 MPI processes, 2×60 means that 120 processes are
distributed in 2 MIC cards, each of which hosts 60 processes. The less number of MIC cards are
used, the better the performance.

Figure 3.10. In each case, when the number of threads increases from 10 to 30, the scalability

holds. When more threads are scheduled, the computation time decreases, however, at a much

smaller rate. For most cases, the computation time actually grows when the number of offloaded

threads is increased from 50 to 60. This performance degradation may be due to the increased

inter-thread communication overhead.

We also can find that the performances are almost the same for implementations using more

than 2 MIC processors. Apparently when 4 or more MIC processors are allocated, the cross-

processor communication overhead becomes dominant in the computation process so that adding

more processors will not increase the overall performance.

3.5.4 Experiments on the distribution of MPI processes

When an MPI parallel application runs on a computer cluster with nodes consisting of many-

core processors such as Xeon Phi, the distribution of MPI processes is not uniform. Some MPI

processes are scheduled to the cores on the same processor. The others are scheduled to differ-
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ent processors. Two MPI processes on the same processor are physically close to each other. On

the other hand, two MPI processes on two separate processors are distant. The difference of the

distance between two MPI processes will cause the disparity of the inter-MPI communication time.

We design a simple benchmark consisting of only 2 MPI processes using native program-

ming model. In this benchmark, MPI process A sends 500 MB data to MPI process B. Then

MPI process B returns the 500 MB data back to MPI process A. We have two options to run the

benchmark. In Implementation 1, both MPI processes are scheduled to the same MIC processor.

In Implementation 2, these two MPI processes are scheduled to two separate MIC processors. It

turns out that Implementation 1 and Implementation 2 take 1.59 seconds and 2.81 seconds, re-

spectively. Apparently, the longer distance between the two MPI processes in Implementation 2

contributes to the more time spent on communication.

The location difference of MPI processes can result in the performance disparity of an ap-

plication when it is executed under different MPI configurations while the total number of MPI

processes is the same. Figure 3.11 illustrates the different performances of the Game of Life

benchmark using the various configurations when 120 MPI processes run on 120 MIC cores. Each

MPI process contains only one thread. In the 2×60 configuration, 2 MIC processors are allocated,

each of which hosts 60 MPI processes. When the number of MIC processors doubles, the number

of MPI processes on a processor is halved. The more processors are allocated, the more cross-

processor communication, which brings down the performance. Therefore, when the capacity of

the on-board memory is not a limiting factor, it is typically a good strategy to schedule as many

MPI processes to a single MPI processor as possible to minimize the cross-board communication

overhead.

3.5.5 Hybrid MPI vs native MPI

Another programming/execution model that is not officially supported on Beacon computer

cluster is the Native MPI@Hybrid CPU/MIC, i.e., the MPI processes run on both CPUs and MIC
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processors. The results in Section 3.4.2 already demonstrate the impressive performance of the

latest multicore CPUs. Therefore, it is necessary to use both processors in the applications. We

first implement the Kriging interpolation on the 57 MB data set using 16 MPI processes on a single

Xeon E5-2670 CPU, which support 16 parallel threads. The total execution time is 46.02 seconds.

Then we implement the same application using a 16+14 hybrid MPI model, i.e., 16 MPI processes

on a single Xeon CPU and 14 MPI processes on 14 MIC cores of a single card1, the total execution

time is 24.75 seconds, an almost 2× speedup. Again, each MPI process contains only one thread

in this sub-study.

We also carry out the hybrid MPI programming model on a separate workstation, which

contains one Xeon E5-2620 CPU and two Xeon Phi 5110P cards. On this platform, we use the

Game of Life (16,384×16,384) as the benchmark. The native MPI implementation of 120 MPI

processes on two MIC cards takes 30 seconds. The 12+120 hybrid MPI implementation in which

the additional 12 MPI processes run on the single CPU takes 27.42 seconds. The 1.1× speedup

aligns with the ratio of number of MPI processes between the hybrid model and the native model.

3.6 Related work

MPI and OpenMP are two popular parallel programming APIs and libraries. MPI is primarily

for inter-node programming on computer clusters. On the other hand, OpenMP is mainly used for

parallelizing a program on a single device. Krawezik compared MPI and three openMP program-

ming styles on shared memory multiprocessors using a subset of the NAS benchmark (CG, MG,

FT, LU) [32]. Experimental results demonstrate that OpenMP provides competitive performance

compared to MPI for a large set of experimental conditions. However the price of this performance

is a strong programming effort on data set adaptation and inter-thread communications. Numerous

benchmarks have been used to evaluate the performance of supercomputers. For example, the HPC

Challenge (HPCC) benchmark suite and the Intel MPI Benchmark (IMB) are used to compare and

1When we allocate more than 14 MPI processes on the MIC card, the result is incorrect.

38



evaluate the combined performance of processor, memory subsystem and interconnect fabric of

five leading supercomputers - SGI Altix BX2, Cray XI, Cray Opteron Cluster, Dell Xeon cluster,

and NEC SX-8 [51, 52]. The portability and performance efficiency of radio astronomy algorithms

are discussed in [41]. Derivative calculations for radial basis function were accelerated on one Intel

MIC card [20]. We use two representative geospatial applications with different communication

patterns for benchmarking purpose. Although they are both domain specific applications, many

applications in other domains share the same internal communication patterns as these two cases.

Schmidl et al compared a Xeon-based two-socket compute node with the Xeon Phi stand-

alone in scalability and performance using OpenMP codes [55]. Their results show significant

differences in absolute application performance and scalability. The work in [53] evaluated the

single node performance of an SGI Rackable computer that has Intel Xeon Phi coprocessors. NAS

parallel benchmarks and CFD applications are used for testing four programming models, i.e.,

offload, processor native, coprocessor native and symmetric (processor plus coprocessor). They

also measured the latency and memory bandwidth of L1, L2 caches, and the main memory of Phi;

measured the performance of intra-node MPI functions (point-to-point, one-to-many, many-to-

one, and all-to-all); and measured and compared the overhead of OpenMP constructs. Compared

with [53], our work in this paper presents the results on single MIC device as well as on multiple

MIC cards. Further, we discuss multiple variances of the native models and the offload models.

3.7 Conclusions

In this work, we conduct a detailed study regarding the performance and scalability of the

Intel MIC processors under different parallel programming models. Between the two program-

ming models, i.e., native MPIs on MIC processors and the offload to MIC processors, the native

MPI programming model typically outperforms the offload model. It is very important to further

improve the parallelism inside each MPI process running on a MIC core for a better performance.

For embarrassingly parallel benchmarks such as Kriging interpolation, the multithreading inside
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each MPI process can achieve 3 times speedup compared with the single-thread MPI implemen-

tation. Due to the fact that the physical distance between two MPI processes may be different

under various MPI distributions, it is typically a good strategy to schedule MPI processes to as few

MIC processors as possible to reduce the cross-processor communication overhead given the same

number of MPI processes. Finally, we evaluate the hybrid MPI programming model, which is not

officially supported by the Intel MPI compiler. Through benchmarking, it is found that the hybrid

MPI programming model in which both CPU and MIC are used for processing is able to outper-

form the native MPI programming model. In the future work, we would test the performance when

all of threads on the MIC are launched by MPI, which means that if m MIC are used, m×n×60

single-threaded MPI processes are created in the parallel implementation.
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Chapter 4

Towards Optimal Task Distribution on Computer Clusters with Intel MIC Coprocessors

In the chapter 3, we conduct a detailed study regarding different modes on Intel MIC processors.

Given the benchmarks with regular kernels, they achieve a good performance and scalabilities.

However, irregular kernel may have a complicated case. It may have the problem of load

imbalance, which leads to an unsatisfactory performance.

In this chapter, we propose a dynamic distribution mechanism to resolve the imbalance of

workload among many cores in the offload mode. In order to achieve the dynamic task

distribution, all tasks will form a task pool. Through this manner, All cores will be kept busy in

the whole computation process. We apply two additional optimization techniques to further

improve the performance of applications on clusters with Intel MIC coprocessors. First, we

design hybrid implementations to distribute tasks to both the CPUs and MICs. Second, we apply

multiple-level parallelism technique to realize the concurrency among the N tasks as well as the

concurrency in each task.

4.1 Introduction

Computer clusters with coprocessors/accelerators are typically leveraged to parallelize

applications for reducing computation time. Given N parallel tasks and M processing cores, the

typical strategy is to statically distribute those N tasks among M cores so that each core receives

N
M tasks. For example, given 1,024 tasks and 4 processing cores, core 0 takes tasks 0-255, core 1

takes tasks 256-511, etc. This kind of static task distribution is fine for applications in which each

task requires almost the same amount of processing time. However, for many sophisticated

applications such as sparse coding, it will be shown later that those parallel tasks require different

amounts of processing times. In other words, some tasks will take longer time than others. The
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static distribution will cause the cores with light tasks to wait for the cores with the heavy tasks,

resulting in an imbalance in task distribution and the nonminimal overall processing time for the

application. In such case, the workloads distributed to those cores will become uneven. In the

previous example, if tasks 0-255 are quite heavy and tasks 256-511 are relatively light, then

core 1 will take less time to process its tasks and then stays idle while waiting for core 0 to finish.

In order to resolve the imbalance of workload among those cores, it is better to distribute

those tasks to the participating cores dynamically. In order to achieve the dynamic task

distribution, all tasks will form a task pool. Every time a core will request an available task from

the pool. Once it finishes the current task, it will go to request a new task from the pool. In this

way, all cores will work together to finish the tasks in the pool and spend more or less the same

amount of time on data processing.

Computer clusters typically contain both powerful multicore CPUs and massively parallel

manycore coprocessors/accelerators. Therefore it is desired to distribute workload to both the host

CPUs and the coprocessors to take advantages of both types of processors. Our results show that

the hybrid implementation in which the workload is evenly divided into CPUs and MICs can

almost double the performance compared with the implementation in which only the MICs are

used.

We choose the sparse coding application as the benchmark in this work. Sparse coding is a

class of unsupervised methods for learning bases to represent data efficiently. The aim of sparse

coding is to find a set of basis vectors such that an input vector can be represented as a linear

combination of these basis vectors. Unlike some other unsupervised learning techniques such as

PCA [60], sparse coding can be applied to learn over-complete basis sets, in which the number of

basis vectors is greater than the input dimension [38]. However, the high computational cost has

seriously hindered its applications. Many times the size of the dictionary and the training example

data have to be restricted due to concerns on the execution time of sparse coding algorithms.

Especially, when it is applied on image processing, it may have millions of free parameters and
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face the big data problem. Due to the complexity of the learning model, it may take weeks to

learn the parameters using a single CPU [50]. Thus the sparse coding-based methods are good

candidate benchmark for parallel processing on computer clusters. The results show that the

dynamic task distribution can improve the performance by 25% compared with the static one.

Further, the hybrid mode implementation involving both the host CPUs and the MICs can

outperform the basic offload mode implementation by 40%.

The rest of the chapter is organized as follows. In Section 4.2 and 4.3 we introduce the

sparse coding benchmark and various parallel implementations based on MIC. The experimental

results and evaluation using the AUVs seafloor image data set are presented in Section 4.4. We

conclude this work in Section 4.5.

4.2 The Benchmark: Sparse coding

Sparse coding is an algorithm for constructing succinct representations of input vectors such

as images using the basis vectors in a dictionary [45]. Given a set of n 2D images, each image can

be represented by a 1D array
−→
x(i), i = 1 . . .n. For example, if an image contains 32×32 pixels, the

corresponding
−→
x(i) will consist of 1,024 elements. The aim of sparse coding is to find a set of basis

vectors
−→
d( j) ( j = 1 . . .k) such that we can represent an input vector

−→
x(i) as a linear combination of

these basis vectors:
−→
x(i) =

k

∑
j=1

a(i)j

−→
d( j), (4.1)

in which each a(i)j is a scalar coefficient. If we use D and
−→
a(i) to represent [

−→
d(1),
−→
d(2), . . .

−→
d(k)] and

[a(i)1 ,a(i)2 , . . .a(i)k ]T , respectively, we can re-write Equation (4.1) as Equation (4.2) .

−→
x(i) = D

−→
a(i). (4.2)
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Natural Images Learned bases ( )

 0.8 *                   + 0.3 *                     + 0.5 *

 0.8 *    +  0.3 * + 0.5 *   

[0, 0, …, 0, 0.8, 0, …, 0, 0.3, 0, …, 0, 0.5, 0] 
= [a1, …, a64]    (feature representation) 

Test example

Figure 4.1: Illustration of sparse coding applied to natural images [37]. In the upper left, small red
squares represent 14×14 image patches randomly sampled from natural images. The upper right
shows the learned bases from natural images via sparse coding. The below illustrates how sparse
coding decomposes a new 14×14 image patch into a linear combination of a few basis vectors. The
resulting sparse coefficients can be used as features representing 14×14 pixels. (Note: although
illustrated in 2D images, all the dictionary bases and test images are represented as 1D vectors in
sparse coding algorithm.)

Further, if we use X and A to represent [
−→
x(1),
−→
x(2), . . .

−→
x(n)] and [

−→
a(1),
−→
a(2), . . .

−→
a(n)], respectively, we

want to represent X as

X = DA. (4.3)

Each column of D (i.e.,
−→
d( j)) is regarded as a basis in the directory. Each column of A (i.e.,

−→
a(i)) is

the sparse representation of the corresponding input vector
−→
x(i) according to the dictionary. Most

components of
−→
a(i) should be zero’s. One example illustrating how to represent the input image

using the bases in the dictionary is shown in Figure 4.1.

The basic idea of sparse coding is defined as finding two matrices D and A and aims to solve
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Table 4.1: Computation time of four steps in a sequential implementation on an Intel Xeon E5606
2.13-GHz CPU.

Size of Image Patch Step Computation Time (s)

32×32

Load image 5.93
Optimizing A 14,811.29
Optimizing D 208.32
Write results 1.8

1000 images

Form the data space using 
the pixels in 1000 images

Randomly choose image 
patches

Figure 4.2: The process to form the source data space and randomly choose several data sets.

the following optimization problem:

min
A,D

n

∑
i=1

∥∥∥∥∥−→x(i)− k

∑
j=1

a(i)j

−→
d( j)

∥∥∥∥∥
2

+λ

k

∑
j=1
|a(i)j |

 (4.4)

It has been shown that the optimization problem is not jointly convex in both A and D, but it

is convex in either A or D if the other one is kept fixed. An alternating minimization algorithm has

bee proposed in [38], as shown in Algorithm 5. When facing large numbers of images and

dictionary bases, the step of optimizing over A is particularly time consuming since it involves an

uncertain objective function. The overwhelmingly dominant computational effort is spent on

optimizing A by solving an L1 regularized least squares problem. The entire learning process is

divided into four steps, including Load image, Optimizing A, Optimizing D, and Write results.
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ALGORITHM 5: Learning the dictionary in sparse coding.
Transfer a large number of images into global memory;
Select a group of data sets randomly;
Initialize the dictionary D randomly;
while (convergence criterion is not satisfied) do

for (each data set in the group) do
Set A← DT X , and normalize A;
Keep D fixed, optimize over A by solving an L1 regularized least squares problem;
Keep A fixed, optimize over D by using convex optimization techniques;

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0
0 . 0
0 . 1
0 . 2
0 . 3
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Figure 4.3: The computation times of 1,024 coefficient vectors in the sequential implementation
on CPU.

We conducted a simple test to check the computation times spent on each step. The original

data set is comprised of 14 dive missions conducted by the AUV Sirius off the southeast coast of

Tasmania in October 2008 [10, 9]. It contains over 100,000 stereo pairs of images. Marine

scientists used the CPCe software package [31] to label 50 random points on each image with

different class labels, such as biological species (including coral, algae and others), abiotic

elements (sand, gravel, rock, shell, etc.), and other unknown data types. In this test, we chose

1000 1,024×1,024 images from the original data set. Then we randomly chose 5 sets of image

patches. Each set contains 1,024 patches, each of which is of 32×32. The process to form the

source data space and choose the data sets is illustrated in Figure 4.2. Once the 5 sets of image
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patches were generated, we applied the optimization on them using Algorithm 5. In this simple

test, we only carried out 3 iterations of the while loop in Algorithm 5. This implementation was a

single-thread implementation written in C and executed on an Intel Xeon E5606 2.13-GHz CPU.

The computation times on all steps are shown in Table 4.1. It is obvious that the step of

optimizing A is the most time-consuming step.

Raina et al. have presented a method to optimize the computation in the Equation (4.4) [50].

Let
−→
d j (i.e.,

−→
d( j)) be the jth column of the dictionary D and set r j =

−→
d j

T−→d j , the new optimal value

a(i)j for input
−→
x(i) can be calculated as follows.

a(i)j =


0 if |g j− r ja

(i)
j |6 β

(−g j + r ja
(i)
j +β)/r j if g j− r ja

(i)
j > β

(−g j + r ja
(i)
j −β)/r j if g j− r ja

(i)
j <−β

(4.5)

where g j is the jth component of vector −→g , which is as follows.

−→g = ∇a
1
2

∥∥∥∥∥−→x(i)− k

∑
j=1

a(i)j

−→
d( j)

∥∥∥∥∥
2

= DT D
−→
a(i)−DT

−→
x(i) (4.6)

In our implementation, each
−→
a(i) will be updated for 150 times in one iteration of the optimization

of A while D is fixed.

Based on the algorithm, there are two levels of parallelism we can take advantages of.

In the first level (level-1) of parallelism, it can be found that all the columns of A, i.e.,
−→
a(i)’s,

can be optimized independently. From Equation (4.6), it can be found that only
−→
x(i) is used to

update
−→
a(i). Therefore, the updating of different

−→
a(i)’s can be handled by different processing

cores. However, the computation times of those coefficient vectors vary quite significantly.

Figure 4.3 shows the computation times of 1,024 vectors in our benchmark. The times are in the

range of [0.016s,1.694s]. A static distribution of those 1,024 vectors will result in an imbalance

of computation among participating processing cores.
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In the second level (level-2) of parallelism, the updating of 1,024 components in each
−→
a(i)

can be parallelized as well. In our implementation, the updating of one
−→
a(i) is a combination of

sequential stages and parallel stages. Those parallel stages can be carried out by multiple cores.

4.3 Parallelization using MIC

The task of learning dictionary is a cycle of alternating process. Given a set of images, they

will be transferred into the global memory. To ensure higher levels of concurrency, we split the

basis learning and propose the parallel sparse coding using both native and offload parallel

programming models on the Intel MIC accelerated computer clusters. The computation can be

parallelized where each MIC device works on a single subset inputs, and each thread in the device

works on a single subtask. Finally, the result will be gathered over all devices. The parallel sparse

coding can be implemented with the following execution modes:

• Native-1: i.e., the native model. In this implementation, the MPI process is directly

executed on each MIC core. For a group of N work items, if we allocate M MIC cards, each

card is assigned the same number of work items, i.e., N
M . These N

M work items are scheduled

to the same number of MIC cores, each of which only executes a single-thread MPI

process. For sparse coding, only the level-1 parallelism is realized.

• Native-2: On top of Native-1 execution mode, we try to take advantage of the internal

processing parallelism on each MIC core. Therefore, we launch 4 threads in each MPI

process using OpenMP. Each MPI process is still run on a MIC core. In this mode, the work

items are assigned to MIC cards at first. Just like Native-1 mode, each card will execute 60

MPI processes. Further, the subtasks in each work item will be parallelized by launching 4

threads in each MPI process. Therefore, this mode will provide two levels of parallelism:

parallel MPI processes for the level-1 parallelism and OpenMP threads in each MPI process

for the level-2 parallelism.
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• Offload: In this mode, the MPI processes are hosted by the CPU cores, which offload the

computation including data to the MIC processors. The communication among MPI

processes is handled by CPUs. The host MPI process on CPU issues multiple threads to the

MIC card using OpenMP so that each thread works on one or more coefficient vectors

depending on the number of participating MIC cards. If several coefficient vectors are

assigned to one thread, they will be processed in a sequence. Then we apply a second level

of parallelism, i.e., spawning multiple threads in each thread. Given the 240 threads that

can be physically executed in parallel on the Xeon Phi 5110P device, various configurations

can be applied. If we use M and N to represent the level-1 and level-2 threads, respectively,

different combinations of (M,N) can be adopted subject to M×N 6 240. This mode can be

further categorized into two sub-modes, i.e., Offload-S for static task distribution and

Offload-D for dynamic task distribution.

• Hybrid: In this mode, both CPUs and MICs are allocated for data processing. First the

workload is distributed to CPUs through MPI. Then a host CPU will offload part of the

workload to a MIC card using OpenMP. On the host CPU, we also use OpenMP to spawn

multiple threads for parallel processing. The peak performance of an Intel MIC 5110P is

around 2,022 GFLOP/s, which is about 4 times the performance of a single thread on the

host CPU (i.e., Intel Xeon E5-2670). Therefore we run 4 threads on the host CPU and

evenly divide the workload between a host CPU and its corresponding MIC processor. The

hybrid mode also has two variants, Hybrid-S and Hybrid-D.

4.4 Results and discussion

We conduct the experiments to use multiple MIC processors to demonstrate the scalability

and performance of the learning dictionary process, which is the most time-consuming part in

sparse coding methods. In our experiments, we mainly evaluate the following three aspects: the

performance scalability of the native modes, and the performance improvement due to dynamic
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Figure 4.4: Performance scalability under the native execution modes. 60 MPI processes (ranks)
are scheduled to one MIC card.

task distribution on a single MIC card as well as on multiple MIC cards.

4.4.1 Performance scalability of the native modes

We implemented two native parallel execution modes, i.e., Native-1 and Native-2, on the

Beacon computer cluster using multiple nodes. The image size is 1,024×1,024. Then we

randomly chose 5 sets of data as shown in Figure 4.2, and applied the optimization on them using

Algorithm 5. Only 3 iterations are carried out in the experiment.

In order to show the strong scalability of the parallel implementations, the problem size is

fixed for each implementation while the number of participating cores is increased. For the native

modes, each MIC will host one MPI process. We schedule 60 MPI processes to a MIC card.

From Figure 4.4 we can see that both implementations in native mode keep the strong

scalability, i.e., the computation time halves when the number of processing cores doubles.

Because the Native-2 implementation uses 4 times of threads as the Native-1 implementation, its

performance is approximately 4 times better than the Native-1 mode.
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Figure 4.5: Performance comparison between static distribution and dynamic distribution as well
as between offload mode and hybrid mode on a single MIC card. M×N: M is the number of
threads offloaded to a MIC card for realizing the level-1 parallelism, each thread further spawns
N threads to achieve the level-2 parallelism. 4 threads are created on the host CPU for the level-1
parallelism.

4.4.2 Performance improvement of dynamic task distribution on a single MIC card

We first show the benefit of the dynamic task scheduling compared with the static task

scheduling on a single MIC card. Because there are multiple combinations of the number of the

threads scheduled to a MIC card and the number of threads spawned by each thread, we list 11

options in Figure 4.5. When there are many level-1 threads, the advantage of dynamic distribution

is very evident. For example, when there are more than 30 level-1 threads, the performance

improvement is more than 25%. When the number of level-1 threads decrease, the difference

between the static distribution and dynamic one diminishes. There are two reasons. First each

level-1 thread will receive many tasks in both distributions. This will reduce the imbalance of

workload among those threads. Second, because the computation of one coefficient vector
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Table 4.2: Thread configuration in multiple-MIC implementations.
Number of MIC cards Offload-S Offload-D Hybrid-S Hybrid-D

2 24×10 60×4 60×4 60×4
4 24×10 60×4 60×4 60×4
8 24×10 60×4 60×4 60×4

16 24×10 60×4 60×4 16×15
32 24×10 30×8 16×15 16×15
64 16×15 16×15 16×15 16×15
128 16×15 16×15 – –

consists of both sequential stages and parallel stages, the sequential stages will become a limiting

factor for performance improvement when a large number of level-2 threads are spawned. More

level-2 threads will not further improve the performance once the number of level-2 threads

reaches a certain point.

Figure 4.5 also shows that the hybrid mode can improve the performance by more than 40%

compared with the offload mode. In this implementation, we artificially distribute the total

workload evenly between the host CPU and the MIC coprocessor. Therefore we only issue 4

threads on the CPU for pairing with one MIC card. The host CPU, Xeon E5-2670, contains 8

cores and can execute 16 threads physically. In theory, we can schedule more work to the host

CPU. This reminds us that it is very important to schedule workload to both the host CPUs and

the coprocessors for achieving the best performance. The ratio of the workload between these

types of processors needs to be carefully assigned for realizing the balance. Between the two

variants of the hybrid mode, the comparison is similar to the case of the offload mode. The

Hybrid-D mode can improve the performance by 25% compared with the Hybrid-S mode when

the number of level-1 threads is abundant.

4.4.3 Performance improvement of dynamic task distribution on multiple MIC cards

We also conduct the experiment by using multiple MIC cards. The thread configurations for

various implementation modes are different and listed in Table 4.2. The performance saving trend
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Figure 4.6: Performance comparison between static distribution and dynamic distribution as well
as between offload mode and hybrid mode on multiple cards. For hybrid modes, 4 CPU threads
are scheduled for one MIC card. Two MIC cards are hosted by one CPU, which will execute 8
threads. Therefore, the ratio between the number of host CPUs and the number of MIC cards is
1:2.

is very similar to the one-MIC-card case. As shown in Figure 4.6, for both offload mode and

hybrid mode, the dynamic task distribution is able to improve the performance by more than 25%

when the number of MIC cards is less than 16. When more MIC cards are added, the

communication overhead will become dominant. Both hybrid implementations are able to

outperform their offload counterparts by around 40% when there are significant amount work

scheduled to each MIC card and CPU (i.e., the number of MIC cards is less than 16). Beyond

that, the performance gain due to hybrid implementation starts diminishing due to the introduced

communication overhead.
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4.5 Conclusions

In this work we conduct a detailed study regarding the performance and scalability of

various parallel execution modes on computer clusters with Intel MIC coprocessors. The tasks in

an application are typically distributed to multiple nodes for parallel processing. However, for

sophisticated applications such as sparse coding, those parallel tasks may require different

processing times. A static task distribution among working threads may introduce an imbalance

of workload among them. In order to improve the overall performance, we leverage the dynamic

task distribution so that a thread will request a new task from a task pool once it finishes the

processing of the current task. Experiment results show that this technique can improve the

performance by 25%. In addition, we try to leverage the processing power of the host CPU by

implementing the sparse coding algorithm in a hybrid mode. The results show that the hybrid

implementation is able to further improve the performance by 40%.

At this moment, the dynamic task distribution is only applied through OpenMP when the

host CPU offloads tasks to the MIC card and processes its own tasks. The first level task

distribution through MPI is still static. As the future work, we plan to investigate how to realize

the dynamic task distribution in the first level.
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Chapter 5

Performance Optimization on Intel MIC Through Load Balancing

In the chapter 4, we propose a dynamic distribution mechanism to resolve the imbalance of

workload among many cores. Besides, a hybrid mode, processing data on both processors and

coprocessors, is proposed to evenly divide the workload between a host CPU and its

corresponding MIC processor based on their peak performance. However, in parallel and

distributed computation, data communication between computing nodes may be required in

different scenarios. Before the computation is implemented, partial data may have to be shared or

exchanged among the distributed nodes. One significant issue in data communication is the

amount of data exchanged that may have an significant impact on the total performance.

Therefore, we cannot simply decide the distribution of data via the peak performance of

processors/coprocessors.

This chapter proposed smart data distribution model relies on the accurate performance

profiling as the parameter to allocate the amount of input data to different types of processors and

coprocessors based on their computing capabilities to achieve the load balance. A performance

profiling is launched to find the computing capabilities of host processors and MIC coprocessors.

Then we launch single-threaded MPI processes to both processors and coprocessors. An MPI

process will check on which type of processor/coprocessor it is running and requests the amount

of data accordingly. In other words, the amount of data an MPI process will process is directly

proportional to the computing capability of the hosting processor/coprocessor.

5.1 Introduction

Emerging computer architectures and advanced computing technologies, such as Intel’s

Many Integrated Core (MIC) Architecture [5] and graphics processing units (GPUs) [28], provide
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a promising solution to employ parallelism for achieving high performance, scalability and low

power consumption. However, the heterogeneous environment may have the problem of load

imbalance, which leads to an unsatisfactory performance. MPI programs may synchronize

frequently. The faster ranks will idle at the synchronization point waiting for the slowest rank to

finish. A heterogeneous supercomputer contains processors of various computing capabilities,

such as the host Xeon CPUs and the Xeon Phi coprocessors. A single core on the Xeon CPU

typically outperforms a single core on the MIC. If we run MPI programs on both Xeon CPU and

MIC and distribute the data among all MPI processes (or MPI ranks) evenly, the MPI processes

running on Xeon CPU will idle at the synchronization point waiting for the processes running on

MIC. In order to achieve a good performance, load imbalance has to be minimized in the

heterogeneous environment.

We use cellular automata (CA) as the benchmark to test the performance and scalability of

different programming models on a heterogeneous computer server with MIC coprocessors. We

also develop an urban sprawl simulation on MIC and do a comparison of performance between

MIC and GPU.

The remainder of this chapter is organized as follows. We discuss some related work in

Section 5.2. The four models based on Intel Xeon Phi and a new data distribution model(DDM)

are discussed in Section 5.3 and Section 5.4. Section 5.5 introduce the details about

implementation of game of life under different programming moels. Section 5.6 shows

experiment results and compare the performance under different programming models. In

Section 5.7, we demonstrate the benefit of Xeon Phi by presenting an urban sprawl simulation

case. Finally, we give the concluding remarks in Section 5.8.

5.2 Related Work

Heterogeneous multiprocessors have been drawing increasing attentions from both the

hardware and software research communities. Load balancing in heterogeneous environment is a
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critical task in order to get high performance. The hardware heterogeneity makes it difficult to

ensure reasonably uniform resource utilization, thus leading to performance losses due to load

imbalance [13]. In the heterogeneous programming systems, static and dynamic models are used

to solve the problem of load imbalance.

[63] and [64], which are based on data partitioning, needs information about the application

and heterogeneous platform. This information can be gathered at both compilation time and

execution time. Static methods depend on accurate performance model to predict the future

execution of the application. Static load balancing can lead to very high performance only after

several runs of the benchmark. This process determines the correct ratio of data distribution

between the host processor and the coprocessors. Static methods are particularly useful for

applications that have good data locality because they do not require data redistribution. However,

when the data load changes over the time, they are unable to achieve the load balance between

different types of processors/coprocessors [36].

[33] and [7], which are based on task scheduling and work stealing, balance the load by

moving fine-grained tasks between processors and coprocessors during the calculation. These

methods do not require the information of applications and heterogeneous platforms. Dynamic

methods often use static partitioning for their initial step due to its communication cost, bounded

tiny load imbalance, and smaller scheduling overhead [39]. A dynamic load balancing approach

allows the users to manage unexpected performance perturbations in a transparent way. Although

it may lead to significant communication overhead due to data migration, the communication

overhead can be effectively hidden by a software pipelining technique, which is particularly

useful for large memory-bound applications [63].
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5.3 Programming models

5.3.1 Native Model (MPI-based implementation)

Native execution occurs when an application runs entirely on Intel Xeon Phi coprocessors

and no job is dispatched on the host Xeon CPUs. Applications that are already implemented by

MPI can use this model by distributing MPI ranks across the coprocessors natively. The MPI

library is designed to support a program running on a heterogeneous set of nodes. In the native

model, MPI can run on the coprocessors without modifying any source code. Each MIC core

directly hosts n (up to 4) MPI processes. Therefore, if m Xeon Phi coprocessors are used,

m×n×60 single-threaded MPI processes are created in the parallel implementation.

The native model avoids the complex architectural heterogeneity on a heterogeneous

supercomputer. However, the MPI program only runs on Xeon Phi coprocessors. It does not take

advantage of the compute capacity of the host Xeon CPUs. It is supposed to be noticed that the

number of MPI processes on a Xeon Phi coprocessor may be fewer than the maximum 240

processes it can host because of the limited memory on the coprocessor and the communication

overhead among all MPI processes.

5.3.2 Symmetric Model

Native model only makes MPI programs run on the coprocessor cores. This model leaves

the Intel Xeon processors unutilized, which means this approach does not take advantage of the

computing capacity of the host Xeon CPUs and is likely to give up too much performance

potential of the whole system. In the symmetric model, the program runs on both the processors

and coprocessors. The MPI ranks reside on the host CPU and the MIC coprocessors. If m MIC

(Xeon Phi) coprocessors, in which each MIC core directly hosts n (up to 4) MPI processes, are

used in addition to k MPI processes on the CPUs, m×n×60 + k single-threaded MPI processes

are created in the parallel implementation.
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Many MPI programs were written with the implicit assumption that they will run on

homogeneous systems in which each MPI rank computes at the same rate. These programs

decompose the problem into even parts to compute so that all MPI processes can synchronize at

some points without waiting for a long time. However, when some ranks are hosted on

processors/coprocessors that have a stronger computing capability, the slowest rank will

determine the overall computation rate. This is a typical load imbalance problem.

5.3.3 Hybrid Model

On top of the symmetric programming model, a hybrid model makes multithreading inside

each MPI process on MIC. When MPI processes are scheduled to both host Xeon processors and

the MIC coprocessors, a single-threaded MPI process on MIC coprocessor has a weaker

performance than a single-threaded MPI process on Xeon processor. Given the same amount of

data, the MPI process on MIC will take a longer time than the MPI process on the Xeon processor

to finish. In order to improve the performance of MPI processes on MIC, multiple internal threads

are launched. This model can solve the load imbalance problem and improve the performance for

parallel applications by carefully adjusting the extent of multithreading inside the MPI processes

on MIC coprocessors.

5.4 Data Distribution Model (DDM)

5.4.1 DDM Analysis

In above three models, each MPI process will receive the same amount of data no matter it

is single-threaded or multiple-threaded. In the hybrid model, a careful tuning is required to have

equivalent performances on processes on different processors/coprocessors.

Single-threaded MPI processes are scheduled to both the host processors and the

coprocessors. Based on the computing capabilities of the hosting processors/coprocessors, a
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Figure 5.1: DDM workflow.

proportional amount of data will be given to an MPI process so that all MPI processes will finish

the data processing in more or less the same amount of time. The high performance of parallel

applications on heterogeneous platforms can be achieved by partitioning the computational load

unevenly across processors/coprocessors. This model relies on accurate performance models as a

reference to partition data among MPI processes with different computing capabilities, as shown

in Figure 5.1. We submit the same amount of task into host processor and MIC coprocessor and

measure their running time. According to their performance, we redesign the application and

decompose the problem into unevenly parts so that all MPI processes can synchronize at some

points without waiting for a long time.

In parallel and distributed computation, data communication between computing nodes may

be required in different scenarios. Before the computation is implemented, partial data may have

to be shared or exchanged among the distributed nodes. One significant issue in data

communication is the amount of data exchanged that may have an significant impact on the total

performance. Therefore, we cannot simply decide the distribution of data via the peak

performance of processors/coprocessors. Instead, a performance profiling by running the

benchmark on the real platform is required to decide the precise data distribution among various
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Figure 5.2: The process to calculate α in the DDM model.

types of processors/coprocessors.

For achieving a load balance among heterogeneous nodes, optimal distribution of data

between heterogeneous processors is typically based on their computing capability to the kernel,

which can be either pre-built or being built during the execution of the application for each

processor. In this study, we use ratio α to get the optimal distribution.

Figure 5.2 shows our workflow for calculating ratio α. When pre-built application is

executed for the first time over N iterations, the runtime distributes N wp iterations to the MIC,

where wp is a ratio between 0 and 1, and measures the rate Mr at which the MIC processes the

application. Concurrently, the runtime executes another N wp iterations on the multicore CPU and

computes the CPU rate Cr.

One MPI process collects and compare the two rates Mr and Cr after completing the

calculation. The runtime distributes the remaining iterations to the CPU and MIC based on the

calculated α to verify their rates.

Let α become the ideal ratio for distribution to the MIC, and the remaining 1−α to the host

CPU. We can represent the rate with which MIC executes workload as Mr and CPU as Cr. The α
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can be found that :

Nα

Mr
=

N(1−α)

Cr

Where N is the total number of workload for pre-build model. When Mr and Cr are achieved

by the first execution, α can be derived by the following formula:

α =
Mr

Mr +Cr

5.4.2 Determining profiling size

In the data distribution model, it is important to determine the right number of iterations or

work items of pre-built application. If we select too many iterations or work items, it would

increase the overhead of waiting time, since one MPI process may have to wait for the other

processes to complete execution at synchronous point. On the other hand, if we determine too few

iterations, it is hard to know the computing capabilities of devices to kernel function. Therefore,

the work items of pre-build application should be large enough to fully utilize all the available

MIC resource.

It is well-known that MPI-based model is very effective for exploiting parallelism in regular

programs, such as operating on large vectors or matrices. These programs often contains high

computational demands, exhibits extensive data parallelism and require little synchronization. A

large number of algorithms from important application areas fit these criteria, including

algorithms used in urban simulation and interpolation. There exists a broad base of knowledge on

the efficient parallelization of these algorithms[35], and their MIC implementations can be tens of

times faster than single-thread CPU version.

Figure 5.3 demonstrates the impact of different number of work items to workload

distribution between processor and coprocessor, α. The kernel function is to calculate the sum of
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Figure 5.3: Changes in ratio α with increasing number of work items

integers from 1 to 10 per work-item. 240 MPI processes are running on a MIC card and 8 MPI

processes are running on the host CPU. As we increase the number of work items on each MPI

rank, α consistently increases when the MIC takes the same amount of time to process more data

and the rate stabilized at 2048 items. As a result, the MIC is not fully utilized in processing less

than 2048 items. In order to determine a right execution rate, we have to ensure fully utilization of

the MIC as a prerequisite.

The programs containing regular kernels are effective for parallelism. However, some

problem domains employ algorithms that include irregular data structures such as trees, graphs,

and priority queues. Irregular programs are more different to be parallelized and easier to

generate load imbalance problem between the host processor and MIC coprocessor. Besides, MPI

processes running on MIC card may have this problem, since these MPI processes have different

amount of calculation and may have to wait for the other processes to complete execution at

synchronous point. In the unpredictable calculation, MPI-based programming model seems to be

unable to solve the problem. In the following section, we will continue discussing this problem

and provide a solution based on the offload mode.
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5.4.3 Asynchronous Management Controller(AMC)

Full utilization of resources requires a highly asynchronous and parallel model.

Asynchronous message passing allows more parallelism and significantly hides overhead. Since a

process does not block, it can do some computation while the message is in transit. A

synchronous operation blocks a process till the operation completes. An asynchronous operation

is non-blocking and only initiates the operation.

One limitation in MPI applications is that the standard does not force progress during

asynchronous MPI calls which ultimately results in not achieving efficient overlap of

communication with computation. For example, if an application posts an MPI Irecv followed by

an MPI Isend and then performs computations before posting the corresponding MPI Wait

operation, it is often the case that communication will not be overlapped with the computation.

This is because the implementation of the send operation requires the corresponding receive to be

posted on the target before data transfer is initiated. Applications may alleviate this by

periodically calling MPI Iprobe or MPI Test to make progress on asynchronous calls. However, it

becomes extremely difficult to determine the optimal frequency of these calls to achieve the

desired overlap. This situation is exacerbated on the Intel Xeon Phi as if one thread frequently

calls into the MPI runtime, significant load imbalance can be created which can severely degrade

performance.

To address this limitation, we use an AMC(Asynchronous Management Controller) to

eliminate this issue by using a dedicated CPU core or MIC core that constantly attempts to make

progress on asynchronous calls and thus achieves the desired overlap without creating any load

imbalance, as shown in Figure 5.4.
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5.4.4 Asymmetric scheduling

In this section, I would describe our asymmetric scheduling algorithm that addresses the

overheads of the DDM method, and provides adaptive strategies that handle the load imbalance

problem.

In the DDM method, we first assign a part of workload to host processor and MIC

coprocessor and then determine their computing capabilities to the kernel function. The overhead

in this method would be caused by waiting on a barrier when one of the devices completes the

execution before the other. Figure 5.5 demonstrates the workflow of the asymmetric method. We

submit the job into host processor. Host processor offloads a part of workload to MIC coprocessor

and continues the execution of other workload until it observed that a kernel running on the

accelerator has completed. According to their performance, we redesign the application and

decompose the problem into unevenly parts so that all MPI processes can synchronize at some

points without waiting for a long time.

Figure 5.6 shows our workflow for calculating ratio α. We set up shared pool of workload
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where it contains the entire the parallel iteration space. And then we select a part fp of items and

offload them into MIC coprocessors. MIC launches 240 threads to do kernel calculation though

OpenMP. The host processor continues the execution of other workload and pick items from the

shared global pool until MIC completes the kernel execution.

When the OpenMP threads in MIC devices finish executing kernel function, host processor

would collect and compare the two rates Mr and Cr after completing the calculation. The runtime

distributes the remaining iterations to the CPU and MIC based on the calculated α to verify their

rates. The calculation of distribution ratio α has been discussed in Chapter ??. It is important to

note that while the MIC coprocessor is executing, the host CPU continues working from the

global shared pool, thereby eliminating the overhead seen in DDM method.

In the asymmetric model, our design choice is to use a global shared pool to distribute work

items to the processor and coprocessor. We do not use the work-stealing technique since it is hard

to partition the work among CPU threads and MIC threads. Besides, we have to consider the

overhead of transferring data between the CPU and MIC. If we find a good profiling size that

keeps MIC fully utilized with the smallest amount of data, it can be seen that the asymmetric

method has a less overhead than DDM method. Figure 5.7 demonstrates the overhead of DDM
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method and asymmetric method. Game of life with different grids, 8192×8192, 16384×16384

and 32768×32768, are used to test the both methods It can be found that the overhead of

asymmetric method consistently reduces than the DDM method.

5.5 The implementation of Game of Life by different models on heterogeneous clusters with

MIC coprocessors

The game of life has been disscussed in Chapter 3, as shown in Algorithm 7. We will

discuss the implementation details of Game of Life using a single MIC coprocessor. In order to

utilize the computing resources available in the Intel Xeon Phi coprocessor, the proposed

approach employs task parallelism which utilizes more than 200 mic cores, and data parallelism

which uses efficiently vector processing units to process one operation on multiple pairs of data at

once. For using multiple MIC coprocessors, the implementation on a single MIC card will be

replicated to other additional cards.

In the native model, Game of Life runs entirely on an Intel Xeon Phi coprocessor. No job is

dispatched onto the host Xeon CPU. Each MIC core directly hosts up to 4 single-threaded MPI
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Figure 5.8: (a) The original problem size, i.e., a square matrix of cells. (b) Distribute the data
among MPI processes in a row-wise order (4 processes as the example). (c) Communication
among MPI processes.

processes. For each iteration, the statuses of all cells are updated simultaneously. In order to

parallelize the updating process, the cells in the n×n matrix grid are partitioned into 240 stripes in

the row-wise order as the example shown in Figure 5.8. Each stripe is handled by one MPI

process. At the beginning of each iteration, the statuses of the cells along the boundaries of each

stripe have to be exchanged with its neighbors through the MPI send and receive commands. In

other words, each MPI process needs to send the statuses of the cells along the boundaries of each

stripe to its neighbor MPI processes and receive the statuses of the cells of two adjacent rows.

Each MIC runs 240 MPI ranks to process 240 stripes.
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ALGORITHM 7: Game of Life
Function Transition(Cell, t)

n = number of alive neighbors of cell at time t;
if cell is alive at time t then

if n > 3 then
Cell dies of overcrowding at time t+1;

end
if n < 2 then

Cell dies of under-population at time t+1;
end
if n = 2 or n = 3 then

Cell survives at time t+1;
end

end
if n = 3 and Cell is dead at time t then

Cell becomes a live cell by reproduction at time t+1;
end

end

For the symmetric model, the MPI processes run on both the MIC cores and the host Xeon

CPU cores. One host CPU processor and one Xeon phi processor are used. On the computation

node on Beacon supercomputer we use in this work, there are 2 host Xeon CPUs, running up to

32 MPI processes, and 4 Xeon Phi 7120P coprocessors. Therefore we run 8 single-threaded MPI

processes to process 8 stripes on the host CPU. On the MIC coprocessor, we run 240

single-threaded MPI processes to process 240 stripes.

In the DDM, we use two iterations of Game of Life as a test to determine the computing

capabilities of various processors/coprocessors. We find the computational capability of a MIC

coprocessor is about 1.5× times the combined performance of 8 threads on the host processor.

We redesign the implementation of Game of Life based on this test. We schedule 8

single-threaded MPI processes on the host processor to process 8 stripes. A MIC coprocessor

runs 240 single-threaded MPI processes to process 240 stripes.The programs decompose the

problem into unevenly parts based on calculated α. An MPI process on CPU handles 20 times

data compared with an MPI process on MIC. Through the uneven data distribution, all MPI

processes can finish the data processing at roughly the same time.
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In the hybrid model, the MPI processes running on MIC do the communication and serial

parts; and the OpenMP threads inside the MPI processes carry out the computation part. We

schedule 8 MPI processes on host CPU and then determine the optimal combination of

MPI/OpenMP on the MIC coprocessor. Because there are multiple combinations of the number

of MPI processes on a MIC coprocessor and the number of threads spawned by each MPI, we list

5 options in Figure 5.9. It can be found that we can achieve the best performance when the MIC

card issues 12 MPI processes and each MPI spawns 20 threads. This result agrees with the

performance model we obtain in the DDM, i.e., the performance of a single thread on the host

CPU is equivalent to the combined performance of 20 threads on the MIC coprocessor. Therefore,

this model issues 8 single-threaded MPI processes to a CPU and 12 MPI processes to a MIC

coprocessor. A single MPI process running on MIC spawns 20 threads using OpenMP.

70



0 1 2 3 4 5
0

5

10

15

20

25

8192 * 8192

Number of coprocessors

C
om

pu
ta

tio
n 

Ti
m

e 
(s

) Native Model
Symmetric Model
Hybrid Model
Data Distribution Model

(a) 8,192×8,192.

0 1 2 3 4 5
0

20

40

60

80

100

16384 * 16384

Number of coprocessors

C
om

pu
ta

tio
n 

Ti
m

e 
(s

) Native Model
Symmetric Model
Hybrid Model
Data Distribution Model

(b) 16,384×16,384.

0 1 2 3 4 5
0

100

200

300

400

32768 * 32768

Number of coprocessors

C
om

pu
ta

tio
n 

Ti
m

e 
(s

) Native Model
Symmetric Model
Hybrid Model
Data Distribution Model

(c) 32,768×32,768.

Figure 5.10: Performance of Game of Life on three different configurations.

5.6 Result and discussion

We conduct the experiments to use Xeon Phi 7120P coprocessors to demonstrate the

performance of the Game of Life with different programming models. Three different grid sizes

are tested, i.e. 8192×8192, 16,384×16,384, and 32,768×32,768. From the results in Table 5.1, it

can be found that the hybrid model and DDM consistently outperform the native model and the

symmetric model for this intense communication case. The native model does not take advantage

of the compute capacity of the host Xeon CPU when the MPI program only run on Xeon Phi

coprocessors. By observing the performance results of symmetric model, although the symmetric

model is still able to reduce the computation time, the improvement can be ignored when the

small grid size is tested. Xeon CPU core has a stronger computation capability than MIC core.

But the program decomposes the problem into even parts so that the ranks executed on Xeon CPU

have to wait at the synchronize point. Apparently, for this communication dense application, there

is not much performance gain in the symmetric model. Although the symmetric model takes
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Table 5.1: Performance of Game of Life using a single MIC coprocessor(unit: second).
Native Symmetric Hybrid DDM

8,192×8,192 20.43 18.37 12.38 9.21
16,384×16,384 84.45 76.46 43.53 40.79
32,768×32,768 310.45 280.35 157.42 140.76

Table 5.2: Performance of Game of Life (unit: second).
Number of 8,192×8,192 16,384×16,384 32,768×32,768

MICs N S H D N S H D N S H D
1 20.43 18.37 12.38 9.21 84.45 76.46 43.53 40.79 310.45 280.35 157.42 140.76
2 13.45 12.82 8.07 6.56 55.42 51.34 28.35 24.45 179.34 160.90 90.02 80.45
4 8.44 7.63 5.66 4.45 36.34 32.67 18.36 15.56 100.34 90.45 53.47 49.45

N: Native model; S: Symmetric model; H: Hybrid model; D: DDM.

advantage of the compute capacity of the host Xeon CPUs, it demonstrates a load imbalance

problem when the MPI programs are written for homogeneous systems.

Both the hybrid model and DDM also take advantage of the compute capacity of the host

Xeon CPU. From the results in Table 5.1, they have a similar performance and they get about 1.7

times speedup than the native model. Table 5.2 lists the execution time of Game of Life on

Beacon Supercomputer with different programming models. It can be found that the strong

scalability is demonstrated for MPI and OpenMP implementations on four programming models.

For this benchmark, the hybrid model and DDM can consistently outperform the native model by

1.7× based on the results in Table 5.2 and Figure 5.10.

5.7 Accelerating Urban Sprawl Simulation

5.7.1 Urban Sprawl Simulation

Among varieties of approaches to simulating urban growth, Cellular Automata (CA), an

important spatiotemporal simulation approach and an effective tool for spatial optimization

strategies, has been extensively applied to understand the dynamics of land use and land cover
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     t t + 1 

prob(y, i, j) = f (x1, x2,  … xn) 

Figure 5.11: Calibration of the global probability surface from sequential land use data.

change. This study aims to utilize the MIC/CPU heterogeneous architecture to enable complex

CA simulations for urban growth simulation over massive datasets to provide quick and scalable

support for land allocation.

According to the original model designer [61], the stochastic CA model was implemented

by a procedure that calibrates the initial global probability surface from sequential land use data

and then modifies the global probability with the local probability, which is updated in each

iteration of simulation. The purpose of calibration is to extract the coefficients or parameter

values of the rules from the observation of land use pattern at time t and t +1, as shown in

Figure 5.11. Mathematically, this is generalized as the estimation of the probability of particular

state transition y occurring at a particular location (i, j) through a function of development factors

(x1,x2, . . . ,xn).

Besides, two factors, the probability of site selection and the joint probability, constrain the

quantity of simulated conversions to projected land demand. In the case of land use changes, for

each year of simulation, a logistic model can be developed to calculate the probability, computed

as (5.1), In the other word, it can make a decision whether a pixel is developed into urban land use

type or remaining in the current state .

pg(Si j = urban) =
exp(Z)

1+ exp(Z)
=

1
1+ exp(−Z)

, (5.1)

where pg is the observed global probability y for a cell to convert to urban, ranging within [0, 1],
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Si j is the state of the cell (i, j). The joint probability can be calculated as the product of global

probability, cell constraint, and neighborhood potentiality. Cell constraint refers to factors that

exclude land development on the cells such as a body of water, a mountainous area and planning

restriction zones. It is possible to use an evaluation score of land suitability instead of a binary

one (suitable/unsuitable). The joint probability is stated in (5.2).

pt
c = pgcon(St

i j = suitable)Ωt
i j, (5.2)

where con() converts the state of suitable land into a binary variable. Again, please note that the

joint probability pc is denoted with time t, indicating it changes along with iterations.

In this model, the neighborhood function is calculated in a conventional ad hoc way. The

neighborhood potentiality of cell transition, as defined in (5.3), calculates the urban density of the

cells 3 × 3 neighborhood at time t.

Ω
t
i j =

∑3×3 con(si j = urban)
3×3−1

. (5.3)

Based on the joint probability, a Monte Carlo process is applied in the calculation of the

scaling of probability defined in (5.4).

pt
s(i j) =

qpt
t(i j)

∑i j pt
t(i j)

, (5.4)

where q is the number of cells to be converted according to projected land conversion at

each iteration. The value of the right-hand should be limited at 1.0 to ensure that the probability is

within the range of 0 to 1. This transformation in fact constitutes an additional constraint to the

joint probability. As a result, the scaled probability is composed of three probabilities: (1) the

probability of development measured on global factors, (2) the probability of development

measured on local factors, and (3) the probability of cell selection according to the projected land
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Table 5.3: Performance of Urban Sprawl Simulation (unit: second).
Platform: Single MIC and Single GPU (problem size: 10,000×10,000×7)

No. of 1993–2002 1993–2012 1993–2022 1993–2032 1993–2042
Proc. Read Comp. Total Read Comp. Total Read Comp. Total Read Comp. Total Read Comp. Total

Single-MIC DDM Implementation
7120p 6.32 9.4 15.72 6.31 18.85 25.16 6.11 28.6 34.71 6.23 40.45 46.68 6.26 49.4 55.66

Single-GPU Implementation
K20 4.40 27.65 32.05 4.40 54.57 58.97 4.41 78.63 83.04 4.43 103.65 108.08 4.42 134.76 139.18

demand.

The grid pt
s(i j) is the urbanization status of a cell at time t, and rand(i j) generates a random

number with uniform distribution within the range of [0, 1]. Comparison between the grid pt
s(i j)

and a random grid will decide whether the cell is to be converted at time t +1 as in (5.5).

St+1(i j) =


urban, pt

s(i j)> rand(i j)

rural, pt
s(i j)6 rand(i j)

, (5.5)

When large scale datasets are applied, it is time consuming to complete such a complex

model, or it could be an impossible task if the computer does not have sufficient memory to hold

the input data, intermediate processing outcome, and the final output results.

5.7.2 Implementation and Results

The input image to this application is southern California taken in 1993. We use a part of

image, a dimension of 10,000×10,000 for 7 bands, as an input. In order to project the urban

growth in n years, n iterations of simulation need to be carried out. When multiple processors are

used in the parallel implementation, the data partition is similar to the case of Game of Life, i.e.,

each image is divided into multiple stripes along the row-major order. It is also a densely

communicating parallel application.

This urban sprawl simulation is implemented on a single Xeon Phi 7120P coprocessor with

a host CPU (Intel Xeon E5-2603 v3) using the DDM parallel model. 240 single-thread MPI

75



processes are scheduled on the MIC coprocessor in addition to 6 single-thread MPI processes on

the host CPU. Five different simulations are carried out from 10-year projection to 50-year

projection. For this application, we also conduct a performance comparison between a single

Nvidia K20 GPU [35] and a single MIC coprocessor (with the host CPU).

The results in Table 5.3 show that the implementation of DDM model using one Xeon Phi

7120P (with the host CPU) can outperform the implementation on a single Nvidia K20 GPU by 2

times. GPU solution does not get an ideal performance, because this simulation contains four

kernels of CA transition. CA may lead to a problem of warp divergence on GPU because the

value of each cell need to be decided by their neighbors, as shown in Algorithm 7. Besides, after

completing each CA kernel, operations of joint and sum are implemented to decide the rule of

next kernel. As a result, data exchange between GPU and CPU has to be done for a better

performance.

5.8 Conclusion

In this work, we conduct a detailed study regarding the load imbalance problem on

heterogeneous computing environment including Intel Xeon Phi coprocessors. Among the four

parallel programming models, the native model only schedules the MPI processes to the MIC

coprocessors, therefore wasting the computing capability of the host processors. The remaining

three programming models schedule the MPI processes to both the MIC coprocessors and the

host processors, which may have different computing capabilities. The symmetric model may

have a load imbalance problem because the MPI processes running on different types of

processors/coprocessors may spend different amount of time to process the evenly distributed

work load. The hybrid model and the DDM model try to address the load imbalance problem

using different ways. In the hybrid model, the work load is still evenly distributed. However, the

MPI processes running on MIC coprocessors will spawn multiple OpenMP threads to match the

performance of MPI processes running on the host CPUs. However, the combination of
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MPI/OpenMP implementation has to be carefully adjusted to achieve the balance between the

host processors and the coprocessors. In the DDM model, single-thread MPI processes are

deployed on both host processors and coprocessors. However, the work load distribution among

the MPI processes is proportional to the computing capabilities of the processors/coprocessors.

The DDM model automatically carries out a performance profiling step to determine the

computing capabilities of various processors and coprocessors in the heterogeneous

environments. Based on the computing capabilities of the hosting processing cores, a proportional

amount of data will be distributed to MPI processes so that they finish the data computation in

roughly the same amount of time. Among the four parallel programming models, the hybrid

model and DDM outperform the native model and symmetric model by about 2 times for the

Game of Life benchmark.
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Chapter 6

Automatic Performance Improvement on Heterogeneous Platforms: A Machine Learning

Based Approach

In the previous chapters, we demonstrate different techniques regarding to the problem of

load imbalance in different scenarios. Chapter 4 focuses on the distribution of task in XeonPhi

and Chapter 5 demonstrates a smart data distribution model balancing the distribution of

workload between the processors and coprocessors. Given these results, the imbalanced data and

task partition can seriously hurt the performance. However, the number of possible options

regarding data and task distribution between host processors and coprocessors is huge. It would

take a large amount of time to determine the right data partition and task parallelism on

heterogeneous platforms given a new application.

In this chapter, we presents a novel runtime approach to determining the optimal data and

task partition automatically on heterogeneous platforms, targeting the Intel Xeon Phi accelerated

heterogeneous systems. We employ machine learning techniques to train a predictive model

off-line and then use the trained model to predict the data partition and task granularity for any

unseen programs at runtime. We apply our approach to 21 representative parallel applications and

evaluate it on a Xeon-Xeon Phi mixed heterogeneous platform.

6.1 Introduction

A supercomputer may provide a heterogeneous environment including the host processors

and accelerators. As a consequence, programmers can execute applications on both host

processors and accelerators. To achieve the combined performance potential, it requires software

to effectively partition the the workload of parallel applications to maximize the computation

overlap between host processors and accelerators. Offload mode, a classic programming mode in
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the heterogeneous system, is to use host processors to manage the execution context while the

computation is offloaded to the accelerators. Effectively leveraging such platforms not only

achieves high performance and good scalability, but also increases the energy efficiency.

While the heterogeneous platform provides the potential for high performance and energy

efficiency, the classic offload model leaves the host processors unutilized. This means this

approach does not take advantage of the computing capacity of the host processors and is likely to

give away too much performance potential of the whole system. Asynchronous data transfer and

computation have been proposed as a solution to decrease the host-device1 communication cost

and to increase the utilization of host processors [19, 34]. In asynchronous mode, the host

processor sends workload to the accelerator. Then the host processor continues the execution of

other workload until it is requested to wait for a kernel running on the accelerator to finish. In this

case, both host processors and accelerators can work in parallel to undertake a computation task.

However, it is hard to determine the right data partition and task parallelism on

heterogeneous platforms given a new application. The number of possible options regarding data

partition between host processors and accelerators is huge. The imbalanced data and task

partition can seriously hurt the performance. In this work, we provide a novel approach to

determine the optimal distribution of data and threads for any unseen programs.

The remainder of this chapter is organized as follows. We discuss some related work and

problem scope in Section 6.2. The predictive model is discussed in Section 6.3. In Section 6.4,

we demonstrate the experiment platform and the benefit of our new method and compare the

performance with the non-asynchronous method. Finally, we give the concluding remarks in

Section 6.5.
1host: host processor; device: accelerator/coprocessor.
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6.2 Background and Overview

Supporting data parallelism in a heterogeneous system requires two parts. First, executable

versions of a kernel must be compiled for all types of processors. Second, a scheduling

mechanism is required to determine how to execute parallel sections (e.g., parallel iterations) of

applications. There are different approaches to scheduling parallel sections across multiple

processors of a heterogeneous system in order to minimize execution time.

This section presents a novel runtime approach to determining the optimal data and task

partition on heterogeneous platforms, targeting the Intel Xeon Phi architecture. We do so by

employing machine learning techniques to train a predictive model that can automatically decide

at runtime the optimal configuration for any application. Our predictor is first trained off-line.

Based on the code and runtime features of a program, the model predicts the best configuration

for a new and unseen program. We apply our approach to 21 representative benchmarks, and

evaluate the predictive model on a heterogeneous many-core platform that contains general

purposed multi-core CPUs and 61-core Intel Xeon Phi coprocessors. Our approach achieves, on

average, a 1.6× and 1.9× speedup with 1MIC+1CPU and 1MIC+2CPUs, respectively, over the

optimized, non-asynchronous code.

6.2.1 Related work

Online profiling

In online approaches, the decision of where to execute parallel iterations is made at runtime.

The programmer does not have to train the system on representative inputs for each target

platform. Work-stealing and profiling-based scheduling are popular methods to solve load

imbalanced problems. Work-stealing [11] is to address load imbalance in multi-core execution.

Profiling-based scheduling is an online profiling based approach [25]. The application kernel is

dynamically profiled in order to determine the distribution of workload between the host
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processors and the accelerators.

Offline profiling

In offline approaches, the application is first executed using a training data set and profiled.

The profiling data is used to select the scheduling policy for subsequent runs of the same

application against real data. Qilin [40] performs an offline analysis to measure the kernel’s

execution rate on each device (CPU and GPU). These rates are used to decide the distribution of

work for each device. Qilin uses a linear performance model to chose the scheduling policy based

on the size of the input data set. In fact, many factors determine the performance of each device.

If only depending on the kernel’s execution rate of training data, the scheduling policy is likely to

be suboptimal when the training data differs significantly than the actual data used in subsequent

runs. In this paper, we present a new method based on machine learning algorithms to decide the

distribution of work among processors (including both host processors and accelerators).

6.2.2 Problem Scope

Our work aims to improve the performance of parallel applications on heterogeneous

platforms. The performance improvement would be achieved by determining at runtime how to

distribute workloads among host processors and accelerators. In this work, we target the Intel

Xeon Phi architecture. But our methodology is generally applicable and can be extended to other

architectures including GPGPUs and FPGAs.

Figure 6.1 demonstrates a simplified code example written with Intel’s asynchronous APIs

running on a platform containing one host processor and one Xeon Phi coprocesosr. At line 3 we

initialize the asynchronous execution by using an o f f load pragma with a signal clause and we

set the number of workload working on Xeon Phi. This initialization process transfers data

between the host processor and Xeon Phi coprocessor and determines how much data can run on

the coprocessor. In the f or loop(lines 9-14) we decide how many concurrent threads are
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Figure 6.1: Asynchronous code example.

employed in level 1 and level 2 (need to explain what are level 1 and level 2). The nested

parallelism is set by omp set nested() API.

When Xeon Phi is working on computation task, the host CPU continues execution line

17-23 until it is requested to wait for a kernel to complete as shown in line 24. In this way,

computation between host processor and Xeon Phi can be overlapped during execution. Because

host CPU usually has a limited number of concurrent threads, we only employ parallelism in level

1. A performance improvement is going to be achieved when the kernels running on the host

processor and Xeon Phi are completed at the same time. Our predictive model determines the

ratio of workload running on Xeon Phi and the number of concurrent tasks in level 1 and level 2

before invoking asynchronous initialization.
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Figure 6.2: Running times for different numbers of threads [62].

6.2.3 Motivating Examples

Impact of number of threads

The work in [62] investigates the impact of affinity and scheduling policy on performance.

The number of threads are set to 61, 122, 183 and 244, so that the capability of manycore Xeon

Phi can be fully utilized. Figure 6.2 demonstrates the impact of number of threads on

performance. It can be found that some benchmarks, such as Naive Bayes, Sort and K-means,

achieve the best performance when thread counts are set to 244, while NLPCA, PageRank, PCA

and SVM have the best performance when using 183 threads and IBCF uses 122 threads to get the

best performance. Therefore, we cannot simply determine the best performance by using all

hardware resources.
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Figure 6.3: Computation time of Stencil and FFT2D under different thread configurations. M×N:
M is the number of threads offloaded to a MIC card for realizing the level-1 parallelism, each
thread further spawns N threads to achieve the level-2 parallelism

Impact of configuration of threads

Figure 6.3 shows the computation times based on MIC offload mode with different

configurations of threads for two applications (Stencil and FFT2D) on a 61-core Intel Xeon Phi

system. In this experiment, 240 threads are scheduled to one Intel Xeon Phi device under various

configurations. It can be observed from these benchmarks that it is critical to adjust the

configuration between level 1 and level 2 parallelism to achieve the best performance. As can be

seen from the diagrams, the search space of thread configurations is huge and good configurations

are sparse. The performance varies significantly over thread configurations. The optimal thread
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Figure 6.4: Performance based on different ratios of workload distribution. 1 CPU + 1 MIC: 6
threads are created on one host CPU and 240 threads are created on one MIC. 2 CPUs + 1 MIC :
12 threads are created on two host CPUs and 240 threads are created on one MIC.

configurations for Stencil are 6×40, 8×30, 10×24 and 12×20. In contrast to Stencil, FFT 2D

benefits from thread configurations of 20×12, 24×10 and 30×8. As a result, the optimal thread

configurations vary for different applications.

Impact of workload distribution

Figure 6.4 shows the computation times with different ratios of workload distribution and

different configurations of platforms. As can be seen from the figure, the best distribution of

workload can vary for different benchmarks. The optimal workload distribution of Stencil is to

transfer 60%-70% workload into Xeon Phi device for 1 CPU + 1 MIC configuration and
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50%-60% workload to into Xeon Phi device for 2 CPUs + 1 MIC model. In the case of FFT 2D,

the amounts of workload sent to Xeon Phi device are 50%-60% and 30%-40% for 1 CPU + 1

MIC configuration and 2 CPUs + 1 MIC configuration, respectively.

These three examples demonstrate that choosing the right configuration has a great impact

on the performance improvement and the best configuration must be determined for each unique

program. Attempting to find the optimal configuration through means of an exhaustive search

would be ineffective. The overhead involved would be far bigger than the potential benefits.

Therefore we use machine learning to automatically construct a predictive model that can directly

predict the best configuration. The predictive model introduces the minimal runtime overhead and

has little development overhead when targeting new architectures.

6.2.4 Overview

To determine the optimal workload distribution and thread configurations, we use a set of

features to capture the characteristics of the benchmarks. We use the MAQAO [18] performance

tool for performing static analysis of binary code and use perf’s tools [17] to collect runtime

information at execution time. Given the outputs of MAQAO and perf’s tool, we develop a

Python program to capture features for training process and predicting process.

Because the profiling process also contributes to the final program output and the method

has a low overhead, there is no big computation cycle to be wasted. At prediction process, a

predictive model, which is trained offline, is used to predict the optimal configuration of workload

distribution and threads by feature values.

6.3 Predictive Modeling

In this study, Support Vector Machine (SVM) with a Gaussian function kernel [56] is used

to determine the best workload distribution and thread configuration. The model is implemented
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Table 6.1: Benchmarks list.
Benchmarks to generate training (including cross validation) data

Package Benchmark Name

NVIDIA SDK

convolutionSeparable
convolutionFFT2d

MonteCarlo

fwt
vectorAdd
dotProduct

matVecMul
transpose

AMD SDK binomial dct BlackScholes
Benchmarks to generate testing data

Package Benchmark Name

Parboil

tpacf
lbm

mri-gridding

sgemm
histo

stencil

cutcp
mri-q
spmv

using scikit-learn library [48]. Besides, we have evaluated a number of machine learning models,

including random forest, K-nearest neighbor (KNN), decision trees, and the artificial neural

network (ANN). We chose SVM to train predictive model because it generates the best

performance and can model both linear and non-linear problems. The model takes in feature

values and predict labels for the optimal configuration.

Our approach follows four steps: (1) generate training data, (2) features analysis, (3) train a

predictive model, and (4) predict the optimal configuration of an unseen application.

6.3.1 Generating training data

As currently there exist very few programs written with Intel’s asynchronous API, we

manually translated 20 applications from the commonly used benchmark suites [6, 1, 59].

Table 6.1 gives the full list of these benchmarks. In this work, we use over 15 different input

dataset for each training benchmark and totally the training dataset contains more than 1,500

samples.

These 20 benchmarks are divided into two groups. 11 benchmarks in NVIDIA SDK and

AMD SDK are used for generating the training data. The training data is further divided into

multiple folds to carry out cross validation. We did not include the prefixSum benchmark in the

AMD SDK because the cost of transferring data from host processor to MIC coprocessor is far
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Table 6.2: Nested Thread Configuration.
#threads Config. Config. Config. Config. Config. Config.

60
1×60
2×30

3×20
4×15

5×12
6×10

10×6
12×5

15×4
20×3

30×2
60×1

80
1×80
2×40

4×20
5×16

8×10
10×8

16×5
20×4 40×2 80×1

100
1×100
2×50

4×25
5×20

10×10
20×5 25×4 50×2 100×1

120

1×120
2×60
3×40

4×30
5×24
6×20

8×15
10×12
12×10

15×8
20×6
24×5

30×4
40×3

60×2
120×1

140
1×140
2×70

4×35
5×28

7×20
10×14

14×10
20×7

28×5
35×4

70×2
140×1

160
1×160
2×80

4×40
5×32

8×20
10×16

16×10
20×8

32×5
40×4

80×2
160×1

180

1×180
2×90
3×60

4×45
5×36
6×30

90×20
10×18
12×15

15×12
18×10
20×9

30×6
36×5
45×4

60×3
90×2

180×1

200
1×200
2×100

4×50
5×40

8×25
10×20

20×10
25×8

40×5
50×4

100×2
200×1

220
1×220
2×110

4×55
5×44

10×22
11×20

20×11
22×10

44×5
55×4

110×2
220×1

240

1×240
2×120
3×80

4×60
6×40
8×30

10×24
12×20
20×12

24×10
30×8
40×6

60×4
80×3

120×2
240×1

larger than calculation time. The remaining 9 benchmarks in the Parboil package are used to

generate the testing data for the performance predictive model.

We run each program under a specific configuration multiple times and report the geometric

mean of the runtimes. A set of programs are executed on the CPU and the Xeon Phi many times

with different configurations to determine the best workload and threads distribution. We first run

each benchmark on Xeon Phi to determine the best thread configuration and achieve the best

performance and then decide the workload distribution between the processor and coprocessor.

Besides, we execute each training program with different amount of dataset across all of our

considered workload and threads configurations, and record the performance of each.

Specifically, we profile the program using the α, which represents the percentage of workload

distribution to coprocessors, ranging from 0 to 1 with the step of 0.1 and the number of threads

ranging from 10 to 240 with the step of 10. In the nested applications, we additionally profile the

thread configurations, as shown in Table 6.2.
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Next, we record the best performing configuration for each program and dataset, keeping a

label of each. Finally, we extract the values of our selected set of features from each program and

dataset.

6.3.2 Features

Feature Selection

In order to apply machine learning techniques to any decision-making problems, we need to

select a set of relevant features that comprehensively represent a set of problem instances. These

features would have an significant effect on the training model process. Code features are

extracted from the program source code using static analysis tools. Dynamic features are

collected using hardware performance counters during the initial profiling run of the target

application. In order to collect the static and dynamic features, we run our benchmarks both on

host CPUs and MIC with MAQAO and perf-tools. Perf-tools are commonly available on modern

processors and provide low-overhead access to a wealth of detailed performance information.

MAQAO [18] is a performance tuning tool that performs both static and dynamic analysis of the

binary code and it is able to capture values in the code. Besides, MAQAO can be used to trace

memory accesses, count loop iterations and capture function parameters. By using above tools,

we are able to achieve more choices of code and runtime features and this approach also can be

migrated to other architectures. We considered 28 candidate features in this work. Some features

were chosen based on previous work [21, 29], and others were chosen from our intuition that

these factors can affect the performance such as the overhead of data transferring and the times of

data transfer API calls.

Feature Importance

We used the forward feature selection and random forest [16] to select the most important

features. Forward feature selection begins training a separate model for each single feature. In the
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Figure 6.5: Feature importance according to Forward Feature Selection and Random Forest

Table 6.3: Seleted Features.
Feature Description

max Phi threads the maximum number of xeon Phi threads
ipt number of items to be processed for each thread

#instructions the total number of instructions of the kernel
branch miss branch miss rate

L1 DCR L1 Data cache miss rate
max CPU threads the maximum number of CPU threads

loop nest number of levels the loop can be parallelized
loop count number of the parallel loop iterations

dts total host-device transfer size

other word, we start by measuring the cross-validation score of the one feature subsets so that we

can find the best individual feature and add it into the set of selected features. And then forward

selection finds the best subset containing two features by measuring the cross-validation score of

each remaining feature and the already selected features. This step will repeat until adding

another feature will not further improve the score. Random forest is a classification method, but it

also provides feature importance [12]. Its basic idea is as follows. A forest contains many

decision trees, each of which is constructed by instances with randomly sampled features. The

prediction is by a majority vote of decision trees. In order to obtain feature importance, the

method would split the training sets into two parts. One is used to train and the other is used to

predict so that we can obtain an accuracy value. For the ith feature, we randomly permute its
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Figure 6.6: Training process (W&T: workload distribution and thread configuration).

values in the second set and obtain another accuracy. The difference between the two numbers

can indicate the importance of the ith feature. According to the results of two feature selection

methods, we find out 9 important features, as shown in Table 6.3. Figure 6.5 also demonstrates

average cross validation scores. In these 9 features, features that capture the parallelism (e.g., max

Phi threads), workload on each thread (e.g., items per thread), and computation (e.g., instructions)

are found to be the most important. Other features such as L1 DCR and loop nest are useful, but

are less important compared with others.

6.3.3 Training model

Our method for model training is shown in Figure 6.6. Based on the training patterns, we

build a model with inputs for each feature and outputs that predict the optimal workload

distribution and thread configuration for an unseen application. The features extracted from

performance tuning tools and the corresponding configuration labels are passed to a machine

learning algorithm. The output of our learning algorithm is a SVM model where the weights of

the model are determined from the training data. The program generating machine learning

model is developed based on Python and scikit-learn library. Besides, we use the parameter

tuning tool provided by scikit-learn to determine the kernel parameters. Parameter search is

performed on the training dataset using cross-validation.

The training is only performed once off-line. In this implementation, the overall training

process takes less than a week on a single machine with Intel i7-5775R CPU and 16GB memory.
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6.3.4 Runtime Deployment

Our overall approach requires to build a model using machine learning and then predict

workload distribution and thread configuration from a set of features that describe the essential

characteristics of a program. Once we have built and trained our predicted model as described

above, we can use it to predict the best W&T configuration for any new, unseen program as

shown in Figure 6.7.

When a new application is fed into our program, the feature values of the program would be

extracted by profiling the program. Once feature collection is completed, feature values would be

fed to the predictive model, which will generate the outputs predicting the optimal workload and

threads configuration for the target program.

6.4 Experimental results

6.4.1 Experiment setup

Experiment platform

Our evaluation platform is a server with two Intel E5-2603 v3 Xeon CPUs and an Intel

Xeon Phi 7120P accelerator (61 cores). The host CPUs and the accelerator are connected through

PCIe. The host environment runs CentOS 6.5. We use Intel’s MPSS (v3.6) to communicate

between the host and the coprocessor.
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Evaluation Methodology

Cross validation [30] is used to evaluate our machine learning model. Cross validation is a

method to evaluate predictive models by partitioning the original sample into a training set to

train the model, and a validation set to evaluate it. In this work, leave-one-out cross validation are

applied to AMD SDK, NVIDIA SDK suites for training the predictive model, which means one

target program excluded from the training program set is kept for validation, and remaining

programs are applied for training a predictive model. we then apply the learned model to predict

the workload and threads configuration of the validated target program. We repeat this process

over and over again until each benchmark from AMD and NVIDIA SDK is evaluated.

Leave-one-out cross validation is a standard evaluation methodology, providing an estimate of the

generalization ability of a machine-learning model in predicting unseen data.

6.4.2 Result

In this section, we demonstrate the overall performance of our approach with 1MIC+1CPU

and 1MIC+2CPUs. We then compare our approach using the fixed number of threads with

different configurations and show that a right choice of thread configuration also plays a

significant role in performance improvement.

Overall Results

The result, shown in Figure 6.8, demonstrates the range of speedups per application across

all evaluated inputs. Overall, our approach achieves an average speedup of 1.6× and 1.9× over

the baseline method. The baseline method used to calculate the speedup is running the application

on a single MIC without CPU processors. And the results of baseline method are the best result

we achieved from optimal thread configuration. In this experiment, we exhaustively profiled each

application with all possible workload and threads configurations. Our approach use
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Figure 6.8: Overall performance compared to a single Xeon Phi version with the optimized,
non-asynchronous code. Our approach achieves an average speedup of 1.6× and 1.9× with using
1MIC+1CPU and 1MIC+2CPUs.
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Figure 6.9: Performance difference between the worst and the best thread configurations.

1MIC+1CPU and 1MIC+2CPUs to run the entire applications. Although our model is not

trained on the Parboil benchmark suite, it achieves good performance, achieving 1.5× and 1.8×

speedup. This demonstrates the portability of our approach across benchmarks.

Analysis of High Speedup Cases

We found that there are several benchmarks obtain a speedup of over 2×. After having a

detailed investigation, we notice that the performance of two host CPUs(12 threads) is better than

that of Xeon Phi because the cost of transferring data between the host and Xeon Phi is also

important to the overall performance.

Analysis of thread configurations

The Figure 6.9 demonstrates the performance difference between the worst and the best

thread configurations. To quantify the benefit of kernel time reduction, we measure the kernel

execution time with different threads configuration, as shown in Table 6.2, and calculate the

speedup between the worst case and the best case. The best case is achieved by parallelizing a

nested loop with different thread configurations. Based on the same number of threads of the best
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case, we can get a thread configuration for the worse case. Compared to the worse thread

configuration, the best configuration achieves an average speedup of 4.3× using a single MIC

without CPU processors. Besides, the best configuration achieves an average speedup of 1.7×

and 1.5× over the worse configuration using a single MIC with one CPU processor and two CPU

processors. We found the final configurations of workload and threads can decrease the effect of

the worse case of threads distribution.

The performance improvement for convolution, dct, matVecMul and transpose is shown in

Figure 6.9. As can be seen from the diagram, choosing a good threads configuration can lead to

more than 2× speedup on the kernel execution time because these benchmarks are implemented

by parallelizing a nested loop. Efficient implementation of nested parallelism is difficult or

complex, because it needs a thread management that can comfortably handle a very large number

of threads. The parallel threads working on the inner loop will need to be created, synchronized,

or destroyed for each outer loop iteration. In general, parallelizing inner loops while outer loops

iterates many times would achieve a bad performance because of forking and joining overhead of

threads. This threading overhead could be significant to the overall performance.

When using a better combination of threads, we essentially divide the whole outer loop

iteration space into multiple smaller iteration space. This allows multiple groups of threads to be

managed simultaneously, leading to a significant decrease in threading overhead and faster kernel

execution time. On the other hand, we note that using too many threads on outer loop will lead to

a performance decrease. This is because creating nested parallel regions adds overhead, which

means overhead increases as the number of outer threads increases.

Compare to different Learning models

The average speedup achieved by different learning models are shown in Table 6.4. For

each learning model, we use the same training dataset and features and follow the same training

methodology to build a model. These program are implemented by scikit-learn [48]. In the
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Table 6.4: Compare to the different learning models.

Learning model
Ave. Speedup

(1MIC+1CPU)
Ave. Speedup

(1MIC+2CPU)
RandomForest 1.55 1.8
DecisionTree 1.24 1.48

KNN 1.34 1.59
ANN 1.55 1.78

GussianSVM 1.6 1.9

process of setting parameters, we try various of parameters to find the best result. For example,

we try different k values to build KNN models. In the implementation of ANN, we also try

different number of hidden layers and neurons.

It can be found that all models achieve a performance over 1.2× and 1.4× speedup when

the program uses 1MIC+1CPU and 1MIC+2CPUs. The SVM model based on the Gaussian

kernel achieves the best performance. This is because the Gaussian kernel function can model a

non-linear relation between the features and the labels. Typically, the best possible predictive

performance is better for a nonlinear kernel [27]. As a result, it predicts the best workload and

threads configuration more accurate than other alternative models. Artificial neural

network(ANN) is believed to train a better model if more data are added into training dataset.

Summary

The performance improvement of our approach comes from two factors. First, our approach

allows effective usage of threads by predicting the right configuration. Second, compared to the

single MIC execution, our approach achieve the maximum gain and resource utilization on

heterogeneous computer architecture, the computation workload in an application should be

distributed across accelerators and host CPUs. Besides, the ideal distribution of workload on host

and accelerators achieves maximum performance improvement and it can decrease the effect of

the worse case of threads configuration. As a result, the performance improvement mainly comes

from the computation capability of host CPU and the optimal distribution of threads on Xeon Phi.
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6.5 Conclusion

In this section, we conduct an approach based on machine learning to partition workload

between host and accelerator on heterogeneous computing environment targeting Intel Xeon Phi

coprocessors. We use existing machine learning methods to predict the optimal workload and

threads configurations. The training process is to build our predictive model and predicting

process is based on a set of features of program. Our approach is evaluated by a set of

benchmarks on a heterogeneous platform containing two Xeon CPUs and one Xeon Phi. The

results demonstrate that the approach achieves, on average, a 1.6× and 1.9× speedup with

1MIC+1CPU and 1MIC+2CPUs over the optimized, non-asynchronous code, respectively.

When we use a single MIC without CPU processors, the best configuration of threads achieves an

average speedup of 4.3× than the worse configuration. Besides, the best configuration achieves

an average speedup of 1.7× and 1.5× over the worse configuration using a single MIC with one

CPU processor and two CPU processors, respectively. We found the final configurations of

workload and threads can decrease the effect of the worse case of threads distribution.
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Chapter 7

Conclusion

7.1 Summary

This thesis shows several new approaches solve the problem of load imbalance in different

levels. An important contribution of this work is to achieve the maximum gain and resource

utilization on heterogeneous computer architecture automatically instead of an exhaustive manual

search. Through this study, we have the following findings:

1. A static task distribution among working threads may introduce an imbalance of workload

among them. In order to improve the overall performance, leveraging the dynamic task

distribution is necessary so that a thread will request a new task from a task pool once it

finishes the processing of the current task. Experiment results show that this technique can

improve the performance by 25%. In addition, we try to leverage the processing power of

the host CPU by implementing the algorithm with irregular kernels. The results show that

the hybrid implementation is able to further improve the performance by 40%.

2. The hybrid model and the proposed DDM model try to address the load imbalance problem

using different ways. Hybrid model has to be carefully adjusting the combination of

MPI/OpenMP implementation by an exhaustive search manually to achieve the balance

between the host processors and the coprocessors. The DDM model automatically carries

out a performance profiling step to determine the computing capabilities of various

processors and coprocessors in the heterogeneous environments. Based on the computing

capabilities of the hosting processing cores, a proportional amount of data will be

distributed to MPI processes so that they finish the data computation in roughly the same

amount of time. Results show that the hybrid model and DDM have similar performance

and outperform the native model and symmetric model by about 2× for the benchmark.
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3. A machine learning method is proposed to automatically construct a predictive model that

can directly predict the best configuration. Instead of using an exhaustive search, an

predictive model would be trained to find the optimal configurations of workload and

threads. This approach is evaluated by a set of benchmarks on a heterogeneous platform

containing two Xeon CPUs and one Xeon Phi. The results demonstrate that the approach

achieves, on average, a 1.6× and 1.9× speedup with 1MIC+1CPU and 1MIC+2CPUs over

the optimized, non-asynchronous code, respectively.

7.2 Future Work

In this thesis, we focus on asynchronous calculation and efficiently utilizing all available

resources to achieve performance improvement, targeting the Xeon Phi coprocessor. A machine

learning model builds a good model to predict the configuration of the unseen data. We use

MAQAO and perf-tools to capture the static and dynamic code features. Through the study, a few

ideas of future work are demonstrated as follows:

1. Instead of using MAQAO, a LLVM compiler can be developed to extract static code

features at compile time so that the overhead of capturing static feature can be ignored. At

runtime, a predictive model (that is trained offline) takes in the feature values and predicts

the optimal configurations. The overhead of runtime feature collection and prediction is

going to be small.

2. This thesis uses the traditional machine learning models to train a model to predict the

unseen data because we only generate about 1500 samples. However, a neural network is

gaining much popularity due to its accuracy when trained with huge amount of data. This

work transfers 20 benchmarks to the targeted code. In the future work, a neural network

would be evaluated when a huge amount of data is generated with different benchmarks.
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