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Abstract 

This work investigates ecotoxicology of new insecticide mixtures to Apis and non-Apis 

bees. Previous studies have demonstrated the acute and sub-lethal toxicity of individual active 

ingredient insecticides to honey bees and to a lesser extent non-Apis bees. However, the contact 

toxicity of formulated premix insecticides containing multiple active ingredients to bees has not 

been thoroughly assessed. To address this void, laboratory studies simulating exposure to four 

premix insecticides under different field-realistic scenarios were conducted for two bee species. 

Honey bee, Apis mellifera (Linnaeus) contact exposure was examined by simulating three 

scenarios: (1) when bees continuously forage in a field and are directly exposed to insecticides 

when they are being applied in that field; (2) when bees are exposed to insecticide sprays while 

passing through a field; and (3) when bees forage through a field in which insecticides were 

applied during the previous day. Insecticides comprised of neonicotinoid and pyrethroid 

chemistries were found to be the most toxic, and induced rapid onsets of mortality, while those 

comprised of diamide, molting hormone agonist and spinosyn chemistries were relatively less 

toxic, inducing a slower onset of mortality. At 96-hours, overall high mortality was observed for 

all treatments, thereby indicating the high acute toxicity of these insecticide mixtures to honey 

bee foragers. 

Like honeybees, blue orchard bee, Osmia lignaria (Say), contact exposure was examined 

by simulating (1) when male and female bees are foraging in an orchard and come into spray-

contact with premix insecticides, and (2) when male and female bees come into contact with 

individual active ingredient insecticides or their 1:1 binary combination. Similar to honey bees, 

insecticides comprised of neonicotinoid and pyrethroid active ingredients posed the highest 

toxicity and most rapid onset of mortality for blue orchard bees, and insecticides comprised of 



 

diamide, molting hormone agonist and spinosyn chemistries had somewhat lower toxicity, but 

with more gradual mortality onset. High mortality resulted at 96-hours for all treatments, thereby 

indicating the high acute contact toxicity of these insecticides. These results will help to improve 

the current risk assessment framework for laboratory-based insecticide safety trials on bees. 
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I. Introduction 

A. Bees Are Integral Pollinators 

Pollination services provided by animals are integral for successful fertilization and 

resulting seed set of many angiosperm plants. During the process of foraging, these animals 

cross-pollinate plants of different cultivars by transferring pollen grains from the anthers of one 

flower to the stigma of another. Approximately 80% of wild plant species depend on animal 

pollinators to produce fruits and seeds (Biesmeijer et al. 2006; Potts et al. 2010), while 

approximately 35% of agricultural food and fiber crops depend on animal pollinators to yield 

harvestable fruits, vegetables, nuts, seeds and fibers (Klein et al. 2007). Bees provide the 

majority of pollination services and are considered to be the most important pollinators from 

agricultural crop yield and economic perspectives (Klein et al. 2007). 

The bees (Hymenoptera: Apoidea: Anthophila) are a large and diverse clade comprising 

more than 17,500 described species and up to 20,000 species worldwide (Michener 2007). They 

are taxonomically classified as three distinct groups: honey bees (7 species), bumble bees 

(approximately 300 species) and solitary or wild bees (approximately 17,000 species, some of 

which are not solitary, but eusocial) (Michener 2007). Bees can also be classified biologically 

based upon their nesting behavior: approximately 70% of bees excavate tunnel-like nests in holes 

underground with specializations for soil, moisture, and salinity, 20% excavate nests above 

ground in pre-existing cavities in deadwood, dead stems where they have removed the pith, free 

standing structures or construct stand-alone nests and 10% are cleptoparasites that rob nectar and 

pollen provisions from the nests of other bee species (Cane 1991; Cane 2001; Wilson and 

Messinger Carril 2016). 
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Native to Africa, Europe and the Middle East, European honey bees [Apis mellifera 

(Hymenoptera: Apidae) (Linnaeus, 1758)] are domesticated for their pollination services and 

production of a variety of hive products (including honey) throughout most of the world. They 

are generally considered to be the most valuable pollinators of monoculture crops given their 

perennial biology, large workforce of foragers, ecology as non-specific pollinators, widescale 

availability, ease of transportation and economic affordability (Klein et al. 2007; vanEngelsdorp 

and Meixner 2010). Honey bees are also valuable for agriculture because their activity is 

controlled by ambient temperature throughout the autumn and winter in warmer climates, as 

opposed to other bee species that are only active during specific seasons and have an extended 

diapause (Wilson and Messinger Carril 2016). Therefore, honey bees are commercially managed 

for crop pollination events. They are especially valuable for pollinating crops that bloom during 

the winter and early spring such as almond [Prunus dulcis (Rosales: Rosaceae) (Mill. and 

Webb)] in California, which occurs before most solitary bees begin pupal eclosion in the late 

spring. In fact, given their widescale use as managed pollinators, honey bees account for nearly 

80% of all crop pollination in the United States (Wilson and Messinger Carril 2016). From an 

economic perspective, in 2009 within the United States, honey bees accounted for $11.68 billion 

USD in production for crops directly dependent on bees for pollination, and $5.39 billion USD in 

production for crops indirectly dependent on bees for pollination (Calderone 2012). 

Bumble bees [Bombus species (Hymenoptera: Apidae) (Latreille, 1802)] are considered 

to be a foundation for natural ecosystems given their generalist pollinator ecology and the 

complexity of flowering plants they forage in diverse habitats, particularly in mountainous 

regions where they are most abundant (Heinrich 1979; Memmott et al. 2004). They are also 

capable of providing pollination services in cooler ambient temperatures and throughout a wider 
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daily timescale than honey bees (Corbet et al. 1993; Willmer et al. 1994). Bumble bees are 

unique in their ability to pollinate flowers requiring high frequency sonication, commonly 

referred as buzz pollination (King and Buchmann 2003). While honey bees are incapable of buzz 

pollinating, several other species of bees beyond bumble bees are, including carpenter bees, 

[Xylocopa species (Hymenoptera: Apidae) (Latreille, 1802)] and several other Apidae species. A 

few species of bumble bees are commercially bred and have been shown to increase fruit yield of 

solanaceous (e.g. bell pepper, eggplant, potato and tomato) and ericaceous (e.g. blueberry, 

cranberry and huckleberry) cultivars that benefit from sonication for sufficient fertilization 

(Velthuis and van Doorn 2006; Drummond 2012). However, from a grower’s perspective, they 

are more expensive than honey bees ($1.00-2.00 USD per bumble bee worker versus $0.01-0.02 

USD per honey bee worker) (Calderone 2012). However, considering their pollination 

efficiency, bumble bees may not be that much more expensive. For example, if domesticated 

bumble bees are 80 times more efficient at pollinating a certain crop than honey bees, 

(Biddinger; pers. comm.) then the cost per each bee should be adjusted. 

Solitary bees comprise the majority of the approximately 4,500 native bee species present 

in North America and are primarily divided into five taxonomic families: Andrenidae, Apidae, 

Colletidae, Halictidae and Megachilidae (Michener 2007). While the majority of solitary bees are 

generalists pollinating flowers from a diversity of plant species, several are specialists and will 

only pollinate one or a select few species of plants. For example, squash bees [Peponapis species 

(Hymenoptera: Apidae) (Robertson, 1902)] only pollinate squashes [Cucurbitaceae species 

(Cucurbitales) (Juss.)] and long-horned bees [Melissodes species (Hymenoptera: Apidae) 

(Latreille, 1829)] primarily specialize on sunflowers [Helianthus species (Asterales: Asteraceae) 

(Linnaeus)] (Wilson and Messinger Carril 2016). However, unlike honey bees and bumble bees, 
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most solitary bees only actively forage at specific annual time frames that are in sequence with 

the bloom of the flowers they pollinate. A handful of solitary bees are commercially managed for 

crop pollination services, for example mason bees [Osmia species (Hymenoptera: Megachilidae) 

(Panzer, 1806)] are used to pollinate pome, stone and nut fruits [(Malus species (Mill.), and 

Prunus species (Linnaeus)], while alfalfa leafcutter bees [Megachile rotundata (Hymenoptera: 

Megachilidae) (Fabricius, 1787)] are used to pollinate alfalfa [Medicago sativa (Fabales: 

Fabaceae) (Linnaeus)] and other forage crops (Bosch and Kemp 2001; Pitts-Singer and Cane 

2011). Similar to bumble bees, commercially bred solitary bees are generally more expensive 

than honey bees (Bosch and Kemp 1999; Crown Bees; Mason Bees for Sale.com). However, 

considering their pollination efficiency, solitary bees may not be that much more expensive. For 

example, if Japanese orchard bees [Osmia cornifrons (Hymenoptera: Megachilidae) 

(Radoszkowski, 1887)] are 80 times more efficient at pollinating a certain crop than honey bees, 

(Biddinger, pers. comm.) then the cost per each bee should be adjusted. Solitary bees have been 

estimated to provide $3 billion USD in annual crop pollination services in the United States 

alone, and their pollination services to insect pollinated crops have been estimated to be over 

$3000 USD per hectare (Losey and Vaughn 2006; Kleijn et al. 2015). However, these values 

probably underestimate the true contribution of solitary bees to crop pollination. 

B. Potential Causes of Bee Declines in Recent Years 

Beginning in the winter of 2006-2007, honey bee colonies suffered significant losses 

marked by a specific set of symptoms 1.) rapid exodus of adult worker bees from colonies 

leaving massive quantities of intact brood behind, 2.) dearth of dead worker bees within and 

surrounding afflicted colonies and 3.) delay of hive pest infestation and cleptoparasitism by 

neighboring colonies (vanEngelsdorp et al. 2009). This phenomenon, described as Colony 
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Collapse Disorder (CCD), has persisted in affecting honey bees at varying levels over the last 

decade. For example, commercial beekeepers have experienced approximately 30% annual 

losses of overwintering colonies during this time frame, marked by a high of 45% in 2012-2013 

(Steinhauer et al. 2016). In an epizootiological study of CCD-affected and non-affected apiaries, 

vanEngelsdorp et al. (2009) identified a group of interacting honey bee stressors and their 

interactions as being potential causes of CCD, without isolating a single variable as the principle 

causative agent. Bumble bees and solitary bees have also steadily declined in abundance and 

species richness over the past 50 years, with several species having major population decreases 

and a few becoming endangered or extinct (Goulson et al. 2015). At the same time, demand for 

bee pollination services has substantially increased given the upward trajectory in cultivation of 

obligatory-bee pollinated crops in both the developed and developing world during this same 

time period (Aizen et al. 2008). Additionally, the crucial role of solitary bees in providing crop 

pollination services within their native habitats has become increasingly understood through a 

myriad of relatively recent ecological studies that show previous estimates of their value was 

probably underestimated (Park et al. 2018). Therefore, concern has mounted that we are on the 

brink of a “pollination crisis” characterized by a surge in crop cultivation and an insufficient 

quantity of bees to provide pollination services (Holden 2006; Gross 2008). While no such crisis 

currently exists, data suggest that insufficient agricultural crop pollination has resulted in 

reduced yields at localized levels (Goulson et al. 2015). 

These events have served as the impetus triggering a flurry of scientific research 

investigating the full spectrum of potential causes of bee declines over the last decade. Findings 

arising from these studies are debatable and incomplete owing to the various stakeholders 

producing them, combined with the shortage of monitoring surveys accurately tracking bee 
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(especially solitary bees) population changes overtime. However, these studies have consistently 

identified the following bee stressors that are hypothesized to individually and in combination 

interact (additively or synergistically) to affect bees and hence drive their population declines: 1.) 

Habitat destruction and fragmentation has decreased the availability of bee floral resources and 

nesting areas, which has been a long-term stressor spanning the 20th century in most of the 

developed world. 2.) Monoculture plantings have diminished the diversity of different flowering 

plant species within the radius of bee foraging distances. Therefore, these plantation-like agro-

ecosystems are thought to inhibit bees from obtaining nectar and pollen from a diversity of floral 

sources to meet their nutrition requirements. 3.) Parasites, pathogens and pests that naturally 

afflict bees and foster the spread of bee diseases. 4.) Human-mediated bee movements have been 

linked to inducing bee stress and introducing foreign parasites to native bee populations. 5.) 

Increased competition amongst bees within the same nest or ecological niche for limited 

resources is also proposed to be a factor contributing to their population decreases. 6.) Climate 

change resulting in inconsistent weather and seasonal patterns affecting the time frame of floral 

blooming events has also been proposed to contribute to bee declines. 7.) Pesticide applications 

(and particulary active ingredients in seed treatments) have dramatically spiked as a result of 

crop pest resistance buildup and agricultural intensification, which has simultaneously exposed 

non-target organisms including bees to increasing levels of these toxic compounds. 8.) 

Interactions of multiple bee stressors occurring within the same environment at the same time are 

thought to create cocktail-like effects that further intensify the sharp population declines of bees 

observed over the last 10-15 years. 
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II. Bee Stressors Other Than Pesticides 

A. Habitat Destruction and Fragmentation 

It is widely agreed that the decrease and fragmentation of natural habitats as a result of 

land use and agricultural intensification is a major long-term stressor contributing to the decline 

of bees (Goulson et al. 2008; Potts et al. 2010). A meta-analysis of 54 studies on different factors 

impacting bee ecological communities found habitat destruction was the most important variable 

for wild bee abundance and species richness (Winfree et al. 2009). Similarly, a quantitative 

synthetic analysis of 23 studies on 17 crops in agro-ecosystems worldwide showed increased 

agricultural crop distance from surrounding natural habitats significantly decreases wild bee 

abundance and species richness (Ricketts et al. 2008). As these studies demonstrate, disrupted 

landscapes lacking diverse floral resources necessary for adequate bee nutrition within close 

proximity to where bees forage can substantially impair their ability to survive. Obtaining proper 

nutrition during forage is essential for 1.) adult bees to meet their food maintenance requirements 

and reproductive needs, and 2.) the ability of adult female bees to provision their nests with 

appropriate food resources ensuring healthy offspring development. The severity of habitat 

destruction and fragmentation as a bee stressor is maximized when one considers specialist 

solitary bees that unlike generalist pollinators, only forage a single species or group of closely 

related species of flowering plants (Cane 2001). For example, bee diversity in apple [Malus 

species (Rosales: Rosaceae) (Mill.)] orchards has been found to be driven by plant species 

diversity in surrounding habitats (Kammerer et al. 2016). The impacts of habitat destruction on 

bee biology and ecology are generally classified into 1.) factors effecting availability of floral 

resources for adult bees to forage; 2.) factors affacting the ability of adult female bees to properly 
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excavate and provision their nests; and 3.) the positive and negative impacts of urbanization on 

natural resources essential to bees. 

Intensification of agricultural area has been a major driver of pollinator habitat loss and 

disturbance. For example, the loss of 97% of floral grasslands in the United Kingdom spanning 

the course of the 20th century has drastically constricted the range of bees associated with these 

ecological communities (Howard et al. 2003). Similar declines have occurred in North American 

grasslands beginning in the 19th century (Samson and Knopf 1994). Specific examples of 

historical land use manipulation impacting pollinators over time are as follows. Comparing the 

diversity of bees and hoverflies combined with the plants they pollinate (pre-versus post-1980), 

Biesmeijer et al. (2006) found a causal correlation in decline mostly marked by specialist 

pollinators and obligate-insect pollinated plant species. Surveying bumble bee abundance and 

species richness over the course of the 20th century in Illinois, Grixti et al. (2009) found major 

declines between 1940 and 1960 coinciding with large-scale agricultural intensification. 

Disturbed and fragmented habitats can also decrease the ability of female bees to 

excavate and provision their nests; particularly for bee species reliant on a variety of ecological 

features for nest construction. Namely, Cane (2001) proposes that the adverse distributions of 

bee species seen in these studies might be explained by their nesting ecology instead of their 

floral ecology. For example, because Hesperapis oraria [(Hymenoptera: Melittidae) (Snelling 

and Stage, 1996)] is entirely dependent upon friable sands of vegetated backdunes for building 

nests, this species does not inhabit inland areas beyond coastal backdunes that also contain its 

only floral host (Cane et al. 1996; Cane 2001). This bee’s highly specific habitat dependence 

directly controls its geographic range and occurrence throughout the northern Gulf of Mexico. 

Measuring the effects of a number of habitat disruption variables on the response of different bee 
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species, Williams et al. (2010) concluded that species specific nesting biology and life-history 

behavior are helpful to predict an outcome. For example, above ground nesting bees were more 

negatively affected by agriculture practices leading to habitat fragmentation and fire, while 

below ground nesting bees were more affected by soil tilling practices in agricultural 

environments. Carrié et al. (2017) also found positive associations between below ground nesting 

bees and increased access to grassland and hedgerows, while the opposite held true for above 

ground nesting bees in southwest France. Interestingly, this study found increased above ground 

nesting bee density linked to semi-natural habitat, while below ground nesting bee density 

increased in landscapes comprised of agricultural crops in southeastern Australia. Investigating 

differences in bee species functional-trait diversity in a mosaic landscape, Forrest et al. (2015) 

conclude that while bee communities on conventional and organic farms comprised smaller 

numbers of above ground nesting species and larger numbers of below ground nesting species, 

the opposite effect was observed in surrounding natural habitats. They attribute these differences 

to increased availability of suitable nesting substrates for above ground nesting bees (such as 

trees and shrubs) in natural habitats and larger areas of bare soil suitable for ground dwelling 

bees to excavate their nests on farms. These findings are further supported by statistical analyses 

demonstrating that bee community trait diversity is most strongly driven when the variable 

nesting location is included. 

An analysis of bee species richness in response to habitat fragmentation found an 

interactive effect between bee species abundance and amount of forest cover at regional and 

local scales (Ferreira et al. 2015). A positive relationship was shown between above ground 

nesting bees and increased regional forest cover, while less regional forest coverage resulted in 

increased abundance of below ground nesting bees. Social bee impacts of local scale forest cover 
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were driven by regional forest composition. In assessing the effects of forest fragmentation on 

stingless bee [Meliponini species (Hymenoptera: Apidae) (Lepeletier, 1836)] nesting excavation, 

Lichtenberg et al. (2017) most commonly found ground nesting and inquiline nesting species in 

pastures compared to cavity nesting species, thereby indicating an evolutionary adaptation to 

surviving in heavily deforested areas. In agreement, Smith and Mayfield (2018) show that cavity 

nesting bees most frequently pollinated all fragment study plots, with the exception of soil 

nesting bee species dominating small fragments of Acronychia acidula, [(Sapindales: Rutaceae) 

(F. Muell.)] suggesting a similar bee species adaptation in ecological niches lacking large 

quantities of trees. 

B. Monoculture Plantings 

Agro-ecosystems have become increasingly intensified with large monocultures of row 

crops such as soybeans and maize and orchards of various pome, stone and nut fruits. Analyzing 

crop rotation patterns in the Central United States between 2003-2006 and 2007-2010, Plourde et 

al. (2013) show the quantity of maize grown in segments of four continuous years doubled 

between the two study periods, thereby approaching a monoculture cropping practice. California 

almond acreage increased from 430,000 acres (174,015 hectares) in 1996 to a projected 800,000 

acres (323,749 hectares) in 2012 (Sumner and Boriss 2006). By 2016, almonds accounted for 

1,240,000 acres (501,810 hectares) in California (National Agricultural Statistics Service 2017). 

In the wake of monoculture agricultural designs and increased cultivation of pollinator-

dependent crops, the demand for bee pollination services has spiked. This is most evident in 

honey bee almond pollination where hive rental fees rose from $54 USD to $136 USD between 

2004 to 2006 (Sumner and Boriss 2006), and steadily increased to $175.52 USD by 2015 (Ferrier 
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et al. 2018). Simultaneously, the quantity of pollinator-dependent agricultural crops planted 

worldwide over the last 50 years has exponentially increased (Aizen et al. 2008). 

Bees require a variety of nutrients in their diets comprised of carbohydrates (in the form 

of sugar from nectar or honey), amino acids (in the form of protein from pollen), lipids, vitamins, 

minerals and water in the correct ratios for proper growth and development (Huang 2010; Vaudo 

et al. 2015). Monoculture floral blooming events are defined as short massive gluts of the same 

species of flower dominating an agricultural landscape that is temporally and spatially isolated 

from other species of blooming flowers including wildflowers (Goulson et al. 2015). It is 

hypothesized that exposure to massive spreads of monoculture environments has negatively 

impacted bees by depriving their access to the wide diversity of floral resources necessary to 

meet their nutritional requirements. 

Research studies have shown the ability to obtain pollen from a diversity of plant species 

directly determines the overall lifespan of honey bees. For example, caged honey bees fed pollen 

from multiple plant species lived longer compared to their counterparts fed pollen from a single 

plant species (Schmidt 1984; Schmidt et al. 1987; Schmidt et al. 1995). Assessing honey bee 

susceptibility to Nosema ceranae mites [(Dissociodihaplophasida: Nosematidae) (Fries et al., 

1996)] Eischen and Graham (2008) found that poorly nourished bees were more susceptible 

compared to well nourished bees by quantifying significantly more adult bees in pollen 

supplement-fed colonies. Similarly, Eischen et al. (2008) found lower Varroa destructor mite 

[(Parasitiformes: Varroidae) (Anderson and Trueman, 2000)] mite infestation levels in honey bee 

colonies fed pollen substitute powder (BeePro®) + 4% pollen. In an early experiment by Rinderer 

and Elliott (1977) and a more recent experiment by Huang (2012) caged honey bee workers 

exposed to poly-floral pollen have been shown to be more resistant to pathogenic stressors. 
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These studies demonstrated the effects of honey bee pollen nutrition on Nosema apis 

[(Dissociodihaplophasida: Nosematidae) (Zander, 1909)] mite resistance. Similarly, the work of 

Di Pasquale et al. (2013) demonstrates the effects of diverse and quality pollen nutrition on 

honey bee resistance to N. ceranae. Pollen nutrition leading to sufficient protein diets have also 

been found to increase honey bee immunity, as in DeGrandi-Hoffman et al. (2010) where honey 

bees fed protein-free sugar syrup diets had lower protein levels in their heads, smaller 

hypopharyngeal glands and higher deformed wing virus titers compared to honey bees fed with 

pollen or a protein supplement (MegaBee®). 

Landscape design and resulting flower abundance can also affect the specific nutrition 

requirements of bumble bees at the individual species and colony levels. For example, in 

analyzing the impact of spatial and temporal variations in floral resources, Moquet et al. (2017) 

show peak bumble bee sensitivity during colony development compared to nest excavation or 

mating. Additionally, larger colonies were found to require larger landscapes of favorable floral 

resources, while the proportion of large colonies declined in areas dominated by spruce 

plantations, which was an unfavorable resource. Allocating Bombus impatiens [(Hymenoptera: 

Apidae) (Cresson, 1863)] colonies in grasslands differing in floral resource allocation, Spiesman 

et al. (2017) show that dominance by a few species of flowering plants, as opposed to diversity 

in floral species richness is the most important local-scale factor influencing colony growth and 

reproduction. Harmon-Threatt and Kremen (2015) found that feral bumble bees blend their 

pollen collection from native and exotic plants to meet their unique protein and essential amino 

acid nutritional needs. Placing B. impatiens colonies in three different ecological habitats, Vaudo 

et al. (2018) concluded that while colony growth and reproductive output was not strongly 

related to nutritional quality of collected pollen, colony acquisition of specific nutrients (protein, 
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lipid and sugar) was. These results suggest that abundance of floral resources with appropriate 

nutrients is imperative to bumble bee colony success. Examining foraging behaviors of B. 

impatiens, Vaudo et al. (2016) demonstrated a preference for flowers with high protein: lipid 

(P:L) ratios and more specifically, for nutritionally modified pollen with P:L ratios of 5:1 and 

10:1, thereby indicating that foraging decisions are influenced by specific macronutrient ratios. 

Solitary bees also have similar nutritional requirements, for which most studies suggest a 

departure from monoculture plantings is the best remedy. Assessing bee species dietary balance, 

diverse floral composition presenting nectar (carbohydrate) and pollen (protein) rewards in 

phenological succession throughout a day and season is shown to maximize proper nutrition of 

multiple bee species comprising an ecological guild (Vaudo et al. 2015). Estimating the number 

of flowers required to rear a single larva for 41 European bee species Müller et al. (2006) 

determined a range (7 to 1,100 flowers or 0.9 to 4.5 flower heads) depending on both the bee 

species and the host plant. Feeding larvae of the generalist pollinator Osmia cornuta 

[(Hymenoptera: Megachilidae) (Latreille, 1805)] experimental diets containing different 

quantities of unfavorable Ranunculus acris [(Ranunculales: Ranunculaceae) (Linnaeus)] pollen 

and favorable Sinapis arvensis [(Brassicales: Brassicaceae) (Linnaeus)] pollen, Eckhardt et al. 

(2014) found that an unfavorable pollen diet usually resulted in larval mortality, while mixed 

pollen diets had no effect on larval survival, development time and adult body mass. Simulating 

pollen quantity and quality manipulations to Ceratina calcarata [(Hymenoptera: Apidae) 

(Robertson, 1900)] in a laboratory setting, Lawson et al. (2017) showed that larvae provided 

additional pollen significantly consumed more pollen, had larger adult head widths and 

contained greater stored fats compared to those provided reduced pollen. Fischman et al. (2017) 
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similarly concluded that M. rotundata fed small quantity diets weighed less as adults, while those 

fed large quantity diets entered diapause more often. 

C. Parasites, Pathogens, and Pests 

Bees are naturally afflicted by a variety of parasites, pathogens and pests. The vast 

majority of research has focused on 1.) honey bees and to a lesser extent on 2.) bumble bees, 

therefore little information is currently known regarding 3.) solitary bees. Naturally occurring 

disease agents are known to control populations of their bee hosts within their native range, 

although most are not well understood. 

Most honey bee viruses including deformed wing virus are vectored by Varroa destructor 

mites as directly injected virus particles followed by mite foreign salivary proteins into the bee 

hemocoel (Rosenkranz et al. 2010). Di Prisco et al. (2016) uncovered a mutualistic symbiosis 

between Varroa and deformed wing virus, affecting cellular immune responses with nuclear 

factor-KB signaling, that enhances mite reproduction. Ryabov et al. (2017) used next generation 

sequencing to confirm Varroa destructor virus-1 presence in 603 United States apiaries, finding a 

66% infection rate in honey bee pupae, compared to a 2.7% infection rate from a 2010 analysis 

of 75 colonies. Nosema species are obligate intra-cellular parasites affecting both individual 

honey bee adults and entire colonies after consumption. Roberts et al. (2015) found Nosema 

spores in the semen of infected honey bee males, and subsequent higher infection of N. ceranae 

in queens artificially inseminated with either spores or semen of infected males. In a molecular 

survey highlighting Nosema bombi [(Dissociodihaplophasida: Nosematidae) (Fantham and 

Porter, 1914)] spread to bumble bee queens, Tripodi et al. (2014) detected N. bombi in 27% of B. 

pensylvanicus and 13% of B. auricomus. 
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Several other pathogens and pests have been documented to afflict honey bees and 

bumble bees. These include tracheal mites [Acarapis species (Trombidiformes: Tarsonemidae) 

(Rennie 1921)], American foulbrood [Paenibacillus larvae (Bacillales: Paenibacillaceae) (Ash et 

al. 1994)], European foulbrood [Melissococcus plutonius, (Lactobacillales: Enterococcaceae)], 

chalkbrood [Ascosphaera species, (Onygenales: Ascosphaeraceae) (Olive and Spiltoir 1955)], 

small hive beetles [Aethina tumida, (Murray, 1867) (Coleoptera: Nitidulidae)], greater and lesser 

wax moths [Galleria species (Lepidoptera: Pyralidae) (Blom 1764)], and several 

trypanosomatids [Crithidia species (Trypanosomatida) (Léger 1902)] and [Apicystis species 

(Neogregarinorida: Lipotrophidae) (Liu et al. 1974)]. 

Several recent studies investigating pathogenic stressors of solitary bees have been 

conducted given increased interest in their use as alternative pollinators to honey bees. In a 

survey of six RNA viruses in a sample of honey bees and bumble bees, McMahon et al. (2015) 

concluded that while virus occurrence in honey bees significantly predicted infection in bumble 

bees, in some cases such as for acute bee paralysis virus, feral bumble bees contained 

substantially higher infection levels than domesticated honey bees. Using PCR to sequence O. 

cornifrons DNA for detection of pathogenic microorganisms, Hedtke et al. (2015) identified 

pathogenic and apathogenic fungi [Ascosphaera and Aspergillus species (Eurotiales: 

Trichocomaceae) (Micheli 1729)]), and a hypothesized apathogenic bacteria strain (within the 

Paenibacillus genus) in asymptomatic adult bees that might be disease carriers. Similarly, 

analyzing meta-transcriptomes of eight species of wild social and solitary bees, Schoonvaere et 

al. (2018) identified four viruses homologous to insect pathogens, 11 unclassified arthropod 

viruses, seven plant viruses and one fungal virus. This analysis also isolated three parasites in the 

wild bee samples as well as a yeast in the solitary bee samples, thereby demonstrating the 
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widescale diversity of viruses and microorganisms inhabiting feral bees. Screening honey bees 

and several species of solitary bees, Ravoet et al. (2014) found a variety of viruses and parasites 

in the majority of bees sampled. These results indicate either 1.) pathogen spillover between 

commercially managed bees and wild bees or vice-versa, 2.) pathogen transmission between bee 

species sharing ecological niches, 3.) pathogen transmission within a particular bee species such 

as social bees sharing the same nest, or 4.) all of these forms of pathogen spread amongst bees, 

all of which warrant further investigation. In reviewing literature on bee viruses, Manley et al. 

(2015) argue that the commercialization of managed bees for pollination events is a main driver 

of the rapid spread and increased prevalence of bee pathogens. 

D. Human-Mediated Bee Movements 

Anthropogenic actions related to the domestication of a handful of bee species for 

commercial pollination are indicated as contributing to bee stress by increasing disease spread 

amongst domesticated bees and pathogen spillover from domesticated bees to wild bees native to 

the region in which their colony was placed. For example, widescale transportation of 

commercial honey bee hives to pollination events is hypothesized to stress colonies by means of 

confinement and irregular disturbance, induced vibration, and exposure to extreme temperatures 

and high levels of carbon dioxide (Goulson et al. 2015). Placing large quantities of honey bee 

hives in close proximity during pollination events is hypothesized to increase disease and pest 

spread between colonies (Goodwin et al. 2006; Forfert et al. 2015) Poor husbandry practices 

involving rearing Bombus terrestris [(Hymenoptera: Apidae) (Linnaeus, 1758)] queens alongside 

honey bee workers have been implicated in the spread of deformed wing virus in bumble bees 

(Genersch et al. 2006). Global distribution of B. terrestris colonies has been associated with the 

spread of N. bombi leading to the failure of commercial Bombus occidentalis [(Hymenoptera: 
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Apidae) (Greene, 1858)] breeding programs in western North America (Brown 2011; Manley et 

al. 2015). 

Introductions of honey bee species to non-native ranges have resulted in negative 

outcomes. For example, the importation of A. mellifera scutellata colonies to Brazil and 

subsequent escape of virgin queens led to interbreeding with feral A. mellifera species resulting 

in hybridization of highly aggressive “Africanized” honey bee strains (Byatt et al. 2016). 

Importation of western A. mellifera into the native range of eastern Apis cerana [(Hymenoptera: 

Apidae) (Fabricius, 1793)] has resulted in intermating between the two honey bee species 

rendering inviable offspring and possible queen thelytokous parthogenesis (Remnant et al. 2014). 

Reviewing human-mediated actions related to the spread of honey bee pathogens, Owen (2017) 

suggests that the massive transport of colonies to California for almond pollination is likely to 

increase pathogen and pest spread between colonies (Goodwin et al. 2006; Forfert et al. 2015). 

For example, deformed wing virus vectored by Varroa mites has spread worldwide following 

international honey bee trade (Wilfert et al. 2016), while migratory beekeeping in the United 

States and Australia have been proposed to favor the spread of honey bee pathogens such as 

chalkbrood (Gordon et al. 2014). A field experiment comparing commercial and experimental 

honey bee hives that were either stationary or migratory found significant decreases in lifespan 

and increased oxidative stress for bees exposed to migratory treatments (Simone-Finstrom et al. 

2016). Additionally, transportation-induced stress has been suggested as a causative factor in 

honey bee declines in Hungary (Bakonyi et al. 2002). 

Commercialization and subsequent global distribution of bumble bees has raised 

concerns regarding the spread of non-native species and non-local genotypes to intact ecological 

communities (Byatt et al. 2015; Evans 2017). For example, the wide environmental adaptability, 



 

 19 

large colony size, generalist foraging and flexible nesting behavior of B. terrestris (Kraus et al. 

2009; Dafni et al. 2010) indicates the high capacity for managed colonies of this species to 

naturalize and establish in non-native habitats (Evans 2017). Evidence of this has been 

demonstrated in Japan (Goka 1998) and Argentina (Torretta et al. 2006). In Japan, B. terrestris 

mating with the native species Bombus hypocrita [(Hymenoptera: Apidae) (Pérez, 1905)] and 

Bombus ignitus [(Hymenoptera: Apidae) (Smith, 1869)] has been shown to result in non-viable 

offspring (Kanbe et al. 2008). While multiple subspecies of B. terrestris have been classified, 

only one is commercially bred, thereby resulting in introduction of non-native subspecies in 

western Europe (Goulson 2010). Supporting this concern, evidence of non-native B. terrestris 

subspecies outcompeting native subspecies in foraging and reproduction has been demonstrated 

(Ings et al. 2006). Extracting Nosema species DNA from six species of bumble bee museum 

specimens collected between 1980-2011, Cameron et al. (2016) show significant increases in N. 

bombi infection rates during this period, which coincides with a period of massive N. bombi 

outbreaks in North American commercial bumble bee colonies. However, this study found no 

evidence of an exotic origin for N. bombi, and moreover concluded that the current N. bombi 

strain infecting declining bumble bee species was present in the United States before the 

initiation of commercial breeding and trade. Also, this strain of N. bombi is not detectably 

different from that found in western Europe. Screening adult B. impatiens workers with qPCR 

from commercialized colonies originating from 120 greenhouses in central Mexico, Sachman-

Ruiz et al. (2015) detected one or more pathogens in bumble bees originating from 54 

greenhouses (representing a 45% infection rate). The authors argue that more rigorous screening 

protocols of commercial bumble bee colonies such as the methodology utilized here should be 
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mandated to ensure maximized greenhouse pollination services and that pathogen spillover to 

native bee species does not occur. 

PCR screening and DNA analysis of O. cornifrons detected Ascosphaera species fungal 

spores in asymptomatic adult bees, thereby indicating transport of these fungi within the bees 

themselves from their native habitat in Japan to their introduced regions in eastern North 

America (Hedtke et al. 2015). Confirmation of O. cornifrons exposure to these fungi, which had 

previously only been isolated in nests of other related bee species demonstrates the potential for 

their spread to native North American bee species. This is a result of the less stringent screening 

processes required by the USDA at the time of O. cornifrons introduction to the United States for 

pollination of mid-Atlantic orchards in the 1990’s. Distribution of commercially bred Meliponini 

species bees throughout Brazil is of concern for endangered species (Francisco et al. 2014) such 

as Melipona capixaba [(Hymenoptera: Apidae) (Moure and Camargo, 1994)] which might be at 

risk for loss of genetic identity by means of hybridization (Nogueira et al. 2014), and which has 

been documented to interbreed with domesticated Melipona scutellaris [(Hymenoptera: Apidae) 

(Latreille, 1811)] (Nascimento et al. 2000). Although it is currently unknown if human-mediated 

movements of stingless bees in Australia is responsible for genomic extinction of rarer species 

through interbreeding (Halcroft et al. 2013), species including Tetragonula carbonaria 

[(Hymenoptera: Apidae) (Smith, 1854)] and T. hockingsi [(Hymenoptera: Apidae) (Cockerell, 

1929)] are capable of rendering viable hybrid offspring in native and introduced habitats (Franck 

et al. 2004; Brito et al. 2014). 

One other aspect is the effects of introducing non-bee species into various regions of the 

world that serve as predators of bees. For example, establishment of the Asian hornet [Vespa 

velutina nigrithorax (Hymenoptera: Vespidae) (Lepeletier, 1836)] in Japan has contributed to the 
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loss of honey bees (A. cerana japonica and introduced A. mellifera) because only a few adults 

can completely decimate a hive in a short time and subsequently feed on brood (Ueno 2014). 

Interestingly, A. cerana have evolved a defensive behavior against wasp attacks where honey bee 

workers use their body heat to kill an invading wasp by forming a ball-like shape around it (Ono 

et al. 1987; Ichino and Okada 1994; Abrol 2006). Use of dinotefuron for controlling spotted 

lanternfly [Lycorma delicatula (Hemiptera: Fulgoridae) (White, 1845)] in the mid-Atlantic (Dara 

2018; Derato et al. 2018) is problematic for bees given the low contact LD50 of dinotefuran to 

honey bees (Iwasa et al. 2004). In Pennsylvania, widespread applications of dinotefuran for 

controlling spotted lanternfly on tree of heaven [Ailanthus altissima (Sapindales: Simaroubaceae) 

(Mill and Swingle)] have negatively impacted bees (Biddinger; pers. comm.). Application of 

broad-spectrum pesticides (especially pyrethroids) for controlling brown marmorated stink bug 

[Halyomorpha hays (Hemiptera: Pentatomidae) (Stål, 1855)] in apple orchards interfered with 

integrated pest management programs (Leskey et al. 2012). Pyrethroid application specifically 

resulted in outbreaks of secondary pests such as European red mites [Panonychus ulmi 

(Trombidiformes: Tetranychidae) (Koch, 1836)], wolly apple aphids [Eriosoma lanigerum 

(Hemiptera: Diaspididae) (Hausmann, 1802)] and San Jose scale [Quadraspidiotus perniciosus 

(Hemiptera: Diaspididae) (Comstock, 1881)] , that are normally controlled by natural enemies. 

Native bee populations nesting in orchard edges were also negatively impacted by pyrethroid 

applications made to control brown marmorated stink bugs in orchard edges (Biddinger et al. 

2011). Maintaining surrounding native habitat should be emphazised in orchards given that 

pesticide impacts on bees can be reduced in these environments (Park et al. 2015). Finally, 

spotted wing drosophila [Drosophila suzukii (Diptera: Drosophilidae) (Matsumura, 1931)] 

infestations have forced growers to dramatically increase broad-spectrum pesticide usage in 
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small fruit (Beers et al. 2011; Van Timmeren and Isaacs 2013). Similar to brown marmorated 

stink bug, this has disrputed integrated pest management programs and affected the surrounding 

environment (including habitats where bees forage). 

E. Increased Competition for Limited Resources 

While ascertaining the impact of competition between bee species for limited floral and 

nesting resources on resulting bee species abundance and diversity is relatively difficult 

(Goulson et al. 2015), some evidence does point toward increased competition in ecological 

communities that is increased by introductions of non-native species, and particularly when these 

introduced species occur in high quantities (Goulson 2003). Most studies demonstrating 

significant effects of increased competition between bee species have found that the presence of 

honey bee apiaries negatively effects the diversity of feral bumble bees and other solitary bee 

species native to the specific ecological niche being studied (Huryn 1997; Goulson 2003). 

High concentrations of managed honey bee colonies have been shown to displace native 

bumble bees from flowering plants they normally forage (Forup and Memmott 2005; Walther-

Hellwig et al. 2006). Quantifying floral resource consumption in rosemary, [Rosmarinus 

officinalis (Lamiales: Lamiaceae) (Linnaeus) ] and thyme, [Thymus vulgaris (Lamiales: 

Lamiaceae) (Linnaeus),] plots combined with floral resource density and bee diversity, Torné-

Noguera et al. (2016) found that resource consumption was primarily driven by honey bee 

visitation and marginally by bumble bee (B. terrestris) visitation. This study also showed lower 

wild bee diversity in plots closer to apiaries, and concluded that as the major consumer of pollen 

and nectar from these two flowering plant species, honey bees at the studied density of 3.5 

hives/km2 affect wild bee diversity and abundance. Conversely, analysis of the interactions 

between Africanized honey bees and Meliponini species competing for a honey-water resource 
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demonstrated rare and mild Apis bee aggression towards Melponini bees, however Apis bees 

were found to display high aggression towards each other (Roubik and Villanueva-Gutiérrez 

2017). Moreover, in foraging for a common food resource, Apis bees were found to be the most 

widely attacked by other Hymenopterans and often behaved evasively following an attack. 

Applying 38 red mason bees, O. bicornis in treatment cages with 0, 100 or 300 honey 

bees (10-20% of which were of foraging age) containing flowering plants, Hudewenz and Klein 

(2015) found reduced O. bicornis flower visitation and reproduction in the presence of honey 

bees. Moreover, the wide range niche of O. bicornis was found to diminish as the quantity of 

honey bees increased, while the overlap of floral resources remained constant, thereby 

demonstrating the potential for temporary impacts on wild bees from competition with honey 

bees in isolated flower patches. Similarly, in calculating that a strong honey bee hive collects the 

same amount of pollen as is needed to produce 100,000 progeny of an average-sized solitary bee 

(M. rotundata), Cane and Tepedino (2017) predict that a typical apiary containing 40 honey bee 

hives collects the equivalent of 4 million solitary bee larval pollen provisions over an average 3-

month summer, thereby directly competing with and negatively affecting native wild bees. 

Warzecha et al. (2016) found that increased competition for common food resources amongst 

four Andrena [(Hymenoptera: Andrenidae) (Fabricius, 1775)] species resulting from habitat 

fragmentation led to increased body sizes of the two medium-sized bees. In this context, pollen 

analysis demonstrated that larger individuals forage significantly smaller spectrums of flowering 

plants. This study shows that ecological landscape changes may alter bee pollination services 

without impacting bee species richness and diversity. 
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F. Climate Change 

Climate change as defined by global warming combined with erratic weather conditions 

has been proposed to affect the symbiotic interactions of pollinating insects and the flowering 

plants they pollinate; however, the specific impacts of this variable are not well understood 

(Goulson et al. 2015). One primary concern is that mismatches between the timing of adult bee 

emergence and the onset of plant flowering will result. While evidence of temporal mismatches 

in plant-pollinator phenology have been documented in a few cases, most ecological data suggest 

that parallel shifts following linear trajectories have occurred between these mutually interacting 

organisms in response to warming temperatures and other environmental stimuli (Hegland et al. 

2009; Forrest 2015). Another concern is that increased temperatures and resulting changes in the 

distribution of flowering plants have shifted the ranges of bees further north and to increased 

elevations, thereby curtailing their natural ranges at southern latitudes and lower elevations 

(Ploquin et al. 2013; Kerr et al. 2015; Miller-Struttmann et al. 2015). Extreme weather conditions 

such as storms, excessive flooding and drought have also been proposed, and in some cases have 

been shown to negatively impact the normal temporal interactions between flowering plants and 

the bees that pollinate them (Visscher et al. 1994; Goulson et al. 2015). 

Bartomeus et al. (2011) demonstrate linear changes between bee and flowering plant 

phenology in the northeastern United States over a duration of 130-years, while Ovaskainen et al. 

(2013) found long-term consistency between early bumble bee foraging and spring flowering 

plants in Russia. Similarly, concurrent linear trends have been found for increased temperatures 

and earlier flowering dates (Sparks et al. 2000) and increased temperatures and earlier first 

appearances of honey bees (Gordo and Sanz 2005). Moreover, several studies analyzing plants 

have demonstrated linear patterns between temperature and pollinator phenology that are most 
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robust in the early spring season (Roy and Sparks 2000; Forister and Shapiro 2003; Menzel et al. 

2006). Conversely, widening gaps between the spring appearance of honey bees and cabbage 

white butterflies [Pieris rapae (Lepidoptera: Pieridae) (Linnaeus, 1758)] and the initiation of 

flowering of several host plants utilized by these species have been observed and attributed to 

insect sensitivity to increased temperatures (Gordo and Sanz 2006). Earlier flowering of the 

bumble bee queen-dependent Corydalis ambigua [(Ranunculales: Papaveraceae) (Cham. and 

Schltdl.)] resulting from earlier snowmelt has been found to create a mismatch between 

flowering and bee appearance, which is not impacted by earlier snowmelt (Kudo and Ida 2013). 

Similarly, Kudo et al. (2004) found that warm spring temperatures resulted in advanced plant 

flowering while having no effect on bumble bee queen emergence, thereby leading to reduced 

seed-set in plants pollinated by bumble bees. Williams et al. (2012) found that timing of floral 

resource availability affects growth of Bombus vosnesenskii [(Hymenoptera: Apidae) 

(Radoszkowski, 1862)] colonies, however no impact on colony reproduction was seen. 

Simulating the effects of increasing temperatures on plant-pollinator interactions, Memmott et al. 

(2007) show that between 17-50% of all pollinator species assessed would be negatively 

impacted by food shortages as a result of temporal mismatches. Laboratory studies demonstrate 

that depending on accumulation of fat reserves, Osmia species males can survive for a week 

without food at 20°C (Bosch et al. 2010), therefore suggesting some flexibility in asynchrony 

between bee emergence and plant flowering. However, the dearth of data on how climatic 

variables impact the symbiosis of Osmia species with pollinating flowers (with a particular 

emphasis on data relating to the specific alimentation needs of these bees), warrants future work 

given the importance of these bees in commercial pollination of orchard, fruit and nut crops. 
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Analyzing changes in tongue length between specimens of Bombus balteatus 

[(Hymenoptera: Apidae) (Dahlbom, 1832)] and Bombus sylvicola [(Hymenoptera: Apidae) 

(Kirby, 1837)] collected in the Central Rocky Mountains over a 40-year timespan, Miller-

Struttmann et al. (2015) found significant shortening of tongues overtime. This study attributes 

this finding to reduced flower density at lower elevations specifically characterized by decreased 

abundance of plant species containing deep corollas in their flowers that is being driven by an on 

average increase in summer temperatures. Similarly, assessing bumble bee species distributions 

over a 20-year duration, Ploquin et al. (2013) determined that an overall uphill shift in range 

emphasized retractions in the lower limits of species occurrence, combined with a simultaneous 

increase in temperature by approximately 0.9°C throughout the study period. Supporting these 

findings, Kerr et al. (2015) found changes in bumble bee distribution across Europe and North 

America over a 30-year duration characterized by an inability of species to follow warming 

temperatures over time at their northern range limits, retractions in the southern limits of species’ 

natural ranges, and movements towards higher elevations for southern occurring species. Using 

various climatic models to investigate current and future trends in bee diversity across six 

locations, Hannah et al. (2017) projected that areas containing less temperature warming (found 

to be the southern-most locations), higher rainfall, lowest water deficit and wider forest cover 

currently have the highest bee diversity and will serve as the best reservoirs of bee diversity in 

the future. 

Extreme and erratic weather patterns have also studied for their potential impacts on 

plant-pollinator interactions. For example, Visscher et al. (1994) found late emergence of 

Calliopsis pugionis [(Hymenoptera: Andrenidae) (Cockerell, 1925)] compared to flowering of 

the primary plant it pollinates, Encelia farinosa, [(Asterales: Asteraceae) (Torr. and A. Gray)] 
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following heavy rains. However, this mismatch was considered an isolated event because the bee 

nests in lowland pools that seasonally flood, while the plant grows in upland areas that remain 

drier, therefore these authors hypothesized that this is not a recurring asynchrony. Extreme 

winter values of the Pacific Decadal Oscillation index have been linked to population declines of 

the alpine butterfly Parnassius smintheus, [(Lepidoptera: Papilionidae) (Doubleday, 1847)] 

(Roland and Matter 2013), thereby potentially impacting the pollination of plants that this 

butterfly commonly utilizes for nectar resources. Simulating pollinator range shifts along a rain 

gradient, Devoto et al. (2007) show that changes in rain fall would result in relatively few species 

going extinct, with relative resilience in pollination systems to climatic changes. This outcome 

held true even when assuming that pollinating insects were specialists obligated to one species of 

flowering plant and that flowering plants were completely dependent on pollinating insects to 

successfully be fertilized and induce seed-set. 

III. Pollinators and Agricultural Pesticides 

A. Insecticide Toxicity to Honey Bees 

The acute toxicity and chronic sub-lethal effects of pesticide exposure have been 

extensively researched in honey bees. For example, more than 150 pesticide residues have been 

found at various concentrations in honey bees and hive products (Johnson et al. 2010; Mullin et 

al. 2010). Pyrethroid, organophosphate and carbamate insecticides have been the subject of many 

scientific investigations of chemical toxicity to bees, and not surprising for chemicals designed to 

kill insects, many have been demonstrated to be highly toxic. As a newer class of insecticide 

designed to replace some of the older classes because of the lower mammalian toxicity, 

neonicotinoids over the last decade have come under increased scrutiny regarding their toxicity 

to bees because they are plant systemic and thus can be translocated to nectar and pollen. Within 
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neonicotinoid bee research, many scientific studies have investigated the imidacloprid, 

thiamethoxam and clothianidin that are the most heavily used products in seed treatments planted 

on huge acreages of field crops. Showing the toxic effects of these compounds, Sandrock et al. 

(2014) demonstrated that honey bee queen survival and colony weakness might be linked to 

neonicotinoid exposure. Specifically, this study chronically exposed honey bee colonies to pollen 

feeding inside hive settings containing field realistic concentrations of thiamethoxam and 

clothianidin. Colonies exposed to both neonicotinoids had decreased short-term performance 

over two brood cycles resulting in a significant 28% reduction of adult bees and a 13% reduction 

in brood. Also, compared to control colonies, honey production and pollen collection for 

treatment colonies was reduced by 29% and 19% respectively. While colonies recovered after 

3.5 months and overwintered successfully, they had significantly decelerated growth that was 

associated with queen supersedure (observed in 60% of the neonicotinoid-treated colonies within 

a one-year period) beginning the following spring. While neonicotinoid exposure was linked 

with a reduction in swarming, the authors acknowledged that the effects of neonicotinoid 

exposure on colony performance were significantly correlated to the honey bee genetic 

background. Di Prisco et al. (2013) showed that clothianidin exposure inhibits nuclear factor-KB 

immune signaling linked to deformed wing virus, and Fischer et al. (2014) concluded that 

neonicotinoid exposure limited the ability of bees to turn correctly at a specific landmark and 

successfully return to their hive. Refuting this, however, is a four-year field experiment (Pilling 

et al. 2013) that determined long-term exposure to thiamethoxam residues posed only low risk to 

bees foraging systemically seed-treated flowering oil seed rape. In a separate field experiment 

exposing bees to clothianidin residues in seed-treated canola during the summer of 2012 and the 

following spring of 2013 Cutler et al. (2014) concluded that this treatment posed low risk to bee 
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health, development and colony overwintering survival. A number of colony endpoints including 

colony weight gain, honey production, bee mortality, pest incidence, number of adults and 

amount of sealed brood as a result of beehive placement in clothianidin treated versus control 

fields were measured in this study. The authors found no significant differences and concluded 

that honey bees are relatively unaffected by exposure to clothianidin residues in seed-treated 

canola. 

Fipronil is one of the first of the modern insecticides to have been thoroughly tested for 

acute and chronic toxicity to honey bees. Therefore, several fipronil studies reviewed in this 

section were conducted in the previous decade or earlier. Aliouane et al. (2009) determined that 

both oral and topical exposure to fipronil at 0.1 ng/bee induced complete mortality one-week 

after the beginning of treatment, and that the lower oral and topical exposure to fipronil at 0.01 

ng/bee resulted in 25% and 20% mortality respectively at the end of the 11-day treatment period. 

Decourtye et al. (2005) used the proboscis extension reflex bioassay to expose honey bees to 

three concentrations of sugar syrup contaminated with fipronil. The low dose at 2.2 µg /L 

induced 40.6% chronic mortality, while the high dose at 9 µg /L induced 91.1% chronic 

mortality, both of which were significantly different from the 6.6% mortality observed in the 

control group. Vidau et al. (2011) tested the effects of fipronil on honey bee mortality to bees 

previously infected with Nosema ceranae spores by feeding infected bees fipronil ad libitum in 

sugar syrup. The mortality of honey bees previously infected with N. ceranae was significantly 

higher when fed fipronil at a daily oral intake of about 1/100th of the LD50 at 1 µg/L at the end of 

the 20-day infection and 10-day insecticide exposure period. 

Neonicotinoids and related compounds comprise a large portion of the modern 

insecticides that are commonly applied in agro-ecosystems given their broad-spectrum coverage 
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of many pests and increased human safety over the products they replaced. Several recent studies 

have reported variations in toxicity of insecticides to honey bees due to differences in honey bee 

race, subspecies, physiology, etc. For instance, in a laboratory study, Laurino et al. (2013) 

conducted oral and indirect contact bioassays to determine the acute oral and indirect contact 

toxicity of imidacloprid, thiamethoxam and clothianidin administered in contaminated sugar 

solution to three subspecies of honey bees and found significant differences. Compiling data 

from residue surveys and pesticide toxicity analyses of honey and bumble bees Sánchez-Bayo 

and Goka (2014) found neonicotinoid and pyrethroid residues pose the greatest risk to both bee 

species by contact exposure with contaminated pollen. In this study, honey residue dietary 

toxicity was high for thiamethoxam and cypermethrin, which primarily affects nectar foragers 

and secondarily larvae. Imidacloprid and clothianidin also posed high mortality risk to foragers 

(6-23% and 3-22%, respectively) and moderate risk for larvae (0.2-1.2%). Dietary toxicity from 

pollen was found to be highest in nurse bees, which are the only stage of adult honey bees 

depending entirely on this type of food. Specifically, three neonicotinoids (imidacloprid, 

clothianidin, and thiamethoxam) and phosmet were found to pose moderate risks (1-5%) for both 

nurses and the larvae they feed. In a molecular survey, Di Prisco et al. (2013) found that topically 

treating V. destructor mite contaminated-newly emerged honey bees with increasing doses of 

either clothianidin or imidacloprid, increased replication of deformed wing virus 24-hours post 

treatment. This was attributed to the negative impact of clothianidin on nuclear factor-KB 

molecular immune responses by upregulating leucine-rich repeat proteins. This in turn suppress 

nuclear factor-KB expression in insects and thereby enables deformed wing virus to be 

undetected. As a result, deformed wing virus successfully infects honey bees until their death. 
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Exposure to pesticides may also cause sub-lethal behavioral changes in bees. Aliouane et 

al. (2009) found oral exposure to acetamiprid increased bee responsiveness to water but did not 

affect consumption. Oral exposure to thiamethoxam at 1 ng/bee decreased honey bee 

responsiveness to 3% and 10% sucrose concentrations, while topical exposure to thiamethoxam 

at 0.01 ng/bee induced a significant decrease of honey bee olfactory learning performance or 

retention 24-hours post treatment. However, both treatment and control performances were the 

same at 48-hours post treatment. Thiamethoxam topical application at 1 ng/bee resulted in a 

significant decrease in olfactory learning performance during the third and fourth proboscis 

extension reflex retention trials, however, acetamiprid exposure did not affect bee learning or 

memory performance. Tan et al. (2014) found that A. cerana exposed to feeders containing 40 

µg/L of imidacloprid contaminated sugar solution had significantly decreased returning rates to 

feeders, compared to bees exposed to 10 µg/L imidacloprid contaminated sugar solution and 

controls. Similarly, Henry et al. (2012) found that honey bee foragers exposed to thiamethoxam 

at 1.34 ng/20µl sucrose solution had significantly increased homing failure. Subsequently, Guez 

(2013) critiqued the estimation of thiamethoxam exposure, thiamethoxam dose used, and 

quantification of the homing failure in this study. Repeating the bioassays of Cresswell et al. 

(2014), Sánchez-Bayo et al. (2017) confirmed that honey bees exposed to syrup containing 125 

µ/L imidacloprid contained imidacloprid body residues of 2.7-5.7 ng/g displayed trembling and 

restless behaviors. In conclusion, these bees did not have complete clearance of imidacloprid 

over the 10-day exposure period. 

B. Insecticide Toxicity to Bumble Bees 

While most pollinator ecotoxicology studies have focused on Apis-bees, several studies 

have investigated Bombus spp. As with honey bees, the majority of recent pesticide toxicology 
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research concerning bumble bees has focused on the neonicotinoids imidacloprid, thiamethoxam 

and clothianidin. Much of this was done on the commercially managed species B. terrestris in 

Europe (Gill et al. 2012; Gill and Raine 2014; Stoner 2016) and B. impatiens in North America 

(Stoner 2016). Larson et al. (2013) showed that high level rate field applications of clothianidin 

(0.45 kg AI ha-1) for controlling scarab grub to turf with blooming white clover were toxic to 

commercial colonies of B. impatiens placed in secluded foraging enclosures within the field 

setting two-days after treatment. Clothianidin exposure during the six-day period of the 

experiment resulted in reduced foraging activity, increased worker mortality, lack of queen 

production and a decrease in colony weight gain. Notably, Larson et al. (2013) also exposed 

commercial B. impatiens to the high-level rate of chlorantraniliprole (0.23 kg AI ha-1) (the first 

anthranilic diamide labeled for control of lawn insect pests) under the same experimental 

conditions but did not observe any effects. 

Laboratory and field studies assessing the field-realistic lethal doses of these pesticides to 

bees have generated mixed results that are overall inconclusive. Thompson et al. (2015) 

quantified that B. terrestris fed sucrose solution contaminated with four concentrations at 0, 1, 10 

and 100 µg/L of different neonicotinoids (imidacloprid, thiamethoxam and clothianidin) 

exhibited anti-feeding effects. These effects were reversible when bees were subsequently fed 

non-contaminated sucrose solution. Feeding the bumble bees with 10 µg/L of clothianidin, 10 or 

100 ug/L of imidacloprid resulted in a significantly lower intake of the contaminated sucrose 

solution compared to controls over the four-day test period. In a compilation of studies on 

bumble bees and honey bees, Sánchez-Bayo and Goka (2014) determined that bumble bee pollen 

residue contact toxicity was high for chlorpyrifos (8.3-12.9%), imidacloprid (31.8-49.0%) and 

clothianidin (2.5-13.3%). Due to the differential sensitivities between bee species, they conclude 
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that these insecticides were 2-3 times more toxic to bumble bees and posed a higher risk to them 

over honey bees. Exposing queen-less micro-colonies of B. terrestris to honey water and pollen 

paste containing thiamethoxam at 1 or 10 mg/kg for 28-days, Elston et al. (2013) showed that 

exposure to both thiamethoxam concentrations reduced B. terrestris consumption of honey water 

and decreased the number of wax cells produced. 

Using radio frequency identification chips, Gill and Raine (2014) concluded that the 

exposure to either lambda-cyhalothrin, imidacloprid or a combination of the two active 

ingredients significantly impaired the foraging activity of B. terrestris micro-colonies. Fauser-

Misslin et al. (2014) concluded that chronic dietary exposure of B. terrestris to thiamethoxam 

and clothianidin during early colony development negatively affected long-term colony 

performance. Additionally, when a parasite (C. bombi) was introduced to laboratory colonies 

exposed to these neonicotinoids, a negative interaction resulted in significantly impaired mother 

queen survival (Fauser-Misslin et al. 2014). In a semi-field study, Stanley et al. (2015) found that 

B. terrestris from colonies pre-exposed to sucrose solutions containing 10 ppb thiamethoxam 

provided statistically lower visitation to apple flowers and made statistically fewer foraging trips 

compared to controls. 

C. Insecticide Toxicity to Solitary and other Bees 

A few solitary bee species are managed in agricultural settings for pollination services, 

for example, alfalfa leafcutter bees (Megachile routundata), alkali bees [Nomia melanderi 

(Hymenoptera: Halictidae) (Cockerell, 1906)], Japanese orchard bees (Osmia cornifrons) and 

blue orchard bees [Osmia lignaria (Hymenoptera: Megachilidae) (Say, 1837)] (Pisa et al. 2015). 

However, the more than 20,000 species of unmanaged solitary bees are integral for pollinating 

certain crops such as tree fruits, berries and cucurbits (Bosch and Kemp 2001; Park et al. 2018) 
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and provide valuable ecosystem services (Losey and Vaughn 2006). These bees are generally 

smaller in size, have shorter foraging ranges, many are univoltine, and most nest underground, 

thereby potentially placing them closer to pesticide applications (Pisa et al. 2015). As a result, 

the impacts of pesticide exposure can be more pronounced for solitary bees than in colonial, 

semi-eusocial, and eusocial bees. Solitary bees are less resilient to pesticide insecticide exposure 

than honey bees because they do not have large social colonies (Pisa et al. 2015; Hopwood et al. 

2016). They can also become more limited in their food resources and habitat than social bees. 

However, this would not necessarily be the case for solitary bees foraging crops from adjacent 

habitats; but might in part explain why solitary bees do not commonly nest in orchards 

(Biddinger pers. comm.). Moreover, a large meta-analysis of bee pesticide exposure (Arena and 

Sgolastra 2014) found that solitary bees are overall less sensitive than honey bees. All of these 

factors are known from existing accurate studies on the toxicity of pesticides to bees and 

highlight the need for future studies to investigate new untested pesticide compounds. Existing 

studies on pesticide toxicology to bees also indicate problems with using the acute and sub-lethal 

toxicity of honey bees as a surrogate model for determining the effects of pesticides to other 

species of bees (for example Bombus species and commercially managed solitary bee species). 

Quantifying clothianidin oral acute toxicity to A. mellifera, B. terrestris and Osmia 

bicornis [(Hymenoptera: Megachilidae) (Linnaeus, 1758)] Spurgeon et al. (2016) found the 

following LD50 values at 48, 96, and 240-hours post treatment for each bee species. A. mellifera 

(14.6, 15.4 and 117 ng/bee), B. terrestris (26.6, 35.0 and 57.4 ng/bee) and for O. bicornis (8.4, 

12.4 and 28.0 ng/bee). Therefore, this study demonstrated that while B. terrestris are more 

tolerant to clothianidin than honey bees at 24 and 48-hours, they are more sensitive at 240-hours. 

The increased sensitivity at 240-hours is surprising given that B. terrestris are larger than A. 
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mellifera. It was also found that O. bicornis are the more susceptible to clothianidin. Sgolastra et 

al. (2017) also quantified the relative acute toxicity of clothianidin to these same three species of 

bees at 24 and 96-hours post treatment, and their results agree with those of Spurgeon et al. 

(2016). Together, the findings of these two studies suggest that neonicotinoids are overall more 

toxic to smaller bodied bees; a position also pointed out by (Hopwood et al. 2016). 

Several insecticide acute toxicology studies have been done on stingless bees (Meliponini 

species). Costa et al. (2015) found that imidacloprid posed higher toxicity to M. scutellaris 

compared to OECD contact LD50 values for A. mellifera by determining M. scutellaris topical 

LD50 at 2.41 ng/bee and 1.29 ng/bee at 24 and 48-hours post treatment respectively. This study 

also found M. scutellaris oral LC50 at 2.01 ng/µL and 0.81 ng/µL at 24 and 48-hours post 

treatment respectively, demonstrating the higher oral toxicity of imidacloprid to this species 

compared to oral LC50 values for A. mellifera. Similarly, Lourenço et al. (2012) showed that 

fipronil posed higher contact and oral toxicity to M. scutellaris at topical LD50 at 0.6 ng/bee and 

and oral LC50 at 0.011 ng/µL respectively at 48-hours post treatment compared to OECD values 

for A. mellifera. Field realistic dosages of thiamethoxam at 0.004 to 4.375 ng/larva were found to 

decrease Scaptotrigona depilis [(Hymenoptera: Apidae) (Moure, 1942)] larval survival in vitro 

(Rosa et al. 2016). Analyzing the effects of fipronil on Scaptotrigona postica [(Hymenoptera: 

Apidae) (Latreille, 1807)] brain physiology, Jacob et al. (2015) found a low topical dose at 0.27 

ng/bee and a low oral dose at 0.24 ng/bee affected the brain mushroom bodies by means of 

apoptosis or necrosis, with a more pronounced effect than that of A. mellifera. Tomé et al. (2012) 

showed imidacloprid effected Melipona quadrifasciata anthidioides [(Hymenoptera: Apidae) (le 

Peletier, 1836)] mushroom bodies by impairing respiration and flight activity. Finally, 

Valdovinos-Núñez et al. (2009) found imidacloprid, thiamethoxam and thiacloprid were more 
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toxic than permethrin and diazinon to the stingless bees Melipona beecheii [(Hymenoptera: 

Apidae) (Bennett, 1831)], Trigona nigra [(Hymenoptera: Apidae) (Cresson, 1878)] and 

Nannotrigona perilampoides [(Hymenoptera: Apidae) (Cresson, 1878)]. This study specifically 

calculated LD50 values of each pesticide for all three species. Callow workers of all three species 

had statistically higher mortality than foragers. For M. beecheii, statistically more males died 

than females when exposed to similar pesticide doses. Also, M. beecheii gynes were statistically 

more susceptible than workers. 

In the meta-analysis of Arena and Sgolastra (2014) A. mellifera was overall more 

sensitive to the 53 pesticides analyzed, however there were several instances (20 out of 53 

analyzed pesticides) where these compounds were more toxic to other bee species. Across the six 

pesticide classes tested in this meta-analysis, only neonicotinoids were found to be more toxic to 

solitary bees than A. mellifera. For acute contact LD50, only seven cases demonstrated a toxicity 

that was 10-fold higher for a solitary bee than A. mellifera. For instance, specifically compared to 

A. mellifera, acetamiprid had a 12-fold higher toxicity to O. cornifrons (Biddinger et al. 2013), 

while cyhalothrin had a 11-fold higher toxicity to M. rotundata (Devillers et al. 2003). Similarly, 

fipronil had a 14-fold higher toxicity to M. scutellaris and a 24-fold higher toxicity to S. postica, 

while thiacloprid had a 2,086-fold higher toxicity to N. perilampoides. Therefore, conclusions 

are hard to find because bee family makes a difference in susceptibility to pesticides and 

sometimes even the same species may react differently to various pesticides even within the 

same class. 

Most work investigating the toxicity of pesticides to solitary bees have concerned Osmia 

and other genera within the Megachilidae because they are easy to manage and rear in large 

numbers necessary for bioassasy (Mader et al. 2011). A number of these studies have compared 
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the toxicity of pesticides to Apis and non-Apis bees including both Bombus species and solitary 

bees. For example, a recent report on neonicotinoids has concluded that bees can contact residues 

in pollen and nectar, residues can persist in soil and plants for months to years after application, 

and that residues from seed-treated crops can contaminate the surrounding environment 

(Hopwood et al. 2016). This report also found that home product applications can be made at 

higher levels than the maximum approved field rate and foliar contact with the most toxic 

neonicotinoids has resulted in bee mortality. Analyzing comparative responses of A. mellifera 

and O. cornifrons to two neonicotinoids (acetamiprid and imidacloprid) and two 

organophosphates (dimethoate and phosmet), Biddinger et al. (2013) found strikingly different 

results. Specifically, this study demonstrated (1) different bee species can have unique responses 

to insecticides within the same class, and (2) some neonicotinids are more toxic than others to 

bees. Similarly, numerous studies have been done comparing the toxicity of active ingredients to 

alfalfa leafcutter bees (M. rotundata) and honey bees. In early studies, using contact application 

to quantify toxicities for comparison, Torchio (1973) found that alfalfa leafcutter bees had the 

highest tolerance while honey bees had the lowest tolerance. Comparing the LD30 and LD95 of 

trichlorfon for honey bees and male and female alfalfa leafcutter bees, Ahmad and Johansen 

(1973) showed that trichlorfon was 18-34 times more toxic to honey bees than to female alfalfa 

leafcutter bees. This difference in trichlorfon toxicity was attributed to higher pH of body fluid in 

alfalfa leafcutter bees, which is 6.0 for honey bees and 6.8 for alfalfa leafcutter bees. Trichlorfon 

is known to be highly unstable at neutral or high pH levels. 

Some studies have analyzed the sub-lethal effects of pesticide exposure to solitary bees 

and found reproductive effects on bee larvae. For instance, Abbott et al. (2008) found that when 

feeding O. lignaria larvae food dosed with 30-300 µg/kg-1 of imidacloprid, the time for them to 
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develop into adults was prolonged. Torchio (1983) concluded that a field treatment of trichlorfon 

(Dylox) did not affect survivorship of nesting alfalfa leafcutter bees (M. rotundata). The number 

of cells completed per day decreased, however, the mortality of eggs and young larvae increased 

in cells following trichlorfon treatment. More recently, Peach et al. (1995) found that alfalfa 

leafcutter bees ingesting 2 mg of carbaryl in a 25% honey bran bait solution had no significant 

effects on adult nesting performance, brood care, offspring size and sex ratio. 

In a recent study, Sandrock et al. (2014) fed adult female O. bicornis sugar solution 

contaminated with 2.87 ppb thiamethoxam and 0.45 ppb clothianidin plus untreated pollen. 

Although exposure resulted in no significant effects on female longevity and body weight, 

treated bees constructed 22% fewer nests that contained 43.7% fewer cells, for which relative 

offspring mortality was significantly higher (15% versus 8.5% for treated and control bees 

respectively). This study concluded that adult female O. bicornis chronically treated with 

neonicotinoid laced sugar solution resulted in a significant reduction of their offspring 

emergence per nest, marked by a 47.7% reduction of offspring production in treated bees. 

Rundlöf et al. (2015) analyzed the effects of clothianidin-treated oilseed rape on O. bicornis. 

Treated fields were sowed with seeds treated with 25 ml of the Bayer product Elado® (400 g/l 

clothianidin + 80 g/l beta-cyfluthrin) and the fungicide thiram at a rate of 10 g clothianidin/kg of 

seed, while control fields were sown with seeds only treated with the fungicide thiram. They 

found that while none of the O. bicornis placed adjacent to the treated oilseed rape fields 

engaged in nesting behavior and brood cell construction, O. bicornis placed adjacent to six of the 

eight control fields did. 
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D. Toxicity of Fungicides to Bees 

In addition to insecticides, bees are exposed to several other chemicals used in 

agricultural crop production, that may influence general bee health. For instance, in a study 

investigating the foliar spray toxicity of commonly used fungicides, Fisher et al. (2017) showed 

that exposure to tank mixes of formulated Iprodione 2SE Select® (iprodione) and either 

formulated Pristine® (boscalid and pyraclostrobin) or Quadris® (azoxytrobin) significantly 

decreased honey bee forager survival by synergism. In a separate study investigating the 

synergistic effects of the fungicide Pristine® (boscalid and pyraclostrobin) with the spray 

adjuvant Break-Thru® (polyether-polymethylsiloxane-copolymer) on queen rearing success, 

Johnson and Percel (2013) determined that neither chemical nor their combination had a 

significant effect on immature queen survival. Low levels of pyraclostrobin (50 ppb) but not 

boscalid, however, were found in royal jelly secreted by nurse bees feeding on treated pollen. 

Johnson et al. (2013) concluded that four sterol biosynthesis inhibiting fungicides increased the 

acute toxicity of the acaricide tau-fluvalinate to honey bee adult workers in a dose-dependent 

manner. They attribute this synergism to the inhibition of cytochrome P450 monooxygenase 

enzyme activity. This study also found that the sterol biosynthesis inhibiting fungicide 

prochloraz increased the acute toxicity of the acaricides coumaphos and fenpyroximate, while 

pre-treatment with the acaricide amitraz increased the acute toxicity of three other acarcides that 

are P450-detoxifyed. Migdal et al. (2018) fed Carniolan race honey bees syrup contaminated 

with the fungicides Miedzian 50WP (active ingredient copper oxychloride) and Thiram Granuflo 

80WG (thiram) over an experimental duration of 108 and 168 hours respectively. This study 

found a daily fungicide intake of 4.75 mm3/bee and 16.78 mm3/bee respectively; resulting in 

daily mortality of 35.15 and 5.17 bees/cage respectively. 
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Exposing queen-less micro-colonies of B. terrestris to honey water and pollen paste 

containing field realistic mean or field realistic maximum concentrations of the demethylation 

inhibitor fungicide propiconazole for 28-days, Elston et al. (2013) showed that both 

propiconazole concentrations reduced honey water consumption, and the lowest dose also 

decreased the number of wax cells produced. In another study, Bernauer et al. (2015) exposed 

five B. impatiens to flowers treated with field-realistic levels of the fungicide chlorothalonil over 

the course of one month. In this study, treated colonies compared to controls, produced less than 

a third as many workers, contained less than half the quantity of bee biomass and were queened 

by mothers with half the amount of body mass. 

Comparing chemical toxicity of Osmia lignara (Say) and M. rotundata, Artz and Pitts-

Singer (2015) found that O. lignaria exposure to the fungicides Rovral 4F® (iprodione) and 

Pristine® (25.2% boscalid and 12.8% pyraclostrobin) and the non-ionic spray adjuvant N-90® 

(90% polyethoxylated nonylphenol) in cage studies negatively affected nest recognition ability. 

Comparing O. lignaria and A. mellifera exposure to five fungicides in cage studies, Ladurner et 

al. (2005) determined that oral ingestion of Orbit® (propiconazole) resulted in the acute toxicity 

of both species, while oral and contact exposure to Captan 50WP® (captan) was chronically toxic 

to O. lignaria by severely impacting their survival 72 hours to 7 days post exposure. Conversely, 

in semi-field studies using formulated product they found that O. lignaria foraging and nesting 

behavior was unaffected when sprayed in cages with one of the fungicides Rovral® (iprodione), 

Orbit® (propiconazole), Benlate® (benomyl), and Captan 50WP® (captan) (Ladurner et al. 2008). 

Foraging and nesting behavior was only affected for several hours post treatment when sprayed 

with a mixture of Rovral® (iprodione) + Dyne-amic (surfactant) + Bayfolan Plus®. 
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E. Impact of Pesticide Residues to Bees 

Several studies have examined pesticide residues in crop and non-crop flowers and their 

impact on bees. David et al. (2016) conducted a field study quantifying the amounts of 

neonicotinoids present in oilseed rape, wildflowers adjacent to winter wheat and oilseed rape and 

the pollen collected by honey bees, and found at least six different neonicotinoid and fungicide 

residues in samples. In wildflower samples, they found significantly lower levels of 

thiamethoxam and thiacloprid compared to those found in oilseed rape. Using pollen traps to 

collect honey bee forager pollen from the hives used in this experiment, they found pollen 

contaminated with 14 pesticides collected during oilseed rape bloom, and contamination with 10 

pesticide compounds after bloom. Implementing pollen traps in standard Langstroth honey bee 

hives placed in maize fields for 16 weeks, Long and Krupke (2016) found pollen samples 

contaminated with 32 different pesticides (in ppb), several of which were insecticides. In non-

agricultural areas, the pyrethroid insecticides prallethrin and phenothrin were detected in 46.7% 

and 30% of the pollen samples respectively, while carbamates, neonicotinoids and 

organophosphates were detected in 3-16.7% of pollen samples. In pollen collected adjacent to 

untreated maize fields, the insecticide thiamethoxam was detected in 33% of samples, while 

carbamates, other neonicotinoids and organophosphates were present in 4-33% of samples. In 

pollen collected adjacent to pesticide treated maize fields, the insecticides phenothrin, 

acetamiprid, and carbaryl were detected in 25-28% of pollen samples. In all three experimental 

field settings, detection of the pyrethroid phenothrin spiked during the later collection period 

(August-September). However, most of the detection levels in this study (especially for the non-

treated maize and non-agricultural areas) are below any observable effect by EPA standards 

(U.S. Environmental Protection Agency 2013). 
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Multiple field studies feeding honey bees sugar syrup and nectar laced with imidacloprid 

showed no significant increase in mortality (e.g., Schmuck et al. 2001; Faucon et al. 2005). A 

key point is that recently, numerous field studies have been done to analyze the actual level of 

pesticides that bees are exposed to. For example, Sandrock et al. (2014) found that exposing 

honey bees to chronic levels of in hive pollen containing clothianidin and thiamethoxam 

negatively impacted colony performance and queen supersedure. In agreement, Fischer et al. 

(2014) concluded that contact exposure with thiacloprid, imidacloprid or clothianidin impaired 

honey bee navigation. However, Cutler et al. (2014) assessed no overall sub-lethal effects of 

chronic exposure to clothianidin seed-treated canola on honey bee colonies, and even observed 

strong colonies during and after exposure. 

After exposing honey bee colonies to thiamethoxam seed-treated maize and oilseed rape 

over a four-year field trial in multiple locations, Pilling et al. (2013) determined that systemic 

residues in pollen, nectar and hive products pose low risk to honey bees. Median levels of both 

thiamethoxam and its first metabolite clothianidin (CGA322704) in whole plant material for both 

crops were overall higher than those in bee collected pollen and nectar. Moreover, thiamethoxam 

and CGA322704 residues in bee bread and hive nectar were always equal to or lower than those 

in bee collected pollen or nectar for all matrices tested. Conversely, Hoppe et al. (2015) 

responded to the study of Pilling et al. (2013) by detailing several flaws. For instance, Pilling et 

al. (2013) only used thiamethoxam active ingredients for seed dressings, instead of testing a 

field-realistic formulated product. Also, no assessment was made of previous field pesticide 

contamination. During the experimental procedure, pollen stores were only examined for 

thiamethoxam and clothianidin, but not other pesticides. Colony losses throughout the 

experiment were incorrectly calculated. 
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Like honey bees, bumble bees are also exposed to pesticides in different ecosystems. In 

net collecting 150 specimens of five wild bumble bee species in spring, early-summer and mid-

summer in the United Kingdom and agricultural and urban settings, Botías et al. (2017) found 

some interesting trends in neonicotinoid residue level and frequency. While overall higher 

pesticide quantities were detected in bumble bees foraging in agricultural settings (6.8 ± 9.5 

ng/g), the highest level and frequency of imidacloprid (10 ng/g) were found on a B. terrestris 

specimen collected from an urban setting during early-summer. More generally, all five 

neonicotinoids registered for application in the United Kingdom were detected in at least one 

bumble bee, and overall, neonicotinoid residues were detected in more bumble bees net collected 

in urban settings (9.3%) than in agricultural settings (2.7%). They also found specimens of B. 

pratorum, the species with the smallest body mass and shortest tongue length, contained 

statistically lower agrochemical residue levels compared to the other species. Interestingly, 

pesticide quantities detected significantly decreased in midsummer, which agrees with other 

studies such as (David et al. 2016). Placing commercial B. terrestris audax nests in rural and 

urban areas, David et al. (2016) detected much higher insecticide levels in both pollen samples 

and the bees themselves in rural settings after four weeks of free foraging. Imidacloprid was the 

most frequently detected insecticide found in 6% of pollen samples from rural areas, while in 

urban areas, thiamethoxam, thiacloprid, acetamiprid were also found in addition to imidacloprid 

(David et al. 2016). 

F. Interactions Between Multiple Pesticides 

Bees and other pollinators are commonly exposed to multiple pesticides and other 

stressors. Therefore, it is plausible to hypothesize that exposure to multiple stressors results in 

additive or synergistic interactions that exacerbate the detrimental effects to afflicted bees (Sih et 



 

 44 

al. 2004; Gill et al. 2012; Johnson and Percel 2013). Simulating foliar exposure of honey bees to 

imidacloprid alone or in binary mixtures combined with pesticides of different classes, Zhu et al. 

(2017a) determined synergistic toxicity from imidacloprid + tetraconazole, imidacloprid + 

sulfoxaflor and imidacloprid + oxamyl, and additive toxicity from imidacloprid + acephate and 

imidacloprid + lambda-cyhalothrin. Significant esterase and acetylcholinesterase enzymatic 

activity was suppressed following exposure to imidacloprid + acephate. Conversely, by 

simulating honey bee oral uptake of imidacloprid alone and in binary combinations with 

pesticides of different classes, Zhu et al. (2017b) demonstrated that resulting mortality was 

statistically similar to the control, thereby showing that pesticide residues found in hives and 

pollen may not adversely impact honey bees. Assessing chronic oral toxicity of pesticides 

commonly found in hive pollen and wax to honey bee larvae, Zhu et al. (2014) found synergistic 

toxicity following exposure to the binary mixture of chlorothalonil (34 mg/L) + fluvalinate (3 

mg/L), and an antagonistic interaction when the mixture was diluted by 10-fold. This study also 

confirmed synergism between chlorothalonil (34 mg/L) + coumaphos (8 mg/L). 

Testing oral toxicity of six concentrations each for a range of pesticides alone and in 

binary combinations to A. mellifera, B. terrestris and O. bicornis following prolonged exposure 

(240-hours), Spurgeon et al. (2016) determined a consistent level of toxicity (based on 

calculating LC50 values)for the three-bee species. These results were characterized by additive 

toxicity following exposure to most mixtures, slightly increased toxicity following exposure to 

clothianidin + propiconazole and a weak antagonistic interaction following B. terrestris and O. 

bicornis exposure to clothianidin + dimethoate. Analyzing the impact of B. terrestris oral dietary 

exposure to the fungicide imazalil in binary combinations with four insecticides, Raimets et al. 

(2018) concluded imizalil synergized mortality following uptake of mixtures with fipronil, 
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cypermethrin or thiamethoxam, but not imidacloprid. However, this had no synergistic impact on 

B. terrestris feeding rate. Collection of 150 wild adults representing five species of wild bumble 

bees revealed that 71% contained residues of multiple pesticide compounds in their tissues, 

thereby indicating that foraging bumble bees are routinely exposed to more than one pesticide 

and that their contact with these chemicals might be more widespread than previously believed 

(Botías et al. 2017). However, pesticide detections on bees do not necessarily indicate toxicity 

and resulting mortality. 

G. Assessing the Toxicity of New Insecticides to Bees 

The Food Quality Protection Act of 1996 (US Congress, 1996) curtailed use of broad-

spectrum pesticides and particularly those within the carbamate and organophosphate classes. As 

a result, the suite of agricultural chemicals available for growers to use in integrated pest 

management programs was largely reduced. Development of insect pest resistance to existing 

insecticide chemistries has dramatically increased in recent years. As a result, synthesis of new 

premix insecticides comprised of multiple active ingredients (each with a different mode of 

action) has been aimed at providing growers effective pest management tools that combat insect 

resistance buildup. 

Premixes are increasingly being used for controlling a diversity of insect pests in field 

crops (Ramsey et al. 2016; Jones et al. 2017) and orchard crops (Leskey et al. 2014; Alston and 

Murray 2017). Honey bees and solitary bees pollinate several field and orchard crops (Klein et 

al. 2007; Bosch et al. 2006) and thereby are potentially threatened if premixes of toxic 

insecticides are applied within the time frame of when bees are actively foraging. However, since 

premix insecticide applications are prohibited in orchards during bloom, bee exposure in 

orchards will be from systemic movement of pre-bloom sprays or early petal fall sprays. 



 

 46 

Conversely, for long-blooming crops such as oilseed rape or pumpkins where insecticides are 

applied during bloom, it is possible for foraging bees to be exposed to premix insecticides. To 

our knowledge, the ecotoxicology of these insecticide mixtures has not been thoroughly tested on 

honey bees and not at all tested on non-Apis bees. In a honey bee mortality screening analysis, 

Zhu et al. (2015) found that contact exposure to premix insecticides by spray application resulted 

in high mortality within 24 and 48-hours after treatment. 

To address this gap in our knowledge of insecticide toxicology to bees with premixes, we 

simulated contact exposure of four premix insecticides to honey bee foragers (an Apis-bee) and 

male and female blue orchard bees (a non-Apis bee). 

H. Research Objectives 

My research objectives are: 

To expand upon preliminary work investigating the acute contact toxicity of premix 

insecticides to honey bees in the following three scenarios: (1) when bees are 

foraging in a crop field and are directly exposed to insecticides during an application; 

(2) when bees are exposed to insecticide sprays while passing through a crop field; 

and (3) when bees are foraging in a crop field that was sprayed with insecticides 

during the previous day. 

To contribute to our understanding of insecticide risk to non-Apis bees by assessing 

the acute contact toxicity of premix insecticides (and the individual ingredients 

comprising one of these insecticides) to male and female blue orchard bees. 

Obtaining these results will provide us with an improved baseline for the realistic risk 

that premix insecticides pose to bees. Studying these bee species should foster future work 

investigating whole body and oral exposure to multiple doses of these premix insecticides. My 
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goal is to contribute to improving our protection of bees in field settings in a manner that enables 

growers to safely apply insecticides for maintaining insect pests at tolerable levels. 
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Toxicity of Formulated Insecticide Mixtures to Honey Bees, Apis mellifera (Linnaeus) 

Abstract 

Honey bees, Apis mellifera (Linnaeus) are crucial pollinators, however large overwinter 

losses of managed hives and declines in feral colonies have recently occurred. Increased usage of 

pesticides has been proposed to contribute to these declines. Previous studies have demonstrated 

contact toxicity of single active ingredient insecticides to honey bees. However, field realistic 

toxicity of formulated insecticide mixtures containing multiple active ingredients (each with a 

different mode of action) to honey bees has not been thoroughly assessed. Here, we simulate 

whole body contact to spray application of thiamethoxam + lambda-cyhalothrin, imidacloprid + 

beta-cyfluthrin, chlorantraniliprole + lambda-cyhalothrin and methoxyfenozide + spinetoram to 

honey bees under three realistic scenarios in field crops: (1) continuous exposure, (2) spray-only 

exposure, and (3) residual exposure. A customized spray tower in a laboratory setting was used 

to apply insecticides at the lowest recommended dose on the EPA label of each insecticide. 

Acute toxicity was determined by screening resulting mortality up to 96-hours post treatment. 

Statistical significance was found between treatments (p<0.05) at all screening periods for all 

experiments except residual exposure at 48-hours given complete mortality. For continuous and 

spray-only exposure, thiamethoxam + lambda-cyhalothrin and imidacloprid + beta-cyfluthrin 

resulted in 80-90% mortality at 48-hours, while at 96-hours we observed close to complete 

mortality for all treatments. This difference in mortality onset between treatments highlights the 

importance of extended observation. Our finding of overall high mortality demonstrates the 

importance of comparing both combined and individual active ingredients in determining 

insecticide risk to honey bees. 
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Introduction 

Honey bees, [Apis mellifera (Linnaeus) (Hymenoptera: Apidae)] provide integral 

pollination services for the production of food, fiber and fuel crops worldwide (Klein et al. 

2007). They are ideally suited for monoculture pollination events given their foraging activity 

throughout an entire growing season, their biology as generalist pollinators and relative 

availability as a domesticated species (vanEngelsdorp and Meixner 2010). Therefore, we have 

become increasingly reliant on honey bees, which is evidenced by the increased trajectory of 

bee-dependent crop cultivation over time (Aizen et al. 2008). As a result, honey bees are 

commercially domesticated by beekeepers and leased to agricultural producers for their 

pollination services. For example, almond, (Prunus dulcis, Miller and Webb) production in 

California is almost completely reliant on the beekeeping industry, requiring annual 

transportation of 1.9 million beehives to California’s Central Valley during bloom (Pitts-Singer 

et al. 2018). This month-long pollination event is spread over 433,014 bearing hectares 

generating 80% of global almond yield worth $5.16 billion USD in revenue (USDA NASS 

2018). Economically, honey bee pollination was estimated to contribute $11.68 billion USD in 

direct crop pollination and $5.39 billion USD in indirect crop pollination in the United States in 

2009 (Calderone 2012). Beyond their importance to commercial agriculture, honey bees are also 

pollinators of wild plants and are therefore critical for natural ecosystem conservation (Gallai et 

al. 2009). Honey bees additionally provide resources including honey and honeycomb and hive 

products such as wax, propolis, lip balm and hand creams (Crane 1990; Flottum 2014). 
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The increased reliance on honey bees for pollination services coincides with high 

overwinter declines of domesticated hives and reductions in feral colonies over the last decade. 

Several theories including a range of environmental stressors characterized by diseases, 

parasites, pesticide exposure, habitat destruction, insufficient nutrition and cultural practices 

have been postulated to explain these losses (Duay et al. 2002; vanEngelsdorp et al. 2009; 

Mussen 2011; Huang 2012; Goulson et al. 2015; Lundin et al. 2017). The Bee Informed 

Partnership has conducted annual surveys of honey bee colony loss in the United States every 

year beginning in 2006-2007 (Bruckner et al. 2018). According to these surveys, commercial 

beekeepers have experienced approximately 30% annual losses of colonies, marked by a high of 

45% in 2012-2013 (Steinhauer et al. 2016). Data for 2017-2018 (the most recent year) indicate 

an annual loss of 40%, thereby indicating that colony decline is persistent (Bruckner et al. 2018). 

In 2014-2015, for the first time, summer losses were higher (26.2%) than winter losses (20.5%), 

which is attributed to the large losses of commercial beekeepers (Seitz et al. 2016). Therefore, 

the supply of available honey bee hives for pollination events is largely lagging demand, thereby 

dramatically increasing the average cost of hive rentals. The steepest increase in hive rental fees 

are for almond pollination. For example, between 2004-2006, the average price a California 

almond grower paid per hive increased from $54 USD to $136 USD (Sumner and Boriss 2006). 

Hive rental fees have similarly increased for other crops. For example, between 2005-2007, 

average hive rental fees increased from $35 USD to $100 USD for pollinating apples (Biddinger, 

pers. comm.). As a result, scientists, growers and other crop operators are increasingly motivated 

to isolate specific stressors affecting honey bees and identify practices that will improve honey 

bee health for the long term. 
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Assessing the effects of pesticides commonly applied to agricultural crops on honey bees 

is one area that has received a lot of research interest. Currently, the majority of research on 

pesticide toxicity to honey bees has focused on acute, sub-lethal and molecular-level toxicity or 

detoxification processes following oral and contact exposure to single active ingredient pesticide 

chemistries. However, these studies generally use non-realistic exposure of technical grade 

materials dissolved in acetone (OECD-library.org) rather than using formulated products 

dissolved in water to more accurately reflect field-realistic exposure scenarios. For example, 

Henry et al. (2012) determined that feeding honey bee foragers sub-lethal doses of the 

neonicotinoid thiamethoxam impaired their ability to successfully locate their hive. Fischer et al. 

(2014) concluded that oral uptake of one of the neonicotinoids imidacloprid, clothianidin or 

thiacloprid in sucrose solution interfered with honey bee navigation. Separately, Sandrock et al. 

(2014) determined that chronic exposure to pollen stores within hives containing clothianidin and 

thiamethoxam negatively affected colony performance and queen supersedure. Di Prisco et al. 

(2013) showed that topical contact exposure to the LD50 dose of clothianidin enhances 

transcription of the gene inhibiting nuclear factor-KB immune signaling in insects and correlated 

this to increased deformed wing virus infections in honey bees. Oral exposure to a combination 

of a nonlethal dose of the fungicide propiconazole and a dose in the range of an LD10 for 

clothianidin was determined to cause significant synergistic mortality of honey bees at 4 and 24-

hours after treatment (Sgolastra et al. 2017). Analyzing the toxicity of imidacloprid alone and in 

binary mixtures with seven other pesticides to honey bees, Zhu et al. (2017) found increased 

mortality from synergism for imidacloprid + tetraconazole, imidacloprid + sulfoxaflor and 

imidacloprid + oxamyl. 
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Several studies on honey bee pesticide exposure have been conducted in field settings. 

David et al. (2016) found large mean quantities of 20 neonicotinoids and fungicides in pollen 

collected from both oilseed rape, (Brassica napus, Linnaeus) flowers (0.5-80 ppb) and 

wildflowers (0.6-47 ppb) growing around tested fields. This study also found a large mixture of 

neonicotinoid and fungicide mean residue concentrations in pollen samples collected by honey 

bees foraging the oilseed rape fields analyzed during bloom (0.15-12 ppb) and after bloom (0.1-

2.5 ppb). Dively et al. (2015) showed that honey bee colonies chronically exposed to sub-lethal 

doses of imidacloprid had decreased health and overwintering success, although the more field 

realistic sub-lethal dose had negligible effects. Conversely, Pilling et al. (2013) concluded that 

long-term exposure to thiamethoxam residues poses a low risk to honey bees foraging 

systemically treated maize and oilseed rape, while Cutler et al. (2014) found that exposing honey 

bees to clothianidin seed-treated canola posed a low risk to health, development and colony 

overwintering success. Experimental designs testing the toxicity of field-realistic pesticide doses 

and formulations to bees are necessary to accurately quantify the real impacts to bees following 

exposure to these chemicals (Carreck and Ratnieks 2014; Biddinger and Rajotte 2015). For 

example, up to 100-fold differences in pesticide toxicity to bees were found in comparing 

formulated pesticides dissolved in water (field setting) to technical-grade pesticides dissolved in 

acetone (laboratory setting) (Hopwood et al. 2012; Biddinger et al. 2013). 

The effects of other agricultural chemicals have also been assessed on honey bees. 

Spraying honey bee foragers with fungicides using a wind tunnel atomizer, Fisher et al. (2017) 

showed significant decreases in forager survival following exposure to simulated tank mixes of 

iprodione, and synergistic effects resulting from iprodione combined with pyraclostrobin and 

azoxystrobin. Analyzing the effects of exposure to boscalid + pyraclostrobin and the 
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organosilicone spray adjuvant polyether-polymethylsiloxane-copolymer on honey bee queen-

rearing success, Johnson and Percel (2013) found low levels of pyraclostrobin but not boscalid in 

royal jelly secreted by nurse bees feeding on treated pollen. However, neither pyraclostrobin nor 

the organosilicone spray adjuvant reduced the survival of immature queens. Analyzing toxic 

synergisms between fungicides, acaricides and antimicrobial drugs applied to honey bees by 

thoracic contact, Johnson et al. (2013) concluded that exposure to several sterol biosynthesis 

inhibiting fungicides increased the toxicity of previous exposure to acaricides commonly used in 

beehives. 

The Food Quality Protection Act of 1996 (United States Congress, 1996) curtailed use of 

broad-spectrum pesticides and particularly those within the carbamate and organophosphate 

classes. As a result, the suite of agricultural chemicals available for growers to use in integrated 

pest management programs was largely reduced. Neonicotinoids (a new class of insecticide 

characterized by their mode of action as nicotinic acetylcholine receptor agonists) were 

synthesized and made commercially available during this same time (Elbert et al. 2008). Given 

the high efficacy of neonicotinoids against insect pests, their use has surged and currently 

accounts for approximately 25% of the global pesticide market, with sales worth $1.9 billion 

USD (Jeschke et al. 2011). Neonicotinoids can be applied in a variety of methods: foliar spray 

applications, seed coatings, soil drenches, trunk injections (for trees), granules, bait and topical 

applications (Hopwood et al. 2016). However, a major question that has circulated around 

neonicotinoids is their toxicity to bees. Over the past decade, a myriad of studies have 

investigated different aspects of bee exposure to these insecticides and their resulting acute, 

chronic and sub-lethal and toxicity. As previously described, some studies have clearly shown 

that neonicotinoids pose high risk to bees, while other have found that they pose little or no risk 
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to bees. Also, some neonicotinoids have been found to be more toxic to bees than others. 

Therefore, the question of whether or not neonicotinoids are hazardous to bees is still being 

debated among the scientific community. 

Development of insect pest resistance to existing insecticide chemistries has dramatically 

increased in recent years. For example, upregulation of cytochrome P450 detoxification enzyme 

related genes has been correlated with neonicotinoid resistance in whiteflies, [Bemisia tabaci, 

(Hemiptera: Aleyrodidae) (Gennadius, 1889)] (Ilias et al. 2015). Similarly, knock-down 

resistance gene evolution has resulted in cabbage stem flea beetle, [Psylliodes chrysocephala, 

(Coleoptera: Chrysomelidae) (Linnaeus, 1758)] resistance to pyrethroids (Højland et al. 2015). 

Synthesis of new premix insecticides comprised of multiple active ingredients (each with a 

different mode of action) which are commonly referred to as insecticide mixtures, has been 

aimed at combatting insect resistance buildup. 

The ecotoxicology of premix insecticides containing multiple active ingredients (some of 

which are neonicotinoids) to honey bees has not been tested thoroughly. For example, Zhu et al. 

(2015) demonstrated high levels of contact toxicity by insecticide mixtures to honey bees for 

both premix products and their individual active ingredients in mortality assessments up to 48-

hours after treatment. Here, we explore the toxicity of premix insecticides to honey bees over an 

extended period by screening forager mortality up to 96-hours following contact exposure. The 

main objectives of this study were to assess the risk of insecticide exposure to honey bee foragers 

to premix insecticides in three experiments simulating the following possible scenarios: (1) when 

bees are foraging in a crop field and are directly exposed to insecticides during an application; 

(2) when bees are exposed to insecticide sprays while passing through a crop field; and (3) when 

bees are foraging in a crop field that was sprayed with insecticides during the previous day. 
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Considering these scenarios, this study investigates field realistic acute contact toxicity of 

formulated premix insecticides that are commonly used for pest management in field crops to 

honey bees. The findings of this study will aid growers and insecticide applicators in making 

insecticide selection and application decisions that minimize their impact on honey bees. 

Materials and Methods 

Honey bees. Honey bee foragers of the Italian race (A. mellifera mellifera) were obtained 

from beehives maintained at a research farm located within the University of Arkansas 

Experiment Station, Fayetteville, AR. These beehives were managed according to University of 

Arkansas Cooperative Extension Service recommendations (University of Arkansas Cooperative 

Extension Service Beekeeping Publications). Bees were collected from the beehives using cage-

jars (mason jars with wire mesh covering the opening). Immediately afterwards, cages containing 

honey bees were transferred to a cooler and were brought to a laboratory setting. Once in the 

laboratory, honey bees were placed into an incubator (33 ± 0.5°C; 65% ± 2 RH) until used for 

experiments. 

Cage design. Experimental cages were comprised of transparent polypropylene jars (500 

mL, D by H: 9.3 by 10 cm). Immediately before the experiment, honey bees were immobilized 

by placing them in a cooler for approximately two minutes (except for experiment 3 where they 

were directly placed into previously treated cages). After immobilization, honey bees were 

quickly transferred to the experimental cages. A plastic vial containing 50% sucrose solution (6-

7 mL per vial) was inserted in each cage to allow honey bees to feed ad libitum immediately 

post-treatment in all experiments. 

Spray tower. We constructed a spray tower based on a previous design as described in 

Zhu et al. (2015). This spray tower was designed to simulate spray contact exposure experiments 
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within a laboratory environment. Insecticides were sprayed using a spray nozzle (Burkard 

Scientific, Uxbridge, Middx, United Kingdom), and were administered to honey bees in cages 

(0.5 mL/cage, except in experiment 3, where we used 1 mL/cage). The sprayer was set to 

regulated air pressure (69 kpa) and fixed spray distance (22 cm) for each treatment including 

control (Zhu et al. 2015). Distilled water was used as the solvent in each treatment to simulate 

field-realistic grower insecticide spray applications and honey bee exposure scenarios. 

Post treatment observations. Cages containing treated honey bees were placed on 

plastic trays, and were maintained in an incubator (33 ± 0.5°C; 65% ± 2 RH) for the duration of 

the experiment. Honey bee mortality was screened and recorded at 24, 48, 72, and 96-hours after 

treatment for all treatments, except in experiment 3, which ended after 48-hours. Honey bees that 

did not move after being touched by a paintbrush were considered dead. Moribund bees capable 

of moving their legs and antennae but incapable of flying were considered alive. 

Experiment 1: Honey Bee Forager Acute Contact Toxicity in Continuous Exposure 

Scenario 

Insecticide treatments. Contact toxicity of four formulated insecticide mixtures (Table 

2.1 and Figure 2.1) to honey bee foragers was assessed by directly spraying honey bees in 

experimental cages. Each of these insecticide mixtures contained multiple active ingredients 

(each with a different mode of action). Low-range recommended application rates listed on the 

EPA approved insecticide labels were used (Table 2.2). We mixed each insecticide solute in 100 

mL of a distilled water solvent. Insecticides were applied to honey bees at a low spray volume 

(0.5 mL/cage). Distilled water with the same spray volume as insecticide treatments was used as 

a control. A completely randomized design was used to test the five treatments in this 

experiment, each of which contained twelve replicates. Twelve cages containing 20 honey bees 
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each (n = 20/cage, total 240 bees) were utilized for each of the five treatments, with each 

individual cage representing an experimental unit. Each experimental unit was randomly 

assigned to one of the five treatments. 

Experiment 2: Honey Bee Forager Acute Contact Toxicity in Spray-Only Exposure 

Scenario 

Insecticide treatments. Honey bee foragers in treatment cages were sprayed with four 

formulated insecticide mixtures (Table 2.1 and Figure 2.1) and then immediately transferred to 

clean experimental cages for the remainder of the experiment. These insecticides are each 

comprised of two active ingredients (each with a different mode of action). We applied low-

range application rates following EPA approved insecticide label recommendations for each 

respective insecticide (Table 2.2). We mixed each insecticide solute in 100 mL of a distilled 

water solvent. Insecticide sprays were administered at a low volume (0.5 mL/cage). Our control 

consisted of distilled water sprays at the same volume as insecticide treatments. We applied 

additional 50% sucrose solution (approximately 7 mL) to the feeders made of plastic vials 

inserted in each cage for ad libitum feeding at 24 and 72-hours after treatment. The five 

treatments in this experiment which each contained seven replicates, were tested using a 

completely randomized design. We randomly utilized seven cages containing 15 honey bees 

each (n = 15/cage, total 105 bees) for each of the five treatments, with each individual cage 

representing an experimental unit. 

Experiment 3: Honey Bee Forager Acute Contact Toxicity in Residual Exposure Scenario 

Insecticide treatments. We exposed honey bee foragers to cages sprayed 18-hours prior 

with one of four tested insecticide mixtures (Table 2.1 and Figure 2.1). Premix insecticides 

containing multiple active ingredients (each with a different mode of action) were tested in this 
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experiment. Low-range application rates were used as per the label for each respective 

insecticide (Table 2.2). We mixed each insecticide solute in 100 mL of a distilled water solvent. 

A high spray volume (1 mL/cage) of insecticides was applied to ensure complete coverage of 

each experimental cage. For a control, we sprayed distilled water at the same high spray volume. 

A completely randomized design was used to test the five treatments in this experiment, each of 

which contained eight replicates. Eight cages containing 12 honey bees each (n = 12/cage, total 

96 bees) were randomly utilized for each of the five treatments, with each individual cage 

representing an experimental unit. 

Statistical analysis 

For each experiment, we corrected the check (control) honey bee forager mortality at 

each screening period by using the Schneider-Orelli’s formula as in (Bibbs et al. 2015; Williams 

et al. 2015). Using equation 1: 

Corrected	%	Mortality = 1
Mortality	%	in	treatment − Mortality	%	in	control

100 −Mortality	%	in	control 7 ∗ 100	(eq. 1) 

where the percent mortality for treatment replication is compared to the percent mortality for 

each respective control replication. 

As a result of correcting our data using Schneider-Orelli’s formula, we removed the 

control from each experiment, thereby only analyzing the honey bee forager mortality in 

insecticide treatments. Corrected percent mortality data were normalized using an arcsine 

transformation as in (Glazer and Navon 1990). Normality and lack of heteroscedasticity of data 

were confirmed with Normal Q-Q and Residual vs. Fitted plots. 

One-way ANOVA was used to determine statistical significances in the percent of honey 

bee forager mortality following acute contact exposure to each of the four premix insecticides 

tested at each screening period as in Wise et al. (2017). We used a Tukey’s HSD post-hoc 
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multiple pairwise comparison analysis to determine statistical differences in the percent of honey 

bee forager mortality following acute contact exposure to each premix insecticide treatment 

during each screening period as in Wise et al. (2017). All statistical analyses were completed 

using the R Studio statistical software (R version 3.5.1 and R Studio version 1.1.463). 

Results 

Experiment 1: Honey Bee Forager Acute Contact Toxicity in Continuous Exposure 

Scenario 

Continuous honey bee forager exposure to all four premix insecticides (Tables 2.1-2.2 

and Figure 2.1) resulted in mortality that was statistically significant between treatments at 24-

hours (F=58.332, p<0.05), 48-hours (F=50.082, p<0.05), 72-hours (F=73.565, p<0.05) and 96-

hours (F=31.131, p<0.05) (Figure 2.2 and Appendix 2.1). At 24 and 48-hours, mortality of bees 

due to exposure to thiamethoxam + lambda-cyhalothrin and imidacloprid + beta-cyfluthrin was 

significantly higher from chlorantraniliprole + lambda-cyhalothrin and methoxyfenozide + 

spinetoram (p<0.05) (Figure 2.2 and Appendix 2.1). At 72 and 96-hours, thiamethoxam + 

lambda-cyhalothrin and imidacloprid + beta-cyfluthrin resulted in higher bee mortality than 

chlorantraniliprole + lambda-cyhalothrin and methoxyfenozide + spinetoram (p<0.05). 

Experiment 2: Honey Bee Acute Contact Toxicity in Spray-Only Exposure Scenario 

In the second scenario of honey bee forager spray-only exposure to all four premix 

insecticides (Tables 2.1-2.2 and Figure 2.1), we observed statistically significant mortality 

between treatments at 24-hours (F=50.855, p<0.05), 48-hours (F=26.533, p<0.05), 72-hours 

(F=86.967, p<0.05) and 96-hours (F=64.629, p<0.05) (Figure 2.3 and Appendix 2.2). During all 

post-treatment mortality observations, bee mortality in the thiamethoxam + lambda-cyhalothrin 

and imidacloprid + beta-cyfluthrin treatments was higher than in the chlorantraniliprole + 
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lambda-cyhalothrin and methoxyfenozide + spinetoram treatments, however, bee mortality 

following exposure to chlorantraniliprole + lambda-cyhalothrin was also higher than 

methoxyfenozide + spinetoram (p<0.05) (Figure 2.3 and Appendix 2.2). 

Experiment 3: Honey Bee Acute Contact Toxicity in Residual Exposure Scenario 

Honey bee forager residual exposure to all four premix insecticides (Tables 2.1-2.2 and 

Figure 2.1) resulted in statistical significance between treatments at 24-hours (F=11.213, 

p<0.05), however not at 48-hours (F=1, p=0.407) given the complete mortality in all treatments 

during this screening period (Figure 2.4 and Appendix 2.3), thereby terminating the experiment 

early. At 24-hours, we observed higher mortality in the thiamethoxam + lambda-cyhalothrin 

treatment compared to all other treatments (p<0.05) (Figure 2.4 and Appendix 2.3). At 48-hours, 

no significantly different mortality was observed between treatments (p=0.5013 for 

thiamethoxam + lambda-cyhalothrin compared to all other treatments, and p=1 for imidacloprid 

+ beta-cyfluthrin and chlorantraniliprole + lambda-cyhalothrin compared to methoxyfenozide + 

spinetoram). In this experiment, we applied a high spray volume (1 mL) of insecticides to ensure 

complete coverage of experimental cages. 

Discussion 

Experiment 1: Honey Bee Forager Acute Contact Toxicity in Continuous Exposure 

Scenario 

Simulation of continuous honey bee foraging in a crop field and direct insecticide 

exposure while insecticides are being sprayed in that field resulted in the most rapid onset of 

mortality for bees treated with thiamethoxam + lambda-cyhalothrin and imidacloprid + beta-

cyfluthrin. At 24-hours, we observed approximately 80% and 70% mortality respectively, while 

at 48-hours, we observed approximately 95% and 90% mortality respectively. We attribute this 
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fast onset of mortality leading to complete mortality at 72-hours to the combined active 

ingredient chemistries with particular emphasis on the pyrethroids, given their characteristic 

knockdown mode of action as sodium channel modulators (Table 2.1; Vijverberg et al. 1982). 

The systemic and translaminar properties of neonicotinoids (Elbert et al. 2008) facilitating their 

movement into leaf tissue results in reduced bee contact after residues dry. The low LD50 values 

of these active ingredient chemistries to honey bees (Table 2.3) further indicate their high 

toxicity. Our results are suggestive of an additive or synergistic toxicity arising from exposure to 

both a neonicotinoid and a pyrethroid, however, future analysis of multiple doses to create dose-

mortality curves is necessary to prove this. These findings could also be due to continuous bee 

exposure to insecticide residues after treatment, given that bees were not moved to separate clean 

cages after insecticide application. It is evident that foraging honey bees experiencing prolonged 

exposure to thiamethoxam + lambda-cyhalothrin and imidacloprid + beta-cyfluthrin in field 

crops will be unlikely to survive. 

Differentially, honey bees continuously exposed to chlorantraniliprole + lambda-

cyhalothrin and methoxyfenozide + spinetoram experienced a slower onset of mortality. 

However, their resulting mortalities at 96-hours were approximately 95% and 90% respectively. 

We primarily attribute this upward trajectory in mortality for the chlorantraniliprole + lambda-

cyhalothrin treatment to the presence of the pyrethroid chemistry in this insecticide mixture. The 

higher LD50 values of chlorantraniliprole, methoxyfenozide and spinetoram to honey bees (Table 

2.3) further indicate their lower toxicity. Chlorantraniliprole, which is a ryanodine receptor 

agonist (Table 2.1; irac-online.org) has also been shown to adversely impact bees as in Smagghe 

et al. (2013) where Bombus terrestris [(Hymenoptera: Apidae) (Linnaeus, 1758)] oral 

consumption resulted in acute and chronic toxicity. Conversely Zhu et al. (2015) found a very 
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high chlorantraniliprole contact LD50 in honey bees. Similarly, we attribute the overall decreased 

mortality in the methoxyfenozide + spinetoram treatment to the lack of a pyrethroid-like active 

ingredient. However, these results on adult Hymenoptera are not entirely surprising given that 

methoxyfenozide is a diacylhydrazine ecdysone receptor agonist (Table 2.1; irac-online.org) 

designed to induce premature molting in immature Lepidoptera (Suiter and Scharf 2015). The 

findings of Mommaerts et al. (2006) demonstrating no contact or oral toxicity of ecdysone 

receptor agonists (including methoxyfenozide) to adult and immature B. terrestris and those of 

Besard et al. (2011) demonstrating reduced oral and contact toxicity of spinetoram (compared to 

spinosad) to adult B. terrestris further support these results. Conversely, spraying honey bee 

foragers with methoxyfenozide using a wind tunnel atomizer, Fisher et al. (2018) documented 

significantly increased mortality following treatment above the label dose at 24-hour screenings 

over a 10-day period. Examining the toxicity of a range of spinetoram doses to honey bees, Chen 

et al. (2017) determined a low LD50 for contact exposure at 48-hours after treatment. 

Additionally, the translaminar movement of spinetoram (Sato et al. 2012) reduces bee 

contact after residues have dried. Interestingly, average mortality for methoxyfenozide + 

spinetoram was slightly higher than that for chlorantraniliprole + lambda-cyhalothrin at 24-

hours, however, it was less at all other screening periods. Our results suggest that foraging honey 

bees continuously exposed to chlorantraniliprole + lambda-cyhalothrin and methoxyfenozide + 

spinetoram in field crops will likely experience delayed mortality. Removing check (control) 

mortality from our data analysis by using the Schneider-Orelli’s formula (eq. 1) enables us to 

demonstrate that honey bee forager mortality is increasing as a result of exposure to insecticide 

treatments. 
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Experiment 2: Honey Bee Acute Contact Toxicity in Spray-Only Exposure Scenario 

In the second scenario, our analysis of spray-only honey bee forager exposure to 

insecticide sprays while passing through a crop field similarly demonstrated the overall highest 

and fastest onset of mortality for the thiamethoxam + lambda-cyhalothrin and imidacloprid + 

beta-cyfluthrin treatments. Similar to continuous exposure, we observed approximately 80% 

mortality at 24-hours and 90% mortality at 48-hours. Complete mortality was determined at 72-

hours. Spray-only contact led rapid honey bee knockdown approximately 20-25 minutes after 

treatment which we primarily attribute to the pyrethroid component in each of these two 

insecticides. The high toxicity of these active ingredient chemistries to honey bees is further 

indicated by their low LD50 values (Table 2.3). As with continuous exposure, these findings are 

indicative of additive or synergistic toxicity arising from the mixture of neonicotinoid and 

pyrethroid active ingredients, however assessment of multiple doses to generate dose mortality 

curves is required to prove this. Similar to continuous exposure, our results indicate that honey 

bee foragers exposed to thiamethoxam + lambda-cyhalothrin and imidacloprid + beta-cyfluthrin 

while passing through a crop field while it is being sprayed will likely die quickly. 

At 24 and 48-hours, we observed less mortality for honey bee foragers treated with 

chlorantraniliprole + lambda-cyhalothrin (approximately 45% and 70% respectively) and 

methoxyfenozide + spinetoram (approximately 30% and 40% respectively). As in continuous 

exposure, mortality substantially increased at 96-hours and specifically for chlorantraniliprole + 

lambda-cyhalothrin (approximately 90% mortality). Similar to continuous exposure, we 

primarily attribute the higher observed toxicity for chlorantraniliprole + lambda-cyhalothrin to 

the presence of a pyrethroid chemistry. The higher LD50 values of these active ingredient 

chemistries to honey bees (Table 2.3) further indicate their lower toxicity. Interestingly, bees 
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exposed to spray-only contact with methoxyfenozide + spinetoram had substantially less 

mortality at 96-hours compared bees continuously exposed, suggesting somewhat lower toxicity 

for bees passing through a crop field. The findings of Mommaerts et al. (2006) and particularly 

Besard et al. (2011) indicate reduced toxicity for these active ingredients to B. terrestris under 

continuous exposure. Therefore, it would be interesting to examine differences in toxicity arising 

from continuous versus spray-only exposure as we have done here. These results indicate that 

honey bee foragers coming into spray-only contact with chlorantraniliprole + lambda-cyhalothrin 

and methoxyfenozide + spinetoram will likely experience delayed mortality that will be more 

severe for chlorantraniliprole + lambda-cyhalothrin. Removing check (control) mortality from 

our data analysis by using the Schneider-Orelli’s formula (eq. 1) enables us to demonstrate that 

honey bee forager mortality is increasing as a result of exposure to insecticide treatments. 

Experiment 3: Honey Bee Acute Contact Toxicity in Residual Exposure Scenario 

Honey bee forager residual contact exposure to premix insecticides simulating foraging 

in a crop field sprayed during the previous day resulted in high mortality at 24-hours for all 

treatments. Similar to continuous and spray-only exposure, the highest mortality was observed 

for thiamethoxam + lambda-cyhalothrin (approximately 70%) and imidacloprid + beta-cyfluthrin 

(approximately 55%). Specifically, we noted fast knockdown beginning approximately 20 

minutes after initial exposure, which we primarily attribute to the pyrethroid in both of these 

insecticide mixtures. Slightly less mortality was observed for chlorantraniliprole + lambda-

cyhalothrin and methoxyfenozide + spinetoram (approximately 50% and 45% respectively) at 

24-hours. Further demonstrating the high acute toxicity of premix insecticide residual contact 

exposure to honey bees, we observed complete mortality at 48-hours for all treatments, thereby 
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terminating the experiment. Although we removed control data from our analysis, we did notice 

significantly less mortality in the control treatment at both screening periods. 

Several factors might in part explain this finding. First, our usage of double the insecticide spray 

volume (1 mL) to ensure complete coverage of experimental cages increased the proportion of 

insecticides that honey bees were exposed to by two-fold. Second, the high temperature (27.22-

28.89°C) and humidity (71-92%) (timeanddate.com) on the day honey bees were collected from 

beehives might have liquified insecticide residues, thereby increasing their toxicity. We noticed 

bee proboscis extension inside cages, suggesting possible oral consumption of insecticides in 

addition to the contact exposure being measured in the experiment. Placing bees in cages in a 

field setting during high humidity conditions likely increased their energy expenditure and stress 

level. This explains our observation of increased bee fanning activity after being placed within 

cages. High relative humidity is known as a major factor influencing insect mortality Mishra et 

al. (2015), thereby potentially contributing to the high bee mortality we observed. Although we 

did not include the control in our analysis, it is meaningful to mention that we observed less than 

10% control mortality at 24-hours. Our results indicate the potentially high risk posed to honey 

bee foragers coming into contact with insecticide residues. Building upon our findings, future 

studies should examine the toxicity of insecticide applications made at sunset (when bees are not 

actively foraging) to foraging bees the following morning when dew may liquify dried 

insecticide residues on leaf and flower tissue. Further, dried insecticide residues applied at sunset 

may subsequently become liquified in plant guttation fluids which have been shown to contain 

high levels of neonicotinoids in seed-treated maize (Girolami et al. 2009) and melons (Hoffmann 

and Castle 2012). Honey bees have been found to collect guttation fluid (Hopwood et al. 2016), 
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thereby potentially exposing them to dried insecticide residues that have liquified in guttation 

fluids. 

Widescale insect pest resistance buildup for neonicotinoids as described in Ilias et al. 

(2015) and for pyrethroids in Højland et al. (2015) has in part led to development of new 

insecticide chemistries including premixes. Insecticide mixtures blending multiple active 

ingredients (each with a different mode of action) combat resistance spread as described in 

Soderlund (2008) for pyrethroids. Lowering the percentage of active ingredient of each 

chemistry in a premix insecticide (compared to that in a single active ingredient insecticide) 

facilitates maintenance of older insecticide chemistries. Moreover, this approach equips growers 

with one bottle of insecticide that provides broad-spectrum coverage. Alternating application of 

insecticide products between generations of insect pests within a field is an additional measure 

that growers can use to minimize resistance buildup. However, given that premixes provide high 

efficacy, both approaches should be considered when implementing an integrated pest 

management program. 

The insecticide mixtures tested in this study are increasingly being utilized for controlling 

insect pests in field crops. For example, a premix insecticide containing thiamethoxam + lambda-

cyhalothrin had highest efficacy for controlling rice stink bug, [Oebalus pugnax (Hemiptera: 

Pentatomidae) (Fabricius, 1775)] up to 28-days after treatment (Jones et al. 2017). Similarly, 

thiamethoxam + lambda-cyhalothrin had high efficacy while imidacloprid + beta- 

cyfluthrin had some efficacy for controlling kudzu bug, [Megacopta cribraria (Hemiptera: 

Plataspidae) (Fabricius, 1789)] in soybeans (Brown et al. 2015). Insecticides containing 

imidacloprid + beta-cyfluthrin, and chlorantraniliprole + lambda-cyhalothrin have been reported 

to effectively control southern green stink bug, [Nezara viridula (Hemiptera: Pentatomidae) 
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(Linnaeus, 1758)] while chlorantraniliprole + lambda-cyhalothrin was also effective against 

soybean looper [Chrysodeixis includens (Lepidoptera: Noctuidae) (Walker, 1858)] (Ramsey et 

al. 2016). Another insecticide premix (methoxyfenozide + spinetoram) evaluated in our study, 

had been found to significantly reduce soybean looper larvae in soybeans (Cook and Gore 2018). 

Several of these field crops are frequently visited by different pollinator species including honey 

bees (Klein et al. 2007). Therefore, it is potentially hazardous to honey bees when they are 

exposed to direct spray applications or dried residues of these insecticide mixtures while 

collecting pollen and nectar. 

In recent past, some preliminary work has demonstrated the toxicity of the premix 

insecticides we tested on honey bees. For example, Zhu et al. (2015) demonstrated high contact 

toxicity based on low LD50 values for both premix insecticides and individual active ingredients 

at 48-hours after treatment. Similarly, in Zhu et al. (2017) binary insecticide mixtures of 

imidacloprid with seven other pesticides posed varying levels of toxicity to honey bees. While 

this study simulated field-realistic scenarios by using formulated as opposed to technical grade 

insecticides, it does not assess mortality over an extended period (96-hours) as we have done. 

Our finding of slow onset of acute contact toxicity for chlorantraniliprole + lambda-cyhalothrin 

and methoxyfenozide + spinetoram demonstrates the importance of extended observation to 

thoroughly assess the risk posed by insecticides to honey bees. 

Most research on insecticide contact toxicity to bees has focused on technical grade 

individual active ingredients dissolved in acetone. This approach does not assess the impact of 

‘inert’ or ‘inactive’ ingredients within formulated insecticides on bees. Addressing this variable 

is important given preliminary results as in Mullin (2015) showing the toxicity of ‘inert’ 

ingredients to bees. An advantage of testing technical grade insecticides is the true analysis of 
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active ingredient toxicity through elimination of cofounding effects resulting from formulations. 

However, technical grade insecticides might pose higher toxicity to bees given their higher 

percentage of active ingredient compared to formulations. The increased toxicity of technical 

products might in part be explained by using acetone solvents, which burn through the insect 

cuticle and increase the quantity of insecticide absorbed by the insect. 

The following studies are examples of testing both technical grade and formulated 

insecticides on honey bees. Using nine technical grade insecticides (including neonicotinoids and 

pyrethroids) dissolved in acetone to compare sensitivity among honey bee races, Rinkevich et al. 

(2015) showed that Italian honey bees were overall the most sensitive; this is an interesting 

finding given that we tested Italian honey bees in this study. Sandrock et al. (2014) reported that 

chronic exposure to pollen stores within hives containing technical grade thiamethoxam 

dissolved in water negatively affected colony performance and queen supersedure. Tavares et al. 

(2017) show that larval consumption of different technical grade thiamethoxam concentrations 

dissolved in water decreased larval and pupal survival and subsequent eclosion of adult honey 

bees. Aliouane et al. (2009) showed a series of behavioral impacts on honey bees exposed to 

technical grade thiamethoxam, acetamiprid and fipronil dissolved in acetone. Zhang et al. (2017) 

found that honey bee contact exposure to different rates of lambda-cyhalothrin dissolved in 

acetone resulted in significantly decreased lifespan, proboscis extension reflex performance and 

homing ability at the highest tested doses. Applying 1 µL quantities of technical grade 

pyrethroids dissolved in acetone to honey bees, Johnson et al. (2006) showed the importance role 

of cytochrome P450 monooxygenases in detoxifying these chemicals. Interestingly, assessing the 

impact of imidacloprid on A. cerana, Tan et al. (2014) found that following oral consumption of 

nectar mixed with formulated imidacloprid (40 µg/L) dissolved in water, treated honey bees 
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foraged a feeder containing a hornet predator at a rate of 1.8-fold more than controls. Similarly, 

Dively et al. (2015) showed that honey bee colonies chronically exposed to sub-lethal doses of 

formulated imidacloprid dissolved in water had decreased health and overwintering success, 

although a more field realistic sub-lethal dose had negligible effects. Sánchez-Bayo et al. (2017) 

determined that oral consumption of syrup laced with technical grade imidacloprid (125 µg/L) 

over a 10-day period resulted in a maximum of 45% honey bee mortality where exposed bees 

contained imidacloprid residues on their bodies with incomplete clearance and displayed 

abnormal behaviors. Liao et al. (2017) found that feeding honey bees syrup with quercetin or p-

coumaric acid enhanced their tolerance of technical grade beta-cyfluthrin, which alone was 

associated with a reduced bee lifespan. Fisher et al. (2018) documented significantly increased 

mortality for honey bees exposed to an above label dose of formulated methoxyfenozide 

dissolved in water at 24-hour screenings over a 10-day period. Chen et al. (2017) determined low 

LD50 for technical grade spinetoram dissolved in acetone following honey bee contact exposure 

48-hours after treatment. 

Conclusion 

This study embarks in a new research direction by exploring contact toxicity of premix 

insecticides as a result of continuous, spray-only and residual contact exposure to honey bee 

foragers. 

Unlike orchards, insecticides are applied to field crops during flowering (and potentially 

when honey bees forage) as a result of continuous bloom. Continuous insecticide exposure 

simulates honey bees concentrating on a particular flower patch providing rewarding nectar and 

pollen resources (Flottum 2014). Spray-only insecticide exposure simulates honey bees 

searching for a suitable patch of flowers (Flottum 2014), where foragers commonly venture up to 
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4.82 kilometers from the hive (Ribbands 1951). Residual insecticide exposure simulates honey 

bees coming into contact with dried insecticide residues sprayed at sunset during the previous 

day (when bees are not foraging). Given that commercially managed honey bee hives are 

typically placed within or surrounding the fields they are pollinating, this experiment begins to 

address the proper timing for replacing hives to previously sprayed fields. 

Our results demonstrating the high toxicity of formulated premix insecticides to honey 

bees are comparable to those showing high toxicity of technical grade insecticides to honey bees 

(Sandrock et al. 2014; Chen et al. 2017; Liao et al. 2017; Sánchez-Bayo et al. 2017). We have 

also found standard LD50 rates for the technical grade insecticides tested in this study (Table 

2.3). Based on these comparisons, it is not overall surprising that the formulated premix 

insecticides tested (and particularly thiamethoxam + lambda-cyhalothrin and imidacloprid + 

beta-cyfluthrin) posed high risk to honey bee foragers. However, all studies do have limitations 

and cannot perfectly simulate reality in every circumstance. To address this and build upon our 

findings, future work should explore such risk in actual field settings. 

While our study begins to address questions related to the acute toxicity of formulated 

premix insecticides to honey bees, several important aspects warrant further investigation. Future 

work should investigate the toxicity of these insecticides to bees via oral ingestion. Additional 

studies are needed to assess the toxicity of multiple doses of dried residues of the premix 

insecticides tested and the individual active ingredients that comprise them to honey bees. This 

will enable us to compare the results to our data and additionally establish possible additive or 

synergistic toxicities. Future studies should additionally investigate the acute toxicity of these 

premix insecticides to honey bee queens, drones (males) and immature brood (eggs, larvae and 

pupae). Generating this data will further strengthen insecticide risk assessment for honey bees. 
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A further step is to assess sub-lethal toxicity by means of behavioral changes to honey 

bees coming into direct contact with these insecticide chemistries. In particular, it would be 

helpful to assess whether contact exposure to these insecticide mixtures impairs the ability of 

forager bees to collect pollen and nectar, queens to oviposit, nurse bees to feed developing brood, 

workers to properly progress through their various hive tasks and for immatures to properly 

develop into adult bees. 
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Tables 

Table 2.1: Active ingredients and modes of action of formulated premix insecticides assessed for 
acute contact toxicity to honey bee foragers. 

Treatment Formulation Active 
Ingredient(s) 

Mode of Action 
1st Insecticide* 

Mode of 
Action 2nd 

Insecticide* 
Manufacturer 

A Control 
  

  

B Endigo ZC® Thiamethoxam 
(12.6%) + 
Lambda-
cyhalothrin 
(9.48%) 

Thiamethoxam 
-Nicotinic 
acetylcholine 
receptor (nAChR) 
competitive 
modulator 

Lambda-
cyhalothrin 
-Sodium 
channel 
modulator 

Syngenta Crop 
Protection, LLC 
Greensboro, NC 

C Leverage 
360® 

Imidacloprid 
(21.0%) + Beta 
cyfluthrin (10.5%) 

Imidacloprid 
-Nicotinic 
acetylcholine 
receptor (nAChR) 
competitive 
modulator 

Beta-
cyfluthrin 
-Sodium 
channel 
modulator 

BayerCropScience 
LP 
Research Triangle 
Park, NC 

D Besiege® Chlorantraniliprole 
(9.26%) + 
Lambda-
cyhalothrin 
(4.63%) 

Chlorantraniliprole 
-Ryanodine 
receptor modulator 

Lambda-
cyhalothrin 
-Sodium 
channel 
modulator 

Syngenta Crop 
Protection, LLC 
Greensboro, NC 

E Intrepid 
Edge® 

Methoxyfenozide 
(28.3%) + 
Spinetoram 
(5.66%) 

Methoxyfenozide 
-Ecdysone 
receptor agonist 
(molt accelerating 
compound) 

Spinetoram 
-Nicotinic 
acetylcholine 
receptor 
(nAChR) 
allosteric 
modulator 

Dow 
AgroSciences 
LLC 
Indianapolis, IN 

*Active ingredient modes of action were confirmed with the IRAC Mode of Action 
Classification Scheme version 8.4 (www.irac-online.org) and the Compendium of Pesticide 
Common Names: Insecticides (http://www.alanwood.net/pesticides/class_insecticides.html). 
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Table 2.2: Application rates administered, highest recommended application rates, and active 
ingredient concentrations of formulated premix insecticides assessed for acute contact toxicity to 
honey bee foragers. 

Treatment Active 
Ingredient(s) 

Application 
Rate of 

Formulated 
Product 
(mL/Ha) 

Highest Application 
Rate on Label 

(mL/Ha)* 

AI Concentration (ppm) 
in Formulated Product 

(per L) 

A Control 
 

  

B Thiamethoxam 
(12.6%) + 
Lambda-
cyhalothrin 
(9.48%) 

328.71 438.28 Thiamethoxam = 495 

Lambda-cyhalothrin = 369 

C Imidacloprid 
(21.0%) + Beta 
cyfluthrin (10.5%) 

204.53 233.75 Imidacloprid = 105 

Beta-cyfluthrin = 53 

D Chlorantraniliprole 
(9.26%) + 
Lambda-
cyhalothrin 
(4.63%) 

438.28 913.08 Chlorantraniliprole = 470 

Lambda-cyhalothrin = 230 

E Methoxyfenozide 
(28.3%) + 
Spinetoram 
(5.66%) 

803.51 876.56 Methoxyfenozide = 2600 

Spinetoram = 520 

*Highest recommended application rate for field crops listed on the EPA approved insecticide 
label for each respective insecticide mixture. 
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Table 2.3: Toxicity classification (LD50) of insecticide technical grade active ingredients to 
honey bees. 

Insecticide Toxicity Classification Contact LD50 Oral LD50 
Carbaryl* H 1.3 µg1 0.14 µg1 
Thiamethoxam H  0.024 µg2 - 0.029 µg3  0.005 µg2 
Imidacloprid H 0.0179 µg4 - 0.243 µg5 0.0037 µg5 - 0.081 µg6 
Lambda-cyhalothrin H 0.483 µg7   
Beta-cyfluthrin H 0.025 µg8 - 0.037 µg9   
Chlorantraniliprole N >100 µg10 >119 µg10 
Methoxyfenozide N >100 µg11   
Spinetoram H 0.024 µg12 0.14 µg12 

*Standard comparison reference for insecticide contact and oral LD50 to honey bees. 

Toxicity Classification13, 14, 15 
Highly toxic (H) = LD50 <2 µg 
Moderately toxic (M) = LD50 2-10.99 µg 
Slightly toxic (S) = LD50 11-100 µg 
Practically nontoxic (N) = LD50 >100 µg 

 
Sources 
1. Stevenson 1978 
2. Syngenta Group 2005 
3. Iwasa et al. 2004 
4. EPA 2003 
5. Schmuck et al. 2001 
6. Nauen et al. 2001 
7. Gough et al. 1984 
8. FAO 1999 
9. EPA 1987 
10. EPA 2008 
11. Methoxyfenozide: CA Dept. Pesticide Regulation 2003 
12. Spinetoram: CA Dept. Pesticide Regulation 2007-2010 
13. Hopwood et al. 2016 
14. EPA 2012 (Sappington and Ruhman) 
15. EPA 2015 
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Figures 
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Figure 2.1: Chemical Structure of Premix Insecticides* Tested for Acute Contact Toxicity to 
Honey Bee Foragers. *Source of chemical structures/diagrams: Chem Draw Pro® and verified in 
Reaxys®. 
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Figure 2.2: Honey Bee Forager Acute Contact Toxicity in Continuous Exposure Scenario: 
Mean, 1st and 3rd quartile honey bee forager percent mortality following continuous contact 
exposure to each insecticide mixture (experiment 1) at 24, 48, 72 and 96-hours. Data on the x-
axis indicate each insecticide treatment, and data the y-axis indicate the percent mortality. 
Insecticide treatments: B = thiamethoxam + lambda-cyhalothrin, C = imidacloprid + beta-
cyfluthrin, D = chlorantraniliprole + lambda-cyhalothrin, E = methoxyfenozide + spinetoram. 
Each green point represents all cages in a treatment containing the respective percent mortality. 
Letters (b, c, d) indicate significant difference at *p<0.05 (pairwise comparison). 
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Figure 2.3: Honey Bee Forager Acute Contact Toxicity in Spray-Only Exposure Scenario: 
Mean, 1st and 3rd quartile honey bee forager percent mortality following spray-only contact 
exposure to each insecticide mixture (experiment 2) at 24, 48, 72 and 96-hours. Data on the x-
axis indicate each insecticide treatment, and data the y-axis indicate the percent mortality. 
Insecticide treatments: B = thiamethoxam + lambda-cyhalothrin, C = imidacloprid + beta-
cyfluthrin, D = chlorantraniliprole + lambda-cyhalothrin, E = methoxyfenozide + spinetoram. 
Each green point represents all cages in a treatment containing the respective percent mortality. 
Letters (b, c, d) indicate significant difference at *p<0.05 (pairwise comparison). 
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Figure 2.4: Honey Bee Forager Acute Contact Toxicity in Residual Exposure Scenario: 
Mean, 1st and 3rd quartile honey bee forager percent mortality following residual contact 
exposure to each insecticide mixture (experiment 3) at 24 and 48-hours. Data on the x-axis 
indicate each insecticide treatment, and data the y-axis indicate the percent mortality. Insecticide 
treatments: B = thiamethoxam + lambda-cyhalothrin, C = imidacloprid + beta-cyfluthrin, D = 
chlorantraniliprole + lambda-cyhalothrin, E = methoxyfenozide + spinetoram. Each green point 
represents all cages in a treatment containing the respective percent mortality. Letters (b, c) 
indicate significant difference at *p<0.05 (pairwise comparison). 
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Appendices 

Appendix 2.1: Honey Bee Forager Acute Contact Toxicity in Continuous Exposure 
Scenario: One-way ANOVA test of statistical significance between honey bee forager mortality 
following exposure to each insecticide treatment and Tukey HSD post-hoc test of statistical 
difference between treatments on honey bee forager mortality. Statistical significance at *p<0.05. 

One-way ANOVA test: 24-hour mortality screening 

  DF Sum Sq.  Mean Sq. F Value Pr(>F) 
Treatment 3 2.14453 0.71484 58.332 2.24E-15 
Residuals 44 0.53921 0.01225     

 

Tukey HSD post-hoc test: 24-hour mortality screening 

Contrast Estimate SE DF t-ratio p-value 
B - C  0.06331215 0.04519372 44 1.401 0.5055 
B - D 0.46112673 0.04519372 44 10.203 <.0001 
B - E 0.44250254 0.04519372 44 9.791 <.0001 
C - D 0.39781458 0.04519372 44 8.802 <.0001 
C - E 0.37919039 0.04519372 44 8.39 <.0001 
D - E -0.0186242 0.04519372 44 -0.412 0.9761 

 

One-way ANOVA test: 48-hour mortality screening 

  DF Sum Sq.  Mean Sq. F Value Pr(>F) 
Treatment 3 3.04646 1.01549 50.082 3.09E-14 
Residuals 44 0.89217 0.02028     

 

Tukey HSD post-hoc test: 48-hour mortality screening 

Contrast Estimate SE DF t-ratio p-value 
B - C  0.07081657 0.05813286 44 1.218 0.6188 
B - D 0.51369767 0.05813286 44 8.837 <.0001 
B - E 0.55789329 0.05813286 44 9.597 <.0001 
C - D 0.4428811 0.05813286 44 7.618 <.0001 
C - E 0.48707672 0.05813286 44 8.379 <.0001 
D - E 0.04419562 0.05813286 44 0.76 0.8718 
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One-way ANOVA test: 72-hour mortality screening 

  DF Sum Sq.  Mean Sq. F Value Pr(>F) 
Treatment 3 7337.3 2445.77 73.565 < 2.2e-16 
Residuals 44 1462.8 33.25     

 

Tukey HSD post-hoc test: 72-hour mortality screening 

Contrast Estimate SE DF t-ratio p-value 
B - C  0.5174292 2.353949 44 0.22 0.9962 
B - D 18.4352425 2.353949 44 7.832 <.0001 
B - E 29.1517601 2.353949 44 12.384 <.0001 
C - D 17.9178133 2.353949 44 7.612 <.0001 
C - E 28.6343309 2.353949 44 12.164 <.0001 
D - E 10.7165176 2.353949 44 4.553 0.0002 

 

One-way ANOVA test: 96-hour mortality screening 

  DF Sum Sq.  Mean Sq. F Value Pr(>F) 
Treatment 3 1.9141 0.63804 31.131 5.92E-11 
Residuals 44 0.9018 0.0205     

 

Tukey HSD post-hoc test: 96-hour mortality screening 

Contrast Estimate SE DF t-ratio p-value 
B - C  4.16E-16 0.05844575 44 0 1 
B - D 1.93E-01 0.05844575 44 3.301 0.01 
B - E 4.88E-01 0.05844575 44 8.351 <.0001 
C - D 1.93E-01 0.05844575 44 3.301 0.01 
C - E 4.88E-01 0.05844575 44 8.351 <.0001 
D - E 2.95E-01 0.05844575 44 5.05  <.0001 
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Appendix 2.2: Honey Bee Forager Acute Contact Toxicity in Spray-Only Exposure 
Scenario: One-way ANOVA test of statistical significance between honey bee forager mortality 
following exposure to each insecticide treatment and Tukey HSD post-hoc test of statistical 
difference between treatments on honey bee forager mortality. Statistical significance at *p<0.05. 

One-way ANOVA test: 24-hour mortality screening 

  DF Sum Sq.  Mean Sq. F Value Pr(>F) 
Treatment 3 2.03881 0.6796 50.855 1.50E-10 
Residuals 24 0.32073 0.01336     

 

Tukey HSD post-hoc test: 24-hour mortality screening 

Contrast Estimate SE DF t-ratio p-value 
B - C  -0.0363614 0.06179157 24 -0.588 0.9346 
B - D 0.41486308 0.06179157 24 6.714 <.0001 
B - E 0.59603248 0.06179157 24 9.646 <.0001 
C - D 0.45122444 0.06179157 24 7.302 <.0001 
C - E 0.63239384 0.06179157 24 10.234 <.0001 
D - E 0.18116939 0.06179157 24 2.932 0.0343 

 

One-way ANOVA test: 48-hour mortality screening 

  DF Sum Sq.  Mean Sq. F Value Pr(>F) 
Treatment 3 3.8201 1.27335 26.533 8.54E-08 
Residuals 24 1.1518 0.04799     

 

Tukey HSD post-hoc test: 48-hour mortality screening 

Contrast Estimate SE DF t-ratio p-value 
B - C  -0.0229521 0.1170978 24 -0.196 0.9973 
B - D 0.51706775 0.1170978 24 4.416 0.001 
B - E 0.85677422 0.1170978 24 7.317 <.0001 
C - D 0.54001981 0.1170978 24 4.612 0.0006 
C - E 0.87972629 0.1170978 24 7.513 <.0001 
D - E 0.33970648 0.1170978 24 2.901 0.0367 
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One-way ANOVA test: 72-hour mortality screening 

  DF Sum Sq.  Mean Sq. F Value Pr(>F) 
Treatment 3 4.9802 1.66007 86.967 4.94E-13 
Residuals 24 0.4581 0.01909     

 

Tukey HSD post-hoc test: 72-hour mortality screening 

Contrast Estimate SE DF t-ratio p-value 
B - C  -6.30E-16 0.07385027 24 0 1 
B - D 5.13E-01 0.07385027 24 6.952 <.0001 
B - E 1.02E+00 0.07385027 24 13.762 <.0001 
C - D 5.13E-01 0.07385027 24 6.952 <.0001 
C - E 1.02E+00 0.07385027 24 13.762 <.0001 
D - E 5.03E-01 0.07385027 24 6.809 <.0001 

 

One-way ANOVA test: 96-hour mortality screening 

  DF Sum Sq.  Mean Sq. F Value Pr(>F) 
Treatment 3 4.5211 1.50703 64.629 1.22E-11 
Residuals 24 0.5596 0.02332     

 

Tukey HSD post-hoc test: 96-hour mortality screening 

Contrast Estimate SE DF t-ratio p-value 
B - C  -2.66E-16 0.08162298 24 0 1 
B - D 3.01E-01 0.08162298 24 3.684 0.006 
B - E 9.84E-01 0.08162298 24 12.054 <.0001 
C - D 3.01E-01 0.08162298 24 3.684 0.006 
C - E 9.84E-01 0.08162298 24 12.054 <.0001 
D - E 6.83E-01 0.08162298 24 8.37 <.0001 
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Appendix 2.3: Honey Bee Forager Acute Contact Toxicity in Residual Exposure Scenario: 
One-way ANOVA test of statistical significance between honey bee forager mortality following 
exposure to each insecticide treatment and Tukey HSD post-hoc test of statistical difference 
between treatments on honey bee forager mortality. Statistical significance at *p<0.05. 

One-way ANOVA test: 24-hour mortality screening 

  DF Sum Sq.  Mean Sq. F Value Pr(>F) 
Treatment 3 0.2853 0.095099 11.213 5.24E-05 
Residuals 28 0.23748 0.008482     

 

Tukey HSD post-hoc test: 24-hour mortality screening 

Contrast Estimate SE DF t-ratio p-value 
B - C  0.13114661 0.04604756 28 2.848 0.0385 
B - D 0.20827065 0.04604756 28 4.523 0.0006 
B - E 0.24724124 0.04604756 28 5.369 0.0001 
C - D 0.07712404 0.04604756 28 1.675 0.3554 
C - E 0.11609464 0.04604756 28 2.521 0.0783 
D - E 0.0389706 0.04604756 28 0.846 0.8319 

 

One-way ANOVA test: 48-hour mortality screening 

  DF Sum Sq.  Mean Sq. F Value Pr(>F) 
Treatment 3 3.70E-30 1.23E-30 1 4.07E-01 
Residuals 28 3.45E-29 1.23E-30     

 

Tukey HSD post-hoc test: 48-hour mortality screening 

Contrast Estimate SE DF t-ratio p-value 
B - C  -7.85E-16 5.55E-16 28 -1.414 0.5013 
B - D -7.85E-16 5.55E-16 28 -1.414 0.5013 
B - E -7.85E-16 5.55E-16 28 -1.414 0.5013 
C - D -6.90E-31 5.55E-16 28 0 1 
C - E -2.96E-31 5.55E-16 28 0 1 
D - E 3.94E-31 5.55E-16 28 0 1 
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Toxicity of Formulated Insecticide Mixtures to Blue Orchard Bees, Osmia lignaria (Say) 

Abstract 

Blue orchard bees, Osmia lignaria (Say) have been developed as an important pollinator 

for orchard crops in North America over the last 40 years. The toxicity of several pesticides to 

blue orchard bees and other Osmia species has been previously reported. However, the field-

realistic toxicity of formulated premix insecticides comprised of multiple active ingredients 

(each with a different mode of action) to blue orchard bees has not been assessed. Here, we used 

a customized spray tower in a laboratory setting to simulate male and female whole-body contact 

exposure to thiamethoxam + lambda-cyhalothrin, imidacloprid + beta-cyfluthrin, 

chlorantraniliprole + lambda-cyhalothrin and methoxyfenozide + spinetoram. We separately 

simulated male and female contact exposure to imidacloprid, beta-cyfluthrin and their 1:1 binary 

combination. We consulted the recommended dose regimen on the EPA approved label of each 

insecticide for selecting application rates. Resulting mortality was screened up to 96-hours post 

treatment to determine acute contact toxicity. Thiamethoxam + lambda-cyhalothrin and 

imidacloprid + beta-cyfluthrin resulted in statistically higher mortality at a fast onset at 24 and 

48-hours, which often resulted in complete mortality by 72-hours. Chlorantraniliprole + lambda-

cyhalothrin and methoxyfenozide + spinetoram resulted in high mortality at extended 

observation (96-hours). We did observe statistical differences between chlorantraniliprole + 

lambda-cyhalothrin and methoxyfenozide + spinetoram. Exposure to the 1:1 binary combination 

of imidacloprid + beta-cyfluthrin overall caused statistically higher mortality than exposure to 

imidacloprid or beta-cyfluthrin. However, at extended observation, we observed high mortality 

in both single active ingredient treatments. 

  



 

 114 

Keywords: direct contact exposure, contact toxicity, neonicotinoids, pyrethroids, blue orchard 

bees, insecticide mixtures 

Introduction 

Blue orchard bees, [Osmia lignaria (Say) (Hymenoptera: Megachilidae)] are solitary 

nesting bees native to North America that are increasingly being utilized for their pollination 

services. Unlike honey bees [Apis mellifera (Linnaeus) (Hymenoptera: Apidae)], blue orchard 

bees are univoltine spring bees that provision their nests in pre-established cavities (usually old 

beetle burrows in timber, although they will nest in artificial reed tubes) with moistened nectar 

and pollen balls for their offspring (Torchio 1982; Bosch and Kemp 2001). Females oviposit 

approximately six eggs per nest at a ratio of two females placed behind four male offspring; 

these nests are plugged with mud. Blue orchard bee development occurs over several months 

with fifth instar larvae spinning a cocoon in late summer to early fall where they will 

subsequently molt into adult bees and remain dormant until the following spring (Bosch et al. 

2000; Bosch and Kemp 2001). Pupal emergence begins in early spring but can be artificially 

initiated by incubation (at higher than ambient temperature to better time emergence for early 

blooming crops and at colder than ambient temperature to delay adult eclosion for later blooming 

crops), thereby rendering blue orchard bees an excellent pollinator for early blooming crops 

when few other bees are present (Bosch et al. 2000; Horth and Campbell 2018). Males emerge 

first and initiate foraging while simultaneously aggregating around nests containing female 

cocoons; mating begins immediately following female emergence and wing drying (Bosch et al. 

2006). 

Initially viewed as a supplement to commercially managed honey bees, blue orchard bees 

have in some cases been found to provide superior pollination services leading to improved fruit 



 

 115 

set and yield. For example, in comparing commercial sweet cherry (Prunus avium, Linnaeus) 

yield from honey bee versus blue orchard bee pollination over five respective growing seasons, 

Bosch et al. (2006) determined that blue orchard bee pollination increased production by an 

average of 2.2 times. This study also found increased female progeny in the orchard each 

subsequent year (with the exception of 2003 due to heavy bird predation) compared to the 

quantity of released blue orchard bees the previous spring. Brittain et al. (2013) found that 

diverse bee communities as opposed to a single species (honey bees) resulted in bee species 

interactions that improved pollination in almond, (P. dulcis, Miller and Webb). In a separate 

experiment in this study, higher fruit set was demonstrated when honey bees and blue orchard 

bees were combined in cages, compared to cages containing only one bee species. Similarly, by 

augmenting commercial almond orchards throughout the Central Valley in California with both 

honey bees and blue orchard bees, Pitts-Singer et al. (2018) demonstrated significantly increased 

nut set in orchards with both bee species, compared to those only containing honey bees. 

Moreover, this study found that blue orchard bees placed in almond orchards were overall 

reproductively successful. Horth and Campbell (2018) concluded that blue orchard bees can also 

be used for pollinating strawberries (Fragaria species, Duchesne) after demonstrating 

significantly higher growth rates and larger fruit size for berries grown adjacent to blue orchard 

bee nests, thereby suggesting that blue orchard bees can be utilized for pollinating herbaceous 

berry crops. Conducting an economic analysis of blue orchard bee almond pollination, Koh et al. 

(2018) demonstrated increased profit when blue orchard bees were present; the highest profit 

increase of $6,916 USD per hectare was correlated with the highest nest density of 25 nest boxes 

per hectare. Therefore, blue orchard bees are commercially reared and managed to provide 

pollination services to orchard crops. However, blue orchard bee populations are not stable in 
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almond systems as a result of crop bloom time frames being too short to complete the lifecycle 

and insufficient forage surrounding orchards (Biddinger; pers. comm.). As a result, blue orchard 

bees utilized in almonds are still largely collected from feral populations in mountainous regions. 

Analyzing the effects of environmental stressors on blue orchard bee health and their impact on 

reproductive success, overall population decline and ultimately the ability to provide effective 

pollination services is a developing area of research interest. 

One potential environmental stressor of interest is assessing the effects of exposure to 

pesticides commonly used in orchards before and after bloom on pollinating blue orchard bee 

and closely related Osmia species. Although insecticide applications in orchards are restricted 

during bloom (epa.gov; Leverage 360® insecticide label), pollinators can still be exposed to 

systemic insecticide residues present in flowers. Secondarily, insecticide application in cases of 

premature petal fall while other flowers are simultaneously in bloom can also result in pollinator 

exposure. 

Dosing blue orchard bee larval provisions with the neonicotinoid imidacloprid, Abbott et 

al. (2008) observed prolonged development and cocoon spinning times for larvae exposed to the 

higher doses, however no lethal effects were detected. Similarly, no effects on development were 

recorded when dosing the larval provisions of red mason bees, [Osmia bicornis (Hymenoptera: 

Megachilidae) (Linnaeus, 1758)], with the neonicotinoid clothianidin (Nicholls et al. 2017). 

Conversely, feeding adult O. bicornis sugar water laced with field-realistic amounts of the 

neonicotinoid thiamethoxam and clothianidin in flight cages resulted in decreased reproduction 

characterized by increased mortality and male-biased sex ratios (Sandrock et al. 2014). Assessing 

the toxicity of insecticides applied in canola pest management on blue orchard bees, Scott-

Dupree et al. (2009) found that imidacloprid and clothianidin was more toxic than the spinosyn 
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spinosad or the pyrethroid deltamethrin. Comparing the topical toxicities of five insecticides 

commonly sprayed in apple orchards to honey bees and Japanese orchard bees, [Osmia 

cornifrons (Hymenoptera: Megachilidae) (Radoszkowski, 1887)] Biddinger et al. (2013) 

determined large differences in the order of decreasing toxicity for bee species, that in some 

cases differed between species for resulting LD50 and LD90 values. In this same study, topically 

exposing both species of bees to mixtures of the minimally toxic fungicide fenbuconazole with 

either acetamiprid or imidacloprid resulted in synergistic toxicity for only imidacloprid that was 

significant. Orally exposing O. bicornis to non-lethal doses of the fungicide propiconazole, 

clothianidin, or a mixture of both, Sgolastra et al. (2017) found synergistic toxicity of the 

combined mixture demonstrated by significant differences in survival curves for each treatment 

over the 96-hour experimental duration. A field study assessing the effects of seed coating 

oilseed rape (Brassica napus, Linnaeus) with clothianidin + the pyrethroid beta-cyfluthrin found 

reduced O. bicornis nest construction and provisioning adjacent to fields sowed with insecticide-

coated seeds (Rundlöf et al. 2015). Conversely, Ruddle et al. (2018) found no significant effects 

on O. bicornis nest establishment, cell production and adult eclosion following exposure to fields 

containing oilseed rape grown from thiamethoxam-treated seeds. Evaluating contact and oral 

toxicity of five fungicides to blue orchard bees, Ladurner et al. (2005) found acute and delayed 

oral toxicity from single high doses of propiconazole and high acute and delayed toxicity from 

captan irrespective of mode of application. Analyzing the effects of sprayed pesticide exposure 

on almond trees within a cage enclosure in a field setting, Artz and Pitts-Singer (2015) 

demonstrated that the fungicides iprodione, pyraclostrobin + boscalid and the non-ionic wetting 

agent N-9® (90% polyethoxylated nonylphenol) inhibited blue orchard bee female nest 

recognition. 
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The ecotoxicology of formulated premix insecticides comprised of multiple active 

ingredients (each with a different mode of action; some of which are neonicotinoids) to blue 

orchard bees has not been tested. Preliminary studies investigating spray contact exposure of 

premix insecticides to honey bees have demonstrated high toxicity by measure of low LD50 

values in mortality screenings up to 48-hours after treatment (Zhu et al. 2015). We expand 

assessment of the toxicity of these insecticide mixtures to bees by simulating adult male and 

female blue orchard bee contact exposure to middle range EPA regulated insecticide label 

recommended doses for orchard crops to four premix insecticides (Tables 3.1-3.2 and Figure 

2.1). This study separately examines male and female blue orchard bee resulting mortality under 

two insecticide application scenarios in orchard settings (during pre-bloom or early petal fall 

with continued residual bloom) or in field crops where insecticides are applied during bloom. We 

tested (1) spray-only exposure to premix insecticide sprays while bees are foraging in an orchard 

or a field; and (2) spray-only exposure to the individual active ingredients (and their 1:1 binary 

combination) comprising one of the most toxic premix insecticides tested while bees are foraging 

in an orchard or a field. We evaluated each scenario in two separate experiments (analyzing male 

and female blue orchard bees separately), therefore a total of four experiments were conducted in 

this study. 

Simulating these scenarios for orchards or field crops, we analyzed the acute contact 

toxicity of formulated insecticide premixes (under field-realistic conditions) to male and female 

blue orchard bees that are increasingly being used in orchard and field crop integrated pest 

management. Our findings will aid orchardists and field crop operators in their selection and use 

of insecticides that have a minimized impact on blue orchard bees. 
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Materials and Methods 

Blue orchard bees. Cocoons containing pupae with adult male and female blue orchard 

bees in diapause stage were purchased from Watts Solitary Bees (Bothell, WA United States) 

during spring 2018. Upon receival, cocoons were placed in an incubator at (5 ± 0.5°C; 65% ± 5 

RH) within a laboratory setting until they were used for experiments. Four days prior to 

beginning each experiment, blue orchard bees were placed in an incubator with higher 

temperature (14 ± 0.5°C; 65% ± 5 RH) to stimulate adult pupal eclosion. Blue orchard bees used 

for all experiments eclosed from their pupae 24-hours prior to being treated. 

Cage design. Transparent polypropylene jars (500 mL, D by H: 9.3 by 10 cm) were used 

as experimental cages. Fine netting cloth was securely placed with rubber bands over cages used 

for all treatments on male blue orchard bees to prevent their ability to escape. Blue orchard bees 

were immobilized in separate storage cages for approximately two minutes by being placed in a 

cooler prior to being used in an experiment. Immobilized blue orchard bees were quickly 

transferred to petri dishes for treatment, and then placed in clean cages for the duration of each 

experiment. We fed treated blue orchard bees by inserting a plastic vial containing 50% sucrose 

solution (6-7 mL per vial) into the side of each cage for ad libitum feeding. A cotton swab 

soaked in 50% sucrose solution was placed on top of each cage providing a second food 

resource. 

Spray tower. Insecticides were administered using a customized spray tower design as 

described in (Zhu et al. 2015). Using this spray tower, we simulated direct foliar spray exposure 

in a laboratory setting while meeting laboratory safety and efficiency. A spray nozzle (Burkard 

Scientific, Uxbridge, Middx, United Kingdom), was used for applying insecticides to blue 

orchard bees in cages at a low spray volume (0.5 mL/cage). Regulated air pressure (69 kpa) and 
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fixed spray distance (22 cm) were utilized for each treatment including the control (Zhu et al. 

2015). We used a distilled water solvent for all treatments to simulate realistic grower insecticide 

spray applications in orchards and resulting blue orchard bee exposure. 

Post treatment observations. Treated blue orchard bees were transferred to cages placed 

on plastic trays, where they were maintained in an incubator (21 ± 0.5°C; 65% ± 5 RH) for the 

duration of the experiment. We screened and recorded resulting mortality at 24, 48, 72, and 96-

hours after treatment for all treatments, except in experiment 3, which was terminated after 48-

hours. Blue orchard bees were considered dead if they did not move after being touched by a 

paintbrush. Moribund bees capable of moving their legs and antennae but incapable of flying 

were considered alive. 

Experiment 1: Male Blue Orchard Bee Acute Contact Toxicity Following Spray-Only 

Exposure to Premix Insecticides 

Insecticide treatments. Four formulated insecticide mixtures (Table 3.1 and Figure 2.1) 

were assessed for their contact toxicity to adult male blue orchard bees directly sprayed in 

experimental cages. Each of these insecticides is comprised of two active ingredients (each with 

a different mode of action). A single rate for each insecticide was chosen that was in the middle 

of the range of rates listed on the EPA regulated insecticide label for orchard crops (Table 3.2). 

We mixed each insecticide solute in 100 mL of a distilled water solvent. A low spray volume 

(0.5 mL/cage) was used for insecticide administration. The control treatment was sprayed with 

distilled water at the same spray volume. Treated male blue orchard bees were fed by inserting a 

feeder made of a plastic vial containing 50% sucrose solution (6-7 mL per vial) into the side of 

each cage for ad libitum feeding. A cotton swab soaked in 50% sucrose solution was placed on 

top of each cage providing a second food resource. For all treatments we filled the plastic vial 
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feeder inserted in each cage with an additional 2 mL of 50% sucrose solution at both 48 and 72-

hours for continued male blue orchard bee feeding. A completely randomized design was used to 

test the five treatments in this experiment, each of which contained seven replicates. Seven cages 

containing 10 male blue orchard bees each (n = 10/cage, total 70 bees) were utilized for each of 

the five treatments, with each individual cage representing an experimental unit. Each 

experimental unit was randomly assigned to one of the five treatments. 

Experiment 2: Female Blue Orchard Bee Acute Contact Toxicity Following Spray-Only 

Exposure to Premix Insecticides 

Insecticide treatments. Spray contact toxicity of four formulated premix insecticides 

(Table 3.1 and Figure 2.1) to adult female blue orchard bees was assessed by applying 

insecticides to bees placed in experimental cages. Each of these insecticide mixtures contains 

multiple active ingredients (each with a different mode of action). We consulted the insecticide 

label for each respective insecticide in selecting a rate within the middle-range of recommended 

rates for orchard crops (Table 3.2). Each insecticide solute was diluted in 100 mL of a distilled 

water solvent. Insecticides were applied to blue orchard bees at a low spray volume (0.5 

mL/cage). Distilled water sprayed at the same volume was used as a control. Treated female blue 

orchard bees were fed by inserting a plastic vial containing 50% sucrose solution (6-7 mL per 

vial) into the side of each cage for ad libitum feeding. A cotton swab soaked in 50% sucrose 

solution was placed on top of each cage providing a second food resource. At both 48 and 72-

hours, we administered 2 mL of 50% sucrose solution to the cotton swab placed on top of each 

cage for continued female blue orchard bee feeding in all treatments. A completely randomized 

design was used to test the five treatments in this experiment, each of which contained six 

replicates. Six cages containing 9 female blue orchard bees each (n = 9/cage, total 54 bees) were 
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utilized for each of the five treatments, with each individual cage representing an experimental 

unit. Each experimental unit was randomly assigned to one of the five treatments. 

Experiment 3: Male Blue Orchard Bee Acute Contact Toxicity Following Spray-Only 

Exposure to Individual Active Ingredient Insecticides 

Insecticide treatments. Contact toxicity of the formulated individual active ingredient 

insecticides and their 1:1 binary combination comprising one premix insecticide tested (Table 

3.3 and Figure 2.1) to adult male blue orchard bees was assessed by direct spray application to 

bees in experimental cages. We selected a rate within the low-range of rates on the insecticide 

label recommendations for orchard crops (Table 3.4). Insecticide solutes were mixed with 100 

mL of distilled water, which served as a solvent. Spray application was made using a low spray 

volume (0.5 mL/cage). Administration of distilled water at the same spray volume was used as a 

control. Treated male blue orchard bees were fed by inserting a plastic vial containing 50% 

sucrose solution (6-7 mL per vial) into the side of each cage for ad libitum feeding. A cotton 

swab soaked in 50% sucrose solution was placed on top of each cage providing a second food 

resource. We supplied an additional 3-4 mL of 50% sucrose solution to the cotton swab placed 

on top of each cage at 24-hours for continued male blue orchard bee feeding in all treatments. A 

completely randomized design was used to test the four treatments in this experiment, each of 

which contained six replicates. Six cages containing 8 male blue orchard bees each (n = 8/cage, 

total 48 bees) were utilized for each of the five treatments, with each individual cage 

representing an experimental unit. Each experimental unit was randomly assigned to one of the 

five treatments. 
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Experiment 4: Female Blue Orchard Bee Acute Contact Toxicity Following Spray-Only 

Exposure to Individual Active Ingredient Insecticides 

Insecticide treatments. Adult female blue orchard bees placed in experimental cages 

were sprayed with the formulated individual active ingredients and their 1:1 binary combination 

comprising one insecticide mixture tested (Table 3.3 and Figure 2.1) to determine resulting 

contact toxicity. A rate within the low-range recommended application rates for orchard crops 

were used as per the EPA regulated insecticide label for each respective insecticide (Table 3.4). 

We diluted each insecticide solute in a distilled water (100 mL) solvent. Using a spray volume 

(0.5 mL/cage), we applied insecticide treatments to blue orchard bees. The same volume of 

distilled water was used as a control. Treated female blue orchard bees were fed by inserting a 

plastic vial containing 50% sucrose solution (6-7 mL per vial) into the side of each cage for ad 

libitum feeding. A cotton swab soaked in 50% sucrose solution was placed on top of each cage 

providing a second food resource. We did not apply additional 50% sucrose solution for 

continued female blue orchard bees feeding at any post treatment screening period for all 

treatments. A completely randomized design was used to test the five treatments in this 

experiment, each of which contained six replicates. Six cages containing 8 female blue orchard 

bees each (n = 8/cage, total 48 bees) were randomly utilized for each of the four treatments, with 

each individual cage representing an experimental unit. 

Statistical analysis 

We corrected the check (control) blue orchard bee mortality for each experiment at each 

screening period by using the Schneider-Orelli’s formula (Bibbs et al. 2015; Williams et al. 

2015) as below: 

Corrected	%	Mortality = 1
Mortality	%	in	treatment − Mortality	%	in	control

100 −Mortality	%	in	control 7 ∗ 100	(eq. 1) 
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where the percent mortality for treatment replication is compared to the percent mortality for 

each respective control replication. 

We removed the control from each experiment as a result of correcting our data using the 

Schneider-Orelli’s formula. Therefore, we only analyzed the blue orchard bee mortality for 

insecticide treatments. An arcsine transformation was used to normalize corrected percent 

mortality data as in (Glazer and Navon 1990). Normal Q-Q and Residual vs. Fitted plots were 

used to confirm normality and lack of heteroscedasticity. 

Statistical significances in the percent of blue orchard bee mortality following acute 

contact exposure to each of the four premix insecticides (experiments 1-2) and to each individual 

active ingredient insecticide and their 1:1 binary combination (experiments 3-4) tested at each 

screening period were determined using one-way ANOVA as in Wise et al. (2017). 

A Tukey’s HSD post-hoc multiple pairwise comparison analysis was used to determine 

statistical differences in the percent of blue orchard bee mortality following acute contact 

exposure to each premix insecticide (experiments 1-2) and to each individual active ingredient 

insecticide and their binary combination (experiments 3-4) treatment during each screening 

period as in Wise et al. (2017). The R Studio statistical software (R version 3.5.1 and R Studio 

version 1.1.463) was used for completing all statistical analyses. 

Results 

Experiment 1: Male Blue Orchard Bee Acute Contact Toxicity Following Spray-Only 

Exposure to Premix Insecticides 

Male blue orchard bee spray-only exposure to all four premix insecticides (Tables 3.1-3.2 

and Figure 2.1) resulted in mortality that was statistically significant between treatments at 24-

hours (F=18.059, p<0.05), 48-hours (F=48.053, p<0.05), 72-hours (F=35.37, p<0.05) and 96-
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hours (F=12.824, p<0.05) (Figure 3.1 and Appendix 3.1). At 24-hours, bees exposed to 

thiamethoxam + lambda-cyhalothrin and imidacloprid + beta-cyfluthrin had higher mortality 

than chlorantraniliprole + lambda-cyhalothrin and methoxyfenozide + spinetoram (p<0.05) 

(Figure 3.1 and Appendix 3.1). At 48-hours, we observed higher mortality for thiamethoxam + 

lambda-cyhalothrin and imidacloprid + beta-cyfluthrin than for chlorantraniliprole + lambda-

cyhalothrin and methoxyfenozide + spinetoram, however, mortality in chlorantraniliprole + 

lambda-cyhalothrin was also higher than methoxyfenozide + spinetoram (p<0.05). At 72 and 96-

hours, bee mortality was higher for thiamethoxam + lambda-cyhalothrin, imidacloprid + beta-

cyfluthrin and chlorantraniliprole + lambda-cyhalothrin compared to methoxyfenozide + 

spinetoram (p<0.05). 

Experiment 2: Female Blue Orchard Bee Acute Contact Toxicity Following Spray-Only 

Exposure to Premix Insecticides 

Spray-only exposure to the four premix insecticides (Tables 3.1-3.2 and Figure 2.1) 

resulted in female blue orchard bee mortality that was statistically significant between treatments 

at 24-hours (F=14.859, p<0.05), 48-hours (F=22.135, p<0.05) and 72-hours (F=14.869, p<0.05) 

(Figure 3.2 and Appendix 3.2). At 96-hours, we did not observe significant mortality for all 

treatments (F=1, p=0.413) given the complete mortality at this screening period. However, one 

replication in methoxyfenozide + spinetoram was an outlier at 96-hours with 60% mortality. At 

24 and 72-hours, mortality in the thiamethoxam + lambda-cyhalothrin, imidacloprid + beta-

cyfluthrin, and chlorantraniliprole + lambda-cyhalothrin treatments was higher than in the 

methoxyfenozide + spinetoram treatment (p<0.05) (Figure 3.2 and Appendix 3.2). At 48-hours, 

we observed higher bee mortality following exposure to thiamethoxam + lambda-cyhalothrin 

compared to methoxyfenozide + spinetoram, while bee mortality in the imidacloprid + beta-
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cyfluthrin treatment was higher than that in the chlorantraniliprole + lambda-cyhalothrin and 

methoxyfenozide + spinetoram treatment, and bee mortality in the chlorantraniliprole + lambda-

cyhalothrin treatment was higher than that in the methoxyfenozide + spinetoram treatment 

(p<0.05). At 96-hours, no significant differences were observed between insecticide treatments 

given the observation of complete mortality (p=1 for thiamethoxam + lambda-cyhalothrin 

compared to imidacloprid + beta-cyfluthrin and chlorantraniliprole + lambda-cyhalothrin, and for 

imidacloprid + beta-cyfluthrin compared to chlorantraniliprole + lambda-cyhalothrin; p=0.5054 

for thiamethoxam + lambda-cyhalothrin, imidacloprid + beta-cyfluthrin and chlorantraniliprole + 

lambda-cyhalothrin compared to methoxyfenozide + spinetoram). 

Experiment 3: Male Blue Orchard Bee Acute Contact Toxicity Following Spray-Only 

Exposure to Individual Active Ingredient Insecticides 

Mortality for male blue orchard bees following spray-only exposure to individual active 

ingredient insecticides and their 1:1 binary combination (Tables 3.3-3.4 and Figure 2.1) was 

statistically significant between treatments at 24-hours (F=13.098, p<0.05), however not at 48-

hours (F=1, p=0.391) given the complete mortality at this screening period which terminated the 

experiment early (Figure 3.3 and Appendix 3.3). Lower mortality was observed in imidacloprid 

and beta-cyfluthrin compared to the 1:1 binary combination (imidacloprid + beta-cyfluthrin) at 

24-hours (p<0.05) (Figure 3.3 and Appendix 3.3). At 48-hours, no significant difference in 

mortality was observed between treatments given the complete mortality at this screening period 

(p=0.4574 for imidacloprid compared to beta-cyfluthrin and the 1:1 binary combination, while 

p=1 for beta-cyfluthrin compared to the 1:1 binary combination). 
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Experiment 4: Female Blue Orchard Bee Acute Contact Toxicity Following Spray-Only 

Exposure to Individual Active Ingredient Insecticides 

Female blue orchard bee spray-only exposure to the individual active ingredient 

insecticides and their 1:1 binary combination (Tables 3.3-3.4 and Figure 2.1) resulted in 

statistically significant mortality between treatments at 24-hours (F=6.3879, p<0.05), 48-hours 

(F=11.266, p<0.05), 72-hours (F=10.972, p<0.05) and 96-hours (F=8.2398, p<0.05) (Figure 3.4 

and Appendix 3.4). At 24-hours, we observed lower mortality for bees exposed to imidacloprid 

compared to the 1:1 binary combination (imidacloprid + beta-cyfluthrin) (p<0.05) (Figure 3.4 

and Appendix 3.4). At 48, 72 and 96-hours, imidacloprid demonstrated lower bee mortality than 

beta-cyfluthrin and the 1:1 binary combination (p<0.05). 

Discussion 

Experiment 1: Male Blue Orchard Bee Acute Contact Toxicity Following Spray-Only 

Exposure to Premix Insecticides 

Examining the scenario of spray-only insecticide exposure, we found that male blue 

orchard bees sprayed with thiamethoxam + lambda-cyhalothrin and imidacloprid + beta-

cyfluthrin experienced the most rapid onset of mortality. At 24-hours approximately 40% 

mortality resulted for both treatments. Interestingly, we observed less mortality in male blue 

orchard bees than for females only at 24-hours, which is surprising given the larger body size 

and increased bodily hair of females. At 48-hours, we observed approximately 80% male 

mortality for both treatments, while complete mortality resulted for both treatments at 72-hours. 

We observed quick knockdown characterized by trembling and an incapacity to fly within 25 

minutes of application of these two treatments. Male blue orchard bees displayed the same 

behavior at 24 and 48-hours. Given the characteristic knockdown mode of action of pyrethroids 
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as sodium channel modulators (Table 3.1; Vijverberg et al. 1982), we primarily attribute this 

rapid knockdown to the presence of pyrethroid active ingredients. Neonicotinoids have systemic 

and translaminar properties (Elbert et al. 2008) which facilitate their movement into leaf tissue, 

thereby reducing bee contact to these chemicals after residues dry. Standard LD50 values of these 

active ingredient chemistries have been quantified for honey bees (Table 2.3). Although honey 

bees cannot be considered as a surrogate for non-Apis bees including blue orchard bees 

(Biddinger et al. 2013), these standard LD50 values provide a preliminary indication of the high 

toxicity of these insecticides to bees. It would be helpful to generate standard LD50 values for 

insecticide toxicity to Osmia species bees for accurate comparison in future studies. Our results 

are suggestive of additive or synergistic toxicity arising from male blue orchard bee exposure to 

both a neonicotinoid and a pyrethroid, however, future analysis of multiple doses to create dose-

mortality curves is necessary to prove this. Nonetheless, it is evident that male blue orchard bees 

will likely experience rapid mortality following spray-only exposure to thiamethoxam + lambda-

cyhalothrin and imidacloprid + beta-cyfluthrin. 

Male blue orchard bee treatment with chlorantraniliprole + lambda-cyhalothrin and 

methoxyfenozide + spinetoram resulted in reduced mortality. At 24-hours, we observed 

approximately 20% mortality for both treatments, while at 48-hours, approximately 45% 

mortality was observed for bees treated with chlorantraniliprole + lambda-cyhalothrin, and 

approximately 30% mortality was observed for bees treated with methoxyfenozide + spinetoram. 

By 96-hours, we recorded complete mortality for the chlorantraniliprole +lambda-cyhalothrin 

treatment, and approximately 65% mortality for the methoxyfenozide + spinetoram treatment. 

Here we observed some knockdown effect (characterized by inability to fly) for male blue 

orchard bees treated with chlorantraniliprole + lambda-cyhalothrin at 24-hours. This could be 
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due to the presence of a pyrethroid active ingredient. However, this knockdown was less 

pronounced than that for thiamethoxam + lambda-cyhalothrin and imidacloprid + beta-

cyfluthrin, which we attribute to the lack of a neonicotinoid active ingredient. Moreover, the 

delayed toxicity of chlorantraniliprole + lambda-cyhalothrin to male blue orchard bees is evident 

by our only recording complete mortality at 96-hours. Interestingly, we recorded complete 

mortality (with one outlier) for females at 72-hours, which is surprising given their physiological 

differences (discussed in experiment 2). As previously mentioned, the standard LD50 values of 

these active ingredient chemistries to honey bees (Table 2.3) are not a direct comparison because 

honey bees can differ in response to toxicants compared to non-Apis bees (Biddinger et al. 2013). 

However, these standard LD50 values are a starting point and do indicate lower toxicity of these 

insecticides to bees. Interestingly, Smagghe et al. (2013) found acute and chronic toxicity of 

chlorantraniliprole to Bombus terrestris [(Hymenoptera: Apidae) (Linnaeus, 1758)] (a non-Apis 

bee) following oral consumption. This finding combined with ours supports the need for more 

research regarding the risk posed to non-Apis bees by chlorantraniliprole, which is a ryanodine 

receptor agonist (Table 3.1; irac-online.org). Conversely, we observed the least amount of 

mortality for male blue orchard bees treated with methoxyfenozide + spinetoram (and no 

knockdown activity), which we primarily attribute to the lack of a pyrethroid chemistry. As with 

chlorantraniliprole + lambda-cyhalothrin, our recording of approximately 65% mortality at 96-

hours indicates the slow onset of toxicity for methoxyfenozide + spinetoram. However, it is 

surprising that we observed complete mortality for females exposed to methoxyfenozide + 

spinetoram at 96-hours. For males, these results are not entirely surprising given the 

classification of methoxyfenozide as a diacylhydrazine ecdysone receptor agonist (Table 3.1; 

irac-online.org) designed to induce premature molting in immature Lepidoptera (Suiter and 
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Scharf 2015). Studies demonstrating the benign toxicity of methoxyfenozide (Mommaerts et al. 

2006) and reduced toxicity of spinetoram (Besard et al. 2011) to B. terrestris (a non-Apis bee) 

further support our results. Additionally, the translaminar movement of spinetoram (Sato et al. 

2012) reduces bee contact after residues have dried. These results demonstrate that male blue 

orchard bees will likely experience delayed mortality following spray-only exposure to 

chlorantraniliprole + lambda-cyhalothrin and methoxyfenozide + spinetoram. Removing check 

(control) mortality from our data analysis by using the Schneider-Orelli’s formula (eq. 1) enables 

us to demonstrate that male blue orchard bee mortality is increasing as a result of exposure to 

insecticide treatments. Even though we removed control data from our analysis, our observation 

that male blue orchard bees in the control were alive six days (144-hours) post treatment bolsters 

our conclusion of the toxicity of premix insecticides to male blue orchard bees. 

Experiment 2: Female Blue Orchard Bee Acute Contact Toxicity Following Spray-Only 

Exposure to Premix Insecticides 

For female blue orchard bees, we similarly observed the most rapid onset of mortality for 

the thiamethoxam + lambda-cyhalothrin and imidacloprid + beta-cyfluthrin treatments. 

Approximately 50% mortality resulted at 24-hours for both treatments. It is surprising that the 

females experienced higher mortality than males at 24-hours, given their larger body size and 

increased bodily hair. Therefore, future studies analyzing physiological and metabolic 

differences between male and female adult blue orchard bees are warranted. At 48-hours we 

observed approximately 85% female mortality, and by 72-hours complete mortality for both 

treatments (except for one outlier at 83.3% mortality at 72-hours for imidacloprid + beta-

cyfluthrin). Similar to males, we observed quick female knockdown within 25 minutes after 

application of these two insecticides, as well as for alive bees during the 24 and 48-hour 
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mortality screenings. We primarily attribute this rapid knockdown to the presence of pyrethroids. 

As mentioned before, the low standard LD50 values for these insecticides to honey bees (Table 

2.3) are not a direct comparison to blue orchard bees, however they do indicate the overall high 

toxicity posed to bees. While our findings in this experiment suggest an interaction between 

neonicotinoid and pyrethroid chemistries, further analysis of multiple doses to create dose 

mortality curves is necessary to prove this. However, similar to males, these findings indicate 

that female blue orchard bees will likely experience high mortality at a rapid pace following 

spray-only exposure to thiamethoxam + lambda-cyhalothrin and imidacloprid + beta-cyfluthrin. 

Female blue orchard bees sprayed with chlorantraniliprole + lambda-cyhalothrin and 

methoxyfenozide + spinetoram experienced a slower onset of initial mortality, and specifically 

for methoxyfenozide + spinetoram. At 24-hours, we observed approximately 45% and 10% 

mortality, and by 48-hours we observed approximately 60% and 25% mortality for both 

treatments respectively. At 72-hours, we observed complete mortality for chlorantraniliprole + 

lambda-cyhalothrin (except for one outlier at 83.3% mortality), and at 96-hours we observed 

complete mortality for methoxyfenozide + spinetoram (except for one outlier at 60% mortality). 

Interestingly, for females, chlorantraniliprole + lambda-cyhalothrin resulting mortality was close 

to that of thiamethoxam + lambda-cyhalothrin and imidacloprid + beta-cyfluthrin, which is a 

trend we did not observe for males. Moreover, compared to males, we observed higher mortality 

for females exposed to chlorantraniliprole + lambda-cyhalothrin at 24 and 48-hours, and for 

females exposed to methoxyfenozide + spinetoram at 72 and 96-hours. As with thiamethoxam + 

lambda-cyhalothrin and imidacloprid + beta-cyfluthrin at 24-hours, this is surprising given the 

physiological differences between males and females. Therefore, as previously mentioned, future 

studies should investigate these differences. Female blue orchard bees treated with 
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chlorantraniliprole + lambda-cyhalothrin also displayed some knockdown behavioral effects 

(characterized by inability to fly) at 24-hours. As before, we attribute this finding to the 

pyrethroid active ingredient. However, this knockdown was less pronounced than that for the 

thiamethoxam + lambda-cyhalothrin and imidacloprid + beta-cyfluthrin treatments which we 

attribute to the lack of a neonicotinoid. Conversely, we observed no knockdown activity for 

females treated with methoxyfenozide + spinetoram, which we primarily attribute to the lack of a 

pyrethroid. Our results for females agree with the findings of Smagghe et al. (2013) 

demonstrating the risk of chlorantraniliprole to a non-Apis bee, however, are contrary to the 

findings of Mommaerts et al. (2006) showing the benign toxicity of methoxyfenozide and Besard 

et al. (2011) depicting the reduced toxicity of spinetoram to a non-Apis bee. Given the rapid 

versus slow onset of mortality in our study, it would be helpful to explore blue orchard bee 

detoxification at 24-hours for highly toxic insecticides (thiamethoxam + lambda-cyhalothrin and 

imidacloprid + beta-cyfluthrin) and at 72 and 96-hours for less toxic insecticides 

(chlorantraniliprole + lambda-cyhalothrin and methoxyfenozide + spinetoram). Generating this 

data might contribute to creating standard LD50 values for non-Apis bees, similar to those for 

honey bees (Table 2.3). Nonetheless, our observation of alive bees in the control treatment at six 

days (144-hours) after insecticide application further supports our conclusion of high risk posed 

by premix insecticides to female blue orchard bees. 

Experiment 3: Male Blue Orchard Bee Acute Contact Toxicity Following Spray-Only 

Exposure to Individual Active Ingredient Insecticides 

Under the scenario simulating spray-only exposure to individual active ingredients and 

their 1:1 binary combination, we found high mortality for male blue orchard bees in all 

treatments. At 24-hours, we observed approximately 57.5%, 45% and 80% mortality for 
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imidacloprid, beta-cyfluthrin and imidacloprid + beta-cyfluthrin, respectively. We observed 

complete mortality at 48-hours which terminated the experiment. At 24-hours for all treatments, 

we noticed that all alive male bees tremored, characterized by their wings, legs and antennae 

slightly moving. These behaviors are consistent with symptoms from exposure to pyrethroid 

active ingredients. The statistically higher mortality in the 1:1 binary combination of 

imidacloprid + beta-cyfluthrin at 24-hours suggests an additive or synergistic toxicity posed to 

male blue orchard bees exposed to this insecticide mixture. However, future work testing 

multiple doses to generate a dose mortality curve would be necessary to prove this. Moreover, 

our laboratory synthesized 1:1 binary combination is not an identical simulation of Leverage 

360® (the premix insecticide comprised of these two active ingredients) which contains 0.24 

g/mL imidacloprid and 0.12 g/mL beta-cyfluthrin (Leverage 360® label). Additionally, the higher 

toxicity observed in this experiment may in part be explained by the higher percentage of active 

ingredients in the single active ingredient products (Tables 3.3-3.4) compared to those in the 

premix insecticide products (Tables 3.1-3.2). Nonetheless, our results demonstrate that male blue 

orchard bees coming into spray-only contact with imidacloprid, beta-cyfluthrin and particularly 

imidacloprid + beta-cyfluthrin will be unlikely to survive. However, future assessment of single 

active ingredient insecticides containing equal quantities of active ingredients as the premix 

insecticides we tested would be helpful in specifically determining the risk posed by exposure to 

insecticide mixtures to blue orchard bees. Although we adjusted for the control mortality using 

Schneider-Orelli’s formula (eq. 1), we observed 16% male mortality in the control at 24-hours. 

We primarily attribute this to bee age at treatment (24-hours post pupal eclosion) and living in an 

artificial cage environment with a single food source (50% sucrose solution). Interestingly, 
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though, we did notice some male survival in the control at six days (144-hours) after treatment, 

which further supports the notion of mortality induced by insecticide toxicity. 

Experiment 4: Female Blue Orchard Bee Acute Contact Toxicity Following Spray-Only 

Exposure to Individual Active Ingredient Insecticides 

Although we ran this experiment for female blue orchard bees for the entire 96-hour 

duration, we observed similar results to the males marked by overall high mortality. At 24-hours, 

we recorded approximately 40%, 50% and 70% mortality for imidacloprid, beta-cyfluthrin and 

imidacloprid + beta-cyfluthrin respectively. At 48-hours, average imidacloprid mortality 

remained unchanged, while beta-cyfluthrin increased to 90% and imidacloprid + beta-cyfluthrin 

increased to complete mortality. At 72-hours imidacloprid increased to approximately 60% 

mortality, while beta-cyfluthrin increased to complete mortality (except for a couple outliers at 

86% mortality). By 96-hours, imidacloprid mortality was approximately 77.5% while beta-

cyfluthrin increased to complete mortality. As with males, we noticed that all females at 24-

hours tremored in all treatments, characterized by their wings, legs and antennae slightly moving. 

Interestingly, we observed high knockdown for females sprayed with imidacloprid at 24-hours, 

suggesting a similarity in acute contact toxicity to that of pyrethroids. This finding warrants 

further exploration of dynamics governing female blue orchard bee neonicotinoid bodily uptake 

given their systemic and translaminar properties (Elbert et al. 2008). Additionally, future studies 

should investigate female blue orchard bee metabolic detoxification of imidacloprid in efforts to 

explain the physiological basis for the onset of tremors we observed in females 24-hours after 

spray exposure to imidacloprid. Similar to males, the numerically higher mortality for 

imidacloprid + beta-cyfluthrin at all screening periods is indicative of additive or synergistic 

toxicity. Since we are unable to prove this in our study, future work testing multiple doses to 



 

 135 

generate dose mortality curves is required to validate this claim. Additionally, correcting for the 

unequal proportions of insecticides in our 1:1 binary combination compared to those in the 

premix (Leverage 360® label) and the higher percentage of active ingredients in the single 

ingredient products (Tables 3.3-3.4) compared to the premix products (Tables 3.1-3.2) should be 

factored into future studies. Incorporating these corrections will create a more direct comparison 

between premix and single ingredient products, thereby enriching assessment of whether 

exposure to premix chemistries poses increased risk to female blue orchard bees. However, our 

results serve as a preliminary base point indicating that female blue orchard bees coming into 

spray-contact with imidacloprid, beta-cyfluthrin and particularly imidacloprid + beta-cyfluthrin 

likely experience high mortality. Removing control mortality from our data ensured 

demonstration of mortality resulting from insecticide exposure. Although, it is worth mentioning 

that similar to males, we did observe some female survival at six days (144-hours) after 

treatment, thereby further supporting that female mortality was induced by insecticide treatment. 

The insecticide mixtures we tested in this study are increasingly being utilized for 

controlling insect pests in orchard and berry crops. For example, a premix insecticide containing 

thiamethoxam + lambda-cyhalothrin was found to provide effective control of brown 

marmorated stink bugs [Halyomorpha halys (Hemiptera: Pentatomidae) (Stål, 1855)] in a USDA 

apple (Malus species, Mill) and peach (Prunus persica, Linnaeus) orchard field trial (Leskey et 

al. 2013). At zero days after treatment in this study, mid-season application resulted in 66.7% 

mortality in 2011, while in 2012 early-season application resulted in 73.3% mortality and mid-

season application resulted in 80.0% mortality. Similarly, applying thiamethoxam + lambda-

cyhalothrin and imidacloprid + beta-cyfluthrin to orchard locations baited with H. halys 

aggregation pheromones, Morrison et al. (2016) found 63% increased mortality in locations 
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where high pheromone doses were applied. Tanigoshi et al. (2011) found high efficacy for 

thiamethoxam + lambda-cyhalothrin and imidacloprid + beta-cyfluthrin for spotted wing 

drosophila [Drosophila suzukii (Diptera: Drosophilidae) (Matsumura, 1931)] control in red 

raspberry (Rubus idaeus, Linnaeus). Similarly, Tanigoshi et al. (2013) found imidacloprid + 

beta-cyfluthrin exceeded the threshold of 90% spotted wing drosophila mortality, while 

thiamethoxam + lambda-cyhalothrin provided 89.7% efficacy at seven days after treatment in 

duke or northern highbrush blueberry (Vaccinium corymbosum, Linnaeus). Insecticide control of 

oblique banded leaf-roller [Choristoneura rosaceana (Harris) (Lepidoptera: Tortricidae)] in 

sweet cherry orchards includes chlorantraniliprole, methoxyfenozide and spinetoram (Alston and 

Murray 2017). Isaacs (2010) showed that growers applying methoxyfenozide + spinetoram 

following a degree-day model reported low fruit-worm infestation in blueberry. Several of these 

orchard and berry crops are pollinated by bee species including blue orchard bees (Bosch et al. 

2006; Pitts-Singer et al. 2018). An analysis of apple pollination in New York State and 

Pennsylvania demonstrated grower interest in managing orchards for native pollinators given 

their high effectiveness in instigating fruit-set (Park et al. 2018). This study also found that 

grower interest in native bee pollination increased when provided appropriate guidelines and 

resources. Therefore, usage of non-Apis alternatives to honey bees is increasing. As a result, non-

Apis bees including blue orchard bees may potentially be exposed to these insecticides while 

foraging for pollen and nectar to provision their nests. However, this would only occur either 

before or after bloom in an orchard, although, this may occur during bloom for a berry crop 

given the continuous blossom of berries during a growing season. 

It is important to note that application of these premix insecticides in orchards is 

prohibited during bloom (Leverage 360® label; epa.gov) when pollinators including blue orchard 
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bees are most likely to be foraging. Therefore, insecticide labels specifically instruct applicators 

to only administer insecticides in orchards before bloom (prepink of flowers) or after flower 

petal fall. However, spraying before bloom does not guarantee pollinator safety as systemic and 

translaminar insecticides such as neonicotinoids (Elbert et al. 2008) and spinetoram (Sato et al. 

2012) may remain in plant tissues (Doering et al. 2004; Oliver et al. 2010) and subsequently 

move from leaf and stem surfaces into the pollen and nectar of blossoming flowers (Mogren and 

Lundgren 2016). Also, dried insecticide residues applied before bloom may become liquified in 

plant guttation fluids which have been shown to contain high levels of neonicotinoids in seed-

treated maize (Girolami et al. 2009) and melons (Hoffmann and Castle 2012). Bees have been 

found to collect guttation fluid (Hopwood et al. 2016), thereby potentially exposing them to 

insecticides. Pollinating insects foraging these flowers would be subjected to direct contact with 

insecticide-contaminated pollen and nectar. Our experimental design of spray-only insecticide 

exposure to blue orchard bees directly simulates this scenario. Although blue orchard bees are 

not currently used for pollinating maize and melons, they potentially could come into contact 

with insecticide contaminated guttation fluid in crops they do pollinate. Future work should 

explore this scenario in orchard and particularly berry crops. Second, the practice of applying 

insecticides in orchards after flower petal fall is a variable definition since flowering can occur in 

different stages and separate times as a result of ambient temperature as shown in (Rodrigo and 

Herrero 2002). Therefore, it is possible that subsequent flowers may be in full bloom (and hence 

attractive to pollinators) after the majority of flower petal fall. Under this scenario, pollinators 

(including blue orchard bees) could forage later blooming flowers in an orchard while 

insecticides are being applied. We designed our spray-only exposure bioassay in a laboratory 

setting to also simulate this scenario where blue orchard bees are exposed to insecticide sprays 
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while foraging through an orchard. Additionally, applying insecticides after petal fall might be 

hazardous to other native bees such as Andrena species [(Hymenoptera: Andrenidae) 

(Fabricius)], Bombus and Osmia species naturally found within orchard settings (Cane 1997; 

Park et al. 2010). Field studies exploring routes of insecticide exposure to these native bees 

within orchards before and after bloom that particularly emphasize how differences in nesting 

biology (i.e. Bombus and Osmia species excavate nests in cavities above ground while Andrena 

species excavate nests below ground) impact exposure to insecticides would greatly contribute to 

our understanding of insecticide flow through an orchard agro-ecosystem post application. 

Blue orchard bees have also been shown to be effective pollinators of berry crops as in 

Horth and Campbell (2018) where their use increased strawberry size and growth rate on small 

farms. Similarly, Sampson et al. (2013) demonstrated reliance on the closely related Osmia 

ribifloris [(Hymenoptera: Megachilidae) (Cockerell, 1900)] for 80-100% of fruit yield in seven 

wild and cultivated blueberry species. Given that insecticide applications are not prohibited 

during bloom of berry crops (Leverage 360® label; epa.gov) blue orchard bees that are used to 

pollinate berries are at risk for insecticide exposure. Moreover, since bloom in berries can occur 

multiple times throughout a growing season in a fluctuating pattern (Melito et al. 2015), it is 

possible for blue orchard bees foraging berry agro-ecosystems to come into contact with 

insecticides as we have simulated in our laboratory bioassays. Testing the acute contact toxicity 

of the insecticides we used in this study at field realistic rates for berry crops to blue orchard bees 

should be investigated in future studies. 

Some preliminary work has demonstrated the toxicity of the premix insecticides we 

tested on honey bees. Examining impact of spray exposure to honey bees, Zhu et al. (2015) 

demonstrated high toxicity by means of low LD50 values at 48-hours after administration. 
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However, to our knowledge, no data exists regarding the acute contact toxicity of these premix 

insecticides to blue orchard bees, and particularly for an extended period (up to 96-hours after 

application). The slower onset of male and female mortality for bees exposed to 

chlorantraniliprole + lambda-cyhalothrin and methoxyfenozide + spinetoram in our study 

highlights the importance of extended mortality observation. 

Additionally, most research on insecticide contact toxicity to bees has focused on 

technical grade individual active ingredients dissolved in acetone. This approach does not assess 

the impact of ‘inert’ or ‘inactive’ ingredients within formulated insecticides on bees. Addressing 

this variable is important given preliminary results as in Mullin (2015) showing the toxicity of 

‘inert’ ingredients to bees. Although honey bees have been the subject of most bee toxicity work 

(including that of Mullin 2015), accounting for technical versus formulated products is an 

important variable that should be incorporated into studies of insecticide toxicity to blue orchard 

bees and other non-Apis bees. Moreover, honey bees cannot serve as a surrogate species for other 

bee species given differences in response between Apis and non-Apis bees following insecticide 

exposure (Biddinger et al. 2013; Rundlöf et al. 2015). While using technical grade insecticides 

allows for a true analysis of active ingredient toxicity, they use may pose an increased risk to 

bees due to the higher percentages of active ingredients they contain compared to formulated 

products. Acetone solvents may also increase toxicity by burning through the bee cuticle and 

thereby increasing the quantity of insecticide that the bee absorbs. Therefore, side-by-side 

analysis of both technical grade and formulated products should be conducted in comparisons 

between honey bees and non-Apis bees to accurately gauge insecticide risk to non-Apis bees. 

Previous studies have demonstrated the toxicity of individual active ingredient 

insecticides to commercially managed Osmia species bees. Given that less studies have been 
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conducted on Osmia species bees (compared to honey bees) variations in study design for current 

data exist. For example, the most realistic studies have been conducted in field settings, while 

others in laboratory settings have used either formulated products or technical grade products 

dissolved in water. Assessing the effects of neonicotinoids in different countries on O. bicornis, 

Woodcock et al. (2017) found a negative correlation between egg cell production and combined 

nest residues of imidacloprid + thiamethoxam + clothianidin. Oral consumption of sugar water 

laced with field-realistic amounts of thiamethoxam (2.87 µg/kg) resulted in decreased O. 

bicornis reproduction characterized by increased mortality and male-biased sex ratios (Sandrock 

et al. 2014). O. cornifrons contact exposure to formulated lambda-cyhalothrin dissolved in water 

demonstrated significantly higher toxicity compared to imidacloprid, acetamiprid and phosmet at 

LD50, and significantly increased susceptibility at LD90 (Biddinger et al. 2013). Since LD90 

represents the lethal dose that kills 90% of the bees, this finding of increased O. cornifrons 

susceptibility at LD90 is meaningful. Dosing blue orchard bee larval provisions with technical 

grade imidacloprid dissolved in water, Abbott et al. (2008) observed prolonged development and 

cocoon spinning times for larvae exposed to higher doses (30-300 ppm), however no lethal 

effects were detected. Placing O. bicornis adjacent to clothianidin + beta-cyfluthrin seed-coated 

fields decreased nest construction and provisioning (Rundlöf et al. 2015). Conversely, in 

conducting a similar study exposing O. bicornis to clothianidin + beta-cyfluthrin Peters et al. 

(2016) concluded no negative impacts as a result of high reproduction and low parasitism levels. 

Similarly, Ruddle et al. (2018) found no effects of exposure to oilseed rape grown from 

thiamethoxam-treated seeds on O. bicornis nest production and cell provisioning through adult 

emergence. Analyzing different routes of solitary bee pesticide exposure, Kopit and Pitts-Singer 



 

 141 

(2018) mention that anthranilic diamides such as chlorantraniliprole are long-lasting in soil and 

therefore might be present in mud obtained by Osmia species bees for nest construction. 

Conclusion 

The results of this study demonstrate the high toxicity of formulated premix insecticides 

and their individual active ingredients to blue orchard bees. Our finding of differences in male 

versus female mortality should also be further explored. Work investigating the physiological 

and metabolic basis for blue orchard bee insecticide detoxification over an extended period is 

warranted. A future study might expose blue orchard bees to both insecticides and detoxification 

enzyme inhibitors to assess the impact of these enzymes on blue orchard bee tolerance or 

susceptibility of different agricultural chemicals. A study of this fashion would be similar to the 

work of Johnson et al. (2006) showing the importance of cytochrome P450 monooxygenases in 

honey bee detoxification of pyrethroids. 

While our study begins to address questions related to the acute toxicity of formulated 

premix insecticides to blue orchard bees, several important aspects warrant further investigation. 

An analysis of oral acute toxicity of the premix insecticides we tested (and if possible their 

individual active ingredients) would be the next logical step. Assessment of residual blue orchard 

bee exposure to these chemicals is warranted, especially in cases where insecticide residues in 

orchards sprayed before bloom linger and subsequently pose toxicity to bees foraging flower 

blossoms. Testing insecticide toxicity to immatures (eggs, larvae and pupae) including contact 

and oral exposure from their food provisions will further strengthen risk assessment protocols. 

As previously mentioned, generating this data for blue orchard bees will aid our ability to 

correctly assess the effects of insecticide exposure on other non-Apis bee species. 
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Finally, future work should analyze sub-lethal and chronic insecticide toxicity to blue 

orchards bees. Specifically, it would be interesting to observe if exposure to smaller doses of the 

premix insecticides we tested negatively impairs normal behaviors of this bee species. It is 

critical to determine if contact exposure to these insecticides impairs male and female blue 

orchard bee’s ability to collect pollen and nectar, female egg oviposition, nest provisioning and 

proper development of immature brood into adult bees. 
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Tables 

Table 3.1: Active ingredients and modes of action of formulated premix insecticides assessed for 
acute contact toxicity to adult male (experiment 1) and female blue orchard bees (experiment 2). 

Treatment Formulation Active 
Ingredient(s) 

Mode of Action 
1st Insecticide* 

Mode of 
Action 2nd 

Insecticide* 
Manufacturer 

A Control 
  

  

B Endigo ZC® Thiamethoxam 
(12.6%) + 
Lambda-
cyhalothrin 
(9.48%) 

Thiamethoxam 
-Nicotinic 
acetylcholine 
receptor (nAChR) 
competitive 
modulator 

Lambda-
cyhalothrin 
-Sodium 
channel 
modulator 

Syngenta Crop 
Protection, LLC 
Greensboro, NC 

C Leverage 
360® 

Imidacloprid 
(21.0%) + Beta 
cyfluthrin 
(10.5%) 

Imidacloprid 
-Nicotinic 
acetylcholine 
receptor (nAChR) 
competitive 
modulator 

Beta-
cyfluthrin 
-Sodium 
channel 
modulator 

BayerCropScienc
e LP 
Research Triangle 
Park, NC 

D Besiege® Chlorantranilipr
ole (9.26%) + 
Lambda-
cyhalothrin 
(4.63%) 

Chlorantraniliprol
e 
-Ryanodine 
receptor 
modulator 

Lambda-
cyhalothrin 
-Sodium 
channel 
modulator 

Syngenta Crop 
Protection, LLC 
Greensboro, NC 

E Intrepid 
Edge® 

Methoxyfenozid
e (28.3%) + 
Spinetoram 
(5.66%) 

Methoxyfenozide 
-Ecdysone 
receptor agonist 
(molt accelerating 
compound) 

Spinetoram 
-Nicotinic 
acetylcholine 
receptor 
(nAChR) 
allosteric 
modulator 

Dow 
AgroSciences 
LLC 
Indianapolis, IN 

*Active ingredient modes of action were confirmed with the IRAC Mode of Action 
Classification Scheme version 8.4 (www.irac-online.org) and the Compendium of Pesticide 
Common Names: Insecticides (http://www.alanwood.net/pesticides/class_insecticides.html). 
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Table 3.2: Application rates administered, highest recommended application rates, and active 
ingredient concentrations of formulated premix insecticides assessed for acute contact toxicity to 
adult male (experiment 1) and female (experiment 2) blue orchard bees. 

Treatment Active 
Ingredient(s) 

Application 
Rate 

Administered 
(mL/Ha) 

Highest Application 
Rate on Label 

(mL/Ha)* 

AI Concentration (ppm) 
in Formulated Product 

(per L) 

 

A Control 
 

   

B Thiamethoxam 
(12.6%) + 
Lambda-
cyhalothrin 
(9.48%) 

401.76 438.28 Thiamethoxam = 120 

Lambda-cyhalothrin = 91 

 

C Imidacloprid 
(21.0%) + Beta 
cyfluthrin (10.5%) 

189.92 204.53 Imidacloprid = 98 

Beta-cyfluthrin = 49 

 

D Chlorantraniliprole 
(9.26%) + 
Lambda-
cyhalothrin 
(4.63%) 

657.42 876.56 Chlorantraniliprole = 56 

Lambda-cyhalothrin = 28 

 

E Methoxyfenozide 
(28.3%) + 
Spinetoram 
(5.66%) 

657.42 876.56 Methoxyfenozide = 140 

Spinetoram = 28 

 

*Highest recommended application rate for orchard crops listed on the EPA regulated insecticide 
label for each respective insecticide. 
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Table 3.3: Active ingredients and modes of action of individual active ingredient insecticides 
assessed for acute contact toxicity to adult male (experiment 3) and female blue orchard bees 
(experiment 4). 

Treatment Formulation Active Ingredient Insecticide Mode of Action* Manufacturer 
A Control 

  
 

B Admire Pro® Imidacloprid 
(42.8%) 

Imidacloprid 
-Nicotinic acetylcholine 
receptor (nAChR) competitive 
modulator 

BayerCropScience LP 
Research Triangle 
Park, NC 

C Baythroid 
XL® 

Beta-cyfluthrin 
(12.7%) 

Beta-cyfluthrin 
-Sodium channel modulator 

BayerCropScience LP 
Research Triangle 
Park, NC 

D Admire Pro® 
+ Baythroid 
XL® 

Imidacloprid + 
Beta-cyfluthrin 

 
 

*Active ingredient modes of action were confirmed with the IRAC Mode of Action 
Classification Scheme version 8.4 (www.irac-online.org) and the Compendium of Pesticide 
Common Names: Insecticides (http://www.alanwood.net/pesticides/class_insecticides.html). 

Table 3.4: Application rates administered, highest recommended application rates, and active 
ingredient concentrations of individual active ingredient insecticides assessed for acute contact 
toxicity to adult male (experiment 3) and female (experiment 4) blue orchard bees. 

Treatment Active 
Ingredient 

Application Rate 
Administered 

(mL/Ha)* 

Highest Application 
Rate on Label 

(mL/Ha)* 

AI Concentration (ppm) 
in Formulated Product 

(per L) 
A Control    

B Imidacloprid 
(42.8%) 

102.27 204.53 Imidacloprid = 120 

C Beta-cyfluthrin 
(12.7%) 

102.27 204.53 Beta-cyfluthrin = 26 

D Imidacloprid + 
Beta-cyfluthrin 

   

*Highest recommended application rate for orchard crops listed on the EPA regulated insecticide 
label for each respective insecticide. 
  



 

 146 

Figures 

Figure 3.1: Male Blue Orchard Bee Acute Contact Toxicity Following Spray-Only 
Exposure to Premix Insecticides: Male blue orchard bee mean, 1st and 3rd quartile percent 
mortality following spray-only contact exposure to each insecticide mixture (experiment 1) at 24, 
48, 72 and 96-hours. Data on the x-axis indicate each insecticide treatment, and data the y-axis 
indicate percent mortality. Insecticide treatments: B = thiamethoxam + lambda-cyhalothrin, C = 
imidacloprid + beta-cyfluthrin, D = chlorantraniliprole + lambda-cyhalothrin, E = 
methoxyfenozide + spinetoram. All cages in a treatment containing the respective percent 
mortality are represented by a single green point. Letters (b, c, d) indicate significant difference 
at *p<0.05 (pairwise comparison). 
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Figure 3.2: Female Blue Orchard Bee Acute Contact Toxicity Following Spray-Only 
Exposure to Premix Insecticides: Female blue orchard bee mean, 1st and 3rd quartile percent 
mortality following spray-only contact exposure to each insecticide mixture (experiment 2) at 24, 
48, 72 and 96-hours. Data on the x-axis indicate each insecticide treatment, and data the y-axis 
indicate percent mortality. Insecticide treatments: B = thiamethoxam + lambda-cyhalothrin, C = 
imidacloprid + beta-cyfluthrin, D = chlorantraniliprole + lambda-cyhalothrin, E = 
methoxyfenozide + spinetoram. All cages in a treatment containing the respective percent 
mortality are represented by a single green point. Letters (b, c, d) indicate significant difference 
at *p<0.05 (pairwise comparison). 
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Figure 3.3: Male Blue Orchard Bee Acute Contact Toxicity Following Spray-Only 
Exposure to Individual Active Ingredient Insecticides and their 1:1 Binary Combination: 
Male blue orchard bee mean, 1st and 3rd quartile percent mortality following spray-only contact 
exposure to each individual active ingredient insecticide (experiment 3) at 24 and 48-hours. Data 
on the x-axis indicate each insecticide treatment, and data the y-axis indicate percent mortality. 
Insecticide treatments: B = imidacloprid, C = beta-cyfluthrin, D = imidacloprid + beta-cyfluthrin. 
All cages in a treatment containing the respective percent mortality are represented by a single 
green point. Significant difference at *p<0.05 (pairwise comparison) is indicated by different 
letters (b, c). 
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Figure 3.4: Female Blue Orchard Bee Acute Contact Toxicity Following Spray-Only 
Exposure to Individual Active Ingredient Insecticides and their 1:1 Binary Combination: 
Female blue orchard bee mean, 1st and 3rd quartile percent mortality following spray-only contact 
exposure to each individual active ingredient insecticide (experiment 3) at 24 and 48-hours. Data 
on the x-axis indicate each insecticide treatment, and data the y-axis indicate percent mortality. 
Insecticide treatments: B = imidacloprid, C = beta-cyfluthrin, D = imidacloprid + beta-cyfluthrin. 
All cages in a treatment containing the respective percent mortality are represented by a single 
green point. Significant difference at *p<0.05 (pairwise comparison) is indicated by different 
letters (b, c). 
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Appendices 

Appendix 3.1: Male Blue Orchard Bee Acute Contact Toxicity Following Spray-Only 
Exposure to Premix Insecticides: One-way ANOVA test of statistical significance between 
male blue orchard bee mortality following exposure to each insecticide treatment and Tukey 
HSD post-hoc test of statistical difference between treatments on male blue orchard bee 
mortality. Statistical significance at *p<0.05. 

One-way ANOVA test: 24-hour mortality screening 

  DF Sum Sq.  Mean Sq. F Value Pr(>F) 
Treatment 3 0.36872 0.122905 18.059 2.39E-06 
Residuals 24 0.16333 0.006806     

 

Tukey HSD post-hoc test: 24-hour mortality screening 

Contrast Estimate SE DF t-ratio p-value 
B - C  -0.0146617 0.04409593 24 -0.332 0.987 
B - D 0.17799173 0.04409593 24 4.036 0.0025 
B - E 0.25333976 0.04409593 24 5.745 <.0001 
C - D 0.19265344 0.04409593 24 4.369 0.0011 
C - E 0.26800148 0.04409593 24 6.078 <.0001 
D - E 0.07534803 0.04409593 24 1.709 0.3412 

 

One-way ANOVA test: 48-hour mortality screening 

  DF Sum Sq.  Mean Sq. F Value Pr(>F) 
Treatment 3 2.11602 0.70534 48.053 2.68E-10 
Residuals 24 0.35228 0.01468     

 

Tukey HSD post-hoc test: 48-hour mortality screening 

Contrast Estimate SE DF t-ratio p-value 
B - C  -0.007997 0.0647598 24 -0.123 0.9993 
B - D 0.43160957 0.0647598 24 6.665 <.0001 
B - E 0.62528889 0.0647598 24 9.656 <.0001 
C - D 0.43960655 0.0647598 24 6.788 <.0001 
C - E 0.63328588 0.0647598 24 9.779 <.0001 
D - E 0.19367933 0.0647598 24 2.991 0.0301 
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One-way ANOVA test: 72-hour mortality screening 
  DF Sum Sq.  Mean Sq. F Value Pr(>F) 
Treatment 3 4.5158 1.50528 35.37 5.70E-09 
Residuals 24 1.0214 0.04256     

 

Tukey HSD post-hoc test: 72-hour mortality screening 

Contrast Estimate SE DF t-ratio p-value 
B - C  -2.18E-16 0.1102699 24 0 1 
B - D 2.71E-01 0.1102699 24 2.462 0.0921 
B - E 9.82E-01 0.1102699 24 8.905 <.0001 
C - D 2.71E-01 0.1102699 24 2.462 0.0921 
C - E 9.82E-01 0.1102699 24 8.905 <.0001 
D - E 7.10E-01 0.1102699 24 6.443 <.0001 

 

One-way ANOVA test: 96-hour mortality screening 

  DF Sum Sq.  Mean Sq. F Value Pr(>F) 
Treatment 3 1.9323 0.64411 12.824 3.35E-05 
Residuals 24 1.2055 0.05023     

 

Tukey HSD post-hoc test: 96-hour mortality screening 

Contrast Estimate SE DF t-ratio p-value 
B - C  -5.21E-16 0.1197947 24 0 1 
B - D -6.17E-16 0.1197947 24 0 1 
B - E 6.07E-01 0.1197947 24 5.064 0.0002 
C - D -9.62E-17 0.1197947 24 0 1 
C - E 6.07E-01 0.1197947 24 5.064 0.0002 
D - E 6.07E-01 0.1197947 24 5.064 0.0002 
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Appendix 3.2: Female Blue Orchard Bee Acute Contact Toxicity Following Spray-Only 
Exposure to Premix Insecticides: One-way ANOVA test of statistical significance between 
female blue orchard bee mortality following exposure to each insecticide treatment and Tukey 
HSD post-hoc test of statistical difference between treatments on female blue orchard bee 
mortality. Statistical significance at *p<0.05. 

One-way ANOVA test: 24-hour mortality screening 

  DF Sum Sq.  Mean Sq. F Value Pr(>F) 
Treatment 3 0.845 0.281667 14.859 2.55E-05 
Residuals 20 0.37911 0.018956     

 

Tukey HSD post-hoc test: 24-hour mortality screening 

Contrast Estimate SE DF t-ratio p-value 
B - C  -0.0502346 0.07948911 20 -0.632 0.9205 
B - D 0.0469591 0.07948911 20 0.591 0.9337 
B - E 0.42491062 0.07948911 20 5.346 0.0002 
C - D 0.09719369 0.07948911 20 1.223 0.6202 
C - E 0.47514521 0.07948911 20 5.977 <.0001 
D - E 0.37795152 0.07948911 20 4.755 0.0006 

 

One-way ANOVA test: 48-hour mortality screening 

  DF Sum Sq.  Mean Sq. F Value Pr(>F) 
Treatment 3 2.84269 0.94756 22.135 1.45E-06 
Residuals 20 0.85616 0.04281     

 

Tukey HSD post-hoc test: 48-hour mortality screening 

Contrast Estimate SE DF t-ratio p-value 
B - C  -0.1452337 0.1194542 20 -1.216 0.6244 
B - D 0.2989819 0.1194542 20 2.503 0.09 
B - E 0.7547433 0.1194542 20 6.318 <.0001 
C - D 0.4442156 0.1194542 20 3.719 0.0068 
C - E 0.899977 0.1194542 20 7.534 <.0001 
D - E 0.4557614 0.1194542 20 3.815 0.0055 
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One-way ANOVA test: 72-hour mortality screening 

  DF Sum Sq.  Mean Sq. F Value Pr(>F) 
Treatment 3 2.16541 0.7218 14.869 2.53E-05 
Residuals 20 0.97088 0.04854     

 

Tukey HSD post-hoc test: 72-hour mortality screening 

Contrast Estimate SE DF t-ratio p-value 
B - C  0.09761426 0.1272057 20 0.767 0.8681 
B - D 0.10725019 0.1272057 20 0.843 0.8333 
B - E 0.75517576 0.1272057 20 5.937 <.0001 
C - D 0.00963593 0.1272057 20 0.076 0.9998 
C - E 0.6575615 0.1272057 20 5.169 0.0003 
D - E 0.64792557 0.1272057 20 5.094 0.0003 

 

One-way ANOVA test: 96-hour mortality screening 

  DF Sum Sq.  Mean Sq. F Value Pr(>F) 
Treatment 3 0.10748 0.035828 1 4.13E-01 
Residuals 20 0.71656 0.035828     

 

Tukey HSD post-hoc test: 96-hour mortality screening 

Contrast Estimate SE DF t-ratio p-value 
B - C  6.22E-16 0.1092828 20 0 1 
B - D 6.11E-16 0.1092828 20 0 1 
B - E 1.55E-01 0.1092828 20 1.414 0.5054 
C - D -1.16E-17 0.1092828 20 0 1 
C - E 1.55E-01 0.1092828 20 1.414 0.5054 
D - E 1.55E-01 0.1092828 20 1.414 0.5054 
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Appendix 3.3: Male Blue Orchard Bee Acute Contact Toxicity Following Spray-Only 
Exposure to Individual Active Ingredient Insecticides and their 1:1 Binary Combination: 
One-way ANOVA test of statistical significance between male blue orchard bee mortality 
following exposure to each insecticide treatment and Tukey HSD post-hoc test of statistical 
difference between treatments on male blue orchard bee mortality. Statistical significance at 
*p<0.05. 

One-way ANOVA test: 24-hour mortality screening 

  DF Sum Sq.  Mean Sq. F Value Pr(>F) 
Treatment 2 0.92329 0.46165 13.098 5.12E-04 
Residuals 15 0.5287 0.03525     

 

Tukey HSD post-hoc test: 24-hour mortality screening 

Contrast Estimate SE DF t-ratio p-value 
B - C  0.08633774 0.108392 15 0.797 0.7108 
B - D -0.4314184 0.108392 15 -3.98 0.0033 
C - D -0.5177561 0.108392 15 -4.777 0.0007 

 

One-way ANOVA test: 48-hour mortality screening 

  DF Sum Sq.  Mean Sq. F Value Pr(>F) 
Treatment 2 9.86E-32 4.93E-32 1 3.91E-01 
Residuals 15 7.40E-31 4.93E-32     

 

Tukey HSD post-hoc test: 48-hour mortality screening 

Contrast Estimate SE DF t-ratio p-value 
B - C  1.57E-16 1.28E-16 15 1.225 0.4574 
B - D 1.57E-16 1.28E-16 15 1.225 0.4574 
C - D -7.40E-32 1.28E-16 15 0 1 
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Appendix 3.4: Female Blue Orchard Bee Acute Contact Toxicity Following Spray-Only 
Exposure to Individual Active Ingredient Insecticides and their 1:1 Binary Combination: 
One-way ANOVA test of statistical significance between female blue orchard bee mortality 
following exposure to each insecticide treatment and Tukey HSD post-hoc test of statistical 
difference between treatments on female blue orchard bee mortality. Statistical significance at 
*p<0.05. 

One-way ANOVA test: 24-hour mortality screening 

  DF Sum Sq.  Mean Sq. F Value Pr(>F) 
Treatment 2 1.157 0.5785 6.3879 9.84E-03 
Residuals 15 1.3584 0.09056     

 

Tukey HSD post-hoc test: 24-hour mortality screening 

Contrast Estimate SE DF t-ratio p-value 
B - C  -0.1454746 0.1737444 15 -0.837 0.6864 
B - D -0.5955922 0.1737444 15 -3.428 0.0098 
C - D -0.4501175 0.1737444 15 -2.591 0.0506 

 

One-way ANOVA test: 48-hour mortality screening 

  DF Sum Sq.  Mean Sq. F Value Pr(>F) 
Treatment 2 2.7522 1.37609 11.266 1.03E-03 
Residuals 15 1.8322 0.12215     

 

Tukey HSD post-hoc test: 48-hour mortality screening 

Contrast Estimate SE DF t-ratio p-value 
B - C  -0.5291339 0.2017821 15 -2.622 0.0477 
B - D -0.9559852 0.2017821 15 -4.738 0.0007 
C - D -0.4268513 0.2017821 15 -2.115 0.1202 
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One-way ANOVA test: 72-hour mortality screening 

  DF Sum Sq.  Mean Sq. F Value Pr(>F) 
Treatment 2 2.2851 1.14257 10.972 1.16E-03 
Residuals 15 1.5621 0.10414     

 

Tukey HSD post-hoc test: 72-hour mortality screening 

Contrast Estimate SE DF t-ratio p-value 
B - C  -0.6493343 0.186315 15 -3.485 0.0088 
B - D -0.8297008 0.186315 15 -4.453 0.0013 
C - D -0.1803665 0.186315 15 -0.968 0.6073 

 

One-way ANOVA test: 96-hour mortality screening 

  DF Sum Sq.  Mean Sq. F Value Pr(>F) 
Treatment 2 1.5923 0.79615 8.2398 3.85E-03 
Residuals 15 1.4493 0.09662     

 

Tukey HSD post-hoc test: 96-hour mortality screening 

Contrast Estimate SE DF t-ratio p-value 
B - C  -6.31E-01 0.1794653 15 -3.516 0.0083 
B - D -6.31E-01 0.1794653 15 -3.516 0.0083 
C - D 2.22E-16 0.1794653 15 0 1 
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The goal of our research was to expand upon previous work investigating the 

ecotoxicology of insecticides commonly used in agro-ecosystems to Apis and non-Apis bees. 

Implementation of the Food Quality Protection Act of 1996 combined with increased arthropod 

pest pressures, invasive species, and subsequent resistance buildup have spurred the development 

of a new generation of insecticide chemistries. These insecticides are specifically designed to aid 

growers in maintaining agricultural insect pests at tolerable levels. Neonicotinoids (which 

function as nicotinic acetylcholine receptor agonists) are among this new generation of 

insecticides. Premix insecticides containing multiple active ingredients (each with a different 

mode of action; some of which are neonicotinoids) are newly registered insecticides that are 

currently used in a variety of agro-ecosystems. Bees commonly forage agricultural settings in 

which these premix insecticides are applied, therefore a thorough assessment of the hazards they 

pose to bees and other pollinators is warranted. Although contact toxicity following exposure to 

premix insecticides has been preliminarily explored in adult honey bee workers, to our 

knowledge, no detail analysis comparing honey bees to non-Apis bees that tests various realistic 

exposure scenarios has been published. 

To fill this gap in bee toxicology, we assessed the acute contact toxicity following whole 

body contact exposure to four premix insecticides for honey bee foragers and male and female 

blue orchard bees. Honey bees were exposed to insecticides in a laboratory setting simulating 

three possible field-realistic scenarios: (1) when bees continuously forage in a crop field, and are 

directly exposed to insecticides while they are applied in that crop field; (2) when bees are 

exposed to insecticide applications while passing through a crop field; and (3) when bees are 

foraging in a crop field where insecticides were applied during the previous day. Using a similar 

experimental design, we assessed the relative toxicity of different insecticides to blue orchard 
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bees in a laboratory setting simulating two possible field-realistic scenarios: (1) the four premix 

insecticides and (2) individual active ingredients (and their 1:1 binary combination) comprising 

one of the premix insecticides tested. Male and female blue orchard bees were tested separately 

in each scenario therefore we conducted a total of four experiments on this bee. 

For all three honey bee experiments, we observed statistical significance between 

treatments at all screening periods, except for residual toxicity at the 48-hour observation (due to 

the complete mortality observed in this experiment at this time frame). We found that exposure 

to thiamethoxam + lambda-cyhalothrin and imidacloprid + beta-cyfluthrin posed the highest 

toxicity and induced a rapid onset of mortality. We attribute this result to the combined 

neonicotinoid and pyrethroid active ingredients in both of these insecticide mixtures. However, 

the pyrethroid chemistries, which are sodium channel modulators probably accentuated this 

response given their characteristic fast knockdown. These results are suggestive of an additive or 

synergistic toxicity arising from exposure to the combination of both active ingredients. 

Conversely, contact exposure to chlorantraniliprole + lambda-cyhalothrin and methoxyfenozide 

+ spinetoram induced a more gradual onset of mortality. However, by extended observation (96-

hours) honey bee mortality was close to complete. Considering insecticide mode of action, we 

attribute the higher mortality in chlorantraniliprole + lambda-cyhalothrin to the presence of a 

pyrethroid. Oral consumption of chlorantraniliprole has also been found to interfere with bumble 

bee feeding, so it is possible that a similar effect might have inhibited honey bee feeding in our 

bioassays. Overall, we found that methoxyfenozide + spinetoram posed the lowest toxicity to 

honey bees, which we attribute to the lack of a pyrethroid. This result on adult Hymenopterans is 

not entirely surprising given the presence of methoxyfenozide, which is a narrow-spectrum 

ecdysone receptor agonist intended for immature Lepidopterans. Secondarily, the relatively 
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benign toxicity of methoxyfenozide and spinetoram to bumble bees has been demonstrated in 

recent literature, so it is plausible that these insecticides also pose low risk to honey bees. 

However, more research is needed to confirm the low toxicity of these insecticides to honey 

bees. 

Our finding of complete honey bee mortality at 48-hours for residual exposure might in 

part have been influenced by several variables. First, we sprayed cages with double the volume 

of insecticide to ensure complete coverage. Second, we collected honey bees from hives in high 

temperature and humidity conditions. Therefore, the high humidity in cage environments while 

still in the field might have increased the energetic stress placed on honey bees. Also, we believe 

that the humid conditions liquified the dried insecticide residues within cages. Third, we 

observed honey bee proboscis extension after being placed in cages, so it is possible that bees 

obtained both oral and contact exposure to insecticides. 

For all four blue orchard bee experiments, resulting mortality was statistically significant 

between treatments at all screening periods except for female premix exposure at 96-hours and 

male individual active ingredient exposure at 48-hours given complete mortality in all 

treatments. For the premix insecticide exposure scenario, we found that thiamethoxam + lambda-

cyhalothrin and imidacloprid + beta-cyfluthrin were the most toxic and resulted in a rapid onset 

of mortality. We observed quick knockdown characterized by trembling and an incapacity to fly 

for both male and female blue orchard bees within 25 minutes of treatment. As with honey bees, 

we primarily attribute these results to the combination of neonicotinoid and pyrethroid 

chemistries, but with an emphasis on the pyrethroids given their characteristic knockdown. 

Similar to honey bees, male and female blue orchard bees exposed to chlorantraniliprole 

+ lambda-cyhalothrin and methoxyfenozide + spinetoram had a slower onset of mortality. As 
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with honey bees, high mortality was observed for these treatments at extended observation (96-

hours) in blue orchard bees. Interestingly, we observed that blue orchard bees exposed to 

chlorantraniliprole + lambda-cyhalothrin had similar mortality levels to those exposed to 

thiamethoxam + lambda-cyhalothrin and imidacloprid + beta-cyfluthrin treatments at extended 

observation. We noticed some knockdown activity at 24-hours for this treatment, which we 

attribute to the presence of a pyrethroid active ingredient. However, knockdown in this treatment 

was less pronounced than that observed for bees exposed to thiamethoxam + lambda-cyhalothrin 

and imidacloprid + beta-cyfluthrin. Conversely, we did not observe knockdown activity for blue 

orchard bees treated with methoxyfenozide + spinetoram, which we attribute to the lack of a 

pyrethroid active ingredient. 

Male and female blue orchard bee whole body contact exposure exposure to 

imidacloprid, beta-cylfuthrin and their 1:1 binary combination resulted in overall high mortality. 

We observed complete mortality for males at 48-hours post treatment, and for females at 96-

hours. At 24-hours, male and females displayed trembling behaviors in their wings, legs and 

antennae, thereby suggesting knockdown activity. As before, we primarily attribute this behavior 

to the presence of a pyrethroid. Interestingly, females exposed to imidacloprid also displayed 

trembling behaviors at 24-hours, indicating that exposure to this neonicotinoid might cause 

similar sub-lethal toxicity. Blue orchard bees treated with the 1:1 binary combination had 

statistically higher mortality, thereby futher supporting that an interaction occurs between these 

two insecticides that increases the toxicity of their combination. However, the higher proportion 

of active ingredient concentration in the individual active ingredients, compared to that in the 

premix insecticides might in part explain this result. 

Our results support the evaluation of several current regulatory guidelines for assessing 
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the toxicity of insecticides to bees. First, requiring extended mortality observation will account 

for insecticides that result in high bee mortality, but at a slower rate, as we have demonstrated. 

Second, mandating simultaneous testing of both technical grade insecticides dissolved in acetone 

and formulated insecticides dissolved in water allows for an independent evaluation of the 

impact of active ingredient and ‘inert’ products on bees. Third, requiring separate testing of Apis 

and non-Apis bees enables a more realistic assessment of toxicity assessment that accounts for 

differences in biology between bee species. Fourth, placing more emphasis on examining the 

impacts of dried insecticide residues on Apis and non-Apis bees will aid in determining 

appropriate times to apply insecticides to different crops that bees forage. This information will 

also help us determine the correct time to remove or otherwise protect beehives or nests from 

agro-ecosystems in advance of insecticide application and the appropriate time to replace them. 

Future studies should build upon our work on honey bees and blue orchard bees by 

specifically testing multiple insecticide doses to generate dose mortality curves. This analysis 

will enable determination of additive or synergistic toxicity arising from the combination of 

insecticide chemistries in premixes by testing the hypothesis of parallel or equal slopes. A more 

robust analysis of more insecticides and the individual active ingredients and their 1:1 binary 

combination (that tests single active ingredients containing the same percentage of active 

ingredient as the premixes) is warranted. Finally, an analysis of acute oral toxicity and sub-lethal 

toxicity of these insecticides to Apis and non-Apis bees would enhance our understanding of the 

effect of these insecticides for risk assessment. 
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