Influence of Loss of Function of the Fatty Acid Desaturase 7 Gene on Photosynthetic Activity and Foliar Redox Status

Janithri Savindya Wickramanayake

University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/etd

Part of the Agronomy and Crop Sciences Commons, Botany Commons, Entomology Commons, Plant Biology Commons, and the Plant Breeding and Genetics Commons

Recommended Citation

Wickramanayake, Janithri Savindya, "Influence of Loss of Function of the Fatty Acid Desaturase 7 Gene on Photosynthetic Activity and Foliar Redox Status" (2018). Theses and Dissertations. 3109.

https://scholarworks.uark.edu/etd/3109

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu, ccmiddle@uark.edu.
Influence of Loss of Function of the *Fatty Acid Desaturase 7* Gene on Photosynthetic Activity and Foliar Redox Status

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Entomology

by

Janithri Wickramanayake
University of New England
Bachelor of Science in Biological Sciences, 2014

December 2018
University of Arkansas

This dissertation is approved for recommendation to the Graduate Council.

Fiona L. Goggin, Ph.D.
Dissertation Director

Robert Wiedenmann, Ph.D. Donn Johnson, Ph.D.
Committee Member Committee Member

Vibha Srivastava, Ph.D. Kenneth Korth, Ph.D.
Committee Member Committee Member
Abstract

Fatty Acid Desaturase7 (FAD7) is a chloroplast-localized enzyme that converts 16 and 18 carbon dienoic fatty acids to trienoic fatty acids. The suppressor of prosystemin-mediated response2 (spr2) mutant in tomato (Solanum lycopersicum) and the fad7-1 mutant in Arabidopsis (Arabidopsis thaliana) result in the loss of function of FAD7, which alter the fatty acid profiles of chloroplast membranes and enhance resistance against aphids. This research contributes toward the long-term goal of identifying factors that determine aphid resistance in FAD7 mutants. Previous data suggested constitutive differences between spr2 and WT including increased expression of genes associated with photosynthesis and differences in redox status in chloroplasts suggested by lipid profiles. The objective of this study was to validate these previous data. This study reports that the spr2 mutant enhances photosynthetic efficiency constitutively compared to wild-type (WT) plants. While no constitutive differences in intermediates and products of photosynthesis were detected, the spr2 mutants showed increased growth, suggesting increased photosynthesis may be translated in to growth. Moreover, glutamate levels were constitutively higher in spr2 compared to WT and could be important in defense signaling for aphid resistance. Also, the spr2 mutants were able to maintain the enhanced photosynthesis under potato aphid (Macrosiphum lycopersicum) pressure. One-day after aphid infestation, aphids triggered a short-term increase in the energy directed towards photosynthesis. The enhanced photosynthesis could also be channeling energy towards defense compound production for the resistance mechanism or could be the plant adapting to adverse environmental stress, indicative of tolerance. Furthermore, to study the redox status in chloroplasts, Arabidopsis fad7-1 lines containing roGFP2 transgene were developed as a useful tool. Preliminary results indicated the fad7-1 mutant is as or more reduced than WT (Col-0), but further studies are
needed to confirm this. The redox status depends on the relative balance between reactive oxygen species (ROS) and antioxidants. The plants could potentially have more ROS due to enhanced photosynthesis, but they could also have more antioxidants. Further work is necessary to detect individual ROS species. This study aids in identifying potential links between primary metabolism and plant defenses against insects.
Acknowledgements

First, I would like to express my sincere gratitude to my dissertation advisor, Dr. Fiona Goggin, who paved my way for a successful completion of my research and dissertation. Without her guidance, academic and financial support, completion of my Ph.D. studies and the dissertation at University of Arkansas would not have been possible. Appreciation is also due to my committee members, Dr. Robert Wiedenmann, Dr. Donn Johnson, Dr. Ken Korth and Dr. Vibha Srivastava for their guidance, which helped me to improve my research focus and critical thinking skills. I also appreciate the help I received from Dr. Jung Ae Lee in completion of the statistical analyses related to my dissertation work, and Jessica Kivett for her help with the maintenance of the greenhouse and growth chambers. In addition, I would like to thank my wonderful lab members Dr. Aravind Galla, Dr. Jiamei Li, Dr. Junhuan Xu, Dr. Min Woo Lee, Hillary Fischer, Dhaval Shah, Mali Sirisena and Abeer Muhammedali Jasim Al-Nasrawi for their help in completing my research. Also, I would like to acknowledge the academic and financial support I received from the Department of Entomology and the Division of Agriculture during the past four years.

Special thanks go to Dr. Ursula Roese for providing me the research experience in her lab and for recognizing my potential to continue my education beyond my undergraduate studies at University of New England. Also, I would like to thank my friends Hillary, Rose, Tara, Zach, Liese and Kyle for standing by me through the good times and bad. I am grateful to fellow graduate students and faculty of the Department of Entomology for the camaraderie and providing me a supportive learning environment. I should also mention my fiancé, Dinuka Gunasekara and my aunt, Darshana Udayanganie for all of their support, humor and words of encouragement that helped me to get through the past years.
Finally, I would like to thank my family. My father and brother lived thousands of miles away from me in the past eight years, but they did not stop believing in me and supported me in every possible way. Special acknowledgement goes to my late mother. Her courage in accomplishing her life goals inspired me throughout my life and her words of encouragement still echoes in my mind.
Dedication

This dissertation is dedicated to my aunt, Dr. Darshana Udayanganie, for her unconditional love and endless support.
Table of Contents

Chapter I: Introduction... 1
 Importance of aphids as crop pests ... 1
 Importance of understanding plant aphid interactions ... 3
 Aphids and photosynthesis ... 6
 Aphids and ROS .. 13
 Fatty acid desaturases and plant resistance to stress .. 16
 Research questions ... 20
References ... 24

Chapter II: Enhanced photosynthetic efficiency in tomato with loss of function of FATTY ACID DESATURASE 7 .. 34
 Abstract .. 34
 Introduction ... 35
 Materials and Methods ... 37
 Results .. 41
 Discussion .. 43
References ... 50

Chapter III: Effects of suppressor of prosystemin-mediated response2 on primary metabolism and photosynthetic responses to aphids .. 53
 Abstract .. 53
 Introduction ... 54
 Materials and methods .. 56
 Results .. 60
 Discussion .. 63
References ... 74
Chapter IV: Development of transgenic lines containing roGFP2 reporter gene to study the overall redox status of Arabidopsis plants with impaired FAD7-1 function

Abstract
Introduction
Methods and materials
Results
Discussion
References

Chapter V: Conclusion
References
Chapter I

Introduction

Studies of plant interactions with insects have tended to focus on secondary metabolism because of the importance of specialized metabolites in defense. However, an emerging body of evidence shows that insects can affect primary metabolism and these effects can mediate damages that insects inflict. Furthermore, it is important because primary metabolism can influence levels of susceptibility or resistance. An interesting question in biology right now is to what extent the aspects of primary metabolism influences biotic interactions. We are using fatty acid metabolism and its influence on aphids as a system to explore this interaction of primary metabolism and defense.

Importance of aphids as crop pests

Impact of aphids on crops

Aphids (Hemiptera: Aphididae) are a group of phloem-feeding insects that attack most major crops. Nearly 450 aphid species have been recorded from crops and about 100 species are considered as economically important agricultural pests (Morrison and Peairs, 1998). Aphids cause substantial yield losses in different crops. It was reported that the introduction of Russian wheat aphid (*Diuraphis noxia*) in North America has caused US$893 million loss in cereal crops between 1987 and 1993 (Morrison and Peairs, 1998). A field study conducted in South Dakota showed that one soybean aphid (*Aphis glycines*) introduced at vegetative growth stage V5 increased to 4627 aphids per plant and has reduced the yield by 38% (1400 kg/ha) (Beckendorf et al., 2008), and Song et al. (2006) predicted that if left untreated, economic loss due to soybean
Aphid damage could be over $2.4 billion, annually. Such substantial economic damage on agricultural crops confirms the importance of developing effective control of aphid infestations.

Aphids are phloem feeders that remove photoassimilates by tapping their stylets into the sieve-elements of the phloem and creating artificial sinks in plants (Louis et al., 2012). Aphid feeding can induce a variety of effects, directly (by probing and extracting phloem sap) and indirectly (by pathogen transmission), on their host plants. Their direct effects can include chlorosis, necrosis, impact on photosynthesis, wilting, stunted growth and decreases in growth rate, which ultimately lead to reduction in crop yields (Goggin, 2007; Beckendorf et al., 2008). However, these effects vary depending upon the aphid species and host plants as well as the magnitude of the infestation and the growth stage of the plant. It is crucial to note that even when aphids do not cause visible symptoms, they can still cause yield losses by withdrawing photoassimilates and altering the physiology of the host plant (Goggin et al., 2017). The effects of aphids on photosynthesis are discussed later in this chapter.

Aphids can also indirectly decrease the rate of photosynthesis of the host plant by excreting honeydew on the leaves and promoting the growth of black sooty mold (Kaakeh et al., 1992). In addition, aphids are known to transmit plant viruses that result in substantial damage to crops and it is reported that 50% of insect-vectored viruses are transmitted by aphids (reviewed in Ng and Perry, 2004). For example, the green peach aphid, *Myzus persicae*, is a widespread pest that transmits over 100 plant viruses including Potato leaf roll virus (PLRV) and cucumber mosaic virus (Morrison and Peairs, 1998). The magnitude and diversity of aphid damage on crops emphasizes the need to manage aphid populations.
Importance of understanding plant aphid interactions

Current aphid management practices rely on chemical and biological control as well as host-plant resistance in some crops. However, there are limitations to chemical and biological control. Chemical control using insecticides such as pyrethroids and neonicotinoids is one of the major tactics used for aphid control on crops (Dewar, 2007). For example, the management of soybean aphid – the most economically damaging insect of soybean in the United States – heavily depends on foliar-applied broad-spectrum insecticides (Hodgson et al., 2012; Koch et al., 2018). These pesticide applications can lead to reductions of beneficial insects that naturally control aphid populations and development of resistance against insecticides (Bass et al., 2014; Foster et al., 2017). However, many of these pesticides are being withdrawn from the market or categorized as restricted use such as carbofuran and aldicarb due to environmental impacts, and this reduces options for chemical control (Dooley, 2009). Also, pesticides are a high cost to growers, have negative impact on non-target species, raise safety concerns for worker and consumer safety, contaminate groundwater, contribute to secondary pest outbreaks (Damalas and Eleftherohorinos, 2011; Pimentel and Burgess, 2014; Carvalho, 2017).

Another common tactic of managing aphids is biological control using natural enemies such as ladybeetles, parasitoid wasps and green lacewings. One practical limitation of biological control is maintaining the efficiency of the natural enemies since they are easily affected by variable abiotic conditions such as temperature and weather (Powell and Pell, 2007). It is essential that biological control agents are released at the right time. When using predators and parasitoids, it is important to know their biology, specifically at what life-cycle stage of the pest they prefer. It is important that predators are able to maintain predator-prey dynamics in order to maintain their own population (Rutledge et al., 2004). Growers can choose biological control as
a control measure either by artificially releasing the biological control agents or by providing conditions that are conserve biological control agents, such as providing food sources. Also, it is important to make sure their chemical control measures are compatible with biological control agents. More biological control is used in the greenhouses due to its confined and controlled conditions. Also, the greenhouse crops are mostly high value crops; therefore, the growers are able to afford to keep releasing biological control agents. (Parrella, 2008; Boivin et al., 2012).

Host plant resistance is another important management tactic, which uses plant’s ability to resist or tolerate damaging insects. However, this tactic is deployed only in some crops. There are different types of host-plant resistance. Host plants can affect insects’ settling behavior by having characteristics that are unappealing to the pest such presence of waxy leaves (antixenosis), and their survival and fecundity (antibiosis). Also, some plants can withstand the insect damage (tolerance) (Emden, 2017). There are several possible sources of resistance. One is dependent upon differences in the concentration of certain of allele chemicals such as glucosinolates and DIMBOA. A study showed higher fecundity of green peach and cabbage aphids on Arabidopsis mutants that contained lower amount of glucosinolates (Mewis et al., 2005). Moreover, Arabidopsis leaves infiltrated with aphid salivary secretions have shown an increased expression of glucosinolate biosynthesis-related genes (De Vos and Jander, 2009). Mechanical resistance such as cuticular waxes is another source of resistance, although it is not common in aphid resistance literature. It has been shown that glossy pea varieties are resistant to pea aphids (White and Eigenbrode, 2000). Another important source of resistance is the use of resistance genes (R genes) that are involved in perception and recognition of the pest then trigger induced defense responses. Resistant crop cultivars have been developed by selecting for or engineering cultivars that contain host-plant defenses. Aphid resistant crop varieties are used in
commercial agricultural production. For example, \textit{Mi1.2} in tomato, \textit{Rag1} resistance gene in soybean cultivars and in some cereal crops to control Russian what aphid (e.g. \textit{Dn} genes) (Rossi et al., 1998; Hill et al., 2006; Li et al., 2006; Khan et al., 2009; Pallipparambil et al., 2010; Hill et al., 2017). Also, few lettuce cultivars containing an \textit{Nr} gene that confer resistance against \textit{Nasonovia ribisnigri} are commercially available (Tatchell et al., 2017). This tactic can be particularly useful in cases where aphids cause leaf rolling, which provides them protection from insecticide contact and biological control agents (Haile et al., 1999). This approach is more cost effective because such resistant crops would result a higher yield and could cut costs on pesticides used in aphid control. It is also environmentally friendly because it is less hazardous. However, relatively little is known about the physiological factors that regulate resistance or tolerance to aphids. Also, it is important to identify more resistant genes, specifically the ones that can be applied to many crop plants.

These studies show that there are different physiological mechanisms of resistance involving different secondary metabolites and genetic variation in levels of resistance to aphids. However, an interesting question in biology is how primary metabolism influences resistance too. It’s important to understand how the aphids interact with the plant’s physiology and primary metabolism, so we can understand what results in susceptibility, resistance and tolerance, and what traits need to be enhanced. To achieve this, it is essential that we understand the interaction with photosynthesis and reactive oxygen species (ROS), which may contribute to enhanced defense responses.
Aphids and photosynthesis

Aphids have been reported to influence carbon assimilation, a measure of net photosynthetic activity in plants, as well as many major factors that can influence carbon assimilation, such as chlorophyll content, stomatal conductance, and the efficiency of the light-dependent and light-independent reactions of photosynthesis (reviewed in Kerchev et al. 2012 and Goggin et al. 2017).

Carbon Assimilation

Many studies have reported altered carbon assimilation in different plant systems due to aphid feeding (reviewed in Kerchev et al. 2012). Significant decreases in carbon assimilation have been observed in several different compatible aphid-plant interactions, such as soybean aphid (A. glycines) on soybean (Macedo et al., 2003a), greenbug (Schizaphis grumimin) on barley (Ryan et al., 1987; Cabrera et al., 1994), Russian wheat aphid (D. noxia) on wheat (Haile et al., 1999; Macedo et al., 2003b; Macedo et al., 2009), bird cherry-oat aphid (Rhopalosiphum padi) on wheat (Macedo et al., 2009), cotton aphid (Aphis gossypii) on cotton (Shannag et al., 1998), cotton aphid (A. gossypii) on chrysanthemum (Davies et al., 2004), Essigella californica on Pinus radiata (Eyles et al., 2011) and Monellia caryella, Monelliopsis pecanis, Melanocallis caryaefolia on pecan (Wood et al., 1985). Decreases in carbon assimilation are reported between 31% and 54%. However, it is difficult to generalize the impact of aphids on carbon assimilation since it depends on the aphid species, host plant species and variety, infestation level, the length of infestation and the stage of infestation at which carbon assimilation is measured. Two resistant wheat varieties infested with R. padi and D. noxia had shown that although both species reduced carbon assimilation, D. noxia had a greater influence compared to R. padi (Macedo et al., 2009).
Generally, the measurements were taken 1-10 days post-infestation. Due to the differences in experimental designs, it is difficult to say how quickly these decreases emerge after infestation and how persistent they are. While some studies have reported reductions in carbon assimilation by day 9 post infestation (Ryan et al., 1987; Cabrera et al., 1994; Haile et al., 1999; Macedo et al., 2003a), few studies have shown that there were no differences in carbon assimilation at day 9 (Shannag et al., 1998; Franzen et al., 2007). However, Shannag et al. (1998) reported significant reductions at day 18 and 27. This suggests that even though the reductions occurred later, they persisted for a long time. In contrast, Kucharik et al. (2016) have shown slightly higher carbon assimilation rates in control plants compared to soybean aphid infested plants at low aphid densities (less than 50 aphids per plant). This could be due to overcompensation at low aphid levels, since they did not report increases at high aphid levels. Generally, plant photosynthesis does not occur under its full capacity. Under an attack, plants may show limited increases in photosynthesis. This could aid in defense responses since photosynthesis – mainly light reactions – generates ROS.

The effect of aphids on carbon assimilation also depends on whether it is a susceptible, resistant or tolerant line. Some studies have shown that resistant/tolerant plants could increase photosynthesis to compensate for the infestations. Heng-Moss et al. (2006) reported enhanced photosynthetic rates in resistant buffalograss upon chinch bug feeding. Resistant genotypes of field-grown *Pinus radiata* trees showed significantly higher photosynthetic rates after aphid-induced defoliation (Eyles et al., 2011). In contrast, another study showed that although carbon assimilation was initially decreased in the infested tolerant line, and restored to the level of controls after 7 days; however, the carbon assimilation rates of the susceptible and the antibiotic lines were not restored (Haile et al., 1999). Ryan et al. (1987) reported no reductions in carbon
assimilation in greenbug resistant barley cultivars. These alterations in carbon assimilation could depend upon modifications in other processes and factors such as stomatal behavior, light-dependent reactions, light-independent reactions and chlorophyll content.

Stomatal behavior

Aphids can modify stomatal behavior, thus altering stomatal conductance, transpiration rates and intercellular CO₂. Stomata are small openings that are usually found in the leaf epidermis that facilitate gas exchange. Stomata can increase or decrease their aperture size as a response to environmental changes (Aasamaa and Sõber, 2011). Generally, plants with increased stomatal conductance and transpiration would show enhanced photosynthetic rates (Rosenthal et al., 1987; Munns, 2002). Moreover, intercellular CO₂ concentration (Cᵢ) is an important parameter as it indicates the amount of CO₂ available for carbon assimilation (Farquhar et al., 1980). Reductions in stomatal conductance, transpiration and intercellular CO₂ have been reported in wheat in response to aphids (Ryan et al., 1987; Macedo et al., 2003a; Macedo et al., 2009). Aphids can induce stomatal closure by upregulating abscisic acid signaling, which would decrease CO₂ availability (Sun et al., 2015). This could in turn reduce stomatal conductance, transpiration and Cᵢ. However, Franzen et al. (2007) reported no effects on stomatal conductance in D. noxia infested wheat. In some cases, aphids can increase stomatal conductance and transpiration (Shannag, 2007). Shannag et al. (1998) also reported increased transpiration, but the aphids negatively affected photosynthesis rates. Increase in transpiration would contribute to increased water loss in plants, although this will typically not limit the CO₂ availability for photosynthesis. The increase in transpiration could be due to an increase in stomatal aperture, which explains the enhanced stomatal conductance as well (Shannag, 2007). These increased
could be also be due to toxin that aphids inject during feeding (Shannag et al., 1998). It is not well understood how aphids influence carbon assimilation by modifying stomatal behavior.

Light-dependent Reactions of Photosynthesis

The light-dependent reactions occur in the thylakoid membrane and generate NADPH and ATP using light energy, which are energy storage molecules (Johnson, 2016). Several studies indicate that aphids can reduce the efficiency of electron transport (F_v/F_m) in photosystem II (PSII) (Burd and Elliott, 1996; Haile et al., 1999). F_v/F_m is widely used when reporting the photochemical efficiency of PSII, and is calculated using the equation $F_v = F_o - F_m$, where $F_v =$ variable fluorescence, $F_o =$ minimal fluorescence in dark-adapted state and $F_m =$ maximal fluorescence in dark-adapted state (Baker, 2008). In contrast, a few studies have reported no apparent changes in F_v/F_m due to aphid feeding (Macedo et al., 2003a; Franzen et al., 2007). However, (Macedo et al., 2003a) reported increased F_o and F_m values. The enhanced non-variable fluorescence, particularly F_o, suggests that photo-inhibitory damage may have occurred in PSII. It appears that the decreases in carbon assimilation due to aphid infestations can be detected before any changes in the electron transport (Macedo et al., 2003a; Franzen et al., 2007). It is shown that downregulation of genes that are responsible for PSII leads to reductions in efficiency of PSII and can aid in defense responses (reviewed in Kangasjärvi et al., 2012). Such genotypes show hypersensitive response (HR)-associated resistance and a large oxidative burst, which could damage the PSII. This can be a reason for decreased PSII efficiency (Zou et al., 2005). It seems that the PSII efficiency may not strongly influence carbon assimilation.
Light-independent Reactions of Photosynthesis

The light-independent reaction, also known as the Calvin-Benson cycle occurs in the stroma and it converts carbon dioxide into sugars using NADPH and ATP generated from the light-dependent reaction. There are many enzymes involved in this carbon fixation process and the one that is involved in the first major step is called Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and it acts on the substrate Ribulose-1,5-bisphosphate (RuBP) (Johnson, 2016). The efficiency of Calvin cycle is estimated by measuring the efficiency of Rubisco enzyme (V_{cmax}) and the regeneration rate RuBP (J_{max}). The influence of aphids on carbon assimilation appears to be due in part to changes in the light-independent reactions of photosynthesis. In particular, aphids have been reported to reduce Rubisco efficiency and reduce RuBP regeneration (Franzen et al., 2007). Similarly, other studies have reported reductions in the Calvin cycle that were detected before observing impaired PSII efficiency (Ryan et al., 1987; Gutsche et al., 2009). In contrast, increased Rubisco efficiency and RUBP regeneration are reported in an aphid-resistant what cultivar compared to susceptible variety only after 3 days post-infestation (Franzen et al., 2007). Gutsche et al. (2009) speculate that the increases could be the source of increased carbon assimilation that has been observed in aphid-infested plants. It has been shown that the damage inflicted by biotic agents including pathogens and insects downregulate the expression of genes involved in photosynthesis such as genes coding for proteins in photosystem I (PSI) and photosystem II (PSII) reaction centers, and subunits of Rubisco (Bilgin et al., 2010). Calvin cycle is composed of a series of chemical reactions and there are many enzymes and intermediate substrates involved in the process. Further work is needed to identify which steps are mostly affected by aphids and what aspects of aphid feeding are responsible for these effects.
Chlorophyll Content

Several studies have reported decreased chlorophyll content due to aphid feeding (Ni and Quisenberry, 2006; Diaz-Montano et al., 2007; Golawska et al., 2010) and a few studies have shown that aphids have negatively impacted both carbon assimilation and chlorophyll content (Ryan et al., 1987; Cabrera et al., 1994). However, chlorophyll loss is not observed immediately after aphid infestation. The earliest time point that has been reported to observe chlorophyll loss is 6 days after infestation (Ryan et al., 1987). This effect could depend upon several other factors such as aphid species, crop variety and the infestation level. For example, two resistant soybean varieties showed significantly low chlorophyll loss compared to a susceptible variety (Diaz-Montano et al., 2007). It appears that chloroplasts may play a role in retaining the photosynthetic efficiency in resistant varieties (Botha et al., 2006). Russian wheat aphid (D. noxia) was reported to inject a phytotoxin during feeding that breaks down chloroplast membrane in susceptible lines and cause reductions in chlorophyll. However, in resistant varieties, limited chloroplast membrane breakdown was observed (Burd and Elliott, 1996). Some authors argue that chlorophyll content is not a very sensitive parameter that can be used to evaluate responses due to aphids since it does not rapidly respond and chlorophyll loss is a symptom rather than a cause for photosynthesis inhibition (Franzen et al., 2007; Gutsche et al., 2009).

Photosynthesis or defense?

The effects of aphids on photosynthesis can be a result of the direct damage inflicted by the aphid or they could occur due to adaptive responses by the plant. An example for such adaptive response is the induction of jasmonic acid dependent responses against insects causing a temporary downregulation of photosynthesis (Attaran et al., 2014). Downregulation of
photosynthesis related genes in response to abiotic stress has been reported in several studies (Reymond et al., 2004; Zou et al., 2005; Duke et al., 2017). Botha et al. (2006) showed that genes coding for chloroplast ATPase (cpATPase), which is an essential enzyme for photosynthesis significantly upregulated due to \textit{D. noxia} feeding in resistant wheat plants compared to susceptible plants. It appears that cpATPase play an important role in maintaining the photosynthesis in resistant varieties and more generally, it seems that the ability to maintain photosynthesis even under infestation is component of the plant’s resistant mechanism. A biological control agent \textit{Pseudomonas chlororaphis} PA23 was shown to reduce the necrotrophic fungus \textit{Sclerotinia sclerotiorum} infection in Canola and PA23 also increased the chlorophyll content prior to any fungus infection (Duke et al., 2017). The authors reported significant downregulation of \textit{CHLOROPHYLLASE 1 (CHL1)} in plants treated with PA23.\textit{CHL1} is a gene that is involved in chlorophyll degradation pathway. In addition, Transmission Electron Microscopic images revealed an increase in the area of thylakoids in the chloroplasts of PA23 treated plants (Duke et al., 2017). These data suggests that the chloroplasts may have a role in defenses priming. Kariola et al. (2005) showed the silencing of \textit{CHL1} in Arabidopsis increased H$_2$O$_2$ accumulation in response to a bacterial inoculation and activation of antioxidants. In addition, silenced \textit{CHL1} enhanced salicylic acid dependant defenses and reduced jasmonic acid dependant defenses. It appears that \textit{CHL1}, which is the first enzyme of the chlorophyll degradation pathway may moderate different defense pathways in plant (Kariola et al., 2005). These studies show that the reductions in photosynthesis during biotic stress could downregulate photosynthesis related genes, which could influence defense mechanisms by accumulating ROS and it may induce hypersensitive responses in leaves.
Plants typically divert resources that are allocated for growth processes to defense processes under stressed conditions. This is referred to as growth-defense tradeoff, which is evolved to optimize plant fitness in changing environments (reviewed in Meldau et al., 2012, Huot et al., 2014). Jasmonic acid (JA) and salicylic acid (SA) play key roles in allocating resources to growth and defense (reviewed in Nabity et al. 2009, Huot et al. 2014). It has been shown that the activation of JA signaling inhibit growth (Staswick et al., 1992). Attaran et al. (2014) showed reductions in growth and photosynthesis in Arabidopsis with exogenous applications of coronatine (COR), a structural mimic of a receptor-active form of JA. However, the COR treatment reduced photosynthesis after 24 hours, whereas growth inhibition occurred within 4 hours of treatment. They have observed strong inductions of defense related genes immediately after COR treatment. The results indicate that the resource allocation from growth to defense occurs quickly and the photosynthesis machinery could sustain its function without being affected immediately. This could contribute to induction of chloroplastic ROS accumulation, which could enhance the defense response.

Aphids and ROS

Reactive oxygen species

Reactive oxygen species (ROS) are highly reactive and oxygen-containing molecules that are generated during aerobic metabolism as byproducts. Examples of ROS species include molecules such as singlet oxygen (\(^{1}\text{O}_2\)), hydrogen peroxide (\(\text{H}_2\text{O}_2\)), superoxide radical (\(^{-}\text{O}_2\)), and hydroxyl radical (\(^{-}\text{OH}\)) (reviewed in Apel and Hirt, 2004; Sharma et al., 2012). These toxic ROS are scavenged by different antioxidative enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), ascorbate peroxidase (APX), guaiacol peroxidase.
(GPX) and monodehydroascorbate (MDHAR), and non-enzymatic antioxidants such as ascorbic acids (AsA), reduced glutathione (GSH) tocopherols and phenolics (Noctor and Foyer, 1998; Dinakar et al., 2009; Sharma et al., 2012). The equilibrium between ROS and its’ scavengers can be disturbed by various biotic and abiotic stresses such as drought, salt, temperature, insects and pathogens. This can cause increases in ROS levels in cells (Apel and Hirt, 2004; Miller et al., 2010; Sharma et al., 2012). It has been shown that at high concentrations, ROS may cause deleterious effects on plant cells. When the ROS concentration is too high, it may lead to oxidative burst, which can damage the cells by causing lipid peroxidation, membrane electrolyte leakage, programmed cell death etc. (Jambunathan, 2010; Demidchik et al., 2014; Petrov et al., 2015; Yu et al., 2017). ROS can be also formed in response to stress by various oxidases and per oxidases such as NADPH oxidases. ROS can play a dual role by acting as signal transduction molecules. ROS generated during stress can signal and activate defense mechanisms in the cells (Millar et al., 2000).

In plants, ROS can be formed in various sub-cellular compartments including chloroplasts, mitochondria, endoplasmic reticulum and peroxisomes (Sharma et al., 2012; Tripathy and Oelmüller, 2012). In chloroplasts, the electron transport chains in PSI and PSII are identified as major sources of ROS due to unavoidable leakage of electrons on to O_2, and the process of photorespiration is another major source of ROS that is associated with photosynthesis (Sharma et al., 2012; Voss et al., 2013; Dietz et al., 2016). PSII is the source the molecular oxygen and it has extreme reducing and oxidizing potentials (Pospíšil, 2009). In PSII antennae complex, triplet state chlorophyll ($^3P_{680}$) can be generated due to insufficient energy transfer. This triplet state chlorophyll can then interact with triplet state oxygen (3O_2) and produce singlet oxygen by donating an electron (Macpherson et al., 1993; Laloï et al., 2006;
It is important to note that in both PSI and PSII antennae complexes, chlorophyll molecules are closely bound with carotenoids that act as quenchers of triplet chlorophyll or singlet oxygen (Edge and Truscott, 2018). However, in PSII reaction center, the carotenoids are not closely associated which makes the quenching of triplet chlorophyll not possible. Thus, the PSII reaction centers are constantly producing singlet oxygen, specifically under high light stress (Keren et al., 1995; Apel and Hirt, 2004). To protect the photosynthetic apparatus, plants dissipate the excess energy as heat or transfer the excess electrons to other sinks such as molecular oxygen (Laloi et al., 2006). Molecular oxygen can be reduced to superoxide in PSI. This reaction is called Mehler reaction (Mehler, 1951). Superoxide dismutase (SOD) can rapidly convert superoxide to hydrogen peroxide. Hydrogen peroxide can then react with superoxide when metal ions are present, and form highly reactive hydroxyl radical (Laloi et al., 2006). Hydrogen peroxide can also be produced during photorespiration. When the CO$_2$ availability is limited, Rubisco favors O$_2$ over CO$_2$ as a substrate. As a result of the oxygenation, glycolate is formed in the chloroplasts. Glycolate is then transported to peroxisomes, gets oxidized by glycolate oxidase and produces hydrogen peroxide (Tripathy and Oelmüller, 2012). The accumulation of excess ROS can lead to various effects such as photoinhibition, lipid peroxidation and activation of programmed cell death.

Effects of aphids on ROS

Several studies of plant transcript and protein profiles suggest that aphids can alter the accumulation of ROS and redox status of the host plant. The redox status depends on the relative balance between ROS and antioxidants. Although aphids cause minor wounding to leaf tissue compared to chewing insects, the injection of salivary compounds play a role in altering redox changes in plants (van Bel and Will, 2016). It is reported that aphid salivary compounds such as
glucose oxidases could potentially lead to production of \(\text{H}_2\text{O}_2 \) (Harmel et al., 2008). In addition, an increase in \(\text{H}_2\text{O}_2 \) and NADPH-dependant oxidases activity have been shown in resistant wheat plants in response to Russian wheat aphid feeding suggesting that NADPH-oxidases are involved in insect-induced ROS generation (Moloi and van der Westhuizen, 2006). Furthermore, it is possible that changing the plant’s redox status can affect aphids. It has been shown that increase in ascorbic acid, which is an antioxidative compound, enhanced susceptibility of aphids. This could be partly due to decreases in ROS in the plant followed by alterations in the redox status (Kerchev et al., 2012). Also, it was shown an increase in the number of aphids on an Arabidopsis mutant that lacked \textit{RBOHD} (\textit{RESPIRATORY BURST OXIDASE HOMOLOG D}), which is a gene that is responsible for accumulation of \(\text{H}_2\text{O}_2 \) at the wound site (Miller et al., 2009). These results suggest that changes in ROS accumulation and changes in redox status could influence plant resistance or susceptibility to aphids. The ROS accumulation and photosynthesis can be influenced by plant’s fatty acid desaturases (FADs).

Fatty acid desaturases and plant resistance to stress

One aspect of plant physiology that has recently been shown to impact host plant resistance against aphids is fatty acid metabolism; in particular, a recent study has shown that loss of function of \(\omega-3 \)-Fatty Acid Desaturase 7 (FAD7) confers resistance against aphids in tomato (\textit{Solanum lycopersicum}, Solanaceae) and Arabidopsis (\textit{Arabidopsis thaliana}, Brassicaceae) (Avila et al., 2012). Much further work is required to understand the biochemical and physiological basis of how FAD7 impacts aphid resistance. Since homologs of FAD7 are found throughout the vascular plants and even in algae (Nguyen et al., 2013), information on how this desaturase impacts aphid resistance will likely be relevant to many diverse crops.
Definition of Fatty Acids and Fatty Acid Desaturases

Each fatty acid consists of a hydrocarbon chain and a terminal carboxyl group, and they are essential components of the lipids that make up biological membranes or that are used for energy storage in organs such as seeds and pollen (Upchurch, 2008). Fatty acids differ based on the number of carbons in the hydrocarbon chain. Almost all plant membranes are made of 18-carbon fatty acids, and some plant membranes are composed of both 16-carbon and 18-carbon fatty acids (Millar et al., 2000). Fatty acids can also vary in the presence, number, and position of double bonds in the hydrocarbon chain. Fatty acids with one or more double bonds are called unsaturated fatty acids. About 70% of the leaf or root lipids are composed of trienoic (TA) and dienoic (DA) fatty acids, which have three or two double bonds, respectively (Douce and Joyard, 1990). Fatty acid desaturases (FADs) are enzymes that introduce double bonds into the acyl chains of fatty acids (Los and Murata, 1998). Omega-3 fatty acid desaturases (ω-3 FADs) are vital enzymes that desaturate the DAs to form TAs (Liu et al., 2013). In plants, ω-3 FADs can be found in the chloroplast or the endoplasmic reticulum (ER) (Zhang et al., 2011). FADs are also widely distributed among other taxa, except in some bacteria such as *Escherichia coli* (Los and Murata, 1998).

Fatty Acid Desaturases and Plant Stress

FADs are known to influence plant resistance to different abiotic stresses, including temperature extremes, drought, and salt stress, and can also influence vulnerability to some biotic stressors, including pathogens and insects (Table 1). For example, over-expression of the chloroplast localized ω-3 FADs, *FAD7* and *FAD8*, enhances survival of tobacco seedlings under cold stress (reviewed in Upchurch, 2008), whereas silencing *FAD7* and *FAD8* in tobacco
increases resistance to high temperatures (Iba, 2002). The influence of FADs on abiotic stress tolerance is due at least in part to their influence on the melting temperature and consequent fluidity of cellular membranes. Unsaturated fatty acids have lower melting temperatures than saturated fatty acids, and help maintain membrane fluidity (Andreu et al., 2007), which increases with the degree of unsaturation (Webb and Green, 1991). FAD3, which encodes an ER-localized ω-3 FAD, and FAD8, which encodes a chloroplast localized ω-3 FAD, have both been shown to influence membrane structure and fluidity of tobacco during biotic stresses (Upchurch, 2008).

FADs can also influence biotic stress resistance. For example, loss of function or antisense suppression of genes encoding ω-3 FADs increase vulnerability to the bacterial pathogen Pseudomonas syringae (Yaeno et al., 2004) and the fungus gnat larva Bradysia impatiens in Arabidopsis (McConn et al., 1997; Stintzi et al., 2001), and to the caterpillar Manduca sexta (Li et al., 2003) and the whitefly Bemisia tabaci in tomato (Sánchez-Hernández et al., 2006). In contrast, decrease in the expression in antisense FAD7 and FAD8 lines increased the resistance to rice blast fungus Magnaporthe grisea in rice (Yara et al., 2007). These studies show that defects in some FADs could lead to increased resistance to some insects and pathogens, while there is an increased vulnerability to some other pathogens. The physiological basis for the influence of FADs on biotic stress is not fully understood, but is at least in part due to an influence of FADs on defense signaling.

FAD7 and aphid resistance

Loss of function of FATTY ACID DESATURASE7 (FAD7) regulates plant defenses against aphids in tomato (S. lycopersicum) and Arabidopsis (A. thaliana) (Avila et al., 2012). The fad7-1 mutation in Arabidopsis is a single nucleotide substitution mutation that introduces a premature stop codon to the protein (Li et al., 2003) and thus it contains increased levels of 18:3
and 16:3 and deficient in 18:3 and 16:3 (Browse et al., 1986). The *suppressor of prosystemin-mediated response2* (*spr2*) mutation in tomato, which was generated through ethyl methanesulfonate (EMS) mutagenesis, results in the loss of function of FAD7 (Howe and Ryan, 1999; Li et al., 2003). The *spr2* mutation in tomato reduces survival and reproduction of potato aphids (* Macrosiphum euphorbiae*). Compared to WT plants, the aphid mortality rate was over 50 percent higher and the average aphid survival is about 3 days shorter on *spr2* mutants. The Arabidopsis *fad7-1* mutant, which is functionally analogous to the *spr2* mutation also increased resistance against green peach aphids (*M. persicae*) (Avila et al., 2012). This shows that loss of function of FAD7 enhances aphid resistance in more than one plant family. It was known that FAD7 was plastid specific (Wallis and Browse, 2002). Confocal analysis confirmed that FAD7 protein is localized in the thylakoid membrane of the chloroplast (Andreu et al., 2007). Therefore, *fad7* mutation dramatically modifies the fatty acid composition of chloroplast membranes (Li et al., 2003).

ROS and FADs

Several lines of evidence suggest that the loss of function of fatty acid desaturases increase ROS levels constitutively and in response to a variety of stresses. A study done with Luciferase reporter gene with a singlet oxygen responsive promoter has shown that *fad7* has constitutively higher reporter gene activity than wild-type (WT) plants. This indicates that *fad7* may have constitutively high levels of singlet oxygen (Alnasrawi, 2015). Lipid profiling of *spr2* (tomato) and *fad3fad7fad8* (Arabidopsis) has showed that these mutants have increased levels of fatty acid hydroperoxides, which are indicators of oxidative stress (unpublished data by M. Mueller and F. Goggin). These results suggest that these mutants may accumulate higher levels of ROS compared to its’ respective WT plants. Moreover, it has been shown that *spr2* plants
have significantly higher ascorbic acid (antioxidant) levels than WT (Suza et al., 2010). It has been shown that the expression of \(\alpha \)-dioxygenae1 (DOX1) is upregulated in response to aphids (Avila et al., 2013). In contrast, Yaeno et al. (2004) showed reduced accumulation of superoxide radicals and hydrogen peroxide in \textit{fad7fad8} double mutant Arabidopsis in response to a pathogen \textit{P. syringae}. This study also shows that linolenic acid (C18:3) activated NADPH oxidase, which is an enzyme that is responsible for ROS production. However, it is reported that linolenic acid can act as an antioxidant as well (Mène-Saffrané et al., 2009). These studies illustrate that changes in fatty acid composition in plants influence the accumulation of ROS, which can lead to enhanced defense responses.

The existing literature suggests that the fatty acid desaturation may affect primary metabolism in plants, and that could affect reactive oxygen species accumulation. To test whether the fatty acid desaturase 7 would affect primary metabolism and ROS, we studied photosynthesis and the changes in the overall redox status in plants with loss of function of FAD7. This will allow us to identify potential links between primary metabolism and plant defenses against aphids.

Research questions

The loss of function of Fatty Acid Desaturase7 (FAD7) enhances resistance against aphids. This research intends to contribute toward the long-term goal of identifying factors determining aphid resistance in FAD7 mutants. Therefore, we tested how primary metabolism and redox status differ in FAD7 mutants compared to WT plants. To investigate how fatty acid desaturation would affect photosynthesis, we compared the effects of loss of function of FAD7 on photosynthesis and growth of tomato in the absence of aphids using the \textit{suppressor of}
prosystemin-mediated response2 (spr2) mutation, which has impaired FAD7 function (Chapter II). Next, we studied the constitutive differences in primary metabolites between spr2 and WT and also studied the effects of spr2 on photosynthesis in response to potato aphids (M. euphorbiae) (Chapter III). Lastly, we looked at the changes in overall redox state in fad7-1 mutation in Arabidopsis (Chapter IV). This study contributes to our understanding of how impaired FAD7 affects plant’s primary metabolism, specifically photosynthesis, and the overall redox status. Studying these aspects will give insight into how the plants divert energy to enhanced defenses against aphids.
Table 1: Influence of ω-3 FADs on resistance to abiotic and biotic stress.

<table>
<thead>
<tr>
<th>FAD</th>
<th>Plant Species</th>
<th>Modification</th>
<th>Impact on Stress Tolerance</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>fad7</td>
<td>S. lycopersicum</td>
<td>Null mutation and antisense suppression</td>
<td>Enhanced resistance to M. euphorbiae</td>
<td>Avila et al., 2012</td>
</tr>
<tr>
<td>fad7-2</td>
<td>A. thaliana</td>
<td>Null mutation</td>
<td>Enhanced resistance to M. persicae</td>
<td></td>
</tr>
<tr>
<td>fad7-1fad8-1</td>
<td></td>
<td>Null mutation</td>
<td>Increased vulnerability to P. syringae</td>
<td>Yaeno et al., 2004</td>
</tr>
<tr>
<td>fad7fad8</td>
<td>A. thaliana</td>
<td>Null mutation</td>
<td>Enhanced resistance against M. grisea</td>
<td>Yara et al., 2007</td>
</tr>
<tr>
<td>fad7fad8</td>
<td>Oryza sativa</td>
<td>RNAi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAD3 and FAD8</td>
<td>Nicotiana tabacum</td>
<td>Overexpression</td>
<td>Enhanced drought tolerance, but FAD8 reduced heat tolerance</td>
<td>Zhang et al., 2005</td>
</tr>
<tr>
<td>FAD7</td>
<td>N. tabacum</td>
<td>Overexpression</td>
<td>Increased cold tolerance</td>
<td>Kodama et al., 1995</td>
</tr>
<tr>
<td>fad7</td>
<td>N. tabacum</td>
<td>Overexpression</td>
<td>Increased cold tolerance</td>
<td>Kodama et al., 1994</td>
</tr>
<tr>
<td>fad7fad8</td>
<td>A. thaliana</td>
<td>Null mutation</td>
<td>Increased heat tolerance</td>
<td>Murakami et al., 2000</td>
</tr>
<tr>
<td>fad7</td>
<td>A. thaliana</td>
<td>Antisense</td>
<td>Reduced drought tolerance</td>
<td>Im et al., 2002</td>
</tr>
<tr>
<td>FAD3</td>
<td>FAD3 of Chorispora bungeana in N. tabacum</td>
<td>Overexpression</td>
<td>Enhanced tolerance to cold, salt and drought stresses</td>
<td>Shi et al., 2018</td>
</tr>
</tbody>
</table>
Table 1 (Cont.)

<table>
<thead>
<tr>
<th>FAD</th>
<th>Plant Species</th>
<th>Modification</th>
<th>Impact on Stress Tolerance</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAD7</td>
<td>S. lycopersicum</td>
<td>Antisense</td>
<td>Enhanced heat tolerance</td>
<td>Liu et al., 2006</td>
</tr>
<tr>
<td>fad7</td>
<td>S. lycopersicum</td>
<td>Overexpression</td>
<td>Enhanced cold tolerance</td>
<td>Liu et al., 2013</td>
</tr>
<tr>
<td>FAD3</td>
<td>S. lycopersicum</td>
<td>Overexpression</td>
<td>Enhanced cold tolerance</td>
<td>Yu et al., 2009</td>
</tr>
<tr>
<td>FAD3</td>
<td>S. lycopersicum</td>
<td>Overexpression</td>
<td>Enhanced salt tolerance</td>
<td>Wang et al., 2014</td>
</tr>
</tbody>
</table>

Alnasrawi AM (2015) Optimizing a luciferase-based tool for studying the effects of fatty acid desaturase7 on singlet oxygen accumulation in Arabidopsis thaliana. Theses and Dissertations. 1319. http://scholarworks.uark.edu/etd/1319

Chapter II

Enhanced photosynthetic efficiency in tomato with loss of function of FATTY ACID
DESATURASE 7

Abstract

Loss of function of Fatty Acid Desaturase 7 (FAD7) in tomato alters the fatty acid profiles of chloroplast membranes and enhances resistance against potato aphids. We hypothesize that FAD7 also influences photosynthesis as a result of its effects on the chloroplast membrane. Here, we compared chlorophyll content, gas exchange, and chlorophyll fluorescence in isogenic tomato genotypes with wild-type (WT) (cv. Castlemart) and impaired FAD7 function (the spr2 mutant) under two light intensities (220 µmol/m²/sec and 440 µmol/m²/sec). At 220 µmol m⁻² s⁻¹, the spr2 mutants had significantly lower chlorophyll content compared to WT plants, but there was no significant difference in chlorophyll content at higher light intensities. Surprisingly, carbon assimilation (A) was significantly higher in spr2 than in WT plants at both light levels. The maximum quantum efficiency (Fv/Fm) of photosystem II (PSII) and PSII operating efficiency (ΦPSII) were higher in spr2 than in wild-type plants, and this appeared to be due to the fact that spr2 had lower values for minimal chlorophyll fluorescence (Fo) and non-photochemical quenching (NPQ) than WT controls. CO₂ response curves also indicated higher in vivo Rubisco activity in spr2 under saturating light intensity (1200 µmol/m²/sec). These data demonstrate that FAD7 influences photosynthetic activity, which may in part explain its influence on resistance to biotic and abiotic stresses.
Introduction

Fatty acids are essential components of cell membranes (Li et al., 2003). Almost all plant membranes are made of 18-carbon fatty acids and some also have 16-carbon fatty acids. Both 18 and 16-carbon fatty acids contain up to three double bonds (Millar et al., 2000). Fatty acid desaturases (FADs) are enzymes that introduce double bonds into the acyl chains of fatty acids and influence plants’ levels of resistance to a variety of stresses (Li et al., 2003). FADs are widely distributed, except in some bacteria such as *Escherichia coli* (Los and Murata, 1998). Most FADs are membrane proteins that are localized in the plastids or the endoplasmic reticulum. Fatty Acid Desaturase7 (FAD7) is a chloroplast localized enzyme that converts linoleic acid (C18:2) to linolenic acid (C18:3) (Li et al., 2003). It’s chloroplast specificity was proven by a RNA gel blot analysis comparing leaves and roots (Li et al., 2003) and also by confocal image analysis (Andreu et al., 2007).

The *suppressor of prosystemin-mediated response2* (*spr2*) mutant in tomato, *Solanum lycopersicum*, which was generated through ethyl methanesulfonate (EMS) mutagenesis, results in the loss of function of Fatty Acid Desaturase7 (FAD7) (Howe and Ryan, 1999; Li et al., 2003). The *spr2* contains a point mutation that introduces a premature stop codon to the protein (Li et al., 2003), thus it contains increased levels of 18:2 and 16:2 and decreased levels of 18:3 and 16:3 fatty acids (Browse et al., 1986; Li et al., 2003; Hiremath et al., 2017).

The *spr2* mutant in tomato reduces survival and reproduction of potato aphids (*Macrosiphum euphorbiae*). Compared to wild-type (WT) tomato plants, the aphid mortality rate was over 50 percent higher and the average aphid survival is about 3 days shorter on *spr2* mutants. The Arabidopsis *fad7* mutant, which is functionally analogous to the *spr2* mutant also
increased resistance against green peach aphids (*Myzus persicae*) (Avila et al., 2012) showing that loss of function of FAD7 enhances aphid resistance in more than one plant family.

The *spr2* mutant has compromised jasmonic acid (JA) signaling compared to WT plants (Li et al., 2003). During defense responses, JA induction is known to inhibit growth and photosynthesis (Staswick et al., 1992; Havko et al., 2016). A study that used exogenous coronatine (COR), a structural mimic of a receptor-active form of JA, on Arabidopsis has shown reductions in photosynthesis and growth within 24 hours and strong inductions of defense genes immediately (Attaran et al., 2014). Nabity et al. (2009) have shown immediate reductions in carbon assimilation and electron transport in response to herbivore damage in WT *Nicotiana attenuata* plants compared to antisense LOX3 plants with suppressed JA signaling. These studies show that after stresses such as wounding or insect attack, JA mutants have higher photosynthetic rates than WT plants. To understand how *spr2* plants may contribute to enhanced aphid resistance, we investigated whether the growth and photosynthesis would enhance when the JA levels are constitutively suppressed in the absence of stress. One study has reported that, in the absence of cadmium treatment, photosynthetic parameters in *spr2* were similar to those of WT tomato plants (Zhao et al., 2016). However, these measurements were taken at very low light intensity (150 µmol/m²/sec); therefore, we cannot make conclusions on how the suppressed JA levels in *spr2* would affect growth and photosynthesis under optimal conditions.

The objective of this study was to determine whether the *spr2* mutants affect photosynthetic activity and growth in tomato under moderate temperature and low to moderate light levels. Therefore, we compared total chlorophyll content, the net carbon assimilation rate (A, a measure of photosynthetic activity), the maximum quantum efficiency of photosystem II (Fv/Fm, a measure of plants’ capacity for photosynthetic electron transport), PSII operating
efficiency (ΦPSII, the fraction of light energy captured by PSII that is used in photochemistry), non-photochemical quenching (NPQ, fraction of light energy that is lost as heat) and the efficiency of Rubisco (the first major enzyme involved in light-independent reactions of photosynthesis) in spr2 mutants and WT plants.

Materials and Methods

Plant materials and growth conditions

Wild-type (WT) tomato (*Solanum lycopersicum* cv. Castlemart) and a FAD7-impaired mutant – *suppressor of prosystemin-mediated response2* (spr2) – were grown in LC1 Sunshine Professional Growing Mix (Sungro Horticulture, Agawam, MA) amended with slow-release fertilizer (Osmocote Plus; 15-9-12) (Scotts-MiracleGro Company, Marysville, OH) in a Conviron growth chamber (Temp: 23 °C, RH: ~60%, light intensity: 220 µmol/m²/sec, and 16-h/8-h light/dark photoperiod). Plants were watered with a nutrient solution containing 1000 ppm CaNO₃ (Hydro Agri North America, Tampa, FL), 500 ppm MgSO₄ (Giles Chemical, Waynesville, NC) and 500 ppm 4-18-38 Gromore fertilizer (Grow More, Gardena, CA). Forty-eight hours before measurements were taken, half of the plants were exposed to 440 µmol/m²/sec and the remaining plants were kept at 220 µmol/m²/sec. Two light levels were used since our preliminary observations have shown that the spr2 plants were greener when they were grown under a higher light intensity. Plant height and the number of leaves of 4-week old WT and spr2 plants were recorded prior to the light exposure.

Chlorophyll content measurements

Chlorophyll content of 4-week old spr2 and WT plants was measured using a SPAD-502 meter (Minolta) on the 5th leaf below the apical meristem to determine if the total chlorophyll
content of the two genotypes differed under two light intensities. Fifth leaf was selected since it was a fully expanded medium-aged leaf and the damage that can be caused by the measuring instruments is minimal on a medium-aged leaf compared to very young leaf.

Gas exchange and fluorescence measurements

Gas exchange and fluorescence measurements were performed simultaneously using a LI-6400XT open portable photosynthesis system with a leaf chamber fluorometer, an LED-based fluorescence attachment (LCF 6400-40) (LI-COR, Lincoln, NE, USA) on the 5th leaf of 4-week old spr2 and WT plants under the two light intensities. First, all the plants were dark-adapted overnight and minimal fluorescence (F_o) and maximum fluorescence (F_m) measurements were taken while the plants were in the dark. After the dark-adapted measurements were taken, lights were turned on in the growth chamber and the plants were allowed to adapt to the respective light intensity for 30-45 minutes. Then, light-adapted fluorescence measurements and gas exchange measurements were recorded simultaneously. During the measurements, the conditions in the LCF chamber was maintained at 400 ppm reference CO$_2$ concentration, 55-65% relative humidity and 300 µmol/m2/sec airflow. The following parameters were analyzed using the gas exchange and fluorescence data: carbon assimilation (A), minimal fluorescence in dark-adapted leaves (F_o), maximum quantum efficiency of photosystem II (F_v/F_m), PSII operating efficiency (Φ_{PSII}), and non-photochemical quenching (NPQ). NPQ was calculated according to Tietz et al. (2017). Formulas and variable definitions are as follows:
All light-adapted gas exchange and fluorescence measurements were performed between 8:00 am and 12:00 pm each day in order to avoid diurnal fluctuations in photosynthetic parameters. Eight plants (two plants per treatment group) were measured per day in order to allow ample time for gas exchange rates to be stabilized. Therefore, the experiment was replicated in time, over the course of eight days. Planting dates for the experiment were staggered to ensure that all replicates were the same age at the time of measurement (4 weeks after planting). The data were analyzed by two-way ANOVA and the days each plant was measured (measurement days) were treated as random blocks. If significant differences were found, mean separations were done by a Tukey’s HSD. The statistical analyses were conducted with JMP® Pro 13 (SAS Institute Inc.).

CO₂ response curves

In a separate experiment, WT and *spr2* plants were grown at 440 µmol/m²/sec and CO₂ response (A/Ci) curves were generated using a different set of plants to determine plant responses to varying intercellular CO₂ concentrations. Leaves (5th leaf from apical meristem) were exposed to different levels of CO₂, and the net photosynthetic rate at each CO₂ level was measured under saturating light intensity (1200 µmol/m²/sec), which was determined by a light

\[
\frac{F_v}{F_m} = \frac{F_m - F_o}{F_m} \quad \text{F₀} = \text{minimal fluorescence in dark-adapted leaves} \\
\Phi_{PSII} = \frac{F_{m'} - F_s}{F_{m'}} \quad \text{F₀} = \text{minimal fluorescence in light-adapted leaves} \\
\text{NPQ}_{(T)} = \frac{4.88}{\left(\frac{F_m}{F_o} \right) - 1} \quad \text{Fₘ} = \text{maximal fluorescence in dark-adapted leaves} \\
\text{Fₘ} = \text{maximal fluorescence in light-adapted leaves} \\
\text{Fₘ} = \text{maximal fluorescence in light-adapted leaves} \\
\text{Fs} = \text{steady-state fluorescence}
\]
response curve. Before recording measurements, the designated leaf was placed inside the LCF chamber head, and the CO₂ assimilation rate was allowed to stabilize at 1200 µmol/m²/sec light intensity, 400 ppm (ambient) CO₂ concentration and 55-65% relative humidity. Once the photosynthesis rates stabilized (assessed by observing real-time graphs), the A-Ci curve was generated using the auto-program feature of the LI-6400XT. It was programmed to change the CO₂ concentration through the following sequence of levels: 300, 200, 100, 50, 400, 400, 600, 800, 1000 ppm. At each CO₂ concentration, the carbon assimilation readings were automatically recorded immediately after stabilization, which was generally within 2 minutes. Two 400 ppm points were logged in order to allow the leaf to recover after being exposed to low CO₂ concentrations. The maximum carboxylation rate of Rubisco/in vivo apparent Rubisco activity (V_{cmax}) and the maximum rate of electron transport used in the regeneration of ribulose-1,5-bisphosphate (RuBP) (J_{max}) of 4-week old spr2 and WT plants were estimated using the A/Ci curve fitting utility provided by Sharkey et al. (2007) by fitting the Farquhar, von Caemmerer, Berry (FvCB) model (Farquhar et al., 1980). All the CO₂ response curves were generated between 8:00 am and 12:00 pm. A total of seven plants per genotype were measured over 4 days (1 plant per genotype on the day 1, and 2 plants per genotype on day 2, 3 and 4). To make sure the plants were at the same age at the time of measurement, the planting dates were staggered. The data were analyzed by one-way ANOVA and the days each plant was measured were treated as random blocks. The statistical analyses were conducted with JMP® Pro 13 (SAS Institute Inc.).
Results

WT and spr2 plants are phenotypically different

WT plants were taller compared to spr2 plants by 4% (t = 3.90; df = 1, 62; P = 0.0003). In addition, spr2 plants have significantly greater number of leaves (19%) compared to WT plants (t = -9.53; df = 1, 62; P<0.0001) (Figure 1).

Chlorophyll content is higher in WT than in spr2 under low light intensity

The WT line had significantly greater total chlorophyll content compared to spr2 plants under 220 µmol/m²/sec light exposure (Genotype: F = 40.63, df = 1, 7, P = 0.0004; Light intensity: F = 29.16, df = 1, 14, P<0.0001; Genotype x Light intensity: F = 7.70, df = 1, 14, P = 0.0149) (Figure 2). When the plants were subjected to a short-term exposure to a higher light intensity, chlorophyll content of the spr2 increased by 11%. There was no significant difference in chlorophyll content between the genotypes under 440 µmol/m²/sec light exposure.

spr2 has a higher carbon assimilation rate compared to WT

Under both light intensities, spr2 had 12-15% higher carbon assimilation than WT plants (Genotype: F = 18.11, df = 1, 7, P = 0.0038; Light intensity: F = 247.93, df = 1, 14, P<0.0001; Genotype x Light intensity: F = 1.96, df = 1, 14, P = 0.1834) (Figure 3).

The spr2 mutant exhibits better efficiency of light-dependent reactions compared to WT

Minimum chlorophyll fluorescence in dark-adapted leaves (F₀) was significantly greater in WT by 15% compared to spr2 under both light intensities (Figure 4A). However, the light intensity did not influence F₀ (Genotype: F = 50.34, df = 1, 7, P = 0.0002; Light intensity: F = 4.10, df = 1, 14, P = 0.0624; Genotype x Light intensity: F = 0.94, df = 1, 14, P = 0.3491).
Maximum chlorophyll fluorescence in dark-adapted leaves (Fm) did not show significant differences among the genotypes under either of the light intensities (at 220 µmol/m²/sec: WT = 753.67 ± 26.84, spr2 = 742.39 ± 37.07; at 440 µmol/m²/sec: WT = 715.23 ± 87.05, spr2 = 719.55 ± 27.79) (mean ± SD). The maximum quantum efficiency of PSII in dark-adapted leaves (Fv/Fm) was also significantly greater in spr2 under both light intensities (Genotype: F = 63.60, df = 1, 7, P<0.0001; Light intensity: F = 0.61, df = 1, 14, P = 0.4488; Genotype x Light intensity: F = 0.01, df = 1, 14, P = 0.9188) (Figure 4B). At 440 µmol/m²/sec light exposure, WT had significantly lower Fv/Fm values compared to spr2. Similar to Fo, the increasing light levels did not affect Fv/Fm values. PSII operating efficiency (ΦPSII) was significantly higher in spr2 compared to WT under both light intensities and it decreased as the light level increases (Genotype: F = 28.10, df = 1, 7, P = 0.0011; Light intensity: F = 66.22, df = 1, 14, P<0.0001, Genotype x Light intensity: F = 0.64, df = 1, 14, P = 0.4359) (Figure 4C). Non-photochemical quenching (NPQ), which estimates the fraction of light lost to heat was significantly higher in WT by 53% at 220 µmol/m²/sec and 37% at 440 µmol/m²/sec than spr2 (Genotype: F = 74.39, df = 1, 7, P<0.0001; Light intensity: F = 21.65, df = 1, 14, P = 0.0004; Genotype x Light intensity: F = 0.0002, df = 1, 14, P = 0.9965) (Figure 4D).

The spr2 mutant has more efficient light-independent reactions compared to WT

The CO₂ response curves generated are shown in Figure 5. Rubisco-mediated carboxylation rate (Vcmax) was significantly higher in spr2 plants than WT plants by 28% (One-way ANOVA: F = 12.44; df = 1, 2.9; P = 0.042). Similarly, the maximum rate of electron transport used in the regeneration of RuBP (Jmax) of spr2 plants was significantly higher than that of WT plants by 24% (One-way ANOVA: F = 52.54; df = 1, 2.9; P = 0.009) (Table 1).
Discussion

Here we demonstrate that a tomato mutant with impaired FAD7 function (spr2) has significantly greater carbon assimilation rates than the corresponding wild-type plants. Although carbon assimilation increased with increasing light intensity, as expected from previous reports (Harley et al., 1985), light intensity – at least at the levels tested here – did not influence the differences in carbon assimilation observed between spr2 and WT plants. Differences in carbon assimilation were not due to differences in chlorophyll content. In fact, at low light, spr2 had significantly lower chlorophyll levels than WT plants, despite higher assimilation rates. Instead, increased photosynthetic efficiency in spr2 was associated with enhancements in both light-dependent and light-independent reactions of photosynthesis.

The operating efficiency of PSII (ΦPSII), where the light-dependent reactions of photosynthesis are initiated, was significantly greater in spr2 than in WT plants. This indicates that a higher fraction of light-energy captured by PSII was directed toward the photochemical quenching in spr2 compared to WT. Consistent with this, spr2 plants also had lower NPQ values than WT, indicating that less light energy was dissipated as heat in spr2 mutant. It was reported that under high temperature levels, PSII reaction centers could dislodge from the thylakoid membranes due to increased fluidity (Janka et al., 2013). Although, we do not know whether the WT has increased fluidity at the temperature they were grown in this study, it is possible that the membrane fluidity in WT could alter the location of reaction center, which leads to reduced efficiency of PSII.

Another measure of the light-dependent reactions, the maximum quantum yield of photosystem II (Fv/Fm) was significantly greater in spr2 plants compared to WT plants. The ratio
Fv/Fm is calculated based on measurements of maximal chlorophyll fluorescence (Fm) in response to saturating light and minimal chlorophyll fluorescence (Fo) in the absence of light levels adequate for photosynthesis (Fv/Fm = (Fm − Fo)/Fm) (Baker, 2008). The enhanced Fv/Fm in spr2 was due to significant reductions in Fo, a parameter that is sometimes used as an indicator of photodamage (Krause and Weis, 1991; Rodrigues et al., 2008). These data suggest that spr2 may have greater photosynthetic efficiency because the spr2 mutants accumulate less photodamage than wild-type plants. The increased NPQ in WT can be explained by this as well, since NPQ can be increased as a result of photodamage in the PSII, which leads to oxidative damage and increases in Fo (Baker, 2008). The primary site of photodamage is the D1 protein in PSII (Mattoo et al., 1999). Sun et al. (2010) showed that the increased membrane unsaturation can increase the rate of D1 protein degradation during salt stress. Degradation of the D1 protein is a repair mechanism that is essential to maintain the photosynthetic efficiency (Andersson and Aro, 2001). This suggests that WT may have a high rate of D1 protein degradation. Since it is an essential repair mechanism, the WT plants may put more energy towards D1 protein degradation rather than on photosynthesis. These results suggest that the light-dependent reactions of photosynthesis are more efficient in spr2 mutants, since it had significantly higher Fv/Fm and ΦPSII, and significantly lower NPQ than WT.

Consistently, Vcmax and Jmax were significantly greater in spr2 than in WT. This supports the previous claims; decreased photosynthetic capacity is followed by reductions in Vcmax and Jmax. These results indicate that photosynthesis in WT plants could be limited by both Rubisco enzyme and RuBP regeneration (Sharkey et al., 2007; Sharkey, 2016). The reductions in Vcmax are associated with inactivation or loss of Rubisco (Zhou et al., 2004). Reductions in the amount of Rubisco protein in response to JA in rice (Rakwal and Komatsu, 2000) and in barley (Popova
and Vaklinova, 1988) have been reported. Supporting this claim, gene expression studies have shown that genes encoding small and large subunits of Rubisco are downregulated by JA (Reinbothe et al., 1994). However, another study has shown that gene expression of the Rubisco small subunit was decreased in antisense LOX3 plants, which have suppressed JA signaling compared to controls in *N. attenuata* in response to herbivore damage (Halitschke and Baldwin, 2003). These results are not consistent with one another. The results observed in this study is consistent with Reinbothe et al. (1994) since the *spr2* mutants have compromised JA signaling and greater Rubisco activity compared to WT.

In addition to photosynthesis, the growth of *spr2* plants differed from WT plants in terms of height and number of leaves. The *spr2* plants were shorter, but had more leaves compared to WT indicating that they are compact and have shorter internodal length than WT. However, stunted growth has been reported in *N. attenuata* plants with enhanced levels of JA (Heinrich et al., 2013). The authors indicate that JA could suppress internode elongation by influencing synthesis of gibberellins, which are known to promote stem and leaf growth. Moreover, they measured the plant height over time and it appears that 29 days after germination, the height did not differ. The difference between the heights increases as the plants got older. Although their (Heinrich et al., 2013) results showed the opposite pattern of our results, it could be useful to measure the plant height over time to see how it changes.

Despite having lower chlorophyll levels and shorter internodal length, *spr2* plants enhanced photosynthesis compared to WT plants under the light levels we tested. Further work is needed to understand how this enhanced photosynthesis in *spr2* mutants would affect the primary metabolites and whether the changes in metabolite profiles would contribute to aphid resistance.
Figure 1. Height (A) and the number of leaves (B) of 4-week old WT and FAD7-impaired (spr2) tomato plants. Data were analyzed by Student’s t-test. Error bars represent SD and the bars labeled with different letters differ significantly at $\alpha = 0.05$, $n=32$.

Figure 2. Chlorophyll content of 4-week old WT and FAD7-impaired (spr2) tomato plants. SPAD readings of the 5th leaf from apical meristem were analyzed by two-way ANOVA, and mean separations were performed using Tukey-Kramer HSD. Error bars represent SEM and the bars labeled with different letters differ significantly at $\alpha = 0.05$, $n = 16$.

Figure 3. Carbon Assimilation of 4-week old WT and FAD7-impaired (spr2) tomato plants measured on the 5th leaf from apical meristem. Data were analyzed by two-way ANOVA. Error bars represent SD. Marked pairwise comparisons denote significant differences according to paired t-tests at $\alpha = 0.05$, n=16.
Figure 4. The efficiency of the light-dependent reactions of photosynthesis of 4-week old WT and FAD7-impaired (spr2) tomato plants. Minimal fluorescence of dark-adapted leaves (F₀, in A), maximum quantum efficiency of photosystem II (PSII) when dark-adapted (Fᵥ/Fₘ, in B), PSII operating efficiency (ΦPSII, in C) and non-photochemical quenching (NPQ(T), in D) were compared in the 5th leaf of WT and FAD7-impaired plants (spr2). Data were analyzed by two-way ANOVA. Error bars represent SD. Marked pairwise comparisons denote significant differences according to paired t-tests at α = 0.05, n = 16, n.s. = not significant.
Figure 5. CO₂ response (A/Ci) curves of 4-week old WT and FAD7-impaired (spr2) tomato plants. From these data, maximum carboxylation rate of Rubisco (V_{cmax}) and maximum rate of electron transport used in the regeneration of RuBP (J_{max}) were calculated using the utility provided by Sharkey et al. (2007). The calculated values are shown in Table 1. Error bars represent SD.

Table 1. Maximum carboxylation rate of Rubisco (V_{cmax}) and maximum rate of electron transport used in the regeneration of RuBP (J_{max}) of 4-week old WT and FAD7-impaired (spr2) tomato plants. V_{cmax} and J_{max} were calculated using CO₂ response curves with ± SD, n=7.

<table>
<thead>
<tr>
<th></th>
<th>WT</th>
<th>spr2</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>cmax</sub> (µmol/m²/sec)</td>
<td>110.57 ± 21.4</td>
<td>141.57 ± 26.5</td>
<td>0.033</td>
</tr>
<tr>
<td>J<sub>max</sub> (µmol/m²/sec)</td>
<td>153.00 ± 20.1</td>
<td>190.29 ± 23.9</td>
<td>0.008</td>
</tr>
</tbody>
</table>
References

Sun YL, Li F, Su N, Sun XL, Zhao SJ, Meng QW (2010) The increase in unsaturation of fatty acids of phosphatidylglycerol in thylakoid membrane enhanced salt tolerance in tomato. Photosynthetica 48: 400–408

Chapter III

Effects of suppressor of prosystemin-mediated response on primary metabolism and photosynthetic responses to aphids

Abstract

The spr2 mutant of tomato, which carries a null mutation in Fatty Acid Desaturase 7, was previously shown to have higher photosynthetic activity than the corresponding wild-type (WT) cultivar, cv. Castlemart, when plants were grown under optimal conditions. In this study, chlorophyll fluorescence was measured in spr2 and WT plants with and without infestation by the potato aphid, Macrosiphum euphorbiae, to determine if spr2 also enhances photosynthetic activity under herbivore pressure. In both aphid-infested plants and in uninoculated controls, the maximum quantum efficiency of photosystem II (PSII) (Fv/Fm) was significantly higher in spr2 than in WT plants at both experimental time points (one and six days after infestation).

Furthermore, in both treatment groups at both time points, non-photochemical quenching (NPQ(T)) was significantly lower in spr2 compared to WT plants, suggesting that less light energy is lost to heat in spr2 than in WT. These results indicate that spr2 enhances photosynthetic activity in both the presence and absence of aphids. Aphid infestation did not significantly affect Fv/Fm in either genotype, indicating that the aphid densities used here did not have deleterious effects on photosynthesis. In fact, one day after infestation, infested plants had significantly higher PSII operating efficiency (ΦPSII) (5% in WT and 20% in spr2) and significantly lower NPQ(T) (20% in WT and 58% in spr2) than uninfested plants. The decrease in NPQ(T) persisted at day 6 after inoculation, although there were no significant differences in ΦPSII among treatment groups at this later time point. These findings suggest that aphid infestation triggered a short-term compensatory increase in photochemical quenching. Because
the greatest and most persistent differences in photosynthetic activity were attributable to the constitutive effects of the spr2 mutant rather than to the effects of aphid infestation, subsequent metabolomics analyses focused on comparisons of uninfested spr2 and WT plants to identify metabolites associated with enhanced photosynthetic activity. Although no significant differences were detected in sugar contents, starch accumulation, or intermediates of the Calvin cycle, the TCA cycle, or glycolysis, the abundance of glutamate was significantly higher in spr2 compared to WT plants. It has been shown that glutamate enhances the expression of defense related genes and can act as a signaling compound. These results suggest that spr2 is capable of maintaining photosynthetic efficiency under aphid pressure and increased glutamate levels may contribute to aphid resistance in spr2 plants.

Introduction

Fatty acid desaturases (FADs) introduce double bonds into the acyl chains of fatty acids and are known to influence plants’ levels of resistance to a variety of stresses (Li et al., 2003; Upchurch, 2008). Fatty Acid Desaturase 7 (FAD7) adds a double bond to C16:2 and C18:2 to synthesize C16:3 and C18:3. Loss of function of FAD7 is shown to increase plant defenses against aphids in tomato (Solanum lycopersicum), Arabidopsis (Arabidopsis thaliana) (Avila et al., 2012) and against Magnaporthe grisea in rice (Oryza sativa) (Yara et al., 2007).

The suppressor of prosystemin-mediated response2 (spr2) mutant in tomato, which was generated through ethyl methanesulfonate (EMS) mutagenesis, eliminates the function of FAD7 (Howe and Ryan, 1999; Li et al., 2003). The mutation in spr2 is a single nucleotide substitution that introduces a premature stop codon to the protein (Li et al., 2003), which results in a loss of enzymatic activity, increased levels of 18:2 and 16:2, and decreased levels of 18:3 and 16:3
The spr2 mutant of tomato reduces survival and reproduction of potato aphids (*Macrosiphum euphorbiae*) (Avila et al., 2012). We have previously studied whether changes in chloroplastic fatty acid composition would affect plant’s photosynthesis using *spr2* mutant of tomato. Our results have shown significantly greater carbon assimilation, efficiency of light-dependent and light-independent reactions of photosynthesis between *spr2* and its wild-type (WT) (Chapter II).

When studying the light-dependent reactions of photosynthesis, the efficiency of electron transport (*F_v/F_m*) in photosystem II (PSII) is a commonly used parameter, which is calculated using the equation $F_v = F_o - F_m$, where F_v = variable fluorescence, F_o = minimal fluorescence in dark-adapted state and F_m = maximal fluorescence in dark-adapted state (Baker, 2008). Some studies have reported that aphids can reduce F_v/F_m (Burd and Elliott, 1996; Haile et al., 1999), while others detected no changes in this parameter (Macedo et al., 2003; Franzen et al., 2007).

Since we have observed differences in photosynthesis between *spr2* and WT in the absence of stresses, we also looked at whether the abundance of several important metabolites associated with primary metabolism varies between these genotypes. We compared the abundance of sugars, starch, and intermediates of glycolysis, Tricarboxylic acid (TCA) cycle and Calvin cycle (Figure 1). The ATP and NADPH synthesized by the light-dependent reactions are used by the light-independent reactions (Calvin cycle) and generate glucose. Some of this glucose is converted to sucrose and starch (storage) and the rest is then converted to pyruvate through a series of reactions by glycolysis. Pyruvate is converted to acetyl-CoA and this step generates CO$_2$, which gets used in the Calvin cycle, and the acetyl CoA enters the TCA cycle. One of the intermediates of TCA cycle, α-ketoglutarate, generates glutamate, which is one of the first products of nitrogen assimilation in plants. The NADH synthesized by the TCA cycle is
used in oxidative phosphorylation, which generates O_2 to be used in the light-dependent reactions.

In a previous study (Chapter II), we observed that tomato plants with the _spr2_ mutants have enhanced photosynthetic efficiency compared to WT controls. The goals of this study were to determine whether the _spr2_ also enhances photosynthesis under aphid pressure and to identify metabolites associated with enhanced photosynthetic activity in uninfested _spr2_ and WT plants. This study will contribute to our understanding of how the _spr2_ plants may spend the energy gained from enhanced photosynthesis.

Materials and methods

Plant materials and growth conditions

The plant material used in this study – wild-type (WT) tomato (*Solanum lycopersicum* cv. Castlemart) and *FAD7*-impaired _supressor of prosystemin-mediated response_2 (_spr2_) mutant of tomato – were grown in LC1 Sunshine Professional Growing Mix (Sun Gro Horticulture, Agawam, MA) and a slow release fertilizer (Osmocote Plus; 15-9-12) (Scotts-MiracleGro Company, Marysville, OH) was added to the soil mix. The WT and _spr2_ plants were grown in the greenhouse (Temp: 23 - 25 °C, RH: ~ 60%, light intensity: 500 - 900 μmol/m²/sec, and 16-h/8-h light/dark photoperiod). Plants were watered with a nutrient solution containing 1000 ppm 15.5-0-0 CaNO₃ (Hydro Agri North America, Tampa, FL), 500 ppm MgSO₄ (Giles Chemical, Waynesville, NC) and 500 ppm 4-18-38 Grow More fertilizer (Grow More, Gardena, CA). Then the plants were transferred into two Conviron growth chambers (Controlled Environments, Inc., Winnipeg, Canada) (Temp: 23 °C, RH: ~ 60%, light intensity: 400 μmol/m²/sec, and 16-h/8-h light/dark photoperiod), where one chamber was assigned for aphid infestation and the other
chamber was assigned for the control treatment. Temperature, light intensity and humidity were maintained at the same level in both growth chambers.

Aphids

Potato aphids (*Macrosiphum euphorbiae*) were reared on tomato (*S. lycopersicum* cv. BHN 871) grown at 20 °C and 16-h/8-h light/dark photoperiod. Three leaves (3rd, 4th and 5th leaves from the apical meristem) of 4-week old plants were infested with 30 aphids (10 aphids per leaf). All the plants from one chamber were infested with aphids, while the plants in the other growth chamber remained as control plants with no aphids. No cages were used when infesting plants with aphids, since the cages would interfere with clamping the fluorescence meter on the leaves. Fluorescence measurements were taken at 1 and 6 days after the infestation. Numbers of adult and juvenile aphids on all the three leaves were counted on day 5.

Fluorescence measurements

A handheld fluorescence meter, MultispeQ (v1.0) (PhotosynQ LLC, East Lansing, MI), was used to estimate the efficiency of light-dependent reactions of photosynthesis using a series of fluorescence parameters. The built-in protocol of MultispeQ, “Leaf Photosynthesis MultispeQ V1.0” was used and the fluorescence parameters were measured on 3rd leaves of the plants. The dark-adapted parameters (minimal fluorescence in dark-adapted state (*F₀*), maximal fluorescence in dark-adapted state (*Fₘ*), and the quantum efficiency of photosystem II (PSII) (*Fᵥ/Fₘ*)) were measured on the plants that were dark-adapted overnight. The light-adapted parameters (PSII operating efficiency (ΦPSII), and non-photochemical quenching (NPQ(Tₗ)) were measured between 8:00 am and 12:00 pm to avoid diurnal fluctuations.
Tissue collection for metabolite analyses

To determine whether the primary metabolites differ between spr2 and WT, the sugar profiles and the intermediates of glycolysis, TCA cycle and Calvin cycle were extracted from leaf tissue. As a first step in looking into nitrogen assimilation in plants, we determined the abundance of glutamate, since it is one of the first products of nitrogen assimilation in plants. Only the uninfested WT and spr2 plants were used for metabolite analysis, due to high sample processing costs and because the largest and most persistent differences in photosynthesis were associated with constitutive genotypic differences. At the end of the assay (day 6), two leaflets from the 3rd leaves of two plants of the same genotype were pooled for metabolite analyses. For each genotype, there were 6 pooled replicates. The leaflets were quickly detached, placed in Whirl-Pak® sampling bags and immediately flash frozen in liquid nitrogen. Pooled samples were ground in liquid nitrogen and stored at -80 °C for further processing.

Analysis of glycolysis, TCA cycle and Calvin cycle intermediates

Glycolysis and TCA cycle analyses were conducted at the Proteomics and Metabolomics Facility at the Center for Biotechnology at University of Nebraska-Lincoln using Liquid Chromatography – Tandem Mass Spectrometry, using a protocol modified from Yuan et al. (2012). Metabolites were extracted from the ground leaf tissue using 600 µL chilled H₂O: chloroform: methanol (3:5:12 v/v) spiked with PIPES (piperazine-N,N'-bis(2-ethanesulfonic acid) as internal standard. The tissue samples were disrupted using the TissueLyserII (Qiagen, Gaithersburg, MD). After centrifugation at 16,000 g for 15 minutes, the supernatants were collected, and extraction of pellet was repeated one more time. The supernatants were pooled and 300 µL chloroform and 450 µL of chilled water were added. The tubes were vortexed and
centrifuged at 16,000 g for 15 minutes. The upper layer was transferred to a new tube and dried down using a speed-vac until the all the liquid is evaporated. The pellets were re-dissolved in 100 μL of 80% acetonitrile.

For LC separation, SeQuant ZIC-pHILIC column (5 μm polymeric, 150 X 2.1 mm) was used flowing at 0.25 mL/min. The gradient of the mobile phases A (20 mM ammonium acetate, pH 9.8, 5% ACN) and B (100% acetonitrile) were as follows: 85% B for 1 min, to 58% B in 1.5 min, held at 58% B for 6.5 min, then back to 85% B in 0.5 min. The LC system was interfaced with a Sciex QTRAP 6500+ mass spectrometer equipped with a TurboIonSpray (TIS) electrospray ion source. Analyst software (v. 1.6.3) was used to control sample acquisition and data analysis. The QTRAP 6500+ mass spectrometer was tuned and calibrated according to the manufacturer’s recommendations. All the metabolites were detected using MRM transitions that were previously optimized using standards. The instrument was set-up to acquire in positive/negative mode switching. For quantification, an external standard curve was prepared using a series of standard samples containing different concentrations of metabolites and fixed concentration of the internal standard.

Analysis of sugars

Sugar analysis was conducted by Dr. David Braun (University of Missouri, Columbia) using HPLC according to the protocol by Leach and Braun (2016). Soluble sugars and starch were extracted from ground leaf tissue using an extraction buffer containing methanol, chloroform and water (12:5:3) followed by incubation at 50 °C for 30 minutes and centrifugation at 14000 rpm for 5 minutes. For soluble sugar extraction, the supernatant was transferred to a new tube and the extraction was repeated two more times. Supernatants were pooled and 0.6
volumes of water were added to the sample, centrifuged at 4650 g for 5 minutes and the upper aqueous phase was separated. The pellet that remained after three extractions was saved for starch quantification. The pellet was dissolved in dimethyl sulfoxide and incubated in boiling water bath for 5 minutes. Then the solution was diluted 1:20 in sodium acetate and added α-amylase. After incubation in boiling water for 15 minutes and cooling in 50 °C for 3 minutes, amyloglucosidase was added. Then the sample was incubated again at 50 °C for 1 hour and centrifuged at 14000 rpm for 5 minutes to retrieve the supernatant. The soluble sugar extracts were processed according to support protocol 2 in (Leach and Braun (2016) to remove strongly charged or large molecules. The samples were analyzed with HPLC and compared to standards.

Statistical analysis

All the statistical analyses were conducted with JMP® Pro 13 (SAS Institute Inc.). The mean differences in fluorescence parameters were analyzed by two-way ANOVA to analyze the effects of plant genotype and aphid damage. No significant interactions were found and therefore, only the main effects were analyzed using Student’s t-test. The data from metabolite analyses were analyzed by Student’s t-tests for each metabolite since these analyses involved comparisons of only the two genotypes.

Results

Aphid numbers

The total number of adult and juvenile potato aphids (M. euphorbiae) on WT plants was 78% greater than that of on spr2 plants five days after the infestation (t = 5.50, df = 17, P < 0.0001) (Figure 2).
Light-dependent reactions

Minimum chlorophyll fluorescence in dark-adapted leaves (F_o) was significantly higher in WT by ~11% on both day 1 and day 6 compared to spr2 (Fig 2A and 2E). However, aphid infestation did not influence F_o on either day 1 (Genotype: $F = 26.24$, df = 1, 35, $P < 0.0001$; Aphids: $F = 2.75$, df = 1, 35, $P = 0.12$; Genotype x Aphids: $F = 1.00$, df = 1, 35, $P = 0.32$) or day 6 (Genotype: $F = 34.93$, df = 1, 35, $P < 0.0001$; Aphids: $F = 2.09$, df = 1, 35, $P = 0.16$; Genotype x Aphids: $F = 1.45$, df = 1, 35, $P = 0.24$).

Maximum chlorophyll fluorescence in dark-adapted leaves (F_m) did not show significant differences among the genotypes or in response to aphids on either of the days (Day 1: WT-control: 20,827.4 ± 900.9, WT-aphids: 20,299.4 ± 881.2, spr2-control: 20,620.5 ± 810.8, spr2-aphids: 20,153.6 ± 770.1; Day 6: WT-control: 20,273.8 ± 609.6, WT-aphids: 19,940.8 ± 450.2, spr2-control: 19,873.4 ± 1,1185.5, spr2-aphids: 20,470.7 ± 763.7) (mean ± SD). As a result of differences in F_o, the maximum quantum efficiency of PSII in dark-adapted leaves F_v/F_m, where $F_v = F_m - F_o$ was greater in spr2 than WT by 3% on both day 1 ($F = 30.14$, df = 1, 35, $P<0.0001$; Aphids: $F = 0.40$, df = 1, 35, $P = 0.53$; Genotype x Aphids: $F = 1.70$, df = 1, 35, $P = 0.20$) and day 6 (Genotype: $F = 41.45$, df = 1, 35, $P<0.0001$; Aphids: $F = 1.37$, df = 1, 35, $P = 0.25$; Genotype x Aphids: $F = 0.02$, df = 1, 35, $P = 0.89$). Aphid infestation did not affect F_v/F_m values (Figures 3B and 3F).

One day after infestation, the fraction of light energy used in photochemistry, measured by PSII operating efficiency (Φ_{PSII}), was significantly greater in spr2 compared to WT and it was increased by aphids by 5% in WT and by 20% in spr2 (Genotype: $F = 13.32$, df = 1, 35, $P = 0.0008$; Aphids: $F = 9.00$, df = 1, 35, $P = 0.005$; Genotype x Aphids: $F = 3.42$, df = 1, 35, $P = 0.005$).
No significant genotypic and aphid effects were seen on day 6 (Genotype: $F = 0.004$, df = 1, 35, $P = 0.95$; Aphids: $F = 0.0001$, df = 1, 35, $P = 0.99$; Genotype x Aphids: $F = 0.01$, df = 1, 35, $P = 0.92$) (Figure 3G). NPQ significantly declined in response to aphids by 20% in WT and by 58% in spr2 on day 1 (Genotype: $F = 28.99$, df = 1, 35, $P < 0.0001$; Aphids: $F = 16.35$, df = 1, 35, $P = 0.0003$; Genotype x Aphids: $F = 1.32$, df = 1, 35, $P = 0.26$), and by 36% in WT and 12% in spr2 on day 6 (Two-way ANOVA: Genotype: $F = 12.99$, df = 1, 35, $P < 0.001$; Aphids: $F = 8.84$, df = 1, 35, $P = 0.005$; Genotype x Aphids: $F = 2.30$, df = 1, 35, $P = 0.14$).

Metabolite analysis

No significant differences were detected in total sucrose, total fructose, total glucose and total starch between WT and spr2 (Figure 4). Also, significant differences were not detected between spr2 and WT were observed in the Calvin cycle intermediates (Figure 5B) or the TCA cycle or glycolysis (Figure 6B). Calvin cycle intermediates tested in this study were: 2-phosphoglycerate/3-phosphoglycerate (2PGA/3PGA), Dihydroxyacetone phosphate/Glyceraldehyde-3-phosphate (DHAP/G3P), Fructose-1,6-bisphosphate (FBP), Glucose-6-phosphate/Fructose-6-phosphate/Glucose-1-phosphate (G6P/F6P/G1P), Erythrose-4-phosphate (E4P), Sedoheptulose-7-phosphate (S7P), Ribose-5-phosphate/Ribulose-5-phosphate (R5P/Ru5P) (Figure 5B). The intermediates of glycolysis and TCA cycle tested were: G6P/F6P/G1P, FBP, DHAP/G3P, 2PGA/3PGA, Phosphoenolpyruvate (PEP), α-ketoglutarate (KGLU), Succinate (SUC), Fumarate (FUM), Malate (MAL) (Figure 6B). However, glutamate concentration was significantly greater in spr2 compared to WT (Figure 7). The statistics are shown in Table 1.
Discussion

In this study, we observed that potato aphids (*M. euphorbiae*) did not cause significant changes in the efficiency of PSII, where the light-dependent reactions of photosynthesis initiate. The genotypic differences between the mutant with impaired FAD7 function (*spr2*) and its WT were similar to what was reported in chapter II. The efficiency of PSII was significantly higher in *spr2* compared to WT on day 1 and 6 after aphid infestation and no aphid effect was observed. Similarly, the minimum chlorophyll fluorescence (*F₀*) was significantly higher in WT than in *spr2* and an aphid effect was not observed. These results show that aphids did not affect *F₀* and *Fᵥ/Fₘ* values at the aphid densities tested here. Similar results have been shown in response to soybean aphids on soybean by Macedo et al. (2003) and Russian wheat aphid on wheat by Franzen et al. (2007).

In addition, ΦPSII and NPQ(T) followed similar genotypic trends as were found in our previous study (Chapter II) and significant aphid effects were observed on both parameters on day 1. The results indicate a higher fraction of light energy is directed towards photochemistry in the aphid-infested tomato plants. This could be due to a compensatory photosynthetic response. Although no prior studies have reported an increase in ΦPSII in response to aphids, a few studies have shown increased carbon assimilation following aphid infestation (Heng-Moss et al., 2006; Eyles et al., 2011; Kucharik et al., 2016). These results suggest that the *spr2* plants may be able to allocate energy for recovery from aphid feeding.

The constitutive levels of metabolite profiles suggest that there are no differences in sugar and starch accumulation, and intermediates of Calvin cycle and aerobic respiration between *spr2* and WT. However, there is a possibility that the differences may not be reflected in
metabolite accumulation because metabolites may simply be diverted to differences in growth and development of the plants. Also, it is noteworthy that the analysis method was not able to differentiate some metabolites due to having the same molecular weight, and therefore, they were co-eluted. Another possibility is that we missed the critical metabolites, or we did not have enough replications to account for the differences. In addition, we noted that there is a large within-treatment variation in metabolite abundance.

Sugars can act as plant signaling molecules (Wind et al., 2010; Morkunas and Ratajczak, 2014). Glucose signaling is involved in regulation of photosynthesis (Bolouri-Moghaddam et al., 2010) and sucrose impacts biosynthesis of anthocyanins, a plant secondary metabolite that is shown to mediate plant defenses against microbes (Solfanelli et al., 2006). However, we did not detect differences in sugars tested here (glucose, fructose and sucrose) between spr2 and WT. Apart from glucose and sucrose, trehalose is another sugar that has been shown to enhance resistance against the green peach aphid (Myzus persicae) in Arabidopsis and tomato (Singh et al., 2011; Singh and Shah, 2012). These authors have shown that a gene that encodes a trehalose synthesizing enzyme, TPS11 (TREHALOSE PHOSPHATE SYNTHASE11) reduced green peach aphid infestation. In addition, TPS11 promoted starch accumulation and upregulated the expression of PAD4 (PHYTOALEXIN-DEFICIENT4), which is known to regulate resistance against green peach aphids (Pegadaraju et al., 2007). Although we did not observe a significant increase of starch in spr2 plants, analyzing trehalose may provide more insight into how the sugar metabolism and aphid defenses are related in spr2 plants.

Similarly, no differences were detected in the intermediates of glycolysis, TCA cycle and Calvin cycle. This is surprising since we have shown that increased photosynthetetic efficiency in spr2 was associated with enhancements in both light-dependent and light-independent reactions
of photosynthesis (Chapter II). However, it is important to note that there are certain intermediate compounds that we were not able to measure in this study, especially, ribulose-1,5-bisphosphate (RuBP). We have shown in Chapter II that the maximum rate of electron transport used in the regeneration of RuBP (J_{max}) is significantly higher in $spr2$ compared to WT.

However, we report that glutamate – a plant derived amino acid – is significantly higher in $spr2$ compared to WT. Wendler et al. (1990) reported that glufosinate inhibits photosynthesis by irreversibly inhibiting glutamine synthetase under photorespiratory conditions. Glutamine synthetase catalyzes the ligation of glutamate and ammonia to form glutamine (Miflin and Habash, 2002). Inhibiting glutamine synthetase causes a lack of amino donors, which inhibits transamination of glyoxylate to glycine in photorespiration, and glyoxylate accumulation inhibits Rubisco (Wild and Wendler, 1993). This supports our previous findings since we observed both enhanced Rubisco efficiency (Chapter II) and enhanced glutamate synthesis in $spr2$ plants. In addition, high levels of glutamate have been found in phloem sap with reduced nutritional quality (Douglas, 1993). Also, increased glutamate levels were found in melon aphid ($Aphis gossypii$) resistant melon plants (Chen et al., 1997). Kan et al. (2017) have reported exogenous application of glutamate have induced the expression of several defense response related genes in rice such as $CIGR2$, which encodes a transcriptional activator involved in hypersensitive response; $bHLH35$, a JA responsive gene involved in disease resistance; and $OsHI-LOX$ an herbivore-induced gene involved in defense response. Also, Toyota et al. (2018) have recently showed that glutamate can trigger long-distance signaling in plants. These studies suggest that glutamate may be involved in plant defense responses against aphids. It is worthwhile to investigate how glutamate is affected in aphid infested $spr2$ plants compared to WT plants.
Figure 1. Schematic representation of the link between light-dependent reaction and light-independent reaction (Calvin cycle), glycolysis, Tricarboxylic acid (TCA) cycle, and glutamate synthesis.
Figure 2. Total number of adult and juvenile aphids on 5-week old WT and FAD7-impaired (spr2) tomato plants at five days after the infestation. Data were analyzed by Student’s t-test. Error bars represent SD and the asterisk indicates a statistically significant difference compared to WT at α = 0.05; n=10 for WT and 9 for spr2.
Figure 3. The efficiency of the light-dependent reactions of photosynthesis. Minimal fluorescence of dark-adapted tomato leaves (F₀, in A and E), maximum quantum efficiency of PSII when dark-adapted (Fᵥ/Fₘ, in B and F), PSII operating efficiency (ΦPSII, in C and G) and non-photochemical quenching (NPQₜ, in D and H) were compared in the 5th leaf of WT and FAD7-impaired plants (spr2) in response to potato aphids at 1 and 6 days post-infestation. Data were analyzed by two-way ANOVA. Error bars represent SD and the bars labeled with asterisks differ significantly at α = 0.05; n=10 for WT and 9 for spr2; n.s. = not significant.
Figure 4. Soluble sugars and starch concentrations. Sucrose (A), fructose (B), glucose (C) and starch (D) were compared in the 3rd leaf of 5-week old WT and spr2 tomato plants. Data were analyzed by Student’s t-test. Error bars represent SD and none of the variables showed statistically significant differences at $\alpha = 0.05$; $n = 6$ for WT and 5 for spr2 (each sample was pooled from 2 plants); n.s. = not significant.
Figure 5. Metabolites of the Calvin cycle. **A.** Schematic representation of the Calvin cycle (purple = intermediates measured in this study, grey = intermediates not measured in this study). **B.** Calvin cycle intermediates of 5-week old WT and spr2 tomato plants. Data were analyzed by Student’s t-test. Error bars represent SD and none of the variables showed statistically significant differences at $\alpha = 0.05$, $n=6$ (each sample was pooled from 2 plants). The directions of enzymatic reactions are represented by arrowheads; reversible reactions are indicated by double sided arrows. Abbreviations: 2PGA, 2-phosphoglycerate; 3PGA, 3-phosphoglycerate; DHAP, Dihydroxyacetone phosphate; G3P, Glyceraldehyde-3-phosphate; FBP, Fructose-1,6-bisphosphate; G6P, Glucose-6-phosphate; F6P, Fructose-6-phosphate; G1P, Glucose-1-phosphate; E4P, Erythrose-4-phosphate; S7P, Sedoheptulose-7-phosphate; R5P, Ribose-5-phosphate; Ru5P, Ribulose-5-phosphate.
Figure 6. Metabolites of glycolysis and TCA cycle.

A. Schematic representation of glycolysis and citric acid cycle.

B. Glycolysis and citric acid cycle intermediates of 5-week old WT and spr2 tomato plants. Data were analyzed by Student’s t-test. Error bars represent SD and none of the variables showed statistically significant differences at α = 0.05, n=6 (each sample was pooled from 2 plants). The directions of enzymatic reactions are represented by arrowheads; reversible reactions are indicated by double sided arrows. Abbreviations: G6P, Glucose-6-phosphate; F6P, Fructose-6-phosphate; G1P, Glucose-1-phosphate; FBP, Fructose-1,6-bisphosphate; DHAP, Dihydroxyacetone phosphate; G3P, Glyceroldehyde-3-phosphate; 2PGA, 2-phosphoglycerate; 3PGA, 3-phosphoglycerate; PEP, Phosphoenolpyruvate; KGLU, α-ketoglutarate; SUC, Succinate; FUM, Fumarate; MAL, Malate.
Figure 7. Glutamate concentration of 5-week old WT and FAD7-impaired (spr2) tomato plants. Data were analyzed by Student’s t-test. Error bars represent SD and the asterisk indicates a statistically significant difference compared to WT at $\alpha = 0.05$; n=6 (each sample was pooled from two plants).
Table 1. Test statistics for all metabolites including sugars and intermediates of Calvin cycle, glycolysis, tri-carboxylic acid (TCA) cycle and glutamate.

<table>
<thead>
<tr>
<th>Metabolite</th>
<th>t - value</th>
<th>df</th>
<th>P – value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sucrose</td>
<td>0.58</td>
<td>9</td>
<td>0.58</td>
</tr>
<tr>
<td>Fructose</td>
<td>-1.20</td>
<td>9</td>
<td>0.26</td>
</tr>
<tr>
<td>Glucose</td>
<td>-1.30</td>
<td>9</td>
<td>0.23</td>
</tr>
<tr>
<td>Starch</td>
<td>0.99</td>
<td>9</td>
<td>0.35</td>
</tr>
<tr>
<td>2-phosphoglycerate/3-phosphoglycerate (2PGA/3PGA)</td>
<td>0.32</td>
<td>10</td>
<td>0.75</td>
</tr>
<tr>
<td>Dihydroxyacetone phosphate/Glyceraldehyde-3-phosphate (DHAP/G3P)</td>
<td>1.41</td>
<td>10</td>
<td>0.19</td>
</tr>
<tr>
<td>Fructose-1,6-bisphosphate (FBP)</td>
<td>0.64</td>
<td>10</td>
<td>0.53</td>
</tr>
<tr>
<td>Glucose-6-phosphate/Fructose-6-phosphate/Glucose-1-phosphate (G6P/F6P/G1P)</td>
<td>0.45</td>
<td>10</td>
<td>0.45</td>
</tr>
<tr>
<td>Erythrose-4-phosphate (E4P)</td>
<td>1.05</td>
<td>10</td>
<td>0.32</td>
</tr>
<tr>
<td>Sedoheptulose-7-phosphate (S7P)</td>
<td>1.45</td>
<td>10</td>
<td>0.18</td>
</tr>
<tr>
<td>Ribose-5-phosphate/Ribulose-5-phosphate (R5P/Ru5P)</td>
<td>1.86</td>
<td>10</td>
<td>0.09</td>
</tr>
<tr>
<td>Phosphoenolpyruvate (PEP)</td>
<td>0.45</td>
<td>10</td>
<td>0.66</td>
</tr>
<tr>
<td>α-ketoglutarate (KGLU)</td>
<td>0.79</td>
<td>10</td>
<td>0.45</td>
</tr>
<tr>
<td>Succinate (SUC)</td>
<td>1.11</td>
<td>10</td>
<td>0.29</td>
</tr>
<tr>
<td>Fumarate (FUM)</td>
<td>0.16</td>
<td>10</td>
<td>0.88</td>
</tr>
<tr>
<td>Malate (MAL)</td>
<td>0.14</td>
<td>10</td>
<td>0.88</td>
</tr>
<tr>
<td>Glutamate</td>
<td>-2.76</td>
<td>10</td>
<td>0.02</td>
</tr>
</tbody>
</table>
References

Leach KA, Braun DM (2016) Soluble sugar and starch extraction and quantification from maize (Zea mays) leaves. Curr Protoc Plant Biol 1: 139–161

Yuan M, Breitkopf SB, Yang X, Asara JM (2012) A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat Protoc 7: 872–881
Chapter IV

Development of transgenic lines containing \textit{roGFP2} reporter gene to study the overall redox status of \textit{Arabidopsis} plants with impaired \textit{FAD7-1} function

Abstract

In plants, biotic and abiotic stresses can cause a shift in plant’s redox status and the accumulation of reactive oxygen species (ROS) is one of the reasons for it. When the redox status is changed, plants can signal and modify regulatory processes, which could lead to defense responses. Several evidence points out that impaired fatty acid desaturases constitutively enhance ROS levels as well as in response to a variety of stresses. In this study, a reduction-oxidation sensitive green fluorescent (\textit{roGFP2}) reporter gene was used to compare the overall redox status in wild-type \textit{Arabidopsis thaliana} plants (Col-0) and a mutant line with impaired fatty acid desaturation (\textit{fad7-1}). The goals of this study were to develop transgenic \textit{fad7-1} line that contains \textit{roGFP2} reporter gene, confirm the fluorescence, optimize the measurement technique and compare the overall redox status in \textit{fad7-1} and Col-0 plants. The \textit{roGFP2} reporter gene was successfully introduced into \textit{fad7-1} background, and ratiometric analyses were conducted to compare the redox status by placing leaf discs in 24-well plates and measuring the fluorescence emission at 400 and 490 nm. Also, the wound response of the leaf discs were studied and no strong redox changes in response to wounding were observed. An oxidizing agent, H$_2$O$_2$, was used to confirm the reporter gene activity in the two genetic backgrounds. Immediate reductions in the ratios of 490/400 nm in both backgrounds were observed, confirming that H$_2$O$_2$ had oxidized the leaf discs. It was also established that the type of multi-well plate is important, and the black plates were more suitable than clear plates. However, the statistical interpretation of the redox ratios and total fluorescence levels obtained by the two types of plates were different;
therefore, it was not possible to conclude that fad7-1 plants were constitutively oxidized compared to Col-0 plants.

Introduction

Reactive oxygen species (ROS) are highly reactive, oxygen containing molecules and they can play a dual role in plant stress responses by acting as signaling compounds or by causing deleterious effects on plant cells (Miller et al., 2010). In plants, ROS are generated in various sub-cellular compartments as a result of photosynthesis and other aerobic metabolism (Sharma et al., 2012; Tripathy and Oelmüller, 2012). Chloroplasts are major sources of ROS in plants, since they generate singlet oxygen (\(\cdot O_2\)) in photosystem II, and superoxide radical (\(\cdot O_2^-\)), hydroxyl radical (\(\cdot OH\)) and hydrogen peroxide (H\(_2\)O\(_2\)) in photosystem I (Keren et al., 1995; Apel and Hirt, 2004; Laloi et al., 2006). Cells have mechanisms to scavenge these toxic ROS by different antioxidative enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), ascorbate peroxidase (APX), and non-enzymatic antioxidants such as ascorbic acids (AsA), tocopherols and phenolics (Noctor and Foyer, 1998; Dinakar et al., 2009; Sharma et al., 2012). Generally, an equilibrium is maintained between ROS and its scavengers to avoid harmful effects on the cells. Various biotic and abiotic stresses can disturb this equilibrium, and can damage the cells by causing an oxidative burst (Jambunathan, 2010; Demidchik et al., 2014; Petrov et al., 2015; Yu et al., 2017).

Several lines of evidence suggest that the impaired fatty acid desaturases constitutively enhance ROS levels as well as in response to a variety of stresses. Using a luciferase reporter gene with a singlet oxygen responsive promoter, Alnasrawi (2015) has shown that fatty acid desaturase 7-1 (fad7-1) may have constitutively high levels of singlet oxygen. Lipid profiling of
spr2 mutation in tomato with impaired fad7-1 function, and fad3fad7fad8 triple mutant in Arabidopsis have shown that these mutants have increased levels of fatty acid hydroperoxides, which are indicators of oxidative stress, demonstrating that plants with impaired fatty acid desaturase function may accumulate high levels of ROS (unpublished data by M. Mueller and F. Goggin). In addition, it has been shown that the expression of α-dioxygenae1 (DOX1) is upregulated in response to aphids (Avila et al., 2013). These studies illustrate that changes in fatty acid composition in plants influence the accumulation of ROS, which can lead to enhanced defense responses. The enhanced defense responses could in turn increase plant’s resistance against stresses.

In order to maintain optimal efficiency of cellular activities, it is important that the overall reduction-oxidation (redox) processes are under control. The redox status depends on the relative balance between ROS and antioxidants. Under stress conditions, the redox status can change. The change in redox state can generate and transmit information in order to induce various regulatory responses (Scheibe and Dietz, 2012). For example, it has been shown that changes in redox status elicit retrograde signaling between the chloroplast and the nucleus (Dietz et al., 2016), which can influence the expression of defense-related genes (León et al., 2013).

It is challenging to study the ROS production because of their high reactivity and short life span. The methods that were used in the past to study the temporal nature of redox status required extraction of tissue and they were labor intensive (Hanson et al., 2004). The development of redox-sensitive reporter genes has introduced the ability to monitor the redox status in vivo. An example for such sensors is reduction–oxidation sensitive yellow fluorescent protein (rxYFP) and green fluorescent protein (roGFP) (Hanson et al., 2004). roGFP can be used in ratiometric assays due to having two excitation peaks at 400 and 490 nm (Dooley et al., 2004).
roGFP is created by substituting surface exposed elements with two cysteines on the GFP protein which allows the disulfide bridges to be formed between the two cysteines (Hanson et al., 2004). When oxidized, the two cysteines on the GFP protein form a disulfide bridge and increases fluorescence intensity at 400 nm, and the disulfide bridge breaks when reduced and increases fluorescence intensity at 490 nm (Bhaskar et al., 2014). Therefore, the ratio of 400/490 nm can be used to accurately measure the overall redox status.

There are different versions of roGFP. roGFP2 has an additional mutation, S65T, compared to roGFP1. This mutation causes a shift in excitation wavelengths. roGFP2 is a sensor for redox potential of glutathione. Glutathione participates in maintaining cellular redox equilibrium. The changes in the redox status is expressed in reduced glutathione (GSH) to oxidized glutathione-disulfide (GSSG) ratio (Dooley et al., 2004; Hanson et al., 2004). In the seeds we received, the roGFP2 transgenes are under the ubiquitin promoter (Aller et al., 2013) and the roGFP2 is fused with the Glutaredoxin1 (GRX1) mediator. The GRX1 mediates the glutathione redox buffer changes by reversibly transferring electrons between GSH and roGFP2 (Meyer et al., 2007). This roGFP2 reporter gene can be targeted to different organelles in the cells such as plastids, peroxisomes and cytoplasm to measure the redox status (Hanson et al., 2004). In this study, the overall redox status using the roGFP2 reporter gene was used to understand how fad7 may influence ROS.

FAD7 is a chloroplast-localized protein (Wallis and Browse, 2002; Andreu et al., 2007) and the fad7 mutation dramatically modifies the fatty acid composition of chloroplast membranes (Li et al., 2003). The roGFP2 reporter gene used in this study is localized in the plastids and that allowed us to study the overall redox status in chloroplasts. The plastid-roGFP2 is referred to as roGFP2 hereafter in this paper. The goals of this study were to generate
transgenic fad7-1 lines containing roGFP2 reporter gene, confirming the fluorescence in the transgenic lines, testing methods to optimize the use of multi-well plates and compare the baseline differences in overall redox status between fad7-1 – roGFP2 and WT (Col-0 – roGFP2) to see if alterations in fatty acid desaturation affect the redox status. The hypothesis is that fad7-1 plants are constitutively oxidized compared to the wild-type plants. Highly oxidized environments are a result of accumulation of ROS and reductions of reducing molecules (Ye et al., 2015). Studying the overall redox status should provide a better understanding of ROS accumulation in fad7-1 and Col-0 plants.

Methods and materials

Plant materials and growth conditions

All the Arabidopsis seeds were surface sterilized in a sterile hood prior to plating. The seeds were rinsed with 70% ethanol for 5 minutes and the ethanol was eliminated followed by centrifugation. Then the seeds were rinsed with freshly prepared 50% bleach and 0.05% Tween 20 for 10 minutes. The seeds were then washed with autoclaved distilled water for 6 - 7 times until the bleach smell disappeared. The sterilized seeds were plated in petri dishes with 1X Murashige and Skoog (MS) media with 0.8% agar, 3% sucrose and adjusted pH of 5.5 - 5.9. The petri dishes with seeds were vernalized at 4 °C for 3 days and transferred to a growth chamber (Temp: 23 °C, RH: ~60%, light intensity: 200 µmol/m²/sec, and 11-h/13-h light/dark photoperiod). After 2 weeks, the Arabidopsis seedlings were transplanted in a mix of peat moss, vermiculite, perlite (4:3:2 ratio) supplemented with slow release fertilizer (Osmocote Plus; 15-9-12) (Scotts-MiracleGro Company, Marysville, OH) and placed back in the growth chamber.
Plants were watered 2-3 times a week and fertilized once a week by adding MiracleGro to the water per manufacture’s recommendations.

We used *A. thaliana* plants with *roGFP2* reporter gene to measure the overall redox status of *fad7-1* mutants. However, the *roGFP2* reporter gene was in Col-0 background (seeds provided by Dr. Andreas Meyer). Therefore, we introduced the *roGFP2* reporter gene into *fad7-1* to compare the overall redox status in *fad7-1* and wild-type (Col-0) plants. The generation of *fad7-1* plants with *roGFP2* reporter gene was done in the laboratory by crossing Col-0-*roGFP2* (paternal) with *fad7-1* plants that carry the mutation *glabra-1 (gl1)* (maternal). The recessive *gl1* mutation lacks the trichome differentiation protein GL1 and the presence of one allele will cause the expression of GL1 (Marks and Feldmann, 1989). Therefore, the presence of trichomes was used as a phenotypic screening measure to identify the F1 plants containing the *roGFP2* reporter gene in *fad7-1* background. Seeds collected from F1 generation were replanted and allowed to self-pollinate in order to generate F2 and subsequent generations.

DNA extraction

One-step DNA extraction protocol developed by Kasajima et al. (2004) was used to extract DNA. The extraction buffer was prepared by diluting the Edward’s solution (200 mM Tris-HCl (pH 7.5), 25 mM EDTA, 250 mM NaCl, and 0.5% SDS) (Edwards et al., 1991) with TE buffer (10 mM Tris (pH 8.0) and 1mM EDTA) by 10 folds. Three autoclaved glass beads (3 mm) were added to microcentrifuge tubes along with 3-5 mg of Arabidopsis leaf tissue and 200 µL of the extraction buffer. The leaf tissues were homogenized using Geno/Grinder® 2010 (SPEX SamplePrep, Metuchen, NJ) at 1750 rpm for 30 seconds and then stored at -20 °C.
Screening for fad7-1-roGFP2 plants

Initially, the F2 fad7-1-roGFP2 plants were screened for fluorescence using Cytation3 Cell Imaging Multi-mode Reader (BioTek® Instruments, Inc., Winooski, VT). The plants that showed fluorescence were then screened for homozygous fad7-1 using PCR. A total volume of 25 µL PCR reaction was prepared by adding 25 mM MgCl₂ (2.5 µL), 5x GoTaq Flexi buffer (5 µL), 10 µM forward and reverse primers (1 µL each), 10 mM dNTPs (0.5 µL), Taq polymerase (0.2 µL), nuclease free water (12.8 µL) and extracted DNA from leaf tissue (2 µL). Fifty plants were PCR screened for the presence of FAD7-1 and fad7-1 alleles using the forward primer for AtFAD7 5’-TTTCAGTGGGCTCGAAGTCC-3’, the forward primer for Atfad7-1 5’-TTTCAGTGGGCTCGAAGACT-3’ and the shared reverse primer 5’-ATCTGCGGGCTCGAAGACT-3’. Touch down (TD) PCR (Korbie and Mattick, 2008) was used to increase the specificity of the amplification using the following conditions for the FAD7-1: initial denaturation at 95 °C for 5 min; phase I = 95 °C for 45 s, 67 °C to 58 °C for 45 s, and 72 °C for 45 s (reducing 1 °C per cycle); phase II = 95 °C for 45 s, 57 °C for 45 s, and 72 °C for 45 s (20 cycles); and final extension = 72 °C for 5 min. For the fad7-1 phase I, the temperature was reduced from 65 °C to 56 °C (1 °C per cycle) and in phase II, the 20 cycles were run at annealing temperature of 55 °C. PCR products were viewed on 1% agarose gels containing GelRed® stain (Biotium, Inc., Fremont, CA). PCR was repeated again with the plants that were positive for homozygous fad7-1 alleles to verify that they were truly homozygous fad7-1. Once this was confirmed, the F3 seeds were collected.

F3 Arabidopsis plants were also tested for fluorescence using Cytation3 Cell Imaging Multi-mode Reader. Since the fluorescence was not uniform in F3 plants, PCR was done to confirm whether they carry the roGFP2 reporter gene. DNA were extracted from six F3 fad7-1 –
roGFP2 lineages and they were screened using PCR for the presence of roGFP2 using the forward primer 5’-GGATCCCATGGTGAGCAAGGGCGAG-3’ and the reverse primer 5’-GTCGACTTACTTGTACAGCTCGTCC-3’ (Meyer et al., 2007). A total volume of 25 µL PCR reaction was prepared by adding 25 mM MgCl$_2$ (2.5 µL), 5x GoTaq Flexi buffer (5 µL), 10 µM forward and reverse primers (0.5 µL each), 10 mM dNTPs (0.5 µL), Taq polymerase (0.2 µL), nuclease free water (13.8 µL) and extracted DNA from leaf tissue (2 µL). PCR program for the roGFP2 reporter gene is as follows: initial denaturation = 95 °C for 5 min; annealing = 95 °C for 45 s, 55 °C for 45 s, and 72 °C for 45 s; and final extension for 72 °C for 5 min. PCR products were visualized on 1% agarose gels containing GelRed® stain (Biotium, Inc., Fremont, CA). The percent fluorescence and the percent germination rates of the 6 lineages were also calculated.

Once the plants with strong fluorescence and better germination rates were identified, the F4 seeds were collected. These seeds were used in subsequent experiments.

Experiment 1 – Assessing wound response and measuring redox status of fad7-1 – roGFP2 plants

F4 Arabidopsis seeds were planted according to the protocol mentioned above. The leaf position was standardized by marking the top leaf with a string when the Arabidopsis rosette had 7 leaves. The marked leaf was harvested about 3 weeks after transplanting. One leaf disc per leaf was cut using a 10 mm (diameter) cork borer. Wounding can cause an oxidative response (Savatin et al., 2014). Hence, the tissue collection by cutting a leaf disc using a cork borer can cause an oxidative response independent of any treatments applied. For that reason, previous protocols have let the collected tissue sit overnight to recover from wounding; however, that can cause the tissue to dry out and it shortens the time period over which the experiment can run. In this study, the extensiveness of wound response was determined to see whether it would skew
the results if the analysis used wounded leaf without overnight incubation. The oxidative response to wounding that occurs during tissue collection was measured in two ways. One was by taking fluorescence intensity measurements of the leaf disc, and the other was using imaging to look for effects that were limited to the edges where the wounding occurred.

The cut leaf disc was immediately added to the designated well of the clear 24-well plate (Techno Plastic Products AG, Trasadingen, Switzerland). Prior to placing the leaf disc, 200 µL of autoclaved water was added to each well to avoid desiccation of the leaf discs. Two 24-well plates were used in this experiment. Once all the leaf discs were placed, the plates were covered with lids and the fluorescence intensities of each plate were measured at 400 and 490 nm immediately. Additional measurements were taken at 30, 60 and 120 minutes after the leaf discs were cut.

Seven extra leaf discs were placed on microscope slides with cover slips and imaged using 500/542 nm and 390/542 nm filter cubes at 0, 30, 60 and 120 minutes after the leaf discs were cut to visualize if there are any wounding effects along the edges of the leaf discs. The images were processed using ImageJ software (nih.gov) by dividing the image from 500/542 nm filter by the image from 390/542 nm filter.

Experiment 2 – Measuring redox status in fad7-1 x roGFP2 using black multi-well plates and confirmation of reporter gene activity

Black 24-well plates with clear bottoms (Eppendorf AG, Hamburg, Germany) were used in this experiment instead of clear plates. Leaf discs preparation was carried out as previously described in experiment 1 using new F4 plants and the leaf discs were added to the designated well with 200 µL of autoclaved water. Three 24-well plates were used for the experiment. Once
all the leaf discs were placed, the plates were covered with lids and set aside for 60 minutes to recover from wounding. After 60 minutes, the fluorescence intensities of each plate were measured at 400 and 490 nm. Then, to study the responsiveness of the *roGFP2* reporter gene in both backgrounds, the autoclaved water was pipetted out of one plate, 150 µL of 100 mM H₂O₂ was added and fluorescence intensities at 400 and 490 nm were measured. Since H₂O₂ is an oxidizing agent, the calculated ratio of 490/400 nm is expected to decrease (Meyer et al., 2007). Fluorescence intensities were measured at 400 and 490 nm at every 10 minutes for the first 30 minutes, then every 15 minutes for a total of two hours.

Statistical analysis

Both experiment 1 and 2 were set up as Randomized Complete Block (RCB) designs. The mean differences in the ratio of 490/400 nm and total fluorescence (400 + 490 nm) of *roGFP2* in *fad7-1* and Col-0 were analyzed by one-way ANOVA and plates were considered as random blocks. All the data from experiment 1 were log transformed to meet the requirements to achieve normal distribution of the dependent variable. Repeated measures analysis of experiment 1 data was used to see if there was a wounding effect over time. All the statistical analyses were conducted with RStudio v.1.0.136 (RStudio, Inc.).

Results

Introduction of the roGFP2 reporter gene into fad7-1 background

To obtain *fad7-1 – roGFP2* Arabidopsis plants, the *roGFP2* reporter gene that was in a Col-0 background was crossed with *fad7-1/gli* Arabidopsis plants. F1 plants containing the *roGFP2* reporter gene in *fad7-1* background was identified by the presence of trichomes. All the
F1 plants (100%) had trichomes, which confirmed that they were products of cross-pollination (Figure 1).

Screening for fad7-roGFP2 plants

Eighty-five Arabidopsis plants from the F2 generation were screened for fluorescence using the GFP filter in the Cytation3 imager and 48 out of 85 F2 plants expressed fluorescence (56%). The plants that expressed fluorescence were then screened using PCR to select for homozygous fad7-1 mutants. Initial PCR screening had identified that 11 plants were homozygous for the FAD7-1 allele, 14 plants were homozygous for the fad7-1 allele, and 23 plants were heterozygotes (Figure 2). However, re-testing of the fad7-1 homozygotes had revealed that two of them are heterozygotes (Figure 3). Possibly, contamination may have caused the detection of false negatives. In addition, the crude DNA extraction may affect the efficacy, since it may not remove some PCR inhibitors. It was confirmed that 11 plants were homozygous for the FAD7-1 allele (23%), 12 plants were homozygous for the fad7-1 allele (25%), and 25 plants were heterozygous (52%). Seeds were collected from the F2 plants that expressed fluorescence and were homozygous for the fad7-1 allele. Fluorescence was tested again using GFP filters in F3 plants to confirm that they have uniform fluorescence. However, most of the lineages did not show uniform fluorescence suggesting that all the F2 plants probably did not have two copies of the roGFP2 transgene. Six lineages were screened using roGFP2 primers (Figure 4). Based on the percent fluorescence and the germination rates, lineage 17 was selected for the subsequent experiments (Table 1).
Experiment 1 – Wound response and edge effects of leaf discs

The calculated ratio of 490/400 nm (t = -1.525, df = 119, P = 0.13) and total fluorescence (t = -1.48, df = 119, P = 0.14) did not significantly differ over time (Figure 5).

There was a slight edge effect that was detectable by imaging the leaf discs; but it did not influence the fluorescence measurements even at 0 minutes. This edge effect seemed to be decline quickly (Figure 6). However, as a precaution, the leaf discs were incubated for 1 hour prior to taking fluorescence measurements in subsequent experiments.

Experiment 1 – Measuring overall redox status and total fluorescence in fad7-1 and Col-0 in clear plates

The transgenic fad7-1 containing roGFP2 had a significantly higher ratio of 490/400 nm compared to Col-0 – roGFP2 line at 0 min (F = 4.33, df = 1, 38, P = 0.0442), 30 min (F = 11.22, df = 1, 38, P = 0.0018), 60 min (F = 10.46, df = 1, 38, P = 0.0026) and 120 min (F = 9.47, df = 1, 38, P = 0.0039) (Figure 5A) indicating that fad7-1 plants are constitutively reduced more than Col-0 plants. Similarly, the total fluorescence was also significantly higher in fad7-1 than in Col-0 at 0 min (F = 9.41, df = 1, 38, P = 0.004), 30 min (F = 15.48, df = 1, 38, P = 0.0003), 60 min (F = 15.16, df = 1, 38, P = 0.0003) and 120 min (F = 12.87, df = 1, 38, P = 0.0009) (Figure 5B), which show that the roGFP2 transgene was expressed more strongly in fad7-1 than in Col-0. However, the total fluorescence values were low according to the technical assistance services at Biotek; therefore, possible ways of addressing these low values were investigated. It was discovered that using black plates instead of clear plates produce better readings. Therefore, subsequent experiments were designed to compare the redox status of fad7-1 and Col-0 using black plates.
Experiment 2 – measurements of overall redox status and total fluorescence of Col-0 and fad7-1 using black plates

The baseline differences of overall redox status between Col-0 and fad7-1 Arabidopsis plants were examined using roGFP2 reporter gene constructs. Based on the results from the experiment 1, the tissue recovery time was reduced to 60 minutes and black plates were used instead of clear plates to improve the fluorescence values. The ratio of 490/400 nm and the total fluorescence (400 + 490 nm) was used to compare the baseline differences of leaf discs at 60 minutes after the tissue collection. There were 29 replicates for Col-0 – roGFP2 and 27 replicates for fad7-1 – roGFP2. No significant difference was observed in the ratio of 490/400 nm between fad7-1 and Col-0 (one-way ANOVA: $F = 1.92$, df = 1, 2.02, $P = 0.30$) (Figure 7A). Moreover, significant differences were not observed in total fluorescence between fad7-1 and Col-0 (one-way ANOVA: $F = 2.04$, df = 1, 2.02, $P = 0.34$) (Figure 7B).

Experiment 2 – Reporter gene activity in response to H$_2$O$_2$ using black plates

The results showed that the 490/400 nm ratios of both Col-0 – roGFP2 and fad7-1 – roGFP2 dropped immediately after adding H$_2$O$_2$ (Figure 8A). Significant differences in ratio of 490/400 nm between Col-0 – roGFP2 and fad7-1 – roGFP2 were seen at all time points except on 60 min and 180 min. However, a significant difference in total fluorescence between Col-0 – roGFP2 and fad7-1 – roGFP2 was only seen at 61 min, which was immediately after adding H$_2$O$_2$ (Figure 8B). The test statistics are shown in Table 2 for both the ratio of 490/400 nm and total fluorescence.
Discussion

Generation of transgenic line and optimization of fluorescence measurement technique

To study the overall redox status in *fad7-1* plants, a transgenic *fad7-1* line that carried the *roGFP2* reporter gene was generated. This was done by crossing Arabidopsis plants (Col-0) that have *roGFP2* reporter gene with *fad7-1* Arabidopsis plants. The crossing method was used to ensure that the *roGFP2* transgene was inserted on the same location and the same number of copies of the transgene was present in both Col-0 and *fad7-1* backgrounds. A transgenic *fad7-1 – roGFP2* line was developed after screening 3 generations for the presence of homozygous *fad7-1* allele and *roGFP2* allele, and considering the uniformity of fluorescence and good seed germination rates.

As the first step of optimizing the fluorescent measurements, fluorescent readings were taken to determine if wounding affect the fluorescence. Several studies reported that wounding can increase ROS accumulation leading to a shift in plant’s redox status (reviewed in Suzuki and Mittler, 2012). Leaf discs were monitored for changes over time to see whether there was a shift in redox status as the leaf discs recover. There were no differences in ratio of 490/400 nm and total fluorescence over time. In addition, the images were captured to see if there were any edge effects on the leaf discs as a result of cutting. A slight edge effect was seen soon after the leaf discs were cut, although the edge effect did not influence the fluorescence measurements. No strong wound responses were observed; therefore, the second set of experiments was initiated earlier. A shorter wait time after the tissue collection reduced aging and dehydration of the leaf discs.
However, the fluorescence intensities measured in this experiment were low, so investigated possible ways of improving the fluorescence values. In experiment 2, black plates were used for fluorescence intensity measurements and the black plates gave better values than clear plates. When using clear plates, a cross-talk between the samples can occur. This cross-talk would be lower in 24-well plates compared to 96-well plates; however, it would be better to use black plates for fluorescence measurements. Black plates absorb the scattered light and only emit wavelengths that are coming from the sample. White plates are also available on the market; however, this is not ideal for fluorescence measurements since the white plate itself can reflect fluorescence. The fluorescence intensity values from black plates were 4-fold higher than for clear plates. Due to the quality of the fluorescence readings, it was decided to use black 24-well plates in subsequent experiments.

To confirm the activity of the roGFP2 in Col-0 and fad7-1 backgrounds, the fluorescence intensities were measured at 400 and 490 nm to study the reporter gene’s responsiveness to H2O2. In both backgrounds, roGFP2 showed a fast response, which was consistent with previously published data by Meyer et al. (2007). Both fad7-1 and Col-0 showed a rapid decrease in 490/400 nm ratio immediately after adding H2O2 and the plants slowly recovered to their initial redox status over time. This confirms that the crossing was done successfully and the roGFP2 reporter gene in the fad7-1 background responded to H2O2. The total fluorescence in both backgrounds reduced immediately after H2O2 was added. However, it recovered faster and no significant differences were seen after 70 minutes.

A transgenic fad7-1 line of Arabidopsis with roGFP2 was successfully generated by crossing the Col-0 – roGFP2 Arabidopsis plants with fad7-1/gl1 Arabidopsis plants. A significant wound response was not observed. Thus, the leaf disc incubation time was
significantly reduced. Black plates were found to be more suitable than clear plates for measuring fluorescence measurements in \textit{fad7-1 – roGFP2} and Col-0 – \textit{roGFP2}.

\textit{Baseline differences of redox status in \textit{fad7-1 – roGFP2} and Col-0 – \textit{roGFP2}}

Clear plates used in experiment 1 produced significantly greater 490/400 nm ratios in \textit{fad7-1 – roGFP2} compared to Col-0 – \textit{roGFP2}. This indicates that \textit{fad7-1} plants were constitutively more reduced than Col-0 plants (Meyer et al., 2007). In addition, the total fluorescence measured in this experiment was also higher in \textit{fad7-1} compared to Col-0. This suggests that the \textit{roGFP2} reporter gene was strongly expressed in \textit{fad7-1} plants. In the second experiment using black plates, no significant differences were observed in the ratio of 490/400 nm and the total fluorescence between \textit{fad7-1 – roGFP2} and Col-0 – \textit{roGFP2}. These results from the experiment 2 suggest that the overall redox status and the level of expression of the reporter gene do not differ between \textit{fad7-1} and Col-0 in the absence of stress.

Since the statistical interpretation of the two experiments was inconclusive, there was no comparison made of the overall redox status between \textit{fad7-1} and Col-0 plants with high confidence. The results could be different due to the type of plate used. As explained above, there could be fluorescence signal cross-talk between the samples in clear plates. Further experiments need to be conducted using black multi-well plates with more replicates. The redox status also depends on the amounts of both ROS and antioxidants that are present. Therefore, it is worthwhile to study the abundance of individual ROS and antioxidants in FAD7 mutants.
Figure 1: Selection of fad7-1 x roGFP2 line of Arabidopsis plants.
Figure 2: F2 Arabidopsis plants that expressed fluorescence were screened for the presence of the *FAD7* (top) and/or *fad7* (bottom) alleles. First round of PCR screening identified 11 plants homozygous for the *FAD7* allele (orange), 14 plants homozygous for the *fad7* allele (green), and 23 heterozygotes (white).

Figure 3: F2 Arabidopsis plants that were positive for *roGFP2* and homozygous for *fad7-1* were reanalyzed using PCR to verify that each was truly homozygous for PCR (Top: *FAD7* primers, bottom: *fad7* primers). Two of the plants that were homozygous according to the first PCR were found to be heterozygous. This confirmed that twelve plants were homozygous for *fad7-1*.
Figure 4: F3 Arabidopsis plants that expressed fluorescence were screened using roGFP2 primers for the presence of roGFP2 reporter gene.

Table 1: Percent seed germination and percent fluorescence of different F3 lineages of fad7-1 x roGFP2

<table>
<thead>
<tr>
<th>F3 fad7-1 x roGFP2 lineage</th>
<th>% germination</th>
<th>% fluorescence</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>50</td>
<td>68.4</td>
</tr>
<tr>
<td>14</td>
<td>75</td>
<td>72</td>
</tr>
<tr>
<td>15</td>
<td>65.2</td>
<td>80</td>
</tr>
<tr>
<td>17</td>
<td>82.2</td>
<td>83.8</td>
</tr>
<tr>
<td>34</td>
<td>46.8</td>
<td>95</td>
</tr>
<tr>
<td>42</td>
<td>38</td>
<td>50</td>
</tr>
</tbody>
</table>
Figure 5: Fluorescent measurements from experiment 1. The ratio of 490/400 nm (A) and total fluorescence (B) were compared between *fad7-1* – *roGFP2* and *Col-0* – *roGFP2* Arabidopsis plants at 0, 30, 60 and 120 minutes after cutting the leaf discs. Both the ratio of 490/400 nm and total fluorescence were significantly different between *fad7-1* and *Col-0* at all timepoints. Data points labeled with asterisks differed significantly between *fad7-1* and *Col-0* plants. Data were analyzed by one-way ANOVA with a random block effect ($\alpha = 0.05$, $n = 20$). Error bars represent SD. In addition, both the ratio of 490/400 nm and total fluorescence did not significantly differ over time (Repeated measures analysis, $\alpha = 0.05$).
Figure 6: Ratiometric images (500/390 nm) of leaf discs of \textit{fad7-1 – roGFP2} Arabidopsis plants showing minimal edge effects. Images were shown for a representative set of samples and six additional replicates show the same trend.
Figure 7: Comparison of basal differences in redox status in Experiment 2 using black 24-well plates. The ratio of 490/400 nm (A) and the total fluorescence (B) of fad7-1 and Col-0 Arabidopsis plants containing roGFP2 were compared in 60 minutes after the leaves were cut. Data were analyzed by one-way ANOVA with a random block factor (plate). Error bars represent SD. Marked pairwise comparisons denote significant differences according to paired t-tests at $\alpha = 0.05$, $n = 30$.
Figure 8: Redox responses to H$_2$O$_2$ in the chloroplast of Arabidopsis plants. The asterisks denote significant differences of either the ratio of 490/400 nm (A) or the total fluorescence (B) at each individual time points. Error bars represent SD.
Table 2: Test statistics of ratio of 490/400 nm and total fluorescence in response to H$_2$O$_2$ in black plates

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Ratio of 490/400 nm</th>
<th>Total fluorescence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t - value</td>
<td>df</td>
</tr>
<tr>
<td>60</td>
<td>-1.24</td>
<td>16</td>
</tr>
<tr>
<td>61</td>
<td>-4.21</td>
<td>16</td>
</tr>
<tr>
<td>70</td>
<td>-3.26</td>
<td>16</td>
</tr>
<tr>
<td>80</td>
<td>-3.29</td>
<td>16</td>
</tr>
<tr>
<td>90</td>
<td>-2.90</td>
<td>16</td>
</tr>
<tr>
<td>105</td>
<td>-2.39</td>
<td>16</td>
</tr>
<tr>
<td>120</td>
<td>-2.60</td>
<td>16</td>
</tr>
<tr>
<td>135</td>
<td>-2.70</td>
<td>16</td>
</tr>
<tr>
<td>150</td>
<td>-2.48</td>
<td>16</td>
</tr>
<tr>
<td>165</td>
<td>-2.33</td>
<td>16</td>
</tr>
<tr>
<td>180</td>
<td>-2.02</td>
<td>16</td>
</tr>
</tbody>
</table>
References

Alnasrawi AM (2015) Optimizing a luciferase-based tool for studying the effects of fatty acid desaturase7 on singlet oxygen accumulation in Arabidopsis thaliana. Theses and Dissertations. 1319. http://scholarworks.uark.edu/etd/1319

Chapter V

Conclusion

Fatty Acid Desaturase7 (FAD7) is a chloroplast-localized enzyme that converts 16 and 18 carbon dienoic (two double bonds) fatty acids to trienoic (three double bonds) fatty acids. The loss of function of FAD7 in tomato (Solanum lycopersicum) and Arabidopsis (Arabidopsis thaliana) showed enhanced resistance against aphids. The FAD7 mutants used in this study are the suppressor of prosystemin-mediated response2 (spr2) mutant in tomato and the fad7-1 mutant in Arabidopsis.

Preliminary data from our laboratory suggested the genes that are associated with photosynthesis were upregulated constitutively between spr2 and wild-type (WT) (cv. Castlemart). Also, the fatty acid hydroperoxide profiles suggested higher levels of singlet oxygen – a type of reactive oxygen species (ROS) – accumulation in spr2 plants compared to WT plants. Therefore, to identify the factors that determine aphid resistance in FAD7 mutants, we studied 1) the effects of loss of function of FAD7 on photosynthesis of tomato in the presence and absence of potato aphids (Macrosiphum euphorbiae) using the spr2 mutant; 2) the effects of spr2 on primary metabolites; and 3) the effects of overall change in redox status in chloroplasts using fad7-1 mutant in Arabidopsis. The results showed that spr2 plants have enhanced carbon assimilation rates, enhanced efficiencies of light-dependent and light-independent reactions in the absence of aphids. These results showed that the enhanced overall photosynthesis in spr2 as measured by carbon assimilation is due to enhanced efficiencies in both light-dependent and light-independent reactions. Although we observed differences in photosynthetic activity, we did not detect differences in the intermediates of the Calvin cycle, TCA cycle and glycolysis, and the end products of photosynthesis between spr2 and WT. However, we saw more growth in spr2...
plants compared to WT, which would suggest the enhanced photosynthesis in spr2 plants could be transferred to growth. In addition, the abundance of glutamate was significantly greater in spr2 than in WT plants. The increased glutamate concentration could be important in defense against aphids (Chen et al., 1997). Exogenous application of glutamate induces defense and knockout of receptors compromise resistance to more than one pest (Kan et al., 2017; Toyota et al., 2018).

We also studied whether the spr2 mutant can maintain the enhanced photosynthetic efficiencies under potato aphid pressure. In both aphid-infested plants and uninfested controls, the efficiency of light-dependent reactions was enhanced in spr2 plants compared to WT plants. Aphid infestation did not significantly affect the maximum efficiency of photosystem II, indicating the aphid densities used here did not have deleterious effects on photosynthesis. One day after infestation, infested plants showed significantly greater fraction of light that is directed towards photochemistry and significantly lower fraction of light that is emitted as heat, suggesting that aphid infestation triggered a short-term compensatory increase in photochemical quenching. This suggests the spr2 plants may have enhanced overall photosynthetic efficiency in response to aphids. The increase in photosynthesis may be involved in mechanisms of defense in spr2 plants.

Next, we studied the overall change in redox status in chloroplasts using fad7-1 Arabidopsis plants with chloroplast-localized roGFP2 reporter gene, which is sensitive to redox changes. When the redox status is changed, plants can signal and modify regulatory processes, which could lead to defense responses. We successfully developed a tool to measure the redox status in chloroplasts by introducing the roGFP2 transgene into fad7-1 background and optimize the redox status measuring technique to detect the changes in redox status in chloroplasts.
However, the statistical differences were inconclusive between multiple experiments of redox status comparisons using $fad7-1 - roGFP2$ and Col-0 – $roGFP2$ lines. Therefore, further experiments needs to be continued to confirm the redox status of chloroplasts in FAD7 mutants.

The enhanced photosynthesis could also be channeling energy towards secondary metabolism to produce more defensive chemicals, which could contribute to aphid resistance in $spr2$ plants. Also, it is important to look at individual ROS in FAD7 mutants. So far, we have the Hyper reporter gene in $fad7-1$ background, which can be used to estimate the levels of H_2O_2 in FAD7 mutants and WT plants. The redox status depends on the relative balance between ROS and antioxidants. The FAD7 mutants could potentially have more ROS, but at the same time, they could have more antioxidants. This could be a reason why one of the experiments suggested similar redox status in $fad7-1$ and WT plants. Previous studies showed that $spr2$ plants contain high levels of vitamin C (an antioxidant) compared to WT (Suza et al., 2010). Therefore, it would be useful to look at other antioxidants as well to study how they would contribute to the overall redox status in FAD7 mutants. In addition, the glutamate levels in $spr2$ plants need further investigation, since it could be important in plant defense signaling and aphid resistance.

The $spr2$ mutants also display some characteristics of tolerant plants such as enhanced photosynthetic rates and increased vegetative growth (Strauss and Agrawal, 1999; Koch et al., 2016). Tolerant plants have the ability to minimize the negative fitness effects caused by biotic and abiotic stresses. Further studies are needed to confirm the tolerance of $spr2$ mutants with different densities of aphids and timings of infestations to see how these different factors affect plant fitness.
References

