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ABSTRACT

This dissertation presents an improved method for controlling multi-input multi-

output affine nonlinear systems. A method based on Lie derivatives of the system’s outputs

is proposed to transform the system into an equivalent strict feedback form. This enables

using backstepping control approaches based on Lyapunov stability and integrator backstep-

ping theory to be applied. The geometrical coordinate transformation of multi-input multi-

output affine nonlinear systems into strict feedback form has not been detailed in previous

publications. In this research, a new approach is presented that extends the transformation

process of single-input single-output nonlinear. A general algorithm of the transformation

process is formulated. The research will consider square feedback linearizable multi-input

multi-output systems where the number of inputs equals to the number of outputs. The

preliminary mathematical tools, necessary and sufficient feedback linearizability conditions,

as well as a step-by-step transformation process is explained in this research. The approach

is applied to the Western Electricity Coordinating Council (WECC) 3-machine nonlinear

power system model. Detailed simulation results indicate that the proposed design method

is effective in stabilizing the WECC power system when subjected to large disturbances.
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1 Introduction

1.1 Overview

It has always been a primary goal for engineers and scholars of control theory to

find the most effective approaches and control methods to provide desired and best stability

properties. However, in some cases, a good and reliable method may exist but for one reason

or another is not suitable for the intended system and vise versa. Therefore, it is sometimes

very helpful to modify the intended system or transform it into an equivalent form that

meets the control method requirements [1]. Feedback linearization control, for instance, has

been considered a successful approach in solving many control problems by transforming

dynamical nonlinear models into athor equivalent canonical forms that are simpler than the

original forms [2–8]. However, it still has some shortcomings and restrictions [9]. Exact

feedback linearization known as input-state feedback linearization is based on the cancella-

tion of system’s nonlinearities regardless of the importance of some of those nonlinearities to

the system stability, that is other than the certain structural property required to perform

such cancellation [10]. Input-output feedback linearization on the other hand accounts in

many cases just to part of the closed-loop dynamics. The other part, which is the internal

dynamics, is considered unobservable and the stability of this internal dynamics is essentially

required for the input-output feedback linearization effectiveness and this is not the case in

many real systems [9]. It is noteworthy to mention that input-state feedback linearization

is simply an exceptional case of input-output feedback linearizable systems when successive

differentiation of output function turns out equal relative degree and system’s order [11].

Furthermore, ordinary proportional-integral control has been widely adopted in controlling

energy conversion systems and although it is applicable and easy to design, it ignores the

transient states of the system and deals with the average steady-state model in the neigh-

borhood of equilibrium points which makes dynamic response relatively slow. Moreover,

it is difficult to tune PI control parameters [12]. Fortunately, the preceding imperfection

of feedback linearization and PI controllers can be avoided and overcome using some other

advanced nonlinear control approaches such as backstepping control method that is based on

the Lyapunov theorem of stability. This is owing to that backstepping concentrates on con-

struction of Lyapunov function whose derivative can be negative by a verity of control laws
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rather than one specific control law form. Thus, backstepping as a design approach is more

flexible in avoiding the cancellation of useful nonlinearities [13]. Since it was developed in

1990, the backstepping control approach has been used in many control design applications.

In [14] it was used to stabilize nonlinear spacecraft attitude considering the disturbances and

delay due to the actuator based on the delay compensation method [15]. [16] based on [17]

develops a controller for one-dimensional unstable heat equation through solving the kernel

partial differential equation to transform the partial differential system into an exponential

stable target system. A position controller was designed in [18] for an unmanned aerial

vehicle with four rotors using adaptive backstepping and adding integral action as proposed

in [19] in association with a linear PID controller for stabilizing attitude angle. Adaptive and

non-adaptive indirect backstepping controller designs based on making an assumption of the

virtual control functions was developed in [20] to track the output voltage of a dc-dc boost

converter. Making the same assumptions and considering the effect of parasitic elements,

an adaptive backstepping controller was designed in [21] to track the output voltage of a

dc-dc boost converter. In [22], coping with the uncertainty of input voltage, inductance,

capacitance, load resistance, and undesirable overestimation when choosing update laws was

achieved by combining input-output linearization and backstepping methodology to design

a dynamical adaptive controller for PWM power converters. Defining new state variables

was the approach to transform a mismatched nonlinear dynamic system in [23] into strict

feedback form such that the backstepping control method can be applied. In this research,

the coordinate transformation of feedback linearizable systems based on the Lie derivative

of the system outputs is proposed for multi-input multi-output systems. This method is

an extension to the transformation process of single-input single-output systems proposed

in [24].

1.2 Motivation and Contribution of The Dissertation

This research develops a technique and introduces preliminaries, required conditions

and a step-by-step procedure to transform the mathematical model of MIMO affine non-

linear system into its equivalent strict feedback form such that the backstepping control

method based on Lyapunov stability can be applied. The main motives to have MIMO

affine nonlinear systems in the strict feedback form and using the backstepping control ap-

proach is its ability to accommodate useful nonlinearities and avoid wasteful cancellations,

2



unlike feedback linearization methods both input-output and input-state linearization that

require precise structural property and often cancel useful nonlinearities. For example, to

stabilize z∗ = 0 for the system given in [25] as

ż = a cos z − bz3 + cu (1.1)

using feedback linearization, the control law:

u =
1

c

(
−a cos z + bz3 − kz

)
(1.2)

will result in the linear feedback system:

ż = −kz (1.3)

which satisfies (5.2) with

V̇ ≤ −W (z) = −kz2 (1.4)

as will be explained later in chapter five. This is actually illogical control law because in

addition to a cos z it cancels −bz3 which is helpful for stabilization at z = 0 especially for

large values of z. Moreover, the existence of bz3 in (1.2) will enlarge the value of u which

is harmful and may result in non-robustness. On the other hand, flexibility in choosing a

control law to make a derivative of Lyapunov function negative helps to avoid such harmful

cancellation. For instance, choosing the control law

u =
1

c
(−a cos z − kz) (1.5)

satisfies (5.2) such that

V̇ ≤ −W (z) = −
(
kz2 + bz4

)
(1.6)

and makes u grows linearly with |z|. From this perspective, simplifying the process of

transforming MIMO affine nonlinear systems into the required strict feedback form will add

a very good tool to control engineers’ toolbox.

1.3 Dissertation Outline

This dissertation has seven chapters beyond the introduction (Chapter 1). Chapter 2

discusses briefly the mathematical tools that will be needed for understanding control meth-

ods covered in this dissertation and will also be useful when explaining the transformation
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process into the strict feedback form. Topics that will be explained are the gradient of a

scalar function, Jacobian matrix, coordinate transformation of linear and nonlinear systems,

derived mapping, Lie derivative and Lie brackets of vector fields, affine nonlinear system,

some function properties, Frobenius theorem, the notion of relative degree and lastly condi-

tions required for a nonlinear system to be exactly feedback linearizable.

Chapter 3 explains the common nonlinear feedback control methods input-state and

input-output feedback linearization where most of the math tools from chapter 2 as well as

Frobenius theorem and feedback linearizability conditions will be applied. These methods are

considered a good beginning to understand systems mapping and transformation. When a

clear output function exists input-output feedback linearization for both single-input single-

output and multi-input multi-output nonlinear systems is discussed. On the other hand,

input-state feedback linearization is presented for both single-input single-output and multi-

input multi-output nonlinear systems when a clear output function may or may not be given.

In chapter 4, the dissertation concentrates on discussing Sontag’s formula and Lya-

punov theorem of stability which is considered one of the widely used methods to prove the

stability of nonlinear systems. However, the interest will be in the part of this theorem where

the behavior of mathematically designed function known as Lyapunov function candidate is

studied to examine the stability of closed loop systems.

Chapter 5 converses about integrator backstepping theorem and presents a detailed

systematic procedure to produce stabilizing controllers for nonlinear systems with a chain of

integrators and also for systems in the strict feedback form.

Chapter 6 introduces a simple example to clarify the difference between static and

dynamic control design methods and also explains both simple adaptive regulation and sim-

ple adaptive tracking controllers designs. Moreover, it introduces adaptive backstepping for

second-order matched systems when the control input is in the same equation as the un-

known parameter and then extended matching systems when the unknown parameter is one

integrator before the control input. The disadvantage of increasing the number of parameter

estimates due to overestimation in previous approaches is solved in the last section through

mathematically overestimation reduction.

In chapter 7, the dissertation explains step by step procedure on how to transform

single-input single-output and multi-input multi-output affine nonlinear systems into equiv-

alent strict feedback form. The conclusion summarizes the research results and overall work

of this dissertation and also addresses a few suggestions for future work.
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2 Preliminary Mathematical Knowledge

The purpose of this chapter is to explain briefly the math tools and theorems that

will frequently be used for understanding the common nonlinear methods covered in this dis-

sertation and will also be very useful when using backstepping approach and transformation

into the strict feedback form. The topics that will be explained are the gradient of a scalar

function, Jacobian matrix, the coordinate transformation of linear and nonlinear systems,

derived mapping, Lie derivative and Lie brackets of vector fields, affine nonlinear system,

some function properties, Frobenius theorem, the notion of relative degree and in the last

section of this chapter conditions required to feedback linearize nonlinear systems.

2.1 Gradient

Consider a smooth scalar function h of the state z:

h (z) (2.1)

The gradient of h is denoted by:

∇h =
∂h

∂z
(2.2)

and represented by a group of elements in a row vector [26].

∇h (z) =
[

∂h
∂z1

∂h
∂z2

∂h
∂z3

. . . ∂h
∂zn

]
(2.3)

Example 2.1

The gradient of the function given by:

h (z) = z21 + z1z2 + z3 (2.4)

is obtained as:

∇h (z) =
[

∂h
∂z1

∂h
∂z2

∂h
∂z3

]

=
[

2z1 + z2 z1 1
]
M

(2.5)
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2.2 Jacobian Matrix

Consider a vector field:

f (z) =


f1 (z)

f2 (z)
...

fn (z)

 (2.6)

The Jacobian matrix of f (z) is designated by:

∇h =
∂f

∂z
(2.7)

and represented by a matrix of n× n dimension as follows [27]:

∇f (z) =


∂f1
∂z1

∂f1
∂z2

. . . ∂f1
∂zn

∂f2
∂z1

∂f2
∂z2

. . . ∂f2
∂zn

...
...

. . .
...

∂fn
∂z1

∂fn
∂z2

. . . ∂fn
∂zn

 (2.8)

Example 2.2

The Jacobian matrix of the vector field given by:

f (z) =


f1 (z)

f2 (z)

f3 (z)

 =


−az1 + k1

−bz2 + k2 − cz1z3
αz1z2

 (2.9)

is obtained as:

∇f (z) =


∂f1
∂z1

∂f1
∂z2

∂f1
∂z3

∂f2
∂z1

∂f2
∂z2

∂f2
∂z3

∂f3
∂z1

∂f3
∂z2

∂f3
∂z3

 =


−a 0 0

−cz3 −b −cz1
αz2 αz1 0

 M (2.10)

2.3 Coordinate Transformation of Linear and Nonlinear Systems

2.3.1 Transformation of Linear System

Given a linear system of the following general form in z coordinates

ż = Az + Bu

y = Cz + Du
(2.11)
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where z ∈ Rn, u ∈ Rr, and y ∈ Rm are state vector, control input and output vector

respectively. A, B, C, and D are matrices of corresponding dimensions. Introducing a new

vector x through the transformation

Tz = x (2.12)

where T is a non-singular matrix of n× n dimension such that

T−1x = z (2.13)

then the system (2.11) can be transformed into the following system of x coordinates [28]

ẋ = TAT−1x+ TBu

y = CT−1x+ Du
(2.14)

2.3.2 Transformation of Nonlinear System

Given a SISO nonlinear system of the general form

ż = f (z) + g (z)u

y = h (z)
(2.15)

where z ∈ Rn, u ∈ R, y ∈ R are state variable, control input variable, and output variable

respectively. The nonlinear state transformation

x = T (z) =



T1 (z)

T2 (z)
...

Tn−1 (z)

Tn (z)


(2.16)

can transform the system into an equivalent system of a new state x according to the following

definition and lemma [10].

Definition 2.1 If a transformation x = T (z) is smooth and its inverse z = T−1 (x) exists

and be smooth as well, then it is called a diffeomorphism.

Lemma 2.1 Considering the coordinate transformation (2.16), one can write

ẋ =
dT (z)

dz
=
∂T

∂z

dz

dt
(2.17)

Thus, systems of the form (2.15) can be re-written as

ẋ =
∂T (z)

∂z
f
(
z = T−1 (x)

)
+
∂T (z)

∂z
g
(
z = T−1 (x)

)
u

y = h
(
z = T−1 (x)

) (2.18)
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2.4 Derived Mapping

Due to the importance of nonlinear system coordinate transformation in this research,

it would be very helpful to acquaint the reader with the term derived mapping and the

concept of vector field transformation as explained in [29] in following definition.

Definition 2.2 Given a diffeomorphism

x = T (z) =


T1 (z)

T2 (z)
...

Tn (z)

 (2.19)

from z ∈ Rn to x ∈ Rn and a vector field in z space as

f (z) =


f1 (z)

f2 (z)
...

fn (z)

 (2.20)

then transformation of f (z) from z space to x space denoted by T. (f) is called derived

mapping and defined as.

T. (f (z)) =
∂T (z)

∂z
f
(
z = T−1 (x)

)
(2.21)

where ∂T (z)
∂z

is non-singular Jacobian matrix at z = z∗ of T (z). In the same manner

T−1. (f (x)) =
∂T−1 (x)

∂x
f (x = T (z)) (2.22)

𝑧 𝑠𝑝𝑎𝑐𝑒 𝑥 𝑠𝑝𝑎𝑐𝑒 

𝑓(𝑧) 𝑓(𝑥) 

𝑇. (𝑓 𝑧 ) 

𝑇−1 . (𝑓 𝑥 ) 

Figure 2.1: Derived mapping between z space and x space.
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Example 2.3

Given the transformation matrix

x = T (z) =


z1 + z2

z2

z1 + z3

 (2.23)

and the vector field

f (z) =


1

−1

z1 + z2

 (2.24)

From (2.21), the derived mapping of f (z) is obtained as follows

T. (f (z)) =


1 1 0

0 1 0

1 0 1




1

−1

z1 + z2

 =


0

−1

1 + z1 + z2

 (2.25)

and from (2.23), one can easily find

z = T−1 (x) =


x1 − x2
x2

x3 − x1 + x2

 (2.26)

From (2.26), substituting for z1 and z2 in (2.25) yields

T. (f (z)) =


0

−1

1 + x1

 = f (x) (2.27)

In the same manner, from (2.22)

T−1. (f (x)) =


1 −1 0

0 1 0

−1 1 1




0

−1

1 + x1

 =


1

−1

x1

 (2.28)

From (2.23), substituting for x1 in (2.28) yields

T−1. (f (x)) =


1

−1

z1 + z2

 = f (z) M (2.29)
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2.5 Lie Derivative

In differential geometry, Lie derivative is the directional derivative of a scalar function

h (z) along a vector f (z) and according to [30] it is explained in the following definition:

Definition 2.3 Consider a smooth scalar function h (z) and a smooth vector field f (z).

A new scalar function known as Lie derivative of h (z) with respect to f (z) designated by

Lfh (z) is defined by:

Lfh (z) = ∇h (z) .f (z)

=
∂h (z)

∂z
f (z)

(2.30)

Accordingly, one can recursively define repeated Lie derivatives as follows:

L0
fh (z) = h (z)

Lfh (z) =
∂h (z)

∂z
f (z)

L2
fh (z) = LfLfh (z) =

∂ (Lfh (z))

∂z
f (z)

...

Lkfh (z) = Lf
(
Lk−1f h (z)

)
=
∂
(
Lk−1f h (z)

)
∂z

f (z)

(2.31)

The example on this part will be postponed to Section 3.1 of input-output feedback lin-

earization for SISO affine nonlinear systems.

2.6 Lie Brackets

Lie bracket is another useful mathematical tool in this research and it was discussed

in [31,32] as differentiating a vector field along another vector field according to the following

definition.

Definition 2.4 Consider the vector fields f (z) and g (z) on Rn. The derivative of g (z)

along f (z) results in another vector field known as Lie bracket of f (z) and g (z) and desig-

nated by [f, g] or commonly as adfg and is defined as:

[f, g] = ∇g (z) f (z)−∇f (z) g (z) (2.32)

where ∇g (z) and ∇f (z) are Jacobian matrices.
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Accordingly, one can recursively define repeated Lie brackets as follows:

ad0fg = g

adkfg =
[
f, adk−1f g

]
, k ≥ 1.

(2.33)

Example 2.4

Consider the DC motor system given in [10] as:

ż = f (z) + g (z)u

where:

f (z) =


−az1

−bz2 + k − cz1z3
θz1z2

 , g (z) =


1

0

0

 (2.34)

The first and second Lie brackets can be calculated as follows:

adfg = [f, g] =


0 0 0

0 0 0

0 0 0




−az1
−bz2 + k − cz1z3

θz1z2

−

−a 0 0

−cz3 −b −cz1
θz2 θz1 0




1

0

0



=


0

0

0

−

−a
−cz3
θz2

 =


a

cz3

−θz2


(2.35)

ad2fg = [f, adfg] =


0 0 0

0 0 c

0 −θ 0




−az1
−bz2 + k − cz1z3

θz1z2

−

−a 0 0

−cz3 −b −cz1
θz2 θz1 0




a

cz3

−θz2



=


0

cθz1z2

bθz2 − kθ + cθz1z3

−


−a2

−acz3 − bcz3 + cθz1z2

aθz2 + cθz1z3



=


a2

acz3 + bcz3

bθz2 − aθz2 − kθ

 M (2.36)
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2.7 Affine Nonlinear System

In nonlinear control theory, most of today’s systems have the general form (2.15) for

SISO systems and the following general form for MIMO systems
ż1

ż2
...

żn

 =


f1 (z)

f2 (z)
...

fn (z)

+


g11 (z)

g12 (z)
...

g1n (z)

u1 +


g21 (z)

g22 (z)
...

g2n (z)

u2 + · · ·+


gm1 (z)

gm2 (z)
...

gmn (z)

um

y1

y2
...

ym

 =


h1 (z)

h2 (z)
...

hm (z)



(2.37)

whose short form can be written as

żn = f (z) +
m∑
i=1

gi (z)ui

yi = hi (z) , i = 1, . . . ,m

(2.38)

where z ∈ Rn, u ∈ Rm, and y ∈ Rm are state variables, control inputs, and system out-

puts respectively. Such nonlinear systems with nonlinear state vectors and linear control

input/inputs are called affine nonlinear systems in nonlinear control theories [33,34].

2.8 Function Properties

One of the important things that readers will frequently encounter in this research is

some functions’ properties explained in a well known nonlinear control textbook by Khalil

[10]. As what so-called Lyapunov function denoted by V (z) will frequently be utilized, then

if:

1. V (0) = 0 and V (z) > 0 with z 6= 0 ⇒ V (z) is Positive definite.

2. −V (z) is positive definite ⇒ V (z) is Negative definite.

3. V (0) = 0 and V (z) ≥ 0 with z 6= 0 ⇒ V (z) is Positive semi-definite.

4. −V (z) is positive semi-definite ⇒ V (z) is Negative semi-definite.

5. V (z)→∞ as |z| → ∞ ⇒ V (z) is Radially unbounded.
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2.9 Frobenius Theorem

This theorem is needed when discussing the conditions required for feedback lineariza-

tion of nonlinear systems. It was explained in detail in [35–37]. Consider a function h (z)

and a function qij (z) where i = 1, 2, . . . ,m; j = 1, 2, . . . , n and m < n such that:

[
∂h(z)
∂z1

∂h(z)
∂z2

. . . ∂h(z)
∂zn

]

q11 (z) q21 (z) . . . qm1 (z)

q12 (z) q22 (z) . . . qm2 (z)
...

...
...

...

q1n (z) q2n (z) . . . qmn (z)

 (2.39)

results in the following set of differential equations

∂h (z)

∂z1
q11 (z) +

∂h (z)

∂z2
q12 (z) + · · ·+ ∂h (z)

∂zn
q1n (z) = 0

∂h (z)

∂z1
q21 (z) +

∂h (z)

∂z2
q22 (z) + · · ·+ ∂h (z)

∂zn
q2n (z) = 0

...

∂h (z)

∂z1
qm1 (z) +

∂h (z)

∂z2
qm2 (z) + · · ·+ ∂h (z)

∂zn
qmn (z) = 0

(2.40)

If the matrix [
q1 (z) q2 (z) . . . qm (z)

]
(2.41)

in (2.39) has rank m at point z = z∗, then there are n − m scalar functions around z∗

representing the solutions of (2.40) if and only if the rank of the matrix[
q1 (z) q2 (z) . . . qm (z) [qi, qj]

]
(2.42)

equals m as well for all z around z∗ where [qi, qj] is the Lie bracket of any two columns in

(2.41) such that the jacobian matrix
∂h1(z)
∂z1

∂h1(z)
∂z2

. . . ∂h1(z)
∂zn

∂h2(z)
∂z1

∂h2(z)
∂z2

. . . ∂h2(z)
∂zn

...
...

...
...

∂hn−m(z)
∂z1

∂hn−m(z)
∂z2

. . . ∂hn−m(z)
∂zn

 (2.43)

has rank n−m at z = z∗. These conditions of Frobenius theorem in terms of conditions of

feedback linearization are known as involutivity of a set of vector fields. The next theorem

summarizes the concept of Frobenius theorem.
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Theorem 2.1 Given the partial differential equations set

∂h (z)

∂z

[
q1 (z) q2 (z) . . . qm (z)

]
n×m

= 0

There exist h1 (z) , h2 (z) , . . . , hn−m (z) satisfying the given set of equations and the set of

vectors in the Jacobian matrix

∇h =
∂h (z)

∂z

are linearly independent if and only if the set of vector fields[
q1 (z) q2 (z) . . . qm (z)

]
is involutive. ♦

2.10 Relative Degree

2.10.1 Relative Degree for SISO Affine Nonlinear Systems

Consider the SISO affine nonlinear system given in (2.15) as

ż = f (z) + g (z)u

y = h (z)

It is well known that this system is of a relative degree ρ if one needs to differentiate y = h (z)

ρ times until u the control input appears for the first time and does not vanish for every

z ⊂ D ⊂ Rn.

Example 2.5

Consider the system of order three given by:

ż1 = z22 + 5u

ż2 = z1 + z3

ż3 = −z1z2 + z1

y = z2

(2.44)

Differentiating y = h (z) in time yields

ẏ = ż2

= z1 + z3
(2.45)
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Differentiating it one more time results in

ÿ = ż1 + ż3

= z1 − z1z2 + z22 + 5u
(2.46)

Now, one can see that the control input u showed up in ÿ. Thus, one can say that this

system is of a relative degree ρ = 2 in R3. M

As explained in Khalil’s [10], if f (z), g (z) and h (z) are smooth enough in the domain

D ⊂ Rn, then the first derivative of the output y = h (z) in terms of Lie derivative is:

ẏ =
∂h

∂z
[f (z) + g (z)u]

def
=Lfh (z) + Lgh (z)u

If Lgh (z) = 0, then the first derivative of y will be ẏ = Lfh (z) which is independent of

input u. In the same manner, the second derivative is given by:

ÿ =
∂ (Lfh)

∂z
[f (z) + g (z)u]

def
=L2

fh (z) + LgLfh (z)u

where L2
fh (z) ,

∂(Lfh)
∂z

f (z) and LgLfh (z) ,
∂(Lfh)
∂z

g (z) are Lie derivative of Lfh (z) along

f (z) and Lie derivative of Lfh (z) along g (z) respectively. Again, if LgLfh (z) = 0, then the

second derivative of y will be ÿ = L2
fh (z) which is also independent of input u. Continuing

like this, if h (z) satisfies:

LgL
i−1
f h (z) = 0, i = 1, . . . , ρ− 1

LgL
ρ−1
f h (z) 6= 0, ∀ z ⊂ D ⊂ Rn

then one can say that the system is of a relative degree ρ and

y(ρ) = Lρfh (z) + LgL
ρ−1
f h (z)u.

That is the input appears for the first time in the ρth derivative of the output. In brief, the

next definition summarizes the relative degree notion for SISO nonlinear systems

Definition 2.5 A SISO affine nonlinear system of the general form (2.15)

ż = f (z) + g (z)u

y = h (z)
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with smooth enough f (z), g (z), and h (z) in the domain D ⊂ Rn, has a relative degree ρ if

h (z) satisfies:

LgL
i−1
f h (z) = 0, i = 1, . . . , ρ− 1 (2.47a)

LgL
ρ−1
f h (z) 6= 0, ∀ z ⊂ D ⊂ Rn (2.47b)

so that

y(ρ) = Lρfh (z) + LgL
ρ−1
f h (z)u. (2.48)

2.10.2 Relative Degree for MIMO Affine Nonlinear Systems

The analysis used so far for the relative degree of SISO affine nonlinear systems can be

expanded to find the relative degree of MIMO affine nonlinear systems as explained in [29].

Consider MIMO affine nonlinear system given in (2.38) as

żn = f (z) + g1 (z)u1 + g2 (z)u2 + · · ·+ gm (z)um

y1 = h1

...

ym = hm

If f (z), gi (z), and hi (z) are smooth enough in the domain D ⊂ Rn, then:

Considering output function y1 = h1 (z)y1 = h1 (z)y1 = h1 (z)

1st1st1st derivative

y
(1)
1 =

∂h1
∂z

[f (z) + g1 (z)u1 + g2 (z)u2 + . . .+ gm (z)um]

def
=Lfh1 (z) + Lg1h1 (z)u1 + Lg2h1 (z)u2 + . . .+ Lgmh1 (z)um

If

Lg1h1 (z) = Lg2h1 (z) = . . . = Lgmh1 (z) = 0

then

y
(1)
1 = Lfh1 (z)

which is independent of ui. Similarly
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2nd2nd2nd derivative

y
(2)
1 =

∂ (Lfh1)

∂z
[f (z) + g1 (z)u1 + g2 (z)u2 + . . .+ gm (z)um]

def
=L2

fh1 (z) + Lg1Lfh1 (z)u1 + Lg2Lfh1 (z)u2 + . . .+ LgmLfh1 (z)um

If

Lg1Lfh1 (z) = Lg2Lfh1 (z) = . . . = LgmLfh1 (z) = 0

then

y
(2)
1 = L2

fh1 (z)

Continuing like this

(ρ1 − 1)th(ρ1 − 1)th(ρ1 − 1)th derivative

y
(ρ1−1)
1 =

∂
(
Lρ1−2f h1

)
∂z

[f (z) + g1 (z)u1 + g2 (z)u2 + . . .+ gm (z)um]

def
=Lρ1−1f h1 (z) + Lg1L

ρ1−2
f h1 (z)u1 + Lg2L

ρ1−2
f h1 (z)u2 + . . .+ LgmL

ρ1−2
f h1 (z)um

If

Lg1L
ρ1−2
f h1 (z) = Lg2L

ρ1−2
f h1 (z) = . . . = LgmL

ρ1−2
f h1 (z) = 0

then

y
(ρ1−1)
1 = Lρ1−1f h1 (z)

(ρ1)
th(ρ1)
th

(ρ1)
th derivative

y
(ρ1)
1 =

∂
(
Lρ1−1f h1

)
∂z

[f (z) + g1 (z)u1 + g2 (z)u2 + . . .+ gm (z)um]

def
=Lρ1f h1 (z) + Lg1L

ρ1−1
f h1 (z)u1 + Lg2L

ρ1−1
f h1 (z)u2 + . . .+ LgmL

ρ1−1
f h1 (z)um

If at least one

LgiL
ρ1−1
f h1 (z) 6= 0, i = 1, 2, . . . ,m.

then MIMO affine nonlinear system (2.38) has a sub-relative degree ρ1 corresponding to

output function y1 = h1 (z).
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Considering output function y2 = h2 (z)y2 = h2 (z)y2 = h2 (z)

1st1st1st derivative

y
(1)
2 =

∂h2
∂z

[f (z) + g1 (z)u1 + g2 (z)u2 + . . .+ gm (z)um]

def
=Lfh2 (z) + Lg1h2 (z)u1 + Lg2h2 (z)u2 + . . .+ Lgmh2 (z)um

If

Lg1h2 (z) = Lg2h2 (z) = . . . = Lgmh2 (z) = 0

then

y
(1)
2 = Lfh2 (z)

which is independent of ui. Similarly

2nd2nd2nd derivative

y
(2)
2 =

∂ (Lfh2)

∂z
[f (z) + g1 (z)u1 + g2 (z)u2 + . . .+ gm (z)um]

def
=L2

fh2 (z) + Lg1Lfh2 (z)u1 + Lg2Lfh2 (z)u2 + . . .+ LgmLfh2 (z)um

If

Lg1Lfh2 (z) = Lg2Lfh2 (z) = . . . = LgmLfh2 (z) = 0

then

y
(2)
2 = L2

fh2 (z)

Continuing like this

(ρ2 − 1)th(ρ2 − 1)th(ρ2 − 1)th derivative

y
(ρ2−1)
2 =

∂
(
Lρ2−2f h2

)
∂z

[f (z) + g1 (z)u1 + g2 (z)u2 + . . .+ gm (z)um]

def
=Lρ2−1f h2 (z) + Lg1L

ρ2−2
f h2 (z)u1 + Lg2L

ρ2−2
f h2 (z)u2 + . . .+ LgmL

ρ2−2
f h2 (z)um
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If

Lg1L
ρ2−2
f h2 (z) = Lg2L

ρ2−2
f h2 (z) = . . . = LgmL

ρ2−2
f h2 (z) = 0

then

y
(ρ2−1)
2 = Lρ2−1f h2 (z)

(ρ2)
th(ρ2)
th

(ρ2)
th derivative

y
(ρ2)
2 =

∂
(
Lρ2−1f h2

)
∂z

[f (z) + g1 (z)u1 + g2 (z)u2 + . . .+ gm (z)um]

def
=Lρ2f h2 (z) + Lg1L

ρ2−1
f h2 (z)u1 + Lg2L

ρ2−1
f h2 (z)u2 + . . .+ LgmL

ρ2−1
f h2 (z)um

If at least one

LgiL
ρ2−1
f h2 (z) 6= 0, i = 1, 2, . . . ,m.

then MIMO affine nonlinear system (2.38) has a sub-relative degree ρ2 corresponding to

output function y2 = h2 (z). Continuing like this

Considering output function ym−1 = hm−1 (z)ym−1 = hm−1 (z)ym−1 = hm−1 (z)

1st1st1st derivative

y
(1)
m−1 =

∂hm−1
∂z

[f (z) + g1 (z)u1 + g2 (z)u2 + . . .+ gm (z)um]

def
=Lfhm−1 (z) + Lg1hm−1 (z)u1 + Lg2hm−1 (z)u2 + . . .+ Lgmhm−1 (z)um

If

Lg1hm−1 (z) = Lg2hm−1 (z) = . . . = Lgmhm−1 (z) = 0

then

y
(1)
m−1 = Lfhm−1 (z)

which is independent of ui. Similarly
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2nd2nd2nd derivative

y
(2)
m−1 =

∂ (Lfhm−1)

∂z
[f (z) + g1 (z)u1 + g2 (z)u2 + . . .+ gm (z)um]

def
=L2

fhm−1 (z) + Lg1Lfhm−1 (z)u1 + Lg2Lfhm−1 (z)u2 + . . .+ LgmLfhm−1 (z)um

If

Lg1Lfhm−1 (z) = Lg2Lfhm−1 (z) = . . . = LgmLfhm−1 (z) = 0

then

y
(2)
m−1 = L2

fhm−1 (z)

Continuing like this

(ρm−1 − 1)th(ρm−1 − 1)th(ρm−1 − 1)th derivative

y
(ρm−1−1)
m−1 =

∂
(
L
ρm−1−2
f hm−1

)
∂z

[f (z) + g1 (z)u1 + g2 (z)u2 + . . .+ gm (z)um]

def
=L

ρm−1−1
f hm−1 (z) + Lg1L

ρm−1−2
f hm−1 (z)u1 + Lg2L

ρm−1−2
f hm−1 (z)u2 + . . .+

LgmL
ρm−1−2
f hm−1 (z)um

If

Lg1L
ρm−1−2
f hm−1 (z) = Lg2L

ρm−1−2
f hm−1 (z) = . . . = LgmL

ρm−1−2
f hm−1 (z) = 0

then

y
(ρm−1−1)
m−1 = L

ρm−1−1
f hm−1 (z)

(ρm−1)
th(ρm−1)
th

(ρm−1)
th derivative

y
(ρm−1)
m−1 =

∂
(
L
ρm−1−1
f hm−1

)
∂z

[f (z) + g1 (z)u1 + g2 (z)u2 + . . .+ gm (z)um]

def
=L

ρm−1

f hm−1 (z) + Lg1L
ρm−1−1
f hm−1 (z)u1 + Lg2L

ρm−1−1
f hm−1 (z)u2 + . . .+

LgmL
ρm−1−1
f hm−1 (z)um

If at least one

LgiL
ρm−1−1
f hm−1 (z) 6= 0, i = 1, 2, . . . ,m.

then MIMO affine nonlinear system (2.38) has a sub-relative degree ρm−1 corresponding to

output function ym−1 = hm−1 (z).
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Considering output function ym = hm (z)ym = hm (z)ym = hm (z)

1st1st1st derivative

y(1)m =
∂hm
∂z

[f (z) + g1 (z)u1 + g2 (z)u2 + . . .+ gm (z)um]

def
=Lfhm (z) + Lg1hm (z)u1 + Lg2hm (z)u2 + . . .+ Lgmhm (z)um

If

Lg1hm (z) = Lg2hm (z) = . . . = Lgmhm (z) = 0

then

y(1)m = Lfhm (z)

which is independent of ui. Similarly

2nd2nd2nd derivative

y(2)m =
∂ (Lfhm)

∂z
[f (z) + g1 (z)u1 + g2 (z)u2 + . . .+ gm (z)um]

def
=L2

fhm (z) + Lg1Lfhm (z)u1 + Lg2Lfhm (z)u2 + . . .+ LgmLfhm (z)um

If

Lg1Lfhm (z) = Lg2Lfhm (z) = . . . = LgmLfhm (z) = 0

then

y(2)m = L2
fhm (z)

Continuing like this

(ρm − 1)th(ρm − 1)th(ρm − 1)th derivative

y(ρm−1)m =
∂
(
Lρm−2f hm

)
∂z

[f (z) + g1 (z)u1 + g2 (z)u2 + . . .+ gm (z)um]

def
=Lρm−1f hm (z) + Lg1L

ρm−2
f hm (z)u1 + Lg2L

ρm−2
f hm (z)u2 + . . .+

LgmL
ρm−2
f hm (z)um
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If

Lg1L
ρm−2
f hm (z) = Lg2L

ρm−2
f hm (z) = . . . = LgmL

ρm−2
f hm (z) = 0

then

y(ρm−1)m = Lρm−1f hm (z)

(ρm)th(ρm)th(ρm)th derivative

y(ρm)
m =

∂
(
Lρm−1f hm

)
∂z

[f (z) + g1 (z)u1 + g2 (z)u2 + . . .+ gm (z)um]

def
=Lρmf hm (z) + Lg1L

ρm−1
f hm (z)u1 + Lg2L

ρm−1
f hm (z)u2 + . . .+

LgmL
ρm−1
f hm (z)um

If at least one

LgiL
ρm−1
f hm (z) 6= 0, i = 1, 2, . . . ,m.

then MIMO affine nonlinear system (2.38) has a sub-relative degree ρm corresponding to

output function ym = hm (z) and hence if the matrix
Lg1L

ρ1−1
f h1 (z) Lg2L

ρ1−1
f h1 (z) . . . LgmL

ρ1−1
f h1 (z)

Lg1L
ρ2−1
f h2 (z) Lg2L

ρ2−1
f h2 (z) . . . LgmL

ρ2−1
f h2 (z)

...
...

...
...

Lg1L
ρm−1
f hm (z) Lg2L

ρm−1
f hm (z) . . . LgmL

ρm−1
f hm (z)


is non-singular at z = z∗, then MIMO affine nonlinear system of the form (2.38) is of a vector

relative degree

ρ = {ρ1, ρ2, ρ3, . . . , ρm}

The following definition summarizes the relative degree notion for MIMO affine nonlinear

systems.

Definition 2.6 A MIMO affine nonlinear system of the general form (2.38)

żn = f (z) + g1 (z)u1 + g2 (z)u2 + · · ·+ gm (z)um

yi = hi (z) , i = 1, . . . ,m

with smooth enough f (z), gi (z), and hi (z) in the domain D ⊂ Rn, has a vector relative

degree

ρ = {ρ1, ρ2, ρ3, . . . , ρm} (2.49)

if the following conditions are true for every output function yi = hi (z).
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1.

Lg1L
k
fhi (z) = Lg2L

k
fhi (z) = . . . = LgmL

k
fhi (z) = 0, k = 0, 1, . . . , ρi − 2. (2.50)

2. At least one element is not zero in the row vector[
Lg1L

ρi−1
f hi (z) Lg2L

ρi−1
f hi (z) . . . LgmL

ρi−1
f hi (z)

]
(2.51)

so that

y
(ρi)
i = Lρif hi (z) +

m∑
j=1

LgjL
ρi−1
f hi (z)uj (2.52)

and for the given MIMO system

3. The following matrix is non-singular in the neighborhood of z = z∗
Lg1L

ρ1−1
f h1 (z) Lg2L

ρ1−1
f h1 (z) . . . LgmL

ρ1−1
f h1 (z)

Lg1L
ρ2−1
f h2 (z) Lg2L

ρ2−1
f h2 (z) . . . LgmL

ρ2−1
f h2 (z)

...
...

...
...

Lg1L
ρm−1
f hm (z) Lg2L

ρm−1
f hm (z) . . . LgmL

ρm−1
f hm (z)

 (2.53)

Example 2.6

In this example, obtaining a MIMO system’s relative degree will be shown by considering

the mathematical model for the proton exchange membrane fuel cell discussed in [38]. The

multi-input single-output dynamic model was first derived and then using the extended

system approach discussed in [9] and [39] to introduce extra states and outputs, the model

was converted into what so-called square MIMO system where the number of control inputs

equals the number of system outputs.
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Figure 2.2: Proton exchange membrane fuel cell.
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
ẋ1

ẋ2

ẋ3

ẋ4

 = −


UA
Va
x1

UA
Vc
x2

0

0

+


R◦T
Va

0

0

0

u1 +


0

R◦T
Vc

1

0

u2 −


R◦T
2FVa

R◦T
4FVc

0

1

u3 (2.54a)


y1

y2

y3

 =


h1 (x)

h2 (x)

h3 (x)

 =


VFC

x3

x4

 (2.54b)

The output voltage for a single PEMFC is

y1 = h1 (x) = VFC =
∆G

2F
+

∆S

2F
(T − T◦) +

R◦T

2F

[
lnx1 +

1

2
lnx2

]
+

{
− 0.948 +

[(
286× 10−5

)
+
(
20× 10−5

)
lnA+

(
4.3× 10−5

)
ln

(
x1

1.09× 106 × e(77/T )

)]
T

+
(
7.6× 10−5

)
T ln

(
x2

5.08× 106 × e(−408/T )

)
+
(
−1.93× 10−4

)
T lnu3

}
− (RM +RC)u3 + b ln

[
1− J

Jmax

]
(2.55)

Tables 2.1 - 2.4 present the definition for each of the symbols and parameters used in (2.54)

and (2.55)

Table 2.1: PEMFC states legend.

State Parameter

x1 PH2

x2 PO2

x3 y2

x4 y3

Table 2.2: PEMFC inputs legend.

Input Parameter

u1 vH2(in)

u2 vO2(in)

u3 i
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Table 2.3: PEMFC outputs legend.

Output Parameter

y1 VFC

y2 x3

y3 x4

Table 2.4: PEMFC parameters definitions.

Parameter Definition

PH2 ,PO2 Partial pressure of hydrogen and oxygen respectively

vH2(in)
, vO2(in)

Inlet mole flow rate of hydrogen and oxygen respectively

i Cell’s operating current (A)

Va, Vc Anode and cathode volumes respectively

U Fuel rate

A Flow area

∆G Gibb’s free energy change (J/mol)

F Faraday’s constant (96, 487 C/mol)

∆S Standard mole entropy change (J/mol)

T Cell’s operating temperature (T )

T◦ Cell’s reference temperature (T )

RM Proton exchange membrane equivalent resistance

RC The equivalent resistance of external circuit and it is assumed to be constant

R◦ Gas constant (8.315 J/mol.k)

b A variable coefficient subject to cell’s operating conditions (V )

J Current density of the cell(A/cm2)

Jmax Maximum current density (500− 1500 mA/cm2)

Considering output function y1 = h1 (x) = VFCy1 = h1 (x) = VFCy1 = h1 (x) = VFC

1st1st1st derivative

y
(1)
1 =

∂h1
∂x

[f (x) + g1 (x)u1 + g2 (x)u2 + g3 (x)u3]

def
=Lfh1 (x) + Lg1h1 (x)u1 + Lg2h1 (x)u2 + Lg3h1 (z)u3
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This yields

Lfh1 (x) =
[

R◦T
2Fx1

+
(4.3×10−5)T

x1
R◦T
4Fx2

+
(7.6×10−5)T

x2
0 0

]

−UA

Va
x1

−UA
Vc
x2

0

0


= −

(
R◦T

2F
+
(
4.3× 10−5

)
T

)
UA

Va
−
(
R◦T

4F
+
(
7.6× 10−5

)
T

)
UA

Vc

Lg1h1 (x)u1 =
[

R◦T
2Fx1

+
(4.3×10−5)T

x1
R◦T
4Fx2

+
(7.6×10−5)T

x2
0 0

]


R◦T
Va

0

0

0

u1

=

(
R◦T

2F
+
(
4.3× 10−5

)
T

)
R◦T

Vax1
u1

Lg2h1 (x)u2 =
[

R◦T
2Fx1

+
(4.3×10−5)T

x1
R◦T
4Fx2

+
(7.6×10−5)T

x2
0 0

]


0

R◦T
Vc

1

0

u2

=

(
R◦T

4F
+
(
7.6× 10−5

)
T

)
R◦T

Vcx2
u2

Lg3h1 (x)u3 =
[

R◦T
2Fx1

+
(4.3×10−5)T

x1
R◦T
4Fx2

+
(7.6×10−5)T

x2
0 0

]

− R◦T

2FVa

− R◦T
4FVc

0

−1

u3

= −
(
R◦T

2F
+
(
4.3× 10−5

)
T

)
R◦T

2FVax1
−
(
R◦T

4F
+
(
7.6× 10−5

)
T

)
R◦T

4FVcx2
u3

Thus

Lρ1f h1 (x) = Lfh1 (x)

Lg1L
ρ1−1
f h1 (x)u1 = Lg1L

0
fh1 (x)u1

Lg2L
ρ1−1
f h1 (x)u2 = Lg2L

0
fh1 (x)u2

Lg3L
ρ1−1
f h1 (x)u3 = Lg3L

0
fh1 (x)u3

and hence the system (2.54) has sub-relative degree ρ1 = 1 corresponding to y1 = h1 (x) =

VFC . The same way,
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Considering output function y2 = h2 (x) = x3y2 = h2 (x) = x3y2 = h2 (x) = x3

1st1st1st derivative

y
(1)
2 =

∂h2
∂x

[f (x) + g1 (x)u1 + g2 (x)u2 + g3 (x)u3]

def
=Lfh2 (x) + Lg1h2 (x)u1 + Lg2h2 (x)u2 + Lg3h2 (z)u3

This yields

Lfh2 (x) =
[

0 0 1 0
]

−UA

Va
x1

−UA
Vc
x2

0

0

 = 0

Lg1h2 (x)u1 =
[

0 0 1 0
]


R◦T
Va

0

0

0

u1 = 0

Lg2h2 (x)u2 =
[

0 0 1 0
]


0

R◦T
Vc

1

0

u2 = u2

Lg3h2 (z)u3 =
[

0 0 1 0
]

− R◦T

2FVa

− R◦T
4FVc

0

−1

u3 = 0

Thus

Lρ2f h2 (x) = Lfh2 (x)

Lg1L
ρ2−1
f h2 (x)u1 = Lg1L

0
fh2 (x)u1

Lg2L
ρ2−1
f h2 (x)u2 = Lg2L

0
fh2 (x)u2

Lg3L
ρ2−1
f h2 (x)u3 = Lg3L

0
fh2 (x)u3

and hence the system (2.54) has sub-relative degree ρ2 = 1 corresponding to y2 = h2 (x) = x3.

Similarly,
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Considering output function y3 = h3 (x) = x4y3 = h3 (x) = x4y3 = h3 (x) = x4

1st1st1st derivative

y
(1)
3 =

∂h3
∂x

[f (x) + g1 (x)u1 + g2 (x)u2 + g3 (x)u3]

def
=Lfh3 (x) + Lg1h3 (x)u1 + Lg2h3 (x)u2 + Lg3h3 (z)u3

This yields

Lfh2 (x) =
[

0 0 0 1
]

−UA

Va
x1

−UA
Vc
x2

0

0

 = 0

Lg1h2 (x)u1 =
[

0 0 0 1
]


R◦T
Va

0

0

0

u1 = 0

Lg2h2 (x)u2 =
[

0 0 0 1
]


0

R◦T
Vc

1

0

u2 = u2

Lg3h2 (z)u3 =
[

0 0 0 1
]

− R◦T

2FVa

− R◦T
4FVc

0

−1

u3 = −u3

Thus

Lρ2f h2 (x) = Lfh2 (x)

Lg1L
ρ3−1
f h3 (x)u1 = Lg1L

0
fh3 (x)u1

Lg2L
ρ3−1
f h3 (x)u2 = Lg2L

0
fh3 (x)u2

Lg3L
ρ3−1
f h2 (x)u3 = Lg3L

0
fh3 (x)u3

and hence the system (2.54) has sub-relative degree ρ3 = 1 corresponding to the output

function y3 = h3 (x) = x4. Accordingly, the proton exchange membrane fuel cell system is

of a vector relative degree ρ = {ρ1, ρ2, ρ3} = {1, 1, 1}. 4
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2.11 Conditions for Feedback Linearization

Before discussing the feedback linearization as a common nonlinear control method,

the dissertation reviews the required conditions for nonlinear systems to be exactly feedback

linearizable and shows how they can be tested for those conditions. For SISO affine nonlinear

systems, the necessary conditions were discussed thoroughly in [1], [29], [36] and [40–43].

Consider the SISO affine nonlinear system given in (2.15) without an output as

ż = f (z) + g (z)u

where z ∈ Rn and u ∈ R are respectively system’s states and control input. If there exists

an output function say φ (z) that satisfies

LgL
0
fφ (z) = LgLfφ (z) = LgL

2
fφ (z) = . . . = LgL

n−2
f φ (z) = 0 (2.56a)

LgL
n−1
f φ (z) 6= 0 (2.56b)

such that the relative degree of the system equals to its order ρ = n and the Jacobian

∂T (z)

∂z
=



∂φ(z)
∂z1

∂φ(z)
∂z2

. . . ∂φ(z)
∂zn

∂(Lfφ(z))
∂z1

∂(Lfφ(z))
∂z2

. . .
∂(Lfφ(z))

∂zn
...

...
. . .

...
∂(Ln−1

f φ(z))
∂z1

∂(Ln−1
f φ(z))
∂z2

. . .
∂(Ln−1

f φ(z))
∂zn

 (2.57)

is non-singular at z∗, then the given SISO affine nonlinear system with smooth f (z) and

g (z) is exactly feedback linearizable in the neighborhood of z∗. This is summarized in [29]

in the following lemma

Lemma 2.2 A SISO affine nonlinear system

ż = f (z) + g (z)u

is exactly feedback linearizable in the neighborhood of z∗ if there is an output function φ (z)

that results in the system’s relative degree ρ that equals to the system’s order n. ♦

To obtain the output function φ (z), one needs to solve (2.56) but first has to confirm its

existence. Here, the use of Forbenius theorem comes to play. It was previously proved in [43]

that the Lie derivative of φ (z) along the Lie bracket of the two vectors f (z) and g (z) is

defined as

L[f,g]φ (z) = Ladfgφ (z) = LfLgφ (z)− LgLfφ (z) (2.58)
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where
α1 = −x2 − k2,1x2

α̇1 = −x3 + x1 − k2,1 (x3 − x1)

α2 = −x4 − k3,1x4

α̇2 = −x5 + x1 − k3,1 (x5 − x1)

(7.137)

A comparison between the system’s response to random initial conditions in both open-loop

and closed-loop is given using Matlab/Simulink. The WECC 3-machine system (7.88) of

parameters obtained from [71] and listed in Table 7.6 was put in a closed-loop configuration

with the stabilizing function (7.136) as illustrated in the block diagram in Fig. 7.3. The

linear optimal control design with quadratic performance index [50] was used to design gain

values as k1,1 = 0.5774, k2,1 = 2.2188, k2,2 = 1.4023, k3,1 = 2.2188 and k3,2 = 1.4023.

�T1 
�T2 
�T3 
�T4 
�T5 

�€�:�ž�;     
(7.94)   

WECC IN 
STRICT 

FEEDBACK 
FORM   
(7.102) 

�V1,1 
�V2,1 
�V2,2 
�V3,1 
�V3,2 

BACKSTEPPING 
CONTROL   

(7.104) - (7.134) 

Figure 7.3: Closed-loop block diagram for transformation into strict feedback form and

backstepping control of WECC 3-machine system.
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Table 7.6: WECC 3-machine system Parameters values.

Parameter Value Parameter Value

E1 1.054 P1 D11

E2 1.050 P2 D22

E3 1.017 P3 D33

G11 0.845 B11 −2.988

G12 0.287 B12 1.513

G13 0.210 B13 1.266

G21 0.287 B21 1.513

G22 0.420 B22 −2.724

G23 0.213 B23 1.088

G31 0.210 B31 1.226

G32 0.213 B32 1.088

G33 0.277 B33 −2.368

C11 E1E1B11 D11 E1E1G11

C12 E1E2B12 D12 E1E2G12

C13 E1E3B13 D13 E1E3G13

C21 E2E1B21 D21 E2E1G21

C22 E2E2B22 D22 E2E2G22

C23 E2E3B23 D23 E2E3G23

C31 E3E1B31 D31 E3E1G31

C32 E3E2B32 D32 E3E2G32

C33 E3E3B33 D33 E3E3G33

Fig. 7.4 - Fig. 7.7 show system states, rotor angular differences, rotor angles and velocities

respectively in both open-loop and closed-loop situations. Simulation results show the effec-

tiveness of backstepping approach in stabilizing the system. Fig. 7.4a shows the stabilization

of the system’s states
(
ω1, δ̂2, ω2, δ̂3, ω3

)
in closed-loop configuration whereas Fig. 7.4b shows

the system’s response for the same initial conditions in open-loop configuration. Rotor angu-

lar differences
(
δ̂1, δ̂2, δ̂3

)
in closed-loop configuration are shown in Fig. 7.5a and in open-loop

in Fig. 7.5b. Fig. 7.6a shows the stabilization of the rotors angles (δ1, δ2, δ3) in closed-loop

and Fig. 7.6b shows the instability in open-loop. Finally, Fig. 7.7a shows the stability of the

rotor angular velocities (ω1, ω2, ω3) in closed-loop configuration and Fig. 7.7b shows their

instability when no controller is applied.
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Figure 7.4: WECC 3-machine system states.
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Figure 7.5: WECC 3-machine system rotor angular differences.
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Figure 7.6: WECC 3-machine system rotor angles.
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Figure 7.7: WECC 3-machine system rotor angular velocities.
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8 Conclusion

This dissertation focuses basically on how to transform multi-input multi-output non-

linear system into an equivalent strict feedback form. This enables applying backstepping

control approach based on Lyapunov stability and integrator backstepping theorem. After

the introduction, the necessary and required mathematical tools were discussed in the second

chapter. In the third chapter, two of the most common nonlinear control methods were ex-

plained in detail for both single-input single-output and multi-input multi-output systems.

The Lyapunov theorem of stability, as well as Sontag’s formula, were both explained in

chapter four. The notion of integrator backstepping, stabilization of systems with a chain of

integrators and systems in the strict feedback form using backstepping control methodology

were respectively explained in chapter five. In chapter six, simple adaptive regulation and

tracking backstepping controllers were both covered as well as backstepping for second-order

matched systems and extended matching systems. Avoiding overestimation when designing

controllers for extended matching systems was also covered in chapter six. Finally, in chapter

seven, the transformation process into a strict feedback form for both single-input single-

output and multi-input multi-output systems was explained. The mathematical model of

direct-drive surface permanent-magnet synchronous wind generator with boost converter as

a SISO system and the mathematical model for wind energy battery storage system as a

MIMO system were both transformed into their equivalent strict feedback forms in chapter

seven as well. The backstepping stabilizing controller was designed to stabilize permanent

magnet synchronous motor after transforming its mathematical model into its equivalent

strict feedback form. Similarly, a stabilizing MIMO controller was designed to stabilize the

Western Electricity Coordinating Council (WECC) 3-machines system. Both controllers

were tested using Matlab/Simulink to show their effectiveness. As a suggestion for future

work, the transformation of non-square multi-input multi-output systems were the number

of inputs is not equal to the number of outputs of the system might be of interest.
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