
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Theses and Dissertations

12-2019

Quantitative Study of the Antimicrobial Effects of Silver on the Quantitative Study of the Antimicrobial Effects of Silver on the

Motility of Escherichia coli Motility of Escherichia coli

Benjamin Russell
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/etd

 Part of the Bacterial Infections and Mycoses Commons, Cell Biology Commons, Health and Medical

Physics Commons, Medical Biophysics Commons, and the Nanoscience and Nanotechnology Commons

Citation Citation
Russell, B. (2019). Quantitative Study of the Antimicrobial Effects of Silver on the Motility of Escherichia
coli. Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/3498

This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please
contact ccmiddle@uark.edu.

A) B) C) D) E)

Figure 4: Image processing steps performed in ImageJ for swimming experiments. A) Raw
image data. B) Image with reset minimum and maximum intensities. C) Inverted image.
D) Image with subtracted background (rolling ball radius=10px). E) Final smoothed image.

2.4.2 Image Processing Steps for Swimming Experiments

Movies were processed in ImageJ (NIH) by first converting to 8-bit, inverting the intensity,

resetting the minimum and maximum intensity values, smoothing, and finally subtracting

the background using the rolling ball method with a radius of ten pixels. The cleaning steps

performed are illustrated in figure 4. After cleaning, movies were ran through a series of

MATLAB scripts developed by my advisor, Dr. Yong Wang. These scripts first detected

the bacteria in frame, then culled erroneous detections based on morphology (area, length,

width, others), and finally strung detections together into tracks.

A) B) C) D)

Figure 5: Examples of rejected and accepted tracks. A) Cell is completely immobile and
for that reason it is rejected. B) A substantial portion of the cell is outside the ROI and
thus the track produced does not accurately capture all of the cell’s motion. C) This cell is
not swimming but rather appears to be diffusing; this track is accepted. D) cell swims in
roughly a straight path, so it is accepted.

22

2.4.3 Track Selection

The resulting tracks after processing were manually selected for usability. Tracks were re-

moved from further analysis if the cell was completely stationary, if the cell was part of a

larger cluster, or if the track was not representative of the actual motion. A few exemplary

tracks and their corresponding labels as color are shown in figure 5.

The remaining, selected tracks were kept for further analysis. Each imaging time has

with it around 300 - 500 selected tracks of varying length.

2.4.4 Motility as Quantified by Swimming Velocity

In a homogeneous and isotropic environment, E. coli swim in a run and tumble in which

long swimming periods are interrupted by relatively short reorientation periods [55]. Closer

to surfaces, however, bacteria will move in right-handed circular patterns and display longer

run times [56]. In either regime, E. coli bacteria can swim at speeds up to 30 µm/s, up to

15 times their cell length [55]. Using the selected track data, I found the swimming velocity

of each cell at frame t by simply using equation 6 where fps is the frames per second of the

imaging session.

vt =
∆r

∆t
=
√

(xt − xt−1)2 + (yt − yt−1)2 × fps (6)

2.4.5 Chord-Arc Ratio as a Measure of Tortuosity

As E. coli bacteria swim in their containing media they alternate between running and

tumbling steps. During tumbling times, the flagellar bundle comes undone and the cell

randomly reorients its swimming direction. Tortuosity, in general, is a property of a path

between two points being curved. Tortuosity has been used as a feature of interest in a

variety of scientific domains including medicine, ecology, and geology [57–59]. While each

of these disciplines vary in their exact definition of tortuosity or means of calculating it,

tortuosity can broadly be calculated as the ratio between displacement and total distance

traveled. For this research, a modified version of the arc-chord ratio (ACR) used by Pottash

23

et al. is employed [60]. We will define the chord-arc ratio (CAR) as

CAR =
maxi,j |~ri − ~rj|∑N−1
k=1 |~rk+1 − ~rk|

(7)

where ~r is the position vector and N is the number of frames of the trajectory. This value

will range from 0 to 1 corresponding to exclusive tumbling and straight line trajectories,

respectively. The population distribution of the CAR values within a sample provides a

metric with which to compare swimming tortuosity over time as well as between experiments

with different concentrations of silver ions.

Figure 6: An example path traveled by a swimming E. coli cell. The chord-arc ratio is
defined as the total path length (red segments) divided by the longest distance between any
two points on the path (blue line).

2.4.6 Swimming Behavior Modeled with Anomalous Diffusion Relation

Although diffusion analysis is typically reserved for investigating the motion of individual

molecules, in this research I have used it as a value to determine the viability of a cell after

treatment with silver ions. The Einstein relation, used to model a random walk such as that

seen with Brownian motion, is

〈(∆r)2〉 = 2dDτ (8)

24

where d is the number of dimensions of freedom, D is the diffusion coefficient, and τ is the

lag-time. For this research, I used d = 2 since the bacterial tracks exist in just the plane of

the ROI.

Swimming bacteria will not, however, follow a random walk when close to a surface such

as a coverslip [56]. Therefore, I will use the anomalous diffusion equation which generalizes

equation 8 to include superdiffusion and subdiffusion modes of movement.

〈(∆r)2〉 = 4Dτα (9)

or

log〈(∆r)2〉 = α log τ + log 4D (10)

As seen in equation 9, the relationship between mean square displacement (MSD) and τ is

a power law rather than linear. When α > 1 motion is superdiffusive (also called ballistic),

and when α < 1 motion is subdiffusive. Cells able to propel themselves will likely be

superdiffusive.

In analyzing the bacterial tracks, I used the numpy and scipy packages from Python to

fit MSD vs τ data to equations 9 and 10 and extract D and α values for different imaging

times and concentrations of AgNO3 [61].

2.5 Tethering Assay Experiments

In this set of experiments, cells were tethered to the glass coverslip of the culture dish using

a FliC antibody, as depicted in figure 7. Using this assay, rotation of the flagella which

would otherwise have caused propulsion instead caused rotation of the cell body parallel to

the coverslip. Clean culture dishes were prepared with a serial treatment of biotinylated-

BSA (200 µL, 1 mg/mL), neutravidin (200 µL, 0.5 mg/mL), and FliC antibody (400 µL,

0.25 µg/mL) with 1X PBS washing steps in-between. Similar to the swimming experiments,

2mL of E. coli sample was added to the prepared dish once OD600≈0.3. However, in order

25

Figure 7: Cartoon of culture dish setup for tethering assay experiments.

to isolate just those cells stuck to the coverslip, cells that remained unstuck were removed

via washing away the excess LB media and replacing it with fresh LB and antibiotics.

2.5.1 Acquisition Protocol

To maximize temporal resolution, the ROI was cropped to 64x64 pixels (10.24 µm x10.24

µm) around an individual tethered cell. Exposure time was 5ms. Frame-rate for each move

was 71 fps. After acquiring 10,000 frames of silver-free tethered behavior, Ag+ was added

directly to the culture dish such that the final concentration was 40 µM. Images of the same

cell were then recorded for 100,000 more frames as Ag+ dispersed throughout the media. In

total, data from 17 cells were captured in this way from experiments on different days. In

addition, data from 10 cells not treated with silver were acquired.

2.5.2 Image Processing Steps for Tethering Assay Experiments

Cells were detected and characterized using the regionprops function from the Python scikit-

image package. In order to analyze only one cell per frame, regions (sections of 1’s in the

26

A) B) C) D) E)

Figure 8: Image processing steps performed in ImageJ and Python for tethering experiments.
A) Raw image data. B) Inverted image. C) Gaussian blurred image (radius=2 in ImageJ). D)
Thresheld image using the intermodes method available with ImageJ. E) Binary mask with
line indicating the primary axis angle calculated by the regionprops function from Python’s
scikit-image library (from the ‘measure’ module).

binary mask) were thresheld based on area, and further any frames with more than one

region were removed from analysis. Primary axis angle of the cells was found and used to

calculate the rotational velocity. This angle was found using the regionprops function from

scikit-image [62]. The change in this angle, defined as ω, was calculated by finding the

difference across a single frame, multiplying by the frame-rate, and correcting for any jumps

caused by a switch from ∼ π to ∼ −π or vise versa.

2.5.3 Modeling Rotation Behavior as a Hidden Markov Process

A random variable in time Xt is said to follow to follow a Markov process (possess the Markov

property) if the value of X at time step t is solely dependent on the value of that variable at

the previous time step (Xt−1) [63]. This demands that, for every sequence u0, u1, . . . , ut−1, ut

and t ≥ 1

Pr{Xt = ut|X0 = u0, X1 = u1, . . . , Xt−1 = ut−1, Xt = ut} = Pr{Xt = ut|Xt−1 = ut−1}. (11)

This Markov process (also called a Markov chain) can be encapsulated in a stochastic tran-

sition matrix A in which the transition probability from state i to state j is given by Aij.

These transitions are taken to occur between discrete time points. Additionally, a Markov

27

process has a stationary distribution π associated with it that will also determine the prob-

ability of a sequence starting in a particular state. π must be a vector whose components

are non-negative and sum to 1. For time-homogeneous Markov chains, such as those used

in this research π must be invariant under transformation with A (i.e. πA = π).

As an example, let’s suppose we have determined that the weather on a given day in

Fayetteville follows a Markov process with possible states sunny (S) and rainy (R) and

transition matrix

A =

S R S 0.7 0.3

R 0.4 0.6

(This model is adapted from [64]). As can be seen, the transition probability from a sunny

S

R

0.4

0.3

0.60.7

Figure 9: Graphical representation of weather transition matrix.

day to another sunny day is 0.7 and the probability from a sunny day to a rainy day is 0.3.

The stochastic matrix can also be represented with a graph, as depicted in figure 9. The

stationary distribution in this case will be given by

πA = π

[
p 1− p

]0.7 0.3

0.4 0.6

 =

[
p 1− p

]
[
0.3p+ 0.4 −0.3p+ 0.6

]
=

[
p 1− p

]
p =

4

7

⇒ π =

[
4
7

3
7

]
.

28

The transition matrix can be used to calculate the likelihood of a given sequence of states

being created by that Markov model. Suppose we were given a sequence

H = S → R→ R→ S → R→ S

the likelihood of our model producing this state is the product of the probability of beginning

in the initial state and the probabilities of making the transitions contained in the sequence.

So,

L(H = S → R→ R→ S → S → S) = πS × ASR × ARR × ARS × ASR × ARS

=
4

7
× 0.3× 0.6× 0.4× 0.6× 0.4

= 0.00987 .

Succinctly, for a sequence H consisting of k time points with states ut ∈M, the likelihood is

L(H|A) = πu1 ×
k∏
t=2

Pr{Ht = ut|Ht−1 = ut−1} = πu1 ×
k∏
t=2

Aut−1ut (12)

[63]. Or, for convenience, we may calculate the negative log likelihood ` when working with

long sequences (and thus low likelihoods).

` = − ln(L) (13)

[63]. The likelihood equation can be used to estimate the fitness of our transition matrix

A when fitting a model, or to compare the chances of a model producing one sequence over

another.

Many biological systems can be modeled as Markov processes including the proliferation

of epithelial cells [65], and macromolecular sequence prediction in bioinformatics [66]. Many

times in real applications, however, the states of the Markov process are not directly ob-

29

servable. Rather, the observed state Yt is the emission of a random function on the now

“hidden” state Xt. This scenario is described by a Hidden Markov model (HMM). For this

mathematical model, in addition to the transition matrix A and the stationary distribution

vector π there exists a stochastic emission matrix B that describes the output, Yt, of the

HMM based on the hidden state, Xt. The elements of B are defined as

Buv = Pr{Yt = v|Xt = u}, ∀u ∈M, v ∈ N (14)

where M and N are the sets of possible hidden and output states, respectively [63].

In our Markov-ian weather example, if we are not able to directly view the state of the

weather (maybe our problem involves determining the weather on days in the past), then N

would represent the set of observable indicators for the hidden state (e.g. correlated features

like temperature recordings). If we take N to contain states corresponding to warm days

(W), temperate days (T), and cold days (C) then the emission matrix, B, is

B =

Pr{Yt = W |Xt = S} Pr{Yt = T |Xt = S} Pr{Yt = C|Xt = S}

Pr{Yt = W |Xt = R} Pr{Yt = T |Xt = R} Pr{Yt = C|Xt = R}


where the sum of each row should be 1. This example employs an HMM with multinomial

(discrete) emissions. Emissions with continuous (e.g. Gaussian) distributions are entirely

possible, and will be used in this research.

Now, rather than observing a sequence of states, we will work with a sequence of emis-

sions, E, and attempt to discern the most likely sequence of hidden states, H. The Viterbi

algorithm is a common tool for achieving this. To understand the utility of the Viterbi

algorithm let’s first implement a naive approach to find H given E.

Let E = v1 → · · · → vn−1 → vn represent a sequence of k observed emissions. In order to

find the most likely sequence, H, of hidden states, u, we may try to find the probability of

each sequence of hidden states of length k emitting the sequence given by E. This involves

30

finding the maximum value among

Pr{H = u1 → u1 →· · · → u1 → u1|E}

= (πu1 ×Bu1,v1)× (Au1,u1 ×Bu1,v2)× · · · × (Au1,u1 ×Bu1,vn)

Pr{H = u1 → u1 →· · · → u1 → u2|E}

= (πu1 ×Bu1,v1)× (Au1,u1 ×Bu1,v2)× · · · × (Au1,u2 ×Bu2,vn)

. . .

Pr{H = un → un →· · · → un → un|E}

= (πun ×Bun,vn)× (Aun,un ×Bun,vn)× · · · × (Aun,un ×Bun,vn)

Computationally, this is very expensive as it requires finding the probability for each of the

mk possible sequences, where m is the cardinality of M. The Viterbi algorithm makes use of

the fact that, when constructing the hidden sequence H, choosing the most probable subse-

quent state at any intermediate time point will lead to the most probable sequence. The task

of finding H becomes one solved quickly with dynamic programming. An implementation in

Python 3 is shown on the next page.

v1 v2 v3 v4 v5 v6

u1

u2

u3

Figure 10: A simple illustration of the path that would be found using the Viterbi algorithm.

31

def argmax(seq):

index , maximum = 0, seq[0]

for i, value in enumerate(seq[1:]):

if value > maximum:

index , maximum = i + 1, value

return index

def viterbi(TRANSMAT , EMAT , H_STATES ,

OB_STATES , OB_SEQUENCE , STAT_DIST):

"""

TRANSMAT : (m x m) trans. matrix | EMAT: (m x n) emission matrix

H_STATES : m hidden states | OB_STATES: n observable states

OB_SEQUENCE : array of observations | STAT_DIST: stationary dist.

"""

h_sequence = list()

for i, ob_state in enumerate(OB_SEQUENCE):

if i == 0: # Find the first hidden state

ob_index = OB_STATES.index(ob_state)

h_index = argmax([

STAT_DIST[j] * EMAT[j][ob_index]

for j in range(len(H_STATES))

])

h_sequence.append(H_STATES[h_index])

else: # Find the next hidden state

ob_index = OB_STATES.index(ob_state)

prev_h_index = H_STATES.index(h_sequence[-1])

h_index = argmax([

TRANSMAT[prev_h_index][j] * EMAT[j][ob_index]

for j in range(len(H_STATES))

])

h_sequence.append(H_STATES[h_index])

return h_sequence

32

Visually, the Viterbi algorithm can be understood as a path-finding algorithm where we

progress from a state to the next by maximizing the probability. A simple diagram with

m = 3 and k = 6 is shown in figure 10.

Returning to our example model, if the emission matrix is

B =

W T C S 0.5 0.4 0.1

R 0.1 0.2 0.7

then our graph has a hidden layer that we cannot directly observe, as indicated by the

S

R

0.4

0.3

0.60.7

W CT

 0.1 0.2 0.70.10.40.5

Figure 11: The full hidden Markov model including emission probabilities. The hidden states
are not directly visible rather only the emissions are observable (lower nodes).

dashed line in figure 11.

If we observe a state sequence given by

E = C → C → T → W → T → C → W → C → T → C → C

then we can use the Viterbi algorithm and find

H = R→ R→ S → S → S → R→ S → R→ S → R→ R

In this research, I fit the switching behavior between running and tumbling modes of

33

