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Abstract 

Natural environments are dynamic, and organisms must sense and respond to changing 

conditions. One common way organisms deal with stressful environments is through gene 

expression changes, allowing for stress acclimation and resistance. Variation in stress sensing 

and signaling can potentially play a large role in how individuals with different genetic 

backgrounds are more or less resilient to stress. However, the mechanisms underlying how 

gene expression variation affects organismal fitness is often obscure.  

To understand connections between gene expression variation and stress defense 

phenotypes, we have been exploiting natural variation in Saccharomyces cerevisiae stress 

responses using a unique phenotype called acquired stress resistance, where cells that are 

pretreated with a sub-lethal dose of stress survive lethal high doses of stress. This response is 

observed in organisms ranging from bacteria to humans, though the specific mechanisms 

governing acquisition of higher stress resistance are poorly understood.  

This dissertation explores the mechanistic underpinnings of natural variation in yeast 

stress responses and resistance, thus identifying strategies that I argue are likely conserved 

across diverse organisms. We first show that a commonly-used lab strain fails to acquire 

oxidative stress resistance when pretreated with ethanol, while a wild oak strain can. Using 

genetic mapping, we provided new evidence that Hap1p, heme-dependent transcription factor, 

was responsible for variation in this trait through the regulation of CTT1-encoding cytosolic 

catalase T— hydrogen peroxide scavenging enzyme. Interestingly, the lab strain can still 

acquire higher hydrogen peroxide resistance when pretreated with salt, and this cross protection 

requires CTT1. To determine whether CTT1 was universally required for acquired hydrogen 

peroxide resistance, we tested over a dozen diverse yeast strains and found a wide range of 

catalase dependency suggesting that acquired hydrogen peroxide resistance arises through 

multiple anti-oxidant defense strategies. We used transcriptional profiling to identify potential 



 

signaling pathways and transcription factors that regulate differentially-expressed modules of 

genes during salt or ethanol stress and potential compensatory oxidative stress proteins.  

These experiments highlight the power of using yeast natural variation to uncover novel 

aspects of conserved signaling networks and stress defenses, providing a framework for 

understanding the mechanistic underpinnings of natural variation in other organisms.  
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indicates lower than average transcript abundance. b Hierarchical clustering of 

3,127 transcripts with significantly differential abundance (FDR < 0.01) in any 

pairwise comparisons between each RNA isolation method. Brown indicates 

higher expression than the comparison group (e.g. Phenol in the P v. R column) 

and violet indicates lower expression than the comparison group (e.g. RNeasy in 

the P v. R column). Enriched Gene Ontology (GO) categories (Bonferroni-

corrected P < 0.01) are shown on the right. Complete GO enrichments for each 

cluster can be found in Supplementary File 3. c Overlap between transcripts with 

significantly differential abundance (FDR < 0.01) in the Phenol v. RNeasy and 

Phenol v. Direct-zol comparisons. 
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Supp Figure. SA2.1. Properties of transcripts with differential abundance 
depending upon RNA isolation method. 
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Figure. SA2.4. The method of RNA extraction has little effect on differential 
expression analysis. Hierarchical clustering of median-centered log2-fold TPM 

changes for 4,232 transcripts that were differentially expressed in response to heat 

(FDR < 0.01) in at least one set of samples (P = phenol, R = RNeasy, D = Direct-

zol). The left portion of the heat map displays gene expression changes during 
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heat shock across the four biological replicates, with red indicating genes induced 

by heat shock, and blue indicating genes repressed by heat shock. The right 

portion shows differences in abundance in pairwise comparisons between each 

RNA isolation method, with brown indicating higher expression than the 

comparison group, and violet indicating lower expression than the comparison 

group. The Venn Diagram depicts overlap between differentially expressed genes 

in the Phenol, RNeasy, and Direct-zol isolated samples. 
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Chapter 1 Introduction 

1.1 Stress 

Yeasts are essentially everywhere (1, 2). In fact, yeast have been shown to live on 

plants (1), oak trees (3), soil (1, 4), grapes (5), damaged fruits and berries (5), and insect guts 

(6-8). With natural environments being dynamic, organisms must be able to recognize and 

respond to various environmental conditions throughout their life. While multicellular organisms 

have specialized organs and tissues to assist with this, microorganisms, such as yeast, have 

evolved mechanisms for adapting to diverse environmental conditions. During stress, cells must 

be able to switch between cell growth, survival, and death. One way to survive stress is to alter 

gene expression and many studies have been conducted on how model organisms, like 

Saccharomyces cerevisiae, respond to different stress conditions (9-22). There are many 

similarities in the molecular responses to stress in yeast and mammalian systems (23-28).  

 

1.1.1 Response to osmotic stress 

Cells require sugars to survive, but when a cell is exposed to a plethora of sugars, like a 

freshly crushed grape, it is being exposed to osmotic stress. Osmotic stress occurs when cells 

are exposed to either increased or decreased concentrations of salt or sugars. Increased 

concentrations (hyperosmotic) outside the cells will immediately cause cells to lose intracellular 

water causing cell shrinkage. Decreased salt or sugar concentrations (hypoosmotic) outside the 

cell lead to water uptake causing cells to swell with the potential to burst, thus cells have 

evolved ways to combat changes in osmolarity to maintain cellular homeostasis (29). Osmotic 

stress has multiple effects on cells: morphological, transport, and metabolic adjustments (30). 

For cells to react to osmotic stress, first they must sense the stress. Highly conserved mitogen-

activated protein kinase (MAPK) pathways can be activated by both intracellular and 

extracellular signals in response to osmotic stress. In humans, osmoregulation occurs via p38 

and JNK kinase pathways (31), which have homologs in yeast (32).  
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In S. cerevisiae, the high osmolarity glycerol (HOG) MAPK pathway is used for 

osmoregulation. The HOG pathway consists of two branches (Figure 1.1). Sln1p branch is 

activated by hypoosmotic conditions, while the Sho1p branch is activated by hyperosmotic 

conditions. During osmotic stress Pbs2p (MAPKK) will phosphorylate Hog1p (33), triggering 

rapid translocation from the cytoplasm into the nucleus (34). Once in the nucleus, Hog1p 

interacts with transcription factors such as Msn2p, and paralog Msn4p, even though only a 

small fraction of genes are exclusively controlled by the HOG pathway (10, 35, 36). Msn2p and 

Msn4p are general stress transcription factors (11, 37, 38) activated by Hog1p during osmotic 

stress. Previous research has shown that osmo-regulated gene expression diminished in the 

MSN2/4 double mutant were also strongly diminished in the HOG1 mutant, while genes that 

were strongly diminished in the HOG1 mutant were unaffected by the MSN2/4 double mutation 

(35), suggesting the HOG pathway uses multiple transcription factors for osmotic stress 

response. Another transcriptional activator activated during osmotic stress is Skn7p. Skn7p has 

been shown to have genetic and physical interactions that link it to the HOG pathway (39, 40). 

Several observations indicate that Skn7p is responsible for cell swelling, responses to 

hypoosmotic signaling, and stress responses. As Skn7p is non-essential, it was intriguing that 

overexpression of Skn7p is lethal producing swollen cells (41). Skn7p is responsible for the 

activation of genes involved in cell wall assembly and seems to function opposite to the 

hyperosmotic branch of the HOG pathway.  
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Figure 1.1 S. cerevisiae HOG pathway. HOG pathway consists of two branches. Modified 
from (42).  
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1.1.2 Response to salt stress 

Another stress that can cause issues with homeostasis is salt stress. Increased external 

salt stress concentrations cause the cells to lose water, similarly to that which occurs during 

osmotic stress. When cells are exposed to salt it is both an osmotic and ionic stress. The gene 

expression changes induced by osmotic and salt stress are very similar (11, 35).  

In yeast, while some ions are required for growth (K+), there is no requirement for 

sodium (43). Interestingly, K+ is the preferred intracellular cation, even though Na+ is more 

prevalent in nature. S. cerevisiae can tolerate salt concentrations up to 2M NaCl (44). Growth in 

elevated NaCl concentrations changes the intracellular Na+/K+ ratio and high ratios are toxic. If 

ionic levels are too low this causes damage to the cell and inhibits growth (43). Na+ efflux is 

mediated by the ENA locus, a plasma membrane Na+ ATPase (45). Cells exposed to mild salt 

stress showed induction of ENA1 via the HOG pathway (46). Hog1p is responsible for the 

proper induction of ~75% of the salt defense genes (36). Many of the genes induced during salt 

have the stress response element (STRE) in their promoter, therefore they are a target of the 

general stress transcription factors Msn2/4p (47). 

 

1.1.3 Response to ethanol stress 

There are two types of fermentation: lactic acid and ethanol. Mammalian cells can 

ferment sugars to lactate, in muscle and red blood cells, while yeast ferment sugars to ethanol. 

Yeast have been exploited for many years for their ability to produce ethanol (48). One of the 

most common fermentation stresses that yeast encounter is ethanol (17) and ethanol is toxic in 

high enough concentrations (49). Yeast had to develop appropriate mechanisms to counter the 

damages caused by ethanol. Ethanol can affect cells in multiple ways; increase membrane 

fluidity, denature proteins, and damage DNA (50, 51). One way cells counteract ethanol stress 

is by inducing genes involved in protein folding and membrane stabilization (17, 52). In fact, 

ethanol stress appears to induce expression changes similar to that of the response to heat 
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stress (53). Ethanol induces heat shock proteins (54) via Hsf1p and general stress transcription 

factors, Msn2/4p (55), HSPs aid in refolding proteins that may be denatured during ethanol 

stress.  

 

1.1.4 Response to oxidative stress 

Hydrogen peroxide is one of the most commonly occurring reactive oxygen species 

(ROS), either as a by-product of metabolism or from the environment (56). ROS can have 

multiple negative impacts depending on the molecule. Oxidative stress is thought to be involved 

with many human diseases, such as neurodegenerative disorders (57-59), cancer (60, 61), 

heart disease (62, 63), and ischemic stroke (64-66). ROS can cause protein aggregation or 

fragmentation (67), lipid peroxidation (68), DNA damage (69), and improper disulfide bond 

formation (70). During oxidative stress, there are multiple ways to cope with ROS, which is 

thought to help buffer the reducing environment (71-73). A common peroxide scavenging 

enzyme found is catalase. Catalase, a key enzyme responsible for decomposing hydrogen 

peroxide into water and oxygen, is one of the most efficient enzymes in the cell (74-76). Two of 

the other systems utilized are glutathione-, one of the most abundant thiols in the cell, and 

thioredoxin-dependent peroxidases (Figure 1.2) (77-79). ROS will oxidize glutathione and other 

thiol-specific antioxidants, followed by reduction by the thioredoxin and glutaredoxin systems to 

regenerate reducing activity. Catalase and glutathione are major peroxide scavengers (80) and 

are highly conserved (81, 82).  

Ecologically, when sugar concentrations get low, yeast can switch to respiring the 

recently produced ethanol resulting in the generation of ROS (83). During oxidative stress in 

yeast, there are more than 900 genes induced (10, 11). Transcription factor Yeast AP1 (Yap1p) 

along with Skn7p are important for the majority of the hydrogen peroxide oxidative stress 

response (84), Figure 1.3. Yap1p is essential for its role in oxidative stress and in the absence 

of YAP1 cells showed hypersensitivity to hydrogen peroxide (85). Yap1p is responsible for the 
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activation of glutathione and thioredoxin peroxidases (71, 86, 87). Skn7p has been shown to 

have genetic and physical interactions with Yap1p (87-89). Along with the HSPs and cell wall 

assembly proteins, Skn7p activates genes involved in oxidative stress (30, 87, 89). Oxidative 

stress can cause cell wall damage and as Skn7p plays a role in activating genes involved in cell 

wall assembly, this supports the idea that Skn7p assists Yap1p in oxidative stress response (30, 

87). Msn2/4p and Hsf1p are also implicated in oxidative stress. In a double msn2/4 mutant, cells 

showed hypersensitivity to hydrogen peroxide. Msn2/4p activates cytosolic catalase t (Ctt1p) 

and overexpression of Msn2p showed higher oxidative stress resistance (90). Hsf1p is co-

regulated with Skn7p under hydrogen peroxide stress to aid in the expression of HSPs (91).  
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Figure 1.2 Schematic of thioredoxin and glutathione peroxidases. Modified from (84).  
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Figure 1.3 Oxidative stress response via Skn7p and Yap1p schematic. Modified from (84).  



 9 

1.1.5 Environmental stress response 

While yeast have stress-specific responses, there are a core set of genes being induced 

and repressed during multiple stress conditions, termed environmental stress response (10, 92). 

During stress conditions, genes involved in cell growth such as ribosome biogenesis and RNA 

metabolism (93), are down regulated (repressed ESR ~600 genes), while genes involved in 

carbohydrate metabolism, redox reactions, defense against ROS, DNA damage repair, cell wall 

modification, and protein folding are upregulated (induced ESR ~300 genes) (10, 47). The 

repressed growth and the associated factors (decreased transcription and translation) may help 

cells conserve energy while they adapt to the stressful environment and express stress defense 

genes (94). One of the original hypotheses was that this induced gene expression was required 

to survive the initial stress. Previous studies have found only a small fraction of the expressed 

genes are required to survive the initial stress condition (95-97).  

Approximately 1/6th of the genes in the induced ESR have a STRE that general stress 

transcription factors, Msn2p and Msn4p, recognize (37, 98). Interestingly, ~60% of the induced 

ESR genes show a defect in the double mutant msn2/4D when exposed to heat or hydrogen 

peroxide (10). Studies have found that induction of gene expression does not equate to 

activated proteins (99, 100). In fact, some genes, like those involved in glycogen synthesis and 

degradation, are induced during stress but are post-translationally regulated (101). Although the 

gene expression responses are similar, they may be activated by different mechanisms. As 

mentioned previously, there are many similarities in the molecular responses to stress in yeast 

and higher eukaryotes. Under stress, many mammalian cell types have a similar response to 

that of the yeast ESR (23-28).  

 

1.1.6 Acquired stress resistance 

In natural environments, there are fluctuating concentrations of stressors that can occur 

in combination or sequentially. For example, yeast can be exposed to increased sugar 
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concentrations from fruit, resulting in osmotic stress, then the sun rises exposing the yeast to 

additional stress, heat. Accordingly, if cells could anticipate impending stress, that would be 

advantageous. We and others (Berry and Gasch) hypothesize since only a small fraction of 

genes induced are required to survive the initial stress, then the induction of gene expression 

(ESR) is to survive impending stress (92, 102-104). In fact, when cells are pretreated with mild 

stress, they are more likely to survive a subsequent more severe, otherwise lethal stress, in a 

phenomenon called acquired stress resistance. This acquired stress resistance (also known as 

adaptive response) is widespread across organisms ranging from bacteria to higher eukaryotes 

(105-117). Bacteria that are pretreated with mild starvation can survive higher doses of oxidative 

stress and radiation (115). In plants, a mild stress cross protects against increased drought and 

heat stress (106, 116). In humans, an ischemic episode can induce cardio protection (111, 117). 

Previous screens of yeast gene deletion libraries have found surprisingly little overlap between 

the genes necessary for surviving stress and genes that are induced by stress (13, 18, 21, 95, 

97, 118-122), reiterating that organisms could be using acquired stress resistance to survive 

sequential stresses like those occurring in a natural setting. Instead, gene induction may be a 

better predictor of a gene’s requirement for acquired stress resistance (96). Studies have shown 

that genes necessary for intrinsic (no pretreatment) and acquired resistance are largely non-

overlapping (21, 96, 97), suggesting that mechanisms underlying intrinsic and acquired stress 

resistance are distinct. For acquired stress resistance, these stresses can be the same (same 

stress protection) or different conditions (cross protection). In yeast, acquired stress resistance 

is not universal, meaning not every stress protects the organism against every stress (92).  

 

1.2 Natural variation 

1.2.1 Natural variation 

All around there is phenotypic variation. This variation can be intra- and interspecies 

variation (123). There are multiple causes for phenotypic variation, such as DNA mutations, 
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epigenetics, and gene expression variation. These DNA mutations can be single nucleotide 

polymorphisms (SNPs), insertions or deletions, or copy number variation (CNV) (124). In the 

human genome, there are at least 88 million variations, 84.7 million being SNPs (124). Several 

hundred thousand SNPs have been found across geographically different human populations 

(125). Genome variation is not just in coding sequences, studies have seen variation in non-

coding sequences, as well (126-132). These genomic variations can cause differences in gene 

expression. In fact, gene expression variation has been linked to differences in physiology (133-

137), morphology (138-144), metabolism (145-147), and behavior (148-151). Variation in gene 

expression is thought to play a majority role in the phenotypic variation between humans and 

chimpanzees (123, 152). Genetic variation is currently being used to better understand human 

diseases and why some individuals are more susceptible (153, 154). 

 

1.2.2 Natural variation in yeast and stress resistance 

One challenging matter with examining natural variation is not having an easily 

observable phenotype associated with it. For instance, some phenotypes may only be present 

under specific conditions. Studies are examining how individuals respond differently and found 

that it often depends on their individual genetic background. However, the understanding of the 

mechanisms underlying these so-called “gene-environment interactions” is lacking. Natural 

variation occurs in yeasts, both inter- and intraspecies (155). One example, commercial brewing 

yeast have been selected for many generations for high ethanol yields and specific ester 

production (156), while wild yeast have been selected to survive natural environments (157), 

making wild yeast rich with trait variation (1). There are over a thousand isolates of S. 

cerevisiae, and studies have been conducted to understand the strain variation between these 

wild isolates and the commonly-used laboratory strain. Some of the differences between wild 

and laboratory isolates are thought to be due to artificial selection in laboratory settings.  
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When comparing yeast genomes, the variation between these yeast isolates is <1% (1, 

158, 159) with 1.65 million SNPs being found (0.13% of the genome), and nearly every open 

reading frame (ORF) had a CNV in at least one strain background (160). A comparative knock 

out study showed that 5% of essential genes in one strain background were not essential in the 

second strain background (161). Studies have been using commonly encountered stresses like 

heat (162), oxidative stress (163), alternate carbon sources (164, 165), and ethanol (102, 166), 

as well as other conditions (157, 167-170) to better understand the variation between yeast 

strains.  

Recent studies have started using the acquired stress resistance phenotype to study 

natural variation (103, 104). As previously mentioned, acquired stress resistance is not 

universal. In the lab strain, a pretreatment of mild salt or hydrogen peroxide will protect against 

higher doses of salt and hydrogen peroxide, while heat stress will protect against ethanol, heat, 

salt and hydrogen peroxide (92). Mild ethanol does not provide cross protection against salt in 

the lab strain, while a wild vineyard strain does acquire salt resistance when pretreated with 

ethanol. Interestingly, both strains acquire salt resistance when they are pretreated with mild 

salt (103). Another study found extensive gene expression variation between the lab strain, a 

wild oak strain and wild vineyard strain (102, 166). Thus, acquired stress resistance is a great 

phenotyping tool for studying natural variation in yeast.  

 

1.3 Synopsis 

All organisms experience stress and must sense and respond accordingly. An 

individual’s physiological response to different environmental conditions often depends on their 

individual genetic background. However, the mechanisms underlying these so-called “gene-

environment interactions” are generally poorly understood. One challenge is that some 

phenotypes may only be present under specific conditions. We have been exploiting natural 

variation in Saccharomyces cerevisiae stress responses to understand the role of gene-
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environment interactions in a phenotype called acquired stress resistance, a phenomenon 

where cells that are pretreated with a mild stress are more likely to survive a subsequent 

severe, otherwise lethal stress. This approach highlights the power of using natural variation to 

uncover novel aspects of conserved signaling networks, which may play a large role in gene-

environment interactions. 

 

1.4 Dissertation outline 

This dissertation presents unique research focusing on using acquired stress resistance 

phenotype to understand natural variation in the model organism, Saccharomyces cerevisiae. 

Chapter 2 identified the genetic variation responsible for ethanol induced hydrogen peroxide 

cross protection between the lab and wild oak strain. Chapter 3 characterizes the variation of 

catalase dependency in acquired hydrogen peroxide resistance among wild yeast and reveals 

that some wild yeast have multiple means to provide hydrogen peroxide resistance.  
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2.1 Abstract 

Gene expression variation is extensive in nature, and is hypothesized to play a major 

role in shaping phenotypic diversity. However, connecting differences in gene expression across 

individuals to higher-order organismal traits is not trivial. In many cases, gene expression 

variation may be evolutionarily neutral, and in other cases expression variation may only affect 

phenotype under specific conditions. To understand connections between gene expression 

variation and stress defense phenotypes, we have been leveraging extensive natural variation 

in the gene expression response to acute ethanol in laboratory and wild Saccharomyces 

cerevisiae strains. Previous work found that the genetic architecture underlying these 

expression differences included dozens of “hotspot” loci that affected many transcripts in trans. 

In the present study, we provide new evidence that one of these expression QTL hotspot loci 

affects natural variation in one particular stress defense phenotype—ethanol-induced cross 

protection against severe doses of H2O2. A major causative polymorphism is in the heme-

activated transcription factor Hap1p, which we show directly impacts cross protection, but not 

the basal H2O2 resistance of unstressed cells. This provides further support that distinct cellular 

mechanisms underlie basal and acquired stress resistance. We also show that Hap1p-

dependent cross protection relies on novel regulation of cytosolic catalase T (Ctt1p) during 

ethanol stress in a wild oak strain. Because ethanol accumulation precedes aerobic respiration 

and accompanying reactive oxygen species formation, wild strains with the ability to anticipate 

impending oxidative stress would likely be at an advantage. This study highlights how 

strategically chosen traits that better correlate with gene expression changes can improve our 

power to identify novel connections between gene expression variation and higher-order 

organismal phenotypes.  
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2.2 Author Summary 

A major goal in genetics is to understand how individuals with different genetic makeups 

respond to their environment. Understanding these “gene-environment interactions” is important 

for the development of personalized medicine. For example, gene-environment interactions can 

explain why some people are more sensitive to certain drugs or are more likely to get certain 

cancers. While the underlying causes of gene-environment interactions are unclear, one 

possibility is that differences in gene expression across individuals are responsible. In this 

study, we examined that possibility using baker’s yeast as a model. We were interested in a 

phenomenon called acquired stress resistance, where cells exposed to a mild dose of one 

stress can become resistant to an otherwise lethal dose of severe stress. This response is 

observed in diverse organisms ranging from bacteria to humans, though the specific 

mechanisms governing acquisition of higher stress resistance are poorly understood. To 

understand the differences between yeast strains with and without the ability to acquire further 

stress resistance, we employed genetic mapping. We found that part of the variation in acquired 

stress resistance was due to sequence differences in a key regulatory protein, thus providing 

new insight into how different individuals respond to acute environmental change.  
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2.3 Introduction 

A fundamental question in genetics is how individuals with extremely similar genetic 

makeups can have dramatically different characteristics. One hypothesis is that a small number 

of regulatory polymorphisms can have large effects on gene expression, leading to the 

extensive phenotypic variation we see across individuals. In fact, gene expression variation is 

hypothesized to underlie the extensive phenotypic differences we see between humans and 

chimpanzees despite >98% DNA sequence identity (1, 2). This hypothesis is supported by 

numerous examples of gene expression variation affecting higher-order organismal traits. 

For example, human genome-wide association studies (GWAS) have found that a 

substantial fraction of disease-associated variants are concentrated in non-coding regulatory 

DNA regions (3-8). Further examples include gene expression variation being linked to 

differences in metabolism (9-11), physiology (12-16), morphology (17-23), and behavior (24-27). 

While gene expression variation is pervasive, there is often a lack of obvious phenotypic 

change associated with differentially expressed genes. This can occur for a variety of reasons. 

First, a large fraction of expression variation has been postulated to be evolutionarily neutral 

with no effect on organismal fitness (28-30). Second, co-regulation of genes that share the 

same upstream signaling network and transcription factors can lead to genes whose expression 

differences correlate with phenotype but are not truly causative. Finally, some gene expression 

differences may truly affect phenotype, but only under specific conditions. For example, the 

predictive power of expression quantitative trait loci (eQTL) mapping studies on higher-order 

phenotypes can be poor unless multiple environments are considered (31). Similarly, tissue-

restricted eQTLs are more likely to map to known disease-associated loci identified from GWAS 

than non-tissue-restricted eQTLs (32, 33). 

Thus, a major challenge for connecting gene expression variation to downstream effects 

on higher-order traits is the choice of which conditions and traits to examine. To this end, we 

have been leveraging natural variation in the model eukaryote Saccharomyces cerevisiae, and 
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a phenotype called acquired stress resistance. Many studies have shown a poor correlation 

between genes that respond to stress and their importance for surviving stress (34-43). Thus, 

we and others have argued that the role of stress-activated gene expression is not to survive 

the initial insult, but instead protects cells from impending severe stress through a phenomenon 

called acquired stress resistance (44, 45). Acquired stress resistance (sometimes referred to as 

“induced tolerance” or the “adaptive response”) occurs when cells pretreated with a mild dose of 

stress gain the ability to survive an otherwise lethal dose of severe stress. Notably, acquired 

stress resistance can occur when the mild and severe stresses are the same (same-stress 

protection) or across pairs of different stresses (cross protection). This phenomenon has been 

observed in diverse organisms ranging from bacteria to higher eukaryotes including humans 

(44-50). The specific mechanisms governing acquisition of higher stress resistance are poorly 

understood, but there are wide reaching implications. In humans, ischemic preconditioning 

(transient ischemia followed by reperfusion—i.e. mild stress pretreatment followed by severe 

stress) may improve outcomes of cardiovascular surgery (51-54), while transient ischemic 

attacks (“mini-strokes”) may protect the brain during massive ischemic stroke (55-57). Thus, 

understanding the genetic basis of acquired stress resistance in model organisms holds 

promise for mitigating the effects of stress in humans. 

A previous study found that a commonly used S288c lab strain is unable to acquire 

further ethanol resistance when pretreated with a mild dose of ethanol (44). We found this 

phenotype to be surprising, considering the unique role ethanol plays in the life history of 

Saccharomyces yeast, where the evolution of aerobic fermentation gave yeast an advantage 

over ethanol-sensitive competitors (58). Because ethanol is a self-imposed stress that induces a 

robust stress response (59-63), we expected that ethanol should provoke acquired stress 

resistance in wild yeast strains. Indeed, this turned out to be the case, with the majority of tested 

wild strains acquiring resistance to severe ethanol following a mild ethanol treatment (45). 

Furthermore, this phenotype correlated with extensive differences in the transcriptional 
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response to acute ethanol stress in the lab strain when compared to a wild vineyard (M22) and 

wild oak (YPS163) strain (>28% of S288c genes were differentially expressed at an FDR of 

0.01) (45, 64). We performed linkage mapping of S288c crossed to a wild vineyard strain (M22) 

and wild oak strain (YPS163), and observed numerous “hotspots” where the same eQTL loci 

affect the expression of a large number of transcripts (anywhere from 10 – 500 transcripts per 

hotspot) (64). 

In the present study, we provide new evidence that one of these eQTL hotspot loci 

affects natural variation in acquired stress resistance, namely the ability of ethanol to cross 

protect against oxidative stress in the form of hydrogen peroxide. The causative polymorphism 

is in the heme-activated transcription factor Hap1p, which we show directly impacts cross 

protection, but not the basal resistance of unstressed cells. Finally, we show that the Hap1p 

effect is mediated through novel regulation of cytosolic catalase T (Ctt1p) during ethanol stress 

in wild strains. This study highlights how strategically chosen traits that are better correlated with 

gene expression changes can improve our power to identify novel connections between gene 

expression variation and higher-order organismal phenotypes. 

 

2.4 Materials and Methods 

2.4.1 Strains and growth conditions 

Strains and primers used in this study are listed in S2 and S3 Tables, respectively. The 

parental strains for QTL mapping were YPS163 (oak strain) and the S288c-derived DBY8268 

(lab strain; referred to throughout the text as S288c). The construction of the S288c x YPS163 

QTL mapping strain panel (44 F2 progeny) is described in (65) (kindly provided by Justin Fay). 

Genotypes for the strain panel are listed in S4 Table. During the course of analyzing HAP1 

genotypes, we found one segregant (YS.15.2) to be a mixed population, so it was removed from 

subsequent analyses. Deletions in the BY4741 (S288c) background were obtained from Open 

Biosystems (now GE Dharmacon), with the exception of hap1 (whose construction is described 
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in (45)). Deletions were moved into haploid MATa derivatives of DBY8268, M22, and YPS163 

by homologous recombination with the deletion::KanMX cassette amplified from the appropriate 

yeast knockout strain (66). Homozygous hap1∆ strains of YPS1000 and Y10 were generated by 

moving the hap1∆::KanMX allele from the BY4741 background into the strains, followed by 

sporulation and tetrad dissection. All deletions were verified by diagnostic PCR. DBY8268 

containing a wild-type HAP1 allele from YPS163 was constructed in two steps. First, the MX 

cassette from the hap1∆::KanMX deletion was replaced with a URA3MX cassette, selecting for 

uracil prototrophy. Then, URA3 was replaced with wild-type HAP1 from YPS163 (amplified 

using primers 498-bp upstream and 1572-bp downstream of the HAP1 ORF), while selecting for 

loss of URA3 on 5-fluoroorotic acid (5-FOA) plates. Deletions and repair of HAP1 were 

confirmed by diagnostic PCR (see S3 Table for primer sequences). YPS163 containing a 

HAP1S288c allele was constructed by first inserting a KanMX cassette into S288c 117-bp 

downstream of the Ty element to create JL1032. We then amplified and transformed the Ty 

element into YPS163 using primers that annealed 103-bp upstream of the Ty element and 177-

bp downstream of the KanMX cassette, generating JL1069. Diploid strains for HAP1 and TOP3 

reciprocal hemizygosity analysis were generated as follows. The hemizygote containing the 

wild-type S228c HAP1 allele (JL580) was generated by mating JL140 (YPS163 MATa 

ho∆::HygMX hap1∆::KanMX) to JL506 (DBY8268 MATα ho ura3 hap1). The hemizygote 

containing the wild-type YPS163 allele (JL581) was generated by mating JL112 (YPS163 MATα 

ho∆::HygMX HAP1) to JL533 (DBY8268 MATa ho ura3 hap1∆::KanMX). The hemizygote 

containing the wild-type S288c TOP3 allele (JL1107) was created by mating JL1066 (YPS163 

MATa ho∆::HygMX top3∆::KanMX) to BY4742 (MATα TOP3). The hemizygote containing the 

wild-type YPS163 allele (JL1106) was created by mating JL1121 (BY4741 MATa 

top3∆::KanMX) to JL112 (YPS163 MATα ho∆::HygMX TOP3). All strains were grown in batch 

culture in YPD (1% yeast extract, 2% peptone, 2% dextrose) at 30°C with orbital shaking (270 

rpm). 
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2.4.2 HAP1 and TOP3 Genotyping 

To identify possible promoter polymorphisms, the HAP1 promoters of the DBY8268 

(JL505), YPS163 (JL111), and S288c HAP1YPS163 (JL975) strains were amplified using primers 

that anneal 1091-bp upstream and 134-bp downstream of the HAP1 start codon. PCR products 

were purified with a PureLink PCR cleanup kit (Invitrogen) and sequenced by Sanger 

Sequencing (Eurofins Genomics) using a primer that anneals 498-bp upstream of the HAP1 

start codon. Sequences were aligned to the S288c and YPS163 reference sequences using 

SnapGene v4.1 (GSL Biotech). This verified the presence of a 1-bp indel within a poly-A stretch 

that differs between S288c and YPS163. The S288c HAP1YPS163 (JL975) strain contains the 

YPS163 HAP1 promoter sequence. Additionally, the YPS163 strain containing the HAP1S288c 

was constructed to only contain the Ty element and not the S288c promoter polymorphism. 

The HAP1 allele of each segregant for the QTL mapping panel was genotyped by 

differential PCR analysis where the same forward primer (HAP1 int 3’ F) was paired with two 

different reverse primers. One primer (Ty R) anneals specifically to the Ty element, yielding an 

856-bp product when amplifying the S288c allele. The second primer (HAP1 3’ end R) anneals 

3’ to the Ty element of HAP1S288c, yielding a 570-bp product for HAP1YPS163 and a 6.5-kb product 

for HAP1S288c. Each segregant was genotyped using both sets of primer pairs, and only one 

segregant (YS.15.2) appeared to contain both HAP1 alleles. Subsequent analysis of multiple 

colonies verified that YS.15.2 was a mixed population, and thus it was removed it from all 

subsequent analyses. 

The TOP3 alleles of S288c and YPS163 contain two non-synonymous SNPs at 

nucleotide positions 1,398 and 1,422. Segregant genotypes at TOP3 were determined by 

analyzing restriction fragment length polymorphisms. TOP3 was amplified using primers (TOP3 

up F and TOP3 down R) that anneal ~500-bp upstream and downstream of the open reading 

frame, generating a 2.9-kb product. PCR products were digested with either 1) PstI, which cuts 

at position 1,248 only within the TOP3YPS163 ORF allele yielding 1.7- and 1.2-kb products, or (2) 
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KflI, which cuts at position 1,155 only within the TOP3S288c yielding 1.6- and 1.3-kb products. 

Genotypes for HAP1 and TOP3 are listed in S1 Table. 

 

2.4.3 Cross protection assays 

Cross-protection assays were performed as described in (44) with slight modifications. 

Briefly, 3-4 freshly streaked isolated colonies (<1 week old) were grown overnight to saturation, 

sub-cultured into 6 ml fresh media, and then grown for at least 8 generations (>12 h) to mid-

exponential phase (OD600 of 0.3 – 0.6) to reset any cellular memory of acquired stress 

resistance (67). Each culture was split into two cultures and pretreated with YPD media 

containing either a single mild “primary” dose or the same concentration of water as a mock-

pretreatment control. Primary doses consisted of 5% v/v ethanol, 0.4 M NaCl, or 0.4 mM H2O2. 

Thereafter, mock and primary-treated cells were handled identically. Following 1-hour 

pretreatment at 30°C with orbital shaking (270 rpm), cells were collected by mild centrifugation 

at 1,500 x g for 3 min. Pelleted cells were resuspended in fresh medium to an OD600 of 0.6, then 

diluted 3-fold into a microtiter plate containing a panel of severe “secondary” H2O2 doses 

ranging from 0.5 – 5.5 mM (0.5 mM increments; 150 µl total volume). Microtiter plates were 

sealed with air-permeable Rayon films (VWR), and cells were exposed to secondary stress for 2 

hours at 30°C with 800 rpm shaking in a VWR symphony Incubating Microplate Shaker. Four µl 

of a 50-fold dilution was spotted onto YPD agar plates and grown 48 h at 30°C. Viability at each 

dose was scored using a 4-point semi-quantitative scale to score survival compared to a no-

secondary stress (YPD only) control: 100% = 3 pts, 50-90% = 2 pts, 10-50% = 1 pt, or 0% (3 or 

less colonies) = 0 pts. An overall H2O2 tolerance score was calculated as the sum of scores over 

the 11 doses of secondary stress. Raw phenotypes for all acquired stress resistance assays 

can be found in S5 Table. A fully detailed acquired stress protocol has been deposited to 

protocols.io under doi dx.doi.org/10.17504/protocols.io.g7sbzne. Statistical analyses were 

performed using Prism 7 (GraphPad Software). 
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2.4.4 QTL mapping and Heritability Estimates 

Phenotyping of the QTL mapping strain panel for basal and acquired H2O2 resistance 

was performed in biological duplicate. Because cross-protection assays on the entire strain 

panel could not all be performed at the same time, we sought to minimize day-to-day variability. 

We found that minor differences in temperature and shaking speed affected H2O2 resistance; as 

a result, we used a digital thermometer and tachometer to ensure standardization across 

experiments. Moreover, we found that differences in handling time were a critical determinant of 

experimental variability. To minimize this source of variability, all cell dilutions were performed 

quickly using multichannel pipettes, and no more than two microtiter plates were assayed during 

a single experiment. To ensure that replicates on a given day were reproducible, we always 

included the YPS163 wild-type parent as a reference. 

Single mapping scans were performed using Haley-Knott regression (68) implemented 

through the R/QTL software package (69). Genotype probabilities were estimated at every cM 

across the genome using the calc.genoprob function. Significant LOD scores were determined 

by 100,000 permutations that randomly shuffled phenotype data (i.e. strain labels) relative to the 

genotype data. The maximum LOD scores for the permuted scans were sorted, and the 99th 

percentile was used to set the genome-wide FDR at 1%. This resulted in LOD cutoffs of 3.07 for 

QTL mapping of basal H2O2 resistance, and 4.24 for acquired H2O2 resistance. 

Broad-sense heritability (H2) was estimated from the segregant data as described in (70) 

using a random-effects ANOVA model implemented through the lmer function in the lme4 R 

package (71). H2 was estimated using the equation !"
#

$!"
#%!&

#', where 𝜎)* represents the genetic 

variance due to the effects of segregrant, and 𝜎+* represents the residual (error or 

environmental) variance. The proportion of variance explained by a QTL was estimated using 

the equation 1 − 10(0
#
1∗345), where 𝑛 represents the number of segregants. 
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2.4.5 Quantitative PCR of CTT1 expression and cellular peroxidase assays 

Induction of CTT1 by ethanol was assessed by real-time quantitative PCR (qPCR) using 

the Maxima SYBR q-PCR Master Mix (Thermo Fisher Scientific) and a Bio-Rad CFX96 Touch 

Real-Time PCR Detection System, according to the manufacturers’ instructions. Cells were 

grown to mid-exponential phase (OD600 of 0.3 – 0.6) as described for the cross-protection 

assays. Cells were collected by centrifugation at 1,500 x g for 3 minutes immediately prior to the 

addition of 5% v/v ethanol (unstressed sample) and 30 minutes post-ethanol treatment, which 

encompasses the peak of global expression changes to acute ethanol stress (45). Cell pellets 

were flash frozen in liquid nitrogen and stored at -80°C until processed. Total RNA was 

recovered by hot phenol extraction as previously described (72), and then purified with a Quick-

RNA MiniPrep Plus Kit (Zymo Research) including on-column DNase I treatment. cDNA 

synthesis was performed as described (72), using 10 µg total RNA, 3 µg anchored oligo-dT 

(T20VN), and SuperScript III (Thermo Fisher Scientific). One ng cDNA was used as template for 

qPCR with the following parameters: initial denaturation at 95°C for 3 minutes followed by 40 

cycles of 95°C for 15 seconds and 55°C annealing and elongation for 1 minute. Cq was 

determined using regression analysis, with baseline subtraction via curve fit. The presence of a 

single amplicon for each reaction was validated by melt curve analysis. The average of two 

technical replicates were used to determine relative CTT1 mRNA abundance via the ∆∆Cq 

method (73), by normalizing to an internal control gene (ERV25) whose expression is 

unaffected by ethanol stress and does not vary in expression between S288c and YPS163 (45). 

Primers for CTT1 and ERV25 were designed to span ~200 bp in the 3’ region of each ORF (to 

decrease the likelihood of artifacts due to premature termination during cDNA synthesis), and 

for gene regions free of polymorphisms between S288c and YPS163 (see S3 Table for primer 

sequences). Three biological replicates were performed and statistical significance was 

assessed via a paired t-test using Prism 7 (GraphPad Software). 
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For peroxidase activity assays, mid-exponential phase cells were collected immediately 

prior to and 60 minutes post-ethanol treatment, to assess peroxidase activity levels during the 

induction of cross protection. Cells were collected by centrifugation at 1,500 x g for 3 minutes, 

washed twice in 50 mM potassium phosphate buffer, pH 7.0 (KPi), flash frozen in liquid nitrogen, 

and then stored at -80°C until processed. For preparation of whole cell extracts, cells were 

thawed on ice, resuspended in 1 ml KPi buffer, and then transferred to 2-ml screw-cap tubes for 

bead beating. An equal volume (1 ml) of acid-washed glass beads (425 - 600 micron, Sigma-

Aldrich) was added to each tube. Cells were lysed by four 30-second cycles of bead beating in a 

BioSpec Mini-Beadbeater-24 (3,500 oscillations/minute, 2 minutes on ice between cycles). 

Cellular debris was removed by centrifugation at 21,000 x g for 30 minutes at 4°C. The protein 

concentration of each lysate was measured by Bradford assay (Bio-Rad) using bovine serum 

albumin (BSA) as a standard (74). Peroxidase activity in cellular lysates was monitored as 

described (75), with slight modifications. Briefly, 50 µg of cell free extract was added to 1 ml of 

15 mM H2O2 in KPi buffer. H2O2 decomposition was monitored continuously for 10 minutes in 

Quartz cuvettes (Starna Cells, Inc.) at 240 nm (e240 = 43.6 M-1 cm-1) using a SpectraMax Plus 

Spectrophotometer (Molecular Devices). One unit of catalase activity catalyzed the 

decomposition of 1 µmol of H2O2 per minute. For each sample, results represent the average of 

technical duplicates. To assess statistical significance, four biological replicates were performed 

and significance was assessed via a paired t-test using Prism 7 (GraphPad Software). 

 

2.5 Results 

2.5.1 The genetic basis of natural variation in yeast cross protection. 

We previously found that an S288c-derived lab strain was unable to acquire further 

ethanol resistance when pretreated with a mild dose of ethanol, in contrast to the vast majority 

of ~50 diverse yeast strains (45). In addition to the S288c strain’s acquired ethanol resistance 

defect, ethanol also failed to cross protect against other subsequent stresses (44, 76). In nature, 
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wild yeast cells ferment sugars to ethanol, and then shift to a respiratory metabolism that 

generates endogenous reactive oxygen species (77-79). Thus, we hypothesized that ethanol 

might cross protect against oxidative stress in wild yeast strains. We tested this hypothesis by 

assessing whether mild ethanol treatment would protect a wild oak strain (YPS163) from severe 

oxidative stress in the form of hydrogen peroxide (H2O2). Cross protection assays were 

performed by exposing cells to a mild, sublethal dose of ethanol (5% v/v) for 60 min, followed by 

exposure to a panel of 11 increasingly severe doses of H2O2 (see Materials and Methods). 

Confirming the observations of Berry and Gasch (44), ethanol failed to cross protect against 

H2O2 in S288c, and in fact slightly exacerbated H2O2 toxicity (Fig 1). In contrast, ethanol strongly 

cross protected against H2O2 in YPS163 (Fig 1).  
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Figure 2.1. Natural variation in ethanol-induced cross protection against H2O2. (A) A 
representative acquired H2O2 resistance assay is shown. S288c (lab strain – DBY8268) and 
YPS163 (wild oak strain) were exposed to 5% ethanol or mock (5% water) pretreatment for 60 
min, washed, exposed to 11 doses of severe H2O2 for 2 hr, and then plated to score viability. (B) 
A single survival score was calculated from the viability at all H2O2 doses (see Materials and 
Methods). Each plot shows the mean and standard deviation of 4 independent biological 
replicates. The replicates for mock-treated YPS163 all had the same tolerance score and thus 
zero standard deviation (see Table S1 for raw numerical data). Asterisks represent resistance 
that was significantly different from mock-treated cells (*** P < 0.001, t-test).  
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The inability of ethanol to induce acquired stress resistance in S288c correlates with 

thousands of differences in ethanol-dependent gene expression in comparison to wild strains 

that can acquire ethanol resistance (45, 64). In light of this observation, and the known 

dependency of cross protection on stress-activated gene expression changes (44), we 

hypothesized that differences in cross protection against H2O2 by ethanol may be linked to 

differential gene expression. To test this, we performed quantitative trait loci (QTL) mapping 

using the same mapping population as our original eQTL study that mapped the genetic 

architecture of ethanol-responsive gene expression (64). Specifically, we conducted QTL 

mapping of both basal and acquired H2O2 resistance in 43 F2 progeny of S288c crossed with 

YPS163 (see Materials and Methods). While we found no significant QTLs for basal H2O2 

resistance, we did find a significant QTL peak on chromosome XII that explained 38% of the 

variation in cross protection (Fig 2). It is unlikely that our failure to detect a chromosome XII QTL 

for basal H2O2 resistance was due to a lack of statistical power, because two independent basal 

H2O2 resistance QTL studies using millions of S288c x YPS163 F2 segregants also found no 

significant associations at this locus (80, 81). Additionally, we estimated the heritability of 

phenotypic variation in basal resistance to be 0.79, which is slightly above the median value 

estimated by Bloom and colleagues for 46 yeast traits (70), and is only moderately lower than 

the heritability for cross protection (0.92). Lastly, the shape of the distribution of phenotypes in 

the F2 were markedly different between basal and acquired H2O2 resistance, with basal 

resistance showing a transgressive segregation pattern and acquired resistance showing a 

continuous distribution (S1 Fig). Altogether, these results suggest that the genetic basis of 

natural variation in acquired stress resistance is distinct from the basal resistance of unstressed 

cells (see Discussion). 

The significant QTL for cross protection was located near a known polymorphism in 

HAP1, a heme-dependent transcription factor that controls genes involved in aerobic respiration 

(82-84), sterol biosynthesis (85-87), and interestingly, oxidative stress (87, 88). S288c harbors a 
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known defect in HAP1, where a Ty1 transposon insertion in the 3’ end of the gene’s coding 

region has been shown to reduce its function (89). In fact, we previously hypothesized that the 

defective HAP1 allele was responsible for the inability of S288c to acquire further resistance to 

ethanol. However, a YPS163 hap1D strain was still fully able to acquire ethanol resistance, 

despite notable differences in the gene expression response to ethanol in the mutant (45). 

Likewise, despite previous studies implicating Hap1p as a regulator of oxidative stress defense 

genes (87, 88), HAP1 is apparently dispensable for same-stress acquired H2O2 resistance (47). 

These observations suggest that the molecular mechanisms underlying various acquired stress 

resistance phenotypes can differ, even when the identity of the secondary stress is the same.  
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Figure 2.2. The genetic basis of natural variation for basal and acquired stress resistance 
is distinct. Linkage mapping of the S288c x YPS163 cross identified no significant QTLs for 
basal H2O2 resistance (top panel), but did identify a major QTL on chromosome XII for ethanol-
induced cross protection against H2O2 (bottom panel). The red horizontal line denotes the LOD 
threshold for significance (1% FDR).  
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Supp Figure 2.1. Distribution of phenotypes in the F2 segregants. Survival score plots 
indicating the mean of biological duplicates for (A) basal and (B) acquired H2O2 resistance.  
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2.5.2 A role for HAP1 in ethanol-induced cross protection against severe H2O2. 

Because we previously implicated HAP1 as a major ethanol-responsive eQTL hotspot 

affecting over 100 genes, we hypothesized that ethanol-induced cross protection against H2O2 

may depend upon Hap1p-regulated genes. However, it was formally possible that HAP1 was 

merely linked to the truly causal polymorphism. To distinguish between these possibilities, we 

generated deletion mutations in the YPS163 background for every non-essential gene within the 

1.5-LOD support interval of the QTL peak (encompassing IFH1 – YCS4). Of the 36 mutants 

tested, two showed significantly and highly diminished acquired H2O2 resistance (Fig 3 and S2 

Fig), hap1∆ and top3∆ (encoding DNA topoisomerase III). To determine whether different alleles 

of HAP1 and/or TOP3 were responsible for natural variation in acquired H2O2 resistance, we 

applied an approach called reciprocal hemizygosity analysis (90), where the TOP3 and HAP1 

alleles were analyzed in an otherwise isogenic S288c-YPS163 hybrid background (see Fig 4A 

for a schematic). In each of the two reciprocal strains, one allele of the candidate gene was 

deleted, producing a hybrid strain containing either the S288c or YPS163 allele in single copy 

(i.e. hemizygous for TOP3 or HAP1). While we found only mild allelic effects for TOP3, the 

effects of different HAP1 alleles were striking (Fig 4B and 4C). The hybrid strain containing the 

HAP1YPS163 allele showed full cross protection, while the strain containing the HAP1S288c allele 

showed none. Thus, we examined the effects of HAP1 on acquired H2O2 resistance further. 

Intriguingly, we found that the YPS163 hap1∆ mutant was unaffected for acquired H2O2 

resistance when mild H2O2 or mild NaCl were used as mild stress pretreatments (Fig 5), 

suggesting that Hap1p plays a distinct role in ethanol-induced cross protection (see Discussion). 

Finally, we performed allele swap experiments to examine the effects of the different 

HAP1 alleles in the original parental backgrounds. We introduced only the Ty element from 

HAP1S288c into the YPS163 HAP1 gene, and observed a loss of acquired H2O2 resistance similar 

to the YPS163 hap1∆ strain (Fig 6). We next tested whether repair of the defective hap1 allele 
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in S288c could restore cross protection. Surprisingly, S288c repaired with HAP1 YPS163 was 

largely unable to acquire further H2O2 resistance (Fig 6). This additional layer of genetic.  
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Figure 2.3. Ethanol-induced cross protection against H2O2 in YPS163 requires HAP1 and 
TOP3. Deletions of all non-essential genes within the 1.5-LOD support interval of the 
chromosome XII QTL peak were constructed in JL111 (YPS163 MATa haploid) background and 
tested for defects in acquired H2O2 resistance. Each plot shows the mean and standard 
deviation of 2 independent biological replicates, with the exception of the JL111 control (35 
replicates). The replicates for several strains all had the same tolerance score and thus zero 
standard deviation (see Table S1 for raw numerical data). Asterisks represent acquired H2O2 
resistance that was significantly lower than wild-type YPS163 (* P < 0.001, one-way ANOVA).  
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Supp Figure 2.2. Representative acquired H2O2 resistance assays for candidate genes 
under the chromosome XII QTL peaks. Representative acquired H2O2 resistance assays for 
wild-type YPS163 and each of 36 mutants generated for candidates falling within the 1.5-LOD 
support interval of the chromosome XII QTL peak.  
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Figure 2.4. Allelic variation in HAP1 affects ethanol-induced cross protection against 
H2O2. (A) Schematic of reciprocal hemizygosity analysis. Each block represents a gene, and 
each hybrid strain contains a single-copy deletion of hap1 or top3, and a single copy of the 
respective S288c (lab) or YPS163 (oak) allele. (B) Representative acquired H2O2 resistance 
assays for wild-type YPS163, the YPS163-S288c hybrid, and the reciprocal hemizygotes. (C) 
Each survival score plot shows the mean and standard deviation of biological triplicates. 
Asterisks represent significant differences in acquired resistance between denoted strains (** P 
< 0.01, *** P < 0.001, ns = not significant (P > 0.05), t-test).  
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Figure 2.5. HAP1 is not required for acquired H2O2 resistance following mild H2O2 or mild 
NaCl pretreatments. Cultures of wild-type YPS163 and the YPS163 hap1∆ mutant were split 
and exposed to either 0.4 mM H2O2, 0.4 M NaCl, or a mock (media only) treatment for 60 min, 
washed, exposed to 11 doses of severe H2O2 for 2 hr, and then plated to score viability. The 
survival scores across each of the 11 doses are plotted as the mean and standard deviation of 
biological triplicates.  
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Figure 2.6. Allele swaps suggest that HAP1 is necessary for acquired H2O2 resistance in 
YPS163, but not sufficient to restore acquired H2O2 resistance in S288c. (A) 
Representative acquired H2O2 resistance assays for wild-type YPS163 (oak), YPS163 hap1∆ 
mutant, YPS163 HAP1S288c, and S288c HAP1YPS163. (B) Each survival score plot shows the 
mean and standard deviation of at least biological triplicates. The replicates for YPS163 
HAP1S288c all had the same tolerance score and thus zero standard deviation (see Table S1 for 
raw numerical data). Asterisks represent significant differences in acquired resistance between 
denoted strains (** P < 0.01, *** P < 0.001, ns = not significant (P > 0.05), t-test).  
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complexity suggests that S288c harbors additional polymorphisms that affect cross protection. 

To determine whether this was due to allelic variation in TOP3, the only other locus showing a 

difference in acquired H2O2 resistance, we genotyped each of the segregants at both the HAP1 

and TOP3 loci. We identified two segregants with both the HAP1 YPS163 and TOP3YPS163 alleles 

that were nonetheless unable to acquire further resistance (S3 Fig, S1 Table). These data, 

along with the continuous distribution of F2 phenotypes (S1 Fig), is consistent with other loci 

outside of the chromosome XII QTL peak contributing to variation in acquired H2O2 resistance. 

Moreover, the causative alleles at these loci are apparently masked in YPS163-S288c hybrids 

that fully acquire H2O2 resistance, suggesting that they are recessive (see Discussion). We also 

noted during the genotyping that a small number of segregants contained the HAP1 S288c (or 

TOP3S288c) allele but were still able to acquire further H2O2 resistance (S3 Fig and S1 Table), 

suggesting that HAP1 function is conditionally necessary in certain genetic backgrounds. To 

determine whether this was due to a unique genetic background for YPS163, we deleted HAP1 

in three additional wild strains. A wild oak  (YPS1000) and wild vineyard (M22) strain showed 

defects in acquired H2O2 resistance similar to that of the YPS163 hap1∆ strain, while a wild 

coconut (Y10) strain showed a very slight defect (S4 Fig). Altogether, these results are 

consistent with HAP1 being necessary for ethanol-induced cross protection against H2O2 in 

some genetic backgrounds, including those of several wild strains, but not others (see 

Discussion).  



 53 

 
Supp Figure 2.3. Effect plots for HAP1 and TOP3 alleles. Boxplots and raw data points 
depict the distribution of segregant phenotypes depending on their alleles for either HAP1 or 
TOP3 (see methods for genotyping details).   
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Supp Figure 2.4. HAP1 is necessary for acquired H2O2 resistance in some wild strains. 
Survival score plots indicating the mean and standard deviation of at least biological triplicates. 
The replicates for mock-treated Y10 all had the same tolerance score and thus zero standard 
deviation (see Table S1 for raw numerical data). Asterisks represent significant differences in 
acquired resistance between denoted strains (* P < 0.05, ** P < 0.01, *** P < 0.001, ns = not 
significant (P > 0.05), t-test).  
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2.5.3 HAP1 affects catalase expression and peroxidase activity during ethanol stress. 

Because Hap1p is a transcription factor, we hypothesized that acquired H2O2 resistance 

relied on Hap1p-dependent expression of a stress protectant protein. We reasoned that the 

putative stress protectant protein should have the following properties: i) a biological function 

consistent with H2O2 detoxification or damage repair, ii) reduced ethanol-responsive expression 

in S288c versus YPS163, iii) be a target gene of the HAP1 eQTL hotspot, and iv) possess 

evidence of regulation by Hap1p. 

We first looked for overlap between our previously identified HAP1 eQTL hotspot 

(encompassing 376 genes) and genes with significantly reduced ethanol-responsive induction in 

S288c versus YPS163 (309 genes) (64). Thirty-four genes overlapped for both criteria, including 

several that directly defend against reactive oxygen species (TSA2 encoding thioredoxin 

peroxidase, SOD2 encoding mitochondrial manganese superoxide dismutase, CTT1 encoding 

cytosolic catalase T, and GSH1 encoding g-glutamylcysteine synthetase (Fig 7A and S1 Table)). 

Of those 34 genes, 8 also had direct evidence of Hap1p binding to their promoters (91) (Fig 7B 

and S1 Table), including CTT1 and GSH1 (though both TSA2 and SOD2 have indirect evidence 

of regulation by Hap1p (92, 93)). 

We first focused on CTT1, since it is both necessary for NaCl-induced cross protection 

against H2O2 in S288c (94), and sufficient to increase H2O2 resistance when exogenously 

overexpressed in S288c (67). We deleted CTT1 in the YPS163 background, and found that 

ethanol-induced cross protection against H2O2 was completely eliminated (Fig 8). The complete 

lack of cross protection in the ctt1∆ mutant suggests that other peroxidases cannot compensate 

for the lack of catalase activity under this condition. Next, because CTT1 was part of the HAP1 

eQTL hotspot (Fig 7C, plotted using the data described in (64)), we tested whether the S288c 

HAP1 allele reduced CTT1 expression during ethanol stress. To do this, we performed qPCR to 

measure CTT1 mRNA induction following a 30-minute ethanol treatment (i.e. the peak ethanol 

response (45)). Consistent with our previous microarray data (45, 64), we saw lower induction of   
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Figure 2.7. Expression variation in Hap1p regulatory targets implicates oxidative stress 
defense genes as the direct effectors of ethanol-induced cross protection against H2O2. 
(A) Overlap between genes that were HAP1 eQTL hotspot targets from (64), genes with 
defective induction in S288c vs. YPS163 from (64), and direct targets of HAP1 identified via 
ChIP experiments compiled from (91). (B) Descriptions of the eight genes that overlapped for all 
three criteria. (C) Previous eQTL mapping of the yeast ethanol response (newly plotted here 
using data described in (64)), implicated HAP1 as causative for natural variation in CTT1 
induction levels during ethanol stress.  



 57 

 
Figure 2.8. CTT1 function is necessary for ethanol-induced cross protection against 
H2O2. (A) Representative acquired H2O2 resistance assays for wild-type YPS163 and the 
YPS163 ctt1∆ mutant. (B) Survival score plots indicating the mean and standard deviation of 
biological triplicates. Asterisks represent significant differences in acquired resistance between 
denoted strains (*** P < 0.001, t-test).  
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CTT1 by ethanol in S288c relative to YPS163 (Fig 9a). Moreover, we saw dramatically reduced 

induction of CTT1 in a YPS163 hap1∆ mutant compared to the wild-type YPS163 control (Fig 

9a). Further support that HAP1 is causative for reduced CTT1 expression was provided by 

performing qPCR in the HAP1 reciprocal hemizygotes, where we found that the HAP1S288c allele 

resulted in significantly reduced CTT1 induction compared to the HAP1YPS163 allele (Fig 9a). 

To determine whether the differences in CTT1 induction across strain backgrounds also 

manifested as differences in each strain’s ability to detoxify H2O2, we measured in vitro 

peroxidase activity in cell-free extracts. We compared in vitro peroxidase activity in extracts from 

unstressed cells and cells exposed to ethanol stress for 60 minutes (i.e. the same pre-treatment 

time that induces acquired H2O2 resistance (see Materials and Methods)). For wild-type 

YPS163, ethanol strongly induced peroxidase activity, and this induction was completely 

dependent upon CTT1 (Fig 9b). Mirroring CTT1 gene expression patterns, the induction of 

peroxidase activity was reduced in a YPS163 hap1∆ mutant. Additionally, reciprocal 

hemizygosity analysis provided further support that lack of HAP1 function results in decreased 

peroxidase activity, as the hybrid containing the HAP1S288c allele showed significantly reduced 

peroxidase activity following ethanol stress compared to the hybrid containing the HAP1YPS163 

allele (Fig 9b). Notably, the hybrid containing the HAP1YPS163 allele had lower CTT1 induction 

and in vitro peroxidase activity following ethanol shock than wild-type YPS163, despite 

equivalent levels of acquired H2O2 resistance in the strains. These results suggest that HAP1 

may play additional roles in acquired H2O2 resistance beyond H2O2 detoxification, depending 

upon the genetic background (see Discussion). Interestingly, S288c showed no induction of 

peroxidase activity upon ethanol treatment, despite modest induction of the CTT1 transcript. 

This result is reminiscent of Ctt1p regulation during heat shock in the S288c background, where 

mRNA levels increase without a concomitant increase in protein levels (94). Thus, in addition to 

strain-specific differences in CTT1 regulation at the RNA level, there are likely differences in 

regulation at the level of translation and/or protein stability. 
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Figure 2.9. HAP1 is required for full induction of CTT1 gene expression and cellular 
peroxidase activity during ethanol stress. (A) Fold induction of CTT1 mRNA in indicated 
strains following 30 min ethanol stress compared to unstressed cells, assessed by qPCR. (B) 
Peroxidase activity measured in cell-free extracts in either mock-treated or ethanol-stressed 
cells. The plots indicate the mean and standard deviation of biological triplicates (mRNA) or 
quadruplicates (peroxidase activity). Asterisks represent significant differences in CTT1 mRNA 
induction or peroxidase activity between denoted strains (* P < 0.05, ** P < 0.01, paired t-test).  
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2.6 Discussion 

In this study, we leveraged extensive natural variation in the yeast ethanol response to 

understand potential connections between gene expression variation and higher-order 

organismal traits. Previous screens of gene deletion libraries have found surprisingly little 

overlap between the genes necessary for surviving stress and genes that are induced by stress. 

(34-43). Instead, gene induction may be a better predictor of a gene’s requirement for acquired 

stress resistance (94). Thus, we hypothesized that phenotypic variation in acquired stress 

resistance may be linked to natural variation in stress-activated gene expression. Our results 

provide a compelling case study in support of this notion—namely that a polymorphism in the 

HAP1 transcription factor affects natural variation in acquired H2O2 resistance, but not the basal 

H2O2 resistance of unstressed cells. Forward genetic screens have shown that the genes 

necessary for basal and acquired resistance are largely non-overlapping (34, 36, 94), 

suggesting that mechanisms underlying basal and acquired stress resistance are distinct. We 

provide further genetic evidence to support this model. YPS163 hap1∆ mutants and the hybrid 

carrying the HAP1S288c allele had strong acquired H2O2 defects, but no differences in their basal 

H2O2 resistance (Figs 4 and 6). Moreover, the YPS163 hap1∆ mutant was affected only when 

ethanol was the mild pretreatment, and was able to fully acquire H2O2 resistance following mild 

H2O2 or mild NaCl (Fig 5). These results suggest that the mechanisms underlying acquired 

resistance differ depending upon the mild stress that provokes the response. Further dissection 

of the mechanisms underlying acquired stress resistance will provide a more integrated view of 

eukaryotic stress biology. 

Our results reveal a new role for Hap1p in cross protection against H2O2 that has been 

lost in the S288c lab strain. We propose that a major mechanism underlying ethanol-induced 

cross protection against H2O2 is the induction of cytosolic catalase T (Ctt1p), and that in the 

YPS163 background, Hap1p is necessary for proper induction of CTT1 during ethanol stress. 

We based this mechanism on the following observations. First, over-expression of CTT1 in 
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S288c is sufficient to induce high H2O2 resistance (67). Second, a YPS163 ctt1∆ mutant cannot 

acquire any further H2O2 resistance following ethanol pre-treatment (Fig. 8), suggesting that no 

other antioxidant defenses are able to compensate under this condition. Lastly, the defect in 

cross protection for the YPS163 hap1∆ mutant correlates with reduced CTT1 expression and 

peroxidase activity during ethanol stress (compare Figs 6 and 9). How Hap1p is involved in the 

regulation of CTT1 during ethanol stress remains an open question, but we offer some 

possibilities. Hap1p is activated by heme, thus promoting transcription of genes involved in 

respiration, ergosterol biosynthesis, and oxidative stress defense including CTT1 (85, 86, 88, 

92). Because heme biosynthesis requires oxygen, Hap1p is an indirect oxygen sensor and 

regulator of aerobically expressed genes (84, 85, 95). There is currently no evidence that heme 

levels are affected by ethanol stress, nor is there evidence that Hap1p is “super-activating” 

under certain conditions. Thus, we disfavor a mechanism of induction caused solely by Hap1p 

activation. Instead, we favor a mechanism where Hap1p interacts with other transcription factors 

at the CTT1 promoter during ethanol stress, leading to full CTT1 induction. One possibility that 

we favor is recruitment of the general stress transcription factor Msn2p, which plays a known 

role in acquired stress resistance (44, 45). We previously showed that a YPS163 msn2∆ mutant 

had no induction of CTT1 mRNA during ethanol stress (45), suggesting that Msn2p was an 

essential activator for CTT1 under this condition. The CTT1 promoter region contains three 

Msn2p DNA-binding sites, two of which are ~100-bp away from the Hap1p binding site. Hap1p 

binding to the CTT1 promoter could help recruit Msn2p during ethanol stress, possibly through 

chromatin remodeling that increases accessibility of the Msn2p binding sites as proposed by 

Elfving and colleagues (96). 

What is the physiological role of Hap1p-dependent induction of CTT1 during ethanol 

stress? One possibility is that regulation tied to the heme- and oxygen-sensing role of Hap1p 

ensures that CTT1 induction only occurs under environmental conditions where reactive oxygen 

species (ROS) are most likely to be encountered—namely stressful conditions that are also 
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aerobic. In the context of ethanol stress, aerobic fermentation would lead to subsequent 

respiration of the produced ethanol and simultaneous ROS production. Under these conditions, 

CTT1 induction leading to ethanol-mediated cross protection against ROS would likely confer a 

fitness advantage. On the other hand, during stressful yet anoxic conditions, Ctt1p and other 

ROS-scavenging proteins are likely unnecessary. Furthermore, because heme is not 

synthesized during anoxic conditions (84), Hap1p would fail to induce CTT1 and other genes 

encoding non-essential heme-containing proteins. This may improve fitness by conserving 

energy used for biosynthesis and by redirecting limited heme to more essential heme-containing 

proteins. 

The S288c lab strain has long been known to possess a defective HAP1 allele (89).  

Apparently, the defective allele arose relatively recently, as only S288c contains a HAP1 Ty1 

insertion out of over 100 sequenced strains (97, 98). The lack of HAP1 function in S288c could 

be due to relaxation of selective constraint, though others have argued in favor of positive 

selection for reduced ergosterol biosynthetic gene expression (99, 100). Regardless, the loss of 

ethanol-induced acquired H2O2 resistance is likely a secondary effect of the loss of Hap1p 

function. Intriguingly, we did find that two (non-S288c) domesticated yeast strains also lack 

ethanol-induced cross protection against H2O2 (S5 Fig), suggesting that phenotypic differences 

in acquired stress resistance may differentiate domesticated versus wild yeast. Because 

environmental stresses are likely encountered in combination or sequentially (101), acquired 

stress resistance is likely an important phenotype in certain natural ecological settings. Future 

studies directed at understanding differences in acquired stress resistance phenotypes in 

diverse wild yeast strains may provide unique insights into the ecology of yeast. 

While our QTL mapping identified HAP1 as the major effector of cross protection, we note that 

additional complexity remains unexplained. Notably, despite the strong cross protection defect 

in the YPS163 hap1∆ mutant, some residual cross protection persists that is absent in S288c 

(Fig 6). Intriguingly, the residual cross protection is also absent in the hybrid carrying the 
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Supp Figure 2.5. Other non-S288c-derived yeast isolates lack ethanol-induced cross 
protection against H2O2. (A) Representative acquired H2O2 resistance assays for wild-type 
YPS163, YJM627, and YJM1129. (B) Survival score plots indicating the mean and standard 
deviation of biological duplicates. The replicates for ethanol-treated YJM627 all had the same 
tolerance score and thus zero standard deviation (see Table S1 for raw numerical data).  
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 HAP1S288c allele, suggesting the involvement of other genes depending upon the genetic 

background (Figs 4B and 4C). It is known that yeast strains with respiratory defects have 

increased ROS sensitivity (102, 103), potentially due to increased programmed cell death (104). 

It is possible that reduced respiratory activity and concomitant ROS sensitivity in strains lacking 

HAP1 is exacerbated by genetic interactions with other alleles. 

The lack of cross protection in S288c and the HAP1S288c hybrid correlates with the lack of 

inducible peroxidase activity following ethanol pretreatment in those strains. The lack of 

inducible peroxidase activity in S288c despite modest induction of CTT1 mRNA could be due to 

translational regulation, which is supported by the observation that while mild heat shock 

induces CTT1 mRNA, protein levels remain nearly undetectable (94). Strikingly, the hybrid 

carrying the HAP1YPS163 allele still cross protects despite levels of CTT1 mRNA induction and 

peroxidase activity that are lower than in the YPS163 hap1∆ strain that is unable to acquire 

further resistance (Fig 9). These data suggest that HAP1 plays an additional role in ethanol-

induced cross protection beyond H2O2 detoxification by Ctt1p. Moreover, the continuous 

distribution of the cross protection phenotype in the segregants (S1 Fig) and the results of allele 

swap experiments (Fig 6) strongly implicate other genes and processes in this complex trait. 

Specifically, the lack of complementation by the HAP1YPS163 allele in the S288c background 

suggests that additional loci in S288c render HAP1 necessary but not sufficient for cross 

protection in this background. Moreover, our genotyping of the segregants at HAP1 revealed a 

small number that still possessed cross protection in the absence of functional HAP1 (S3 Fig 

and S1 Table), suggesting that HAP1 is dispensable in certain genetic backgrounds. We 

examined the effects of hap1∆ mutations in other wild strain backgrounds and found two 

additional strains with a strong HAP1 requirement and a third strain with at most a mild HAP1 

effect (S4 Fig). This result, as well as those from other recent studies (105-107), suggests that 

these types of genetic background effects are likely the rule rather than the exception. Future 
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high resolution mapping experiments will be necessary to identify and characterize the source of 

these genetic background effects. 

Gene expression variation is extensive in nature and is hypothesized to be a major 

driver of higher-order phenotypic variation. However, there are inherent challenges to 

connecting gene expression variation to higher-order organismal traits. Hundreds to thousands 

of genes are often differentially expressed across individuals, so identifying which particular 

transcripts exert effects on fitness is difficult. By studying acquired stress resistance—a 

phenotype better correlated with stress-activated gene expression changes—we were able to 

uncover a novel connection between gene expression variation and an organismal trait. 
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3.1 Abstract 

An individual’s physiological response to different environmental conditions often 

depends on their individual genetic background. However, the mechanism underlying these so-

called “gene-environment interactions” are generally poorly understood. We have been 

exploiting natural variation in Saccharomyces cerevisiae stress responses to understand the 

role of gene-environment interactions in a unique phenotype called acquired stress resistance, 

where cells that are pretreated with a mild, sub-lethal dose of stress can then survive an 

otherwise lethal doses of severe stress. We have found that a commonly-used lab strain of 

yeast can acquire further oxidative stress resistance, but it depends on the pretreatment. For 

example, while mild salt pretreatment can induce hydrogen peroxide resistance, mild ethanol 

stress cannot. In contrast, most wild yeast strains can acquire peroxide resistance when 

pretreated with mild ethanol. Because salt-induced acquired peroxide resistance requires 

catalase activity in the lab strain, we tested whether catalase was necessary for acquired 

peroxide resistance in over a dozen diverse yeast strains. Surprisingly, we found a wide range 

of catalase dependency for acquired peroxide resistance, despite similar levels of acquired 

resistance in wild-type cells. We hypothesized that variation in catalase dependency was due to 

gene expression variation in oxidative stress defense genes. Transcriptional profiling revealed 

differential expression of these potentially compensatory oxidative stress genes, as well as the 

potential transcription factors regulating clusters of differentially expressed genes. Our approach 

highlights the power of using natural variation to reveal novel aspects of signaling networks, 

which may play a large role in shaping variation in gene-environment interactions across diverse 

organisms.  
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3.2 Introduction 

How individuals respond to different environmental conditions often depends on their 

individual genetic background and can have profound effects on organismal fitness. While the 

mechanisms underlying these so-called “gene-environment interactions” is unclear, one 

possibility is that gene expression differences across individuals are responsible. Gene 

expression variation is a pervasive source of phenotypic variation in nature (1-4), and is even 

thought to underlie the extensive differences we see between humans and chimpanzees 

despite >98% DNA sequence identity between the two species (5, 6). One major challenge for 

connecting gene expression variation to higher-order organismal traits is the choice of trait to 

examine. In some cases, expression variation may be effectively neutral, while in other cases 

phenotypic effects may only be present under specific conditions (7, 8). 

To understand the relationship between gene expression variation and gene-

environment interactions, we have been leveraging extensive variation in Saccharomyces 

cerevisiae stress responses to understand their impact on a novel phenotype called acquired 

stress resistance, where cells pretreated with a mild sub-lethal stress gain the ability to survive 

an otherwise lethal severe dose of stress. These stresses can be the same (same stress 

protection) or different (cross stress protection). 

We have argued that acquired stress resistance is a phenotype much better linked to 

gene expression than the intrinsic resistance of unstressed cells (9, 10) based on the following 

rationale. Many studies have shown a poor correlation between the genes that respond to 

stress and their importance for stress survival (11-13), thus suggesting that the purpose of 

stress-activated gene expression is not to survive the immediate insult. Additionally, yeast 

respond to diverse stresses by coordinating the expression of condition-specific genes with a 

large, common gene expression program called the environmental stress response (ESR) (14). 

Defective ESR expression correlates with diminished acquired stress resistance, suggesting 

that stress-activated gene expression changes may instead protect cells from future challenges 
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(9, 15). Beyond yeast, acquired stress resistance is widespread across organisms ranging from 

bacteria to higher eukaryotes (16-27). In both bacteria and mammalian cells, mild oxidative 

stress protects against hydrogen peroxide and radiation stresses (28, 29). Additionally, caloric 

restriction (i.e. starvation stress) and ischemic preconditioning (transient blocking of blood 

supply followed by reperfusion of oxygenated blood that causes mild oxidative stress) have 

been shown to induce cardio protection during heart attacks and heart surgery (30-32).Thus, 

understanding the mechanisms underlying acquired stress resistance has broad implications in 

fields ranging from food microbiology to human medicine.  

We previously found that when a commonly-used lab strain was pretreated with mild 

ethanol, it failed to protect against higher levels of hydrogen peroxide, while a wild oak isolate 

could (10). This difference was genetically mapped to a mutation in the gene encoding the 

Hap1p transcription factor, which affected the expression of the gene encoding cytosolic 

catalase T (CTT1), a key hydrogen peroxide scavenging enzyme (10). Our previous results 

showed that lack of CTT1 completely abolished ethanol-induced cross protection against 

hydrogen peroxide in the wild oak strain YPS163 (10). Likewise, an S288c (lab strain) ctt1∆ 

mutant completely lacks salt-induced cross protection against hydrogen peroxide (12), 

suggesting that there are perhaps no compensatory mechanisms of acquired hydrogen 

peroxide resistance. 

In this study, we examined yeast strains from diverse genetic backgrounds and found 

surprising evidence for cytosolic catalase T, highly conserved protein hydrogen peroxide 

scavenging enzyme, and alternative mechanisms of cross protection against hydrogen 

peroxide. Depending upon strain background, these compensatory mechanisms can be 

activated by ethanol stress, salt stress, or both. Transcriptional profiling of the ethanol and salt 

responses, in diverse strains, further implicated possible regulators of these different protective 

mechanisms. Ultimately, this study highlights how superficially similar traits can have different 
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underlying molecular bases and provides a framework to examine natural variation in other 

organisms. 

 

3.3 Materials and Methods 

3.3.1 Strain and growth conditions 

All parental strains used in this study are listed in Table 1. All Homozygous strains were 

generated by sporulation and tetrad dissection before moving the ctt1Δ::KanMX allele from the 

YPS163 background (9), followed by another round sporulation and tetrad dissection to 

generate homozygous ctt1D strains. For construction of transcription factor and GSH1 deletions, 

first, the MX cassette from ctt1Δ::KanMX deletion was replaced with a NatMX cassette (33), 

selecting for nourseothricin resistance followed by sporulation and tetrad dissection. Then the 

transcription factor or GSH1 deletions were moved into homozygous YPS606 and YPS606 

ctt1D (ctt1D::NatMX) by homologous recombination with the deletion::KanMX cassette amplified 

from the appropriate yeast knockout strain (34), followed by sporulation and tetrad dissection. 

To generate msn2/msn4D and ctt1/msn2/msn4D, the MX cassette from msn4Δ::KanMX deletion 

was replaced with a HygMX cassette, selecting for hygromycin resistance followed by 

sporulation and tetrad dissection before amplification and homologous recombination. For 

homozygous deletions msn2/msn4D and ctt1/msn2/msn4D strains were sporulated and 

dissected. All deletions were verified by diagnostic PCR. 

 

3.3.2 Cross protection assays  

Cross protection assays were performed as described (15) with modifications. Briefly, 

overnight cultures were prepared using 3-4 isolated colonies from a freshly streaked plate (<1 

week old) in YPD and grown to saturation at 30°C shaking at 270 rpm. Subcultures were grown 

for at least 8 generations overnight (35). Once cells reached mid-log (OD600 0.3-0.6), cultures 
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were split into a either a mock (YPD control) or mild experimental sample of either 5% (v/v) 

ethanol YPD or 0.4 M NaCl YPD. All samples incubated at 30°C shaking at 270 rpm for 1 hour 

(pretreatment). Cells were collected via centrifugation (1,500 x g for 3 minutes) and resuspend 

to OD600 of 0.6 with fresh YPD. 50 µl of resuspended cells were transferred into a flat bottom 96-

well plate containing 100 µl of increasing concentrations (0.75-5 mM) of hydrogen peroxide 

(secondary stress), sealed with a breathable membrane (VWR 60941-086), and incubated for 2 

hours at 30°C with 800 rpm shaking in a VWR symphony Incubating Microplate Shaker. Cells 

were diluted (1:50) in fresh YPD in a flat bottom 96-well plate then 4 µl were spot plated onto 

YPD agar plates and grown for 48 hours at 30°C. Each colony was scored using a semi-

quantitative scale comparing viability to the no secondary stress YPD control (100% viability = 3 

pts, 50-90% viability =2 pts, 10-50% viability = 1 pt, and <10% or < 3 colonies = 0 pt) to 

determine hydrogen peroxide tolerance. A detailed protocol can be found on protocols.io 

(dx.doi.org/10.17504/protocols.io.g7sbzne). To determine WT percent max hydrogen peroxide 

acquisition:  

𝑊𝑇	𝑝𝑒𝑟𝑐𝑒𝑛𝑡	𝑚𝑎𝑥	ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛	𝑝𝑒𝑟𝑜𝑥𝑖𝑑𝑒

= 𝑊𝑇	𝑚𝑖𝑙𝑑	𝑠𝑡𝑟𝑒𝑠𝑠	(𝑝𝑟𝑒𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡)	𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒	𝑠𝑐𝑜𝑟𝑒

− 	𝑊𝑇	𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐	(𝑛𝑜	𝑝𝑟𝑒𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡)𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒	𝑠𝑐𝑜𝑟𝑒	 

That value is now 100% as it is the wildtype phenotype. To calculate the percent max 

hydrogen peroxide of deletions:  

𝐷𝑒𝑙𝑒𝑡𝑒𝑖𝑜𝑛	𝑝𝑒𝑟𝑐𝑒𝑛𝑡	𝑚𝑎𝑥	ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛	𝑝𝑒𝑟𝑜𝑥𝑖𝑑𝑒

= ((𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛	𝑚𝑖𝑙𝑑	𝑠𝑡𝑟𝑒𝑠𝑠	(𝑝𝑟𝑒𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡)𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒	𝑠𝑐𝑜𝑟𝑒

− 𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛	𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐	(𝑛𝑜	𝑝𝑟𝑒𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡)𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒	𝑠𝑐𝑜𝑟𝑒)

/(𝑊𝑇	𝑚𝑖𝑙𝑑	𝑠𝑡𝑟𝑒𝑠𝑠	(𝑝𝑟𝑒𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡)𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒	𝑠𝑐𝑜𝑟𝑒

− 	𝑊𝑇	𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐	(𝑛𝑜	𝑝𝑟𝑒𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡)𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒	𝑠𝑐𝑜𝑟𝑒)) ∗ 100	 
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All statistical analyses on cross protection assays were performed using Prism 7 (GraphPad 

Software). 

 

3.3.3 Cell collections, RNA extraction, library preparation and sequencing  

Cells were grown to mid-log (OD600 0.3-0.6). A sample was taking before being exposed 

to ethanol (5% final concentration) or salt (0.4M NaCl). Cells were incubated for 30 minutes (9) 

for ethanol or 45 minutes for salt (15), before being collected via centrifugation and flash frozen 

in liquid nitrogen. Samples were stored at -80°C until ready for RNA extraction. 

RNA was extracted using a hot phenol extraction as described in (36), followed by an 

off-column DNase I (Ambion AM2222) digestion. The total RNA was purified using Quick-RNA 

MiniPrep Plus Kit (Zymo Research R1057) along with an on-column DNase I digestion. Aglient 

TapeStation was used to determined RNA integrity. Total RNA concentrations were quantified 

by Qubit. A detailed protocol of the RNA isolation can be found here: 

(dx.doi.org/10.17504/protocols.io.inwcdfe). Libraries were prepared following KAPA mRNA 

HyperPrep Kit protocol (Roche 08098123702) using KAPA Single-Indexed Adapter Kit (Roche 

08005699001) and an epMotion 5075 automatic pipetting machine. Briefly, 500ng total RNA 

was used as input. Libraries were amplified for 9 cycles and half reactions were used. A detailed 

protocol can be found on protocols.io (dx.doi.org/10.17504/protocols.io.uueewte). Libraries were 

sent to the University of Chicago Genomics Facility, where libraries were analyzed via 

Bioanalyzer high sensitivity tapes. Samples were pooled by replicates and a final AMPure bead 

cleanup was performed to remove any remaining adapters. To minimize against batch effects, 

all RNA-seq libraries replicates were constructed on the same day and each replicate was 

multiplexed and sequenced on a single lane of an Illumina HiSeq4000 instrument. 

 

 

 



 82 

3.3.4 RNA Sequencing Analysis 

All low-quality reads and adapters were trimmed using Trimmomatic (Version 0.38) (37) 

using the following command ILLUMINACLIP:Kapa_indices.fa:2:30:10 LEADING:3 TRAILING:3 

MAXINFO:40:0.4 MINLEN:40. For generating each strain reference genome all reads were 

mapped using Bowtie2.0 (Version 2.3.4.1) (38) to S288c genome (Version Scer3). Variants 

were called using bcftools (Version 1.9) (39, 40) and new reference genomes were created 

using GATK3 GenomeAnalysisTK (Version 3.8-1-0) (41). Trimmed reads were then mapped to 

their new corresponding reference genome using STAR (Version 2.6.1) (42). RSEM (Version 

1.3.1) was used to generate read counts (43). Differential expression was calculated using 

Bioconductor’s edgeR (Version 3.26.4) using generalized linear model (44). For the generalized 

linear model, sample type (i.e. YPS606 Mock, YPS606 Ethanol, YPS606 Salt, M1 Mock…) 

biological replicate were used as factors. Two contrasts were made: strain specific response 

(strain1 experimental - strain1 control) and strain vs average response ((strain1 experimental - 

strain1 control)/(average of all stress strain specific responses)). Only genes with at least 1 

count per million (CPM) in at least one condition were included in analyses.  

All hierarchical cluster were done using Cluster 3.0 (45) using Euclidean correlation, for 

RNA-Sequencing (Figure 3) and Centered Pearson correlation for tolerance scores (Figure 2), 

and centroid linkage with a weighted cutoff of 0.4. Java Treeview was used for heatmap cluster 

visualization (46). Functional enrichments of gene ontology (GO) categories were performed 

using Princeton’s GO-TermFinder (https://go.princeton.edu/cgibin/GOTermFinder) (47), with 

Bonferroni-corrected P-values < 0.01 taken as significant. Possible regulators were determined 

by taking induced clusters and searching for all possible transcription factors using Yeastract 

(http://www.yeastract.com/formrankbytf.php) (48).  

 



 83 

3.4 Results 

3.4.1 Wild oak strain (YPS606) requires catalase (CTT1) for ethanol-induced cross 

protection, but not for salt-induced cross protection.  

We previously reported that a commonly used lab strain of yeast fails to acquire higher 

hydrogen peroxide resistance when pretreated with ethanol but a wild oak strain (YPS163) can 

(10). Cells lacking CTT1 encoding cytosolic catalase T, a key hydrogen peroxide scavenging 

enzyme, completely failed to acquire hydrogen peroxide resistance when pretreated with 

ethanol (10). To understand whether this catalase dependency was a general feature of 

acquired peroxide resistance in yeast, we tested whether CTT1 was essential for acquired 

peroxide resistance in other diverse strain backgrounds. Cross protection assays were 

performed by exposing cells to a mild, sublethal dose of ethanol (5% v/v) or salt (0.4M NaCl) for 

60 min, followed by exposure to a panel of 11 increasingly severe doses of hydrogen peroxide, 

which were used to calculate percent maximum hydrogen peroxide acquisition in the mutant 

relative to the wild-type control strain (see Material and Methods). For example, we saw a 

similar catalase dependent ethanol-induced hydrogen cross protection in another wild oak strain 

YPS606 (Figure 3.1A), implying that catalase was required for proper protection against 

hydrogen peroxide. Previous studies have been focused on variation in a strain’s response to 

ethanol and ethanol-induced hydrogen peroxide acquisition (9, 10, 49) and because salt-

induced acquired peroxide resistance required catalase activity in the S288c lab strain (12), we 

tested whether catalase was necessary for salt-induced acquired peroxide resistance in the 

YPS606 wild oak strain. Surprisingly, we found that there was still moderate residual cross 

protection in the absence of CTT1 (Figure 3.1B).  
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Figure 3.1: Natural variation in ethanol- and salt-induced hydrogen peroxide cross 
protection. (A) A representative acquired H2O2 resistance assay of wildtype and ctt1D of S288c 
(lab strain–DBY8268) and YPS606 (wild oak strain) is shown. S288c and YPS606 were 
exposed to either 5% ethanol, 0.4M NaCl, or mock (YPD control) pretreatment for 60 min, 
washed, exposed to 11 doses of severe H2O2 for 2 hr, and then plated to score viability. (B) 
Percent max H2O2 acquisition was calculated from the differences of viability of the pretreatment 
vs the mock control of the wildtype strain and set to 100%. Percent max H2O2 acquisition of the 
ctt1D was calculated the differences of viability of the pretreatment vs the mock control of the 
ctt1D divided by the percent max H2O2 acquisition value of the wildtype strain, multiplied by 100 
to obtain the percent (see Materials and Methods). Each plot shows the mean and standard 
deviation of 3 independent biological replicates for S288c and 4 independent biological 
replicates for YPS606.  
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3.4.2 CTT1 is the key component, but not necessary for ethanol- or salt-induced 

hydrogen peroxide acquisition in some wild strains.  

To investigate the role of CTT1 in acquired stress resistance in wild strains, we 

performed ethanol and salt-induced cross protection assays in 13 strains from diverse 

environments (Table 3.1). When we tested the CTT1 essentiality in wild oak strain YPS606, we 

saw a catalase dependent phenotype when pretreated with ethanol and an independent 

phenotype when pretreated with mild salt (Figure 3.1). Using our YPS606 data and previously 

reported YPS163 dependence on CTT1 for ethanol-induced hydrogen peroxide acquisition (10), 

we hypothesized that similar wild strains would behave alike. Interestingly, the catalase 

requirement could differ if ethanol or salt was the mild stress pretreatment and only some 

strains required catalase for cross protection against hydrogen peroxide, Figure 3.2C. For 

instance, we saw four distinct groups of catalase dependency. In the absence of catalase, wild 

oak isolates (YPS606, YPS163 and YPS1000) acquired hydrogen peroxide resistance only 

when pretreated with salt and not ethanol. Strains M22 (vineyard isolate), YJM308 (clinical 

isolate), and Y12 (palm wine isolate), partially acquired hydrogen peroxide resistance when 

pretreated with either ethanol or salt, while other strain isolates: Y10 (natural isolate), Y2 (other 

fermentation isolate), M32 (vineyard isolate) and M1 (vineyard isolate) did not acquire hydrogen 

peroxide resistance when catalase was deleted. Lastly, we had strains that did not acquire 

hydrogen peroxide resistance when pretreated with ethanol (S288c, YJM1129, and YJM627). 

Intriguingly, all strains fully acquired hydrogen peroxide resistance when pretreated with salt 

when catalase was present (Supp Figure 3.1). 
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Table 3.1: Strains used to evaluate the natural variation of the environmental stress response. 

Strain ID Strain Classification Isolation Location 
M22* 

Vineyard 
Vineyard, Tuscany, Italy  

M32 Vineyard, Tuscany, Italy 
M1* Vineyard, Italy 

YPS163* 
Oak 

Oak soil sample, Pennsylvania  
YPS1000 Oak exudate isolate, Mettlers Woods, NJ  
YPS606* Bark of an oak tree, Lima, PA 

Y10* Natural Coconut, Philippines 
Y2 

Other Fermentation 
Rum Fermentation, Trinidad 

Y12 Palm wine, Ivory Coast 
YJM1129* Distillery 
YJM308* Clinical United States 

DBY8268* 
Lab 

S288c derivative, California 
YJM627 Y55 segregate, France 

* indicates strains were used for RNA-Sequencing. 
Strains are color coated based on acquisition groups. Red denotes strains that 
are catalase independent. Blue denotes strains that are catalase dependent. 
Green denotes strains that are catalase dependent for ethanol and catalase 
independent for salt. Black denotes strains that fail to acquire hydrogen 
peroxide resistance when pretreated with ethanol. 
 

As wine yeast showed increase resistance to sulfides (wine preservative) (50), we 

hypothesized catalase dependency might correlate with the environmental niche. Instead, we 

found the degree of CTT1 dependency did not depend on the strain environment. We found that 

in strains that still acquire hydrogen peroxide resistance in the absence of catalase did not 

cluster based on environment (Figure 3.2), with the exception of the oak isolates. The wild oak 

strains all shared similar catalase dependencies was not altogether unexpected based on their 

relatively high levels of genetic similarity (51, 52).  
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Figure 3.2: Hierarchical clustering of hydrogen peroxide acquisition tolerance 
scores/phenotype. (A) Strains were organized by hierarchical clustering using Cluster3.0 on 
average of tolerance scores replicates. Each row indicates a strain labeled on the right, and 
each column represents a different condition labeled on the top (E, ethanol; DE,  ctt1D ethanol; 
N, NaCl; DN, ctt1D NaCl). Strains are color coated based on their acquisition groups. Dark blue 
colored boxes represent increased hydrogen peroxide acquisition and light gray indicates no 
hydrogen peroxide acquisition under the designated conditions.(B) Representative acquired 
H2O2 resistance assay of different clusters. (C) Four classes of hydrogen peroxide cross 
protection CTT1 dependency indicating the mean and standard deviation of biological 
duplicates except for YPS163 (27 reps), YPS606 (4 reps), and S288c (3 reps).  
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Supp Figure 3.1: Ethanol- and Salt-induced hydrogen peroxide acquisition varies based 
in wild strains. Representatives of each cross protection assay shown. Biological duplicates 
were used except for YPS163 (27 reps), YPS606 (4 reps), and s288c (3 reps).  
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3.4.3 GSH1 is only partially responsible for the CTT1 independent ethanol and/or salt-

induced hydrogen peroxide acquisition. 

In the absence of CTT1, the wild oak strain YPS606 still acquired salt-induced hydrogen 

peroxide acquisition; therefore, another hydrogen peroxide scavenging enzyme is likely 

responsible. In addition to catalases, cells possess a number of ways to detoxify hydrogen 

peroxide with the thioredoxin-dependent or glutathione-dependent peroxidases being the most 

common (53-57). To hone in on the responsible alternative peroxidase, we first deleted the 

gene encoding the first step in glutathione biosynthesis (GSH1), both alone and in combination 

with ctt1D in wild oak (YPS606) strain, to determine whether a glutathione-dependent 

peroxidase was responsible for the partial CTT1 independent salt-induced hydrogen peroxide 

acquisition. We used YPS606 as it showed one of the strongest CTT1-independent hydrogen 

peroxide acquisitions (Figure 3.2C). In the absence of GSH1, YPS606 fully acquired hydrogen 

peroxide acquisition when pretreated with salt, suggesting that CTT1 is sufficient for maximal 

acquisition. When GSH1 was deleted in combination with CTT1, we saw further reduction of 

hydrogen peroxide acquisition beyond the ctt1∆ alone (Figure 3.3), suggesting the alternative 

peroxidase, in YPS606, is partially glutathione dependent. This proposes that there are at least 

two routes for acquired hydrogen peroxide resistance. These findings reiterate that there are 

multiple ways for cells to combat hydrogen peroxide stress and it may vary based on strain 

background (see Discussion).  
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Figure 3.3: GSH1 is partially responsible for activating the alternative peroxidase under 
salt-induced hydrogen peroxide resistance in wild oak strain YPS606. (A) A representative 
acquired H2O2 resistance assay of wildtype, ctt1D, gsh1D, and ctt1D gsh1D YPS606 is shown. 
Error bars indicate the mean and standard deviation of at least biological triplicates. Asterisks 
represent significant differences in percent max hydrogen peroxide acquisition between denoted 
strains (** P <0.01, t-test).  
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3.4.4 Extensive variation in the ethanol and salt responses between wild strains. 

It has been previously shown that acquired stress resistance requires gene expression 

(9, 58) and variation in acquired resistance has been linked to variation in gene expression (59). 

Since we saw strain differences in hydrogen peroxide acquisition, we hypothesized that these 

phenotypic differences were due to gene expression variation. To address this hypothesis, we 

performed RNA-sequencing on strains that were exposed to 5% ethanol for 30 min (peak 

transcriptional response (9)) or 0.4M NaCl for 45 min (peak transcriptional response (15)) in 

biological triplicate. We chose two representatives from each catalase group, to gain a better 

understanding of the variation in response to ethanol and salt. For ethanol catalase independent 

for salt: YPS606 and YPS163; catalase independent for ethanol and salt: M22 and YJM308; 

catalase dependent for ethanol and salt: M1 and Y10; and did not acquire with ethanol: 

YJM1129 and S288c-derived strain DBY8268. We found a total of 3,918 genes with differential 

expression in ethanol responses (Figure 3.4A) and a total of 2,222 genes with differential 

expression in response to salt in any strain relative to the mean, Figure 3.4B (FDR < 0.01). 

While there was generous overlap between the differentially expressed genes (1,720 genes), 

each stress had genes that were stress specific (2,198 ethanol specific genes and 502 salt 

specific genes).  

To identify patterns of co-regulated genes that differ across strains, we performed 

hierarchical clustering on all genes that were significantly differentially expressed in comparison 

to the mean expression value of all strains (FDR <0.01). We saw clusters enriched for the 

repressed ESR such as ribosome biogenesis, translation, and cell cycle. The induced ESR is 

also present with enrichments of detoxifying ROS, carbohydrate metabolism, and other 

catabolic processes. Even though we saw evidence of the ESR, we still noticed strain-specific 

differences. For example, S288c displayed a reduced response to ethanol when compared to 

the wild strains, showing lower repression of genes involved in the repressed ESR and lower 

induction of genes involved in the induced ESR. We have previously shown that S288c has 
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decreased CTT1 expression compared to YPS163, and that ethanol fails to induce measurable 

peroxidase activity (10). Here, we saw the differences of catalase induction. CTT1 independent 

strains M22 (3-fold increase) and YJM308 (8.5-fold increase) had higher CTT1 expression 

compared to the mean of all strains, while S288c still induced CTT1 but at a much lower degree 

(0.07-fold increase compared to the mean). Interestingly, YJM1129, the other strain that failed 

to acquire hydrogen peroxide acquisition when pretreated with ethanol, expressed CTT1 

equivalently to many strains that did acquire, which could suggest that CTT1 may not be 

functional in that strain. However, when YJM1129 was pretreated with salt, we saw full 

acquisition in a catalase dependent manner, proving catalase is likely, at least, somewhat 

functional but perhaps has reduced expression or activity during ethanol stress due to 

translational or post-translational control. 

Although all strains acquired hydrogen peroxide acquisition when pretreated with salt 

(Supp Figure 3.1), we still saw catalase dependent and independent phenotypes, suggesting 

different mechanisms for how to cope with hydrogen peroxide. Surprisingly, the vineyard strain, 

M1 had a much more muted response to salt compared to the other wild strains. M1 had lower 

expression of CTT1 and alternative peroxidase candidates compared to the other wild strains, 

suggesting strain specific upstream regulation differences. Strains that acquired hydrogen 

peroxide acquisition in a catalase dependent manner (M1, YJM1129, and S288c) had lower 

induction of genes associated with carbohydrate metabolism and detoxifying ROS (Figure 3.4B) 

when exposed to mild salt. Interestingly Y10, a CTT1 dependent strain for ethanol and salt-

induced hydrogen peroxide acquisition, had similar gene expression changes as strains that are 

CTT1 independent during salt stress. While wild oak strains, YPS606 and YPS163, still 

clustered close together we do see some strain specific gene expression variation in both 

ethanol and salt, suggesting natural variation in the wild isolates that are more genetically 

similar. 
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Figure 3.4: Variation in gene expression in response to ethanol and salt in wild strains. 
Log2 expression differences measured in denoted strains. Strains are color coated based on 
catalase dependency as described in Figure 2. A total of 3,918 genes with differential ethanol 
responses in any strain relative to the average and a total of 2,222 genes with differential salt 
responses in any strain relative to the average (FDR = 0.01) were organized by Euclidean 
clustering (see Materials and Methods). The left portion of the heat map displays expression 
changes in strain specific response to ethanol (panel A) or salt (panel B) across three biological 
replicates for catalase dependent for ethanol catalase independent for salt: YPS606 and 
YPS163, catalase independent for ethanol and salt: M22 and YJM308, catalase dependent for 
ethanol and salt: M1 and Y10, and did not acquire to ethanol: YJM1129 and S288c-derived 
strain DBY8268. Differences in ethanol and salt response for each wild strain vs. the mean of all 
strains are shown in the right portion of the figure. Each row represents a gene and each 
column represents a strain. Red indicates induced and blue indicates repressed expression in 
response to stress, while brown indicates higher expression compared to the average of all the 
strains and purple indicates lower expression to the average of all the strains, according to the 
key. Enriched functional groups (Bonferroni corrected P < 0.01) are annotated to the right.  
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3.4.5 MSN2/4 are responsible for ethanol-induced hydrogen peroxide acquisition, while 

SKN7 and YAP1 are partially responsible for the salt-induced hydrogen peroxide 

acquisition. 

To identify potential regulators of the salt and ethanol responses that may be 

responsible for acquired hydrogen peroxide resistance, we looked for enrichment for DNA 

binding sites in the promoters of genes found within stress induced clusters. Our enrichments 

and previously known stress responsive transcription factors helped identify potential signaling 

pathways responsible for the expression divergence: MSN2, MSN4, SKN7, HSF1, and YAP1. 

To address their role in acquired hydrogen peroxide resistance, we deleted these transcription 

factors in the YPS606 strain background. Msn2p and Msn4p, general stress transcription factors 

(14, 58, 60), have been shown to play a role in osmotic shock (61) and are necessary for salt-

induced hydrogen peroxide resistance in S288c. Surprisingly, we found that Msn2/4p are 

partially required for hydrogen peroxide acquisition in wild oak isolate YPS606 when pretreated 

with salt, but are necessary for ethanol-induced hydrogen peroxide cross protection, Figure 

3.5A. When the MSN2/4 deletion was combined with the CTT1 deletion, we did not see a 

reduction in salt-induced hydrogen peroxide acquisition suggesting that the alternative 

peroxidase is not being regulated by Msn2/4p.  

Another transcription factor involved in response to osmotic and oxidative stress (62-64), 

Skn7p was also enriched in our induced clusters. When SKN7 was absent and cells were 

pretreated with ethanol, we saw a decrease in hydrogen peroxide resistance (Figure 3.5B), 

indicating Skn7p plays a role in response to ethanol stress in YPS606. SKN7 deletion, by itself, 

did not yield in a reduction of salt-induced hydrogen peroxide acquisition; while in combination 

with CTT1, we saw significantly less hydrogen peroxide resistance indicating that SKN7 is 

partially responsible for the alternative peroxidase activity. Heat shock factor 1, HSF1, 

responsible for activating gene expression in response to heat stress and ethanol (65-67), also 

showed up as a potential regulator. Since HSF1 is an essential gene, we could only test a 
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heterozygous deletion strain. In this context, lack of Hsf1p did not affect salt-induced hydrogen 

peroxidase acquisition, suggesting it does not activate the alternative peroxidase, with the 

caveat that a clean deletion is not possible (Figure 3.5C). Interestingly, one cluster with high 

strain variation during salt stress was enriched for Yap1p binding sites. Yap1p is specifically 

activated during oxidative stress (56, 68, 69) and is responsible for inducing genes involved in 

detoxifying ROS, such as peroxidases (56, 70-72). When YAP1 and CTT1 were deleted we did 

not see a decrease in salt-induced hydrogen peroxide resistance. Yap1p has been shown to 

play a role in intrinsic acquisition (63). The decrease in the intrinsic hydrogen peroxide 

resistance results in an increase in percent maximum hydrogen peroxide acquisition well above 

100%, as seen in Figure 3.5C. When looking at the hydrogen peroxide tolerance scores, we did 

see a decrease in salt-induced hydrogen peroxide acquisition, suggesting Yap1p plays a role in 

activating the compensating peroxidase, Supp Figure 3.2D.  
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Figure 3.5: SKN7 is activating the alternative pathways are being activated during ethanol 
and salt stress while MSN2/4 is required for ethanol-induced hydrogen peroxide cross 
protection. Error bars indicate the mean and standard deviation of at least biological triplicates, 
except YPS606 HSF1/hsf1D (duplicate) and YPS606 (eleven reps). For YPS606 WT values are 
set to percent max H2O2 acquisition of 100%, thus zero standard deviation. Asterisks represent 
significant differences in percent max hydrogen peroxide acquisition between denoted strains 
(**P <0.01, ****P <0.0001, t-test).  
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Supp Figure 3.2: Tolerance scores of transcription factor mutants. Biological triplicate for 
all strains except YPS606 HSF1/hsf1D (duplicate) and YPS606 (eleven reps). The replicates for 
several strains all had the same tolerance score and thus zero standard deviation. Panel A and 
C show intrinsic levels of hydrogen peroxide resistance. Dotted line is the average of YPS606 
intrinsic hydrogen peroxide tolerance score.  
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3.5 Discussion 

In this study we leveraged acquired stress resistance to understand the different 

mechanisms underlying natural variation between gene expression and higher-ordered traits. It 

was previously shown that the S288c lab strain failed to acquire hydrogen peroxide acquisition 

when pretreated with ethanol (10) and S288c required catalase function for salt-induced cross 

protection against hydrogen peroxide (12). Additionally, we previously showed that catalase was 

required for ethanol-induced cross protection against hydrogen peroxide in the YPS163 oak 

strain (10). Here, we show that while this is true of some wild strains, this is not universal, and 

that some wild strains can acquire moderate levels of peroxide resistance in the absence of 

CTT1. While some strains required catalase only for ethanol-induced or salt-induced cross 

protection against hydrogen peroxide, we found that the catalase dependency also varied 

depending on the identity of mild stress. Previous studies have been focused on variation in a 

strain’s response to ethanol and ethanol-induced hydrogen peroxide acquisition (9, 10, 49). 

Here, we looked at the variation among wild yeast in response to ethanol and salt stress. 

Surprisingly, when we tested this in the oak strain YPS606, we found that there was still 

moderate residual cross protection in the absence of CTT1 only when salt was the 

pretreatment. Consistent with our previous results in wild oak strain YPS163 (10), wild oak 

strain YPS606 required catalase for proper hydrogen peroxide acquisition when pretreated with 

ethanol. Together with previous data, we hypothesized that strains of similar environment types 

would behave similar in response to ethanol and salt stress. Interestingly, when looking at 

ethanol or salt-induced hydrogen peroxide resistance, strains of similar environments did not 

cluster together or behave similarly with the exception of wild oak strains. We have contributed 

this to the close genetic relatedness of the oak strains (51, 52) while other strains, like vineyard 

strains, are more diverse (51, 73). Suggesting strains from similar niches have multiple ways of 

responding to stress. While catalase is one of the most efficient ways to break down hydrogen 

peroxide, there are multiple other enzymes that can detoxify ROS. Since catalase requires 
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heme to be active, perhaps these wild strains were exposed to iron limiting environments in their 

history and evolved other ways to combat ROS. Allowing them to be better buffered against 

hydrogen peroxide stress. We narrowed down that glutathione played a role in providing 

residual hydrogen peroxide acquisition in the absence of catalase. Glutathione and catalase 

have been shown to have overlapping roles in detoxifying cells of ROS (53). Future studies will 

determine the glutathione dependent peroxidase responsible for this catalase independent 

hydrogen peroxide acquisition. 

We saw strain phenotypic differences in hydrogen peroxide acquisition, suggesting 

different wild yeast have different strategies for combating hydrogen peroxide and hypothesized 

that these are due to gene expression variation. To obtain a global view of stress defense 

physiology, we performed transcriptomics. Using this method, we could identify potential 

strategies that are used across all our strain backgrounds and which ones may be unique to 

particular strains. Although we saw conserved activation of the ESR, we did see strain-specific 

responses to both salt and ethanol. For example, we showed that S288c has decrease CTT1 

expression, seen previously (10), while YJM1129 had high CTT1 expression yet still failed to 

acquire hydrogen peroxide resistance when pretreated with ethanol. We know CTT1 is 

functional in YJM1129 because we see full hydrogen peroxide acquisition when pretreated with 

salt in a CTT1 dependent manner. Thus, during ethanol there is likely translational or post-

translational regulation occurring to reduce catalase levels and/or activity. Therefore, we argue 

that acquired hydrogen peroxide resistance occurs by different mechanisms depending on 

cellular experiences of the wild strains. 

Further investigation of gene expression variation in ethanol and salt-induced hydrogen 

peroxide acquisition led to the discovery of potential regulators (MSN2, MSN4, SKN7 and 

YAP1). We found that transcription factor Skn7p is partially responsible for salt-induced 

hydrogen peroxide acquisition. We saw that skn7 deletion had less peroxide resistance with 

pretreated with ethanol. Skn7p has a role as a regulator that maintains cell wall integrity in yeast 
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(74, 75) and ethanol disrupts cell membranes (76). In the absence of Skn7p cells may be 

unable to control the genes associated with cell wall remodeling making them more susceptible. 

General stress transcription factors, Msn2/4p are responsible for fully induction of ethanol-

induced cross protection against hydrogen peroxide. We previously reported this phenotype (9). 

One potential explanation is that Msn2p binding allows accessibility of CTT1 promoter to other 

transcription factors (77), like Hap1p (10), so without MSN2/4 we cannot obtain proper 

activation of CTT1 leading to decreased acquisition. In the absence of Yap1p and Ctt1p, we did 

not see a see a decrease in percent maximum hydrogen peroxide acquisition. YAP1 is known to 

play a critical role in intrinsic response (63); therefore, decreasing the intrinsic level of hydrogen 

peroxide acquisition. Since percent maximum hydrogen peroxide acquisition takes into account 

the intrinsic level of hydrogen peroxide acquisition, YAP1 deletion displayed a much larger 

percent maximum hydrogen peroxide acquisition compared to wildtype cells (Figure 3.5). When 

we looked at the hydrogen peroxide raw tolerance scores (Supp Figure 3.2), we noted that 

Yap1p plays a role in salt-induced hydrogen peroxide acquisition. Yap1p has been shown to 

transcriptionally activate genes that encode alternative peroxidases such as those that are 

glutathione dependent (54, 70, 78) and thioredoxin dependent (56, 63, 68, 79). Thus, this is in 

agreement with our observation that the that the alternative peroxidase(s) is partially glutathione 

dependent. 

In conclusion, we saw strain-specific variation in acquired stress resistance and in 

response to ethanol and salt. We observed different degrees of CTT1 dependencies in 

hydrogen peroxide acquisition, suggesting that wild yeast have multiple methods to cope with 

hydrogen peroxide stress. Because these different anti-oxidant defense have different cofactor 

requirements, different strategies may be optimal under different environmental conditions (e.g. 

nutrient availability). This may have led to divergence in gene expression programs that favor 

one mechanism over another depending upon the activating stressor. Because stress 

responses share many conserved components (80, 81), this is likely a universal strategy.   
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Chapter 4 Conclusion 

4.1 Summary of results  

4.1.1 Hap1p responsible for ethanol-induced cross protection against hydrogen peroxide. 

S288c, a lab strain, fails to acquire hydrogen peroxide resistance when pretreated with 

mild ethanol, whereas a wild oak strain, YPS163, can. We genetically mapped this to a 

transcription factor, Hap1p. We revealed a new role for Hap1p in cross protection against 

hydrogen peroxide that has been lost in the S288c lab strain, secondary to known ty1 insertion 

rendering it nonfunctional (1). To examine if Hap1p was solely responsible for the difference in 

acquisition between the two strain backgrounds, we constructed hemizygous hybrid strains. 

Wild oak strain YPS163 hap1∆ mutants and the hybrid carrying the HAP1S288c allele had strong 

hydrogen peroxide acquisition defects. YPS163 hap1∆ mutant was affected only when 

pretreated with mild ethanol but was able to fully acquire hydrogen peroxide resistance when 

pretreated with mild hydrogen peroxide or mild NaCl (Figure 2.5), suggesting this is a specific 

response to ethanol.  

We found that Hap1p is necessary for proper induction of CTT1, cytosolic catalase T, 

during ethanol stress. We see a defect in cross protection for the YPS163 hap1∆ mutant and 

reduced CTT1 expression and peroxidase activity during ethanol stress (Figure 2.6 and 2.9). 

YPS163 ctt1∆ mutant cannot acquire any further hydrogen peroxide resistance following ethanol 

pretreatment (Figure 2.8). The lack of cross protection in S288c and the HAP1S288c hybrid 

correlates with the lack of inducible peroxidase activity following ethanol pretreatment in those 

strains. Intriguingly, the hybrid carrying the HAP1YPS163 allele still cross protects despite lower 

levels of CTT1 mRNA induction and lower peroxidase activity than of YPS163 hap1∆ strain that 

is unable to acquire further resistance (Figure 2.9). These data suggest that HAP1 plays an 

additional role in ethanol-induced cross protection beyond hydrogen peroxide detoxification by 

Ctt1p. Interestingly, the strain carrying the HAP1YPS163 allele fails to fully complement the defect 

in the S288c background suggesting that additional loci in S288c render HAP1 necessary but 
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not sufficient for cross protection. We surveyed other wild strains to determine the effects of 

hap1∆ mutations and found two additional strains with a strong HAP1 requirement and (Supp 

Figure 2.4). This result, as well as those from other recent studies (2-4), suggests that these 

types of genetic background effects are likely the rule rather than the exception.  

 

4.1.2 Natural variation in response to stress and catalase dependency in wild yeast. 

It was previously shown that the S288c lab strain required catalase function for salt-

induced cross protection against hydrogen peroxide (5). Additionally, we previously showed that 

catalase was required for ethanol-induced cross protection against hydrogen peroxide in the 

YPS163 oak strain (Chapter 2). Here we showed that while this is true of some wild strains, this 

is not universal and that some wild strains can acquire moderate levels of peroxide resistance in 

the absence of CTT1. When we pretreated wild oak strain YPS606 with ethanol, it acquired 

hydrogen peroxide resistance, in a CTT1 dependent manner. Surprisingly, when we tested this 

in the oak strain YPS606, we found that there was still moderate residual cross protection in the 

absence of CTT1 when pretreated with salt. When analyzed multiple wild strains, from diverse 

environments, we discovered four ways cells respond to hydrogen peroxide resistance: catalase 

independent for both ethanol and salt, catalase dependent for ethanol and independent for salt, 

completely dependent on catalase for ethanol and salt, does not acquire peroxide resistance 

when pretreated with ethanol. When looking at hydrogen peroxide tolerance, strains of similar 

environments did not cluster together, except for the wild oak strains, possibly due to the close 

genetic relatedness of the oak strains (6, 7). We proved that glutathione plays a role in providing 

residual hydrogen peroxide acquisition in the absence of catalase in the wild oak strain, 

YPS606. 

We hypothesized that variation in gene expression variation may be responsible for the 

phenotypic differences in hydrogen peroxide acquisition. We showed that S288c has decreased 

CTT1 expression which was also seen previously (Chapter 2) whereas distillery strain, 
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YJM1129, has high CTT1 expression yet still fails to acquire hydrogen peroxide resistance 

when pretreated with ethanol. We know YJM1129 has a functional CTT1 because we see full 

hydrogen peroxide acquisition when pretreated with salt in a CTT1 dependent manner. Thus, 

we argue that acquired hydrogen peroxide resistance occurs by different mechanisms 

depending on cellular experiences of the wild strains.  

We found potential regulators of the alternative peroxidase. First, we saw that skn7D 

mutation had less peroxide resistance with pretreated with ethanol and when performed in 

combination with ctt1D we saw a significant decrease in salt-induced hydrogen peroxide 

acquisition. Secondly, we witnessed that Msn2/4p is required for full induction of ethanol-

induced cross protection against hydrogen peroxide. Finally, we saw that Yap1p, responsible for 

oxidation stress activation, plays a role in alternative peroxidase involved in salt-induced 

hydrogen peroxide acquisition. 

 

4.2 Future work 

Our study narrowed down the list of alternative peroxidases to those that are 

glutathione-dependent (Figure 3.3). Cross protection assays of the single mutations of the 

glutathione-dependent peroxidases will have to be performed to determine the peroxidase 

responsible for the CTT1 independent salt-induced hydrogen peroxide acquisition phenotype. 

We have been investigating alternative peroxidases in the wild oak strain YPS606, but we see 

CTT1 independent hydrogen peroxide acquisition in other wild strains, such as YJM308 (clinical 

strain), M22 (vineyard strain), and Y12 (palm wine strain). Additional single peroxidase 

mutations and acquired stress experiments will need to be performed to determine if these wild 

strains require the same peroxidase(s) to acquire hydrogen peroxide acquisition. This would 

give insight into just how many mechanisms wild yeasts use to combat ROS. Lastly, we saw 
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other yeast, YJM627, and YJM1129, who also fail to acquire when pretreated with ethanol (like 

the laboratory strain S288c), the reason as to why remains a mystery. 

We have focused on determining the possible transcription factors regulating the 

acquired hydrogen peroxide stress acquisition, but there are multiple mechanisms of activation 

of these transcription factors. There are signaling cascades that are responsible for correct 

activation for these transcription factors. One highly conserved signaling cascade, HOG 

pathway, has been extensively studied (8-11). In S. cerevisiae, Hog1p is a mitogen-activated 

(MAP) kinase required for osmotic stress response (12). In other eukaryotes, such as mice, 

drosophila and humans, Hog1p homologs, are activated during multiple stresses (10, 13-16). 

We have shown that while Hog1p is necessary for salt-induced hydrogen peroxide, in some wild 

yeast HOG1 mutants show stronger defects when salt is not the pretreatment (Figure 4.1). 

Further experiments need to be performed to understand how the HOG pathway is being 

activated and who Hog1p is activating during non-salt stresses.  
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Figure 4.1 Variation in HOG1 dependency during multiple stress hydrogen peroxide 
acquisition. Strains were exposed to either mock (YPD control), 0.4M NaCl, 5% ethanol, 
0.4mM H2O2, or 37°C heat pretreatment for 60 min, washed, exposed to 11 doses of severe 
H2O2 for 2 hr, and then plated to score viability. Error bars indicate the mean and standard 
deviation of biological triplicates Replicates for several strains all had the same tolerance score 
and thus zero standard deviation.  
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4.3 Perspectives 

The experiments discussed here demonstrate the benefits of using acquired stress 

resistance as a model for understanding natural variation of higher-order traits. The majority of 

studies in yeast have been conducted on the laboratory strain. Here, we have discovered 

differences between the laboratory strain and wild yeast and how they respond to stress. This 

study provides insight into multiple means of stress acquisition responses and insights into the 

ecology of yeast and reminds researchers that to fully understand how organisms respond to 

stress we need to look beyond the laboratory strains. Because of the conserved nature of the 

mechanisms to breakdown hydrogen peroxide this research could serve as a roadmap for 

studying natural variation in higher eukaryotes.    
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S1.1 Abstract 

Microbial fermentation is a common form of metabolism that has been exploited by 

humans to great benefit. Industrial fermentation currently produces a myriad of products ranging 

from biofuels to pharmaceuticals. About one third of the world’s food is fermented, and the 

brewing of fermented beverages in particular has an ancient and storied history. Because 

fermentation is so intertwined with our daily lives, the topic is easily relatable to students 

interested in real-world applications for microbiology. Here, we describe the curriculum for an 

inquiry-based laboratory course that combines yeast molecular ecology and brewing. The 

rationale for the course is to compare commercial Saccharomyces cerevisiae yeast strains, 

which have been domesticated through thousands of generations of selection, with wild yeast, 

where there is growing interest in their potentially unique brewing characteristics. Because wild 

yeast are so easy to isolate, identify, and characterize, this is a great opportunity to present key 

concepts in molecular ecology and genetics in a way that is relevant and accessible to students. 

We organized the course around three main modules: isolation and identification of wild yeast, 

phenotypic characterization of wild and commercial ale yeast strains, and scientific design of a 

brewing recipe and head-to-head comparison of the performance of a commercial and wild 

yeast strain in the brewing process. Pre and post assessment showed that students made 

significant gains in the learning objectives for the course, and students enjoyed connecting 

microbiology to a real-world application.  
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S1.2 Introduction 

Microbial fermentation is a ubiquitous form of metabolism that has been exploited by 

humans for thousands of years (1-4). About one third of the world’s food is fermented (5), which 

of course has massive effects on global and local economies. Fermentation has a particularly 

rich history in the baking and brewing of alcoholic beverages, with the yeast Saccharomyces 

cerevisiae being among the oldest domesticated organisms (3, 6). While the first beer may have 

been brewed as long as 13,000 years ago (7), what we would now recognize as modern beer 

took shape in the Middle Ages, where malted barley was used as a source of fermentable 

sugars and hops were used as a bittering agent (8). During this time span, continuous selection 

of yeast in the brewing environment selected for a number of traits, including better utilization of 

wort carbon sources and increased fermentation efficiency. Modern brewing styles emerged 

from regional differences in brewing, and early brewers selected for yeast strains that 

complemented their brewing ingredients. For example, while the primary products of yeast 

fermentation are ethanol and carbon dioxide, a number of secondary products including esters 

and fusel alcohols are also produced that have unique flavor and aroma profiles (9). Certain 

beer styles (e.g. Belgian Lambic and German-style Hefeweizen) favor high levels of secondary 

fermentation products, while other styles favor little to none and consider these compounds to 

be “off flavors” (e.g. many Stouts and Amber Ales). The choice of yeast strain became a critical 

parameter for brewing design.  

While brewers have most frequently used domesticated yeast strains, it’s becoming 

increasingly clear that wild yeast strains are important reservoir for traits important to industrial 

fermentations including brewing (10). This can include novel metabolic capabilities, such as the 

ability to ferment complex carbohydrates in wort, or the ability to produce novel flavor 

compounds (11). Because wild yeast are so easy to isolate, phenotype, and genotype, this 

provides a unique opportunity for undergraduates in laboratory courses to engage in inquiry-

based research. As such, we designed a course around the microbiology of brewing a 
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fermentation to provide a real-life application. We organized the course around three main 

modules: isolation and identification of wild yeast, phenotypic characterization of commercial 

and wild ale yeast strains, and scientific design of a brewing recipe and head-to-head 

comparison of the performance of a commercial and wild yeast strain in the brewing process.  

 

S1.2.1 Intended Audience and prerequisite student knowledge 

This course was designed to provide our senior Biology majors with an upper-level 

Microbiology laboratory course. This course also provides an opportunity for students to write a 

research paper that can satisfy our university’s writing requirement for graduation. Students 

should have some knowledge of molecular biology and biochemistry, particularly central 

metabolism and regulation of gene expression. As an upper-level course, students were 

required to have taken our sophomore-level Cell Biology and General Genetics courses and 

one of the associated introductory lab courses as prerequisites. While not required, we also 

suggested that our junior-level Prokaryote Biology course would be helpful.  

 

S1.2.2 Learning time 

The laboratory was structured as a three credit-hour full-semester course (16 weeks). 

The class was scheduled to meet twice a week for three hours, and the approximate length of 

each lab can be found in the instructor’s manual (Appendix 1). The majority of learning time and 

experiments took place in the laboratory. Some time outside of class was spent collecting wild 

yeast samples, reading relevant scientific literature, and completing assignments (laboratory 

notebooks, homework, oral presentation, and final research paper).  

 

S1.2.3 Leaving objectives 

The overall goal of the course is to provide both conceptual learning and hands-on 

laboratory skills. Upon completion of the course, students should be able to: 
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1. Summarize and discuss primary research literature. 

2. Predict where wild yeast can be isolated based on the natural ecology of yeast, and 

explain how one can enrich for yeast from environmental samples.   

3. Explain why and how ITS sequencing is used to determine fungal species, and analyze 

ITS sequencing data to assign the species of an unknown isolate.  

4. Describe the primary and secondary products of yeast fermentation, and how 

differences in fermentative metabolism across yeast strains impact brewing.  

5. Analyze yeast phenotypic data for traits relevant to brewing, and then use those data to 

predict brewing outcomes. 

6. Explain the role of each ingredient and step in the brewing process, and scientifically 

design and implement a brewing protocol. 

 

S1.3 Procedure 

While we provide detailed student and instructor instructions in the Appendices, here we 

will briefly describe the main modules of the course (Figure 1).  
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Figure S1.1: Flowchart displaying the different course modules and example data.  ITS: 
internal transcribed spacer; PCR: polymerase chain reaction; BLAST: Basic Local Alignment 
Search Tool. qPCR: quantitative PCR; GC: gas chromatography.  
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S1.3.1 Wild Yeast Isolation and Identification 

Yeast are ubiquitous in the environment and can be found on a number of substrates 

ranging from rotting fruit to soil to tree bark (12). For the first part of this course, students are 

given materials to sample from nature to isolate wild yeast. Students then place the samples in 

liquid media that enriches for budding yeast, and samples showing evidence of fermentation 

(gas bubbles) are plated to identify colonies consistent with those of yeast, which can be 

confirmed for the presence of budding yeast via microscopy. Following successful yeast 

isolation, students then perform DNA extractions, PCR and sequence the ITS/5.8S ribosomal 

DNA locus that is frequently used to differentiate yeast species (13), and then perform BLAST 

analyses to determine the species of their isolated yeast.  

 

S1.3.2 Wild and Commercial Yeast Phenotypic Characterization 

Students are then paired, and half of the class is charged with phenotypically 

characterizing different wild S. cerevisiae strain, and the other half of the class will characterize 

different commercial brewing strains. First the entire group learns how to “mash” malted grains 

together (which they will need to understand for the following module). The resulting wort from 

each group is then pooled and autoclaved to generate a standardized “beer media” to 

characterize all of the strains. Phenotypes for characterization include fermentation rate, 

quantitative PCR of mRNA levels for genes known to be responsible for ester and fusel alcohol 

production, and gas chromatography-mass spectrometry analysis of fermented beer media to 

directly quantify secondary metabolite levels.   

 

S1.3.3 Wild and Commercial Yeast Brewing and Beer Characterization 

The final module has student pairs join to form a larger group to design a brewing recipe 

where they will compete a wild and commercial S. cerevisiae strain head-to-head. Student pairs 

share their data with each other and then design a brewing recipe that fits the characteristics of 
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one or both of their yeast strains. Here students gain hands-on experience for all of the major 

steps of brewing: mashing, boiling, and fermentation. During mashing, the grains are mixed with 

water and heated to a temperature that activates the alpha and beta amylases that naturally 

occur in malted grains. This leads to conversion of the grain starches into sugars that can be 

fermented by yeast (with the added wrinkle that alpha and beta amylases are most active at 

different temperatures, leading to different sugar profiles in the final wort depending on mash 

temperature). “Roasting” of the malted grains at different temperatures and times leads to lighter 

or darker malts (with darker malts having fewer active amylases and more Maillard products that 

are not fermentable). Following mashing, hops are generally added to the resulting sweet wort, 

which is then boiled. Boiling partially sterilizes the wort, and isomerizes hop alpha-acids leading 

to characteristic bitterness (with different varieties of hops containing differing amounts of alpha 

acids and other flavor compounds). Hop iso-alpha-acids also are bacteriostatic against many 

Gram-positive bacteria (14, 15). Finally, the wort is chilled, the yeast are “pitched”, and 

fermentation converts the wort sugars to mainly ethanol and CO2 along with secondary esters 

and alcohols.  

For this course, we used the “brew in a bag” method, where the grains are placed in a 

bag that is submerged during the mashing process. Following mashing, the bag is simply 

removed and squeezed to drain the residual sweet wort. Then the sweet wort is brought to a 

boil for sterilization and hop additions, cooled to allow for yeast pitching, fermented for 3 weeks 

(typical for many ales), and finally bottle conditioned for 2 weeks. Following brewing, students 

measured their beers’ final gravities (to determine percent attenuation and alcohol percentage), 

color, bitterness, and secondary flavor compounds. Students also had the option of participating 

in a voluntary taste test of the final beers. Below is an example of a student-designed recipe 

built around a low-ester producing and highly fermentative yeast strain:   
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S1.3.4 Recipe: Blood Orange Ginger American Ale 

Ingredients 

Grain (target original gravity 1.068) 

4.96 lb 2-row U.S. Pale Malt 

1.3 lb Briess Aromatic Munich Malt 

0.43 lb Flaked Wheat 

Hops (target IBU 86) 

0.58 oz Citra – boiled for 60 min 

 

Additives 

1 Whirfloc Tablet (Irish moss; clarifying agent)– boiled for last 5 min 

0.5 oz Blood Orange Extract – boiled for last 5 min 

0.4 oz Sliced Ginger Root – boiled for last 10 min 

 

Mashing 

1. Heat 3.5 gallons of ultra-pure water in stockpot to 67°C. 

2. Add all grain to the “brew bag” within the stockpot and mash at 67°C for 60 minutes. 

3. Pull out brew bag and squeeze to drain excess wort. Discard spent grain 

 

Boiling 

4. Raise mash to a rolling boil. 

5. Add Citra hops to a hop bag and add to boiling wort. 

6. Incubate for 60 minutes. 

7. With 10 minutes left in the boil, add 0.4 oz sliced ginger root. 

8. With 5 minutes left, add 0.5 oz blood orange extract and 1 Whirfloc tablet. 
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Fermentation 

9. Cool wort to near room temperature using a wort chiller. 

10. Add cooled wort and 65.5 billion yeast cells to a 1-gallon fermentation growler. 

11. Add airlock and fill with water diluted Star San sanitizer.  

12. Transfer 250mL of the remaining wort to graduated cylinder and measure initial gravity 

with a hydrometer 

13. Place fermentation growlers in a dark area at room temperature for 3 weeks. 

 

Bottle Conditioning 

14. Add 6.6 ml 50% glucose (priming sugar for carbonation) to sterilized 16 oz amber swing-

neck bottle. 

15. Auto-siphon the beer into a sterile 16oz amber bottle. 

16. Transfer 250 ml of the remaining beer to graduated cylinder and measure final gravity 

with a hydrometer. 

17. Incubate at room temperature for 2 weeks in the dark to carbonate the beer. 

 

S1.3.5 Materials 

Materials are listed for a class of 24 students working individually for the initial yeast 

isolation, and then in pairs for the subsequent experiments. Materials (including media recipes) 

and equipment are listed in Appendix 1.  

 

S1.3.6 Student instructions 

Student handouts or manual can be made from adapting the instructor’s manual 

(Appendix 1). Adapting instructions can be found on page 2 of the instructor manual. Students 

were required to maintain a lab notebook with detailed rationale, methods, results, and 

discussion sections. An example lab notebook entry can be given to students to serve as a 
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guide (Appendix 3). The notebook was collected three times during the 16-week course. 

Students were also responsible for preparing a ten-minute fermentation-related oral 

presentation, along with a final term paper describing their scientifically-designed brewing recipe 

in journal article format.  

 

S1.3.7 Faculty instructions 

Detailed faculty instructions for lab activities can be found in the instructor manual 

(Appendix 1). Lab lectures and active learning activities (clicker questions and group 

discussions) can be found in Appendix 2.  Instructor materials for all graded assignments 

including associated rubrics can be found in Appendix 4.  

 

S1.3.8 Outcomes and issues for discussion with students 

Because this is a research-based course, anticipated outcomes are not guaranteed. Not 

all students are guaranteed to isolate yeast for molecular characterization. Those students 

should be provided with a wild yeast isolate, either from another classmate who isolated more 

than one unique strain, or from the instructor. Likewise, there is no guarantee that the class will 

isolate enough wild S. cerevisiae strains for subsequent experiments, so the instructors should 

be prepared to supply wild S. cerevisiae strains as a backup. Wild yeast strains can be ordered 

from the ARS Culture Collection (https://nrrl.ncaur.usda.gov), but the corresponding author (Dr. 

Jeff Lewis) is happy to send wild S. cerevisiae strains upon request. It is helpful to cryopreserve 

all positively screened wild S. cerevisiae strains so that they can be used in future classes if 

necessary. 

 

S1.3.9 Suggestions for determining student learning 

A pre- and post-laboratory exam and survey (Appendix 4) were administered to 

students. The 15-question exam consisted of an equal number of multiple choice, true-false, 
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and short answer questions. The 5-question survey measured student perceptions of 

proficiency using a Likert-like scale. We did not use quizzes, midterms, or a final exam to 

assess student learning, though those could certainly be implemented. The ability to summarize 

and discuss the primary literature was assessed via homework assignments and a short (10-12 

min) oral presentation. For each module, laboratory notebooks were graded to assess student 

learning. A final paper in the form of a primary research article was used as an additional 

summative assessment of student learning. 

 

S1.3.10 Safety issues 

Students must demonstrate competency with BSL1 safety procedures before working 

with unknown samples that require BSL2 precautions. Because this in an upper-level course 

that requires prerequisite BSL1 level lab activities, students were mostly familiar with BSL1 

precautions. Nonetheless, students received important safety training on proper BSL1 and 

BSL2 procedures, and were required to demonstrate proficiency with BSL1 procedures before 

performing BSL2 procedures including safe handling of potentially pathogenic unknown 

organisms (16). Students were required to wear personal protective equipment (gloves, lab 

coat, eye protection) at all times, and received instructions for how to minimize aerosolizing 

cultures. All bench surfaces and objects on the laboratory bench were disinfected after each 

class with 70% ethanol. The instructors were responsible for autoclaving all plates and 

contaminated materials after every class according to the minimal standards set by the ASM 

Biosafety Guidelines (16). All chemicals in this course are low risk biohazardous agents except 

for methylene blue, hydrochloric acid, iodine, and iso-octane, which were discarded according to 

the institutional biohazard waste disposal guidelines.  

All ingredients used for brewing were food grade, and brewing was conducted in a space 

safe for food handling. While many different types of wild yeast can be used for brewing, we 

were cautious to only use wild Saccharomyces cerevisiae. This activity and the associated 
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research was submitted to the University of Arkansas IRB Committee (Protocol No. 

1807133914) and determined to be exempt. The course also included optional tours of a local 

craft brewery (Core Brewing in Springdale, AR) and a local homebrew store (Steve’s Brew Shop 

in Fayetteville, AR), as well as an optional taste test of the final beers. We recognized that 

tasting of alcohol beverages is a potentially sensitive subject, so we worked closely with the 

university administration to ensure that we complied with all university regulations and 

guidelines. We came up with the following guidelines for beer tasting: 1) Tasting is entirely 

optional. Any students who do not wish to participate do not have to, and the tasting will have no 

impact on student grades. 2) Only students 21 years of age or older may participate in tasting. A 

valid photo ID with birth date will be required. IDs will be checked by the trained staff at Core 

Brewing. 3) Tasting will only occur at Core Brewing. There will be no tasting of alcoholic 

beverages on campus. 4) Tasting will be through the sip and spit method only. There will be no 

drinking of the beer. 5) Students must sign a waiver that includes the above information, as well 

as a statement that they will act responsibly.  

 

S1.4 Discussion 

S1.4.1 Field testing 

This class was developed, and field tested through two years as an upper-level 

research-based undergraduate course at the University of Arkansas (23 students in 2017, and 

24 students in 2018). Students worked independently for yeast isolation, in pairs for yeast 

sequencing and characterization, and in groups of four (two pairs) for brewing. Discussions 

within and between groups were encouraged. For yeast isolation, 37 / 47 students successfully 

isolated wild budding yeast. Based on ITS sequencing, 6 / 37 isolates were S. cerevisiae. 

Several other species were identified including S. paradoxus, S. cariocanus, Pichia species (P. 

kudriavzevii, P. kluyveri, P. fermentans, P. terricola), Meyerozyma caribbica, Lachancea 

fermentati, Wickerhamomyces anomalus, Kodamaea ohmeri, and Debaryomyces sp. Further 
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characterization only proceeded with wild S. cerevisiae strains. While all-grain brewing may 

seem intimidating for novices, the “brew in a bag” method dramatically simplifies the process, 

and works extremely well for the small volumes being brewed in the course. Neither the 

instructors nor most of the students had any experience brewing, but every group in both 

student cohorts was able to successfully brew beer.  

In the second offering of the course, we changed the focus of the brewing module to be 

more “yeast centric.” We did this by having pairs of lab partners—each working with either a 

commercial brewing strain or a wild S. cerevisiae strain—scientifically design a single brewing 

recipe to compete the yeast strains. This allowed each group of students to predict how the final 

beer would change depending on the properties of the yeast, and then test these predictions in 

the final characterization of the beer.  

Overall, student feedback on the course was highly positive. Anonymous online 

evaluations rated the course very highly on a 1 (very poor) through 5 (excellent) Likert-like 

scale, with a 2017 rating of 4.80 / 5 (compared to a departmental mean of 3.96) and a 2018 

rating of 4.79 / 5 (compared to a departmental mean of 3.83). Student comments pointed to a 

particular appreciation of connecting molecular biology to real-world applications.  

 

Examples include:  

• I was able to learn about genetics through real life situations, and to apply what I 

learned, in a way that made much more sense than my general genetics course ever 

did.  

• This class is a great example of helping students to understand complex concepts by 

utilizing an interesting life-application. 

• Great reminder of some biology concepts that did not seem applicable to real life when 

taught in another course. 
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S1.4.2 Evidence of student learning 

Student learning was assessed using a variety of methods (Table 1). Take-home 

problem sets (Appendix 3) were used to assess understanding of the assigned readings. Lab 

notebook entries were used to assess students’ abilities to understand the rationale for their 

experiments as well as their design, analyses, and interpretations. Students were evaluated on 

their ability to present short (10-15 min) mini-lectures on their choice of topics related to 

microbial fermentation. Last final written report in the format of a primary research article was 

used to assess students’ abilities to synthesize what they learned. Rubrics can be found in 

Appendix 3. 

Table SA1.1: Learning objectives and their corresponding methods of assessment. 

Learning Objective Assessment 
Summarize and discuss primary research 

literature. 

Homework, presentation, final 

paper, pre/post survey 

Predict where wild yeast can be isolated based 

on the natural ecology of yeast, and explain 

how one can enrich for yeast from 

environmental samples. 

Homework, lab notebook, 

pre/post exam, pre/post survey 

Explain why and how ITS sequencing is used 

to determine fungal species, and analyze ITS 

sequencing data to assign the species of an 

unknown isolate. 

Homework, lab notebook, 

pre/post exam, pre/post survey 
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Table SA1.1 (Cont.) 

Learning Objective Assessment 
Describe the primary and secondary products 

of yeast fermentation, and how differences in 

fermentative metabolism across yeast strain 

impact brewing.  

Lab notebook, final paper, 

pre/post exam, pre/post survey 

Analyze yeast phenotypic data for traits 

relevant to brewing, and then use those data to 

predict brewing outcomes. 

Lab notebook, final paper, 

pre/post exam, pre/post survey 

Explain the role of each ingredient and step in 

the brewing process,  and scientifically design 

and implement a brewing protocol. 

Lab notebook, final paper, 

pre/post exam, pre/post survey 

 

We measured changes in student learning with pre- and post-tests, and we assessed 

changes in student perceptions of their skills and knowledge with pre- and post-surveys (see 

Appendix 4 for exam and survey questions). The average pre-test score was 26% correct, 

which rose to 67% following participation in the course (Figure 2). This was statistically 

significant (p = 6 x 10-14, two-tailed unpaired Mann-Whitney U test), and of large effect (Cliff’s 

delta = 1). Additionally, students showed significant increases in learning for the majority of the 

questions (Figure 3). We should note that formal assessment in the course did not include any 

exams, so these gains are more likely to reflect long-term understanding instead of short-term 

memorization. Students also self-reported their perceptions of competency on pre- and post- 

surveys. Following the course, students showed significantly higher confidence in their abilities 

to isolate wild yeast from nature, use molecular biology and phylogenetics to identify yeast 

species, describe the major steps in brewing, and brew beer on their own (Figure 4). Coming 

into the class, students felt confident with reading scientific articles, though they may have still 

showed a small gain in confidence following the course (p = 0.08, two-way ANOVA, Fisher’s 

LSD).  
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Figure SA1.2: Pre- and post-exams show significant gains in student learning. The 
boxplot depicts the median and interquartile range, and the whiskers depict the range. **** P =  
6 x 10-14, two-tailed unpaired Mann-Whitney U test.  
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Figure SA1.3: Individual item responses for pre- and post-exam scores. Exam questions 
(Q1 – Q15) can be found in Appendix 5. LO denotes the learning objectives. * P < 0.05; ** P < 
0.01; *** P < 0.001; **** P < 0.0001, two-way ANOVA, Fisher’s LSD test.  
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Figure SA1.4: Pre- and post-survey shows increase in self-reported perceptions in 
student ability. Survey questions (S1 – S5) can be found in Appendix 5. LO denotes the 
learning objectives.  **** P < 0.0001, two-way ANOVA, Fisher’s LSD test.  
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S1.4.2 Possible modifications 

This course was designed and offered twice as an upper-level course that met twice a 

week for one semester. There are several modifications that could be included for a shorter 

course. For example, the yeast isolation can be shortened by the instructor plate or streak 

colonies from fermentation-positive cultures. Additionally, the brewing module can be shortened 

by using commercial malt extracts instead of mashing whole grains. Optional activities that 

could be omitted include a guest lecture from a local craft brewer, and tours of both a local craft 

brewery and homebrew store. 

One of the optional modules we included was strain characterization of flavor compound 

formation (e.g. volatile esters and fusel alcohols), which we did both at the gene expression 

level via quantitative real-time PCR (qPCR) and directly via gas chromatography-mass 

spectrometry (GC-MS). We understand that some instructors may not have access or funds to 

include these modules. One cheaper alternative to qPCR would be semi-quantitative PCR (17). 

An alternative to GC-MS is sensory analysis, where students can be trained to identify esters 

and fusel alcohols by taste (individual flavor standards may also be purchased from FlavorActiV 

to facilitate compound identification). 
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S2.1 Abstract  

Technical variation across different batches of RNA-seq experiments can clearly 

produce spurious signals of differential expression and reduce our power to detect true 

differences. Thus, it is important to identify major sources of these so-called “batch effects” to 

eliminate them from study design. Based on the different chemistries of “classic” phenol 

extraction of RNA compared to common commercial RNA isolation kits, we hypothesized that 

specific mRNAs may be preferentially extracted depending upon method, which could 

masquerade as differential expression in downstream RNA-seq analyses. We tested this 

hypothesis and found that phenol extraction preferentially isolated membrane-associated 

mRNAs, thus resulting in spurious signals of differential expression. Within a self-contained 

experimental batch (e.g. control versus treatment), the method of RNA isolation had little effect 

on the ability to identify differentially expressed transcripts. However, we suggest that 

researchers performing meta-analyses across different experimental batches strongly consider 

the RNA isolation methods for each experiment.  
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S2.2 Background 

The decreasing cost of massively parallel sequencing had led to an explosion of 

transcriptomic datasets. This large number of datasets has allowed for meta-analyses, which 

can be valuable due to their increase in statistical power. However, researchers performing 

meta-analyses on transcriptomic datasets need to be cautious in their use and be aware of so-

called “batch effects,” where technical differences between experimental batches can clearly 

produce spurious signals of differential expression and reduce our power to detect true 

differences. 

In some cases the sources of batch effects are known and can be avoided. Some well-

known batch effects include sequencing lane effects, library construction protocol, and RNA 

quality (1-3). Other sources of batch effects clearly exist but remain unknown. While batch 

effects can sometimes be accounted for this comes with some major caveats. If the batch effect 

completely confounds the experimental design, for example with different sequencing lanes 

being used for controls and treatments, statistically accounting for the batch effect will remove 

any “real” signal (4). Even in the case where the batch effect is not a complete confounder, 

accounting for batch can reduce our power to detect true biological signal (5). Thus, a better 

understanding of the sources of batch effects can help us to avoid them. 

In this study, we examined the effects of RNA isolation method as a possible source of 

batch effects in RNA-seq design. It is well known that the RNA distribution within cells is not 

uniform. Newly synthesized pre-mRNAs are processed in the nucleus before being exported. 

Once exported, mRNAs are frequently trafficked to specific subcellular sites as a mechanism for 

spatially controlling protein synthesis. Indeed, perhaps the most widespread example of mRNA 

localization is that used for spatial control of protein synthesis, where mRNAs encoding 

secreted and membrane proteins are translated at the ER membrane allowing for proper protein 

localization and folding (6).   
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Despite the widespread acknowledgement that mRNAs are differentially localized within 

the cell, there has been a paucity of studies examining whether “common” RNA extraction 

methods are equivalent in their abilities to extract differentially localized RNA species, and 

whether the method of RNA isolation affects our ability to detect differentially expressed 

transcripts. Sultan and colleagues compared two RNA isolation methods (Qiagen RNeasy kit 

and guanidinium-phenol (TRIzol) extraction) and two library selection schemes (poly-A 

enrichment and rRNA depletion) on downstream transcript abundance estimates, and found that 

rRNA depletion was particularly sensitive to the RNA extraction method (2). However, their 

comparisons were done using only two biological replicates, and they only examined transcript 

abundance across technical replicates and not whether the method of extraction affects the 

ability to detect differential expression in the types of sample comparisons that biologists 

frequently care about (e.g. wild-type versus mutant or treatment versus control). 

Thus, we sought to systematically examine whether three common RNA isolation 

methods led to differences in transcript abundance and/or our ability to detect differential 

expression between two experimental conditions in the form of the Saccharomyces cerevisiae 

heat shock response. The different RNA isolation methods were the classic “hot acid phenol” 

method, and the two most commonly-used types of kits (7)—a silica-based column kit (Qiagen 

RNeasy Kit) and a guanidinium-phenol (TRIzol)-based kit (Zymo Research Direct-zol), hereafter 

referred to as the Phenol, RNeasy, and Direct-zol methods. Based on the combined chemistries 

of sodium dodecyl sulfate (SDS) and phenol on cellular membranes (8, 9), we hypothesized that 

the Phenol method would better solubilize membrane-associated mRNAs. To test this 

hypothesis, and whether the choice of RNA isolation method had downstream effects on our 

ability to detect differentially expression transcripts, we collected four biological replicates of the 

model yeast Saccharomyces cerevisiae before and after a 20-minute heat shock. Importantly, 

each biological sample was split into three identical technical replicates that differed only in their 

mode of RNA isolation. This allowed us to systematically test whether the RNA isolation method 
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affects relative transcript abundance between technical replicates, and whether that matters for 

differential expression analysis.  

Our analysis found a striking number of transcripts (nearly 1/3 of the genome) that 

appeared “differentially” expressed when comparing the Phenol method to either Kit method, 

and a small number of differences when comparing the Kit methods to each other. Transcripts 

over-represented by Phenol extraction compared to either Kit were enriched for membrane 

proteins, suggesting that indeed the SDS plus phenol better extracts those species of mRNA. 

Importantly, there were virtually no differences when comparing differential expression for the 

heat shock response within samples where RNA was isolated via same method. Based on 

these results, we strongly recommend that meta-analyses be performed on groups of 

experiments with common RNA isolation methods.   

 

S2.3 Methods 

S2.3.1 Yeast Growth and Sampling Procedures 

All experiments were performed using yeast strain BY4741 (S288c background; MATa 

his3∆1 leu2∆0 met15∆0 ura3∆0), obtained from Open Biosystems. To compare RNA isolation 

methods, we collected three identical 10-ml ‘technical’ replicates for each biological replicate (4 

biological replicates in total). Cells were grown >8 generations in 100-ml synthetic complete 

medium (SC) (16) at 30°C with orbital shaking (270 rpm) shaking to mid-exponential phase 

(OD600 of 0.3 – 0.6), and 10-ml samples were removed representing the unstressed control. For 

heat shock treatment, one volume of 55°C medium was added to the remaining culture, 

immediately bringing the final temperature to 37°C, and the culture was incubated at 37°C for 

another 20 minutes before removing 10-ml samples. Both unstressed and heat shocked cells 

were collected by centrifugation at 1,500 x g for 3 minutes, and cell pellets were flash frozen in 

liquid nitrogen and stored at -80°C until processing.  

 



 143 

S2.3.2 RNA Isolation Methods 

S�.�.�.� Hot Phenol Isolation 

Cells were lysed and RNA was isolated using a standard hot phenol method as 

described (17), and a detailed protocol can be found on the protocols.io repository under DOI 

dx.doi.org/10.17504/protocols.io.inwcdfe. Briefly, 1 volume of acid saturated phenol and 1 

volume of lysis buffer (10 mM Tris-HCl pH 7.4, 10 mM EDTA, 0.5% SDS) were added to frozen 

cell pellets, vortexed, and then placed in a 65°C preheated Multi-Therm incubated vortexer 

(Benchmark Scientific) at 1500 rpm for 45 minutes. Samples were centrifuged for 10 min at 4°C 

at maximum speed in a microcentrifuge, extracted once more with phenol, once with chloroform, 

and then precipitated overnight at -20°C with 0.1 volumes of sodium acetate (pH 5.2) and 2.5 

volumes of 100% ethanol. Precipitated RNA was washed once with 70% ethanol and then 

resuspended in TE (10 mM Tris-HCl pH 8.0, 1 mM EDTA). The phenol extracted RNA was then 

‘cleaned’ using an RNeasy Miniprep Kit with optional on-column DNase treatment according to 

the manufacturer’s instructions. 

 

S�.�.�.� RNA Isolation with Two Different Miniprep Kits 

RNA was extracted using two different kits: the Qiagen RNeasy Mini Kit (Cat. 74104) 

and the Zymo Research Direct-zol RNA Miniprep Kit (Cat. R2050). Cell concentrations were all 

below the maximum recommendation of 5 x 107 cells from both manufacturers (ranging from 2.5 

x 107 –  4.5  x 107 cells). For both kits, we mechanically lysed cells with a Beadbeater-24 (3,500 

oscillations/minute, 45 seconds on ice between cycles). Mechanical lysis was performed in 2-ml 

screw-capped tubes containing an equal volume (600 µl) of lysis buffer (RLT for RNeasy or TRI 

reagent for Direct-zol) and acid-washed glass beads (425-600 micron, Sigma-Aldrich).  

RNA was then purified according to each manufacturer’s protocol for yeast, including the 

optional on-column DNase digestion. For all samples, RNA was quantitated using a Qubit RNA 
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HS Assay kit and Qubit fluorometer according to the manufacturer’s instructions. The RNA 

integrity number (RIN) for each sample was measured using an Agilent 2200 TapeStation. RNA 

concentrations and RIN values for each sample can be found in Supplementary Table 1.  

 

S2.3.2 RNA Sequencing and Analysis 

RNA-seq libraries were prepared from polyA-enriched RNA using the KAPA Biosystems 

mRNA HyperPrep Kit (KK8581) and KAPA Single-Indexed Adapter Set A+B (KK8700), 

according to manufacturer’s instructions. We started with 500 ng total RNA, fragmentation time 

(6 min) was optimized to generate 200-300-nt RNA fragments, and the libraries were amplified 

with 9 cycles of PCR. All libraries were constructed in a single batch through an automated 

Eppendorf epMotion 5075 liquid handling robot, and detailed a protocol can be found on 

protocols.io under DOI dx.doi.org/10.17504/protocols.io.uueewte. cDNA libraries were 

sequenced on a HiSeq4000 at the University of Chicago Genomics Facility, generating single-

end 50-bp reads.  

Reads were trimmed of low-quality reads and adapter sequence (KAPA v1 indices) 

using Trimmomatic (version 0.32) (18), with the following commands: 

ILLUMINACLIP:Kapa_indices.fa:2:30:10 LEADING:3 TRAILING:3 MAXINFO:40:0.4 MINLEN:40 

. Reads were mapped to the S288c genome (version Scer3), using STAR (version 020201) 

(19). Mapping statistics can be found in Supplementary Table 2. Transcripts per million (TPM) 

and expected counts for each gene were calculated using RSEM (version 1.3.1) (20). The 

RSEM output can be found in Supplementary File 1. 

Differential expression analysis was conducted using the Bioconductor package edgeR 

(version 3.22.3) using the quasi-likelihood (QL) framework. For the QL model, sample type (i.e. 

Phenol unstressed, Phenol heat shock, RNeasy unstressed…) and biological replicate were 

used as factors. To account for differences in RIN across samples, we also performed a 

separate analysis that included sample type, replicate, and RIN as factors in the model. To 
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control for differences in sequencing depth across samples, the edgeR function thincounts was 

used to randomly subsample counts across all samples to be equal to the sample with the 

lowest number of total counts (8,678,188). Only genes with at least 1 count per million (CPM) in 

at least one condition were included for TMM normalization and differential expression analysis. 

All RNA-seq data are available through the National Institutes of Health Gene Expression 

Omnibus (GEO) database under accession no. GSE135430, and the edgeR outputs can be 

found in Supplementary File 2.  

Principle component analysis (PCA) was performed using ClustVis (21) on ln-

transformed TPM values for all transcripts included in the differential expression analysis, using 

unit variance scaling and singular value decomposition. Hierarchical clustering was performed 

with Cluster 3.0 (http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm) using uncentered 

Pearson correlation and centroid linkage as the metric (22). RNA-seq samples were weighted 

using a cutoff value of 0.4 and an exponent value of 1. Functional enrichments of gene ontology 

(GO) categories were performed using GO-TermFinder (https://go.princeton.edu/cgi-

bin/GOTermFinder) (23), with Bonferroni-corrected P-values < 0.01 taken as significant. 

Complete lists of enriched categories can be found in Supplementary File 3. 

 

S2.3 Data availability 

All RNA-seq data are available through the National Institutes of Health Gene 

Expression Omnibus (GEO) database under accession no. GSE135430. The analyses 

generated during this study are included in the supplementary information files. 

 

S2.4 Results 

S.2.4.1 Experimental setup 

To test whether RNA extraction methods impact between-sample comparisons and the 

power to identify differentially expressed genes, we used the well-characterized yeast heat 
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shock response as an environmental perturbation. We collected four biological replicates for 

comparison. For each biological replicate, three “technical replicate” samples were collected to 

understand the impact of RNA extraction method. The only difference between was that each 

technical replicate had their RNA extracted by one of three methods: classic hot acid phenol 

(Phenol method), a silica-based column kit (RNeasy Method) and a guanidinium-phenol 

(TRIzol)-based kit (Direct-zol Method) (Fig. 1). RNA isolated via the Phenol method was 

subsequently “cleaned” with a Qiagen RNeasy Kit using the optional on-column DNase 

treatment, thus controlling for both DNase treatment and potential differential binding of different 

RNA species to the column. To minimize against batch effects other than RNA extraction 

method, all RNA-seq libraries were constructed on the same day using an automated robotic 

platform, and all libraries were multiplexed and sequenced on a single lane of an Illumina 

HiSeq4000 instrument.  
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Figure. SA2.1. Schematic of the experimental design. Yeast cells were grown to mid-
exponential phase at 30°C, unstressed control samples were collected, and then cells were 
shifted to a 37°C heat shock with samples collected after 20 minutes. For both unstressed and 
stressed cells, we collected three identical samples (technical replicates), and RNA was isolated 
using either hot acid phenol extraction, a Qiagen RNeasy Kit, or a Zymo Research Direct-zol 
RNA Kit. Libraries were constructed in a single batch using a liquid handling robot, and then 
were pooled and sequenced on a single Illumina HiSeq4000 lane.  
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S2.4.2 Differences in relative transcript abundance between phenol-extracted RNA and 

kit-extracted RNA. 

All of the RNA isolation methods yielded generally high quality RNA, as defined by a RIN 

of 9.0 or above, though the phenol extracted RNA averaged significantly higher RIN values than 

those isolated from the Direct-zol kit (9.96 vs. 9.33; p = 2 x 10-6, t-test) or the RNeasy kit (9.96 

vs. 9.79; p = 0.01, t-test). (Supplementary Table S1). The percentage of total mapped reads 

was similar across samples, with slight (though significant) differences (Supplementary Table 

2). There were larger differences in the percentage of uniquely mapped reads across RNA 

isolation methods (Supplementary Table 2). These differences did not correlate with RNA 

integrity, as the Direct-zol samples had the lowest RIN values and highest uniquely and total 

mapped reads. Overall, we feel that the both the RNA quality and read mapping would not raise 

any red flags in laboratories performing RNA-seq on either their own samples, or conducting a 

meta-analysis, though those values can be used a factor to be controlled for in differential 

expression analysis (3).  

We were particular interested in whether differences in the RNA isolation method could 

masquerade as “differential” expression due to differences in transcript quantification. We first 

performed principal component analysis (PCA) (Fig. 2). Not surprisingly, a substantial proportion 

of the variance (50.5%) was explained by treatment (unstressed versus heat shock). The 

second principal component corresponded to RNA isolation method and explained 26.9% of the 

variation. Samples with RNA isolated by the two different kit methods clustered together, with 

the Phenol-isolated samples forming a separate cluster. It could seem counterintuitive that 

Direct-zol and Phenol methods would be so dissimilar, considering that both methods use 

phenol. However, the Direct-zol method uses a milder detergent than SDS (sarkosyl), is 

performed at room temperatures instead of 65°C, and samples are exposed to phenol for 10 

minutes instead of 45 minutes. We speculate these differences with the Phenol method result in 

both silica-column-based kits behaving similarly (see Discussion).  
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Figure. SA2.2. Principal component analysis (PCA) strongly implicates RNA isolation 
method as a batch effect. PCA on TPMs for each sample (see methods) shows clear 
separation on both treatment (PC1) and RNA isolation method (PC2). Kit samples were more 
similar to each other than they were to the Phenol sample.  
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To visualize differences in transcript abundance across RNA isolation methods, we 

performed hierarchical clustering on the TPMs of the unstressed samples (Fig. 3a). Hierarchical 

clustering of the samples largely recapitulated the patterns of PCA—again, the Phenol-isolated 

samples formed a discreet cluster distinct from the two kits. The RNeasy- and Direct-zol-

isolated samples also had far fewer visible differences. To quantify these differences, we used 

edgeR to identify transcripts with significantly differential abundance in pairwise comparisons of 

each RNA isolation method (FDR < 0.01, see Methods). Pairwise comparisons of the Phenol 

method with each Kit method identified a large number of transcripts with differential 

abundance: 2,430 transcripts (Phenol vs. RNeasy) and 2,512 transcripts (Phenol vs. Direct-zol) 

comparison. Of those transcripts with differential abundance in both comparisons, 1,917 

overlapped, which was highly significant (P = 1 x 10-520, Fisher’s exact test) (Fig. 3c). In contrast, 

only 230 transcripts had differential abundance when comparing the kits to each other, 

suggesting only slight differences.  

To better visualize these differences, we performed hierarchical clustering on all 3,127 

transcripts with significantly differential abundance (FDR < 0.01) in any pairwise comparison of 

RNA isolation method (Fig. 3b). We found striking functional gene ontology (GO) enrichments 

for transcripts with higher or lower abundance in the phenol-extracted samples compared to 

both kits. Transcripts with higher abundance in phenol-extracted RNA in comparison to both kits 

were strongly enriched for transmembrane transport (P < 4 x 10-68), establishment of localization 

(P < 9 x 10-54), lipid metabolism (P < 1x 10-27), and cell wall organization (P < 1 x 10-18). Looking 

more closely at the cellular component GO enrichments, transcripts with higher abundance in 

the phenol samples were strongly enriched for those encoding intrinsic membrane proteins (P < 

4 x 10-191), as well as proteins localized to the endoplasmic reticulum (P < 6 x 10-84), cell 

periphery (P < 3 x 10-80), and the vacuole (P < 3 x 10-53). In contrast, mRNAs with lower relative 

abundance in the phenol samples were enriched for nuclear in localization (P < 3 x 10-60), and 

included those encoding functions related to nucleic acid metabolism (P < 1 x 10-38), RNA 
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metabolism (P < 6 x 10-28), chromosome organization (P < 4 x 10-17), and gene expression (P < 

8 x 10-17).  
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Figure. SA2.3. Phenol preferentially extracts mRNAs that encode for membrane proteins. 
a Hierarchical clustering of unstressed samples (P = Phenol, R = RNeasy, D = Direct-zol). 
Clustering on relative transcript abundance (TPMs) reveals differences depending upon RNA 
isolation method, while clustering on sample identity shows that the Phenol method diverges 
from both Kits. Red indicates higher than average transcript abundance within a sample, and 
blue indicates lower than average transcript abundance. b Hierarchical clustering of 3,127 
transcripts with significantly differential abundance (FDR < 0.01) in any pairwise comparisons 
between each RNA isolation method. Brown indicates higher expression than the comparison 
group (e.g. Phenol in the P v. R column) and violet indicates lower expression than the 
comparison group (e.g. RNeasy in the P v. R column). Enriched Gene Ontology (GO) 
categories (Bonferroni-corrected P < 0.01) are shown on the right. Complete GO enrichments 
for each cluster can be found in Supplementary File 3. c Overlap between transcripts with 
significantly differential abundance (FDR < 0.01) in the Phenol v. RNeasy and Phenol v. Direct-
zol comparisons.  
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S2.4.3 Properties of transcripts with spurious differential expression. 

That Phenol-isolated samples have higher transcript abundance for mRNAs encoding 

membrane proteins fits with the hypothesis that the Phenol method better solubilizes that 

species of mRNA. Another possibility is that differences in transcript degradation rates are 

responsible for the spurious patterns of differential expression. Because GC content and 

transcript length correlate with in vivo mRNA degradation rates (3), we examined those 

relationships in our data. Transcripts with significantly higher or lower abundance in Phenol-

extracted samples compared to each Kit method had significantly higher GC content and gene 

length (Supplementary Fig. 1). We also examined the relationship between differential 

abundance and direct estimates of in vivo transcript stability (half-lives) from Neymotin and 

colleagues (10). We did find a significant difference in the Phenol vs. Direct-zol comparison, but 

not for the Phenol vs. RNeasy comparison. To determine how much of the variation was 

explained by GC content, gene length, and transcript half-life, we performed linear regression of 

those parameters on the average fold changes for phenol-extracted samples vs. the kits. Both 

GC content and transcript length showed weak to moderate correlation (r = 0.06 – 0.32) with 

log2 fold changes, depending upon the comparison group, while estimated in vivo half-life 

weakly correlated with log2 fold changes in either comparison (Supplementary Table 3). 

Because differences in GC content and length are associated with differences in transcript 

degradation rates in vitro (3), we repeated the edgeR analysis using RIN as a factor. We 

expected that because the RIN values for the Direct-zol samples were all lower than the others, 

using RIN as a covariate would eliminate most of the signal for differential expression. This 

turned out to be correct—we identified 788 “differentially” expressed genes in the Phenol vs. 

Direct-zol comparison compared to 2,513 when RIN was not included as a factor. The surviving 

differentially expressed transcripts with higher expression in the Phenol-isolated samples 

relative to the Direct-zol isolated samples were still strongly enriched for those encoding intrinsic 

membrane proteins (P < 3 x 10-100). Because the RNeasy-isolated samples had relatively high  
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Supp Figure. SA1.1. Properties of transcripts with differential abundance depending 
upon RNA isolation method.  
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RIN values relative to the Direct-zol-isolated samples, the vast majority of transcripts with 

differential expression were retained as significant when accounting for RIN in the edgeR QL 

model (2,362 / 2,430). Because of the substantial overlap between genes called as differentially 

expressed in the Phenol vs. RNeasy and Phenol vs. Direct-zol comparisons, we hypothesize 

that the that differing chemistries in the extraction are responsible for the batch effect, and not 

RNA degradation (see Discussion). 

 

S2.4.4 Differences in RNA isolation method have little effect on the ability to detect 

differential expression with a batch. 

The striking differences in transcript abundance depending on RNA isolation could 

conceivably affect the ability to detect differential expression. To test this, we examined our 

ability to detect differential expression in cells shifted from 30°C to 37°C for 20 minutes—the 

classic yeast heat shock response. We identified ~3,800 differentially expressed transcripts for 

all three RNA isolation methods, with substantial overlap for all three (Fig. 4). Hierarchical 

clustering yielded no clear pattern among differentially expressed transcripts that were missed 

in sample set over another (Fig. 4). We also detected zero transcripts that had significant fold 

change differences in their heat shock response in any pairwise comparison between RNA 

isolation methods (Supplementary File 2). We hypothesize that at sufficient sequencing depth, 

the ability to detect differential expression is robust to the modest differences in transcript 

counts caused by differences in RNA isolation method.  
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Figure. SA2.4. The method of RNA extraction has little effect on differential expression 
analysis. Hierarchical clustering of median-centered log2-fold TPM changes for 4,232 
transcripts that were differentially expressed in response to heat (FDR < 0.01) in at least one set 
of samples (P = phenol, R = RNeasy, D = Direct-zol). The left portion of the heat map displays 
gene expression changes during heat shock across the four biological replicates, with red 
indicating genes induced by heat shock, and blue indicating genes repressed by heat shock. 
The right portion shows differences in abundance in pairwise comparisons between each RNA 
isolation method, with brown indicating higher expression than the comparison group, and violet 
indicating lower expression than the comparison group. The Venn Diagram depicts overlap 
between differentially expressed genes in the Phenol, RNeasy, and Direct-zol isolated samples.  
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S2.5 Discussion 

In this study, we tested whether differences in RNA isolation method affect relative 

transcript abundance between samples, and whether the RNA isolation method impacts our 

ability to detect differential expression. Our results suggest that differences in RNA isolation 

method can substantially affect relative transcript abundance, and we see thousands of 

differences in transcript abundance when comparing hot acid phenol extraction with an RNeasy 

or Direct-zol kit. It is well established that mRNAs encoding membrane and secreted proteins 

are anchored to the membrane during translation (11). That transcripts with higher abundance 

in the Phenol-isolated samples are strongly enriched for encoding membrane proteins suggests 

the Phenol method better solubilizes those mRNAs. Because relatively more membrane-

associated mRNAs are being extracted, there must be relatively less abundance of other 

mRNAs. Thus, we see decreased abundance of certain nuclear transcripts, which were already 

more lowly expressed, and thus likely more sensitive to appearing “repressed.”  

We disfavor the alternative hypothesis that we are capturing differences in transcript 

degradation rates for a number of reasons. First, while we do see differences in RIN values 

across the different RNA isolation methods, the differences are relatively small, and our RIN 

values are all much higher than the points where other studies identified them as confounding 

RNA-seq analysis (3, 12). Second, it is likely that any degradation that is occurring in our 

samples is happening in vitro during RNA isolation, and Opitz and colleagues have found that in 

vitro RNA degradation rates are likely relatively equal across transcripts and thus have little 

effect on differential expression analysis (13). And while RNA degradation rates in vivo are 

strongly biased and can lead to spurious functional enrichments in downstream analysis, we 

found little relationship between estimated mRNA half-lives from (10) and fold-changes in 

comparisons between kits. Only one of the Phenol vs. Kit comparisons showed a significant 

difference in half-lives, but the correlation was still rather poor (r2 = 0.02). And while transcripts 

with higher relative abundance in the phenol-extracted samples versus the kits had higher GC 
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content and gene length, which both correlate with higher in vivo degradation rates (3), the 

correlation between those parameters and fold-change differences was not strong 

(Supplementary Table 3). Notably, GC content and gene length are not random, and membrane 

proteins tend to be longer and have higher GC content than average (14, 15). Finally, if RNA 

degradation is responsible, it is somewhat hard to reconcile that we see similar patterns of 

“differential” expression when comparing the Phenol vs. Direct-zol or RNeasy kits, even though 

the RNeasy kits have quite a bit higher RIN values.  

Regardless of the cause of these differences between hot-phenol extracted samples and 

kits, it clear that this can represent a large source of batch-effect variation between samples 

whose RNA has been isolated via different methods. Within an individual lab, we are largely 

agnostic. The method of RNA isolation had little effect on the ability to identify differentially 

expressed transcripts in our heat shock test case. Thus, experiments within a single lab are 

unlikely to be affected by the choice of RNA isolation method as long as the same method is 

used throughout an experiment. For meta-analyses however, we recommend that researchers 

avoid comparing experiments where the RNA isolation methods differ. 
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