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ABSTRACT 

Mycobacteria include serious pathogens of humans and animals. Mycolicibacterium smegmatis 

is a non-pathogenic model that is widely used to study core mycobacterial metabolism. This 

thesis explores mycobacterial pathways of cysteine biosynthesis by generating and study of 

genetic mutants of M. smegmatis.  

Published in vitro biochemical studies had revealed three independent routes to cysteine 

synthesis in mycobacteria involving separate homologs of cysteine synthase, namely CysK1, 

CysK2, and CysM. However, in vivo data were lacking. The M. smegmatis genome encodes 

only a CysM homolog and lacks orthologs for CysK1 or CysK2. The gene that codes for CysM is 

a part of an operon, mec+cysOM whose products are involved in the cysteine biosynthesis 

pathway. The M. smegmatis genome also encodes a putative cystathionine beta-synthase 

(CBS) protein that has two domain – an N-terminal domain that shares a weak sequence 

similarity with CysK1 and a C-terminal domain that is specific to CBS enzymes. CBS is a 

metabolic enzyme that catalyzes the conversion of homocysteine to cystathionine in all three 

domains of life (Bacteria, Archaea, and Eukarya). 

To dissect the roles of CysM and CBS proteins in cysteine biosynthesis in vivo, a series of 

unmarked knockout mutants and complementation strains of M. smegmatis were generated and 

analyzed phenotypically. Neither the Δmec+cysOM nor the Δcbs mutants of M. smegmatis were 

auxotrophic for cysteine. However, a Δmec+cysOM_cbs double mutant of M. smegmatis was 

auxotrophic for cysteine. Genetic complementation of the double mutant using either cbs gene 

or mec+cysOM operon rescued cysteine auxotrophy. Furthermore, the N-terminal CysK1-like 

domain of the putative CBS was sufficient to rescue cysteine auxotrophy. Thus, these in vivo 

data implicate a role for the putative CBS in cysteine biosynthesis and also suggest that the 

protein may have dual functions in mycobacteria. 



 
 

Multidrug-resistant (MDR) strains of M. tuberculosis, the causative agent of Tuberculosis (TB), 

are becoming a global crisis. Mycobacterial sulfur metabolism has emerged as a vital target for 

developing novel drugs to treat MDR-TB. Our findings reveal a potentially new target in 

mycobacterial sulfur metabolism relevant to strategic development of novel TB drugs.  
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I. INTRODUCTION 

A. Mycobacteria 

Mycobacteria (Family: Mycobacteriaceae) are scientifically classified as Domain: Bacteria; 

Phylum: Actinobacteria; Class: Actinobacteridae; Order: Actinomycetales; Suborder: 

Corynebacterineae. They are acid-fast, gram-positive bacilli. The prefix “myco-“ means fungus 

in Greek but does not refer to any genetic relationship with fungi; these bacteria grow in broth 

culture with fungus-like film (Kerr & Barrett, 1994). Mycobacteria have a unique bacterial 

capsule made up of mycolic acid covering the cell wall. This capsule helps them avoid 

phagocytosis by macrophages and also enhances their pathogenesis (Daffe & Etienne, 1999; 

Frehel et al., 1986; J. Liu et al., 1996).  

Mycobacteria include serious and opportunistic pathogens of humans and animals. 

Mycobacterium tuberculosis, the causative agent of tuberculosis (TB) (S. V. Gordon & Parish, 

2018), M. leprae the causative agent of Leprosy, also known as Hansen’s disease (Gillis, 2014) 

are serious human pathogens. M. bovis, the causative agent of tuberculosis in cattle (Grange & 

Yates, 1996).  

1. Mycobacterium tuberculosis 

M. tuberculosis is a serious pathogen of humans. It generally grows in the lungs and commonly 

causes symptoms like serious cough lasting for three or more weeks, pain in the chest, and 

coughing up blood and sputum. According to the Centers for Disease Control and Prevention 

(CDC), approximately 23% of the world’s population is infected by M. tuberculosis. Not all 

infected individuals develop TB disease. An estimated 10 million people developed the disease 

in 2017 and 1.57 million people died of TB related complications in the same year making it the 

deadliest infectious disease (MacNeil et al., 2019). Strikingly, over 42% of the TB death occur in 

South-East Asia. Most of the individuals infected with M. tuberculosis do not show any 

symptoms and carry dormant bacteria in their tissues for decades before developing the active 
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TB disease. During this latency period, the bacteria do not replicate (Wayne, 1994). So, these 

bacteria can survive nutrient deficiency in their site of infection. They can also synthesize 

mycothiol, a compound that can absorb oxidative stress generated by the host macrophages 

(Buchmeier et al., 2006). This helps them survive in the host organism for decades. When the 

immunity of the host weakens, for example in case of Acquired Immune Deficiency Syndrome 

(AIDS), the pathogen becomes active and causes the disease (Chaisson et al., 1987). In 2018, 

approximately 8.6% of the total TB cases were among the persons living with Human 

Immunodeficiency Virus (HIV) (MacNeil et al., 2020).  

In the 1940s, streptomycin was introduced to treat tuberculosis (Hinshaw et al., 1945). When 

streptomycin-resistant TB started emerging, Isoniazid in combination with streptomycin proved 

to be effective (M. L. Cohn et al., 1959). Soon isoniazid-resistant strains started to appear 

(Selkon et al., 1964). Rifampin was found to be an effective drug against M. tuberculosis 

(Crowle et al., 1988). Then M. tuberculosis has also acquired resistance to rifampin (D. L. Cohn 

et al., 1997; Yuen et al., 1999). In recent years, we have been seeing the emergence of 

Multidrug-resistant TB (MDR-TB) that are resistant to both isoniazid and rifampin, and 

Extensively drug-resistant TB (XDR-TB) that are resistant to both isoniazid and rifampin plus 

any fluoroquinolone and at least one of the three injectable antibiotics: kanamycin, capreomycin, 

or amikacin (Seung et al., 2015). It is vital to keep up with the race against this pathogen by 

discovering new drug targets until alternative therapeutic approaches like bacteriophage therapy 

become established (Azimi et al., 2019).  

2. Mycobacterium leprae 

Leprosy, on the other hand, is one of the neglected tropical diseases. It manifests in humans as 

the infection of skins, peripheral nerves, respiratory tract, and eyes. This can lead to permanent 

sensory and motor impairments including blindness and paralysis. In 1985, 12 million people 

were estimated to have leprosy (WHO, 2002). Multidrug therapy (MDT), a regimen consisting of 
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three antibiotics: dapsone, rifampicin, and clofazimine, was recommended by the World Health 

Organization (WHO) in 1981. This proved to be a “game changer” which brought down the 

number of reported cases from 5.3 million in 1985 to 3.1 million by 1991 and to 597,000 by 2000 

(Smith et al., 2017). However, the number of new cases reported every year has only declined 

very slowly from 265,661 in 2006 to 210,758 in 2015 (WHO, 2016). Early treatment can prevent 

permanent disabilities. The incubation period of the infection can last up to 20 years which 

makes the elimination of the disease difficult (Lastória & de Abreu, 2014). Another major 

hindrance to studying the biology of M. leprae is caused by the fact that it has not been cultured 

in an artificial growth medium. 

3. Mycolicibacterium smegmatis 

Mycolicibacterium smegmatis, formerly known as Mycobacterium smegmatis, is a non-

pathogenic microorganism but has been reported to cause infections. M. smegmatis can be 

found in soil and water sources at high altitudes up to 3500 meters (King et al., 2017). These 

rapidly growing acid-fast bacteria were first described and reported by Lustgarten in 1884. 

Alvarez and Tavel later found this species in genital secretion (smegma) and consequently 

named the organism Mycobacterium smegmatis (R. E. Gordon & Smith, 1953). When the genus 

Mycobacterium was emended in 2018, M. smegmatis was classified into a new genus, 

Mycolicibacterium (R. S. Gupta et al., 2018). Quantitative structome analysis of M. smegmatis 

revealed that the species was morphologically more similar to Escherichia coli than M. 

tuberculosis which supported the introduction of the novel genus, Mycolicibacterium (Yamada et 

al., 2018). 

It has commonly been used as a non-pathogenic model organism to study the metabolism in 

mycobacteria. M. smegmatis is a rapidly growing, Biosafety Level 1 organism which makes it a 

very good model organism for mycobacteria as M tuberculosis and M. leprae are slow-growing 

bacteria (R. E. Gordon & Smith, 1953; Singh & Reyrat, 2009). M. smegmatis is also easier to 
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genetically manipulate (Jacobs et al., 1991; Van Kessel & Hatfull, 2008) which makes it easier 

to study in vivo cysteine biosynthesis in mycobacteria (this study). One of the very important 

factors that make this organism a suitable model for this project is the fact that it can grow well 

in M9 minimal medium which provides researchers freedom to manipulate the medium and test 

its growth when certain compounds were the sole sources of sulfur that they might be 

assimilated into cysteine.  

B. Cysteine 

Cysteine (Figure 1E) is one of the two sulfur-containing proteogenic amino acids, the other 

being methionine. The molecular formula of cysteine is given by COOHCH(NH2)CH2SH with a 

thiol group (–SH) serving as the functional group on the side chain of the amino acid. Two 

cysteine residues in a protein can covalently bond with each other to form a disulfide bond that 

aids the secondary and tertiary structures of proteins. Cysteine serves as a precursor for the 

biosynthesis of the second sulfur-containing proteogenic amino acid, methionine (Figure 1B). 

Cysteine also has antioxidant properties as the thiol group of the amino acid can undergo redox 

reactions. Cysteine can often be found in the active sites of enzymes participating as a 

nucleophile (Verma et al., 2016). It serves as a precursor for the biosynthesis of glutathione 

which protects the cells from oxidative stress in most of the gram-negative aerobic bacteria 

(Fahey et al., 1978) and eukaryotes (Fernandes et al., 2007). The mycobacterial equivalent of 

glutathione is called mycothiol (Figure 1D) (Newton et al., 2008). Cysteine forms a part of this 

compound (Spies & Steenkamp, 1994). 

C. Cysteine Biosynthesis 

Plants and bacteria can synthesize cysteine de novo and then, through the forward 

transsulfuration pathway, synthesize methionine. They can also synthesize cysteine using 

methionine as a precursor through the reverse transsulfuration pathway. In fungi and mammals 

including humans, cysteine is synthesized from methionine via the reverse transsulfuration 
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pathway (Mudd et al., 1965; Ono et al., 1999; Papet et al., 2019). Methionine is a nutritionally 

essential amino acid in mammals. Hence, we can derive that we do not have any pathway for 

assimilating inorganic sulfur into amino acids in humans. For this reason, components of the de 

novo biosynthesis of cysteine are viewed as a good field to look for drug targets against 

pathogenic bacteria. Figure 2 shows the predicted pathways for cysteine biosynthesis in 

mycobacteria. 

1. Reverse Transsulfuration Pathway from Methionine 

The reverse transsulfuration pathway starts with the conversion of methionine to S-

adenosylmethionine (SAM). This is an ATP requiring reaction catalyzed by the enzyme 

methionine adenosyltransferase (Berger & Knodel, 2003). Methyltransferase, then, transfers the 

methyl group of SAM to a substrate to synthesize S-adenosylhomocysteine (SAH) (A. Gupta et 

al., 2001; Im et al., 2016) which is then converted to homocysteine by S-adenosylhomocysteine 

hydrolase (SAHH) (Singhal et al., 2013). Cystathionine β-synthase (CBS) can then combine 

homocysteine with serine to form cystathionine (Kery et al., 1994). Cystathionine can be broken 

down to α-ketoglutarate and cysteine by cystathionine γ-lyase (CGL) (Wheeler et al., 2005). 

This pathway for the biosynthesis of cysteine is not only found in mycobacteria but it is also 

common among all the three domains of life: Bacteria, Archaea, and Eukarya.  

2. De novo Cysteine Biosynthesis Catalyzed by CysK1 

Plants and many species of bacteria can assimilate inorganic sulfur into cysteine. For the de 

novo biosynthesis of cysteine, bacteria including mycobacteria take up sulfur from the 

environment in the form of sulfate (SO4
2–) through ATP-binding channel (ABC) transporters 

(Wooff et al., 2002). Intracellular sulfate can then be activated to form adenosine 5’-

phosphosulfate (APS) by the enzyme ATP sulfurylase. APS reductase reduced this activated 

sulfate to sulfite (SO3
2–). Sulfite can further be reduced to sulfide (S2–) (Pinto et al., 2007). 

CysK1, an O-acetyl-L-serine sulfhydrylase (OASS), can now transfer this sulfide to O-acetyl-L-
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serine (OAS) to synthesize cysteine and release acetyl as a byproduct. Thus, CysK1 is a 

cysteine synthase. Homologs of the gene (cysK1) coding for this enzyme can be found in the 

genomes of plants and both gram-negative and gram-positive bacteria including M. 

tuberculosis, M. bovis, and M. marinum. Surprisingly, M. smegmatis genome appears to lack 

this gene.  

3. De novo Cysteine Biosynthesis Catalyzed by CysK2 

M. tuberculosis genome also codes for a second enzyme CysK2, an O-phospho-L-serine 

sulfhydrylase (OPSS), that can transfer the sulfide to an O-phospho-L-serine (OPS) to form 

cysteine, releasing a phosphate as a byproduct. This is a recently discovered pathway in M. 

tuberculosis (Steiner et al., 2014). Again, homologs of the gene (cysK2) coding for this enzyme 

can be found in the genomes of M. bovis and M. marinum. This gene is not found in M. 

smegmatis genome.  

4. De novo Cysteine Biosynthesis Catalyzed by CysM 

Actinobacteria have been reported to exhibit a yet another route to synthesize cysteine de novo. 

This pathway involves three proteins including a sulfur carrying protein, CysO. A 

sulfurtransferase transfers a sulfide group onto the C-terminus of the CysO protein (Burns et al., 

2005). Cysteine synthase B or CysM enzyme condenses thiocarboxylated CysO with O-

phospho-L-serine to form a CysO-cysteine adduct by displacing the phosphate group of OPS 

(Ågren et al., 2008; O’Leary et al., 2008). Cysteine is then cleaved from CysO by a peptidase 

enzyme known as mec+. Genes coding for these three proteins, mec+, cysO, and cysM are 

found in a cluster in M. tuberculosis. Homologs of these genes are found in operons in other 

mycobacteria too including M. smegmatis (Jurgenson et al., 2008).  
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II. METHODS 

A. Bacterial strains and growth conditions 

Escherichia coli DH5α cells were grown in Luria Bertani (LB) broth or agar media. M. smegmatis 

mc2155 and the generated mutant strains of M. smegmatis were routinely grown on Middlebrook 

7H10 agar supplemented with 0.5% (v/v) glycerol and in Middlebrook 7H9 supplemented with 

0.2% (v/v) glycerol or tryptic soy agar (TSA), or Tryptic soy broth (TSB) media. Liquid 

mycobacterial growth media were supplemented with 0.05% (v/v) Tween 80. Media were 

supplemented with 100 µg/mL hygromycin B, and/or 25 µg/mL kanamycin sulfate when needed. 

E. coli DH5α was grown at 37 OC and 250 rpm (liquid). M. smegmatis strains were grown at 37 

OC and 150 rpm (liquid). Media and other chemicals were purchased from Becton, Dickinson 

and Company (BD) and MilliporeSigma respectively.  

B. DNA manipulation 

All primers used in this study are listed in Table 3. Knockout mutants of M. smegmatis were 

generated through an allelic exchange strategy as described previously with some modifications 

on the Xer-cise technique (Figure 3) (Cascioferro et al., 2010; Van Kessel & Hatfull, 2007). A 

hygromycin-resistance gene-containing 1.1 kb region of pYUB28b (hygR) (Bashiri et al., 2010) 

was amplified using primers containing M. tuberculosis putative dif sequence. To knockout the 

mec+cysOM operon, the upstream and the downstream regions (~600 base pairs each) of the 

operon were amplified from M. smegmatis chromosome with the dif sequence introduced at the 

ends that were to be fused with the hygromycin-resistance gene amplicon. Dif sites are 28 bp 

regions with identical sequences that can recombine to excise the region of DNA between them. 

Mycobacterial genomes contain dif-recombinase that can catalyze this recombination. Here, I 

utilized this feature of dif sites to excise the selective marker to generate unmarked knockout 

mutants. A fusion PCR using the forward primer of the upstream region and the reverse primer 

of the downstream region resulted in the “upstream-dif-hygR-dif-downstream” cassette which 
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was then electroporated into M. smegmatis cells containing pJV53 (Van Kessel & Hatfull, 2007). 

PJV53 plasmid encodes mycobacteriophage genes gp60-61 that facilitate site-specific 

recombination. Transformants were selected on TSA plates supplemented with hygromycin and 

kanamycin. Unmarked knockout mutants were obtained through a passage on non-selective 

plate followed by replica plating on selective (supplemented with hygromycin) and non-selective 

media. Knockout mutants were cured of the pJV53 plasmids through a passage on non-

selective medium and then replica plating on selective (supplemented with kanamycin) and non-

selective media. The same approach was followed to generate unmarked ∆cbs mutant. The 

∆cbs mutation was also introduced in pJV53 containing M. smegmatis ∆mec+cysOM mutant to 

result in ∆mec+cysOM_cbs double mutant. The knockout mutations were confirmed using PCR 

(Figure 7). 

For complementation, the mec+cysOM operon amplified from the M. smegmatis chromosome 

using the primers containing the NdeI and NheI restriction sites at the 5’ termini of the forward 

and reverse primers, respectively. The region of pJV53 encoding the two phage recombinases, 

gp60 and gp61 was excised using NdeI and NheI restriction enzymes (Figure 4A). The PCR 

amplicon was restriction-digested using the same restriction enzymes and then ligated into the 

pJV53 vector to result in pJmeccysOM (Figure 5A). The same approach was followed to 

construct the plasmid pJcbs (Figure 4B) for the cloning of the cbs gene. To construct 

pJcbs(1:311) (Figure 5B), the N-terminal domain coding region, the first 933 bases of the DNA 

was amplified.  A stop codon was introduced in the amplicon by adding a complementary 

sequence of a stop codon in the reverse primer (P17). This amplicon was restriction-digested 

and ligated into the vector using the method described for the construction of the plasmid 

pJmeccysOM. Plasmids thus constructed were electroporated into kanamycin-sensitive cells of 

the unmarked knockout mutants. The complemented mutants were confirmed using PCR. All 

plasmids used in this study are listed in Table 1. The resulting strains are included in Table 2.  
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pYUB28b was a gift by Ted Baker (Addgene plasmid #37277) (Bashiri et al., 2010). pJV53 was 

a gift by Graham Hatfull (Addgene plasmid #26904) (Van Kessel & Hatfull, 2007). Enzymes 

were purchased from New England Biolabs (NEB).  

C. Sulfur Utilization Assay 

Sulfur utilization experiments were carried out in sulfur-free M9 (BD) medium (47.76 mM 

disodium phosphate, 22.04 mM monopotassium phosphate, 8.56 mM sodium chloride, 18.69 

mM ammonium chloride, 0.2% (v/v) glycerol, 1 mM MgCl2 and 0.1 mM CaCl2) supplemented 

with a sulfur-containing compound: 2 mM MgSO4, 1 mM Na2S, 60 µM methionine, 60 µM 

homocysteine, 60 µM cystathionine, or 30 µM cysteine. Strains of M. smegmatis were grown in 

triplicates in M9 medium containing cysteine to log phase. The cells were washed 3x with H2O 

and then resuspended in M9 medium containing MgSO4. The cultures were then diluted to an 

OD600 of 0.020. OD600 was measured for all the cultures after every 6 hours for 48 hours unless 

otherwise specified.  

D. Bioinformatics Analysis 

The protein sequences were obtained from NCBI (Reference sequence: NC_008596.1 for M. 

smegmatis and Reference sequence: NC_000962.3 for M. tuberculosis). Multiple sequence 

alignment of the protein sequences was carried out using Muscle on Lasergene MegAlign Pro 

software from DNASTAR. The alignment image was created using ESPript (Robert & Gouet, 

2014). A phylogenetic tree was drawn using Neighbor-joining method on MEGA X (Kumar et al., 

2018; Saitou & Nei, 1987; Zuckerkandl & Pauling, 1965).  
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III. RESULTS 

A. Confirmation of mutants 

The mutants generated in this study were confirmed using PCR. Colonies were used as 

templates for direct PCR to amplify a length of the chromosome that included the allelic 

exchange region and a 98 bp stretch downstream of the region to confirm the allelic exchange 

at the target site. A PCR product of approximately 1.3 kb in Lane 2 amplified from HygS colonies 

of M. smegmatis ∆mec+cysOM compared to that of approximately 2.7 kb in Lane 1 (Figure 7A), 

amplified from the wild type strain indicated the deletion of the operon.  

For the confirmation of the deletion of cbs gene, the stretch of DNA including allelic exchange 

region and 76 bp upstream was amplified from the chromosome. A PCR product of 

approximately 1.4 kb in Lane 8, amplified from Δcbs strain was observed while the wild type 

strain gave a product of 2.5 kb in Lane 6 (Figure 7B). The shorter bands for the PCR 

amplification of the operon region and the gene region compared to those from the wild type 

strains in Figure 7A and Figure 7B indicated the deletion of both regions.  

For complemented mutants, using a primer specific to the insert (P13) and the other specific to 

the vector (P18), a PCR product of approximately 2.3 kb was obtained with 

∆mec+cysOM::mec+cysOM (Lane 3) and M. smegmatis ∆mec+cysOM_cbs::mec+cysOM (Lane 

4) in Figure 8A. Using a primer specific to the insert (P15) and a primer specific to the vector 

(P18), a PCR product of approximately 1.9 kb was obtained with ∆cbs::cbs (Lane 8) and 

∆mec+cysOM_cbs::cbs (Lane 9) while a PCR product of approximately 1.3 kb was obtained with 

∆mec+cysOM_cbs::cbs(1:311) (Lane 10) in Figure 8B. 

B. Sulfur Utilization Assay 

1. MgSO4 

Figure 9 shows the growth curve of various strains of M. smegmatis in M9 with Magnesium 

sulfate as the sole sulfur source. All strains start out at an OD600 of ~0.015. The wild type strain 
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has the best growth rate among all the strains throughout the 48 hours of observation. The 

∆mec+cysOM single knockout mutant grows as well as the wild type strain until the OD600 of 

~0.5 but falls behind afterwards. The ∆cbs single mutant grows slower than the wild type strain 

and the ∆mec+cysOM strain until the OD600 of ~1.0 and then grows faster than the ∆mec+cysOM 

strain. The ∆mec+cysOM_cbs double mutant does not appear to grow at all in this medium. The 

complemented single knockout mutants show similar growth to the non-complemented knockout 

strains throughout the observation period. Complementation with either cbs or mec+cysOM in 

the double mutant appears to restore the ability to grow in this medium. The 

∆mec+cysOM_cbs::cbs(1:311) does grow in this medium but the growth rate is slower than the 

wild type strain and any other strains that grow in this medium.  

2. Na2S 

Figure 10 shows the growth rate comparison of the various strains of M. smegmatis in M9 with 

Sodium sulfide as the sole sulfur source. Just like in M9 medium with MgSO4 as the sole sulfur 

source, the wild type strain shows the best growth rate among all the strains in the minimal 

medium with sodium sulfide as the sole sulfur source. The single knockout mutants and the 

complemented single knockout mutants appear to grow as well as the wild type strain until the 

OD600 of ~0.8 and then start to grow slower. The ∆mec+cysOM_cbs double mutant does not 

grow at all in this medium. The double knockout mutant complemented with either mec+cysOM 

or cbs grow as well as their corresponding single mutants, ∆cbs or ∆mec+cysOM, respectively. 

The ∆mec+cysOM_cbs::cbs(1:311) strain does grow in this medium but has a very slow growth 

rate. 

3. Methionine 

Figure 11 shows the comparison of various strains of M. smegmatis in M9 minimal medium with 

methionine as the sole sulfur source. In this medium, the ∆mec+cysOM mutant appears to grow 

better than or as well as the wild type strain while the ∆cbs mutant grows much slower than the 
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wild type strain. Complemented strains of the single knockouts show similar growth rate as that 

of the wild type strain. The ∆mec+cysOM_cbs double mutant does not appear to grow at all in 

this medium. Growth of the double mutant is restored when complemented with cbs. The 

mec+cysOM_cbs::mec+cysOM shows a growth pattern similar to the ∆cbs mutant. Interestingly, 

∆mec+cysOM_cbs::cbs(1:311) strain grows much better than the ∆cbs mutant in this medium. 

4. Homocysteine 

Growth curves of the different strains of M. smegmatis in M9 with homocysteine as the sole 

sulfur source are shown in Figure 12. Just like in the minimal medium with methionine as the 

sole sulfur source, the ∆mec+cysOM mutant appears to grow better than or as well as the wild 

type strain while the ∆cbs mutant grows at a much slower rate than the wild type strain in M9 

with homocysteine as the sole sulfur source. The single knockout mutants complemented with 

the missing gene/operon grow as well as the wild type strain. The ∆mec+cysOM_cbs double 

mutant does not grow at all in this medium. Growth of the double mutant is restored when 

complemented with cbs. The mec+cysOM_cbs::mec+cysOM shows a growth pattern similar to 

the ∆cbs mutant. Similar to what was observed in M9 with methionine, 

∆mec+cysOM_cbs::cbs(1:311) strain grows much better the ∆cbs mutant in this medium. 

5. Cystathionine 

Figure 13 shows the growth curves of the various strains of M. smegmatis in M9 minimal 

medium with cystathionine as the only source of sulfur. In the minimal medium, the wild type 

strain as well as all the mutants were able to grow including the ∆mec+cysOM_cbs double 

mutant. Mutant strains do however fall behind the wild type strain after an OD600 of ~0.6. The 

growth rates among the knockout and complemented knockout mutants do not show any 

striking difference.  
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6. Cysteine 

Growth curves of M. smegmatis wild type and mutant strains are shown in Figure 14. Just like in 

the medium with cystathionine as the sole sulfur source, all the mutants and the wild type strain 

are able to grow in this medium. As expected, the ∆mec+cysOM_cbs double mutant is able to 

grow when cysteine is provided in the medium. The wild type strain grew much faster than the 

knockout and complemented knockout mutant strains with one exception of the 

∆mec+cysOM_cbs::cbs(1:311) strain which grew as well as the wild type strain in this medium. 

C. Bioinformatic Analysis 

NCBI conserved domain search for M. smegmatis CBS protein against the conserved domain 

database returned revealed that the protein has two conserved domains. The N-terminal 

domain extending from Ile1 to Lys304 matched with a cysteine synthase domain. Protein BLAST 

(NCBI) revealed 60% positives between the N-terminal domain of M. smegmatis CBS (1:304) 

and M. tuberculosis CysK1. The protein sequences of CysM and CBS of M. smegmatis were 

aligned with those of CysK1, CysK2 and CysM of M. tuberculosis whose structural and 

biochemical information were described previously (Ågren et al., 2008; Schnell et al., 2007; 

Steiner et al., 2014). A phylogenetic tree was constructed for the alignment using Neighbor-

joining method (Figure 15). CBS proteins from the two species were in a cluster with the CysK1 

while, CysK2 appeared to be the least similar protein among the analyzed cysteine synthases 

and cystathionine beta-synthase proteins. Multiple sequence alignment (Figure 16) showed M. 

smegmatis CBS has K44, 181GTGGT185, S269, and N74 aligned with the same residues in CysK1 

that help in covalent boding with the Pyridoxal phosphate cofactor, hydrogen bonding with the 

phosphate group, hydrogen bonding with the N-1 atom of the pyrimidine ring, and hydrogen 

bonding with the 3’-hydroxyl group of the cofactor.  The M. smegmatis CBS protein also 

contains 71TSGNT75, D296, and G225 which aligned with the residues in the active site of the 

CysK1 holoenzyme. 
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IV. DISCUSSION 

Growth curves in sulfur-free M9 minimal medium supplemented with one of the sulfur-containing 

compounds (MgSO4, Na2S, methionine, homocysteine, cystathionine and cysteine) were 

obtained for all the knockout mutants and complemented knockout mutants generated in this 

study along with the wild type strain of M. smegmatis (Figures 9 – 14 respectively). Since the 

mutations were made in the genes involved in cysteine biosynthesis, all the strains should be 

able to grow in the presence of cysteine. It was vital to make sure that all the strains showed 

growth in M9 medium with cysteine. In this medium, the growth rates of all the mutants were 

close to that of the wild type strain during the log phase (OD600 ~0.6) which indicates that there 

was not any significant growth defect in any of the mutants.  

To analyze the growth of strains in media with different sulfur sources, it is important to consider 

where these sulfur sources are placed in the biosynthetic pathway of cysteine. In the reverse 

transsulfuration pathway, cystathionine is the product of cystathionine β-synthase. The enzyme 

that catalyzes the conversion of cystathionine to cysteine, cystathionine γ-lyase, was not 

mutated in any of the strains. Therefore, all the strains must also be able to grow in M9 medium 

with cystathionine as the sole source of sulfur. As expected, all the strains grew in this medium.  

The gene MSMEG_5270 (cbs) of M. smegmatis has been annotated to encode cystathionine β-

synthase (CBS). A protein BLAST with the sequence of CBS of another actinobacterium, 

Streptomyces venezuelae, shows a 69% identity and 79% similarity. Chang & Vining, in 2002, 

described the protein in S. venezuelae to catalyze the conversion of homocysteine to 

cystathionine. When homocysteine is the sole source of sulfur in the M9 medium, the 

Δmec+cysOM strain of M. smegmatis can utilize the reverse transsulfuration system to 

synthesize cystathionine from homocysteine and then cysteine from cystathionine with 

cystathionine β-synthase and cystathionine γ-lyase to catalyze the reactions respectively. 

However, the deletion of both mec+cysOM operon and cbs gene did not allow the cells to grow 
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in this medium as expected. Interestingly, the Δcbs mutant was able to grow in this medium 

which may be explained by a possible degradation of homocysteine to release inorganic sulfur 

that can be assimilated into cysteine via the CysM catalyzed biosynthesis (Reisch et al., 2011). 

Another possible explanation would be the catalysis of the homocysteine to cystathionine 

reaction by the intact CysM enzyme. There is however no experimental evidence to support this 

hypothesis. CysM protein sequence shows 38% identity and 53% similarity with that of CBS, 

while also missing the C-terminal domain of the CBS enzyme. The fates of homocysteine have 

not been explored extensively in mycobacteria. It would be interesting to track the route sulfur 

takes in the Δcbs mutant by feeding it with 34S-enriched homocysteine and unenriched cysteine 

to see whether there is a reverse transsulfuration activity taking place in this strain.  

Methionine is upstream of homocysteine as the sulfur donor in the biosynthesis of cysteine via 

the reverse transsulfuration pathway. Since the genes encoding for the enzymes involved in the 

conversion of methionine to homocysteine were intact in all the strains, consistent with the 

expectation, they showed similar phenotypes in M9 medium with methionine as the sole sulfur 

source as they did with homocysteine as such. 

Since the M. smegmatis genome encodes neither CysK1 nor CysK2 cysteine synthases, the 

only cysteine synthase known to be present in M. smegmatis is CysM encoded by the gene 

cysM which is a part of an operon shared with mec+ and cysO. The wild type strain, like M. 

tuberculosis (Ågren et al., 2008), is expected to assimilate sulfide (S2-) into cysteine via the 

CysM catalyzed reaction while the strain with the mec+cysOM operon knocked out would not be 

able to grow in an M9 medium with sulfide as the sole sulfur source. Surprisingly, the 

Δmec+cysOM strain was able to grow in this medium indicating that there must be at least one 

alternative pathway for the de novo biosynthesis of cysteine in this organism. The 

Δmec+cysOM_cbs did not grow at all in this medium indicating that CBS is involved in the de 

novo biosynthesis of cysteine in M. smegmatis. There are two potential ways this enzyme may 
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be involved in cysteine biosynthesis. The first potential route followed by M. smegmatis might be 

through its ability to possibly synthesize homocysteine by direct sulfhydrylation of O-acetyl-L-

homoserine with inorganic sulfide as the sulfur donor. This route of homocysteine biosynthesis 

has been reported in methanogenic archaea (Allen et al., 2015; Y. Liu et al., 2010), 

Saccharomyces cerevisiae (Thomas & Surdin-Kerjan, 1997), Leptospira meyeri (Belfaiza et al., 

1998), and also in Corynebacterium glutamicum (Lee & Hwang, 2003). It is important to note 

that C. glutamicum is from the same taxonomic order of Actinomycetales, as is M. smegmatis. 

The enzyme catalyzing this reaction is O-acetylhomoserine sulfhydrylase (OAHS). The protein 

sequence of the enzyme of M. smegmatis shows a 69% identity and 73% similarity with the 

OAHS of C. glutamicum. Thus, it is possible that this enzyme assimilates inorganic sulfide to 

synthesize homocysteine which is then converted to cystathionine by CBS and then via the 

CGL-catalyzed reaction, it is converted to cysteine making the Δmec+cysOM strain of M. 

smegmatis able to grow in M9 with sulfide as the sole sulfur source. The second potential route 

of de novo cysteine biosynthesis involving CBS in the Δmec+cysOM strain may be followed as 

CBS being able to catalyze the assimilation of sulfide to O-acetyl-L-serine to generate cysteine. 

CBS has two domains: The N-terminal domain shows a 44% identity and 60% similarity with the 

O-acetylserine sulfhydrylase (CysK1) encoded by the gene cysK1 of M. tuberculosis, and the C-

terminal domain is highly conserved among the cystathionine beta-synthases of organisms from 

all the three domains of life: Bacteria, Archaea, and Eukarya. The C-terminal domain has been 

reported to act as a regulatory domain. This domain was found to be non-essential in the 

biosynthesis of cysteine as the Δmec+cysOM_cbs complemented with the N-terminal domain of 

CBS was able to grow in M9 with sulfide as the sole sulfur source. Protein sequence alignment 

revealed, as discussed in the results, that the M. smegmatis CBS protein sequence has amino 

acid residues aligned with the ones in M. tuberculosis CysK1 that are involved in binding with 

the pyridoxal phosphate cofactor. Same is the case with the residues involved in the catalytic 

activity of the CysK1 enzyme. Also, the M. smegmatis genome encodes the enzymes serine O-



17 
 

acetyltransferase (product of the gene cysE) which catalyzes the biosynthesis of O-acetyl-L-

serine. The presence of an O-acetylserine sulfhydrylase would explain the significance of this 

enzyme O-acetyltransferase and its product in M. smegmatis. For these reasons, the hypothesis 

that M. smegmatis CBS may be acting as a cysteine synthase (O-acetylserine sulfhydrylase) 

cannot be rejected without further investigation.  

One way to determine which route CBS takes to synthesize cysteine de novo in M. smegmatis 

would be to knock out the gene MSMEG_2394 coding for cystathionine γ-lyase (CGL) in the 

Δmec+cysOM background and then test this strain’s ability to grow in M9 medium with sulfide as 

the sole sulfur source. Since a functional CGL catalyzes the conversion of cystathionine to 

cysteine, this strain will be unable to synthesize cysteine via both CysM-catalyzed biosynthesis 

and reverse transsulfuration pathway. If the double mutant strain is able to grow in this medium, 

it will support the hypothesis that CBS may be acting as a cysteine synthase using sulfide and 

O-acetylserine as its substrates. If the strain fails to grow in this medium, it will support that CBS 

may only be catalyzing the conversion of homocysteine to cystathionine and that M. smegmatis 

must have a pathway to directly assimilate sulfide into homocysteine catalyzed by an O-

acetylhomoserine sulfhydrylase.  

Another way to determine the route taken by CBS in de novo biosynthesis of cysteine would be 

to use 34S-labeled sulfide in the growth of Δmec+cysOM strain of M. smegmatis. This strain 

would be fed with labeled sulfide and unlabeled homocysteine. If CBS has an O-acteylserine 

sulfhydrylase activity, we should see a higher percentage of labeled cysteine vs labeled 

cystathionine. However, if CBS is merely converting homocysteine to cystathionine, then, cells 

would use up unlabeled homocysteine for the biosynthesis cysteine while more homocysteine is 

synthesized by the O-acetylhomoserine sulfhydrylase. This would result in a higher percentage 

of homocysteine being labeled than cysteine.  
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Sulfate is reduced to sulfide via the activities of APS sulfurylase, APS reductase, and Sulfide 

reductase enzymes in M. smegmatis. The genes coding for these enzymes were not mutated in 

any of the strains used in this study. Hence, using sulfate as the sulfur donor in M9 medium 

should yield similar growth curves for any strain that they exhibited in M9 with sulfide as the sole 

sulfur source. Thus, the results for all the strains of M. smegmatis were consistent with this 

expectation.  

Based on the observation and above discussion, CBS appears to be involved in de novo 

biosynthesis of cysteine in M. smegmatis, either in the transsulfuration pathway where 

homocysteine is synthesized by assimilation of sulfide onto O-acetylhomoserine or through the 

assimilation of sulfide onto O-acetylserine to synthesize cysteine directly. So far, only three de 

novo cysteine biosynthesis pathways have been described in M. tuberculosis: CysK1, CysK2, 

and CysM being the major enzymes in those pathways. However, these enzymes have been 

described largely based on biochemical studies. Not much has been explored in vivo. My data 

supports that CysM is involved in cysteine biosynthesis in M. smegmatis. This project also 

introduces a new pathway for cysteine biosynthesis in M. smegmatis which employs CBS as an 

enzyme catalyzing one of the steps. Considering that M. smegmatis CBS sequence shows an 

86% identity and 93% similarity with M. tuberculosis CBS sequence, it is highly likely that the 

enzyme has the same function in M. tuberculosis. This means that there may be a yet another 

route for the de novo cysteine biosynthesis in M. tuberculosis different from the three previously 

described pathways. Certainly, experimental evidence is necessary to verify this hypothesis in 

M. tuberculosis to make any conclusions. If verified to be true, this would introduce a novel 

target for the development of anti-tuberculosis drugs.  
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Figure 1: Structural formula of compounds relevant to this study. 
(A) Homocysteine, (B) Methionine, (C) Cystathionine, (D) Mycothiol, (E) Cysteine, (F) Serine, and (G) Homoserine 
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Figure 2: Predicted pathways for biosynthesis of cysteine in mycobacteria.  
Rounded rectangles represent precursors, intermediates, or products in the biosynthetic pathways of cysteine. CysO is a sulfur 
carrier protein. Circular sectors in the diagram represent enzymes.   
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Figure 3: Representation of the steps followed in order to generate unmarked knockout mutant M. smegmatis Δmec+cysOM 
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A B 

Figure 4: Plasmids pJV53 and pJcbs 
Plasmids including the primer binding sites used in this study. The images were created using Lasergene SeqBuilder Pro 

software from DNASTAR. (A) pJV53 with the che9c genes, gp60 and gp61, (B) pJmeccysOM constructed by replacing gp60-

gp61 from pJV53 with mec+cysOM operon 
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A B 

Figure 5: Plasmids pJmeccysOM and pJcbs(1:311) 

Plasmids including the primer binding sites used in this study. The images were created using Lasergene SeqBuilder Pro 

software from DNASTAR. (A) pJcbs constructed by replacing gp60-gp61 from pJV53 with cbs gene, (B) pJcbs(1:311) 

constructed by replacing gp60-gp61 with the portion of cbs gene encoding the first 311 amino acids 
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Figure 6: Organization of operon/gene in M. smegmatis with primer binding sites 

The directions of the primers are represented by the arrow heads (A) intact mec
+

cysOM operon, (B) intact cbs gene, (C) 

deleted mec
+

cysOM operon, (D) deleted cbs gene 
 



 

 
 

3
1
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

  

 

Figure 7: Confirmation of knockout mutants 
Gel electrophoresis of PCR products using primers P3 and P7 (A) and P11 and P12 (B). DNA samples from the following strains of 

M. smegmatis were used: Wild type (Lanes 1 & 6), ∆mec
+

cysOM (Lanes 2 & 7), ∆cbs (Lanes 3 & 8), ∆mec
+

cysOM_cbs (Lanes 4 & 
9). Lanes 5 and 10 were negative controls.  
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Figure 8: Confirmation of the complemented knockout mutants 

Gel electrophoresis of PCR products using primers P13 & P18 (A) and P15 & P18 (B). pJV53 DNA was used as template in Lanes 2 

& 7. Colonies of the following strains of M. smegmatis were used as samples: Wild type (Lanes 1 & 6), ∆mec+cysOM::mec+cysOM 

(Lane 3), M. smegmatis ∆mec+cysOM_cbs::mec+cysOM (Lane 4), ∆cbs::cbs (Lane 8), ∆mec+cysOM_cbs::cbs (Lane 9), 

∆mec+cysOM_cbs::cbs(1:311) (Lane 10). Lanes 5 & 11 were negative controls. 
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Figure 9: Growth curves of the mutants of M. smegmatis generated in this study along with the wildtype in sulfur-free M9 medium 

supplemented with MgSO4 
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Figure 10: Growth curves of the mutants of M. smegmatis generated in this study along with the wildtype in sulfur-free M9 medium 

supplemented with Na2S 
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Figure 11: Growth curves of the mutants of M. smegmatis generated in this study along with the wildtype in sulfur-free M9 medium 

supplemented with Methionine 
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Figure 12: Growth curves of the mutants of M. smegmatis generated in this study along with the wildtype in sulfur-free M9 medium 

supplemented with Homocysteine 
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Figure 13: Growth curves of the mutants of M. smegmatis generated in this study along with the wildtype in sulfur-free M9 medium 

supplemented with Cystathionine 
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Figure 14: Growth curves of the mutants of M. smegmatis generated in this study along with the wildtype in sulfur-free M9 medium 

supplemented with Cysteine 
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Figure 15: Phylogenetic relationship among Cysteine synthases and Cystathionine beta-synthases of M. tuberculosis and M. 

smegmatis 

The evolutionary history was inferred using the Neighbor-Joining method. The optimal tree with the sum of branch length = 

2.19397737 is shown. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used 

to infer the phylogenetic tree. The evolutionary distances were computed using the Poisson correction method and are in the units of 

the number of amino acid substitutions per site. This analysis involved 6 amino acid sequences. All ambiguous positions were 

removed for each sequence pair (pairwise deletion option). There were a total of 496 positions in the final dataset. Evolutionary 

analyses were conducted in MEGA X. 
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Figure 16: Multiple sequence alignment of cysteine synthases and cystathionine beta-synthases of M. smegmatis and M. 

tuberculosis 

The columns are numbered by the position of residues of M. smegmatis CBS. The position of the residues in M. tuberculosis that 

contribute to binding of PLP cofactor (⬤) and those that are involved in the formation of the active site (★) are indicated. The image 

was created using ESPript. 
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VII. TABLES 

Table 1: List of plasmids used in this study 

 

  
Plasmid Description 

pYUB28b For the amplification of hygromycin resistance gene 

pJV53 For che9c gp60-gp61 recombinases and as the vector for complementation 

pJmeccysOM pJV53 replacing che9c gp60-gp61 with M. smegmatis mec
+

cysOM operon 

pJcbs pJV53 replacing che9c gp60-gp61 with M. smegmatis cbs gene 

pJcbs(1:311) 
pJV53 replacing che9c gp60-gp61 with the sequence encoding the N-terminal domain of M. 

smegmatis cbs gene (the first 311 amino acid followed by a stop codon) 
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Table 2: List of bacterial strains used in this study 

  

 

Strain Description 

E. coli DH5α Carrier of plasmids pYUB28b or pJV53 

M. smegmatis mc2155 Wild type 

M. smegmatis + pJV53 Transformed with pJV53 plasmid 

M. smegmatis Δmec
+

cysOM mec
+

, cysO, cysM genes knocked out 

M. smegmatis Δcbs cbs gene knocked out 

M. smegmatis Δmec
+

cysOM_cbs mec
+

cysOM operon and cbs gene knocked out (double mutant) 

M. smegmatis Δmec
+

cysOM::mec
+

cysOM mec
+

cysOM knockout complemented with pJmeccysOM 

M. smegmatis Δmec
+

cysOM_cbs::mec
+

cysOM Double mutant complemented with pJmeccysOM 

M. smegmatis Δcbs::cbs cbs mutant complemented with pJcbs 

M. smegmatis Δmec
+

cysOM_cbs::cbs Double mutant complemented with pJcbs 

M. smegmatis Δmec
+

cysOM_cbs::cbs(1:311) Double mutant complemented with pJcbs(1:311) 
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Table 3: List of primers used in this study 

 

 

Application 
Primer 

Name 
Sequence 

Amplification of 

hyg
R

 gene 

P1 
AAGCTTCTCGAGTAAGCCGATAAGCGACATTATGTCAAGTCCCGGGTCTAGACCCGT

CATCGTCAAC 

P2 
GGTACCAAGCTTCTCGAGACTTGACATAATGTCGCTTATCGGCTTAATCGATCTAGAT

CACCGGCGCCGGGGG 

Construction of 

∆mec
+

cysOM 

allele and 

confirmation of 

∆mec
+

cysOM 

mutation 

P3 TACGCCGATCTGCGCACCGAACTCAGCCCGC 

P4 
TCTAGACCCGGGACTTGACATAATGTCGCTTATCGGCTTACTCGAGAAGCTTGTTGGT

CATCGCGATGAACCGCTC 

P5 
TCTAGATCGATTAAGCCGATAAGCGACATTATGTCAAGTCTCGAGAAGCTTGGTACCC

GGTGAGCGTGCCGACATCGCG 

P6 AGGATGCCGACGACGATCTGCCAGGCGTTGCG 

P7 CGATCGCGCCGCACAGATGTCCCTGCCACG 

Construction of 

∆CBS allele and 

confirmation of 

∆CBS mutation 

P8 TACGTGTGGCTGCGTCGCGCGGGCTACGAAC 

P9 
TCTAGACCCGGGACTTGACATAATGTCGCTTATCGGCTTACTCGAGAAGCTTGCCGG

GGTTGAGGTACTCGATTTTCGC 

P10 
TCTAGATCGATTAAGCCGATAAGCGACATTATGTCAAGTCTCGAGAAGCTTGGTACCC

GGCGCCGGTGAACTGGTCAGC 

P11 CGAAACCGCCCGGTTGCGCAGGGGGATAGC 

P12 CCCCGTGCTGGTGGTCGATTACCGCATGGTGCC 

Cloning and 

confirmation of 

transformation 

P13 GCAGCATATGATGTTGCCGGGAGCGTTCGAGT 

P14 GCATGCTAGCATCAGGTGTTCCCAGTTGGCGT 

P15 GCGGCATATGATCGGCGCCTACATACGTGAGG 

P16 ATAAGCTAGCATCGCACGCGCCGTCGTTAGCT 

P17 ATCGGCTAGCTCACATCCACGCGTCGTTGAAAATC 

P18 CACCTGATTGCCCGACATTATCGCGAGCCCATT 
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