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Abstract

The work presented in this thesis was aimed at the development of a hardware accelerator

for the Digital Image Correlation engine (DICe) and compare two methods of data access,

USB and Ethernet. The original DICe software package was created by Sandia National

Laboratories and is written in C++. The software runs on any typical workstation PC and

performs image correlation on available frame data produced by a camera. When DICe is

introduced to a high volume of frames, the correlation time is on the order of days. The

time to process and analyze data with DICe becomes a concern when a high-speed camera,

like the Phantom VEO 1310, is used which is capable of recording up to 10,000 Frames Per

Second (FPS) [1]. To reduce this correlation time the DICe software package was ported over

to Verilog, and a Xilinx UltraScale+ MPSoC ZCU104 FPGA was targeted for the design.

FPGAs are used to implement the hardware accelerator due to their hardware-level speeds

and reprogrammability. The ZCU104 board contains FPGA fabric on the Programmable

Logic (PL) side that is used for the implementation of the ported DICe hardware design. On

the Processing System (PS) side of the ZCU104, a quad-core ARM Cortex-A53 processor

is available that runs the Ubuntu 18.04 LTS Linux-based kernel to provide the drivers for

USB and Ethernet I/O, a standard file system that is accessed through a Command-Line

Interface (CLI), and to run the program’s control scripts that are written in C. This work

compares the processing time of the DICe hardware accelerator when frame data is accessed

via Ethernet-stream or local USB to showcase the fastest option when using DICe. Both

methods of accessing frame data are necessary because data may be offloaded from the

camera over Ethernet while it is still recording, or the frame data may be readily available

in memory. By providing both a method to access frame data via USB and Ethernet, users

have more flexibility when using the DICe hardware accelerator. The work presented in this

thesis is significant because it is the first known hardware accelerator for the DICe software.
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Chapter 1

Introduction

Digital Image Correlation (DIC) is an optical method implemented by computers that

receive image frames as input and measures the deformation on an object’s surface without

contact [13]. DIC works by comparing digital photographs of a component or test piece at

different stages of deformation. By tracking blocks of pixels, the system can measure surface

displacement and build up a full field 2D and 3D deformation vector fields and strain maps

[13–16]. Rather than individual pixels providing a reference point for measuring the change

of an object from frame to frame, the neighboring pixels of that point is used to provide a

reference window or subset, that can provide far more accurate measurements for analysis

[7, 17]. DIC is becoming more common in everyday applications such as automotive use for

self-driving cars to process their environment and avoid obstacles or industrial applications

that analyze small components for abnormal wear, tear, and defections [14]. The increase

in modern applications that depend on DIC to properly function means an increase of the

computational devices needed to perform DIC in a suitable time frame, especially with the

development of Real-Time Systems (RTS) where accurate results in a short amount of time

are a necessity.

Field-Programmable Gate Arrays (FPGAs) have long been used for their flexibility to

create reprogrammable designs that target physical hardware for accelerating application

performance [18]. For high-level applications that have frequently changing parameters, the

use of Application-Specific Integrated Circuits (ASICs) become a burden by their inability

to implement functional changes in their hardware designs. FPGAs provide an option for

developers to create applications that can be modified and reprogrammed in the boards

Configurable Logic Blocks (CLBs) to achieve near-true hardware acceleration without the

expense of manufacturing and redeploying physical ASIC chips. FPGAs have been used for

decades, but recently they have made a big come back due to the large volume of high-
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level applications that require both accelerated performance and configurable designs [18].

Many modern FPGA’s contain components such as multi-core hard-processors, Graphics

Processing Units (GPUs), and various I/O ports that can interact with the low-level hardware

designs in the FPGAs’ fabric [8]. This makes modern System-on-Chip (SoC) FPGAs more

capable for processing-intensive applications than ever before.

The work presented in this thesis combines the use of FPGAs for accelerated hardware

performance and the Digital Image Correlation engine (DICe) program as the high-level

application to leverage the performance boost. DICe is an open-source tool that intends

to provide users with either a DIC module to implement in external applications or as a

standalone analysis program [6]. Currently, the DICe Graphical User Interface (GUI) only

supports basic use cases for 2D and stereo DIC. Additional features can be enabled through

the Command-Line Interface (CLI) to support use for additional DIC methods, such as

trajectory tracking. When DICe is presented with a large volume of frames to process with

multiple subsets, the time to complete DIC on the data set can be on the order of days for

a standard workstation computer. This lengthy delay in producing results is unacceptable

to many users of DICe, whom all desire a means to produce results faster. A delay in

producing and analyzing the results of DIC from DICe leads to a delay to solve the larger

engineering problems that the application was meant to solve. The work in this thesis is

aimed at the development of a hardware accelerator for the DICe software by porting the

design to the Verilog Hardware Description Language (HDL) to target FPGAs’ for the core

of the processing of the application.

1.1 Motivation

The Honeywell FM&T facility has a close relationship with Sandia National Laboratories

out in Albuquerque, NM, the lab responsible for the creation of DICe. The driving force

behind the work presented in this thesis came from the engineers at Honeywell FM&T who

needed the DICe application to perform image correlation at a faster rate. The Honeywell

2



FM&T facility is tasked with manufacturing a wide range of components and products for the

Department of Energy (DOE) that are critical to the defense of the United States. DICe is

used by these engineers to analyze the tools Honeywell uses to manufacture these products,

as well as the products themselves. The failure of a simple component produced by this

facility can result in the loss of American lives, which is unacceptable.

The engineers at Honeywell FM&T have been exploring more ways to apply FPGAs to

computational problems within the facility through in-house and out-of-house Research &

Development (R&D) projects. This resulted in Honeywell tasking the Computer Systems

Design Laboratory at the University of Arkansas with exploring the development of a hard-

ware accelerator for DICe. One of the primary focuses of the Computer Systems Design

Laboratory is to use FPGAs as hardware accelerators for various applications. FPGAs are

very well suited for correlation computation and have been shown to improve performance

by orders of magnitude with respect to software implementations on PCs [19, 20].

The work presented in this thesis is a direct result of the statement of work that was

provided by Honeywell FM&T. This thesis presents an FPGA-based hardware accelerator

for the DICe application. By porting the C++-based DICe source code to Verilog, a Zynq

UltraScale+ MPSoC FPGA was targeted to execute the application. The work in this thesis

is the first known example of a DICe hardware accelerator. The resulting application can

perform image correlation by accessing frame data either from a USB drive or an Ethernet-

based connection. These two options for data access provides the users with the flexibility

to run the application on available data that already exists within the memory of a USB

drive, or stream the data to the application from the camera to the FPGA, where the FPGA

acts as a “bump-in-the-wire” solution. While developing the DICe hardware accelerator, a

novel low-latency library for arithmetic and trigonometric functions was created for FPGAs’

to accelerate the simple mathematical operations within the image correlation algorithms

[21]. This work provides an alternative solution when compared to existing libraries, that

is optimized for sequential operations, designs where low-latency is a priority over high-

3



throughput, and designs where BRAM is a critical resource that should be conserved.

1.2 Thesis Contributions

The contributions listed below are all a direct result of the work that was achieved through

the completion of this project. This research aimed to take an existing image correlation

program and accelerate its performance by porting it to an HDL so that it was possible to

target an FPGA. The result of this work is that each of the contributions listed below is

significant in their own right.

1. The first DICe hardware accelerator to target FPGAs

2. A DICe design for both USB-based and Ethernet-based frame access with performance

comparisons

3. A novel low-latency method for basic arithmetic and trigonometric functions in single-

precision IEEE-754 standard format [21]

Contribution 1

DICe was developed by Sandia National Laboratories to provide government entities and

contractors with a tool to better analyze the footage captured from high-speed cameras.

One such example of the use of DICe in the field is with the Honeywell FM&T plant based

out of Kansas City, MO. This plant is known as the National Security Campus and they

perform sensitive work for the DOE. The engineers at this facility must have the best tools

at their disposal to make the best decisions when it comes to the products and materials

they develop that keep our nation safe. DICe is one of the tools that they use to analyze

high-speed footage to make better, safer, and more secure products. The team that uses

DICe daily has reported to us at the Computer Systems Design Laboratory that the time

to process their footage is on the order of days. This means days of wasted time before

they get the information they need to make a sound decision concerning their projects. By

creating a DICe hardware accelerator, the time to process this data is reduced by leveraging

4



the FPGA fabric in the ZCU104 board. With the flexibility that comes with FPGAs’, due

to their ability to be reprogrammed, the design can be updated or modified on the fly so

that that the user can always be running the most up-to-date methods.

Contribution 2

On top of developing an accelerator for DICe, this project yielded two designs that allow

for accessing frame data from either a USB port or an Ethernet port. This is significant for

users of DICe because each method is needed depending on the scenario. The Phantom VEO

1310 high-speed camera can record up to 10,000 frames per second [1]. This is a significant

amount of data in a short period and analyzing all 10,000 frames will take far longer than a

second. This presents users with an unbalanced scale that leaves them scrambling to process

the data quickly enough. This results in two scenarios that the users are faced with. The

first scenario is that as the camera is recording, data can be simultaneously offloaded over

Ethernet (most high-speed cameras like the Phantom VEO 1310 have support for this). This

means that the data can be received by the processing software and image correlation can

take place as data is being collected. This scenario is what drove the motive for an Ethernet-

based design and in fact, was the sole design choice for this project for a long time. Scenario

two is where the cameras are recording and the data is automatically being offloaded to some

memory within a PC. This memory can reside in the internal SSD, HDD, or an external

hard drive. This is what prompted the work to create a USB-based hardware design. The

user can offload the data to an external hard drive and after the recording is finishing they

can plug it into the ZCU104 FPGA to start processing. Both methods are desired by users

and are accomplished with this work.

Contribution 3

Lastly, a result of this project was the creation of a novel library of Finite State Machine

(FSM) based methods for performing arithmetic and trigonometric functions in the IEEE-

754 single-precision format [21, 22]. When porting the native C++ DICe algorithms over to
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Verilog, it was observed that a lot of simple mathematical functions were happening recep-

tively and taking longer than expected. Even when using the native Xilinx Floating-Point

Operator Intellectual Property (IP), trigonometric functions necessary to the DICe algo-

rithms such as arcsine and arccosine were not available [23]. This lead to the development of

a custom library that performed all of the necessary functions: addition, subtraction, mul-

tiplication, division, sine, cosine, arcsine, and arccosine. This work was novel in that it did

not use any BRAM resources, which were critical in the DICe hardware design, it outper-

formed many previously developed libraries, and it was developed for low-latency instead of

high-throughput. Most previous libraries for arithmetic operations utilized pipelining meth-

ods that increased the FPGAs’ use of resources, which was not beneficial for this project.

The arithmetic operations developed for this library are performed serially which increases

the performance of DICe due to the serialized nature of the application. This library was

recognized and published as a long paper at the ReConFig conference in December of 2019.

This library is implemented in the DICe hardware design that is presented within this work.

1.3 Thesis Structure

The remainder of this thesis is carefully divided into sections and subsections that cat-

egorize the content based on its relevance. Up next, in Chapter 2, a thorough background

will be provided that gives an overview of image processing, an explanation of what DICe is,

how it is used, and why FPGAs are used as hardware accelerators. Chapter 3 will explain

the hardware and software tools used to develop this project and a brief overview of how this

project has evolved over the last three years while under development. Chapter 4, perhaps

the most significant, will go into detail to explain the hardware and software designs of the

DICe hardware accelerator. This chapter will provide an overview of each custom IP block

that was created within the hardware design to successfully port the DICe software. The

high-level code developed for the control scripts will also be discussed to shine a light on

how the software design functions. The results of both the USB-based and Ethernet-based
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designs will be showcased in Chapter 5. This chapter will show how these methods compare

to one another and their practicality based on their given scenarios. In Chapter 6, a discus-

sion will be present that touches on the benefits of using PetaLinux for this project, when

compared to the previous method of using the LightWeight IP (lwIP) stack, the numerous

challenges that were faced during the development of this project, and potential future works

for this project to explore. Lastly, this thesis will end with a conclusion in Chapter 7 that

summarizes the content of this project. Following this will be a bibliography that will present

all referenced material in this work.
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Chapter 2

Background

The aim of this chapter is to provide a background on the DICe program and works that

are related to this project. While this project does not revolve around DIC specifically, it does

implement a DIC program on an FPGA as a hardware accelerator. Because the focus of this

thesis is over the creation of a hardware accelerator for DICe, an explanation is provided of

what DICe is and how it is used. Lastly, this project will be compared to related works that

have implemented DIC programs and algorithms on FPGAs for accelerated performance.

What the related works show below in Section 2.2 is that most FPGA implementations of

image correlation use outdated hardware and only implement a few algorithms at most.

The works presented below typically show that their use of FPGAs is for handling the few

computationally-intensive algorithms in DIC, rather than bearing the full weight of a DIC

program like the work that is presented in this thesis. In addition to that, the images that

the FPGAs used in the works presented below are of size 256x256 pixels or fewer, which is

nearly 1.6x times smaller than the 448x232 image size used in the DICe hardware accelerator.

2.1 DICe

This section is dedicated to explaining what the Digital Image Correlation engine is and

what features it has that make it such a powerful application. As mentioned before, DICe is

an open-source DIC tool that is intended for use as a module in an external application or as

a standalone analysis tool. It was developed by Dan Turner of Sandia National Laboratories

and the primary capability of DICe is computing full-field displacements and strains from

sequences of digital images [6]. DICe is useful for applications such as trajectory tracking, ob-

ject classification, and for material samples undergoing characterization experiments. DICe

aims to enable the integration of common DIC methods for these applications by providing a

tool that can be directly incorporated into an external application. The term “engine” in the

program’s name is meant to represent the code’s flexibility in terms of using it as a plug-in
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component for a larger application. Because DICe is open-source, various algorithms can

be modified and interchanged to create a customized DIC kernel for a specific application.

These features are what make DICe such a capable program and prompted its use by the

engineers at Honeywell FM&T. DICe is machine portable across Windows, Linux, and Mac

OSs. Package installers are available for DICe that can be installed on Windows or Mac OSs.

Linux users can build the DICe GUI from the provided source code which enables them to

make custom modifications to DICe.

DICe is different than other DIC codes because it offers features such as arbitrary shapes

of subsets, a simplex optimization method that does not use image gradients, and a well-

posed global DIC formulation that addresses instabilities associated with the saddle-point

problem in DIC [6]. While these extra features that make DICe unique are not included

in the DICe hardware accelerator, they have the potential to be added because the IP

hardware accelerator design is open-source on GitHub just like the DICe GUI is [24]. These

additional features for the DICe hardware accelerator are discussed in the Future Works

Section 6.3. Additional features that make DICe an attractive application are robust strain

calculation capabilities for treating discontinuities and high strain gradients, zero-normalized

sub squared differences (ZNSSD) correlation criteria, gradient-based optimization, a user-

specified arrangement of correlation points that can be adaptively refined, convolution-based

interpolation functions that perform nearly as well as quintic splines at a fraction of the

compute time, extensive regression testing, and unit tests. Currently, the DICe GUI only

supports basic use cases for 2D and stereo DIC. To enable trajectory tracking or some of the

other advanced features within DICe, the CLI needs to be used. When porting the DICe

application to the Verilog HDL, it was necessary to figure out which functions represented

the core of the program’s functionality. With that, 13 key functions were observed to be the

foundation of the DICe program. Each of these functions will be discussed here. Nearly each

one of these key functions was implemented within the Gamma IP that is discussed below

in Section 4.1.9.
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For the development of this project, a statement of work was provided by the engineers at

Honeywell FM&T that would serve as an outline of the features of DICe to implement within

the hardware accelerators design. Because this project was of an R&D nature, they were less

concerned with the full implementation of the DICe program in FPGAs’ and more concerned

with the feasibility and practicality of the results from the project. It is for this reason that

a variety of features that the DICe program provides were left out. This project focused

on developing a hardware accelerator for the core DIC algorithms, which will be discussed

in greater detail in Section 4.1.9, that DICe uses with the mindset that the application

design could be updated at a future date with the successful completion of the initial design.

The parameters defined for this project were to support for image correlation over multiple

frames, frame sizes of 896x464, multiple subsets, subsets with sizes from 3x3 pixels to 41x41

pixels, multiple subset shapes, the implementation of the gradient-based DIC algorithm, and

the production of the computed results for X displacement, Y displacement, and Z rotation

values. All of these parameters defined in the statement of work were achieved during the

development of this project, except for that the image size is a fourth of the required size at

448x232 pixels.

2.2 Related Works

The most comprehensive work found for this area of study is provided by [25]. This book

is based on using FPGA-based processors for the acceleration of image processing applica-

tions and has provided invaluable information in creating the DICe hardware accelerator.

The book presents the value that FPGAs offer for image processing applications but also

acknowledge the programming challenges that are faced when compared to software systems.

This is the first and only reference that was found to have implemented image processing ap-

plications using a Xilinx Zynq-based FPGA. The book highlights the attractiveness of using

FPGA architectures that use both ARM processors and programmable logic for accelerating

computing-intensive operations, which is what the work in this thesis presents. However,
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they also present the downside of using these devices in that synthesis and Place-and-Route

(PAR) are time-consuming processes and creating applications for these devices require spe-

cialist programming tools. These reasons are why the DICe hardware accelerator has been

under development for three years; it is time-consuming to re-target a computationally in-

tensive software application for FPGAs using the tools that are provided.

In [26], the authors target FPGAs to implement new interpolation methods for computing

sub-pixel displacement values within images. When computing the cross-correlation function

between two pictures, it is possible to determine the shift level with whole pixels. If a

higher (sub-pixel) resolution is required, it is necessary to use interpolation. The authors

implement the interpolation methods in FPGAs to leverage their Digital Signal Processing

(DSP) blocks for real-time performance. However, the work in [26] merely uses FPGAs for

the computationally-intensive processing that is required for sub-pixel interpolation. The

authors only implement these functions within the FPGAs’ DSPs and do not further exploit

the FPGA for the full scope of image processing. The work in this thesis differs by targeting

an entire DIC program in FPGAs rather than just a few functions.

The work in [27] emphasizes on using FPGAs for correlation and convolution of binary

images. Correlation, which looks for an image pattern inside another image (such as a

subset), is a common method of image pattern recognition that is used within the DICe

algorithms. Filtering, which is used for improving, blurring or lightening an image, or for edge

detection, is another common form of image processing that requires convolution. However,

the work in [27] only focuses on using Universal Asynchronous Receiver/Transmitter (UART)

for the transmission of data which is much slower when compared to Gigabit Ethernet for

sending data to and from a PC and FPGA. The image processing used within [27] only

operates on an image size of 9x9 pixels which makes for an inadequate comparison when put

up against the work presented in this thesis that operates on an image of size 448x232 pixels.

The subset sizes used in [27], which they refer to as a filter window, was only of size 3x3

pixels. While this work advertises the implementation of these algorithms on FPGAs, they
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only simulated the results by targeting a Virtex-6 FPGA instead of running the algorithms

on real FPGA hardware.

The authors in [19] accurately summarize that image correlation requires the comparison

of a large number of sub-images that implies a large computational effort that may prevent

its use for real-time applications, and that correlation computation is very well suited for

FPGA implementations. The experimental results in [19] show that FPGAs can improve

performance by at least two orders of magnitude with respect to software implementations

on a modern PC. The work that these authors present is to use FPGAs to overcome the

computational limitations of PCs by leveraging the hardware resources of FPGAs to per-

form cross-correlation computations, which require a large amount of multiply-accumulation

(MAC) operations that FPGAs are well suited for. While the work presented in [19] is well-

matched with the objectives of the work presented in this thesis, it is rather outdated in that

they utilize a Virtex-4 FPGA for bearing the computational load of these algorithms. The

image sizes proposed in the experimental results of [19] are only of size 256x256 pixels, which

is nearly 1.6x smaller than the base image size used in the DICe hardware accelerator which

is 448x232. Something this paper does acknowledge, in reference to the work presented in

this thesis, is that the parallel execution of standard DIC algorithms are severely limited in

FPGAs due to the large amount of resources required.

The common theme between the related works presented above and the work presented

in this thesis is that they implement, at most, a few algorithms for image correlation in the

FPGA and use image sizes that are significantly smaller than the ones used for the DICe

hardware accelerator. Each work explores using the computational benefits of FPGAs to

accelerate only portions of the DIC process. The work presented in this thesis is aimed at

the development of a full DIC program, known as DICe, that targets FPGAs to accelerate

the entire DIC process. Not a single work mentioned above is tasked with transferring all

of the frame data to the FPGA for DIC, which is a significant part of this thesis. The only

work that was shown to transfer all image data to the FPGA is the work from [27], which

12



only operates on 9x9 images and transfers them using the UART port on the FPGA. One

of the main comparisons of the work presented in this thesis is the difference between image

transfer speeds when using a local USB drive or Gigabit Ethernet. Putting the comparisons

of these data access methods aside, the most significant work that this thesis presents is the

implementation of an entire DIC program on an FPGA for acceleration. While the DICe

hardware accelerator does have limitations when compared to the original program, it is still

a significant accomplishment in that it provides an acceleration over the original software

design and that it is the first FPGA-based hardware accelerator for the application. The

work developed for this project is open-source and can continually be improved through

users who see the potential that it has to offer to suit their needs [24].
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Chapter 3

Platforms

This section is dedicated to discussing the variety of software and hardware platforms

that were required to complete this project. On the multiple workstation PCs in the lab,

both the Windows 10 and Ubuntu 18.04 LTS operating systems were used for development

in programming the FPGAs’ low-level hardware design and creating the high-level software

to interact with it. The Windows 10 OS provided consistent development of the FPGAs’

hardware and software designs due to the provided Graphical User Interface (GUI) that

was simpler to install and use when compared to a Linux-based OS. A Linux-based OS

was required to use the PetaLinux tool to implement and configure a Linux-based kernel

on the ZCU104 FPGA, so Ubuntu 18.04 LTS was chosen [28]. Three different variations of

Xilinx FPGAs were used for application development and testing; the Virtex-7 (VC707), the

Kintex-7 (KC705), and the Zynq UltraScale+ MPSoC (ZCU104). The PCs used during the

development cycle of the DICe hardware accelerator varied in terms of hardware resources,

which ranged from four-core to eight-core CPUs and 8 GB to 32 GB of RAM. For this

project, the hardware contained in the PCs is insignificant because they were all capable of

Gigabit Ethernet transmissions which is the only factor the PC plays in the results of this

application.

When programming the FPGAs’ hardware designs, Vivado 2015.4 and Vivado 2018.3

software suites were utilized because Vivado is developed by Xilinx which manufactures the

FPGAs that were used for this project. Xilinx provides the only software suite that is capable

of interacting and programming the listed FPGAs [29, 30]. When programming the FPGAs’

initial software designs, the Vivado Software Development Kit (SDK) versions 2015.4 and

2018.3 were both used. The Vivado SDK is different from Vivado in that it is based on

the Eclipse Integrated Development Environment (IDE) that is used to compile high-level

C and C++ code [29]. Before PetaLinux was used to implement software onto the FPGAs,
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the Vivado SDK was used to program high-level codes onto the FPGAs’ processors directly.

Designing and testing the DICe control scripts and analyzing the default frames for DICe

to process required a plethora of library packages and software that were installed on both

operating systems. Python, C++, and C were among the high-level software languages that

were used to interact with the FPGAs’ processors and their low-level hardware designs. The

design decisions for using all of these platforms, both hardware, and software, are explained

in the sections below.

3.1 Hardware

Making a hardware accelerator for a software application will require hardware, but what

kind of hardware to choose is not as obvious. Generally speaking, to implement a hardware

accelerator one would need to use either a powerful workstation Personal Computer (PC), a

GPU, a High-Performance Computer (HPC), an FPGA, or an ASIC. Each of these methods

comes with pros and cons that can make it difficult to accelerate a software application. The

method best suited for accelerating an application depends entirely on what the application

is doing during processing. Workstation PCs are great for handling a wide range of frequently

used software, such as word processors and internet browsers. GPUs benefit the user when

graphics processing is a top priority to push images and video as fast as possible, such as

with video editing and video games that drive monitors. In terms of expense, HPCs sit

above PCs and GPUs for processing because they utilize multiple machines or components

that are connected to act as a single system [31]. These devices are a good option for solving

intensive problems with large data sets that can be executed in parallel. True hardware

acceleration starts with FPGAs due to their reconfigurable fabric that can implement a

software application as logic gates. Logic gates are the foundation of modern computing

hardware and an application that can exploit these building blocks has greater potential for

faster processing than what software is capable of [32]. ASICs are the pinnacle solution for

hardware acceleration by creating a physical circuit to perform a dedicated task.
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On one hand, powerful workstation PCs and HPCs qualify as hardware accelerators be-

cause they have more capable components internally than standard computers. They could

have upgraded Central Processing Units (CPUs) with multiple cores (beyond standard quad-

core processors), upgraded RAM, extra GPUs, and in the case of HPCs multiple machines

could be aggregated together to tackle a single problem. On the other hand, these devices

do not always meet the requirements to be considered as hardware accelerators because they

typically still run the high-level software application on top of some Operating System (OS)

that controls the hardware. This presents a barrier that prevents the software application

from fully utilizing the available hardware resources. The software application can be mod-

ified to leverage the hardware of the system, such as multi-threading and multi-processing,

but this will still require the OS to manage these processes. So rather than accelerating

an application by targeting hardware, the application may be accelerated by more available

hardware resources. HPCs are very expensive due to the vast amount of components required

to create a single system and they are generally used for specialized processing tasks [31].

Standard PCs, even with upgraded equipment from a Commercial-Off-The-Shelf (COTS)

PC, cannot truly accelerate applications because they are designed with general-purpose

processors that are designed to handle a wide range of tasks instead of a single specialized

task. Neither of these methods offers a suitable solution when attempting to create a DICe

hardware accelerator.

GPUs are specialized circuits that are designed to rapidly manipulate and alter memory

and perform complex mathematical and geometric calculations that are necessary for graph-

ics rendering [33]. This component can be implemented in standard PCs and even HPCs to

accelerate the processing of graphical-based data. However, their limitation is in the name

in that their primary intention is for graphics processing. This is useful if the application

demands it, but they offer little if the application is out of this scope. While GPUs are

suited for image processing applications, the DICe software application does not do image

processing that needs to be driven to a display. The image processing algorithms in the DICe
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hardware accelerator focus on processing the image so that objects can be tracked from frame

to frame with the output data being presented in a series of numerical values. If DICe took

in video input and applied some sort of filter to the image to be displayed to the user, then

this would be a different discussion. Because video output is not one of the features in the

DICe application, the use of GPUs does not provide a solution for the development of a

DICe hardware accelerator. Not all GPU-based applications require a display to be driven.

Neural Networks (NNs) commonly use GPUs for their applications, but due to the serialized

nature of the DICe application and the required data transfer between the GPU and CPU,

this was not a suitable option. Lastly, as the development of the DICe hardware accelerator

began, using a GPU was not a provided feature on the KC705 and VC707 FPGAs. Once

the ZCU104 FPGA, which contains a GPU, was available for the continued development of

this application, it was too late to consider its potential because the vast majority of the

DICe hardware design had already been developed.

Opposed to a general-purpose processor, ASICs are customized Integrated Circuit (IC)

chips that are designed for a highly specific purpose. Today, ASICs are common in everyday

devices that range from computers to key fobs. Common technical terms, such as micropro-

cessors and flash memory, are all composed of ASIC designs that were all developed for a

highly specific purpose. ASICs represent the purest form of hardware acceleration because

the application designs that are developed for a specific function are directly manufactured

into a physical integrated circuit. All software needs hardware to run on. By this logic,

something that can be developed in software can always be developed in hardware. An

application will almost always perform better when it is developed directly into hardware

rather than software because there is less functional overhead, such as the required break

down of high-level code to assembly language instructions to binary for a CPU to process.

The benefits of using ASICs are widely known, as are the obstructions of developing them.

ASIC development requires highly specialized equipment that can produce sub-micron level

circuits and facilities to support the equipment via clean rooms [34]. The process of devel-
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oping ASICs, especially custom chips, comes with significant overhead in the engineering

time to design the chip, in the manufacturing time to fabricate the chip, and in the time to

test for chip verification. All of this overhead translates to cost. Lastly, once an ASIC has

been produced and is in use, it cannot be modified or upgraded. This is where consumers

fall victim to Moore’s Law every year because, as the law states, every 18 months twice as

many transistors can be packed onto a circuit [35]. The result is the annual release of faster,

smaller, and more energy-efficient devices. Many scenarios exist when the benefit and profit

of developing an ASIC far outweigh the cost, such as the mass production of millions of

processors for mobile devices and computers. However, the scenario of developing an ASIC

to implement a DICe hardware accelerator is one where the costs to do so far exceed the

benefits of production.

With all prior methods proposed for accelerating the DICe application being unsuitable,

the last option of leveraging FPGAs is the premise of this thesis. FPGAs are ICs that, by

design, are to be configured after manufacturing; this is where the term “field-programmable”

derives from. FPGAs are far more flexible than ASICs in terms of development because they

can be reprogrammed over and over to run other application designs. Just like with ASIC

design, FPGAs can be configured by using a specialized computer language, known as an

HDL, to describe the behavior and structure of circuits [32]. The two most common HDLs

in use today are Verilog and VHDL; this project uses Verilog to implement all IPs in the

hardware design. HDLs provide a tool for developers to perform functional simulations of

the circuits design and synthesis to create a netlist of the design’s description [32]. The

netlist specifies the physical electronic components to be used in the circuits design and how

they will all be connected. After the netlist is generated via synthesis, the software tools

that are used to program the FPGA will run a series of PAR algorithms to determine the

optimal place to position the components and route them together [32]. In terms of cost,

standard FPGAs are nearly equivalent to a COTS PC which is a perk for this project, but

they require the engineering know-how skills to be able to program them. FPGAs differ from
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ASICs in that they contain programmable logic blocks and interconnects which is beneficial

for prototyping and development, even for ASIC designers before they fabricate their chips.

For this reason, FPGAs are typically used for low production designs whereas ASICs are

used for high production designs. They are relatively low cost, provide flexibility for testing

and prototyping through reprogrammability, and get near true hardware speeds due to their

CLBs. For all the reasons listed above, FPGAs were chosen as the hardware platform for

the DICe hardware accelerator.

3.1.1 Xilinx Zynq UltraScale+ MPSoC FPGA

Xilinx manufactures a portfolio of SoCs that integrate the software programmability of a

processor with the hardware programmability of an FPGA. They have many different boards

to offer their customers who require SoC platforms for design which are divided into three

categories: cost-optimized, mid-range, and high-end. The cost-optimized category contains

devices such as the Zynq-7000 series and the Artix. These boards provide a cheap solution

for developers to implement applications that do not require extensive software processing

[36]. As such, these devices can be purchased with single-core or dual-core ARM Cortex-

A9 processors. On the opposite end of the scale, the high-tier category contains different

variations of the Zynq UltraScale+ RFSoC board. The variations of these boards come with

Radio Frequency (RF) converters, SD-FEC cores, or both. These SoC devices are meant for

intense processing for applications that target signal processing, which is not in the scope

of this thesis [37]. Lastly, the mid-tier category of SoC boards that Xilinx offers contain the

Zynq UltraScale+ MPSoC devices and all of their variations.

The three variations of the Zynq UltraScale+ MPSoC family are CG, EV, and EG. The

CG variant includes a dual application processor while the EG variant builds off of that to

include a quad application processor and GPU [38]. Lastly, the EV variant includes all of

the features of the EG variant but with enhanced video codec capabilities that integrate

the H.264 and H.265 standards [2, 8, 38, 39]. These devices are ideal for multimedia vision-
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Figure 3.1: The physical layout for the ZCU104 FPGA [2]

based applications that require the processing of many frames or a stream of video footage.

The EV variant of the MPSoC family of boards was the ideal choice for implementing the

DICe hardware accelerator and was chosen as the final hardware platform for this project.

The ZCU104 evaluation kit was the device package that was ultimately selected from the

wide portfolio of SoC devices that Xilinx has to offer. The ZCU104 device provided a

hardware platform that enabled the successful deployment of the USB-based and Ethernet-

based designs for the DICe hardware accelerator which will be discussed below in the I/O

subsection and Chapter 4. The physical layout of the ZCU104 FPGA can be seen above in

Figure 3.1.

On the physical features of the ZCU104 shown above in Figure 3.1, the FPGA comes

equipped with a Micro-USB/JTAG port for programming, a Micro SD port for expandable

memory and boot options, a dual HDMI 2.0 port for input and output, a display port, a

PHY tri-mode Ethernet port, a USB 3.0 port, and 464 General Purpose I/O (GPIO) pins

for connecting other external devices [8]. The Application Processing Unit (APU) on the

board contains a quad-core ARM Cortex-A53 processor where each core is equipped with an
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Table 3.1: Programmable logic features for the ZCU104 FPGA [8]

ZCU104 Resources
System Logic Cells (K) 504
Memory 38Mb
DSP Slices 1,728
Video Codec Unit 1
Maximum I/O Pins 464

Infineon Power Management Bus (PMBus), a floating-point unit, a Memory Management

Unit (MMU), a 32 KB instruction cache, and a 32 KB data cache [8, 39]. The Real-time

Processing Unit (RPU) contains a dual-core ARM Cortex-A5 processor where each core is

equipped with a vector floating-point unit, a Memory Protection Unit (MPU), 128 KB of

Tightly-Coupled Memory (TCM), a 32 KB instruction cache, and a 32 KB data cache [8, 39].

The GPU on the board contained two pixel-processors, a geometry processor, an MMU, and

a 64 KB L2 cache [8, 39]. The high-level device diagram for the ZCU104 can be found below

in Figure 3.2. On the low-end, the ZCU104 device contains the programmable logic features

shown in Table 3.1 above.

Figure 3.2: A diagram of the PS and PL sections of the ZCU104 device [3]
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Xilinx Virtex-7 and Kintex-7 FPGAs

The physical layouts of the KC705 and VC707 can be seen below in Figure 3.3 and

Figure 3.4. These figures show the hardware features and I/O ports that the Kintex-7 and

Virtex-7 FPGAs contain. The programmable logic resources for these FPGA’s can be viewed

below in Table 3.2. When comparing the programmable logic resources between the 7 Series

FPGAs and the ZCU104 it can be seen that the ZCU104 contains more memory and logic

cells. The VC707 board contains more DSP slices than the ZCU104, but this was not a

critical resource when designing the DICe hardware accelerator. Because the work in this

thesis is not based on these two boards, they will not be discussed at great length. Further

sections will highlight some of the distinctions between the 7 Series FPGAs and the Zynq

UltraScale+ MPSoC FPGA.

Figure 3.3: The physical layout for the KC705 FPGA [4]

It is worth mentioning here that the original DICe hardware accelerator design targeted

the Xilinx 7 Series FPGAs, specifically the Kintex-7 (KC705) and the Virtex-7 (VC707).

These devices do not contain a hard-processor like the Zynq-based FPGAs from Xilinx,

but rather they implement a soft-processor within the FPGAs fabric [9, 10, 40]. The soft-
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Figure 3.4: The physical layout for the VC707 FPGA [5]

processor used is known as the MicroBlaze [40]. The MicroBlaze is responsible for controlling

all low-level features implemented within the hardware design and also the I/O ports on the

boards. These two devices provided a suitable hardware platform to develop the DICe

hardware design within the FPGAs fabric but became insufficient when trying to implement

the I/O features. To interface with the Ethernet port on these boards, low-level IP was

required within the hardware design to enable the port and high-level C code was required

to run on the MicroBlaze to provide the TCP/IP stack. After a lengthy development cycle,

Ethernet connectivity was not achieved on the VC707 board and a maximum speed of 56

Mbps was achieved on the KC705. While Ethernet capability was established with the

KC705 FPGA, it was discovered that the lwIP application that ran on the MicroBlaze

was very processing intensive and it compromised the performance of the DICe hardware

accelerator.

I/O

The introduction of the ZCU104 FPGA unlocked a range of new features that were uti-

lized for this project. Specifically, the hardware that this FPGA is equipped with enabled

the implementation of Gigabit Ethernet, USB 3.0 access, and hard-processor control with
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Table 3.2: Programmable logic features for the Kintex-7 and Virtex-7 FPGAs [9, 10]

7 Series Resources
FPGA KC705 VC707
Logic Cells (K) 326,080 485,760
DSP Slices 840 2,800
Memory (Kb) 16,020 37,080
GTX Transceivers 16 56 (12.5 GB/s)
I/O Pins 500 700

minimal development. The hardware-based IP of the ZCU104s Input/Output (I/O) ports

provided substantial ease of use for data transfer when compared to the VC707 and KC705,

which required low-level software designs to access the I/O ports. After months of devel-

opment, accessing data via Ethernet was not achievable on the VC707 FPGA. While data

access was achievable on the KC705 FPGA, the maximum speed attained was a sluggish 56

Mbps. When programming the ZCU104 with an Ubuntu 18.04 LTS Linux-based kernel via

SD card, and after modifying a few configuration files, the minimum attainable Ethernet

speed was on average 950 Mbps which is nearly equivalent to the speeds of Gigabit Ethernet

which is 1000 Mbps, or 1 Gbps. Also, the ability to access a connected USB 3.0 flash drive

was as easy as literally checking a box in the PetaLinux configuration settings within the

terminal prompt on the PC. The average writing speed from the ZCU104 FPGA to a USB

3.0 drive was 11.14 MB/s, which is equal to 89.12 Mbps, while the average reading speed

from the same USB drive was 211.29 MB/s, or 1690.32 Mbps (which is equivalent to 1.69

Gbps). These can be seen below in Figure 5.11 and Figure 5.12 which are both presented

in Chapter 5. This opportunity allowed the exploration of both an Ethernet-based and

USB-based data access method for the DICe hardware accelerator. The VC707 and KC705

FPGAs do not come equipped with a USB 3.0 port which prevented the option of sufficient

USB data access [9, 10]. While both the VC707 and KC705 FPGAs come equipped with

an SD card to boot a PetaLinux-based kernel, this was an undesirable approach due to the

overhead incurred by the MicroBlaze soft-processor that ran the kernel.
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3.2 Software

This section will provide information on all of the major software applications that were

used to develop the DICe hardware accelerator. A few minor software applications were

used while developing this project that will be mentioned here briefly, but not extensively

due to their minimal use and lack of significance for the DICe design. Notepad++ is a free

and open-sourced text editor program that was used on the PCs to write the various high-

level software programs that were needed to interface with the FPGA and the files on the

PC [41]. All Python scripts, C codes, and C++ codes that were developed for this project

were written in Notepad++ and compiled using the PCs terminal with the proper libraries

installed. Wireshark is a free network-protocol analyzer program that was used when testing

the Ethernet transmissions between the PC and the FPGA [42]. This program provided a

GUI to monitor and trace packets as data from the PC was sent and received over Ethernet

to and from the FPGA. GParted is a free partition editor that was used to partition and

configure the SD card for the ZCU104 FPGA so that it could boot the Linux-based kernel

[43]. PuTTY and TeraTerm are free SSH and Telnet programs that were used to connect to

the FPGAs serial ports to provide a terminal-like interface that assisted with debugging the

high-level software that ran on the FPGAs processors [44]. The program iPerf was installed

on the FPGAs kernel to create a simple client or server through the CLI so that the Ethernet

network speeds could be accurately tested [45]. f3, Fight Flash Fraud, was also installed on

the FPGAs kernel and used in the CLI to test the read and write speeds to and from a USB

3.0 drive [46]. Lastly, the Phantom Camera Control (PCC) software application was used to

convert .cine video files into a series of .tif frames for processing [47, 48]. This software was

developed for Phantom high-speed cameras so that the video footage could be converted to

frames for analysis.

The major software applications used for the development of this project, and the focus of

this section, were the ones needed to create application designs that could target the FPGAs.

Throughout the development of this project, each FPGA that was used was manufactured
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by Xilinx. To interface with the FPGAs processors via software designs and the FPGAs

fabric via hardware designs, the Vivado software suite developed by Xilinx was used because

these applications are made specifically for development on their FPGAs. Xilinx provides

Vivado to users to develop low-level hardware designs that are meant to be programmed onto

the FPGAs fabric. Two iterations of the Vivado suite, 2015.4 and 2018.3, were used for this

project to interact with the different FPGAs used. To create high-level software designs that

target the FPGAs processors, the Xilinx-made Vivado SDK and PetaLinux SDK tools were

used. These programs provide the necessary tools to create high-level software applications

that are then targeted on the FPGAs processors. Each of these major software applications,

along with the control scripts, will be explained further in the sections below.

3.2.1 Vivado 2018.3

Developed by Xilinx, the Vivado Design Suite is used for synthesis and analysis of HDL

designs. Vivado is classified as an IDE that allows users to develop low-level hardware designs

that target Xilinx FPGAs [29, 30]. This suite comes with a plethora of Xilinx-developed IP

that can be integrated into designs to reduce development time. Vivado also enables users

to develop their own HDL-based IP for application customization [49]. Hardware designs in

Vivado can be created as a series of HDL files that are linked together or by using the built-in

block diagram GUI which enables users to drop in IP blocks and manually connect signals

together. When a design is completed, Vivado can generate a bitstream file that is used

to program the FPGA with the design. When the design runs on the FPGA, a hardware

manager tab is available to users to monitor the FPGAs temperature during processing and

a live view of signal values if a Virtual Input/Output (VIO) monitor or the integrated logic

analyzer is included in the design [50, 51]. Vivado was used as the primary tool for developing

the design for the DICe hardware accelerator. The software suite provides all of the necessary

tools and features to create hardware designs, test hardware designs by running simulations,

synthesize hardware designs for specific FPGA hardware, program the developed designs
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onto the FPGAs for execution, and providing an interface to debug Designs Under Test

(DUT).

The tool provides design validation which enables the user to verify that the created

hardware design is correctly configured and free of any major design flaws before simulation

or synthesis. Users can create testbenches for their designs that allow them to simulate the

functionality of their applications. A testbench is an HDL-based file that essentially wraps

around the hardware design and provides it with a series of inputs that will be executed and

outputted to the user when a simulation is run [52]. Running simulations within Vivado

is an important tool for users to be able to test the correctness and functionality of their

design before synthesis. Simulation, however, is just a tool for functional testing of a design

and it does not guarantee that a design will pass synthesis. Synthesis is perhaps the most

important feature that Vivado provides. The synthesis process will take the users’ design,

either in the form of HDL code or a schematic, and turn it into a netlist [32]. This step is

critical because the netlist is the file that is responsible for mapping and connecting logic

gates and Flip-Flops (FFs) together within the FPGAs fabric. In simpler terms, synthesis

is responsible for transforming a software design into the necessary hardware components to

physically represent the application. PAR is the step that occurs after synthesis and uses

algorithms to determine the optimal way of placing the components defined in the netlist

within the FPGAs fabric and routing them all together.

When coupled together, the Vivado Design Suite and the Xilinx FPGAs used provided the

foundation for the development of the DICe hardware accelerator. When the development

of this project first started, Vivado 2015.4 was used to create the hardware designs and

program the VC707 and KC705 FPGAs. This iteration of the Vivado software provided all

of the required infrastructures to interface with the 7 Series FPGAs. When the development

of this project started in early 2018, upgrading to a newer iteration of the Vivado Design

Suite was not necessary because Vivado 2015.4 provided all of the needed capabilities for

the available FPGA hardware. However, this changed in mid-2019 when the ZCU104 FPGA
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was purchased for the continued development of this project. Vivado 2015.4 was incapable of

interfacing with the newer Zynq UltraScale+ MPSoC FPGAs which prompted the upgrade

to Vivado 2018.3. The key differences between Vivado 2015.4 and Vivado 2018.3 are support

for a wider range of newer FPGAs, an upgraded GUI, and upgraded Xilinx-developed IP

[30, 53]. In terms of the hardware design for the DICe application, the upgrade to the newer

Vivado Design Suite only changed the processor used from a MicroBlaze soft-processor to

the quad-core ARM Cortex-A53 processor. The only inconvenience caused by upgrading to

Vivado 2018.3 was recreating the original hardware design that was developed in Vivado

2015.4. Many behind the scenes changes that were made to Vivado prevented the direct

porting of an older project design to the newer software.

Starting with the project creation, Vivado enables the user to choose a target FPGA and

HDL for the hardware design. This project ended with targeting the ZCU104 FPGA and

Verilog as the HDL. While differences do exist between the VHDL and Verilog HDLs, Verilog

was used for this project due to the familiarity and the syntax of the language. There was no

ultimate engineering design decision that favored the use of one over the other, it just came

down to personal preference. When creating the hardware design of the DICe application,

the block diagram GUI provided an easy way of implementing IP developed by Xilinx into

the design as well as adding in custom developed IP blocks. The block diagram GUI also

provided a clear visual flow of the applications IPs, signals, and how they all connected

together, which was very beneficial as the design grew in size. The bulk of the IP created

for this project revolves around Vivado providing the ability for users to create and package

custom IP [49]. This feature is what enabled the porting of the C++-based DICe algorithms

to Verilog and ultimately to target the hardware on the FPGA. Individual unit tests and

simulations were performed on each custom-built IP by developing testbenches tailored to

the functionality of each IP block.

Early on in the development of the DICe hardware design, the most common design

error was the failure for certain functions in the custom IPs to meet the timing requirements
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required by the synthesis process. One of the many jobs that synthesis performs is to verify

that the hardware design meets the timing requirements that are set by the clock speed

on the FPGA and all of the connected hardware components. When the hardware design

is transformed into a netlist, it represents the application in terms of physical logic gates

and flip-flops that exist in the FPGAs fabric [32]. When the netlist is targeting the FPGAs

hardware, it verifies that when an output signal is generated it can transfer the data to the

input of the next component in the required amount of time that is physically required to

send the data. This concept in static timing analysis is known as setup and hold slack which

is defined as the difference between the data required time and the data arrival time [54].

This concept is what led to developing all of the custom IPs with a Finite-State Machine

(FSM) architecture. Each custom IP built for this project implements an FSM that is

dependent on the systems clock and the defined state variable to transition from one state

to the next [32]. This architecture allows for a function to be broken into multiple states

that each requires one clock cycle to execute. The benefit of this is that when a static timing

analysis report is generated and a timing fault is detected, it can be traced back to a specific

state within an IP block. Once the source of the timing fault is found, it can be resolved by

providing it with more states to complete its execution.

All of the features explained above detail why the Vivado Design Suite was such a signifi-

cant tool for the development of the DICe hardware accelerator. The Vivado 2018.3 program

provided the interface and tools required to create an application hardware design and im-

plement it in the fabric of a Xilinx-based FPGA. The core algorithms and image processing

functions of the DICe software were analyzed and reprogrammed using the Verilog HDL so

that Vivado could synthesis them into a netlist for the FPGA to run. While Vivado 2018.3

was used extensively to create the DICe hardware design, it was not responsible for creating

the high-level software that runs on the FPGAs processors. The DICe hardware design was

built around the core features of the DICe software, but it is not capable of executing the im-

age correlation on its own. For the hardware design to be able to perform image correlation,
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it requires parameter data to specify the bounds of the images and subsets it will operate on

and the frames that are to be processed. For image correlation to start on the FPGA, all of

this required data needs to be present within the FPGAs BRAM. This is where the Vivado

2018.3 SDK tool provided assistance.

3.2.2 Vivado 2018.3 SDK

The DICe hardware design was developed to implement the core image correlation al-

gorithms that are utilized within the DICe software. The hardware design has no means of

retrieving the data it requires to start processing. For this project, the Vivado 2018.3 SDK

tool was used to create high-level software designs that run on the FPGAs processors and

interact with the hardware design in the FPGAs fabric [29, 55]. Its these software designs

that are responsible for retrieving the parameter and frame data from the FPGAs I/O ports

and writing the data to BRAM. The SDK provided a GUI that enabled the development

of an application directly onto the MicroBlaze soft-processor used in the VC707 and KC705

FPGAs and the quad-core ARM Cortex-A53 processor in the ZCU104 FPGA.

The Vivado 2018.3 SDK provides a development environment for high-level software

applications. The tool is based on the open-sourced Eclipse IDE and can be installed inde-

pendently of the Vivado Design Suite [29, 30, 55]. It does more than the standard Eclipse

IDE in that it can import Vivado-generated hardware designs, create and configure Board

Support Packages (BSPs), supports single-processor and multi-processor development for

FPGA-based software applications, and comes with off-the-shelf software references designs,

like the lwIP application, that can be used to test the applications hardware and software

functionality. The SDK is the first application IDE to deliver true homogeneous and het-

erogeneous multi-processor design, debug, and performance analysis for Xilinx FPGAs. The

primary feature that the Vivado SDK provided for this project is the compilers that optimize

C and C++ code and generate assembly code from them. These compilers are responsible

for enabling high-level software designs to be targeted on the FPGAs processors.
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The only comparable application to the Vivado SDK is the Vivado High-Level Synthesis

(HLS) program. This software is used to create IP by enabling C and C++ code to be

directly targeted into the Xilinx FPGAs fabric without the need to manually create a Register

Transfer Level (RTL) design [56]. This means that the HLS tool is capable of generating

low-level hardware designs from C and C++ code, but it is incapable of generating high-

level software applications for the FPGA processors. The use of HLS for the DICe hardware

accelerator was explored as an option to accelerate the development of the hardware design

but was ruled out due to the custom nature of the DICe GUI. The original DICe application

is composed of 98 C++ files, each with custom functions tailored for the image correlation

process. Because of the complexity of the DICe source code and the custom functions, classes,

and types created for the application, HLS was determined to be unsuited for converting

the entire application to a hardware-based design. Lastly, because HLS is incapable of

programming high-level software designs on the FPGAs processors, the use of this tool was

ruled out for this project.

For the initial design of the DICe hardware accelerator, the Vivado SDK was used to

implement the provided lwIP reference design on the MicroBlaze soft-processor. lwIP is

an open-source TCP/IP stack that is designed to minimize resource usage for embedded

systems [57–59]. The reference design provided by the Vivado SDK was a simple echo-server

application. When programmed onto the FPGA, and with the FPGA connected to the PC

via Ethernet, the application would simply echo back any data that was sent to the processor

from the PCs CLI. This simple client-server application was generated in C and provided a

basic template to enable Ethernet transmission between the FPGA and the PC. The lwIP

echo-server was then heavily modified to suit the needs of the DICe hardware accelerator. A

control script running on the PC would act as the client that would initialize the connection

with the FPGA, transmit parameter and frame data as needed, and then receive the results

from the FPGA to format it into a text file. While the lwIP echo-server application provided

a sound starting place for Ethernet-based I/O, it came with more challenges than it was
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worth. After numerous tweaks to the BSP and configuration files for the lwIP application,

the max transmission rate achieved was only 56 Mbps. To make matters worse, there was

no way to safely disable the “echo” feature of the application without it compromising the

rest of the design. This meant that for as much data that was transferred to the FPGA,

some amount of data was required to be echoed back to the PC which had to be ignored.

More details can be provided on the lwIP echo server in Section 6.1.

3.2.3 PetaLinux

PetaLinux is an embedded Linux SDK that is developed by Xilinx to target FPGA-

based SoC designs. This SDK tool contains everything necessary to build, develop, test and

deploy embedded Linux systems [11, 12, 28]. The PetaLinux tool is composed of three key

elements: pre-configured binary bootable images, a fully customizable Linux kernel for the

Xilinx FPGAs, and the PetaLinux SDK which provides the utilities and tools to automate

the daunting tasks of configuration, build, and deployment of the software application. The

PetaLinux tools enable the user to deploy a Linux-based system on their FPGA platform that

provides a bootable system image builder, a CLI, device drivers, libraries with templates,

GCC tools, and various debug agents. Although using PetaLinux to deploy Linux-based

systems on MicroBlaze-based FPGAs is possible, it was not a feasible solution when the

VC707 and KC705 FPGAs were used for development; this is discussed in more detail in

Section 6.1.

Leveraging the PetaLinux SDK for the high-level software development of this project was

first considered with the addition of the Zynq UltraScale+ MPSoC FPGA. This FPGA was

a far more capable device when compared to the previous FPGAs used for this project. The

introduction of the quad-core ARM Cortex-A53 processor on the ZCU104 was too valuable

of a resource to leave unused. It has far more processing power than the MicroBlaze soft-

processor and it could be used to deploy the control scripts that handle the FPGAs I/O ports,

image pre-processing, and control of the DICe hardware design locally. The ZCU104 FPGA
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provides PHY IP that controls the I/O ports, such as Ethernet and USB, so using PetaLinux

to assist in interfacing with the I/O was not a requirement. However, as Section 6.1 details,

working with the FPGAs I/O ports through the Vivado SDK and lwIP echo-server proved

to be a barrier to unlocking the full 1 Gbps Ethernet speeds that the FPGA is capable of. In

addition to that, there were no reference designs or applications that supported data access

via the USB 3.0 port.

Using the PetaLinux SDK tools required a PC running a Linux-based OS. A spare PC

in the lab was completely wiped of all contents and reformatted to run the Ubuntu 18.04

LTS Linux-based OS. This OS was chosen because it was found to be a common OS to

use for Vivado and PetaLinux development and it is probably the most well-known Linux

distribution. Upon further research, it was discovered that the Ubuntu 18.04 LTS kernel was

a popular option for deploying on the Zynq UltraScale+ MPSoC series of FPGAs. So with

that, the Ubuntu Linux distribution was selected for the OS of the PC and for the FPGAs

kernel due to the many resources that were available for this type of development. Once the

OS was installed on the PC, the installation of the PetaLinux tools required the installation

of dozens of library packages. Once this step was completed, the real development with

PetaLinux started.

First, a program called GParted was installed on the PC that provided a GUI for par-

titioning memory drives connected to the PC [43]. To deploy the Ubuntu kernel on the

FPGAs processors, it requires that a few of the configuration switches physically located on

the top of the FPGA must be properly set to prompt the FPGA to start its boot-up sequence

from the SD card slot. The SD card is to be partitioned into two sections labeled BOOT

and ROOTFS (root file system). The BOOT partition requires a size of at least 500 MB,

a FAT32 file format, and the setting of the boot and iba flags [11, 12, 28]. The ROOTFS

partition requires a size of at least 1 GB+ and requires the EXT4 file format. Starting

with the ROOTFS partition, a tarball file that provides the minimal Ubuntu 18.04 kernel

for ARM-based processors was downloaded from an online website [60]. Once this tarball
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file was extracted, it was then copied to the ROOTFS partition. The extracted tarball file

contains the core Ubuntu 18.04 LTS kernel that the FPGA will run on the quad-core ARM

Cortex-A53 processor. It contains nearly identical directories to the root directory in the

Ubuntu OS such as: bin, boot, dev, home, lib, media, sys, usr, and var. Next, the ROOTFS

is granted root at 755 permissions via the CLI. At this point, this partition is completed and

is ready to be deployed.

The BOOT partition requires a lot more work to configure correctly when compared to

the ROOTFS partition. The BOOT partition is responsible for providing the FPGA with

the required information to properly boot the contents contained in the ROOTFS partition

on the FPGAs processor and for programming the hardware design into the FPGAs fabric.

The first step in configuring this partition is to create a PetaLinux project with a command

to target the FPGA in use, shown in Listing 3.1. This creates a folder directory that will

contain the PetaLinux files required to configure and build the boot image. Assuming that

the hardware design is already completed by this point, the next step is to export the

hardware designs Hardware Description File (.hdf) and Bitstream file (.bit) from Vivado

2018.3 to the PetaLinux project directory. Afterward, the command that is shown in Listing

3.2 is used to configure the hardware design into the boot image. The next two commands

that are shown in Listing 3.3 are entered after to properly package the PetaLinux project

with the hardware design and the bitstream. Next, the boot image needs to configured to

implement support to boot from the SD card: petalinux-config. This command pulls up a

menu within the terminal that allows the user to select on Image Packaging Configuration,

then Root filesystem type where an option to select the SD card is to be checked.

1 $petalinux -create --type project --template zynqMP --name PROJECT -

NAME

Listings 3.1: Terminal command to create a new PetaLinux project [11]

For the standard deployment of a PetaLinux-based project on the FPGA, the only remain-

ing step is to run the following command: petalinux-build. However, because this project
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1 $petalinux -config --get -hw -description

Listings 3.2: Terminal command to configure the PetaLinux project with the hardware
design [11]

1 $petalinux -package --boot --format BIN --fsbl images/linux/zynqmp\

_fsbl.elf --u-boot images/linux/u-boot.elf --pmufw images/linux/

pmufw.elf --fpga images/linux /*.bit --force

2 $petalinux -package --boot --fpga bitstream.bit --u-boot --force

Listings 3.3: Terminal command to package the PetaLinux project [11]

requires the use of the Ethernet and USB 3.0 I/O ports, the boot image must be further

configured to add the driver support for this hardware. The following command is executed

to configure the kernel properties of the boot image: petalinux-config -c kernel. A menu is

then displayed to the user in the terminal to add device driver support; the following options

were checked for the successful installation and support of the I/O devices drivers: support

for Host-side USB, EHCI HCD (USB 3.0) support, USB Mass Storage support, ChipIdea

Highspeed Dual Role Controller, ChipIdea host controller, and Generic ULPI Transceiver

Driver. All of these adding settings need to be saved before closing the menu. Lastly, a

device tree file labeled as “system-user.dtsi” needs to be modified to add support for the I/O

ports. The code for this can be examined below in Listing 3.4.

At this point, the petalinux-build command can be executed which creates the final boot

image files that are required to be in the BOOT partition of the SD card. The BOOT.BIN

and image.ub files are to be copied directly over to the BOOT partition of the SD card. The

SD card can now be ejected, to safely remove it from the computer, and inserted into the SD

card slot on the FPGA. Picocom is a program that was installed on the host PC to monitor

serial port connections [61]. When the FPGA is plugged into the PC with the Micro-USB

to USB wire and turned on, the boot-up sequence can be shown through the serial port.

This program also allows the user to interact with the Linux-based FPGA system through

a CLI. Using the CLI enables the user to interact with the file system on the FPGA just

like they would through the terminal in the desktop-based OS. Once an active Ethernet
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1 /include/ "system -conf.dtsi"

2 / {

3 model = "ZynqMP ZCU104 RevC";

4 compatible = "xlnx ,zynqmp -zcu104 -revC", "xlnx ,zynqmp -zcu104", "xlnx

,zynqmp ";

5 aliases{

6 ethernet0 = &gem3;

7 usb0 = &usb0;

8 };

9 };

10 &sdhci1 {

11 status = "okay";

12 xlnx ,has -cd = <0x1 >;

13 xlnx ,has -power = <0x0 >;

14 xlnx ,has -wp = <0x1 >;

15 disable -wp;

16 no -1-8-v;

17 };

18 &gem3 {

19 status = "okay";

20 phy -handle = <&phy0 >;

21 phy -mode = "rgmii -id";

22 phy0: ethernet -phy@c {

23 reg = <0xc >;

24 ti ,rx -internal -delay = <0x8 >;

25 ti ,tx -internal -delay = <0xa >;

26 ti ,fifo -depth = <0x1 >;

27 ti ,dp83867 -rxctrl -strap -quirk;

28 };

29 };

30 &usb0 {

31 status = "okay";

32 };

33 &dwc3_0 {

34 status = "okay";

35 dr_mode = "host";

36 snps ,usb3_lpm_capable;

37 phy -names = "usb3 -phy";

38 maximum -speed = "super -speed";

39 };

Listings 3.4: Configuration of the FPGAs Ethernet and USB device drivers in the
system-user.dtsi file [12]
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cable is plugged into the FPGA it is possible to download and install libraries, packages, and

programs on the FPGA through the CLI.

Using the PetaLinux tool for this project was significant because it provided the means to

interact with the FPGAs processors and I/O ports with no modifications to the underlying

hardware design. When the VC707 and KC705 were initially used for this project, they each

required extensive hardware-based designs that acted as the device drivers. These designs

were complicated, sparsely documented, and only achieved on the KC705 FPGA. The process

to develop Ethernet communication between the host PC and the KC705 took more than

two months of persistent work to enable and was only capable of 56 Mbps speeds. In under

a week, the well documented PetaLinux tools were used to create a software design that

targeted the FPGAs processor and I/O ports with complete success. The full functionality

of the USB 3.0 and Gigabit Ethernet ports was unlocked through the device drivers provided

by the PetaLinux SDK. Access to each of the quad-core ARM Cortex-A53 processor cores

is possible through multiprocessor programming in C directly on the FPGA through the

CLI and a few installed packages to compile the high-level code. The potential to use the

ZCU104s processor is discussed in Section 4.2 below with the development of the DICe

control scripts.
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Chapter 4

Application Design

DICe is a dense program that is composed of nearly 100 separate files and thousands of

lines of C++ code. To properly port this design over to Verilog, the original application

needed to be studied extensively to understand how it runs, what algorithms are used, and

what key functions needed to be ported first to meet the project requirements. While the

original DICe is exclusively a software program, creating a hardware accelerator for it means

that the application design for this project will be made up of a software-based design and a

hardware-based design. In Section 4.1 below, the hardware design that is programmed into

the FPGA fabric of the ZCU104 board will be discussed in detail. This hardware design is

made up of eight Verilog-based custom-developed IP blocks, each with a specific function.

After, the software designs in Section 4.2 will be discussed and show how the control scripts

run the hardware-accelerated design. It covers both the USB-based design and the Ethernet-

based design and how the high-level code interacts with the low-level hardware.

4.1 DICe Hardware Design

The original hardware design for this project targeted a Virtex-7 VC707 FPGA, but has

since migrated to the Zynq UltraScale+ MPSoC ZCU104 FPGA. This change in hardware

was due to the purchasing of new equipment for our lab and the advanced capabilities the

ZCU104 has. The most beneficial feature that the ZCU104 provides for this project is the

ARM Cortex-A53 quad-core processor on the Processing System (PS side. This is one of the

reasons that the ZCU104 FPGA is defined as a Multi-Processor System-on-Chip (MPSoC).

The ARM processor allows for the ability to run high-level C or C++ code directly on the

boards’ PS side that can be configured to transfer data to and from the Programmable

Logic (PL) side (FPGA fabric). With that, the ARM processor is also capable of running a

Linux-based kernel that provides a file system to the user, the ability to download packages

and run high-level applications and configure the FPGA with the proper drivers to use I/O
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ports such as the USB and Ethernet ports.

The development of the hardware design for DICe is the most significant portion of

this project. The design was under development for nearly three years and continues to be

refined. The block design for the program consists of the following IPs: the Zynq UltraScale+

MPSoC, a Processor System Reset, two AXI Interconnects (one for memory and one for

custom IPs), six AXI BRAM Controllers, 10 Block Memory Generators (BRAM), a Virtual

Input/Output (VIO) monitor for debugging, a Clocking Wizard for adjusting the clock

frequency, a custom Parameters IP, a custom Interface IP, a custom Gradients IP, a custom

Gamma Interface IP, a custom Gamma IP, a custom Subset Coordinates Interface IP, a

custom Subset Coordinates IP, and a custom Results IP. Each custom IP will be discussed

in length in the sections below and each one serves a unique function for the DICe program.

Due to the size of the block diagram for the DICe hardware design, it is split into two

images shown in Figure 4.3 and Figure 4.4. A simplified flow diagram of the DICe hardware

accelerator is shown below in Figure 4.1.

Figure 4.1: A simple flow diagram of the DICe hardware design

The hardware design is ready to perform image correlation when the control scripts have

passed two images, the reference frame and the deformed frame, and the parameter data

into the BRAM. Once the application has the data it needs to perform its first correlation

it will start. First, the parameter data, which is stored in three separate BRAMs, is sent to

the Parameters IP, the Subset Coordinates Interface IP, and the Gamma Interface IP. The

user is responsible for defining the parameters before the application begins in a file named
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“Subsets.txt”. The parameters data is necessary to specify the parameters of the images

that the correlation will perform on and the subsets, or Areas Of Interest (AOIs), within

the images that are predefined by the user. These parameters are the number of pixels in a

frame, the number of subsets in a frame, the subsets size, the subsets half-size, the subsets

X center point, the subsets Y center point, the subsets shape, the width and height of the

frame, the user-selected optimization method (gradient-based or simplex-based), and the

user-selected correlation method (tracking or generic).

Once all the parameter data is in the memory within the design, the Parameters IP

forwards the necessary data over to the Gamma IP. The Subset Coordinates Interface IP

and the Subset Coordinates IP are the next to start processing. The Subset Coordinates

Interface IP is responsible for receiving all of the subsets that are defined for the correlation

from BRAM and relaying that data to the Subset Coordinates IP. The “interface” IPs

were created because Vivado does not allow multiple IPs to drive addresses to the BRAM

blocks. This is what led us to split the parameter data up into three separate memory

blocks because each IP requires different data at different times. The Subset Coordinates

Interface IP works with the Subset Coordinates IP by sending it all of the needed subset data

for each subset. Because the user can pre-define up to 14 subsets, the Subset Coordinates

IP needs to receive the data in order when computing all of the subset coordinates. Once

the subset information is retrieved from memory, it is sent to the Subset Coordinates IP.

This IP receives the following data: the number of subsets in a frame, the subsets size, the

subsets half-size, the subsets X center point, the subsets Y center point, and the subsets

shape. Once it receives this data for a single subset, it computes the coordinates of each

pixel for the subset. The provided information only tells the correlation that a subset of

some size exists, but it does not tell the correlation where the subset is placed on the frame.

The Subset Coordinates IP solves this problem by taking the subsets parameter data and

computing all of the pixels and their coordinates that exist within the subset so that the

correlation algorithms can locate where the subset is to do further processing.
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After all of the subset coordinates have been computed, the Gradients IP starts. This

IP works together with the Interface IP and Parameters IP. First, once the parameters are

set and the Parameters IP signals that it is finished, it sends the frame width and frame

height to the Gradients IP. Second, the Interface IP is responsible for sending the reference

image data to the Gradients IP. When the application initially starts, it is provided with

two frames: a reference frame and a deformed frame. The reference frame can be thought of

as the original frame and the deformed frame is the next image in the sequence that differs

from the previous frame. When the first correlation finishes processing, the deformed frame

becomes the new reference frame and a new deformed frame is loaded into BRAM over the

previous reference frame because it is unneeded at that point. This is where the Interface IP

comes into play. The Interface IP connects to both BRAMs and it is responsible for altering

which frame is considered the reference frame and which is considered the deformed frame,

because they alternate in BRAM, and sending the correct data to the corresponding IPs.

At this point, the Gradients IP is receiving the correct frame so it can perform its

computations. The goal of the Gradients IP is to compute the gradients of the reference

frame in the X-direction and the Y-direction. Computing the gradients within this IP means

finding the difference between two pixels and their intensities. Once computed, the gradients

are saved into BRAM 3 and BRAM 4, where block three holds the X-direction gradients and

block four holds the Y-direction gradients. The purpose of computing the gradients for the

reference image is so that the DICe can track motion when compared to the deformed image

in the Gamma IP.

The Gamma IP is the largest IP that was developed for this project. All of the data that

has been computed thus far, such as the subset coordinates and the gradients, are all used

in the Gamma IP to perform the image correlation. This IP is responsible for performing

the actual correlation between two frames by finding differences between the reference frame

and the deformed frame as shown in Figure 4.2. The Gamma IP implements a variety of

functions to perform the correlation; these will be discussed below in the Gamma IP Section
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4.1.9. Once the results are computed by the Gamma IP, the information is passed over to the

Results IP. This IP receives the results from the Gamma IP and stores them in BRAM 5.

BRAM 5 is connected to AXI BRAM Controller 2 so that the results have an associated

address that can then be read back to the ARM processor and stored in a text file.

Figure 4.2: A graphical representation of the differences found between the reference frame
(left) and the deformed frame (right) in DICe [6]

When the last image correlation run is finished, all of the computed results should be

saved into BRAM 2. The C control script that runs on the ARM processor can read from

this memory within the hardware design. The control script reads all of the results data

stored in this BRAM, converts them from IEEE-754 single-precision floating-point format

to scientific notation that is human-readable, and stores the final results into a text file that

the user can access. The C script is responsible for formatting the text file in a manner

that is comparable to the output file from the DICe GUI. It will display the number of

each frame that was processed, the X coordinate, the Y coordinate, the X displacement, the

Y displacement, and the Z rotation computed for that frame. For the USB-based design,

the Results.txt file is computed locally on the FPGA and saved to the USB drive from the

directory where the images were read from. For the Ethernet-based design, the results will

be transmitted back to the connected PC over Ethernet where they will be converted and

stored on the PC in the same directory where the images were accessed from.
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Figure 4.3: The block diagram for the top half of the DICe hardware accelerator in Vivado
2018.3

Figure 4.4: The block diagram for the bottom half of the DICe hardware accelerator in
Vivado 2018.3

4.1.1 Miscellaneous IPs

The block diagram for the DICe hardware design contains a few Xilinx IPs that are not

mentioned in the subsections below. This is because they do not play a significant role in

the image correlation and they were not developed in-house for this project. This subsection
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will discuss the other IPs that are used within are hardware design with a brief explanation

of each.

The Zynq UltraScale+ MPSoC is controlled and configured by the zynq ultra ps IP. This

IP represents the brains of the design in that it is what controls all of the boards’ processors,

I/O, and hardware-based features. Interrupts can be created by other IPs and driven to

the zynq ultra ps IP so that some processing that requires priority can execute first while

temporarily pausing all other processor operations. This IP allows us to manually configure

various aspects of how the board will operate such as which I/O ports are active, and most

significantly to us, the processor clock speed. The ARM quad-core processors have a max

clock frequency of 1.334 GHz. Although the requested clock frequency for our design is the

max speed of 1.334 GHz, the Vivado tools report that the actual frequency of our processor’s

clocks is more in line with 1.2 GHz. This max clock frequency is necessary for the processors

to be operating as fast as possible when running the C control scripts or when receiving

data from an I/O port, like USB or Ethernet. This IP also enables the ability to generate

a low-level PL clock of 150 MHz that is connected to all of the IPs in the hardware design;

the reason for this will be discussed briefly.

The system reset for the hardware design is controlled by the Processor System Reset

IP labeled as rst ps8 0 100M. The reset signal from the Zynq MPSoC IP is routed to the

Processor System Reset IP. The IP has a 1-bit signal labeled as “peripheral areset” that is

connected to the reset input port for every single IP in the design. This controls the reset of

IPs, such as restarting an IP or resetting the memory in a BRAM. This reset is ultimately

driven from a reset button on the board that can be pressed at any time.

To use and control all of the memory within the hardware design, two AXI Interconnects

are used. Each one has a bus that is directly connected to the zynq ultra ps e 0 IP, making it

the master, so that it can have control of the bus interface for the design. axi interconnect 0 is

used to connect all of the AXI BRAM Controllers. This provides a relatively uniform address

space for all of the memory-related IPs that exist in the address range of 0x00 A000 0000 to
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0x00 A000 9FFF. axi interconnect 1 is responsible for connecting to all of the custom IPs

within the design. This is necessary because each of the custom IPs that were developed

for this project is classified as AXI4 peripherals, meaning that each IP is connected to the

AXI bus and has an address space associated with it. When creating and packaging a new

custom IP, the Vivado tools give the user the option to specify the interface mode of the

AXI4 peripheral, slave mode or master mode, and the number of AXI registers they would

like associated with that IP. For all of the custom IPs in this design, the registers were left at

the default setting of four. This is beneficial because these AXI-based slave registers can be

written to and read from within the IP, but also outside the IP too, for example, the ARM

processor. This allows the ability to have a direct communication link with specific IPs that

assists in the flow of the IP and also debugging. The address range for these IPs is in the

range of 0x00 B000 0000 to 0x00 B018 2FFF.

The most significant debugging tool that is available in Vivado is the vio 0 IP. This IP

stands for Virtual Input/Output and allows the connection of input or output signals from

anywhere else in the design. Upon running the design, a window pops up in the Hardware

Manager tab of Vivado for the user that allows them to view the connected signals to the VIO

IP. This allows for real-time tracking of signal changes throughout the design and enables

the user to verify the design. The current VIO IP in the design for this project has a total

of 43 ports connected to it for monitoring various signals throughout the design.

Lastly, to successfully use the VIO IP in the hardware design, it was necessary to attach

a “free-running clock source” to the clock input of the VIO. This leads to the addition of

the Clocking Wizard IP that is labeled as clk wiz 0. This IP generates a dedicated clock for

the VIO IP so that no errors were experienced. The Clocking Wizard IP outputs a clock

with a frequency of 150 MHz so that the frequency is in line with the speed of the rest of

the design. On that note, each IP in the hardware design utilizes a clock frequency of 150

MHz. This is because the library of floating-point arithmetic and trigonometric functions

that were developed for this project can only run at a maximum frequency of 150 MHz. A
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couple of the IPs depend on this library for basic functions that are frequently called. One of

the major focuses of the continued development of the floating-point library was an increase

in clock frequency, but 150 MHz is currently the highest clock frequency that was achieved.

4.1.2 BRAM IPs

Block Random Access Memory (BRAM) is undoubtedly the most valuable resource for

the DICe hardware design and it is used for storing large amounts of data within the FPGA.

The ZCU104 FPGA contains a total of 4.75MB of SRAM-based memory that is split into

BRAM and UltraRAM (URAM) [8, 62]. URAM makes up 71% of the total SRAM-based

memory on the ZCU104 which comes to 3.375MB. URAM differs from BRAM in that both

ports are single-clocked for reading or writing and the URAM blocks can be cascaded together

to create larger memory blocks [63]. BRAM, on the other hand, has a read latency of two

or more clock cycles and allows for true dual-port usage; this memory makes up 24% of

the FPGAs SRAM-based memory at 1.375MB. For this project, both types of memory are

indistinguishable and from this point on these memories combined will be referred to as

BRAM.

For this project, BRAM is used for buffering frame data, holding onto predefined pa-

rameter values that specify how the image correlation is to be performed, and saving the

values computed by the Subset Coordinates IP, the Gradients IP, and the Gamma/Results

IP. Before the image correlation begins, the program must have a defined set of parameter

values, such as image height, width and the total number of subsets, that are written into

BRAM. To write to BRAM from an external source, the memory needs to be associated

with an address within the hardware design. The AXI BRAM Controller is a Xilinx IP that

connects a BRAM block, defined as the block memory generator IP, to the AXI Interconnect

bus and provides an address range for the memory. With this IP, the memory is visible to

the outside world and can be written from an external source, such as the ARM quad-core

processor.
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The current hardware design utilizes a total of six AXI BRAM Controller IPs and a total

of 10 Block Memory Generator IPs. AXI BRAM Controller 0 is connected to BRAM 0.

AXI BRAM Controller 1 is connected to BRAM 1. Both BRAMs are 512KB in size and

they hold the frame data for the reference image and the deformed image (they alternate on

which frame they hold). BRAM 3 and BRAM 4 are each a size of 415.7KB and are set as

standalone blocks, meaning they do not have an address associated with them. Block three

holds the gradients of the reference frame in the X-direction. Block four holds the gradients

of the reference from in the Y-direction. BRAM 5 is connected to AXI BRAM Controller 2

and is 512KB in size; this block is responsible for holding all of the computed results from

the image correlation. BRAM 6 and BRAM 7 are each 193.2KB in size and are both set

as standalone blocks. Block six is responsible for holding the subset coordinates in the

X-direction while block seven holds the subset coordinates in the Y-direction.

BRAM 2 is connected to AXI BRAM Controller 3 and has a block size of 4KB. BRAM 8

is connected to AXI BRAM Controller 4 and has a block size of 4KB. Lastly, BRAM 9 is

connected to AXI BRAM Controller 5 and has a block size of 4KB. Each of these blocks

shares a common purpose in that they are dedicated to holding the parameter values for

multiple IPs that need access to that data. The details of the parameter data will be discussed

in more detail below in 4.1.3. The memory addresses for each AXI BRAM Controller, along

with all of the custom IPs, can be seen in Figure 4.5.

4.1.3 Parameters IP

The Parameters IP is one of the simplest IPs within the design, but it serves a crucial

function. Other custom IPs within the hardware design require a variety of parameter

values to proceed with the image correlation. These parameter values are the number of

bits per image, the number of pixels per image, the number of subsets per image, the

width of the image, the height of the image, the optimization method to be used, and the

correlation routine to be used. Each one of these data values sets the parameters of the image
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Figure 4.5: A table from Vivado 2018.3 showing the defined memory addresses and sizes
for each IP used in the DICe hardware design

correlation for other IPs to function. Before the start of the program, the parameter values

should be predefined by the user in a text file labeled Subsets.txt. The text file lists the

various parameters in order with each data value on an individual line. When the program

does start, the C control script will either receive this data from the PC over an Ethernet

connection, or the script will locate the file on the USB drive and extract the parameters.

Something to note is that the parameter values listed above are the only ones that are used

by the Parameters IP because these values are needed by multiple IPs at any given time

and they never change. The Subsets.txt file contains more data such as the subset shape,

the subset size, the subsets X center point, and the subsets Y center point. The reason

the Parameters IP is so crucial to the DICe hardware accelerator is that, while values like

the image height and width can be hard-coded into the IPs, it allows for the user to have

dynamic parameters. This grants users the flexibility to perform image correlation using

different sized images and change the number of subsets used for each image correlation run.

When the C control script running on the FPGA has the parameter values, the next
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task is to write the data to BRAM. The control script running on the ARM processor will

then use the “mmap” function to map a locally defined variable to the address space of the

BRAM in the hardware design. This function is the key to allowing the PS and PL sides

of the FPGA to communicate data to one another. Once the variable has been mapped to

an address space in the FPGAs memory, it is possible to read and write to the BRAM in

hardware by providing a register index value to the local variable. The control script will

then begin writing all of the values listed in the Subsets.txt file into three separate BRAM

blocks. BRAM 2 is connected to AXI BRAM Controller 3 and is dedicated for use with

the Parameters IP. BRAM 8 is connected to AXI BRAM Controller 4 and is responsible for

providing subset information to the Subset Coordinates Interface IP. BRAM 9 is connected to

AXI BRAM Controller 9 and is used to provide subset information to the Gamma Interface

IP. Once all of the parameter values have been written into BRAM and the first two images

have been received and written into BRAM by the C script, the hardware design will start

the IPs for processing.

The C control script is responsible for sending a start signal to the Parameters IP so

that it may begin processing. This is done by using the same “mmap” function as before,

but this time the value of 1 is written to the Parameters IP AXI Slave register. This will

write a 1 into a register that the Parameters IP is constantly reading in state one. It is

important to note here that the Parameters IP, and the vast majority of the other custom

IPs, were developed using FSMs to precisely control the execution flow of each IP. This was

implemented by using a case statement in Verilog that only moves to the next condition,

or state if the state variable was set in the state that is currently being processed. Now,

once this value has been received by the Parameters IP from the C script, it means that the

Parameters IP can start processing by moving to the next state.

The Parameters IP starts with a default address value of zero that it will send to its con-

nected BRAM. The address value defines which register should be used from the connected

BRAM. The size of each BRAM block can be manually configured in the Vivado tools; in
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this case, each BRAM that holds parameter values is connected to a BRAM that is 4 KB in

size. Each BRAM in the design has a register width of 32-bits or 4 bytes. The Vivado tools

allow for these registers to be byte-addressable, meaning that rather than accessing an entire

register, or row, of data at a time, a user can choose to look at each byte in the register. The

Parameters IP first reads from address zero in the BRAM to receive the data for the height

of the image. Next, it increases the address value by four to shift to the next register to read

from in the BRAM. After, the IP cycles through two No Operation (NOP) states before

reading the next value from BRAM. This is because a standard BRAM requires two clock

cycles to read a value and one clock cycle to write a value. This was another motivation for

using FSM-based designs for the custom IPs because each state is set to execute in one clock

cycle. While most of the BRAM used is classified as URAM, which only requires one clock

cycle to perform a read operation, BRAM is still used in different portions of the design and

so this is a design choice that was implemented out of precaution and portability.

By the next state, the Parameters IP reads the data from the BRAM for image width.

The same cycle continues where the address is incremented by four and followed by two

NOP states. This process is repeated to retrieve the remaining parameter values such as

the number of pixels in the image, the number of bits in the image, the number of subsets

in the image, the optimization method to be used, and the correlation routine to be used.

When all of the parameter values have been received by the IP and set to their corresponding

outputs, the last state of the IP sets an output signal labeled as “param done”. This done

signal is important because it acts as an acknowledgment signal that tells the other IPs, such

as the Gradients IP and Gamma IP, that the Parameters IP is finished collecting all of the

required information that the other IPs need to operate. This reason is why the Parameters

IP is so critical in the design; it drives parameter values to multiple IPs so that they can

start processing. When the parameters data exists in BRAM, an address would need to be

provided to determine which values to retrieve and multiple IPs are unable to drive multiple

address values to a single BRAM at once.
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4.1.4 Interface IP

When the DICe hardware accelerator begins processing, it requires two frames to operate

on. These two frames are the reference frame and the deformed frame. Cameras capture

video by taking a lot of pictures in a sequence. A short video that contains five frames will

display these frames in order from one to five. In this scenario, when the DICe hardware

accelerator starts, it will receive frame one which will be classified as the reference image

and frame two which will be the deformed image. Upon receiving the image data on the

program start, the C script will write the data for the reference frame into BRAM 0 using

the address provided by AXI BRAM Controller 0. The C script will then write the data for

the deformed frame into BRAM 1 using the address provided by AXI BRAM Controller 1.

Now, the Gradients IP requires the data for the reference image so that it can compute

the gradients based on the pixel intensity values in the X-direction and Y-direction. The

Gamma IP requires the data for both the reference image and the deformed image so that

the image correlation algorithms can proceed. Once the image correlation is finished for

these two frames and the results have been computed and saved, the application will begin

to operate on the next pair of images.

Initially, BRAM 0 holds the data for the reference image and BRAM 1 holds the data

for the deformed image. After the first correlation has been performed on the initial two

frames, the first reference image is no longer needed. The initial deformed image, frame two,

will then be classified as the reference frame. The C control script is then responsible for

retrieving frame three that will be classified as the new deformed image. Because the first

reference image, frame one, is no longer needed for processing, this leaves BRAM 0 open to

store data. The C script will write the new deformed image, frame three, into BRAM 0.

This means that BRAM 0 and BRAM 1 have switched the data that they retain. This poses

an issue for the rest of the IPs that they are connected to. If BRAM 0 is connected directly

to the Gradients IP to send the data of the reference image for processing, by the second

round of correlation the Gradients IP, along with the Gamma IP, would receive the wrong
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frame of data. This is where the Interface IP steps in.

The Interface IP is directly connected to BRAM 0 and BRAM 1 and controls the flow of

frame data to the IPs that require it. It acts as an interface between the frame data and the

IPs that need the frame data. This IP is essential in the design because it verifies that each

IP is receiving the correct frame data and it prevents the processing time that would have

been required to write and transmit all of the data in BRAM 1 over to BRAM 0. Internally,

the Interface IP has been called the “ping-pong buffer” because it manages the back and

forth cycle of frame data. To add to this, the Interface IP is also essential for allowing each

IP to specify the data they require at a particular address. For example, the Gradients IP

could be processing the gradients for the reference frame and it could be operating on pixel

six in register seven while the Gamma IP is operating on pixel one in register two. This IP

enables the other IPs connected to it to operate independently. This idea of independent

operation of custom IPs is explored more in the Future Works in Section 6.3.

The Interface IP operates by maintaining constant communication between the Gradients

IP, the Gamma IP, BRAM 0, BRAM 1, and the C control script on the ARM processor.

The IP starts when the C script on the ARM processor writes to the Interface IPs slave

registers. The C script will first write to the first AXI slave register that the Interface IP

has to notify the IP that a new frame has been received. This start signal allows the IP to

move to the second state which then waits on signals from the Gradients IP and the Gamma

IP to coordinate which images to transmit. Both IPs will transmit the addresses of the data

they require to the Interface IP. The Gradients IP should be the first to notify the Interface

IP that it is processing and needs more frame data with the “grad busy” signal. After the

Gradients IP has received all of the data for the reference image, the IP will signal that it

does not require any more data and will transmit the gradients data to the Gamma IP so

that it can start processing. The Gamma IP will request the frame data for the reference

image and the deformed image so that it can start processing. This is the default sequence

for the first two frames when the first round of correlation begins. After this, the C script will
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write to the second AXI slave register and increment the value by one each time a new frame

is written into BRAM. This variable is labeled as “frame counter” in the Interface IP and

it enables the IP to keep track of which frame needs to be classified as the reference image

and which frame needs to classified as the deformed image. The C script will continually

update this register to reflect the total number of frames that have been written to BRAM

and the Interface IP will continually flip which BRAM input is classified as the reference

and deformed image with some clever if-statements.

4.1.5 Subset Coordinates Interface IP

The Subset Coordinates Interface IP works closely with the Subset Coordinates IP to

manage the retrieval of the data for each subset that the user has predefined. An image

correlation run can have anywhere between 0 and 14 subsets, as defined by the statement of

work for this project. A subset can range in size from 3x3 pixels to 41x41 pixels. Currently,

the DICe hardware accelerator only supports square and circular subsets. The DICe GUI

can support thousands of subsets that vary in size and shape. The difference between subset

definitions in the DICe hardware accelerator and the DICe GUI can be further explained

in Section 6.3. The DICe hardware accelerator was designed with flexibility in mind for

the user. The user can define different quantities and sizes of subsets prior to each image

correlation run. This means that the hardware design has to account for these changing

parameter values before each run.

When the user has predefined the parameter values, one of the first actions that the C

script does is to write these data values into three separate BRAM blocks. The first BRAM

block has been covered in the Parameters IP above in Section 4.1.3. The second BRAM

block that contains the data of the parameters is BRAM 8. This memory block is directly

connected to the Subset Coordinates Interface IP so that it can manage and relay all of the

subset data to the Subset Coordinates IP for further processing. This dedicated BRAM block

of parameter data is necessary because the Subset Coordinates Interface IP will be fetching
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subset data continuously from the memory block based on when the Subset Coordinates IP

needs it. The dedicated block assures that both IPs have the data that they need when they

need it in order to process the subset coordinates for the Gamma IP. The Subset Coordinates

IP is responsible for taking the subset parameter values and computing the location of each

pixel in the image so that each subset can be located. The Subset Coordinates Interface IP

is responsible for controlling the flow of this data and sending the right subset to the Subset

Coordinates IP when it has requested new data.

The Subset Coordinates Interface IP starts processing when it has received the “param-

eters done” signal from the Parameters IP. The IP then spins in state zero while waiting

for a change in the “coord new subset” signal that notifies the IP that a new subset from

the Subset Coordinates IP has been requested. When the Subset Coordinates IP starts and

requests a new subset, the Subset Coordinates Interface IP jumps to the next state. In this

state, the IP computes the address value of the current subset, in this case, the first one.

It sets the address for the current subset and relays that address to BRAM 8 to locate the

register that contains the first data value needed, the subset X center point coordinate. Note

that this IP uses the similar two NOP cycles to successfully read a value from BRAM. Upon

retrieval of this data, the cycle continues with the IP going to the next state to retrieve

the subset Y center point coordinate. After, the subset size value is fetched from BRAM,

followed by the retrieval of the half subset size, and lastly the retrieval of the subset shape

value. Once all of this data has been collected, the outputs feed the data to the Subset

Coordinates IP. The Subset Coordinates Interface IP will automatically jump back to state

zero where it waits for the next signal that notifies it to fetch the data for another subset.

This cycle continues as long as there are subsets in the BRAM. Upon the retrieval of the last

subsets data, the Subset Coordinates Interface will pause in state zero and cease to process.
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4.1.6 Subset Coordinates IP

Before the Gamma IP can begin the first round of image correlation, it needs to know

where each subset is located within the frames it is processing. The Subset Coordinates IP is

responsible for computing the indexes of all the pixel values located within each subset and

computing the total number of pixels in both integer-format and the IEEE-754 floating-point

format. Before image correlation begins within the DICe application, the user is responsible

for selecting Regions of Interest (ROI), or subsets (or AOIs), within the frame to assist

the correlation algorithms in tracking differences between a reference frame and a deformed

frame. Currently, the DICe hardware accelerator only supports subset shapes of squares and

circles. For this application, the user is tasked with defining how many subsets exist within

the frame, the shape of each subset, the X and Y pixel values that specify the center point of

each subset, and the size and half-size of each subset (if the shape is a square) or the radius

squared and radius (if the shape is a circle) in pixels. Two important things to note are that

the subset size definition must be an odd number and the half-size subset value should be

floor-rounded from the original subset size, E.g. if the subset size is 5 pixels, the half subset

size should be 2 pixels. Each of these values that define the subsets for image correlation is

to be specified in the Subsets.txt file before running the DICe hardware accelerator. Subsets

represent a smaller portion within the defined frame. An example of a subset can be seen in

Figure 4.6.

The total number of subsets is retrieved by the Subset Coordinates IP as an input from

the Parameters IP. The DICe GUI and hardware accelerator support multiple subsets within

a frame, as shown in Figure 4.7. The remaining inputs to the Subset Coordinates IP are

each received from the Subset Coordinates Interface IP which provides the X center point

pixel value for each subset, the Y center point pixel value for each subset, the size or radius

squared of each subset, the half-size or radius of each subset, and the shape of each subset.

Remember that the Subset Coordinates Interface IP is responsible for fetching and buffering

each of these user-defined subset parameters from its corresponding BRAM blocks. The
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Figure 4.6: A graphical representation of a subset (in red) is defined within a 448x232
frame

Subset Coordinates IP starts execution when it has received a done signal from both the

Parameters IP and the Subset Coordinates Interface IP to verify that each IP is finished. At

this point, the Subset Coordinates IP has all of the data it requires to start execution. To

explain how this IP computes the subset coordinates, let us assume here that the user has

defined two subsets. The first subset is a square with an X center point at pixel value 100, a

Y center point at pixel value 100, a subset size of 5 pixels, and a half-size subset of 2 pixels.

The second subset is a circle with an X center point at pixel value 200, a Y center point at

pixel value 200, a radius of 3 pixels, and a radius squared of 9 pixels.

The data for the first subset will be received by the Subset Coordinates IP. This IP knows

that the subset is a square, its center is located at position (X:100, Y:100) within the frame,

it has a size of 5 pixels, and a half-size of 2 pixels. The job of this IP is to locate the X

and Y index of each pixel that is contained within the range of the defined subset. The

first step for computing the indexes of a square subset is to locate the pixel bounds, or all

four corners, of the subset. It does this by taking each center point value and subtracting

the half-subset size from them. So, for center point pixel coordinates of (X:100, Y:100), it

subtracts 2 pixels from each of these values which puts the upper-left subset bound at pixel

coordinates of (X:98, Y:98); these values are stored in local registers. Next, the IP starts
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Figure 4.7: A graphical representation of multiple subsets defined within a 448x232 frame

back at the center point pixel coordinates again of (X:100, Y:100) and adds 2 pixels to each

of these values which defines the lower-right corner at coordinates of (X:102, Y:102); these

values are saved within local registers as well. At this point, the IP has saved values of the

minimum and maximum bounds of the X and Y coordinates for the subset, so there is no

need to compute the coordinates of the lower-left corner and the upper-right corner of the

subset. A pictorial description of the square subset in this example can be seen in Figure

4.8.

Using the X coordinate of the upper-left bound and the Y coordinate of the lower-right

bound, a nested loop is defined to iterate through all the pixel values within the subset. As

the nested loop iterates through, it uses a simple counter to keep track of the number of

pixels within the subset. All of the coordinate values for the X-direction pixels are saved into

a register and all of the coordinates values for the Y-direction pixels are saved into a separate

register. The “base address” signal is by default set to 0 and the X value pixel indexes are

then written into BRAM 6 and the Y value pixel indexes are written into BRAM 7. For

this example, the total number of pixels within the subset is 25. This value of 25 is then

multiplied by four, to offset the width of each register within the BRAM blocks, and added

to the “base address” signal value for the next subset. The “base address” signal value is
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Figure 4.8: A graphical representation of square subset as described in example 1

then saved within a local register within the IP so that it knows where the first subsets

coordinates end and the second subsets coordinates begin. This is valuable to pass over to

the Gamma IP so that it can fetch the correct subset from each BRAM block. Lastly, the

Subset Coordinates IP sets a signal labeled as “sub done” and returns to state 0 where it

will be expecting the data for the second subset.

Once the coordinates have been computed for the first subset, the Subset Coordinates

IP will return to state 0 where it will set a signal called “coord new subset” which notifies

the Subset Coordinates Interface IP to send over the data for the second subset. Once

again, upon receiving the data for the second subset the Subset Coordinates IP is aware
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that the subset is a circle, its center is located at position (X:200, Y:200) within the frame,

it has a radius of 3 pixels, and a radius squared of 9 pixels. Computing the coordinates for

circular subsets is different than for squares and requires more computation. With the square

subset, once two bounds were found it was easy to compute the index for all of the coordinate

values. The circle subset, on the other hand, is required to compute the Euclidean distance,

shown in Equation 4.1, to determine if a pixel belongs to the subset [64]. This process is far

more tedious than computing the index coordinates for the square subset because instead

of looping through the known bounds of the subset, an arithmetic operation must occur for

each pixel contained within the theoretical bounds. The process starts the same as the square

subset where a theoretical upper-left bound is determined by subtracting the radius value

from both of the center points at (X:200, Y:200). The result is an upper-left bound at the

coordinates (X:197, Y:197); these values are stored in local registers. The lower-right bound

is also determined by starting from the original center points and adding the radius value

which yields the coordinates (X:203, Y:203); these values are also stored in local registers.

With two theoretical bounds now found for the circular subset, the IP starts at the upper-

left bound and iterates through a nested loop, just like with the square subset. However, this

nested loop is slower because the Euclidean distance must be computed about the center

point coordinate values for each pixel. If the computed Euclidean distance value is less

than or equal to the value of the subsets radius, then it is included in the subset. For the

upper-left bound with coordinates of (X:197, Y:197) and the center point coordinates of

(X:200, Y:200), after applying Equation 4.1, the result is 4.24 which is greater than the

radius, thus the coordinate is not saved. The nested loop iterates in the X-direction first

and the Y-direction second, which means that the first suitable coordinate to consider part

of the subset is (X:200, Y:197). This nested loop iterates through all of the pixels defined by

the theoretical bounds previously found and increments a simple counter for the total pixel

count only when a suitable pixel has been found. This process should appear to be similar

to computing the coordinates for the square subset except for the math involved. A pictorial
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description of the circular subset in this example can be seen in Figure 4.9.

Figure 4.9: A graphical representation of circular subset as described in example 2

d(xn,yn) =
√

(xn − xn−1)2 + (yn − yn−1)2 (4.1)

Now, let us take a step back to the math where the Euclidean distance formula requires

the use of addition, subtraction, squaring, and square rooting. Computing all of these

arithmetic operations is not only processing-intensive but time-consuming. So, the Subset

Coordinates IP drops the arithmetic process of taking the square root of the final term by

utilizing the radius squared value that is provided by the Subset Coordinates Interface IP.

In this example, the value of the radius squared is 9. By definition, squaring a number is as
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simple as multiplying the exact same number by itself. Along with addition and subtraction

arithmetic operations, the Subset Coordinates IP also uses multiplication. Now, when both

the center point coordinates at (X:200, Y:200) and the upper-left bound coordinates at

(X:197, Y:197) are considered, performing the subtraction on the first and second terms

results in a value of -3 for each. Each of these terms is stored in their own local registers,

so to multiply each of them by themselves is easy; the result is 9 for each term. Both of

these numbers are added together under the square root results in a final term of 18. If

the square root of this term was applied to 18 it would result in 4.24; when setting this

equal to the defined radius of the subset it would be greater than 3. However, if the squared

radius is compared to the term before the square root is applied, it is seen that 9 is still less

than 18, making the pixel unsuitable to be a coordinate within the subset. By using the

provided squared radius term, the need to perform the square root becomes unnecessary. The

only thing that needs to be checked to compute the Euclidean distance formula is that the

provided radius squared value is less than the sum of the term under the square root. This

saves the Subset Coordinates IP a great deal of processing time by avoiding the computation

of the square root. The original DICe C++ function for computing the indexes of circular

subsets can be seen below in Listing 4.1.

4.1.7 Gradients IP

The job of the Gradients IP is rather self-evident by its name, but explaining how it

operates is necessary. The Gradients IP is responsible for computing the gradients of the

reference frame in the X-direction and the Y-direction. Computing the gradients is required

for each round of image correlation when a new frame is loaded into the DICe hardware

accelerator. The reference frame is used for computing the gradients so that they can be

used in the correlation algorithms within the Gamma IP against the deformed frame to

identify change. The Gradients IP receives the width and height of the frame from the

Parameters IP. Once it receives a “done” signal from the Parameters IP, then the Gradients
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1 // NOTE: The pair is (y,x) not (x,y) so that the ordering in the set

will match loops over y then x

2 std::set <std::pair <int_t ,int_t > >

3 Circle :: get_owned_pixels(Teuchos ::RCP <Local_Shape_Function >

shape_function ,

4 const int_t cx ,

5 const int_t cy ,

6 const scalar_t skin_factor)const{

7 TEUCHOS_TEST_FOR_EXCEPTION(shape_function != Teuchos ::null ,std::

runtime_error ,"Error , circle deformation has not been implemented

yet");

8 std::set <std::pair <int_t ,int_t > > coordSet;

9 scalar_t dx=0,dy=0;

10 // rip over the points in the extents of the circle to determine

which onese are inside

11 for(int_t y=min_y_;y<= max_y_ ;++y){

12 for(int_t x=min_x_;x<= max_x_ ;++x){

13 // x and y are the global coordinates of the point to test

14 dx = (x-centroid_x_)*(x-centroid_x_);

15 dy = (y-centroid_y_)*(y-centroid_y_);

16 if(dx + dy <= radius2_){

17 coordSet.insert(std::pair <int_t ,int_t >(y,x));

18 }

19 }

20 }

21 return coordSet;

22 }

Listings 4.1: C++ code to compute circular subset coordinate pixels from the DICe source
code [6]
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IP will begin execution. The Gradients IP then receives the data for the reference frame

from the Interface IP. With this data, it can start computing the gradients of all of the pixel

intensities of the reference frame.

Figure 4.10: Definition of terms used in the local DIC formulation [7]

A gradient is a fancy word for a derivative, or the rate of change of a function. The

local gradient-based algorithm in DICe is used to determine a vector of parameters, p, of a

mapping ψ(x, p), that relates the reference position of a point, x = (x, y), to the deformed

position, w, engendered by the motion [7]. A pictorial description of this process is shown in

Figure 4.10. The parameter vector is composed of the following parameters, u, the horizontal

displacement, v, the vertical displacement, θ, the rotation, ex, the normal extension in the X-

direction, and ey, the normal extension in the Y-direction such that p = [u, v, θ, ex, ey]. The

notation is simplified with the introduction of the auxiliary variables z(x, p) and w(x, z) =

x + z where the variable z(x, p) defines the shape functions of the parameterization. The

values cx and cy represent the subsets center point coordinates. The gradient-based algorithm

can be seen below in Equation 4.2 along with the rotation matrix, R(θ), in Equation 4.3 [7].

z = R(θ)

(1 + ex)(x− cx) + (y − cy)

(1 + ey)(y− cy) + (x− cx)

 +

u
v

 (4.2)

63



R =

cos(θ) −sin(θ)

sin(θ) cos(θ)

 (4.3)

Listing 4.2 below shows the DICe source code for computing the gradients. This code is

a helpful visual because the Verilog implementation of this code uses similar algorithms to

provide the proper address of the reference frame to the Interface IP to retrieve the pixels.

After all, the entire frame cannot be loaded into the Gradients IP at once. Coordinates (X:0,

Y:0) represent the upper-left corner of the frame which is the starting point to compute the

gradients. Let us assume a hypothetical frame size of 5x5 pixels to step through an example.

For the Gradients IP to retrieve the correct pixel values to start computing the gradients

on the first row, it requires the entire first row of pixels to compute the gradients in the

X-direction and the entire second row of pixels to compute the Y-direction gradients for the

first row. The signal that coordinates the address value to the Interface IP is labeled as

“addr ints 0”. By default, this value starts at 0 to retrieve the starting pixels. To access the

entire first and second row of pixel values, the Gradients IP will take the image width of 5

pixels and multiply this number by 2. A loop is then executed that will increment a counter

each time a pixel has been retrieved and update the address sent to the Interface IP by a

value of four. Each pixel value is located in its own 4-byte register so increasing the address

by a value of four each time moves to the next register in BRAM. This loop will iterate until

the counter is no longer less than the image width multiplied by 2, which in this case is a

value of 10.

At this point, the Gradients IP has the first two rows of the reference frame stored in

its local registers and it can now begin computing the gradients. A nested loop is then

executed that will compute the gradients for the first row from left to right, starting with

the X-direction. Looking at lines 4 and 5 in Listing 4.2, the first gradient will be computed

at position 0 for the - direction because Y is 0 and X is 0, which is less than 2. The value

of 2 is used within the DICe source code algorithms to identify when it has reached any of
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the edges within a frame. It will then take the pixel intensity value at X+1 and subtract it

from the pixel intensity value at X. In other words, it is subtracting the pixel intensity value

from its right-hand neighbor. The result of this subtraction is then saved in a local register

which holds the X-direction gradient values. Looking next at lines 16 and 17 in Listing 4.2,

the Y-directional gradient is computed. The values of X and Y are still 0, so the Y gradient

will be computed at position 0 just like the X gradient was. The first intensity value will

ultimately be at position 5, which when starting from a 0 index means that the location of

this pixel is directly underneath pixel 0. This makes sense because to compute the gradient

at a given position in the Y-direction, it needs to be subtracted from the pixel value directly

below it. The result of this subtraction is saved within a local register that is dedicated to

holding the Y-direction gradient values.

Once the X and Y gradient values have been computed for the first position, the Gradients

IP will then write the values to BRAM so they can be saved. The signal “addr grad x 0” is

connected to BRAM 3 and signal “addr grad y 0” is connected to BRAM 4. Each of these

signals starts at a base address value of 0 and each one is responsible for writing the newly

computed gradients into BRAM related to their corresponding position at which they were

computed. The address signals are then both updated by a value of four to move to the next

register in each BRAM, the nested loop variable is then incremented, and the Gradients IP

then goes back to the start of the nested loop where it will compute the gradients of the

second position. This process will continue until all of the gradients have been computed

and saved for the first row. At the end of the first row, the Gradients IP must then send

over a new address to the Interface IP to retrieve the pixel values of the second and third

row of the reference frame. The original width of 5 pixels for the image in this example is

then multiplied by four to account for the registers in BRAM and set as the “addr ints 0”

signal so that it will start at the first pixel of the second row. The Gradients IP will then

iterate in a similar fashion to retrieve all of the pixel values of the second and third rows.

This iteration will occur for as long as the loop variable is less than the value of the width
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1 Image:: compute_gradients_finite_difference (){

2 for(int_t y=0;y<height_ ;++y){

3 for(int_t x=0;x<width_ ;++x){

4 if(x<2){

5 grad_x_[y*width_+x] = intensities_[y*width_+x+1] -

intensities_[y*width_+x];

6 }

7 /// check if this pixel is near the right edge

8 else if(x>=width_ -2){

9 grad_x_[y*width_+x] = intensities_[y*width_+x] - intensities_

[y*width_+x-1];

10 }

11 else{

12 grad_x_[y*width_+x] = grad_c1_*intensities_[y*width_+x-2] +

grad_c2_*intensities_[y*width_+x-1]

13 - grad_c2_*intensities_[y*width_+x+1] - grad_c1_*

intensities_[y*width_+x+2];

14 }

15 /// check if this pixel is near the top edge

16 if(y<2){

17 grad_y_[y*width_+x] = intensities_ [(y+1)*width_+x] -

intensities_[y*width_+x];

18 }

19 /// check if this pixel is near the bottom edge

20 else if(y>=height_ -2){

21 grad_y_[y*width_+x] = intensities_[y*width_+x] - intensities_

[(y-1)*width_+x];

22 }

23 else{

24 grad_y_[y*width_+x] = grad_c1_*intensities_ [(y-2)*width_+x] +

grad_c2_*intensities_ [(y-1)*width_+x]

25 - grad_c2_*intensities_ [(y+1)*width_+x] - grad_c1_*

intensities_ [(y+2)*width_+x];

26 }

27 }

28 }

29 }

Listings 4.2: C++ code to compute the gradients from the pixel intensities from the DICe
source code [6]
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used to set the address plus the width doubled that was computed earlier, so a value of 15.

The Gradients IP will continue to perform these steps for the entire size of the reference

frame until every gradient value has been computed. When the Gradients IP is finished

computing it will send a signal labeled as “grad done 0” to the Gamma IP to notify it that

it is finished executing and that it can start its own execution. The Gradients IP then spins

in its last state waiting for a signal to be set from the ARM processor. The Gradients IP has

an associated AXI slave register that is labeled as “out frame counter 0”. When the ARM

processor receives a new frame for the next round of image correlation, it is responsible for

writing to this register to notify the Gradients IP that it can reset and start its execution

again. The Verilog code for the Gradients IP, like all other IPs, is far too long and dense to

provide Listings for. Because all of the IP designs implement an FSM-based architecture,

they execute in a sequential manner that requires many states and lines of Verilog code.

4.1.8 Gamma Interface IP

This IP was created for the same reason that the Subset Coordinates Interface IP was

created; multiple IPs cannot drive multiple addresses to a single BRAM block. Ultimately,

the Gamma Interface IP is responsible for sending the necessary subset data to the Gamma

IP so that it can use each subset during each round of image correlation. The Gamma

Interface IP works closely with the Gamma IP by sending it the parameters it requires when

they all are needed. The Gamma IP requires just about every parameter computed thus far

in the hardware design, along with the user’s predefined parameters. The Gamma Interface

IP connects to both the Subset Coordinates IP and BRAM 9 to receive the computed X and

Y subset coordinate values. These coordinate values are responsible for providing all of the

pixels contained within a specific subset so that it can be located within the frame.

For each round of image correlation between two frames, the Gamma IP requires all of

the user-defined subsets to achieve the correct results. The Gamma Interface IP starts its

execution when the Parameters IP and Subset Coordinates IP are both finished executing
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and send signals to the IP to verify their completion. The Gamma IP will begin its execution

and when it requires a subset for its correlation routines, it will send a signal to the Gamma

Interface IP, labeled “Gam new subset”, to request one. The Gamma IP is aware of how

many subsets it has to operate on from the parameter it receives from the Parameters IP.

The signal “gam subset number” also comes from the Gamma IP and notifies the Gamma

Interface IP which subset number it is currently using for correlation. The Gamma Interface

IP has a similar signal labeled “subset counter” that connects to the Gamma IP to notify

it which subset number it has sent as well as keeping both IPs aware of which subset is

currently being used for correlation. The Gamma Interface IP input signal “base address”

comes from the Subset Coordinates IP which is responsible for holding the base address value

of both the X and Y subset center point values. These values are saved within an internal

register within the Gamma Interface IP and are looped over and sent to the Gamma IP as

needed.

The number of pixels in a subset, both as an integer and in the IEEE-754 floating-point

format, are also required by the Gamma IP. These values are computed within the Subset

Coordinates IP and are sent to the Gamma Interface IP to buffer them during the many

rounds of correlation where the Gamma IP is executing but the Subset Coordinates IP has

finished executing. Holding the value for the total number of pixels in each subset within

the Gamma Interface IP is also beneficial because this IP can send the X and Y subset

coordinates and center points to the Gamma IP at the same time it sends the number of

pixels in a subset, ensuring that the Gamma IP has all of the information it needs for a subset

at once to perform its correlation functions. The Gamma Interface IP really acts as a large

buffer to send data to the Gamma IP and most of its logic is dedicated to storing subset-

based parameters in indexed registers. The remainder of the logic for this IP is dedicated

to indexing through these registers to send subset data to the Gamma IP when it requires

them. This IP helps control the sequential order of which the subsets are repetitively used

by the Gamma IP for each round of correlation.
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4.1.9 Gamma IP

The Gamma IP is the core of the DICe hardware accelerator and implements a handful

of key-functions from the DICe source code in order to perform digital image correlation.

These 13 key-functions will be discussed in more detail below. The term gamma represents

matching quality, in that it is a variable that measures how well a subset from the reference

image matches the deformed image [6]. Ultimately, the gamma variable provides the user

with a way to tell if the subset is still registering on the correct location in the deformed

image, where a lower gamma value means a better match. The Gamma IP requires a variety

of pre-computed values from the user that are defined in the Parameters IP, and from IPs that

have previously computed information such as the Subset Coordinates IP and the Gradients

IP. Only once all this information is ready and has been received by the Gamma IP will it

begin execution. The Gamma IP starts by setting the required initializations for each subset.

The process of setting each subset with the “initial guess()” function starts the optimization

with a good first guess. This is important for the first round of DIC because the algorithms

are unaware of how the subsets are changing between the reference and deformed frames

yet. After the first round of DIC has occurred, the previous displacements of each subset

are saved to initialize the subsets for the next round of DIC.

When the first round of correlation occurs between two images, an initial “best guess”

of where the subsets are located on the deformed image is required. This is because, during

the first round of image correlation, the algorithms are unaware of which direction the

values within the subsets could be moving in. The “computeUpdateFast()” function is a

gradient-based optimization algorithm that is used within the DICe hardware accelerator

because this was the only method implemented; the Simplex-based method is discussed in

Section 6.3. This function uses a loop to iterate over the entire deformed image 25 times

so that the best match for the current subset in the deformed image can be found during

processing. When the subsets are defined, they are defined using the reference frame. As a

series of frames are processed, the selected subset region can vary from frame to frame. This
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function is responsible for locating where the subsets are in the deformed image by using

the best match to the previously defined subsets. This function works with the functions

“initial guess()” and “initial guess 4()”, which this function calls. The “fast” method defines

that the deformed image must be iterated over a total of 25 times to find the best match for

the current subset that is processing. The “robust” method, which is not yet implemented

in the DICe hardware accelerator, defines that the deformed image must be iterated over a

total of 100 times to find the best match for the current subset that is processing.

When the “initial guess()” function comes into play, it is responsible for setting the best

initial guess of the location of the current subset within the deformed image. This func-

tion begins execution in states “’b11001000 - ’b11001010” within the Verilog FSM-based

code. These initialization values are heavily dependent on the current locations of the sub-

sets within the reference image for the first round of DIC. This function then calls the

“initialize guess 4()” function which is responsible for taking the previously found displace-

ments as inputs and initializes the subsets so that correlation may truly begin. The “ini-

tialize guess 4()” function executes in states “’b11001011 - ’b11010010”. This function then

calls the “initialize()” function in states “’b11010011 - ’b11100110” which is responsible for

initializing the various work variables and setting the local coefficient variables so that the

interpolation functions may begin. This function then calls the “interpolate bilinear()” func-

tion and the “interpolate grad x bilinear()” and “interpolate grad y bilinear()” functions.

The “interpolate bilinear()” function is used to interpolate the pixel intensity values for

non-pixel locations and occurs in states “’b100000001 - ’b100100011”. This function uses the

values of the 4 nearest pixels, including in the diagonal directions, from a given pixel to find

the appropriate color intensity values of that pixel. This function tries to achieve the best

approximation of a pixel’s intensity based on the values at surrounding pixels. It does this

by calling the “interpolate grad x bilinear()” function in states “’b100100100 - ’b101000101”

and the “interpolate grad y bilinear()” function in states “’b101000110 - ’b101101000” to

interpolate the gradient values in the X-direction and Y-direction when the requested values
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are at non-integer locations. Once these functions are finished executing, the “gamma ()”

function is called.

The “gamma ()” function is responsible for computing the ZNSSD gamma correlation

value between the reference and deformed subsets. This functions execution takes place in

states “’b1111100 - ’b10000111”. It works by using a loop to iterate over the number of pixels

per subset, then computes the difference between the intensities of the pixels and the mean

value of the intensities for that particular subset. When the “gamma ()” function requires

the mean values of each subset, it calls the “mean()” function.

When the “mean()” function is called in the “gamma ()” function, it retrieves the mean

values for both the reference frame and the deformed frame. The goal of the “mean()” func-

tion is to return the mean intensity values computed between the reference and deformed

subset values. This function executes in states “’b11000010 - ’b11000111” and uses a loop

to iterate over the number of pixels of the subset that is currently being operated on to

find the region of interest. In addition to these computed values, the function also returns

the summation of these values to avoid extra computational delay. The input signals to

gamma labeled as “num pxl int 0” and “num pxl FP 0”, the integer and floating-point rep-

resentations of the number of pixels within a subset, are used within this function. The

“num pxl int 0” signal is used as a number in the loop counter because in Verilog the look

requires an integer value to go through all of the pixels in a subset and add them together.

The “num pxl FP 0” signal is used in this function for dividing the summation of all the

pixel intensities located within the subset because the pixel intensities are in floating-point

format. The outputs from the computation in this function are stored in local registers.

Once the region of interest has been located for that specific subset, the “mean()” function

calls the “residuals aff()” function.

The “residuals aff()” function is called by the “mean()” function, but ultimately is called

from inside the “computeUpdateFast()” function which is still processing over each subset

within the frames. This method is responsible for computing the residuals for this affine
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shape function and occurs in states “’b1110010000 - ’b1110001001”. Once these values are

computed, the “map to u v theta aff()” function is called which converts the map parame-

ters to u, v, and θ, where u represents the subsets X displacement value, v represents the

subsets Y displacement value, and θ represents the Z rotation value. This happens in states

“’b110010111 - ’b110010111”. After these values have been determined, the “map aff()”

function is called which is responsible for mapping the input coordinates to the output

coordinates.

The “map aff()” function receives the current subsets X center point value, Y center

point value, reference frame intensity values, deformed frame intensity values, the computed

gradients between the reference and deformed frames, and the subset coordinate values. The

outputs of this function are the mapped locations of the current subsets’ new position in the

deformed frame. The execution states for this function are in “’b101111111 - ’b110010110”.

Lastly, the “test for convergence aff()” function is called which returns true if the computed

solution, the newly found subset position in the deformed frame in regard to the reference

frame, is converged. This function operates in states “’b1110001011 - ’b1110001111” and

if the return value is true then it calls the “save fields()” function, which operates in state

“’b110100000”. This function is responsible for saving the computed parameters to the

correct fields so that they may be used in the next round of image correlation and saving

the newly computed results into a local register so that they can be written to the Results

IP.

As previously stated, the Gamma IP implements the core of the DIC algorithms that are

used within DICe. The algorithms, or key-functions, that were used for this IP are spread

out across multiple C++ files within the DICe source code and took a substantial amount

of time to track down. The FSM-based Verilog code for this IP alone contains 5,253 lines of

Verilog code to properly implement the functionality of these algorithms. The Verilog-based

code for this IP and the C++-based algorithms within the DICe source code are not provided

in this section as figures or listings due to their extensive length. As for the DICe algorithms
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themselves, they are relatively common algorithms to be implemented within DIC and can

be observed further with the previously listed references. Due to the extensive amount of

mathematical operations that the Gamma IP uses, along with the Gradients IP and the

Subset Coordinates IP, the IEEE-754 floating-point library of arithmetic and trigonometric

functions that was custom-developed for this project was implemented within the FSMs of

these IPs [21]. While this library represents a substantial amount of work for this project

and for the design of this application, it will not be discussed in this section due to the

simplicity of the functions. Instead, this work will be presented in the Results chapter of

this thesis in Section 5.6 and also refer to the published work. This is because the results

for this library have already been proven and recognized, and due to the length of the DICe

hardware design provided in this section, 4.1, it was better to avoid redundant discussion of

the arithmetic and trigonometric functions for each IP that uses them.

4.1.10 Results IP

After each round of image correlation, the Gamma IP produces a series of values for

each frame that was processed. Currently, the computed values include the X displacement

value, the Y displacement value, and the Z rotation value. Each of these values is provided

in the IEEE-754 single-precision floating-point format [22]. The Gamma IP is responsible

for sending a signal to the Results IP called “results done” each time a round of image

correlation is finished. This pushes the Results IP to the next state where it starts to save

each of these three result values into BRAM 5. Using the same FSM-based architecture for

the Verilog code, the results are each pushed into the BRAM block and the address increases

by four to move to the next register for the next value. When the Results IP reaches the

second to last state, it jumps back to state one where it waits for another signal from the

Gamma IP to notify the IP that more results need to be saved.

On the last round of image correlation, the Gamma IP will send an additional signal

to the Results IP called “gamma done”. This signal notifies the Results IP that all image
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correlation is finished and the last round of results needs to be saved. After cycling through

the FSM to save the last round of results, the Results IP will use a signal called “results done”

to write a value of 1 to its first AXI slave register. This register can be read by the C script

on the ARM processor to acknowledge that the image correlation is finished. The Results

IP is connected to BRAM 5 which is connected to AXI BRAM Controller 2. This provides

an address space that the C script can use to read all of the data from the BRAM. From

this point, the C script takes over by retrieving all of the computer results, converting them

into scientific notation that is human-readable, and lastly formatting them into a text file

that can be analyzed by the user.

4.2 DICe Software Design

The DICe hardware accelerator is divided into two sections which are the hardware design

discussed in Section 4.1 that runs on the FPGAs fabric and the software design that runs on

the FPGAs processors and host PC (if needed). This section is dedicated to explaining the

software design that runs on the FPGAs processor and the client script that runs on the host

PC. The host script on the PC is only necessary when the Ethernet-based DICe design is

running to transmit data to the FPGA. When the USB-based DICe design is running, only

the software on the FPGAs processor is needed because all of the data is accessible locally

through the USB 3.0 port on the FPGA.

Python was used first during development because it is a great language for fast proto-

typing of software applications. Using Python enabled quick development and testing of the

client-server interaction between the host PC and the FPGA. Once the core functionality

of the script was in place, the host PC script was then migrated to C because of its faster

performance. Python was slower when compared to C at opening the images, converting

the images to the IEEE-754 format (which has since moved to the FPGA processor), and

transmitting the images; this will be shown in the results in Section 5. The move to the

C language provided to be useful when considering the development of the USB-based de-
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sign that would execute on the FPGAs processor. C provided the means to directly access

memory within the FPGA that was associated with an address. Developing a client-server

network interface in C is trivial and so is interfacing with the file system on the OS to retrieve

data. The only difficult task of developing in C was the required library called “libtiff” to

open .tif images [65]. Installing and configuring this library to work properly for this project

was a challenge. However, once this was set up and working to open and process images,

the development cycle proceeded forward. C proved to be the single language for continued

software development in that it provided all the features needed to create both the client

and server control scripts.

4.2.1 C Client Script

Starting with the Ethernet-based DICe design, the client program is initiated by running

the C script through the CLI on the host PC. When the program starts, a clock is defined that

acts as a timestamp to keep track of the total execution time for the software application.

File paths are defined as character array variables to provide the correct file directory to the

data on the host PC. A simple while-loop executes that counts all of the images located in the

directory that holds the data to get a total number of frames to be processed. This number

is useful because it will allow the control script to be aware of how many images need to be

transmitted to the FPGA and when to expect a series of computed results in return. The

C control script then opens up the Subsets.txt file that contains all of the parameter data

for the image correlation such as image height, image width, and all of the various subset

parameters. At this point, the server control script on the FPGA needs to be executed so

that it can connect with the host PC.

The host PC script then attempts to connect to the FPGAs server with the IP address

192.168.1.10 and a port number of 7. The “sys/socket” library in C is used to provide the

network interface through the use of sockets. The connection will automatically timeout

and terminate the rest of the processing of the script if a connection is not established
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within 15 seconds. If the connection is made, a print statement is displayed to the user

to notify them that a successful connection between the PC client and the FPGA server

has been established. The connection itself uses the Transmission Control Protocol (TCP)

method to send packets. TCP is used over the User Datagram Protocol (UDP) method

of connection because, while TCP is technically slower, it comes with the assurance that

packets are delivered to the receiver. TCP implements a “back and forth” communication

between the client and server which includes acknowledgments of received packets and re-

transmissions of packets that are lost. Using UDP would be faster in transmitting all of the

data for this application, but would instantly fail if just one-pixel value did not make it to

the server. Even if the server was aware that a given number of pixels were dropped during

transmission, it would be a tedious task of isolating which ones would need to be recovered.

Due to the simple nature of socket programming, C code for the functions used will not be

provided so that space is saved for more important functions.

The first thing the host PC will transmit to the FPGA is the entirety of the Subsets.txt

file so that all of the parameters can be loaded into the BRAMs. The Subsets.txt file is

opened from its file directory and a loop will go through each line to read the data into a

local variable. The Subsets.txt file is responsible for holding all the parameter data that the

image correlation process needs to operate. The file contains a unique value on each line that

represents these parameters, which are all subject to change. The first value in the file is the

width of the image, which is 232 pixels for this project. The second value is the image height

which is 448 pixels for this project. The third value is the total number of pixels per image

which is 103,936. The fourth value is the total number of bits, which is 32-bits multiplied

by the number of pixels which is 3,325,952. The fifth value determines the total number of

subsets that are defined by the user. The sixth line denotes the optimization method to be

used during the image correlation, in this case, the value is 0 which represents the gradient-

based optimization method. The optimization method chosen can be performed in either

Fast-mode which iterates over the provided subsets 25 times, or Robust-mode which iterates
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100 times over the subsets; our DICe method implements only the Fast-mode. The seventh

line denotes the correlation routine to be used during image correlation, this value is also a

0 which represents the Tracking-routine. After this, each iteration of five lines represents a

single subset. The first line in a subset definition represents the shape of the subset. If the

value in this line is a 0, then a circular subset has been defined. If the value of this line is a

1, then it represents a square subset. The second line in the subset definition is the X center

point of the subset and the third line is the Y center point. These pixel values determine

where the center of the subset will reside within the entire frame. For a circular subset,

the fourth line defines the radius of the subset and the fifth line is the value of the radius

squared. For a square subset, the fourth line defines the size of the subset in pixels and the

fifth line defines the subset half-size using the floor-rounding method.

A while-loop in the C script traverses through each line of the Subsets.txt file until it

reaches the end. The specifications provided for the DICe hardware accelerator only required

a maximum number of 14 subsets to be defined, so both the client and server C scripts have

variables that account for a total of 70 subset variables. When the end of the file has been

reached and all of the parameters have been saved into local char array variables, the client

script will then sequentially send all of the data from the Subsets.txt file to the FPGA over

the Ethernet connection. After, the client script will send a string value of “SUBSETS

DONE” that notifies the server script on the FPGA to write all of the parameter values to

BRAM and get ready to accept image data. The next step in processing for the host PC

client script is to transmit the images to the FPGA. The images used for this project are in

a Tagged Image File (.tif) file format which is used for storing high-quality graphics [65, 66].

Often, this format is used for storing images with many colors, but the focus of this project

is only on grayscale images where the value of the Red, Green, and Blue (RGB) spectrum

of each pixel is the same. The .tif image format is rather uncommon when compared to

normal image types such as .png or .jpeg. However, it is used for this project because when

high-speed cameras, like the Phantom VEO 1310, are used they produce a video output in a
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.cine format that is then split into individual .tif frames [47, 48]. The first image is opened

from the file directory that contains the frame data and a for-loop is used to iterate through

each pixel in the frame.

When each pixel has been retrieved, a comma is appended to the end of the number so

that each pixel number is not appended together. The pixel values of images range from 0

to 255 in the RGB spectrum. Because a pixel value can have a length of one, two, or three,

the use of a delimiter is needed to be able to keep the individual pixel values separated.

Because all of the images are in grayscale, only the first number from the red spectrum is

pulled because the number is identical to those in the green and blue spectrums. This project

operates on images of size 448x232 pixels which means that a total of 103,936-pixel values are

to be transmitted from the PC to the FPGA for each frame. Each of these pixel values, with

a comma appended to the end of them, is stored in a variable of type char array (because

of the commas) and is then sent to the FPGA over Ethernet by using the “send” function

from the “sockets” library in C. This will send all of the pixels over to the FPGA in as big of

packets as possible. Because the actual image of frames changes, the exact size in terms of

bytes varies per frame, but the average frame is approximately 155,000 bytes. Immediately

after the “send” function is called on the pixel data, a subsequent “send” function is called

that sends the string “END FRAME”. This notifies the server control script on the FPGA

that an entire frame of data has finished transmitting and that the client control script is

ready to transmit the next frame. When the server control script is ready for another frame,

it will transmit the string “SEND” to the host PC script to notify it to send another frame.

This process continues on for as many frames that need to be processed. It is important

to note here that the server script on the FPGA is responsible for converting each of the

received pixel values to the IEEE-754 single-precision floating-point format and writing these

values to BRAM.

When the last frame has been transmitted to the FPGA from the host PC, the C control

script will send the string “LAST” to notify the FPGA server script that the last frame has
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been sent. When the DICe hardware design has finished image correlation on the last set

of images, it sends the string “RESULTS” to the script on the host PC to notify it that it

is ready to send computed results from the image correlation. The server script will begin

to read all of the results from BRAM 5 which is connected to AXI BRAM Controller 2.

It will transmit all of the results over Ethernet to the script on the host PC script where

they will be formatted. The results in BRAM 5 are represented as 32-bit values in the

IEEE-754 single-precision floating-point format. When these values are read by the C server

script, they are automatically interpreted as decimal values that are then appended together

with commas as a delimiter. The client script then creates as many text files, labeled as

“DICe Solutions #.txt”, as there are subsets to write the solutions too, where the subset

number represents the # symbol in the file name. Upon receiving the data, the C script will

take the data, split the numbers up based on the commas, and convert the decimal number

(based on the IEEE-754 single-precision floating-point format) to scientific notation to be

written in a human-readable format in the solution files. The script then ends and reports

the total execution time to the user with a final clock timestamp that is subtracted from the

initial clock timestamp.

4.2.2 C Server Script

The Ethernet-based DICe design requires a client script to be running on the host PC

to transmit data while the server script on the FPGA receives the data and operates on it.

When running the USB-based DICe design, only the server script running on the FPGA is

required because it accesses the data it needs from a USB 3.0 port locally on the FPGA. The

only difference between the Ethernet-based server script and the USB-based server script is

how the parameter and frame data is retrieved, and how the results are saved. With the

USB-based DICe design, it is required that the proper driver is installed within the FPGAs

boot image so that the attached USB memory drive can be accessed from the CLI on the

FPGA running the Ubuntu 18.04 LTS kernel. The process for accessing the data on the
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USB in C can be shown below in Listing 4.3. The Subsets.txt file is iterated through in the

same manner as described before in the client control script and the values are saved to local

variables and written to BRAM using the “mmap” function in C.

1 // File paths to the data on the USB drive

2 char imagePath [] = "/media/usbstick/Images/";

3 char subsetPath [] = "/media/usbstick/Subsets/Subsets.txt";

4 char resultsPath [] = "/media/usbstick/Results/Results.txt";

5

6 // Verifies that the memory on the USB drive can be accessed

7 int mem_fd = open("/dev/mem", O_RDWR|O_SYNC|O_CLOEXEC);

8 if(mem_fd == -1){

9 printf("Unable to open /dev/mem");

10 return 0;

11 }

12

13 // Opens the Subsets.txt file in read mode to access the data

14 FILE *fptr;

15 if((fptr = fopen(subsetPath ,"r")) == NULL){

16 printf("Error! Could not open the file: Subsets.txt");

17 exit (1);

18 }

Listings 4.3: Reading from USB memory in C

The images located on the USB drive are accessed similarly. From this point on, the

C code that defines the USB-based server and the Ethernet-based server scripts are the

same. The only distinction between the two is the accessing of data locally via USB drive

or receiving the data from a TCP connection. When an image has been retrieved from

the USB drive, it is necessary to convert each of the pixels in the image to the IEEE-754

single-precision floating-point format before writing to BRAM. The C code used to convert

the pixel values into the proper IEEE-754 format was custom developed and can be shown

below in Listing 4.4. The process to convert each individual pixel and write them into BRAM

can be shown further below in Listing 4.5. Once the first two full frames are fully converted

to the IEEE-754 floating-point format and written into BRAM, the DICe hardware design

has all of the data it requires to begin image correlation. This process is triggered by the

C script writing to the AXI slave registers, using the same “mmap” function as before, of

the Parameters IP, the Gradients IP, and the Interface IP. After this, image correlation will
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begin within the FPGAs hardware design, which is discussed above in Chapter 4. The server

control script will then continuously read from the AXI slave register of the Gamma IP and

write new frames to the corresponding BRAM when it is signaled to do so. This process will

continue until the final frames have been written into BRAM by the server control script.

1 // Struct to define the sections of the IEEE -754 value

2 typedef union{

3 float f;

4 struct{

5 unsigned int mantissa : 23;

6 unsigned int exponent : 8;

7 unsigned int sign : 1;

8 } raw;

9 } myfloat;

10 // Function to get the binary representation of the number

11 void printBinary(int n, int i, int high_index){

12 int k;

13 for(k = i - 1; k >= 0; k--){

14 if((n >> k) & 1){

15 pixel_ieee[high_index] = ’1’;

16 }else{

17 pixel_ieee[high_index] = ’0’;

18 }

19 high_index ++;

20 }

21 }

22 // Converts the decimal number to IEEE -754 format

23 int Dec_to_IEEE(float input){

24 myfloat var;

25 var.f = input;

26 pixel_ieee [0] = ’0’+ var.raw.sign;

27 printBinary(var.raw.exponent , 8, 1);

28 printBinary(var.raw.mantissa , 23, 9);

29 pixel_ieee [32] = 0;

30 return 0;

31 }

Listings 4.4: Converting a decimal value to the IEEE-754 single-precision floating-point
format in C

Once the final frame has been sent by the server control script, the C code will continu-

ously read from the AXI slave register of the Results IP to be notified when to start collecting

the computed results. When triggered, the C server script will read from BRAM 5, which

is connected to the Results IP and AXI BRAM Controller 2, to retrieve the result values.

For the USB-based DICe design, the results will be converted from the IEEE-754 format
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1 // Read from the image file ...

2 if(TIFFReadRGBAImage(tif , w, h, raster , 0)){

3 // Iterate through the total number of pixels

4 for(int i = 0; i < npixels; i++){

5 // Retrieve each individual pixel value from the B channel

6 int pixel = (int) TIFFGetB(raster [(( width * (height -

moveDown)) - moveRight)]);

7 // Convert the pixel , in integer form , to a float

8 pixel_float = pixel;

9 // Normalize the pixel value by dividing it by 255.0

10 Norm_pixel_float = pixel_float / 255.0;

11 // Convert the resulting decimal to IEEE -754 format

12 Dec_to_IEEE(Norm_pixel_float);

13 // Convert the resulting IEEE -754 number into a binary string

14 pixel_ieee_string = &pixel_ieee;

15 // Convert the 32-bit IEEE 754 number to a decimal

16 pixel_ieee_bin =(int)strtol(pixel_ieee_string ,(char **)NULL

,2);

17 // Write the pixels to the BRAM registers

18 if(fileNum == 1){

19 BRAM_CTRL_0_REG[i] = pixel_ieee_bin;

20 }

21 else if(fileNum == 2){

22 BRAM_CTRL_1_REG[i] = pixel_ieee_bin;

23 }

24 }

25 }

Listings 4.5: Converting individual pixels to the IEEE-754 format and writing them to
BRAM in C
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to scientific notation locally on the FPGA and locally formatted into solution files that are

saved on the USB drive. The process of converting an IEEE-754 number back to decimal is

essentially the reverse process shown in Listings 4.4 and 4.5 above. For the Ethernet-based

DICe design, the results are read from BRAM, where they are automatically inferred as

decimal values, and transmitted back to the client script on the connected host PC after

they are separated with a comma as the delimiter. A similar code block is implemented on

the client control script to convert the results back to a human-readable format and placed

into text-based solution files.
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Chapter 5

Results

This chapter will present the reader with the results obtained from the development of

the DICe hardware accelerator. A variety of figures were obtained from different approaches

of creating the control scripts for the DICe hardware accelerator so that these methods can

be compared to one another. A breakdown of the DICe hardware design is presented that

shows the execution time as well as the resource utilization for the design. Results of the

hardware accelerators’ performance are showed that compare it to the DICe GUI. Figures

are provided that show the execution times for the varying amount of frames and subsets

during processing. Results are shown for the speeds of the Ethernet-based design as well as

the USB-based design. Lastly, the floating-point library that was developed for this work is

discussed to highlight the significance it has in the DICe hardware accelerator.

5.1 Python-Based Control Script Performance

The first implementation method to be discussed will be the use of Python for the con-

trol scripts that run on the workstation PC. Python was the first high-level programming

language that was used to develop the control scripts due to its ease of use that enabled the

quick development and testing of the functionality of these scripts. For a quick refresher,

the job of the control scripts is to retrieve the parameters data that is contained within the

user-defined Subsets.txt file, retrieve the images that are to be processed by the DICe hard-

ware design on the FPGA, and transmit all of this data to the FPGA by establishing a TCP

connection. The initial design of the control scripts implemented the conversion process of

each pixels intensity value within the image to the IEEE-754 single-precision floating-point

format. While this is no longer used for the final DICe hardware accelerator design, the

execution times of this process will be presented to showcase why moving this process to the

FPGAs ARM Cortex-A53 processor was necessary.

The first figure of results that are shown below in Figure 5.1 shows the total execution
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time for a simple Python script to open up a single .tif image and retrieve all of its pixel

values. This process is performed and reported because it is necessary to know how long

the Python script takes to iterate through the image to obtain each pixel intensity value.

Once all of these values are obtained, they are stored in a local variable so that they may be

transmitted over Ethernet afterward. Figure 5.1 below shows that this process takes 55.447

ms to execute, which is a substantial amount of time. This reported execution time shows

the average processing time it took to retrieve all pixel values of a single image across 10

runs. The execution time of the script that is reported in this figure, along with the rest of

the high-level based scripts, will later be compared to their C-based equivalents.

Figure 5.1: A snapshot from the PCs CLI of the Python script opening a single 448x232
frame and retrieving all of its pixel values

The second image that is shown in Figure 5.2 reports the processing time to retrieve the

pixel intensity values of one image and to transmit that data to the server on the FPGA

over a TCP-based Ethernet connection. Something to note at this point is that the image

size used for these results is a single 448x232 pixel size frame that is in .tif format. The

original image is approximately 154.9 KB in size. When the Python script iterates through

this image and transmits the pixel data to the FPGA, the total amount of data is 280 KB.

This increase of nearly 120 KB of data for the image data is the result of adding commas

after the pixel values so that they are separated by a delimiter. This delimiter allows the

server script running on the FPGA to separate these pixels into individual values. If the

pixels were all transmitted separately, the total processing time for transmission would be
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longer due to the increase in the number of packets sent. If the pixel data was sent unaltered

to the FPGA, then the server script would be unaware of which pixel values are unique

because the received data would be a concatenation of all of the pixel values. Now, the

results shown in Figure 5.2 shown an image processing time (to retrieve all pixel values) of

58.415 ms and a data transfer time of 2.356 ms. The total execution time of the script is the

sum of these execution times at 60.819 ms. Again, these numbers are the averaged results

from the execution of 10 runs. While these reported results require nearly 6 ms more time to

process, it can be seen that only 2.356 ms of that time is dedicated to transferring the image

data to the FPGA. The remaining increase in processing time is from processing the original

image; these results vary for every run which is why the average of 10 runs is computed and

reported in these figures. So with this, it can be seen that the time to retrieve the pixel

intensities from the image is time-consuming while transmitting the data is not a concern.

Figure 5.2: A snapshot from the PCs CLI of the Python script opening a single 448x232
frame, retrieving all of its pixel values, and transferring them to the ZCU104 FPGA via

Gigabit Ethernet

Figure 5.3 is comparable to Figure 5.1 in that both scripts open a single image and retrieve

all of the pixel intensity values. However, Figure 5.3 differs from the previous figure in that it
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converts each pixel it receives to the IEEE-754 single-precision floating-point format before

storing it into a local variable. This was one of the original responsibilities that the control

script needed to perform. The total execution time for this process is 788.341 ms, which

is a substantial 1,421.79% increase in execution time over just retrieving the pixel values.

While Python enabled quick implementation and testing of the control scripts functionality,

this execution time was highly undesirable and needed to be resolved to successfully create

a DICe hardware accelerator. The process for converting the pixel intensities decimal value,

which ranges between 0 and 255, to the IEEE-754 single-precision floating-point format is

shown in Listing 5.1. While this algorithm computes the correctly converted values, its

processing time was slow.

Figure 5.3: A snapshot from the PCs CLI of the Python script opening a single 448x232
frame, retrieving all of its pixel values, and converting them to IEEE-754 single-precision

floating-point format

The last Python-based result is shown in Figure 5.4 and shows the execution time to

retrieve the pixel intensity values from the image, convert them to the IEEE-754 format, and

transfer the data to the server on the FPGA via a TCP-based Ethernet connection. The

total execution time for this process was 758 ms, where 749.997 ms of time was dedicated

to converting the pixel values to the IEEE-754 format and the remaining 7.957 ms were for

transmitting the data to the server on the FPGA. Because the pixel intensity values have

been converted to the IEEE-754 format, they are longer in size. The resulting number is a
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1 # Get all of the pixel values from the image

2 allPixels = list(img.getdata (0))

3 # Loop through each pixel in the image and convert to IEEE -754 format

4 for pixel in allPixels:

5 # Normalizes the pixel value by dividing it by 255

6 pixel_normalized = pixel / float (255.0)

7 # Converts each pixel to its corresponding IEEE 754 representation

8 pow = -1

9 fraction_dec = 0

10 fraction_bin = list("00000000000000000000000")

11 n = pixel_normalized

12 # Determine the sign bit

13 if pixel_normalized >= 0:

14 sign = ’0’;

15 else:

16 sign = ’1’;

17 # Compute the exponent and mantissa

18 if pixel_normalized == 0:

19 Output_bin = "00000000000000000000000"

20 else:

21 while abs(n) < 1 or abs(n) >= 2:

22 try:

23 n = pixel_normalized / (2 ** pow)

24 except ZeroDivisionError:

25 n = 0

26 pow = pow -1

27 exp_int = pow + 1 + 127

28 exp_bin_str = str(Bits(int = exp_int , length = 8).bin)

29 fraction_dec = n - 1;

30 for i in range(0, 23):

31 temp = fraction_dec * 2

32 if temp < 1:

33 fraction_bin[i] = ’0’

34 fraction_dec = temp

35 else:

36 fraction_bin[i] = ’1’

37 fraction_dec = temp - 1

38 final_fraction = "".join(fraction_bin);

39 Output_bin = str(sign) + str(exp_bin_str) + str(final_fraction)

40 # Converts each IEEE 754 binary pixel value to decimal

41 # (represents the IEEE in 32-bit binary)

42 dec = int(Output_bin , 2)

43 # Concatenate all pixel values with a comma delimiter

44 bigString += str(dec) + ’,’

Listings 5.1: Python code for retrieving pixel intensity values from the image and
converting it to the IEEE-754 single-precision floating-point format
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32-bit binary representation of the pixel intensity, but this value is then converted to decimal

to reduce the size. The average converted number is of length 10 and is of length 11 when the

comma is added to the end of the value. Because the comma is included in the concatenated

data of the converted pixel values, the stored data is in the “char” data type which requires

one byte per character. This means, on average, a total of 11 bytes are required for each pixel

value in this format. The total amount of data that is transmitted for each image during

this process is 1007 KB. This means that using this method requires transmitting nearly 3.6

times as much data per frame on average when compared to transmitting the original pixel

values.

Figure 5.4: A snapshot from the PCs CLI of the Python script opening a single 448x232
frame, retrieving all of its pixel values, converting them to IEEE-754 single-precision

floating-point format, and transferring them to the FPGA over Gigabit Ethernet

5.2 C-Based Control Script Performance

This next section of results will follow the same format as Section 5.1 discussed above.

The key difference in these results will be that the control script implementations provided

in this section will be written using the C language instead of Python. Moving to C provided

faster processing times when computing the same algorithms that are shown in the results
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of the previous sections. The move to C also provided an easy transition when creating the

server control script that runs on the FPGAs ARM Cortex-A53 processor. Converting the

control script from Python to C presented a few challenges. The first was that opening .tif

images was not nearly as easy and required the installation of the “libtiff” library. Strict

data types had to be created for all variables that were used and the code to convert a pixel

intensity value to the IEEE-754 format needed to be redeveloped as well. The code for the

C-based program to convert pixels to the IEEE-754 format can be seen in Listing 4.4, in

Section 4.2.2 of Chapter 4.

Figure 5.5 is the first figure of results provided for this section and shows the execution

time for the C-based script to open a single image and retrieve all of the pixel intensity values.

What is remarkable about this figure, is that the total execution time that is reported is

2.734 ms, which is significantly smaller when compared to the Python-based equivalent at

55.447 ms.

Figure 5.5: A snapshot from the PCs CLI of the C script opening a single 448x232 frame
and retrieving all of its pixel values

Moving on to Figure 5.6, this figure reports the total execution time to retrieve all of the

pixel intensity values from a single frame and transmit it to the FPGA via Ethernet. The

C script uses the same socket parameters that were defined in the Python script to handle

TCP transmissions over Ethernet. The functions used to create a socket-based connection

in C were carefully evaluated to ensure that they had the same parameters that were defined
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in the Python script. The image processing time closely resembles the results shown in the

previous figure and the total transfer time of 2.693 ms is nearly identical to the reported

time in the Python-based script of 2.356 ms.

Figure 5.6: A snapshot from the PCs CLI of the C script opening a single 448x232 frame,
retrieving all of its pixel values, and transferring them to the ZCU104 FPGA via Gigabit

Ethernet

The C-based control script continues to show its processing performance capabilities with

Figure 5.7. This figure shows the total execution time to retrieve all of the pixel intensity

values from a single image and convert them to the IEEE-754 format. As reported, it

completes this task in only 20.59 ms which, when compared to the Python-based equivalent,

is over 38 times faster. The primary reason for choosing to develop the final control script

in C over Python was for this very reason. Python was beyond slow at converting pixel

intensities to their IEEE-754 format representations while the C-based script excelled at it.

Moving to the last figure of this subsection, Figure 5.8 shows the total execution time

to retrieve all pixel intensity values from a single image, convert them all to the required

IEEE-754 format, and transmit them to the server on the FPGA. The total execution time

for this process in C was 21.535 ms. When this is compared to the equivalent Python-based
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Figure 5.7: A snapshot from the PCs CLI of the C script opening a single 448x232 frame,
retrieving all of its pixel values, and converting them to IEEE-754 single-precision

floating-point format

script with a total execution time of 758 ms, it is apparent which language provides the

benefit with the C-based control script completing the same task over 35 times faster.

The consolidated results can be seen in Table 5.1. It is apparent that the C-based control

script outperforms the Python-based script in every test case provided. All of these cases are

with the control scripts implemented on a workstation PC with the following specifications:

Ubuntu 18.04 LTS, 8 GB of RAM, 251 GB of disk space, and an octa-core Intel i7-4770

CPU at 3.40 GHz. It should be noted that multiprocessing was not used for any of the test

cases for these control scripts. The average Ethernet transfer speeds from these tests will be

reported below in Section 5.4.

With all previous results pointing to the C-based control script running on the PC to

be the superior method, the code developed for the control script was slightly modified to

run on the FPGA for some additional testing. The results of Figure 5.9 and Figure 5.10

assume the same parameters of the previous control scripts in that the image data is readily

available in memory. This was tested by loading the sample image into the USB 3.0 drive

so that the FPGA could access it. Figure 5.9 shows the modified control script running on

the ZCU104 FPGAs ARM Cortex-A53 processor using PetaLinux. The script retrieves the

sample image in the USB drive, retrieves each pixel intensity value from the image, and
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Figure 5.8: A snapshot from the PCs CLI of the C script opening a single 448x232 frame,
retrieving all of its pixel values, converting them to IEEE-754 single-precision floating-point

format, and transferring them to the ZCU104 FPGA via Gigabit Ethernet

Figure 5.9: A snapshot from the FPGAs CLI of the C script opening a single 448x232
frame and retrieving all of its pixel values

stores the data in a local variable. The reported time for this process to execute was 15.92

ms which is slower than the performance achieved when running on the PC. Figure 5.10
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Table 5.1: Performance comparisons between the Python-based and C-based control scripts

Control Script Performance Comparisons (ms)

Language
IEEE

Conversion
Time

Transfer
Time

Total
Execution

Time
Python 0 0 55.447

C 0 0 2.734
Python 0 2.356 60.819

C 0 0.22 2.917
Python 788.315 0 788.341

C 20.593 0 20.722
Python 749.997 7.957 758

C 21.314 0.218 21.535

performs the same functions except converts each pixel to the IEEE-754 format. The total

execution time for this was 160.856 ms which is much slower than the performance achieved

on the PC. A major factor in this difference in performance is that the FPGAs processor

runs at a maximum speed of 1.3 GHz while the processor on the PC runs at 3.40 GHz.

Figure 5.10: A snapshot from the FPGAs CLI of the C script opening a single 448x232
frame, retrieving all of its pixel values, and converting them to IEEE-754 single-precision

floating-point format
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5.3 USB-based Design

One of the main purposes for the work that is presented in this thesis is to provide the

users of the DICe hardware accelerator with more than one way to access frame data when

running the application. By using the ZCU104 FPGA, it is possible to implement the USB

3.0 port as a method to access this data. This is beneficial for the users of DICe who already

have all of the frame data they wish to operate on ready within some memory medium. If

they copy this data to a USB-based device from the start of data collection, they can receive

significant improvements in correlation time due to the data being ready for the FPGA to

access. If the user writes the frame data to a directory within the workstation PC, they will

incur the delay of copying the large amounts of frame data over to a USB-based device before

execution on the FPGA. The USB 3.0 flash drive that was used was formatted to fat32 for

these results. This is because fat32 provided the best results in terms of reading and writing

speeds. Other formats for the USB drive were attempted, such as ext4 and NTFS, but they

did not outperform the results obtained from using the fat32 format.

Using the USB 3.0 port to access frame data is one of the best features that the user

has available to them with the DICe hardware accelerator. This is because of the incredibly

fast read speeds that this port provides the user to access the frame data. By using the

CLI that PetaLinux provides, it was possible to run accurate memory read and write tests

with the USB using the f3 package [46]. Figure 5.11 shows the read speeds from the USB

3.0 drive that is achieved on the ZCU104 FPGA. An incredible 211.29 MBps speeds were

achieved for reading from the USB drive; this is equivalent to 1690.32 Mbps, or 1.69032 Gbps

of reading speed. This is a phenomenal result in that this is the fastest method available

to transfer large amounts of frame data to the FPGA. While Ethernet transmission speeds

will be reported in the next section, the ZCU104 has a max Ethernet throughput of 1000

Mbps or 1 Gbps. The reason it is called Gigabit Ethernet is that it is limited to transmit

a Gigabit’s worth of data every second. This means that the read speeds from the USB

3.0 port are the best option for the users to transmit frame data because the frame data
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represents the large amount of data that needs to be retrieved and processed by the FPGA.

Figure 5.11: A snapshot from the FPGAs CLI of the read speeds from the USB drive on
the ZCU104 FPGA

The write speeds from the FPGA to the USB drive that is reported in Figure 5.12 show

significantly slower speeds when compared to the read speed between the USB drive and the

FPGA. This is because the FPGA has to have data that is ready to write to the USB drive,

then needs to locate the USB drive, and finally, write the values to the USB drive. Writing

to memory generally requires more power to physically write a value of 1 or 0 to memory

and the process is a bit longer when compared to reading. Reading from memory simply

needs to check if the value at a location is a 1 or a 0, whereas writing has to physically place

the data into the memory drive. While the reported speed for writing to the USB drive from

the FPGA is 11.14 MBps, which is equivalent to 89.12 Mbps, it actually does not play a

significant role in the DICe hardware accelerator. The only time that the DICe hardware

accelerator needs to write to the USB drive is to transfer its computed results to a file in the

drive so that the user has access to it. This represents a small fraction of the total processing

time of the DICe hardware design and control scripts due to the small size of data produced

from the DIC.
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Figure 5.12: A snapshot from the FPGAs CLI of the write speeds from the USB drive on
the ZCU104 FPGA

5.4 Ethernet-Based Design

The use of an Ethernet connection was the foundation for transferring frame data to the

FPGA so that the DICe hardware accelerator could execute. This project started with the

use of the 7 Series Xilinx FPGAs, specifically the Kintex-7 and the Virtex-7, which only

had Ethernet ports available to them as the best means to transfer large amounts of data.

Further on throughout the development process, it was seen that the used hardware design

to enable Ethernet on the Virtex-7 FPGA was not achievable. While an initial hardware

design was achieved when using the Kintex-7 FPGA, only a maximum Ethernet throughput

of 56 Mbps was attained. This left a huge void in the development process because there

was not a suitable way to transfer the potentially thousands of frames needed for DIC to the

FPGA.

When the ZCU104 was introduced to the development of this project, the throughput of

the Ethernet connection improved by a few orders of magnitude in under a week. The use of

the PetaLinux tools enabled a simplified approach to enable Gigabit Ethernet on the ZCU104

FPGA. With this, substantially improved Ethernet speeds were accomplished that allowed

for a practical second method of transferring frame data to the FPGA. Figure 5.13 shows a

screenshot from the host PCs CLI when transmitting data to the FPGA. When transferring
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1.1 GB of data to the FPGA from the host PC, an average speed of 941 Mbps was achieved.

This is over a 16 times performance increase when compared to the speeds achieved when

using the Kintex-7. For the first time when using the ZCU104 FPGA, transmitting thousands

of frames over Ethernet was a viable possibility.

Figure 5.13: A snapshot from the PCs CLI of the Ethernet network speed from the PC to
the ZCU104 FPGA

As shown in Figure 5.14, the Ethernet speeds when transmitting data from the FPGA

to the PC are nearly equivalent. The figure is a screenshot from the FPGAs CLI when

transmitting the same 1.1 GB of data to the PC over a TCP-based Ethernet connection.

The result of this is a bandwidth speed of 942 Mbps which is only slightly faster than

the results shown in Figure 5.13. This slight difference is simply caused by executing the

programs at different times as they both varied by about 1 Mbps of speed when ran multiple

times. This is a significant result that the FPGA has achieved because it results in reduced

time to transfer across all of the solution data to the PC. However, the bulk of the data that

needs to be transmitted is the frame data from the PC to the FPGA. While 941 Mbps is

certainly an outstanding throughput, it does not compare to the USB read speeds that are

nearly twice as fast at a throughput of 1.7 Gbps. While this comparison seems to show USB

as the optimal choice when running the DICe hardware accelerator, a user must consider

a variety of factors. To use the USB drive as the fastest method of providing the FPGA

with frame data, all of the data needs to be complete and readily available on the USB

drive. There exists a lot of circumstances where the user of DICe would need to copy all of
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the data over to a USB-based device, which takes time. The data produced by the camera

recording the frames could still be processing which means that the USB method cannot be

used. Whereas with the Ethernet-based design, the frames could be streamed over to the

FPGA as they are available which could reduce the overall amount of time performing DIC.

Figure 5.14: A snapshot from the FPGAs CLI of the Ethernet network speed from the
ZCU104 FPGA to the PC

Due to the extensive reporting on the previously used FPGAs for this project, it seemed

imperative to include a side-by-side comparison of the Ethernet speeds of the multiple FPGAs

used. Table 5.2 shows all of the FPGAs that were used during the development of this

project and how they compare in Ethernet throughput and achieved Ethernet throughput.

The primary takeaway from this table, and as previously mentioned in this thesis, is that

the Zynq UltraScale+ MPSoC FPGA contains a quad-core ARM Cortex-A53 hard processor

and a physical IP for the Ethernet interface. The 7 Series FPGAs in this table both use the

MicroBlaze soft processor and contain only HDL-based IP that is to be implemented within

the hardware design of the application to enable Ethernet connectivity. Both of these factors

proved to be severe limitations when attempting to establish Gigabit Ethernet connectivity

between the FPGAs and the host PC.
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Table 5.2: Ethernet performance comparisons between FPGAs

Ethernet Speeds (Mbps)

FPGA Processor Ethernet IP Interface
Theoretical

Speed
Actual
Speed

Virtex-7
(VC707)

MicroBlaze
AXI Ethernet

Subsystem
SGMII 1000 X

Kintex-7
(KC705)

MicroBlaze
AXI Ethernet

Lite
MII 1000 56

Zynq
UltraScale+

MPSoC
[ZCU104]

ARM
Cortex-A53

PHY RGMII 1000 950

5.5 DICe Hardware Design Performance

The most significant development that went into the DICe hardware accelerator was

with the hardware design. The hardware design that runs within the ZCU104 FPGAs fabric

is the most critical component of this project because it is responsible for performing the

digital image correlation algorithms that are present in DICe. The design used nearly all of

the available BRAM on the FPGA and a total of 7,292 lines of Verilog code were written

between all of the custom IPs. A bar graph of the resource utilization on the ZCU104 FPGA

after programming it with the DICe hardware design bitstream is provided in Figure 5.15.

Table 5.3: The available and utilized resources for the DICe hardware design on the
ZCU104 FPGA

Resource Utilization Available Utilization %
LUT 37,499 230,400 16.28
LUTRAM 2,787 101,760 2.74
FF 33,362 460,800 7.24
BRAM 279 312 89.42
URAM 96 96 100.00
DSP 11 1,728 0.64
IO 3 360 0.83
BUFG 4 544 0.74
MMCM 1 8 12.50
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Figure 5.15: A graph of the resource utilization for the DICe hardware design on the
ZCU104 FPGA

A more detailed breakdown of the utilized resource of the FPGA can be viewed in Table

5.3. This table highlights the significance of the SRAM-based memory for the DICe hardware

design with 100% URAM utilization and 89.42% BRAM utilization. Without a doubt,

working with these memory constraints was the most critical challenge that was faced when

developing the DICe hardware design. It can be seen that the other resources within the

FPGAs fabric did not come close to being considered critical. The next most used resource in

the design was the LUTs which only comes to 16.28% of the total LUTs available. DSP blocks

were scarcely used, but were implemented in the floating-point library that was developed

for this project. The total DSP utilization for each function can be seen below in Section

5.6.

Table 5.4 shows two examples of the DICe hardware accelerator in direct comparison

to the performance of the DICe GUI. Both the FPGA and DICe GUI were subjected to

the same parameters in regards to image size, subset size, and subset count. To make the

comparison even, to truly expose the hardware acceleration that is possible when targeting
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the FPGA, the images and subsets were pre-loaded into memory so that they would have

fair access times when compared to the DICe GUI that accesses all of its data locally from

the PCs internal memory. With this, a significant speedup is obtained from both results

that are running within the ZCU104 FPGA. These results show that the DICe hardware

accelerator achieved at its core design with the ability to out perform the DICe GUI. The

looming factor of these results however, is that the data was pre-loaded into the FPGAs

memory. This is temporary measure that effectively deviated around the larger problem

that this thesis attempts to express in that the FPGA cannot have a significant amount of

image data pre-loaded onto it; there must be some sort of method for data to be transferred

to the FPGA to perform consistent digital image correlation on a large source of data. Note

that the results displayed in Table 5.4 only show the execution time for two frames that have

undergone DIC. These results are simply presented to show the raw difference in execution

times between the DICe GUI and the newly developed hardware accelerator for a base case.

Table 5.4: Performance comparisons between DICe execution methods

DICe Performance Comparisons (ms)
Test Case DICe GUI DICe FPGA Speedup
2 frames (64x48), 1 subset (3x3) 16 2.5 6.4x
2 frames (448x232), 1 subset (21x21) 116 14 8.286x

Because the results shown previously in Table 5.4 only perform DIC on a single run

consisting of two frames, it does not factor in the full impact of the DIC algorithms when

subsets are applied and being correlated for each round of frames that are presented. This

presents a significant computational overhead due to the algorithms in the Gamma IP work-

ing to their fullest extent. The graph provided in Figure 5.16 shows the results of a more

real-world example when the DICe hardware accelerator operates on a range of frames and

has to consider subsets in its correlation routines. The Ethernet-based method was used for

these tests to show the worst-case scenario when running the DICe hardware accelerator.

The results of these runs, that operate on 10 to 40,000 frames and 1 to 7 subsets of varying
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sizes, accurately displays the computational overhead that is incurred when the correlation

routines have to factor in more frames and subsets. While the previously shown results for

DIC between two frames with one subset of size 21x21 pixels show a total execution time of

14 ms, this time is significantly impacted by the fact the correlation routines do not have

to compute the change in frames and subsets for more rounds of DIC. Up until the 10,000

frame marker in the graph, the results for all runs are logarithmic which is a good sign that

shows it is possible to achieve better performance through modifications to the hardware

design.

Figure 5.16: A line graph that shows the total execution time of the DICe hardware
accelerator in reference to the number of frames, the number of subsets, and the size of the

subsets

The bar graph displayed in Figure 5.17 uses the same test runs as the previous graph, but

it emphasizes the total execution time required for each frame. What this graph presents

well is that as the subset size increases and as the number of subsets increase, the processing
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time increases with it. The jump from a 21x21 pixel sized subset to a 41x41 pixel sized

subset is a four times increase in area to perform correlation over. At the core of the DICe

algorithms that were implemented within the hardware design, they focus on tracking the

differences between each subset from frame to frame. So as the number of subsets increases,

more iterations are required within the design to correlate the subsets. As the size of the

subset is increased, the more area and pixels the Subset Coordinates IP, Gradients IP, and

Gamma IP are required to iterate over to accurately compute the distinctions between each

run.

Figure 5.17: A bar graph that shows the total execution time per frame of the DICe
hardware accelerator in reference to the number of frames, the number of subsets, and the

size of the subsets

5.6 Floating-Point Library Performance

The last major contribution that this thesis presents is a novel library of FSM-based

floating-point arithmetic functions on FPGAs [21]. This library was developed specifically

for this project due to the required functions that the DICe algorithms implemented. Pre-

vious works have created similar libraries for arithmetic operations on FPGAs, but they
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either utilized too much of the FPGAs BRAM resources or they were based on a pipelined

architecture. Each of these cases was unsuitable for the DICe hardware accelerator because

the algorithms are heavily sequential and the majority of the FPGAs BRAM was used for

frame and results buffering. This work was recognized at the 2019 ReConFig conference as

a long paper and has since been published in the IEEEXplore catalog.

Each function created is based on an FSM architecture that allows for specific operations

to happen in individual states that take one clock cycle to execute. Due to the sequential

nature of the DICe algorithms, the goal for each of these functions was to have them execute

as fast as possible so that another value could be processed immediately after. This differs

from a pipelined architecture because in a pipelined system a value would be read into the

first state and by the time the first state is finished executing then a new value would proceed

to the first state while the second state operates on the first value. This architecture was

not ideal because the DICe algorithms contain many dependencies, values that depend on

previously computed values. Figure 5.18 shows a simple flow diagram that traces through the

states of the addition function. Similar diagrams can be found in [21] for the multiplication

and division functions along with resource utilization of each function within the library.

The results and the development of this library will not be reported extensively here

because they can be found in the published paper [21]. The last set of results that will

be presented in this library are shown in Figure 5.19. These consolidated bar graphs show

how the newly developed FSM-based library compares to the related works in the research

area of floating-point operations on FPGAs. Only the four basic arithmetic functions (ad-

dition, subtraction, multiplication, and division) are shown in these graphs that compare

the total delay, number of LUTs, and number of FFs. While this library does include a few

trigonometric functions (sine, cosine, arcsine, and arccosine), they are not compared to any

other related works simply because they were hard to find. Even the Xilinx Floating-Point

Operator IP does not support floating-point trigonometric operations. This is another one

of the leading factors that led to the development of this library, to assure that we had all of
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Figure 5.18: A block diagram of the addition function in the floating-point library

the required functions to properly implement the DICe algorithms within the hardware de-

sign. These graphs accurately show how well the FSM-based library compares to the related

works in terms of performance and resources. The development of this library was one of the

primary reasons the DICe hardware accelerator had success. Many of the algorithms found

within DICe require a large number of mathematical operations that execute repetitively,

so creating functions to support these sequential operations was key to the success of the

application.
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Figure 5.19: Comparison of the proposed and the previous basic floating-point arithmetic
functions (a) Delay (b) LUTs (c) FFs
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Chapter 6

Discussion

This section provides a discussion on some topics that were not covered in previous

chapters as well as potential future works. This project was complex and time-consuming to

develop due to the density of the DICe source code, the learning curve required to develop

hardware-based applications, and understanding image processing. The DICe hardware

accelerator evolved many times as more knowledge was gained from the DICe source code

and the hardware that was used. The biggest evolution of this project, and one this thesis

highlights below in Section 6.1, is the use of the PetaLinux tools to create a Linux-based

kernel on the ZCU104 FPGA. Using PetaLinux drastically changed the way this project was

approached and brought several significant improvements to the design and performance of

the application. The previous method of using the lwIP TCP/IP stack to implement the

Ethernet interface was clunky, slow, and error-prone when programmed onto the MicroBlaze

soft-processor. The complexities of this project also led to a variety of challenges that will be

discussed below in Section 6.2. From working with 32-bit floating-point numbers in Python-

based and C-based control scripts to scaling up the design to support multiple frames and

subsets when migrating between the KC705, VC707, and ZCU104 FPGAs, this project had

many complex problems that needed to be solved before the application design progressed.

6.1 PetaLinux vs. lwIP

When development for this project started the only two FPGAs that were available were

the Kintex-7 (KC705) and the Virtex-7 (VC707). These FPGAs do not contain a PS side

like the ZCU104 board does; this means no hard processors, GPUs, or hard IP [8–10]. The

KC705 and VC707 were challenging to work with because every I/O port that was needed

for use had to be manually setup and configured within Vivado before synthesis and writing

the bitstream. These FPGAs leverage a soft processor known as the MicroBlaze to act as

the central control for a design. With these FPGAs, work on the core of the hardware
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design was able to continue at a steady pace. The biggest set back that was faced with

these boards was designing a functioning hardware design that supported Ethernet I/O. A

working Ethernet design was finally established after months of problem-solving, but only

on the KC705 FPGA. Once this step was achieved, the next step was determining how to

interface with the Ethernet port. This is where the lwIP stack comes into play.

The lwIP stack is an open-source TCP/IP stack that is designed for use with embedded

systems [57–59]. Many manufactures, like Xilinx, use the lwIP stack for their systems to

provide a full TCP/IP stack that enables Ethernet communications while reducing the num-

ber of resources that standard stacks use. At its start, this project utilized the lwIP stack

because it was available as an example in the Vivado SDK and also because it was one of

two methods to provide a functioning TCP/IP stack to the FPGA. The Vivado SDK tool

provided a method to target the MicroBlaze soft processor with C code to implement the

lwIP stack. This provided a working template that could then be modified to suit the needs

of this application. Using the lwIP stack started with a simple echo server example that

communicated with a Python client on the workstation PC.

Once the fundamentals of this code were fully understood, both scripts were then modified

to handle the transferring of images. The PC-side Python script was responsible for accessing

the images, transmitting the pixel values over Ethernet to the FPGA-based server, and

handling the handshaking between the PC and FPGA to delegate when new frames should

be sent and when results were being received. The FPGA-based server was responsible for

receiving every pixel value for each image, converting the pixel values to 32-bit IEEE-754

single-precision floating-point format [22], and writing these values to the corresponding

BRAM so that the hardware design could act on the data. The FPGA-based server-side was

also responsible for generating start and stop signals to individual custom IPs to coordinate

the image processing when new frames were received. Lastly, the FPGA-based server-side

would be notified from the custom IPs when the image correlation was finished so that it

could read the computed results from the BRAM and send them back to the workstation
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PC for formatting.

The process of using the lwIP stack to transmit data between the PC and the FPGA

worked, but poorly. After extensive modifications to the lwIP server parameters that compile

into the Board Support Package (BSP) file, the maximum Ethernet speed that was achieved

using the Kintex-7 FPGA was 56 Mbps. While disappointingly slow when compared to the

maximum possible Ethernet speed this board is capable of at 1000 Mbps, it was all that was

available at the time for this project. An extensive amount of work went into modifying the

hardware design for the soft Ethernet IPs and modifying the lwIP settings that ultimately

configured the Ethernet interface that was used. On top of the slow Ethernet speeds, the

modified C file that represented the server on the FPGA was problematic in various ways.

Initially, the C file provided the infrastructure that was needed to establish communication

via Ethernet between the PC and the FPGA. Upon further development, it became a barrier

rather than an access point for our data. When a high volume of frame data was received by

the server, it had a hard time keeping up with processing. This is because the MicroBlaze soft

processor was responsible for running the lwIP stack to receive the frame data, converting all

103,936 pixels from every image to 32-bit IEEE-754 single-precision floating-point format,

writing the data to BRAM, and starting on the next frame. To simply put it, the MicroBlaze

core was over-exploited due to its ability to run C code.

The complication with the MicroBlaze processor led to a handful of issues that were

experienced on the server-side of the FPGA. The most common theme was timing issues.

The C script ran into timing issues when trying to receive frame data, convert pixels to write

to BRAM, and communicating with the custom IPs. The clue that led to the discovery of

the MicroBlaze processor being overused was that by adding simple print statements to the

C script, that would print out to the connected serial port on the PC, seemed to resolve a

variety of timing issues. This is because a standard print statement takes a long time. After

all, the code needs to process and after it has to display the output to the user through

the terminal. By adding these print statements to the C script during times of intensive
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processing, it essentially added a time delay to the program that allowed the MicroBlaze

processor to catch up on its processing. However, by adding these time delays to one of

the primary control scripts, the overall computation time for the image correlation was

drastically increased.

Of the many issues faced with the lwIP, the biggest barrier that was faced was the process

of converting the individual pixels in an image to the IEEE-754 single-precision floating-point

format. Originally, this computationally intensive process was performed on the workstation

PC with the Python client script. Python was used because it is a great language for quick

scripting and testing of programs. With a handful of lines of code, the Python script was

able to open a .tif image, iterate through each pixel in the image, and convert each one

to the IEEE-754 single-precision floating-point format to send to the FPGA-based server.

However, this code effectively turned a maximum three-digit number into a 32 digit number,

which in turn is approximately 10.6 times more data to transfer to the FPGA per image.

A temporary solution was to convert this 32-bit binary number into a decimal number. For

example, if a pixel value is 100 (pixel values range between 0 and 255), it then needs to

be normalized by dividing the pixel value by 255 which equals 0.392156863 in this case.

This number, 0.392156863, when converted to the IEEE-754 single-precision floating-point

format, is equal to the following 32-bit number “00111110110010001100100011001001”.

Now, this binary number when converted to decimal equals 1,053,345,993. The difference

here is that the 32-bit binary number takes an entire byte for each digit which means that

it is equal to 32 bytes that are transmitted per pixel because they are sent using the “char”

datatype so the required commas to separate them can be added. When the 32-bit binary

number is converted into a decimal number it only requires a maximum of 10 digits which

is equal to 10 bytes (each “char” is a byte) of data to be transferred per pixel. When the

decimal number of 1,053,345,993 is transferred to the FPGA and written into BRAM, which

is composed of an array of 32-bit registers, it is automatically represented in its binary format

which is the original 32-bit IEEE-754 single-precision floating-point format that is needed
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of “00111110110010001100100011001001”. This method of transmitting a decimal number,

that ultimately represents a 32-bit binary number, uses approximately 3.2 times more data

per pixel than sending the original three-digit pixel value. While this is an increase in the

amount of data sent, it relieves the MicroBlaze soft processor of having to convert each pixel

value for each image it receives. This trade-off ultimately pushed more of the processing

load onto the PC that transmits the image data but allowed the MicroBlaze processor to

execute its remaining tasks flawlessly. Of course, this issue is bigger when realizing that the

maximum transmission rate of the Ethernet cable was 56 Mbps.

When taking a step back from this method, it was obvious that the DICe hardware

accelerator would not be much of an accelerator at all. While the image correlation time was

improved with the hardware design that was programmed into the FPGAs fabric, the time

required to pre-process images and transmit them to the KC705 proved to be too costly.

At this point, the idea of using the USB port was never considered due to the high cost in

engineering time it took to develop a working Ethernet port and because neither the Kintex-

7 or the Virtex-7 had USB ports that were capable of the USB 2.0 or 3.0 standards. After

detailing the list of problems that were faced during the development process in a formal

report, the proposed problem and solution were relatively simple. The FPGAs used for this

period of development were unsuitable for the task that was presented and the solution was

to take our existing design and target a new FPGA that could meet the requirements for

this project.

Enter the purchase of the Zynq UltraScale+ MPSoC (ZCU104) FPGA from Xilinx. This

FPGA came equipped with 1 Gbps Ethernet, USB 3.0, a quad-core ARM Cortex-A53 pro-

cessor, a dual-core ARM Cortex-R5 real-time processor, and an ARM Mali-400 MP2 GPU

[8]. The ZCU104, when compared to the KC705, has twice as much BRAM, twice as many

Digital Signal Processing (DSP) blocks, and 1.546 times as many logic cells [8, 10]. To sim-

ply put it, the ZCU104 FPGA blew the previously used FPGAs out of the water in terms

of capability and available resources. Eager to put this new equipment to use, the original
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Verilog-based DICe hardware design was then minimally modified to target the new FPGA

and programmed to do so. With so many new capabilities, the next few weeks were spent

on researching and understanding exactly what this FPGA was capable of so that the DICe

design could maximize this potential.

The first step was to evaluate the I/O ports in terms of data access to the images that

needed to be processed. The ZCU104 immediately provided two ports, USB 3.0 and Gigabit

Ethernet, both of which are capable of the data transmission this project required. Both

options were explored extensively before the decision was made to develop a design for both.

The reasoning behind this is that the ZCU104 FPGA did not require extensive hardware

designs in the FPGA fabric to access these I/O ports. The ZCU104 has Physical (PHY) IP on

the board that gives the ARM processors direct access to these ports. This hardware-based

approach was a significant advantage over the KC705 and VC707 where the I/O ports needed

to be manually configured with soft IP within the hardware design. While the decision to

use both I/O ports seems counterproductive given that USB 3.0 can transmit at speeds of 5

Gbps and the Gigabit Ethernet port is only capable of 1 Gbps, both options were valuable in

terms of the users at Honeywell who oversaw the original statement of work. They reasoned

that sometimes cameras are in-use and need to instantly offload images for processing via

Ethernet to get results as quickly as possible. Other times, the cameras record over a long

duration and the image data collected is stored within some memory medium, such as an

external hard drive.

The second step was to determine what software intervention would be needed to access

the memory on the FPGA so that it could successfully be written to and read from, and

how to properly access the USB and Ethernet I/O ports. After a short amount of time,

the answer was glaringly obvious that the solution was to use PetaLinux. PetaLinux is a

tool provided by Xilinx to deploy Linux-based solutions on its FPGAs [11, 12, 28]. The

tool provides the infrastructure to deploy a CLI, application templates, device drivers, a

variety of libraries, and a bootable system image on their FPGAs. Xilinx provides plenty of
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documentation on how to use this tool to get the ZCU104 FPGA to boot with a Linux-based

kernel. The kernel of choice for this project was Ubuntu 18.04 LTS because of its familiarity.

In under a week, the SD card was prepped with the bootable image and Linux-kernel to

run on the FPGA. This tool immediately provided the drivers to access the USB 3.0 and

Gigabit Ethernet I/O ports. A problem that previously took months of work and effort to

develop was setup and running in a fraction of the time. Testing the Ethernet port im-

mediately yielded increased speeds up 950 Mbps, nearly 17 times more throughput when

compared to the speeds achieved on the KC705. The kernel allowed for the installation of

libraries and compilers to configure the ARM processor to compile and run C code. This

enabled the deployment of the C control scripts locally on the FPGA whereas previously

the control scripts were deployed on the workstation PC and had to transmit a variety of

acknowledgment signals to the FPGA to proceed with processing. The quad-core ARM

Cortex-A53 was leveraged to its fullest extent by creating a C script that utilized multipro-

cessing to pre-process frames before they needed to be written to BRAM. The struggle to

access the FPGAs memory was significantly reduced by using a C function called mmap to

locate and access available memory in the hardware design.

The PetaLinux tool provided every feature, library, and mechanism that was needed

to fully utilize the hardware on the ZCU104 FPGA in a short amount of time. Low-level

hardware designs that were previously needed to activate these features suddenly turned into

a high-level software code that was far more familiar. Development and testing time was

drastically reduced by the ability to locally compile and run C code on the FPGA without

the need to resynthesize and reprogram the FPGA. With the functioning hardware design

already programmed into the FPGA fabric and the ARM processor booting up the Ubuntu

kernel that is accessed through the serial port with the CLI, the time to test and deploy

changes to the high-level control scripts running on the ARM processor were minuscule.

The drivers needed to access the Ethernet and USB ports were enabled with the simple

click of a button, literally. Ultimately, the move to the Zynq UltraScale+ MPSoC FPGA
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unlocked a plethora of features and abilities that were not previously available. In a short

amount of time, more progress was accomplished with the deployment and testing of the

DICe hardware design than was in months of work with the KC705 or VC707 FPGAs. The

ZCU104 FPGA coupled with the PetaLinux tool provided a platform that has significantly

improved the quality of the work presented in this thesis.

6.2 Challenges

When creating the DICe hardware accelerator a variety of challenges were experienced

which this section hopes to expand on. The first challenge was dissecting the DICe source

code, which is composed of nearly 100 C++ files. Navigating these files and their order of

execution was a massive task to undertake. The code needed to be executed so that it was

possible to trace through its execution to track down key functions. This process alone took

weeks of analysis to determine which functions were called and when. To successfully trace

through the code, the DICe GUI could not be used and the DICe source code needed to be

compiled from scratch. This in itself was a difficult task due to the minimal documentation

provided on the topic and the old operating systems used to originally build the source code.

Dozens of library packages were required to be installed on the OS of the host PC. Even

with this accomplished, using debuggers and step-through methods to analyze the code only

raised more questions than were answered. This challenge was compounded by the fact

that the DICe source code is updated monthly. Only after working closely with the lead

developer of DICe, Dan Turner of Sandia National Laboratories were the key functions of

DICe revealed. The code consisted of the following functions to port over to Verilog: com-

puteUpdateFast(), initial guess(), initialize guess 4(), initialize(), interpolate bilinear(), in-

terpolate grad x bilinear(), interpolate grad y bilinear(), gamma (), mean(), residuals aff(),

map to u v theta aff(), map aff(), and test for convergence aff() [6]. The details of these

implemented functions are explained in Section 4.1.9.

The next challenge to solve was how to efficiently transfer data across the developed
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system. The original problem of creating the DICe hardware accelerator was how to deal

with the vast amount of data that is produced from the high-speed cameras that are needed

to be processed. The only sensible option for transferring the frame data to the FPGA was

by using a Gigabit Ethernet connection between the host PC that stores the data and the

FPGA for processing. This problem in itself took months of development to begin to transfer

data over Ethernet at all. Three variations of Xilinx FPGAs were used with only the ZCU104

board providing the necessary speeds to transmit such a high volume of data. Ethernet was

successful on the KC705 FPGA, but only up to a speed of 56 Mbps which was far too slow.

Only once the option of using the ZCU104 FPGA was available was using USB 3.0 to transfer

data considered. This thesis explores the differences of the DICe hardware accelerator in

terms of the USB-based and Gigabit Ethernet-based DICe designs. Even once Ethernet

communication was established, it was not an easy process to unlock its full potential. The

lwIP echo server provided by the Vivado SDK enabled the use of Ethernet but, after countless

modifications over months of work, the Gigabit Ethernet was never achieved. Only once the

option of using the PetaLinux tools was explored was Gigabit Ethernet available to the

FPGA, along with USB 3.0 which previously was completely unavailable. Once the primary

method of transferring data to the FPGA was implemented, it still left the challenge of how

to transfer data from the FPGAs PS side to the PL side. The data received via the I/O

ports required the use of the FPGAs provided processor. The core of the DICe hardware

accelerator lived in the FPGAs PL side. To connect these two sides, two primary methods

were used. The first was the implementation of the AXI slave registers within each custom

IP developed within the hardware design. These registers were provided addresses from

the AXI bus interface within the systems hardware design which meant that the values in

those registers, which could be written to from the IPs themselves, could also be read and

written too from the control scripts. The second method was with the control scripts’ ability

to leverage the “mmap” function in C to write to available address space defined by the

Linux-based kernel.

116



Once the challenge of system-wide communication was established, another one presented

itself. With direct communication between the FPGAs PS and PL side now available, how

the DICe application would resume processing after the first correlation has started became

a consideration. This execution flow required modifications within the hardware design of

every individual custom-built IPs and to the software designs that ran in the client and server

control scripts. Several acknowledgment signals were programmed into both the software and

hardware designs of the application to notify the FPGAs PS and PL sides that another image

should be sent and written to BRAM, when an IP should start and stop its execution, and

when the correlation was finished for all provided frames. The implementation of these

acknowledgment signals was time-consuming to perfect based on the time it takes to finish

a round of image correlation, to send a frame to the FPGA, or to convert the frame to

the IEEE-754 format. With this problem resolved through extensive development, some

problems that are inherent to the DICe software were unable to be completed. One of such

problems was to give users the ability to place subsets on the frame from a GUI. Currently,

all of the subset definitions need to be defined in the Subsets.txt file for them to be applied

to the image correlation routines. However, it is difficult for users to look at an image and

inherently know that a subset needs to be placed at a given X and Y pixel-based center

point of size Z. This problem was overlooked in the short-term development of the DICe

hardware accelerator because users can still work with the DICe GUI to provide them with

subset definitions.

Lastly, the most significant challenge faced during the development of the DICe hardware

accelerator was the limited amount of BRAM resources on all FPGAs used for this project.

BRAM was by far the most crucial resource in the DICe hardware design because each

BRAM block is responsible for buffering the frame data and the computed data for the

gradients and subsets of an image. Developing around this constraint resulted in a 448x232

sized frame to be the largest image size eligible to be processed. The consequence of this

was the DICe hardware accelerator processing images four times smaller than the required
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image size of 896x464 that was defined in the statement of work for this project. While the

DRAM resource was abundantly available, the reading and writing access times to DRAM

proved to be too slow to keep up with the hardware accelerator which resulted in timing

faults.

6.3 Future Work

This project has many reasons to explore future work due to how dense and complex the

source code for DICe is. The first avenue to pursue would be to develop the DICe hardware

accelerator such that it retains all of the features this GUI has. Based on the requirements

this project was given, the DICe hardware accelerator that was developed for this project

only runs one analysis mode that focuses on tracking. The DICe GUI has two other analysis

modes that could be explored for the hardware-accelerated design. These analysis modes

are subset-based full-field and global. Paired with these analysis modes are the additional

optimization and correlation methods that come in simplex and robust. These analysis

modes were not developed into the DICe hardware accelerator because they were unused by

Honeywell that provided us with a statement of work for development. Their sole focus was

on the implementation of the tracking analysis mode which is what this project uses.

There exist several features that DICe is capable of but that are not implemented in this

work. The DICe GUI supports image obstructions while this implementation does not. This

feature allows the user to select regions of the image that are obstructing the movement

within the frame. For example, a frame may have a component such as a gear that spins,

but a metal mounting rack for the gear could cover up a section of the frame that blocks

a portion of the spinning gear. This feature allows the user to get more precise results;

an example of this feature is shown in Figure 6.1. Another feature that could be further

developed as future work would be the subsets. Currently, the design explained in this work

only supports circular and square subset shapes. The DICe GUI allows the user to view an

image and create their subset shape that is uniquely tailored to the content in the frame. The
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subsets could also be improved to support a greater quantity and a larger size. Currently,

this design only allows for a max subset size of 41x41 pixels and a max number of 14 subsets,

these were based on the given requirements.

Figure 6.1: A graphical representation of an obstruction within the frames in DICe [6]

One of the given requirements that were unmet for this project was the size of the

images used. The DICe design in this work supports a frame of the size 448x232 pixels

but needed to support a frame size of 896x464 pixels. This means that the DICe hardware

accelerator only supports an image size that is one-fourth the size of the size specified in

the requirements. The reason for this shortcoming was simply due to the lack of BRAM

resources. The hardware design for this project utilizes nearly 100% of the available BRAM

that ultimately restricted the image size to be stored locally on the FPGA to two 448x232

sized images. Two frames are needed to be stored on the FPGA because one frame is the

reference frame and the other is the deformed frame. These two frames are needed so that

the algorithms used in DICe can compare two images to compute the results.

A factor that could greatly improve the speed of the DICe hardware accelerator would

be the use of 10 Gbps Ethernet speeds. The hardware design developed for this project

utilizes 1 Gbps Ethernet speeds, although tests show this to be closer to 950 Mbps. Faster
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Ethernet speeds would allow the throughput to be greatly increased when transferring frame

data from the PC to the FPGA for processing. This option was unavailable during the

development cycle of this project due to the equipment used. The ZCU104 FPGA supports

tri-speed Ethernet which allows for support of 10/100/1000 Mbps Ethernet speeds [8]. The

workstation PC used to transfer data to the FPGA contains an Intel Corporation Ethernet

Connection I217-LM (rev 04) Ethernet controller that only supports 1 Gbps transfer rates.

The use of this equipment led to a maximum Ethernet rate of 1 Gbps for this project.

With more development time available for this project, it would be possible to pipeline

portions of the hardware design, both IPs and the code within them. As development

continued for this project, portions of code were recognized and marked to be reviewed at

a later date to explore the potential of pipelining the code. On a larger scale, some of

the custom IPs that were developed have been marked as well due to their potential in

pipelining with other IPs that currently run sequentially. When developing this project, the

primary objective was to create a functioning DICe hardware accelerator that met the give

requirements. While the possibility of a speedup through pipelining was recognized, it was

never acted on due to the numerous other features and priorities that were needed for this

application.
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Chapter 7

Conclusion

The work in this thesis presented a hardware accelerator that targeted FPGAs for the

DICe application. The open-source code for DICe allowed for the core functions and al-

gorithms to be ported from C++ to Verilog so that the ZCU104 FPGAs CLBs could be

targeted. By programming the core DICe algorithms to hardware, the performance of the

application increased that enables faster DIC processing. To summarize, the DICe hardware

accelerator that was presented in this thesis contained the following contributions:

1. The first hardware accelerator for DICe

2. A DICe design for both USB-based and Ethernet-based frame access for user flexibility

3. A novel low-latency method for basic arithmetic and trigonometric functions in single-

precision IEEE-754 standard format [21]

While much future work is needed to make the DICe hardware accelerator a full function-

ing version of DICe, the work from this project lays the foundation for future development

and showcases the performance enhancements that are possible when targeting FPGAs for a

complete DIC application. This thesis presents the many design challenges that were faced

throughout the development of the DICe hardware accelerator and provides a history of

the previous methods that were used for the creation of this application to provide a road

map for future development. The DICe hardware accelerator achieves its goal of enhanc-

ing the performance of the DICe application and provides user flexibility with two methods

for frame access. The USB-based design allows users to operate on their available data to

achieve results fast, while the Ethernet-based design provides the framework for DICe to

act as a “bump-in-the-wire” solution for DIC processing. Lastly, the development of the

library of floating-point functions for this project has proved to be of value to the academic

community due to its novel design, increased performance, and low resource utilization.
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