
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Graduate Theses and Dissertations

5-2020

Cybersecurity Methods for Grid-Connected Power Electronics Cybersecurity Methods for Grid-Connected Power Electronics

Stephen Joe Moquin
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/etd

 Part of the Electrical and Electronics Commons, Power and Energy Commons, and the Systems

Architecture Commons

Citation Citation
Moquin, S. J. (2020). Cybersecurity Methods for Grid-Connected Power Electronics. Graduate Theses and
Dissertations Retrieved from https://scholarworks.uark.edu/etd/3680

This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion
in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more
information, please contact scholar@uark.edu, uarepos@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F3680&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=scholarworks.uark.edu%2Fetd%2F3680&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/274?utm_source=scholarworks.uark.edu%2Fetd%2F3680&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/144?utm_source=scholarworks.uark.edu%2Fetd%2F3680&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/144?utm_source=scholarworks.uark.edu%2Fetd%2F3680&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/3680?utm_source=scholarworks.uark.edu%2Fetd%2F3680&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20uarepos@uark.edu

Cybersecurity Methods for Grid-Connected Power Electronics

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Electrical Engineering

by

Stephen Joe Moquin

Auburn University

Bachelor of Science in Philosophy, 2009

University of Arkansas

Bachelor of Science in Electrical Engineering, 2017

May 2020

University of Arkansas

This thesis is approved for recommendation to the Graduate Council.

H. Alan Mantooth, Ph.D.

Thesis Director

Jia Di, Ph.D.

Committee Member

Roy McCann, Ph.D.

Committee Member

Yue Zhao, Ph.D.

Committee Member

Chris Farnell

Committee Member

Abstract

 The present work shows a secure-by-design process, defense-in-depth method, and security

techniques for a secure distributed energy resource. The distributed energy resource is a

cybersecure, solar inverter and battery energy storage system prototype, collectively called the

Cybersecure Power Router. Consideration is given to the use of the Smart Green Power Node for

a foundation of the present work. Metrics for controller security are investigated to evaluate

firmware security techniques. The prototype's ability to mitigate, respond to, and recover from

firmware integrity degradation is examined. The prototype shows many working security

techniques within the context of a grid-connected, distributed energy resource. Further work is

expected in the Cybersecure Power Router project. Consideration is also provided for the

migration of the present research and the Smart Green Power Node to realize a pre-production

prototype.

©2020 by Stephen Joe Moquin

All Rights Reserved

Acknowledgements

 I would like to thank my advisor, Dr. Alan Mantooth, for taking a chance on me, affording

many lessons on leadership, and the opportunity to participate in the environment he has so

diligently cultivated over the years. It is an honor to work in the Power Mixed-Signal Computer

Aided Design research group. Dr. Jia Di, Dr. Roy McCann, and Dr. Yue Zhao are owed much

thanks for their advising and contributions to the success of my academic career. I owe a great deal

to Chris Farnell, and have benefitted greatly from the years of mentoring and friendship he has

provided me. The present work would not be possible without the edifice of work Chris Farnell

has constructed, and the foundations laid by Dr. Mantooth and the fellow research faculty of the

University of Arkansas. I am thankful for my teammates SangYun Kim and Nicholas Blair. Dr.

Shannon Davis, Beth Benham, Karin Alvarado, Jamie Stafford, Cindy Pickney, Sharon Brasko,

Connie Howard, and Tracey Long are owed thanks for their care and administration. Eric den

Boer, Jeff Knox, and Mike Steger are owed thanks for their practical wisdom in life and in research.

I am thankful for the support of my past and present fellow graduate students: Haider Mhiesan,

Hamdi Albunashee, Haoyan Liu, Yuzhi Zhang, Janviere Umuhoza, Shuang Zhao, Yusi Liu, Sayan

Seal, Andrea Wallace, and Audrey Dearien. Finally, I’d like to thank the Department of Energy

and industrial partners who contributed to the Secure Evolvable Energy Delivery Systems research

center for the funding of both the work and researchers of the Cybersecure Power Router.

Table of Contents

Chapter 1 - Introduction .. 1

Chapter 2 - Technical Background ... 5

Chapter 3 - Cybersecure Power Router .. 13

3.1 System Description ... 13

3.2 Power Electronics ... 16

3.3 Digital Signal Processor Board ... 19

3.4 Complex Programmable Logic Device Board .. 22

3.5 Signal Splitter.. 26

3.6 Hardware Authentication Module... 27

3.7 BeagleBone Black ... 29

3.8 Test Bed .. 30

3.9 Power Flow ... 30

3.10 Data Flow .. 31

3.11 Control Multiplexing .. 33

3.12 Firmware and Boot Management.. 36

3.13 Hardware Authentication .. 37

3.14 Submodule Encrypted Communication .. 40

3.15 Hardware Protections .. 41

3.16 Display .. 42

Chapter 4 - Results .. 44

Chapter 5 - Future Work ... 50

5.1 Multi-Mission Controls ... 50

5.2 SGPN and CSPR Integration and Completion.. 51

Chapter 6 - Conclusion ... 55

References ... 56

Appendix ... 61

Appendix A: Hardware and Software Design Details ... 61

Appendix B: EEPROM_WRITE_PASSWORD .. 67

Appendix C: CSPR_V7.lpf ... 69

Appendix D: hardware_protections.vhd ... 75

Appendix E: CSPR_MODULES.vhdl .. 76

Appendix F: top.vhdl .. 131

List of Figures

Fig. 1. Design Inventory for Distributed Energy Resource .. 2

Fig. 2: Cost/Performance regions (left) for various security solutions (right) 8

Fig. 3. Cybersecure Power Router prototype .. 13

Fig. 4. Block diagram (left) and figure (right) of Cybersecure Power Router prototype 14

Fig. 5. Minimal configuration of Cybersecure Power Router prototype 15

Fig. 6. Asynchronous buck converter schematic of Power Electronics Evaluation Board of the

UCB project .. 16

Fig. 7. Asynchronous boost converter schematic of Power Electronics Evaluation Board of the

UCB project .. 17

Fig. 8. 3-Phase inverter filter and current sensing schematic of Power Electronics Evaluation

Board of the UCB project ... 17

Fig. 9. 3-Phase inverter/rectifier switching stage schematic of Power Electronics Evaluation

Board of UCB project ... 18

Fig. 10. Power Electronics Evaluation Unified Controller Board, with Signal Splitter and

Hardware Authentication Module, used in Cybersecure Power Router prototype 19

Fig. 11. USB to UART schematic of Digital Signal Processor board of the UCB project 20

Fig. 12. DIMM pinout of Digital Signal Processor board of the UCB project 21

Fig. 13. Majority of analog and digital I/O used by Digital Signal Processor board of UCB

project ... 22

Fig. 14. IDCs in Complex Programmable Logic Device Unified Controller Board 23

Fig. 15. PCB layout of Complex Programmable Logic Device board of UCB project 25

Fig. 16. Fabricated Complex Programmable Logic Device board of UCB project used in

Cybersecure Power Router prototype ... 26

Fig. 17. Complete schematic of Signal Splitter .. 27

Fig. 18. Complete schematic of Hardware Authentication Module ... 28

Fig. 19. Hardware Authentication Module used in Cybersecure Power Router prototype 28

Fig. 20. BeagleBone Black ... 29

Fig. 21. Block diagram of testbed used in Cybersecure Power Router project 30

Fig. 22. Simplified block diagram of grid-connected power flow capabilities of UCB hardware

and Cybersecure Power Router ... 31

Fig. 23. Block diagram of clock generation within Complex Programmable Logic Device of the

Cybersecure Power Router ... 32

Fig. 24. Block diagram of data bus controller within Complex Programmable Logic Device of

the Cybersecure Power Router .. 33

Fig. 25 .Block diagram of serial interface within Complex Programmable Logic Device of the

Cybersecure Power Router ... 33

Fig. 26. Firmware code snippet to generate heartbeat from Digital Signal Processors 34

Fig. 27. Heartbeats of Controllers 1 and 2 while running identical firmware 34

Fig. 28. Block diagram of control multiplexing using Digital Signal Processor signals and

Hardware Authentication Module within the Complex Programmable Logic Device of the

Cybersecure Power Router ... 35

Fig. 29. Block diagram of hot patching process ... 36

Fig. 30. Diagram of CSPR components involved in hardware authentication 38

Fig. 31. Excerpt from EEPROM datasheet, with erroneous information noted 39

Fig. 32: Hardware Authentication Module communication beside oscilloscope capture 39

Fig. 33. Block diagram of encrypted serial communication within Complex Programmable Logic

Device used in the Cybersecure Power Router ... 40

Fig. 34. Shoot-Through hardware protection .. 42

Fig. 35. LED display diagram for Cybersecure Power Router ... 43

Fig. 36. Time between execution cycles of controller firmware vs. switching frequency 44

Fig. 37. Detail of Figure 36 ... 45

Fig. 38. Inverter output voltage at 114, 118, and 128 kHz switching frequencies. 46

Fig. 39. Inverter output during controller transition ... 48

Fig. 40: Radar chart of missions for controls .. 51

Fig. 41: CSPR and SGPN migration ... 52

Fig. 42. Digital Signal Processor Unified Controller Board schematic .. 61

Fig. 43. Power Electronics Evaluation Unified Controller Board schematic 62

Fig. 44. Complex Programmable Logic Device Unified Controller Board schematic 63

Fig. 45. BeagleBone Black schematic .. 64

Fig. 46. Hardware Authentication Module schematic .. 64

Fig. 47. Analog Splitter schematic .. 65

Fig. 48. Crontab configuration on BeagleBone Black to run CPLD UCB LED control script on

startup .. 65

Fig. 49. Content of LED control Python script running on the BeagleBone Black 66

List of Tables

TABLE I: Security-by-Design cycles ... 5

TABLE II: Defense-in-Depth Dependencies .. 6

TABLE III: Cyber-Physical Attack Matrix .. 15

TABLE IV: MachXO2 Family Features... 24

TABLE V: Available MCLK frequencies .. 24

1

Chapter 1 - Introduction

The reliability and safety of the electrical grid face challenges. These challenges include aging

infrastructure, tight regulatory environments, and the integration of new technologies. Power

electronics are some of these new technologies, and provide a wide range of assets and liabilities

to the electrical grid, its operation, and its evolution. Reactive power compensation, phase load

balancing, battery energy storage systems, solar power, and flexible ac transmission are all

potential assets. These devices may pose serious threats to both the electrical grid and

interdependent critical infrastructure [1]. As these grid-connected power electronics permeate

more of the electrical grid, the need for their security becomes greater [2].

A series of questions can begin this investigation of security for grid-connected power

electronics, and establish appropriate security measures [3]. The first question is "what benefit

does the device provide?" In the present case, the distributed energy device manages energy at the

edge of the electrical grid, and supports grid resilience.

Benefits Methods Techniques

Photovoltaic
Panels

Power
Electronics

Batteries

Tertiary
Controls

Secondary
Controls

Primary
Controls

Relays

Utility
Command/

Control

Energy
Generation

Energy
Storage

Grid
Arbitrage

Energy
Dispatch

Supports
Grid

Resilience

Manages
Energy at
Grid-Edge

2

Fig. 1. Design Inventory for Distributed Energy Resource

The next question is "how does the device provide those benefits?" A distinction in method and

technique is useful, here. The methods to realize energy management at the grid-edge are energy

generation, storage, dispatch, and arbitrage (see "Methods" in Figure 1). These methods identify a

particular process or type of system. The techniques to realize energy management at the grid-edge

include the use of photovoltaic panels, dc converters, inverters, batteries, and hierarchical controls.

These techniques identify the practical elements of a method, that is, of a process or system.

After arriving at a set of techniques, the next question is "what can happen to prevent this

technique from working?" A boost converter or more complicated topology can be used to provide

maximum power point tracking, current control, and hardware protection for a string of

photovoltaic panels. In short, answering the question is difficult [4]. The hardware can fail, the

switches can cause excessive electromagnetic interference, and noisy environments can corrupt

transmitted data. Poor design can also cause various failures. The list of possible points and modes

of failure is extensive for a complex system like a converter. Putting aside the incomplete answer,

the next question is "what can be done to protect this technique?" In the case of a dc converter,

more robust hardware can be used, filters can reduce electromagnetic interference, and error

detection in communication can limit the use of corrupted data. This is not an exhaustive list of

points and modes of failures or security measures. To better organize and address these questions,

product lifecycle management and design dependency can be used (and will be discussed in greater

depth in the next section). Product lifecycle management can be used to consider security of a

device from specification all the way to end-of-life, and illustrates the security-by-design process.

Design dependency can be used to build layers of security to protect an asset or the system as a

whole, and illustrates the defense-in-depth method. A cyber-physical threat matrix is built on the

3

design dependencies listed and the implementation of security techniques to address the potential

threats.

The Cybersecure Power Router (CSPR) uses the security-by-design process and defense-in-

depth method to realize a cybersecure distributed energy resource. The CSPR operates as a solar

inverter and battery energy storage system. It has hierarchical controls and network

communication, allowing a utility operator to control the device, its operation, and its power flow.

Finally, it employs a number of security features for a wide range of functionalities. These security

features include AES-128 encryption for network communication, hardware-assisted monitoring

for improved firmware integrity during runtime, hardware protection during nominal operation,

and more.

The Smart Green Power Node (SGPN) is a device developed at the University of Arkansas to

manage energy resources at the grid edge, specifically in residential applications. The SGPN

predicts and optimizes power flow of a solar inverter and battery energy storage system.

Hierarchical controls and network communication are also included within the design of the

SGPN. The system optimizes power flow of the energy resources through powerful predictive

algorithms and weather data collection. The system is rated for 2 kW operation.

The Unified Controller Board (UCB) project is a set of hardware, firmware, software, and

instructional material also developed at the University of Arkansas. The devices within the UCB

project include a DSP docking station; a complex programmable logic device (CPLD) PCB; buck

and boost converter and inverter PCB; and several expansion boards. The Unified Controller

Boards are designed around flexible controls and modular hardware.

A real-world system of sophisticated, grid-tied power electronics is needed to show the

practical demands and limits of security. The use of the Smart Green Power Node and the Unified

4

Controller Board devices as a prototype for the Cybersecure Power Router was used for such a

real-world system. The SGPN is a distributed energy resource with many sophisticated assets. The

2 kW power rating of the system provides an appreciable power flow for grid-connected

applications. The UCB devices are modular, allowing for rapid configurability of hardware and

controls. The UCB software and firmware is extensible, allowing for the integration of security

features and changes in control hierarchy. The combination of these two systems provides the

necessary power flows, complexity, and direct results necessary for this cyber-security

investigation.

The present work shows the security-by-design process and defense-in-depth method for a

grid-connected, distributed energy resource prototype. The security features chosen are developed

and tested within a grid-connected power electronics context. Security features to protect firmware

integrity at runtime are specifically investigated. The ability for the CSPR prototype to quantify

firmware integrity degradation and respond to firmware integrity failure is shown. This ability is

provided by the CSPR prototype monitoring and maintaining liveness of controllers through

control multiplexing. Future research into greater flexibility and resiliency of controls is discussed.

Finally, the necessary work to migrate research from the Smart Green Power Node and the

Cybersecure Power Router into a pre-production prototype is presented.

5

Chapter 2 - Technical Background

Security-by-design ensures greater security of a device by considering both the processes

behind the development and life of a device, and the device itself. Product lifecycle management

[5] serves as the framework for security-by design. This process stands over and above the IEEE

standard for system, software, and hardware verification and validation [6].

TABLE I: Security-by-Design cycles

Lifecycle Stage Security Feature(s)

Hardware

Specification IEEE Standards (e.g., 1547)

Simulation Accurate Modeling, Thermal Co-Simulation

Design IEEE Standards (e.g., 3001, 3003), Thermal Co-Design

Verification Electrical Rule Checking, Design Review, Hardware-In-the-Loop

Firmware

Development Restricted Access, Version Control, Standard Protocols, Standard Libraries

Distribution Restricted Access, Message Digest, Server Authentication

Installation Message Digest, Error Detection and Correction

Run-Time Side Channel Analysis, Challenge-Response Authentication

Manufacture

Fabrication Trusted Supplier, ISO 9001 Certification, Hardware Authentication

Quality Control Burn-In Testing, Fuzz Testing, Standard Metrics

Design Iteration Restricted Source Code and Design Files

Operation

Installation Certified Installers, Standard Connections, Lockout-Tagout

Use Key Management, Challenge-Response Authentication, Behavior Analysis

Aging Hardware Health Diagnostics

Attack User Authentication, Command Whitelisting, Asset Segmentation

Failure Fails Safe, Hardware Protection, Resilient Communication

Recovery Startup Sequence, Sanity Check, Firmware Integrity Check

Maintenance

Update Patching, Maintained Uptime

Replacement Modular Design

Upgrade Modular Design, Reconfigurable Architecture, Flexible Controls

End of Life

Removal Lockout-Tagout

Documentation Failure Modes, Effects, and Diagnostic Analysis (FMEDA)

Reiteration Restricted Access to Source Code, Specification and Quality Control

Disposal Certified eWaste Recycling and Disposal

6

Any device, a distributed energy resource in this case, has a lifecycle. It is specified, designed,

fabricated, tested, installed, operated, uninstalled, and disposed of during that lifecycle. Each step

in the lifecycle of a device serves some purpose. For instance, hardware specification creates the

exhaustive list of design requirements for a device. The result of the hardware specification step is

a list. How could security be applied to this step? The use of standards (in this case, IEEE 1547

for the design of utility electric power systems and distributed energy resources) provides greater

assurance that the list created in the hardware specification step is exhaustive. Stated another way,

the IEEE standards secures the intended result of hardware specification. The product lifecycle

security approach also requires a designer to consider the full lifecycle of a device, not just the

useful life. In the context of the electric grid, people install and remove distributed energy

resources. By considering the lifecycle of a device, the safe installation and removal of a device is

considered and included in the hardware and firmware design stages. For instance, a

Lockout/Tagout technique can be designed for a solar inverter to keep both people and hardware

safe during installation and removal [7].

Defense-in-depth provides layered security for assets of a device [8]. Returning to the "Design

Inventory" from the introductory section, each technique in the design inventory process has

dependencies. These dependencies arise from the techniques chosen to realize a device. An

inverter depends on various switches, gate drivers, feedback signal chains, capacitors, other

hardware components, and firmware to operate. Examples of these dependencies are listed in Table

II, along with possible methods of security.

TABLE II: Defense-in-Depth Dependencies

Design Category Security Feature

Component Health Hardware Authentication, Hardware Protections, Safety Factor

Feedback Signal Chain Galvanic Isolation, Buffered I/O

Temperature Control Thermal Management, Current Limitation

Current Control Controller Current Limiting, Body Diodes, Fuses

7

Voltage Control Controller Voltage Limiting

Firmware Execution Hardware-Assisted Monitoring, Heartbeat, Hot Swapping

Network Communication AES-128, MD5, Whitelisting

These dependencies are not spread across the lifecycle of a device, as illustrated in the security-

by-design process. Rather, these dependencies are logical constituents of the design of a device,

and are typically part of a complex, cyber-physical set of interdependencies [9]. For instance, how

might one protect the current flow into the batteries from potentially damaging commands? Secure

network communication [10] protects the battery energy storage system from noise and remote

adversaries. If the secure network communication is defeated, current controls prevent harmful

behavior of the device [11]. If the current controls are defeated, various design features (like

galvanic isolation, buffered I/O, fuses, and over-design) allow the device to withstand or limit the

harmful behavior [12]. In this case, the energy storage assets of the BESS are protected by layers

of security.

Security features have a range of costs and performance gains [13]. Any change to the design

of a system, including those to increase security, comes at a cost. This cost may include the price

of more sophisticated integrated circuits, hardware to support increased power consumption, time

to develop new firmware, or expertise to identify and execute security strategies. Improvements to

security may come at a low cost. An existing system may extensively benefit from simple firmware

management [14]. Such management, including revision, could greatly increase system security

without incurring costs from additional hardware and hardware development. Beyond firmware

management, an example of a firmware security feature is a checksum for network communication

[15]. The inclusion of this security feature is lightweight: incurring a small increase in firmware

size, computational load, and communication overhead. Checksums can prevent electromagnetic

noise from corrupting communication, and weakly protect against a malicious actor tampering

8

with communicated data. A checksum is an instance of a common security feature implemented

in firmware, but is far from the full benefits of improved firmware management and security.

Integrated
Defense-In-Depth

Coprocessor
Addition

S
e

c
u

ri
ty

Cost

Processor
Upgrade

Firmware
Modification

~
=

~
=

~
=

μ
P

μP

μP

μ
P

μ
P

μ
P

~
=

μ
P

Fig. 2: Cost/Performance regions (left) for various security solutions (right)

Not all development leads to increased security. Consider the use of encrypted communication for

a controller using a digital signal processor. The controller is responsible for the power flow

through a solar inverter. Processing resources are required to encrypt and decrypt communication

with the controller. The increased demands on the DSP during communication may cause overrun

conditions [16] and degrade power processing. The system has more confidential communication,

but at the cost of lower integrity of power processing. The general effect may be a less secure

system, despite the addition of a security feature and the costs of development.

The cost/performance analysis for many security features used in the Cybersecure Power

Router are readily available. The Advanced Encryption Standard 128-bit key (AES-128) is well

defined [17],[18] and researched in various applications [19], [20], [21]. AES-128 is used in

communication between hardware modules, and between outside controllers and the CSPR. The

MD5 message-digest algorithm is also well researched [22], [23], [24]. The MD5 algorithm is used

9

to protect the integrity of firmware as it passes from an outside controller, to the Cybersecure

Power Router, and into any on-board controller. Hardware protections against overcurrent [25]

and shoot-through conditions [26] are also well understood. Overcurrent and shoot-through

conditions are used in both controller firmware and within the hardware logic of the Digital Signal

Processors. These techniques are robust and well researched. Security techniques are still needed

for other essential functions of any grid-connected power electronics.

Firmware security at runtime for power electronics is less researched and widely implemented

[27]. Grid-connected power electronics typically use microprocessors, microcontrollers, or

processors to run firmware. Microprocessors and microcontrollers often use watchdog timers to

reset the device in the case firmware execution faults. If the controls of the power electronics run

on the reset device, the power electronics will stop. The use of a watchdog timer may, therefore,

be inappropriate for grid-connected power electronics, where downtime is to be minimized or

eliminated [28]. Processors can provide more sophisticated techniques than microprocessors and

microcontrollers to prevent, detect, identify, and recover from firmware execution faults, namely

through using an embedded operating system [29], [30]. The choice of processors in grid-

connected power electronics may also be inappropriate, given their sophistication and cost. The

purpose of the Cybersecure Power Router is to develop and show security design techniques,

including the security of grid-connected power electronics at runtime. Is there an option between

a simple watchdog timer and a sophisticated embedded operating system? If so, how can the cost

and performance of that runtime security be evaluated?

The two considered threats to CSPR firmware integrity during runtime are task overrun and

firmware patching. Other threats are relevant [31], but fall outside the present scope of grid-

connected power electronics. A task overrun condition occurs if a controller is not able to finish

10

the various tasks before another set of tasks are started [32]. The result is a degradation in the

power flow of the power electronics, as shown later. Unlike task overrun, firmware patching is

more likely to halt power flow altogether. The patching process requires the rebooting of the DSP

running a controller, halting the controller during the process. The power flow through the

electronics is, therefore, also halted as the DSP reboots.

Task overrun can be described as a controller's loss of liveness. Formally, liveness can be

expressed as

 ∀𝛼: 𝛼𝜖𝑆∗: (∃𝛽: 𝛽𝜖𝑆𝜔: 𝛼𝛽╞𝑃), (1)

where α and β are a sequence of states, 𝑆∗ is a set of finite sequence states, 𝑆𝜔 is a set of infinite

sequence states, and P is a property (executability, in this case) [33]. Formally, this definition reads

as there exists a state within an infinite set of states that satisfies a given property (executable),

such that it does so given any arbitrarily sized sequence of compossible states. Or, simply, liveness

means a task will be executed, even if there are many more tasks for a controller to complete. The

tasks to be executed are part of interrupt service routines on the DSP, and in the present work are

initiated every switching period. Each interrupt request (IRQ) initiating an interrupt service routine

(ISR) is assigned a priority. The DSP resources handling an ISR are a critical section to other ISRs,

especially those at the same priority. A critical section is a set of resources accessed or used by

multiple processes [34]. For the present architecture, an IRQ can cause the interruption of an ISR

in progress. This is also true if the ISR in progress and raised IRQ have the same priority. Here is

an example from the Cybersecure Power Router. Assume the switching frequency is set at 30 kHz.

Every 33.33 μs, a number of interrupt requests will be raised within the DSP. These IRQs signal

the DSP to read various voltages and currents, perform mathematical operations, look up values,

and set the pulse width modulation of several switches. Let's assume the DSP requires 80 μs to

11

handle all of these tasks. While processing the last round of ISRs, new ISRs are created. The

previous ISRs are interrupted and started again by the new IRQs. The tasks never complete, given

their interruption and restart during processing. Theoretically, the result is the controller losing

liveness.

A simple consideration of timing can maintain liveness. The controller has a maximum

duration of time to complete its tasks:

 𝑇𝑑,𝑚𝑎𝑥 =
1

𝑓𝑠
, (2)

where 𝑓𝑠 is the switching frequency. In the example above, the 30 kHz switching frequency

provides a maximum duration of 33.33 μs for the controller to complete its tasks. This is the

theoretical maximum amount of time the controller can take to process the tasks of one switching

period before being interrupted by the next switching period. The time the controller requires to

complete the switching period tasks is not dependent on the switching frequency, however. The

time required dependents more on the firmware, speed of the DSP, and competing interrupts (such

as those from communication). This required time can be measured. This duration of time can

vary, even if the firmware and processor remain the same. A mean time for the completion of tasks

can be empirically found, and used to quantify available processing resources. The expected

available resources can be articulated as

 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 (%) = (1 − (𝑇𝑑,𝑚𝑒𝑎𝑛 ∗ 𝑓𝑠)) ∗ 100%, (3)

where 𝑇𝑑,𝑚𝑒𝑎𝑛 is the mean of the duration of time the controller requires to complete switching

period tasks, and 𝑓𝑠 is the switching frequency. As this percentage approaches 0%, tasks are more

likely to be interrupted, and liveness of the controller is more likely to be compromised.

The Cybersecure Power Router uses a signal sensitive to controller liveness and hardware-

assisted monitoring to protect controller liveness. The next section details the design of the

12

Cybersecure Power Router, especially the security features protecting controller liveness. Later

sections provide the results and examination of the operation and performance of those security

designs.

13

Chapter 3 - Cybersecure Power Router

3.1 System Description

The Cybersecure Power Router is a set of switch-mode power electronics, controllers, and

processors. The majority of controller devices used are from the Unified Controller Board project,

developed by Chris Farnell at the University of Arkansas. These devices include the Power

Electronics Evaluation Unified Controller Board (PE Eval UCB), Complex Programmable Logic

Device Unified Controller Board (CPLD UCB), and the Digital Signal Processor Unified

Controller Board (DSP UCB).

Fig. 3. Cybersecure Power Router prototype

The Digital Signal Processor Unified Controller Board uses many design features of the Texas

Instruments' TMDSDOCK28335 Digital Signal Processor docking station. The power electronics

of the PE Eval UCB are a buck converter, boost converter, and an inverter/rectifier. A testbed

provides dc and ac power flow to provide safe and reliable conditions for testing. Two Digital

14

Signal Processors are used in the prototype. Each DSP is capable of controlling the power

electronics. A Complex Programmable Logic Device UCB provides many security features, and

multiplexes the control signals of the DSPs. The Hardware Authentication Module is used to

authenticate the power electronics and enable power flow. The Signal Splitter routes analog signals

to both DSPs from the power electronics. Finally, a BeagleBone Black provides high-level control

and Ethernet communication to the CPLD UCB.

Ethernet

Auth.

Auth.

Analog
Feedback
Signals

Heart
beat

Heart
beat

SerialSerial

Digital Signal
Processor

1

Digital Signal
Processor

2

Complex
Programmable
Logic Device

26 26

Signal Splitter8

Analog
Feedback
Signals8

26

Auth.

Power
Electronics

26

8

Hardware
Authentication

Module

Serial

External
Comm.
Device

~

Testbed

~ ~
=

BeagleBone
Black

1

23 4

5

7

6

1

2

3 4

5

7

6

Fig. 4. Block diagram (left) and figure (right) of Cybersecure Power Router prototype

The CSPR prototype can be reconfigured. The modular design allows flexibility in both hardware

and control. A more simplified configuration of the prototype could use one or two DSPs on the

CPLD UCB, as shown below.

15

Fig. 5. Minimal configuration of Cybersecure Power Router prototype

The following table lists the security threats and mitigations chosen for the Cybersecure Power

Router.

TABLE III: Cyber-Physical Attack Matrix

Asset Threat Mitigation

Communication

Confidentiality System Surveillance [35] AES-128 Encryption [36]

Integrity Corrupted Firmware [37] Error Detection

Availability Unauthorized User Access [38] HW-Asst. Monitor, Key Mgmt.

Firmware

Distribution Tampered Firmware [39] Encryption, Error-Detection

Installation Reduced Integrity MD5 Hash Check

Loading System Downtime [40] Control Multiplexing

Runtime Operation Outside Parameters [41] Heartbeat, HW-Asst. Monitor

Hardware

Authenticity Counterfeit Hardware [42] Hardware Authentication

Power Processing

Quality Harmonic Distortion [43] Robust Hardware/Controller Design

Availability System Downtime [44] Control Multiplexing

Response Non-Recoverable State [45] Robust Controller Design

___ Chris Farnell’s contributions to the Cybersecure Power Router project

The asset inventory, threats, and mitigations are not exhaustive. The above table shows the current

work done and where the security is implemented.

16

3.2 Power Electronics

The power electronics of the Power Electronics Evaluation Unified Controller Board consist

of switch-mode power supplies, signal chains for controls and feedback, isolated power supplies,

voltage and current sensors, filters, ports, ancillary circuits, and human-machine interfaces.

Control signals routed from the Complex Programmable Logic Device enter the Power Electronics

Evaluation Unified Controller Board through a 40 pin insulation-displacement connector. The

control signals then pass through 120 Ω resistors to trigger HCPL-3120-300E optocouplers. The

optocouplers then drive the STGP15H60DF insulated-gate bipolar transistors that act as switches.

An isolated, flyback regulator using the LT3748EMS integrated circuit energizes the optocouplers

to drive switching. The switch-mode power supplies of the board include an asynchronous buck

converter, an asynchronous boost converter, and a three-phase inverter/rectifier. The buck

converter provides current sensing before and after the 560μH, 100μF LC filter; and output voltage

sensing. The buck converter is rated for an input voltage of 9 to 50 Vdc, and an output voltage of

0 to 50 Vdc. The voltage ratings can be increased if higher voltage rated capacitors are used on the

input and output of the buck converter.

Fig. 6. Asynchronous buck converter schematic of Power Electronics Evaluation Board of the

UCB project

17

The asynchronous boost converter provides current sensing at the input and output; and output

voltage sensing. The boost converter is rated for an input voltage of 9 to 50 Vdc, and an output

voltage of 9 to 50 Vdc. The voltage ratings can be increased if higher voltage rated capacitors are

used on the input and output of the boost converter.

Fig. 7. Asynchronous boost converter schematic of Power Electronics Evaluation Board of the

UCB project

The three-phase inverter/rectifier can operate bi-directionally. When acting as an inverter, it can

output a 1 Hz to +1000 Hz sinusoid from 0 to 50 Vac. The inverter is rated for 0 to 50 Vdc input.

Current sensing is available on all three phases after the inductive filtering, and after capacitive

filtering on phase A. Voltage sensing is available on the output of all three phases.

Fig. 8. 3-Phase inverter filter and current sensing schematic of Power Electronics Evaluation

Board of the UCB project

Three switching legs using STGP15H60DF insulated-gate bipolar transistors are the switching

stage for the inverter/rectifier. As stated earlier, isolated power is provided to the gate drivers. The

18

low switches share the same isolated power rail. Jumper 1 (JP1) can be used to connect or

disconnect the inverter/rectifier with the dc input used on the rest of the Power Electronics

Evaluation board. Current and voltage sensing is provided between the dc bus and the capacitive

filtering of the inverter/rectifier.

Fig. 9. 3-Phase inverter/rectifier switching stage schematic of Power Electronics Evaluation

Board of UCB project

The PCB layout of the Power Electronics Evaluation board is shown below. Considerations were

made for mixed analog/digital signals within the board. The isolated dc/dc power supplies and

ACPL-C87B-000E optical isolation amplifiers provide isolation between analog signals in the

mixed environment and the feedback signals supplied to the DSPs and CPLD.

19

Fig. 10. Power Electronics Evaluation Unified Controller Board, with Signal Splitter and

Hardware Authentication Module, used in Cybersecure Power Router prototype

The total system provides buffered, isolated control and feedback signal chains; and common types

of switch-mode power conversion capable of various power flows, with switching frequencies

exceeding 100 kHz.

3.3 Digital Signal Processor Board

Two Digital Signal Processor Unified Controller Boards are used in the Cybersecure Power

Router prototype. The modular designs of the Unified Controller Board allow two DSPs to slot

into the Complex Programmable Logic Device Unified Controller Board. However, having two,

standalone DSP boards provide advantages to the testing of the prototype. One advantage is greater

accessibility of tools and probes to the I/O of the boards. Another advantage is more direct access

to the serial communication ports of the DSPs. A third advantage to using the standalone DSP

20

UCBs is the ability to apply power independent of the CPLD UCB. This allows DSPs to have

controlled power disruptions while still allowing the rest of the CSPR prototype to continue

operation. Serial communication with the DSPs in the DSP UCB is provided through a Future

Technology Devices International (FTDI) Universal Serial Bus (USB) to Universal Asynchronous

Receiver/Transmitter (UART) bridge. This USB to UART bridge is the FT2232D FTDI chip. The

receive and transmit lines between the FTDI chip and the DSP are also accessible from the General

Purpose Input/Output (GPIO)-28 and GPIO-29 pins. This configuration allows USB connectivity

with a computer and with a UART device. For the Cybersecure Power Router prototype, the USB

connectivity is used to control the DSP from Code Composer Studio and a LabVIEW script; and

the UART connectivity is used to control the DSP from the CPLD UCB.

Fig. 11. USB to UART schematic of Digital Signal Processor board of the UCB project

The analog and digital I/O of the DSP within the DSP UCB is readily available to various tools

and probes. A connection not pictured is the reset manually added to the TPS3828 𝑅𝐸𝑆𝐸𝑇̅̅ ̅̅ ̅̅ ̅̅ ̅ pin on

21

U6 of the F28335 DSP controller card. This reset connection cycles power to the DSP during

firmware patching.

Fig. 12. DIMM pinout of Digital Signal Processor board of the UCB project

Two, 40-pin insulation-displacement connectors (IDCs) are used to bus analog and digital signals

between the other Unified Controller Boards. The 28 digital signals use GPIO-00 through GPIO-

27. The eight analog feedback signals use ADC-A0 through ADC-A7 for IDC A, and ADC-B0

through ADC-B7 for IDC B. Two 5 Vdc and Ground signals are provided within the 40-pin IDC.

22

Fig. 13. Majority of analog and digital I/O used by Digital Signal Processor board of UCB

project

The Digital Signal Processor Unified Controller Board differs from the Texas Instruments C2000

DAF docking station source design. Mechanical holes are included to allow the use of standoffs.

An isolated power supply provides steady power and noise rejection. The isolated power also

overcomes ground loops that may be very problematic in noisy environments with long

communication cables (such as those used in this prototype).

3.4 Complex Programmable Logic Device Board

The Complex Programmable Logic Device Unified Controller Board is the core of the

Cybersecure Power Router. It routes digital control and communication signals between other

Unified Controller Boards. It also instantiates the VHDL modules that provide functionality

essential to the CSPR project. Four IDCs are provided to allow up to four converters or controllers

to interface with each other. Presently, the IDCs allow converters or controllers to interface with

one another and the CPLD. Each IDC provides 28 digital, GPIO channels; eight analog channels

(typically as part of a feedback signal chain); two 5 Vdc output pins; and two Ground pins. High

23

frequency filtering is provided between the 5 Vdc power of the CPLD UCB and the 5 Vdc outputs

of the IDCs.

(a)

(b)

(c)

(d)

Fig. 14. IDCs in Complex Programmable Logic Device Unified Controller Board

The Complex Programmable Logic Device is Lattice's LCMXO2-7000HC. The IC is packaged

as a TQFP with 144 pins. The XO2-7000 has the greatest resources of the MachXO2 family [46].

24

TABLE IV: MachXO2 Family Features

The CPLDs of the MachXO2 family also provide a number of internal clock frequencies for use,

in addition to the phase lock loops provided.

TABLE V: Available MCLK frequencies

The extensive I/O of the MachXO2-7000HC is predominantly utilized by the GPIO of IDC A, B,

C, and D; connections with the slots designed for DSP cards; serial peripheral interface with an

analog to digital converter; Flash programmer/JTAG interface; button inputs; and an LED display.

IDC A GPIO, dual in-line package (DIP) switches, push buttons, and four wire communication

with the Lattice Flash Programmer connect to Bank 0 of the MachXO2-7000HC. Dual In-Line

Memory Module (DIMM) slots connect DSPs cards to the MachXO2-7000HC. The connections

between the DIMM-B slot and the MachXO2-7000HC are through Bank 1. The connections

between the DIMM-C slot and the MachXO2-7000HC are through Bank 2. IDC C also connects

with the MachXO2-7000HC through Bank 2. LED1 through LED8 interface with the MachXO2-

25

7000HC through Bank 1. The XPort connections interface with MachXO2-7000HC with the

Lantronix Ethernet adapter. This interface is not currently developed. Serial communication

interface (SCI) receive and transmit port are connected to Bank 3. The two, serial peripheral

interface (SPI) analog to digital converters (ADCs) are also connected to Bank 3. The serial

communication with the two FTDI chips (one for the DSPs, the other for the CPLD) interface at

Bank 3. Bank 4 of the MachXO2-7000HC provides an external clock and reset signal. Finally,

Bank 5 provides connections to the IDC D port.

Fig. 15. PCB layout of Complex Programmable Logic Device board of UCB project

The components for the Complex Programmable Logic Device Unified Controller Board were

reflowed using the Sikama 5/C reflow furnace in the Assembly Laboratory in the High Density

Electronics Center at the University of Arkansas. A tin, silver, and copper alloy (SAC305) solder

paste was applied using a stencil and squeegee. No solder paste was applied for the MachXO2-

7000HC. A thin layer of no clean flux was applied to the pads of the TQFP footprint on the

26

Complex Programmable Logic Device Unified Controller Board PCB. After the application of

solder paste, flux, and the population of surface mount components, the boards were flowed in the

Sikama 5/C reflow furnace.

Fig. 16. Fabricated Complex Programmable Logic Device board of UCB project used in

Cybersecure Power Router prototype

After inspection and debugging, the through-hole components were populated. Another round of

visual, manual, and electrical inspection tested for shorts, unconnected legs, high integrity solder

joints, and correct part orientation. Finally, a debug utility was flashed onto the CPLD and tested

the I/O.

3.5 Signal Splitter

Two DSPs are used in the Cybersecure Power Router prototype. Two DSP Unified Controller

Boards were used to interface the DSPs to the rest of the prototype. To route the analog feedback

signals, eight Y connections needed to be created from the output of the Power Electronics

Evaluation Unified Controller Board to the ADC input of the two DSP UCBs. A simple printed

27

circuit board was designed and fabricated to provide this split analog feedback signal. No buffering

is provided on the Signal Splitter on account of existing buffered output from the PE Eval UCB.

Fig. 17. Complete schematic of Signal Splitter

Test points are provided for each analog signal. Two ground test points are provided to reduce the

size of the ground loop of a probe. Female/Female jumper wires connect the analog output of the

Signal Splitter PCB to the ADC inputs of the two DSP UCBs.

3.6 Hardware Authentication Module

An embedded, 1 kilobyte password is used to authenticate the power electronics of the

Cybersecure Power Router. This password is continually checked by the hardware-assisted

monitor instantiated in the CPLD UCB. The password is stored in both the Microchip 93LC46BT-

I/OT EEPROM and within the memory of the hardware-assisted monitor.

28

Fig. 18. Complete schematic of Hardware Authentication Module

The Hardware Authentication Module and the CPLD UCB communicate with a four-wire

protocol, through the IDC D port. A Texas Instruments SN74LVC2G0 is included to drive two

indicator LEDs. The pins for power, ground, the four-wire protocol, and the two indicator LEDs

are routed through a 10-pin header.

Fig. 19. Hardware Authentication Module used in Cybersecure Power Router prototype

29

This assembly plugs into the J7 header on the Power Electronics Evaluation Unified Controller

Board. Test points are included for the four-wire protocol and a ground to minimize the ground

loop during oscilloscope data collection.

3.7 BeagleBone Black

Texas Instruments' BeagleBone Black provides an embedded Linux environment for

sophisticated, high-level operations.

Fig. 20. BeagleBone Black

The BeagleBone Black uses a 1 GHz ARM Cortex-A8 processor, and runs Debian Linux. The

CPLD UCB and the BeagleBone Black communicate serially. The embedded operating system

provides a platform for Python scripts and powerful utilities for automation, analysis, and

debugging.

30

3.8 Test Bed

A testbed provides controlled ac and dc power flow to and from the Cybersecure Power Router.

~

Testbed

~
= ~

=

~
=

3ϕ

ac

dc

Fig. 21. Block diagram of testbed used in Cybersecure Power Router project

The testbed functions like a microgrid, allowing power assets to be added in a variety of ways

while maintaining controlled power flow and a utility frequency (independent of the utility

frequency of the electrical grid). The ac power is three phase, and galvanically isolated through

low frequency transformers.

3.9 Power Flow

The Cybersecure Power Router shows a security-by-design process and defense-in-depth

methods for a Distributed Energy Resource (DER). The security-by-design process outlines both

the assets and their dependencies to be secured. To create this inventory of assets and

dependencies, a specific device or system must be chosen. Presently, a modular, grid-tied

31

inverter/rectifier distributed energy resource is chosen. The power assets of this DER include on-

site energy generation, energy storage, and bi-directional power flow with the grid.

Fig. 22. Simplified block diagram of grid-connected power flow capabilities of UCB hardware

and Cybersecure Power Router

Other resources can be integrated within the system. The diagram shows a three-phase

inverter/rectifier working in tandem with a photovoltaic panel and battery energy storage system.

The PE Eval UCB includes an asynchronous buck and boost converter that may be used to interface

dc energy resources, in addition to the three-phase inverter/rectifier provided.

3.10 Data Flow

A hardware-assisted monitor and other utilities are instantiated within the complex

programmable logic device on the CPLD Unified Controller Board. The monitor and utilities are

developed in the Lattice Diamond integrated development environment. The monitor and utilities

are developed using the Very high speed integrated circuit Hardware Description Language

(VHDL). The complete source code is included in Appendix B. Not included in the appendix are

32

the Intellectual Property (IP) cores used within Lattice Diamond, such as the phase-locked loop

(PLL) or the digital memory. An oscillator is instantiated within the CPLD to provide an internal

clock at 53.2 MHz. This clock is supplied to an internal phase-locked loop. A 53.2 (1 ∙ 𝑓𝑐𝑙𝑘), 24.93

(1 2⁄ ∙ 𝑓𝑐𝑙𝑘), and 1.5 (1 32⁄ ∙ 𝑓𝑐𝑙𝑘) MHz clock signal is derived from the original 53.2 MHz clock

signal from the oscillator. The 53.2 MHz clock is used for the hardware-assisted monitor and other

high speed applications. The 24.93 MHz clock is used for serial communication and the data bus.

The 1.5 MHz clock is used for the four-wire communication with the Hardware Authentication

Module.

STDBY OSC, 53.2 MHz

Oscillator

SEDSTDBY

ClkI ClkOP

PLL

ClkOS

ClkOS2

Lock

CLK53_2M

CLK24_93M

CLK1_5M

PLL_LOCK

Fig. 23. Block diagram of clock generation within Complex Programmable Logic Device of the

Cybersecure Power Router

A data bus is instantiated to allow data flow between various modules. The bus uses 16-bit

addresses and 16-bit data. Prioritized access to the bus is given to modules. Currently, ten modules

can be prioritized according to access privileges. In addition to controlling the data bus, the Bus

Master contains Randomly Accessible Memory (RAM). This memory is used as registers for

various controls and functions. A separate memory allocation is used for the booting partition of

the digital signal processors.

33

Addr

Data

rst

CLK
24.93M

Bus_Master

BusRqst

XDat

BusCtrl

Xrqst

YDat

BUS_ADDRESS[0-15]

BUS_YDATA

BUS_REQUEST

BUS_DATA[0-15]

BUS_XREQUEST

Bus Priority:
 1) RS232
 2) LED Control
 3) ---
 4) ---
 5) ---
 6) ---
 7) ---
 8) ---
 9) ---
 10) ---

SYS_RST

BUS_CONTROL[0-9]

BUS_XDATA

Fig. 24. Block diagram of data bus controller within Complex Programmable Logic Device of

the Cybersecure Power Router

The serial communication with the modules instantiated in the CPLD uses a 9600 baud rate, and

connects through Bank 3 of the MachXO2-7000HC CPLD. The current serial communication is

designed for fixed packet lengths.

BusCtrl

Data

rst

CLK
24.93M

rs232_xmt

RS232_Usr_Int

XDat

Baud => 9600
clk_in => Clk_Freq

Addr

Xrqst

YDat

BusRqst

rs232_rcv

BUS_YDATA

BUS_REQUEST

BUS_ADDRESS[0-15]

BUS_DATA[0-15] Usr_TX(N17)

Usr_RX(P21) BUS_XREQUEST

SYS_RST

BUS_CONTROL[0]

BUS_XDATA

Fig. 25 .Block diagram of serial interface within Complex Programmable Logic Device of the

Cybersecure Power Router

3.11 Control Multiplexing

A defense-in-depth approach to controller security is explored in the Cybersecure Power

Router. Control multiplexing strengthens the availability and integrity of the hardware controller,

and the entire system by extension. The concept of multiplexing is common in telecommunication

34

[47], computer networks [48], and various signal conditioning and sampling [49] contexts. The

concept is extended to an entire bus of control signals for the Cybersecure Power Router. The

controllers running on the DSPs toggle a bit on GPIO-24 every time a switching cycle is

completed. The firmware snippet is provided below.

Fig. 26. Firmware code snippet to generate heartbeat from Digital Signal Processors

The toggled GPIO-24 pin creates a clock signal visible to external devices.

Fig. 27. Heartbeats of Controllers 1 and 2 while running identical firmware

This clock signal is the heartbeat of the controller, and is used by the Hardware Assisted Monitor

to assess the liveness of the controller. Presently, if the heartbeat of a controller beats more often

than 75 μs, it is considered to maintain liveness. If the heartbeat takes longer than the given 75 μs

to toggle, the Hardware Assisted Monitor considers the controller to have lost liveness. The period

35

of the heartbeat is a function of the controller’s clock rate and execution cycles of the firmware. A

slower processor or a longer execution cycle would require a longer period between heartbeats.

The security features instantiated in the CPLD communicates with the Hardware

Authentication Module on the UCB PE Eval board to authenticate the power electronic hardware.

The password stored in the EEPROM of the UCB Hardware Authentication Module is checked

against the password stored in the memory of the CPLD Hardware Authentication Module.

CTRL_1

CTRL_2

USR_IN

CLK

53.2M

CTRL_OUT7_0

Hardware Assisted Monitor

btn[1-4]

IDC_A[0-21,24-27]

IDC_C[0-21,24-27]

IDC_D[0-7]

CLK

Hardware
Authentication

Module

IDC_D[22]

HW_AUTH

CS

MISO

MOSI

HW_AUTH

CLK

1.5M

IDC_D[23]

IDC_D[21]

IDC_D[20]

DISPLAY

CTRL_OUT19_10

CTRL_OUT27_24

IDC_D[10-19]

IDC_D[24-27]

LED[1-8]

Fig. 28. Block diagram of control multiplexing using Digital Signal Processor signals and

Hardware Authentication Module within the Complex Programmable Logic Device of the

Cybersecure Power Router

If the two passwords match, then the "hardware is authorized" (HW_AUTH) signal goes HIGH

(TRUE). If there is a mismatch between the symmetric keys, then the HW_AUTH signal goes

LOW (FALSE). This mismatch will occur when the key stored in the power electronics (i.e., the

Hardware Authentication Module) differs from the key stored in the controller (i.e., the Hardware

Assisted Monitor).

The Hardware Assisted Monitor uses the liveness of the controllers and the authentication of

the power electronics to decide the routing of control signals. When the hardware is authenticated,

36

control signals from Controller 1 or Controller 2 are routed to the power electronics. The Hardware

Assisted Monitor assigns priority to Controllers 1 over Controller 2 if both controllers have

liveness. If only one controller has liveness, that controller's control signals are routed to the power

electronics. If no controller has liveness, the hardware is held in a lockout state. User inputs from

buttons 1 through 4 can override this logic to manually set the routing of control signals.

3.12 Firmware and Boot Management

The control multiplexing behavior of the Hardware Assisted Monitor prevents downtime

during firmware updates. The firmware is loaded into memory instantiated in the CPLD UCB

allocated for boot loading. The firmware is loaded through encrypted serial communication and

the internal data bus.

No

Yes

No

Yes

Yes

No

Install
 Firmware

Nominal
Operation

Update
Firmware?

Control 2 Live?

Reboot
Control 1

 Control 1
Not Live

 Control 1
Reboot

 Control 2
Controls Hardware

Lockout

Control 1 Live?

 Control 1
Controls

Hardware

Fig. 29. Block diagram of hot patching process

When a command is given, the designated DSP is power cycled by the CPLD. The power cycled

DSP boots from the allocated memory hosting the new firmware. The DSP boots using this new

firmware. While the DSP is booting, hardware control is passed to the second DSP. The hardware

37

continues operating while the first DSP boots with the new firmware. When the first DSP resumes

operation and provides a heartbeat with a period less than 75 μs, it is either passed control of the

hardware, or remains on standby. The above block diagram illustrates this process for Controller

1 being updated. A similar process is used for updating the firmware of Controller 2. As of the

time of this writing, this uptime during update process is being developed.

Hot patching refers to modifying currently used data in system memory. Hot patching, strictly

speaking, refers to a process that only applies to software. The present process is similar, but works

at the firmware and hardware level. Here, the process modifies currently used data flow (like

control signals) in a running system. The result of both techniques is the same: a running system

while patches, updates, and other fixes are applied.

3.13 Hardware Authentication

Authentication of the Power Electronics Evaluation Unified Controller Board requires the

Hardware Authentication Module PCB, the PE Eval UCB, and the CPLD UCB. The process begins

when power is applied to the PE Eval UCB. The on-board power is used to energize the Hardware

Authentication Module PCB. The IDC D port is used to connect the PE Eval UCB and the CPLD

UCB. In the CSPR prototype, the IDC D ribbon cable plugs into the Signal Splitter board, which

plugs into the PE Eval UCB.

38

Complex
Programmable
Logic Device

UCB

Signal Splitter

Power
Electronics
Evaluation

UCB

Hardware
Authentication

Module

IDC D Ribbon
Cable

Fig. 30. Diagram of CSPR components involved in hardware authentication

The CPLD UCB interfaces with the Hardware Authentication Module PCB through four

connections in the IDC D connection. These four connections provide the chip select (CS), clock

(CLK), master in slave out (MISO), and master out slave in (MOSI) signals between the EEPROM

of the Hardware Authentication Module on the PE Eval UCB and the VHDL Hardware

Authentication Module instantiated in the CPLD UCB. The clock signal provided is 1.5 MHz.

Only the read command for the EEPROM is used in the authentication process. To read a specific

memory address from the 93LC46BT-I/OT EEPROM [50], the following steps are required.

39

26

Unaccounted
clock cycle here.

Fig. 31. Excerpt from EEPROM datasheet, with erroneous information noted

First, the chip select must go high and remain high for the duration of the instruction. Sent data on

the MOSI signal is read at the falling edge of the clock. The starting bit of "1" is given on the

MOSI signal. The operational code for read, "10", is given over the next two clock cycles. A 6-bit

address is then supplied. A hold cycle, not present in the datasheet, but present in the captured

waveform below, is provided to transition between the final bit of the address (read on the falling

edge of the clock) and the first data out (sent on the rising edge of the clock).

SB OP1 OP2 A5 A4 A3 A2 A1 A0 HOLD D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 STB STB

0 0

1 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

State

CLK

CS

MISO

MOSI

Fig. 32: Hardware Authentication Module communication beside oscilloscope capture

A 16-bit value is read from each address. After transmission, MOSI and CS are set low. The system

is now in standby, and ready for another instruction cycle. The read values are parts of a 1 kilobit

40

password. There are 64 values in total. These values are flashed onto the EEPROM with an

Arduino running the "EEPROM_Write_PASSWORD" program (source code provided in

Appendix B). A matching password is included in the VHDL Hardware Authentication Module

instantiated in the CPLD UCB. These values are polled by the Hardware Authentication Module

in the CPLD UCB approximately five times a second. While the passwords match, a HW_AUTH

("hardware is authorized") signal is provided to the Hardware Assisted Monitor to allow control

signals to pass to the hardware. The result is that the CSPR hardware will only run if the Hardware

Authentication Module is operational.

3.14 Submodule Encrypted Communication

Communication between components of the CSPR prototype is designed to be encrypted. This

encrypted communication is the serial communication between the two digital signal processors

and the complex programmable logic device, and serial communication between the BeagleBone

Black and the complex programmable logic device.

UART_RX FIFO
AES

DECRYPTION
FIFO

UART_TX FIFO
AES

ENCRYPTION
FIFO

KEY
FEEDER

BUS

Fig. 33. Block diagram of encrypted serial communication within Complex Programmable Logic

Device used in the Cybersecure Power Router

41

The Advanced Encryption Standard 128-bit (AES-128) is used for this encryption. A key feeder

supplies the 128-bit key to the two AES-128 instantiations used to encrypt and decrypt serial

communication. This allows a rolling key to be used in later development of the CSPR project.

Additionally, different keys can be used for each communication port, and have separate keys for

receiving and transmitting serial information. First In, First Out (FIFO) buffers are used to queue

data until the appropriate block length is reached for encryption or decryption. Serial

communication is made available to the data bus instantiated within the CPLD UCB. Presently,

superficial, bidirectional, encrypted exchanges are available between the CSPR and the test bed.

This sets the groundwork for an encrypted, MD5 secured communication pipeline for later

development of the CSPR project.

3.15 Hardware Protections

Simple hardware protections are available for instantiation in the Cybersecure Power Router

prototype. These hardware protections prevent shoot-through faults in the switching legs of the PE

Eval UCB. These faults result when the control signals of both the high and low switch positions

are set to HIGH. This creates a direct connection between the rails of the dc bus of the PE Eval

UCB. The digital signal processors used in the CSPR prototype have shoot-through protections

built into the PWM modules that generate the control signals of the switching legs. These built in

protections can be reinforced by the Hardware Assisted Monitor of the CPLD UCB. The logic of

the shoot-through protection is to allow only one switching position to be ON at a time, and both

to be OFF in all other cases.

42

Fig. 34. Shoot-Through hardware protection

A delay or jitter of this protection on the order of 18.80 μs could be introduced by the sampling

resolution of the CPLD UCB's Hardware Assisted Monitor. The resolution can be found with the

following simple equation:

Given the 52.3 MHz clock supplied to the Hardware Assisted Monitor, the resolution is limited to:

The resolution may be increased with a faster clock, up to the limitation of the hardware. CPLD

cost, power demands, parasitic capacitance from layout, and EMI are all likely to limit the clock

frequency at which the Hardware Assisted Monitor operates.

3.16 Display

A bank of LEDs are used to display various system information of the CPLD UCB.

PWM HIGH

PWM LOW

PWM HIGH

PWM LOW

 1

𝑓𝑐𝑙𝑜𝑐𝑘
 = 𝑇𝑝𝑒𝑟𝑖𝑜𝑑

(2)

 1

53.2 𝑀𝐻𝑧
 = 18.7969 𝜇𝑠

(3)

43

LED(8) LED(7) LED(6) LED(5) LED(4) LED(3) LED(2) LED(1)

H
a

rd
w

a
re

 IS
 N

O
T

 A
u

th
o
riz

e
d

H
a

rd
w

a
re

 IS
 A

u
th

o
riz

e
d

B
B

B
 S

e
ria

l C
o

m
m

. O
p

e
ra

tio
n

a
l

H
A

R
D

W
A

R
E

 L
O

C
K

O
U

T

D
S

P
 S

e
ria

l C
o

m
m

. O
p

e
ra

tio
n

a
l

N
O

M
I
N

A
L
 C

O
N

T
R

O
L

O
N

L
Y

 C
O

N
T
R

O
L
L

E
R

 1

O
N

L
Y

 C
O

N
T
R

O
L
L

E
R

 2

Fig. 35. LED display diagram for Cybersecure Power Router

LED(8) and LED(7) are dedicated to displaying the status of hardware authentication. The red

LED(8) is ON and the greed LED (7) is OFF if the hardware is not authenticated. The red LED(8)

is OFF and the greed LED (7) is ON if the hardware is authenticated. The yellow LED(6) is

dedicated to displaying the serial connectivity between the BeagleBone Black and communication

modules instantiated in the CPLD UCB. While serial connectivity is active, LED(6) will fade ON

and OFF. LED(5) is dedicated to displaying the serial connectivity between the digital signal

processors and the communication modules instantiated in the CPLD UCB. Finally, LED(4-1) are

dedicated to display the state of the Hardware Assisted Monitor. LED(4) indicates a Lockout state.

LED(3) indicates a nominal state of both Controller 1 and Controller 2 being live. LED(2) indicates

that only Controller 1 is live. LED (1) indicates that only Controller 2 is live.

44

Chapter 4 - Results

The maximum duration of time between firmware execution cycles is sampled across

switching frequencies. Specifically, GPIO-24 of Controller 1 is probed, and measured for the

maximum pulse width. Ideally, this maximum pulse width corresponds to the duration of time

between interrupt service routines triggered at every switching cycle. An ideal trend line of

duration between switching periods is included in teal, below. An ideal trend line of available

controller resources is included in purple. These samples are plotted in orange as switching

frequency is swept from 1 kHz to 160 kHz.

Fig. 36. Time between execution cycles of controller firmware vs. switching frequency

45

The Cybersecure Power Router can operate up to 2050 kHz, but the samples produce a monotonic

trend beyond 120 kHz. The detail of Fig. 36 shows this transition in trends.

Fig. 37. Detail of Figure 36

The inverter is set to a 60 Hz output. The voltage waveform of the inverter output is captured

as the switching frequency is set to 114, 118, and 128 kHz. Compare these switching frequencies

to those in the figure above (Fig. 37) to see the threshold of an increasing switching frequency to

degrading and decreasing the inverter output frequency. These trends are intrinsic to a controller’s

hardware. The operate at higher switching frequencies, all things being equal, a controller needs

to do more processing in less time. This usually requires are more powerful controller.

46

The duration between switching period interrupts behaves ideally, until switching frequency is

increased beyond 106 kHz. Increasing the switching frequency reduces the time a controller has

to complete tasks required for controlling the power electronics. For the current controller

hardware and firmware, a deterioration in power flow occurs when switching frequency is

increased beyond 114 kHz. The output frequency of the inverter is set to 60 Hz. Yet, as switching

frequency is increased, inverter output falls to 45.05 and finally 30.07 Hz.

60.10 Hz

45.05 Hz

30.07 Hz

 114 kHz

118 kHz

128 kHz

Fig. 38. Inverter output voltage at 114, 118, and 128 kHz switching frequencies.

47

The interruption of ISRs before completion accounts for this. At 128 kHz switching frequency,

only 10% of processing resources are expected to be available for a particular interrupt. This

amount of resource utilization provides little insulation between the resources used of one task

from another. A possible result is a metastable condition resulting in the inverter output frequency

one half of the set output frequency. While an ISR is running, it is interrupted by another ISR.

When the new ISR completes, the previous ISR is able to finish. The results of the new ISR are

overwritten by the previous ISR.

To safeguard against such overrun conditions, the sensitivity of the Hardware Assisted

Monitor to loss of controller liveness can be adjusted. This can be done by adjusting the timing

requirements of the controller heartbeat against the expected pulse width (as pictured in figures 36

and 37). The Hardware Assisted Monitor can reroute control away from the deteriorating

controller, such as one causing 45.05 Hz or 30.07 Hz inverter output (as pictured in figure 38). If

the Hardware Assisted Monitor and heartbeat features are thus employed, the power flow of the

power electronics will be protected in case of firmware loss of liveness.

This security feature may result in disruptions and phase shifts if the controllers are not

synchronized. Figure 39 shows the voltage waveform of the inverter output while control is

rerouted.

48

Asynchronized

Synchronized

Fig. 39. Inverter output during controller transition

The inset labeled “Asynchronized” shows the possible result of routing control between controllers

out of phase with each other. A sharp transient or instability many result as the hardware jumps

from one point in the phase to another as control shifts between controllers. This problem is

avoided if the controllers are kept in phase, as show in the “Synchronized” inset. Here, both

49

controllers are synchronized to one another, or to the same signal. An example of this is grid-tied

inverter controllers kept in phase with one another by locking onto the same grid frequency.

A Hardware Assisted Monitor, firmware modification, and a second controller are required for

these security features. These features maintain the operation of the system, rather than cause

downtime in case of fault or failure. These features use a co-processor to instantiate the Hardware

Assisted Monitor and a second DSP to instantiate the second controller. Both of these design

choices incur an economic and non-recurring engineering cost relatively high to the cost of the

CSPR prototype. Using the Hardware Assisted Monitor as a second controller or a failsafe is also

a possibility. The present work shows one example of a secure system. It also raises many

possibilities for new cybersecure architectures that balance security, cost, and performance.

50

Chapter 5 - Future Work

5.1 Multi-Mission Controls

The Cybersecure Power Router allows great flexibility in the operation of controls. This

flexibility can be extended to allow multi-mission controls. The digital signal processor controls

used in the present prototype are redundant. This is not by way of necessity, but of convenience.

A different controller could operate in each DSP. These controllers could be optimized for energy

management, maximally secure operation, communication network facilitation, grid-reliability, or

other objectives or missions. Hardware assisted monitoring within the CSPR could provide

sufficient situational awareness to route hardware control to different controllers in different

contexts. Consider the following as an example. Controller 1 is optimized for efficient use of

energy resources. To provide more resources to power processing, communication is limited in

both volume and sophistication. Controller 2 is balanced to manage energy resources and provide

more secure communication. Controller 1 is used nominally, and accomplishes the primary

mission of efficient use of energy resources. If a communication anomaly or attack is detected,

Controller 2 is given system control. The transition between the two controllers is made smooth

through the control multiplexing technique shown earlier. When the anomaly or attack is cleared,

system control can be returned to Controller 1. Another possibility is booting a new controller onto

the DSP used by Controller 1 while the system is operated by Controller 2. This would allow a

new controller, say Controller 3, to be instantiated. Controller 3 could be optimized for a different

mission, say, to perform more conservative power management or provide forensic data in case of

hardware failure. Control could be switched from Controller 2 to Controller 3, and the process

51

could be repeated. In this way, two DSPs within the Cybersecure Power Router could be used to

provide controllers with many different missions.

Fig. 40: Radar chart of missions for controls

To reduce cost, controllers could be instantiated in the complex programmable logic device or

other hardware of the Cybersecure Power Router. This would remove the need for a second DSP,

or possibly both DSPs.

5.2 SGPN and CSPR Integration and Completion

The integration of the Cybersecure Power Router and the Smart Green Power Node are

required to realize a secure distributed energy resource pre-production prototype. The Smart Green

Power Node contributes hardware designs rated for 2 kW operation, power flow optimization,

energy generation prediction, grid arbitrage, and sophisticated controls.

52

SGPN:
Prediction,
Optimization,
Tertiary
Controls

Cybersecure
Power Router
Security

Unified
Controller Board
Hardware

Secure
Distributed

Energy Resource
Pre-Production

Prototype

~
=

=
=

SGPN:
Residential
Distributed
Energy
Resource

Fig. 41: CSPR and SGPN migration

The Cybersecure Power Router provides tested primary and secondary controls, protected system

operation, and enhanced security. Both projects, however, have challenges to their forward

development towards a pre-production prototype.

CSPR lacks the power ratings required in the prototype, and is not yet complete as a project.

Five milestones remain in the CSPR project: external communication protocols, integrated

user/server authentication, exhaustive testing, documentation, and project end. External

communication protocols and User/Server authentication are developed, but have not been

integrated with the CSPR prototype. Exhaustive testing of the cybersecure inverter is partially

accomplished: the hardware has operated over 100 hours at various power levels. Superficial

penetration tests on communication during operation were performed, and resulted in no

53

observable changes to system operation. Exhaustive penetration testing, specifically fuzz testing,

during operation and hot-patching are suggested in further development. Finally, documentation

and project end is also partially accomplished.

The SGPN lacks proper thermal management, optimized PCB layout, and coherent system-

level design. Many switches are poorly cooled and some devices, such as snubber circuits, receive

no forced cooling due to poor planning of thermal management. Electromagnetic interference from

switching during typical operation destroyed gate drivers, disrupted serial communication, and

deteriorated the integrity of feedback signals. The current SGPN has a poorly defined secondary

and tertiary controller. The individual controllers are not able to coordinate power flow in a safe,

autonomous way. The coordination and control of power flow through all these devices is manual.

The prediction and optimization algorithms provide a simple schedule for charging and

discharging the batteries throughout a day. These algorithms lack integration with the coordination

and control of the system, and currently provide no improvement to system operation.

Several considerations are necessary to realize a secure DER pre-production prototype. First,

an analysis of the design specifications are required to re-evaluate design parameters. The typical

operating voltage of the photovoltaic panels, power rating of the dc/dc converters, topology of the

dual half bridge, and capabilities of the human-machine interface may warrant re-evaluation.

Additionally, the inclusion or exclusion of security features from the CSPR project require

consideration. Secondly, the power electronics are suggested to be redesigned with thermal co-

design. Forced air convection and an extruded heatsink common to all switching devices may

provide a simple and effective means of cooling. The devices may be epoxied to aluminum nitride

heat spreaders to provide high thermal conductivity and electrical insulation. Third, radiated and

conducted EMI is suggested to be reduced through the reduction of PCB parasitics, and the

54

inclusion of snubbers and protection circuits during initial design. Finally, a well-defined, system-

level control scheme is suggested to be designed early in development. A comprehensive, robust

scheme is recommended for the integration of: power optimization, prediction, user preference,

current protections, battery protections, various modes of operation, and individual controller

operation. These schemes are suggested to be well defined before the design of individual

converter controls.

55

Chapter 6 - Conclusion

A security-by-design process identified the key power and data assets and their dependencies

for a distributed energy resource. The security-by-design process showed the dependencies

between hardware, data, and power assets. Namely, firmware---as source code stored in memory

and as a live instantiation as the controller---lies in the center of these dependencies. Defense-in-

depth was shown by layered security using AES-128 encryption, error detection, hardware assisted

monitoring, key management, MD5 hash checking, control multiplexing, heartbeat monitoring,

and hardware authentication, and hardware protections. This defense-in-depth protects the

integrity, confidentiality, and availability of hardware, data, and power at every layer of design.

Communication security includes encryption and error checking of transmitted messages,

firmware, and data shared between CSPR modules. Hardware security includes robust controls,

shoot-through protection, hardware authentication, galvanic isolation, and hardware failsafe

controls of connected resources. Securing the power and data flow through the Cybersecure Power

Router primarily means securing the integrity and availability of the hardware controller. The

Cybersecure Power Router determines the proper functioning of the controller by means of a

hardware assisted monitor and a controller’s heartbeat. The Cybersecure Power Router responds

to a controller failure by multiplexing control signals, swapping control from a malfunctioning

controller to a live one.

The Cybersecure Power Router illustrates the security-by-design process and defense-in-depth

method in a single prototype. The Smart Green Power Node was evaluated for present and future

use as the hardware of the Cybersecure Power Router prototype. The security features protecting

liveness of controllers of the Cybersecure Power Router was researched in depth. Decreased

integrity of power flow through the power electronics was shown to correlate with the loss of

56

liveness of the controllers. The use of a heartbeat from the controllers provides a signal sensitive

to the liveness of the controller. The Hardware Assisted Monitor uses this heartbeat to provide

control signals to hardware from controllers with liveness. The resulting system is resilient to

firmware failure and loss of integrity at runtime. This resilience protects against controller overrun

and system downtime, such as during firmware patching. Further research can investigate greater

flexibility and resiliency in controls, and methods to reduce costs. A pre-production prototype can

be realized from the migration of features from both the Cybersecure Power Router and the Smart

Green Power Node.

References

[1] O. Ivanchenko, V. Kharchenko, B. Moroz, L. Kabak, and S. Konovalenko, “Risk

Assessment of Critical Energy Infrastructure Considering Physical and Cyber Assets:

Methodology and Models,” in 2018 IEEE 4th International Symposium on Wireless

Systems within the International Conferences on Intelligent Data Acquisition and

Advanced Computing Systems (IDAACS-SWS), 2018, pp. 225–228.

[2] C. Konstantinou, M. Maniatakos, F. Saqib, S. Hu, J. Plusquellic, and Y. Jin, “Cyber-

physical systems: A security perspective,” in 2015 20th IEEE European Test Symposium

(ETS), 2015, pp. 1–8.

[3] A. R. S. Farhan and G. M. M. Mostafa, “A Methodology for Enhancing Software Security

During Development Processes,” in 2018 21st Saudi Computer Society National Computer

Conference (NCC), 2018, pp. 1–6.

[4] S. Yang, A. Bryant, P. Mawby, D. Xiang, L. Ran, and P. Tavner, “An Industry-Based

Survey of Reliability in Power Electronic Converters,” IEEE Trans. Ind. Appl., vol. 47, no.

3, pp. 1441–1451, May 2011.

[5] J. Golovatchev, O. Budde, and Chin-Gi Hong, “Management of product complexity

through integrated PLM in a multi-lifecycle environment,” in 2009 IEEE International

Technology Management Conference (ICE), 2009, pp. 1–9.

[6] “IEEE Standard for System, Software, and Hardware Verification and Validation,” IEEE

Std 1012-2016 Revis. IEEE Std 1012-2012 Inc. IEEE Std 1012-2016Cor1-2017, pp. 1–260,

Sep. 2017.

57

[7] J. R. White and M. Doherty, “Hazards in the installation and maintenance of solar panels,”

in 2017 IEEE IAS Electrical Safety Workshop (ESW), 2017, pp. 1–5.

[8] Z. Li and M. Shahidehpour, “Defense-in-depth framework for microgrid secure operations

against cyberattacks,” in 2017 IEEE Power Energy Society General Meeting, 2017, pp. 1–

5.

[9] S. Sridhar, A. Hahn, and M. Govindarasu, “Cyber–Physical System Security for the

Electric Power Grid,” Proc. IEEE, vol. 100, no. 1, pp. 210–224, Jan. 2012.

[10] A. Mukherjee, S. A. A. Fakoorian, J. Huang, and A. L. Swindlehurst, “Principles of

Physical Layer Security in Multiuser Wireless Networks: A Survey,” IEEE Commun. Surv.

Tutor., vol. 16, no. 3, pp. 1550–1573, Third 2014.

[11] S. Teleke, M. E. Baran, S. Bhattacharya, and A. Q. Huang, “Rule-Based Control of Battery

Energy Storage for Dispatching Intermittent Renewable Sources,” IEEE Trans. Sustain.

Energy, vol. 1, no. 3, pp. 117–124, Oct. 2010.

[12] E. W. Nahas, D. A. Mansour, H. A. A. el-Ghany, and M. M. Eissa, “Accurate Fault

Analysis and Proposed Protection Scheme for Battery Energy Storage System Integrated

with DC Microgrids,” in 2018 Twentieth International Middle East Power Systems

Conference (MEPCON), 2018, pp. 911–917.

[13] F. Xiao and J. D. McCalley, “Risk-Based Security and Economy Tradeoff Analysis for

Real-Time Operation,” IEEE Trans. Power Syst., vol. 22, no. 4, pp. 2287–2288, Nov. 2007.

[14] A. Varghese and A. K. Bose, “Threat modelling of industrial controllers: A firmware

security perspective,” in 2014 International Conference on Anti-Counterfeiting, Security

and Identification (ASID), 2014, pp. 1–4.

[15] N. R. Saxena and E. J. McCluskey, “Analysis of checksums, extended-precision

checksums, and cyclic redundancy checks,” IEEE Trans. Comput., vol. 39, no. 7, pp. 969–

975, Jul. 1990.

[16] A. Cervin, “ANALYSIS OF OVERRUN STRATEGIES IN PERIODIC CONTROL

TASKS,” IFAC Proc. Vol., vol. 38, no. 1, pp. 219–224, Jan. 2005.

[17] National Institute of Standards and Technology, “FIPS 197, Advanced Encryption

Standard (AES),” Fed. Inf. Process. Stand. Publ. 197, p. 51, Nov. 2001.

[18] “ISO/IEC 18033-3:2010 - Information technology -- Security techniques -- Encryption

algorithms -- Part 3: Block ciphers.” [Online]. Available:

https://www.iso.org/standard/54531.html. [Accessed: 22-May-2019].

58

[19] V. Saicheur and K. Piromsopa, “An implementation of AES-128 and AES-512 on Apple

mobile processor,” in 2017 14th International Conference on Electrical

Engineering/Electronics, Computer, Telecommunications and Information Technology

(ECTI-CON), 2017, pp. 389–392.

[20] M. P. Priyanka, E. L. Prasad, and A. R. Reddy, “FPGA implementation of image

encryption and decryption using AES 128-bit core,” in 2016 International Conference on

Communication and Electronics Systems (ICCES), 2016, pp. 1–5.

[21] R. Andriani, S. E. Wijayanti, and F. W. Wibowo, “Comparision Of AES 128, 192 And 256

Bit Algorithm For Encryption And Description File,” in 2018 3rd International Conference

on Information Technology, Information System and Electrical Engineering (ICITISEE),

2018, pp. 120–124.

[22] X. Zheng and J. Jin, “Research for the application and safety of MD5 algorithm in password

authentication,” in 2012 9th International Conference on Fuzzy Systems and Knowledge

Discovery, 2012, pp. 2216–2219.

[23] B. Preneel and P. C. van Oorschot, “On the security of iterated message authentication

codes,” IEEE Trans. Inf. Theory, vol. 45, no. 1, pp. 188–199, Jan. 1999.

[24] K. Jarvinen, M. Tommiska, and J. Skytta, “Hardware Implementation Analysis of the MD5

Hash Algorithm,” in Proceedings of the 38th Annual Hawaii International Conference on

System Sciences, 2005, pp. 298a–298a.

[25] H. A. Abyaneh, M. Al-Dabbagh, H. K. Karegar, S. H. H. Sadeghi, and R. A. J. Khan, “A

new optimal approach for coordination of overcurrent relays in interconnected power

systems,” IEEE Trans. Power Deliv., vol. 18, no. 2, pp. 430–435, Apr. 2003.

[26] S. Yin et al., “Gate driver optimization to mitigate shoot-through in high-speed switching

SiC half bridge module,” in 2015 IEEE 11th International Conference on Power

Electronics and Drive Systems, 2015, pp. 484–491.

[27] D. Arora, S. Ravi, A. Raghunathan, and N. K. Jha, “Secure embedded processing through

hardware-assisted run-time monitoring,” in Design, Automation and Test in Europe, 2005,

pp. 178-183 Vol. 1.

[28] H. Falaghi and M.- Haghifam, “Distributed Generation Impacts on Electric Distribution

Systems Reliability: Sensitivity Analysis,” in EUROCON 2005 - The International

Conference on “Computer as a Tool,” 2005, vol. 2, pp. 1465–1468.

[29] A. S. Tanenbaum, J. N. Herder, and H. Bos, “Can we make operating systems reliable and

secure?,” Computer, vol. 39, no. 5, pp. 44–51, May 2006.

59

[30] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum, “Fault isolation for

device drivers,” in 2009 IEEE/IFIP International Conference on Dependable Systems

Networks, 2009, pp. 33–42.

[31] L. Li, M. Lu, and T. Gu, “Constructing runtime models of complex software-intensive

systems for analysis of failure mechanism,” in 2015 First International Conference on

Reliability Systems Engineering (ICRSE), 2015, pp. 1–10.

[32] D. Hristu-Varsakelis and W. S. Levine, Handbook of Networked and Embedded Control

Systems. Springer Science & Business Media, 2007.

[33] B. Alpern and F. B. Schneider, “Recognizing safety and liveness,” Distrib. Comput., vol.

2, no. 3, pp. 117–126, Sep. 1987.

[34] M. Raynal, Concurrent programming algorithms, principles, and foundations. Heidelberg;

New York: Springer-Verlag, 2013.

[35] K. Stouffer, V. Pillitteri, S. Lightman, M. Abrams, and A. Hahn, “Guide to Industrial

Control Systems (ICS) Security,” National Institute of Standards and Technology, NIST

SP 800-82r2, Jun. 2015.

[36] J. Daemen and V. Rijmen, The Design of Rijndael: AES - The Advanced Encryption

Standard. Springer Science & Business Media, 2013.

[37] C. C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia, “Dynamic Provable Data

Possession,” ACM Trans Inf Syst Secur, vol. 17, no. 4, pp. 15:1–15:29, Apr. 2015.

[38] H. Shukla, V. Singh, Y. Choi, J. Kwon, and C. Hahm, “Enhance OS security by restricting

privileges of vulnerable application,” in 2013 IEEE 2nd Global Conference on Consumer

Electronics (GCCE), 2013, pp. 207–211.

[39] Y. Li, J. M. McCune, and A. Perrig, “VIPER: Verifying the Integrity of PERipherals’

Firmware,” in Proceedings of the 18th ACM Conference on Computer and

Communications Security, New York, NY, USA, 2011, pp. 3–16.

[40] A. Ramaswamy, S. Bratus, S. W. Smith, and M. E. Locasto, “Katana: A Hot Patching

Framework for ELF Executables,” in 2010 International Conference on Availability,

Reliability and Security, 2010, pp. 507–512.

[41] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software rejuvenation: analysis,

module and applications,” in Twenty-Fifth International Symposium on Fault-Tolerant

Computing. Digest of Papers, 1995, pp. 381–390.

[42] U. Guin, K. Huang, D. DiMase, J. M. Carulli, M. Tehranipoor, and Y. Makris, “Counterfeit

Integrated Circuits: A Rising Threat in the Global Semiconductor Supply Chain,” Proc.

IEEE, vol. 102, no. 8, pp. 1207–1228, Aug. 2014.

60

[43] G. Mazzanti, “Distortion limits in international standards vs. reliability of power

components: Always on the safe side as to low-order voltage harmonics?,” in 2012 IEEE

Power and Energy Society General Meeting, 2012, pp. 1–8.

[44] J. M. Fife, M. Scharf, S. G. Hummel, and R. W. Morris, “Field reliability analysis methods

for photovoltaic inverters,” in 2010 35th IEEE Photovoltaic Specialists Conference, 2010,

pp. 002767–002772.

[45] Y. Yuan, Q. Zhu, F. Sun, Q. Wang, and T. Başar, “Resilient control of cyber-physical

systems against Denial-of-Service attacks,” in 2013 6th International Symposium on

Resilient Control Systems (ISRCS), 2013, pp. 54–59.

[46] Lattice Semiconductor, “MachXO2FamilyDataSheet-948089.pdf,” 2016. [Online].

Available: https://www.mouser.com/datasheet/2/225/MachXO2FamilyDataSheet-

948089.pdf. [Accessed: 01-Jun-2019].

[47] Z. Ying et al., “Multiplexing efficiency of high order MIMO in mobile terminal for 5G

communication at 15 GHz,” in 2016 International Symposium on Antennas and

Propagation (ISAP), 2016, pp. 594–595.

[48] J. Carpenter and R. Melhem, “Deterministic Multiplexing of NoC on Grid CMPs,” in 2013

IEEE 21st Annual Symposium on High-Performance Interconnects, 2013, pp. 1–8.

[49] E. Başar, Ü. Aygölü, E. Panayırcı, and H. V. Poor, “Orthogonal Frequency Division

Multiplexing With Index Modulation,” IEEE Trans. Signal Process., vol. 61, no. 22, pp.

5536–5549, Nov. 2013.

[50] Microchip, “1K Microwire Compatible Serial EEPROM,” 2008.

61

Appendix

Appendix A: Hardware and Software Design Details

 The following figures are imbedded PDF objects. To fully view: right click on the figure,

select Acrobat Document Object → Open. The PDF will open in a PDF reader.

Fig. 42. Digital Signal Processor Unified Controller Board schematic

62

Fig. 43. Power Electronics Evaluation Unified Controller Board schematic

63

Fig. 44. Complex Programmable Logic Device Unified Controller Board schematic

64

Fig. 45. BeagleBone Black schematic

Fig. 46. Hardware Authentication Module schematic

65

Fig. 47. Analog Splitter schematic

Fig. 48. Crontab configuration on BeagleBone Black to run CPLD UCB LED control script on

startup

66

Fig. 49. Content of LED control Python script running on the BeagleBone Black

67

Appendix B: EEPROM_WRITE_PASSWORD

/*

 MicrowireEEPROM Example Sketch

 Reads and writes a Microwire EEPROM.

 Written by Timo Schneider <timos@perlplexity.org> and Joe Moquin

*/

#include <MicrowireEEPROM.h>

// Microwire needs four wires (apart from VCC/GND) DO,DI,CS,CLK

// configure them here, note that DO and DI are the pins of the

// EEPROM, so DI is an output of the uC, while DO is an input

int CS=13; int CLK=12; int DI=7; int DO=2;

// EEPROMS have different sizes. Also the number of bits per page varies.

// We need to configure the page size in bits (PGS) and address bus width

// in bits (ADW). The speed at which the clock is run is configured in

// microseconds.

//int PGS=16; int ADW=8; int SPD=200;

int PGS=16; int ADW=6; int SPD=700;

unsigned int password[64] = {

 0xABBA,0xABED,0xBABE,0xBADE,0xBEAD,0xBEEF,0xCAFE,0xCEDE,

 0xDADA,0xDEAD,0xDEAF,0xDEED,0xFACE,0xFADE,0xFEED,0xFEE0,

 0xABBA,0xABED,0xBABE,0xBADE,0xBEAD,0xBEEF,0xCAFE,0xCEDE,

 0xDADA,0xDEAD,0xDEAF,0xDEED,0xFACE,0xFADE,0xFEED,0xFEE0,

 0xABBA,0xABED,0xBABE,0xBADE,0xBEAD,0xBEEF,0xCAFE,0xCEDE,

 0xDADA,0xDEAD,0xDEAF,0xDEED,0xFACE,0xFADE,0xFEED,0xFEE0,

 0xABBA,0xABED,0xBABE,0xBADE,0xBEAD,0xBEEF,0xCAFE,0xCEDE,

 0xDADA,0xDEAD,0xDEAF,0xDEED,0xFACE,0xFADE,0xFEED,0xFEE0

};

// initialize the library

MicrowireEEPROM ME(CS, CLK, DI, DO, PGS, ADW, SPD);

void setup() {

 Serial.begin(9600);

 set_memory_map();

}

void loop() {

 for (int addr=0; addr < 64; addr++) {

 unsigned int r = ME.read(addr);

 String addr_reading = "Address " + String(addr, HEX) + "(" + String(addr, DEC) + ") DO: "

+ String(r, HEX) + " ";

 Serial.println(addr_reading);

 delay(100);

 }

68

}

void set_memory_map() {

 ME.writeEnable();

 delay(10);

 for (int addr=0; addr < 64; addr++) {

 ME.write(addr,password[addr]);

 delay(10);

 }

 ME.writeDisable();

 Serial.println("Write complete.");

}

69

Appendix C: CSPR_V7.lpf

#LCMXO2-7000HC 4FG484C WITHIN THE UCB V1.3A

#DESIGNER: CHRIS FARNELL

#AUTHOR: JOE MOQUIN

#CONTACT: CFARNELL@UARK.EDU

#DATE: 3/12/2019

#CONTENTS:

BLOCK

GPIO:

IDC-A

IDC-B

IDC-C

IDC-D

ADC:

ADC1

ADC2

INTERFACE:

BUTTONS

LEDS

DIP SWITCHES

COMMUNICATION:

SCI

CLOCKS

#TO DO: XPORT, TI-RX/TX, LAT, EXT CLK/RST

BLOCK RESETPATHS ;

BLOCK ASYNCPATHS ;

BANK 0 VCCIO 3.3 V;

BANK 1 VCCIO 2.5 V;

BANK 2 VCCIO 3.3 V;

BANK 3 VCCIO 3.3 V;

BANK 4 VCCIO 3.3 V;

BANK 5 VCCIO 3.3 V;

#IDC A

LOCATE COMP "A0" SITE "A21" ;

LOCATE COMP "A1" SITE "C19" ;

LOCATE COMP "A2" SITE "A20" ;

LOCATE COMP "A3" SITE "D18" ;

LOCATE COMP "A4" SITE "B19" ;

LOCATE COMP "A5" SITE "C18" ;

LOCATE COMP "A6" SITE "F17" ;

LOCATE COMP "A7" SITE "A18" ;

#LOCATE COMP "A8" SITE "D17" ;

#LOCATE COMP "A9" SITE "E17" ;

70

LOCATE COMP "A10" SITE "A17" ;

LOCATE COMP "A11" SITE "C17" ;

LOCATE COMP "A12" SITE "F16" ;

LOCATE COMP "A13" SITE "E16" ;

LOCATE COMP "A14" SITE "D16" ;

LOCATE COMP "A15" SITE "B15" ;

LOCATE COMP "A16" SITE "C16" ;

LOCATE COMP "A17" SITE "E15" ;

LOCATE COMP "A18" SITE "B14" ;

LOCATE COMP "A19" SITE "F15" ;

#LOCATE COMP "A20" SITE "C15" ;

#LOCATE COMP "A21" SITE "B13" ;

#LOCATE COMP "A22" SITE "D15" ;

#LOCATE COMP "A23" SITE "G15" ;

LOCATE COMP "A24" SITE "A13" ;

LOCATE COMP "A25" SITE "E14" ;

LOCATE COMP "A26" SITE "D14" ;

LOCATE COMP "A27" SITE "B12" ;

#IDC B

LOCATE COMP "B0" SITE "AA22" ;

LOCATE COMP "B1" SITE "T19" ;

LOCATE COMP "B2" SITE "Y22" ;

LOCATE COMP "B3" SITE "W22" ;

LOCATE COMP "B4" SITE "W20" ;

LOCATE COMP "B5" SITE "V19" ;

LOCATE COMP "B6" SITE "V21" ;

LOCATE COMP "B7" SITE "V22" ;

LOCATE COMP "B8" SITE "U22" ;

LOCATE COMP "B9" SITE "U19" ;

LOCATE COMP "B10" SITE "T21" ;

LOCATE COMP "B11" SITE "R19" ;

LOCATE COMP "B12" SITE "U20" ;

LOCATE COMP "B13" SITE "T22" ;

LOCATE COMP "B14" SITE "R20" ;

LOCATE COMP "B15" SITE "R18" ;

LOCATE COMP "B16" SITE "R21" ;

LOCATE COMP "B17" SITE "P19" ;

LOCATE COMP "B18" SITE "T20" ;

LOCATE COMP "B19" SITE "R22" ;

LOCATE COMP "B20" SITE "P20" ;

LOCATE COMP "B21" SITE "P18" ;

#LOCATE COMP "B22" SITE "P21" ;

LOCATE COMP "Usr_RX" SITE "P21" ;

#LOCATE COMP "B23" SITE "N17" ;

LOCATE COMP "Usr_TX" SITE "N17" ;

LOCATE COMP "B24" SITE "N16" ;

71

LOCATE COMP "B25" SITE "N21" ;

LOCATE COMP "B26" SITE "N20" ;

LOCATE COMP "B27" SITE "M18" ;

#IDC-C

LOCATE COMP "C0" SITE "Y14" ;

LOCATE COMP "C1" SITE "AB15" ;

LOCATE COMP "C2" SITE "W12" ;

LOCATE COMP "C3" SITE "V12" ;

LOCATE COMP "C4" SITE "Y12" ;

LOCATE COMP "C5" SITE "V13" ;

LOCATE COMP "C6" SITE "AA15" ;

LOCATE COMP "C7" SITE "Y15" ;

#LOCATE COMP "C8" SITE "AB16" ;

#LOCATE COMP "C9" SITE "AA16" ;

LOCATE COMP "C10" SITE "T13" ;

LOCATE COMP "C11" SITE "U13" ;

LOCATE COMP "C12" SITE "Y16" ;

LOCATE COMP "C13" SITE "AB17" ;

LOCATE COMP "C14" SITE "W14" ;

LOCATE COMP "C15" SITE "V14" ;

LOCATE COMP "C16" SITE "Y17" ;

LOCATE COMP "C17" SITE "AB18" ;

LOCATE COMP "C18" SITE "W15" ;

LOCATE COMP "C19" SITE "V15" ;

#LOCATE COMP "C20" SITE "W16" ;

#LOCATE COMP "C21" SITE "W17" ;

#LOCATE COMP "C22" SITE "Y18" ;

#LOCATE COMP "C23" SITE "AA19" ;

LOCATE COMP "C24" SITE "AB20" ;

LOCATE COMP "C25" SITE "AB21" ;

LOCATE COMP "C26" SITE "V16" ;

LOCATE COMP "C27" SITE "U15" ;

#IDC D

LOCATE COMP "D0" SITE "C3" ;

LOCATE COMP "D1" SITE "C2" ;

LOCATE COMP "D2" SITE "F6" ;

LOCATE COMP "D3" SITE "F5" ;

LOCATE COMP "D4" SITE "E4" ;

LOCATE COMP "D5" SITE "D3" ;

LOCATE COMP "D6" SITE "G6" ;

LOCATE COMP "D7" SITE "H7" ;

LOCATE COMP "D8" SITE "B1" ;

LOCATE COMP "D9" SITE "C1" ;

LOCATE COMP "D10" SITE "H6" ;

LOCATE COMP "D11" SITE "G5" ;

LOCATE COMP "D12" SITE "E2" ;

72

LOCATE COMP "D13" SITE "D1" ;

LOCATE COMP "D14" SITE "F4" ;

LOCATE COMP "D15" SITE "G4" ;

LOCATE COMP "D16" SITE "F1" ;

LOCATE COMP "D17" SITE "G3" ;

LOCATE COMP "D18" SITE "J5" ;

LOCATE COMP "D19" SITE "J4" ;

LOCATE COMP "D20" SITE "G2" ;

LOCATE COMP "D21" SITE "G1" ;

LOCATE COMP "D22" SITE "K6" ;

LOCATE COMP "D23" SITE "K7" ;

LOCATE COMP "D24" SITE "H3" ;

LOCATE COMP "D25" SITE "H2" ;

LOCATE COMP "D26" SITE "K5" ;

LOCATE COMP "D27" SITE "L3" ;

#BUTTONS SW[1:4] ACTIVE LOW

LOCATE COMP "BTN[1]" SITE "G13" ;

LOCATE COMP "BTN[2]" SITE "F13" ;

LOCATE COMP "BTN[3]" SITE "A12" ;

LOCATE COMP "BTN[4]" SITE "C13" ;

DEFINE PORT GROUP "BTN" "BTN[1]"

"BTN[2]"

"BTN[3]"

"BTN[4]" ;

IOBUF GROUP "BTN" IO_TYPE=LVCMOS33 ;

#LEDS ACTIVE LOW

LOCATE COMP "LED[1]" SITE "R17" ;

LOCATE COMP "LED[2]" SITE "T18" ;

LOCATE COMP "LED[3]" SITE "R16" ;

LOCATE COMP "LED[4]" SITE "T17" ;

LOCATE COMP "LED[5]" SITE "Y21" ;

LOCATE COMP "LED[6]" SITE "Y20" ;

LOCATE COMP "LED[7]" SITE "U18" ;

LOCATE COMP "LED[8]" SITE "U17" ;

DEFINE PORT GROUP "LED" "LED[1]"

"LED[2]"

"LED[3]"

"LED[4]"

"LED[5]"

"LED[6]"

"LED[7]"

"LED[8]" ;

IOBUF GROUP "LED" IO_TYPE=LVCMOS25 PULLMODE=DOWN DRIVE=8

SLEWRATE=SLOW ;

#SCI

#LOCATE COMP "SCI_TX" SITE "W1" ;

73

#LOCATE COMP "SCI_RX" SITE "V2" ;

#CLOCKS

#LOCATE COMP "XTAL_CLK" SITE "V3" ;

#FREQUENCY NET "CLK" 53.200000 MHZ ;

IOBUF PORT "A0" IO_TYPE=LVCMOS33 ;

IOBUF PORT "A1" IO_TYPE=LVCMOS33 ;

IOBUF PORT "A2" IO_TYPE=LVCMOS33 ;

IOBUF PORT "A3" IO_TYPE=LVCMOS33 ;

IOBUF PORT "A4" IO_TYPE=LVCMOS33 ;

IOBUF PORT "A5" IO_TYPE=LVCMOS33 ;

IOBUF PORT "A6" IO_TYPE=LVCMOS33 ;

IOBUF PORT "A7" IO_TYPE=LVCMOS33 ;

IOBUF PORT "A10" IO_TYPE=LVCMOS33 ;

IOBUF PORT "A11" IO_TYPE=LVCMOS33 ;

IOBUF PORT "A12" IO_TYPE=LVCMOS33 ;

IOBUF PORT "A13" IO_TYPE=LVCMOS33 ;

IOBUF PORT "A14" IO_TYPE=LVCMOS33 ;

IOBUF PORT "A15" IO_TYPE=LVCMOS33 ;

IOBUF PORT "A16" IO_TYPE=LVCMOS33 ;

IOBUF PORT "A17" IO_TYPE=LVCMOS33 ;

IOBUF PORT "A18" IO_TYPE=LVCMOS33 ;

IOBUF PORT "A19" IO_TYPE=LVCMOS33 ;

IOBUF PORT "A24" IO_TYPE=LVCMOS33 ;

IOBUF PORT "A25" IO_TYPE=LVCMOS33 ;

IOBUF PORT "A26" IO_TYPE=LVCMOS33 ;

IOBUF PORT "A27" IO_TYPE=LVCMOS33 ;

IOBUF PORT "C0" IO_TYPE=LVCMOS33 ;

IOBUF PORT "C1" IO_TYPE=LVCMOS33 ;

IOBUF PORT "C2" IO_TYPE=LVCMOS33 ;

IOBUF PORT "C3" IO_TYPE=LVCMOS33 ;

IOBUF PORT "C4" IO_TYPE=LVCMOS33 ;

IOBUF PORT "C5" IO_TYPE=LVCMOS33 ;

IOBUF PORT "C6" IO_TYPE=LVCMOS33 ;

IOBUF PORT "C7" IO_TYPE=LVCMOS33 ;

IOBUF PORT "C10" IO_TYPE=LVCMOS33 ;

IOBUF PORT "C11" IO_TYPE=LVCMOS33 ;

IOBUF PORT "C12" IO_TYPE=LVCMOS33 ;

IOBUF PORT "C13" IO_TYPE=LVCMOS33 ;

IOBUF PORT "C14" IO_TYPE=LVCMOS33 ;

IOBUF PORT "C15" IO_TYPE=LVCMOS33 ;

IOBUF PORT "C16" IO_TYPE=LVCMOS33 ;

IOBUF PORT "C17" IO_TYPE=LVCMOS33 ;

IOBUF PORT "C18" IO_TYPE=LVCMOS33 ;

IOBUF PORT "C19" IO_TYPE=LVCMOS33 ;

IOBUF PORT "C24" IO_TYPE=LVCMOS33 ;

IOBUF PORT "C25" IO_TYPE=LVCMOS33 ;

74

IOBUF PORT "C26" IO_TYPE=LVCMOS33 ;

IOBUF PORT "C27" IO_TYPE=LVCMOS33 ;

IOBUF PORT "D23" IO_TYPE=LVCMOS33 ;

IOBUF PORT "D0" IO_TYPE=LVCMOS33 ;

IOBUF PORT "D1" IO_TYPE=LVCMOS33 ;

IOBUF PORT "D2" IO_TYPE=LVCMOS33 ;

IOBUF PORT "D3" IO_TYPE=LVCMOS33 ;

IOBUF PORT "D4" IO_TYPE=LVCMOS33 ;

IOBUF PORT "D5" IO_TYPE=LVCMOS33 ;

IOBUF PORT "D6" IO_TYPE=LVCMOS33 ;

IOBUF PORT "D7" IO_TYPE=LVCMOS33 ;

IOBUF PORT "D8" IO_TYPE=LVCMOS33 ;

IOBUF PORT "D9" IO_TYPE=LVCMOS33 ;

IOBUF PORT "D10" IO_TYPE=LVCMOS33 ;

IOBUF PORT "D11" IO_TYPE=LVCMOS33 ;

IOBUF PORT "D12" IO_TYPE=LVCMOS33 ;

IOBUF PORT "D13" IO_TYPE=LVCMOS33 ;

IOBUF PORT "D14" IO_TYPE=LVCMOS33 ;

IOBUF PORT "D15" IO_TYPE=LVCMOS33 ;

IOBUF PORT "D16" IO_TYPE=LVCMOS33 ;

IOBUF PORT "D17" IO_TYPE=LVCMOS33 ;

IOBUF PORT "D18" IO_TYPE=LVCMOS33 ;

IOBUF PORT "D19" IO_TYPE=LVCMOS33 ;

IOBUF PORT "D20" IO_TYPE=LVCMOS33 ;

IOBUF PORT "D21" IO_TYPE=LVCMOS33 ;

IOBUF PORT "D22" IO_TYPE=LVCMOS33 ;

IOBUF PORT "D24" IO_TYPE=LVCMOS33 ;

IOBUF PORT "D25" IO_TYPE=LVCMOS33 ;

IOBUF PORT "D26" IO_TYPE=LVCMOS33 ;

IOBUF PORT "D27" IO_TYPE=LVCMOS33 ;

75

Appendix D: hardware_protections.vhd

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY censor IS

 PORT (

 pwm_i : IN STD_LOGIC_VECTOR(1 DOWNTO 0);

 pwm_o : OUT STD_LOGIC_VECTOR(1 DOWNTO 0)

);

END censor;

ARCHITECTURE behavior OF censor IS

BEGIN

 WITH pwm_i SELECT pwm_o <=

 "01" WHEN "01",

 "10" WHEN "10",

 "00" WHEN OTHERS;

END behavior;

76

Appendix E: CSPR_MODULES.vhdl

--

-- Company: University of Arkansas (NCREPT)

-- Engineer: Chris Farnell, Joe Moquin

--

-- Create Date: March 12, 2019

-- Design Name: Generic Components

-- Module Name: Various

-- Project Name: Cybersecure Power Router

-- Target Devices: LCMXO2-7000HC-4FG484C (MachXO2 Eval Board)

--

--

--#############################Generic

Components##--

------------------------------Bus Interface--

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

USE ieee.std_logic_unsigned.ALL;

USE ieee.numeric_std.ALL;

ENTITY Bus_Int IS

 GENERIC (

 CONSTANT DATA_WIDTH : INTEGER := 16;

 CONSTANT Address_WIDTH : INTEGER := 16

);

 PORT (

 clk : IN std_logic;

 rst : IN std_logic;

 DataIn : IN std_logic_vector(DATA_WIDTH - 1 DOWNTO 0);

 DataOut : OUT std_logic_vector(DATA_WIDTH - 1 DOWNTO 0);

 AddrIn : IN std_logic_vector(Address_WIDTH - 1 DOWNTO 0);

 WE : IN std_logic;

 RE : IN std_logic;

 Busy : OUT std_logic;

 Data : INOUT std_logic_vector(DATA_WIDTH - 1 DOWNTO 0);

 Addr : OUT std_logic_vector(Address_WIDTH - 1 DOWNTO 0);

 Xrqst : OUT std_logic;

 XDat : IN std_logic;

 YDat : OUT std_logic;

 BusRqst : OUT std_logic;

 BusCtrl : IN std_logic

);

END;

ARCHITECTURE behavior OF Bus_Int IS

 TYPE state_type IS (S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10);

77

 SIGNAL CS, NS : state_type;

 SIGNAL AddrIn_reg_o : std_logic_vector(DATA_WIDTH - 1 DOWNTO 0) :=

(OTHERS => '0');

 SIGNAL DataIn_reg_o : std_logic_vector(DATA_WIDTH - 1 DOWNTO 0) :=

(OTHERS => '0');

 SIGNAL LD_AddrIn, LD_DataIn, LD_Data : std_logic := '0';

BEGIN

 ----Registers

 Reg_Proc : PROCESS

 BEGIN

 WAIT UNTIL clk'event AND clk = '1';

 IF rst = '0' THEN

 AddrIn_reg_o <= (OTHERS => '0');

 DataIn_reg_o <= (OTHERS => '0');

 DataOut <= (OTHERS => '0');

 ELSE

 IF (LD_AddrIn = '1') THEN

 AddrIn_reg_o <= AddrIn;

 END IF; --Register for reading input address

 IF (LD_DataIn = '1') THEN

 DataIn_reg_o <= DataIn;

 END IF; --Register for reading input address

 IF (LD_Data = '1') THEN

 DataOut <= Data;

 END IF; --Register for reading input address

 END IF;

 END PROCESS;

 ----End Registers

 ----Next State Logic Bus Interface

 NS_Bus_Int : PROCESS (CS, WE, RE, XDat, BusCtrl, AddrIn_reg_o, DataIn_reg_o)

 BEGIN

 ----Default States to remove latches

 Busy <= '1';

 Data <= (OTHERS => 'Z');

 Addr <= (OTHERS => 'Z');

 XRqst <= 'Z';

 YDat <= 'Z';

 BusRqst <= '0';

 NS <= S0;

 LD_AddrIn <= '0';

 LD_DataIn <= '0';

 LD_Data <= '0';

 CASE CS IS

 WHEN S0 => -- Waits until a read or write request is initiated.

 IF (RE = '1') THEN

 NS <= S1;

78

 ELSIF (WE = '1') THEN

 NS <= S3;

 ELSE

 NS <= S0;

 END IF;

 Busy <= '0';

 LD_AddrIn <= '1'; -- Loads the Input Address

 LD_DataIn <= '1'; -- Loads the Input Data

 --Begin Read Process

 WHEN S1 => -- Request Control of the Bus and wait.

 IF (BusCtrl = '1') THEN

 NS <= S2;

 ELSE

 NS <= S1;

 END IF;

 BusRqst <= '1';

 WHEN S2 => -- Bus Control granted. Request data.

 IF (Xdat = '0') THEN --Active High

 NS <= S2;

 ELSE

 NS <= S0;

 END IF;

 Addr <= AddrIn_reg_o;

 XRqst <= '1'; --Active High--Active Low because of pull-ups for

internal tristate

 LD_Data <= '1';

 --End Read Process

 --Begin Write Process

 WHEN S3 => -- Request Control of the Bus and wait.

 IF (BusCtrl = '1') THEN

 NS <= S4;

 ELSE

 NS <= S3;

 END IF;

 BusRqst <= '1';

 WHEN S4 => -- Bus Control granted. Write data.

 Addr <= AddrIn_reg_o;

 Data <= DataIn_reg_o;

 YDat <= '1'; --Active High--Active Low because of pull-ups for

internal tristate

 NS <= S0;

 --End Write Process

 WHEN OTHERS =>

 NS <= S0;

79

 END CASE;

 END PROCESS;

 ----End Next State Logic for Bus Interface

 ----State Sync

 sync_States : PROCESS

 BEGIN

 WAIT UNTIL clk'event AND clk = '1';

 IF rst = '0' THEN

 CS <= S0;

 ELSE

 CS <= NS;

 END IF;

 END PROCESS;

 ----End State Sync

END behavior;

----------------------------------End Bus Interface------------------------------------

------------------------------Generic FIFO--

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

USE ieee.std_logic_unsigned.ALL;

USE ieee.numeric_std.ALL;

ENTITY STD_FIFO IS

 GENERIC (

 DATA_WIDTH : INTEGER := 8; -- Width of FIFO

 FIFO_DEPTH : INTEGER := 512; -- Depth of FIFO

 FIFO_ADDR_LEN : INTEGER := 9 -- Required number of bits to represent

FIFO_Depth

);

 PORT (

 CLK : IN STD_LOGIC; -- Clock input

 RST : IN STD_LOGIC; -- Active low reset

 WriteEn : IN STD_LOGIC; -- Write enable signal

 DataIn : IN STD_LOGIC_VECTOR (DATA_WIDTH - 1 DOWNTO 0); -- Data

input bus

 ReadEn : IN STD_LOGIC; -- Read enable signal

 DataOut : OUT STD_LOGIC_VECTOR (DATA_WIDTH - 1 DOWNTO 0); --

Data output bus

 Empty : OUT STD_LOGIC; -- FIFO empty flag

 Full : OUT STD_LOGIC -- FIFO full flag

);

END STD_FIFO;

ARCHITECTURE Behavioral OF STD_FIFO IS

 TYPE FIFO_Memory IS ARRAY (0 TO FIFO_DEPTH - 1) OF STD_LOGIC_VECTOR

(DATA_WIDTH - 1 DOWNTO 0);

 SIGNAL Memory : FIFO_Memory;

 SIGNAL Head : STD_LOGIC_VECTOR (FIFO_ADDR_LEN - 1 DOWNTO 0);

80

 SIGNAL Tail : STD_LOGIC_VECTOR (FIFO_ADDR_LEN - 1 DOWNTO 0);

 SIGNAL Looped : BOOLEAN;

BEGIN

 -- Memory Pointer Process

 fifo_proc : PROCESS (CLK)

 BEGIN

 IF rising_edge(CLK) THEN

 IF RST = '0' THEN

 Head <= (OTHERS => '0');

 Tail <= (OTHERS => '0');

 Looped <= false;

 Full <= '0';

 Empty <= '1';

 ELSE

 IF (ReadEn = '1') THEN

 IF ((Looped = true) OR (Head /= Tail)) THEN

 -- Update data output

 DataOut <= Memory(CONV_INTEGER(Tail));

 -- Update Tail pointer as needed

 IF (Tail = FIFO_DEPTH - 1) THEN

 Tail <= (OTHERS => '0');

 Looped <= false;

 ELSE

 Tail <= Tail + 1;

 END IF;

 END IF;

 END IF;

 IF (WriteEn = '1') THEN

 IF ((Looped = false) OR (Head /= Tail)) THEN

 -- Write Data to Memory

 Memory(CONV_INTEGER(Head)) <= DataIn;

 -- Increment Head pointer as needed

 IF (Head = FIFO_DEPTH - 1) THEN

 Head <= (OTHERS => '0');

 Looped <= true;

 ELSE

 Head <= Head + 1;

 END IF;

 END IF;

 END IF;

 -- Update Empty and Full flags

 IF (Head = Tail) THEN

 IF Looped THEN

 Full <= '1';

 ELSE

 Empty <= '1';

81

 END IF;

 ELSE

 Empty <= '0';

 Full <= '0';

 END IF;

 END IF;

 END IF;

 END PROCESS;

END Behavioral;

------------------------------End Generic FIFO--

------------------------16-Bit PWM with Phase shift-------------------------------

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_ARITH.ALL;

USE IEEE.STD_LOGIC_UNSIGNED.ALL;

USE ieee.numeric_std.ALL;

ENTITY PWM_16b IS

 GENERIC (

 Freq_in : INTEGER := 25000000; --Clk (25 MHz)

 Max_PWM : INTEGER := 65535; --PWM Resolution (2^16-1)

 Freq_Sw : INTEGER := 6104); --PWM Switching Frequency (Should be

derived from Main Clock) (25e6/2^12)

 PORT (

 clk : IN STD_LOGIC;

 rst : IN STD_LOGIC;

 DC : IN STD_LOGIC_VECTOR (15 DOWNTO 0);

 Phase : IN STD_LOGIC_VECTOR (15 DOWNTO 0);

 En : IN STD_LOGIC;

 PWM_Out : OUT STD_LOGIC);

END PWM_16b;

ARCHITECTURE Behavioral OF PWM_16b IS

 --Constants

 CONSTANT Max_Period : INTEGER := (Freq_in/Freq_Sw) - 1;

 CONSTANT PWM_Step_Inv : INTEGER := Max_PWM/Max_Period; --Clk cycle step

size for Duty cycle

 CONSTANT PWM_Max : INTEGER := Max_PWM;

 CONSTANT PWM_Min : INTEGER := PWM_Step_Inv;

 --Signals

 SIGNAL PWM_Count, DC_Read, Phase_Read : STD_LOGIC_VECTOR(15 DOWNTO

0) := (OTHERS => '0');

BEGIN

 DC_Update : PROCESS

 BEGIN

 WAIT UNTIL clk'event AND clk = '1';

 IF rst = '0' THEN

 DC_Read <= (OTHERS => '0');

82

 Phase_Read <= (OTHERS => '0');

 ELSE

 -- -- For 1.526 kHz

 -- DC_Read(15 downto 14)<=(others => '0');

 -- DC_Read(13 downto 0)<= DC(15 downto 2);

 --shift 2 places for divide by 4 (PWM_Step_Inv)

 -- Phase_Read(15 downto 14)<=(others => '0');

 -- Phase_Read(13 downto 0)<= Phase(15 downto 2);

 --shift 2 places for divide by 4 (PWM_Step_Inv)

 -- For 3.052 kHz

 -- DC_Read(15 downto 13)<=(others => '0');

 -- DC_Read(12 downto 0)<= DC(15 downto 3);

 --shift 3 places for divide by 8

 -- Phase_Read(15 downto 13)<=(others => '0');

 -- Phase_Read(12 downto 0)<= Phase(15 downto 3);

 --shift 3 places for divide by 8

 -- For 6.104 kHz

 DC_Read(15 DOWNTO 12) <= (OTHERS => '0');

 DC_Read(11 DOWNTO 0) <= DC(15 DOWNTO 4); --shift 4 places for

divide by 16 (PWM_Step_Inv)

 Phase_Read(15 DOWNTO 12) <= (OTHERS => '0');

 Phase_Read(11 DOWNTO 0) <= Phase(15 DOWNTO 4); --shift 4 places

for divide by 16 (PWM_Step_Inv)

 END IF;

 END PROCESS;

 Count_Update : PROCESS

 BEGIN

 WAIT UNTIL clk'event AND clk = '1';

 IF rst = '0' THEN

 PWM_Count <= (OTHERS => '0');

 ELSIF (PWM_Count <= (Max_Period + Phase_Read)) THEN

 PWM_Count <= PWM_Count + 1;

 ELSE

 PWM_Count <= Phase_Read;

 END IF;

 END PROCESS;

 PWM_Update : PROCESS

 BEGIN

 WAIT UNTIL clk'event AND clk = '1';

 IF rst = '0' THEN

 PWM_Out <= '0';

 ELSIF en = '0' THEN

 PWM_Out <= '0';

 ELSIF ((PWM_Count <= (DC_Read + Phase_Read)) AND ((PWM_Count) >

(Phase_Read))) THEN

 PWM_Out <= '1';

83

 ELSE

 PWM_Out <= '0';

 END IF;

 END PROCESS;

END Behavioral;

-----------------------------End 16-Bit PWM with Phase shift------------------------------

----------------------------------16-Bit Shift Register(Parallel-to-Serial)--------------

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

USE ieee.std_logic_unsigned.ALL;

USE ieee.numeric_std.ALL;

ENTITY Sreg_PS_16 IS

 PORT (

 ld_D, sh_D, rst, clk : IN std_logic;

 Data_In : IN STD_LOGIC_VECTOR(15 DOWNTO 0);

 Data_Out : OUT std_logic);

END;

ARCHITECTURE BEHAVIOR OF Sreg_PS_16 IS

 SIGNAL temp : STD_LOGIC_VECTOR(15 DOWNTO 0);

BEGIN

 --Data_Out <= temp(15);

 Counter_behav : PROCESS

 BEGIN

 WAIT UNTIL clk'event AND clk = '1';

 IF rst = '0' THEN

 temp <= (OTHERS => '0');

 Data_Out <= '0';

 ELSIF ld_D = '1' THEN

 temp <= Data_In;

 Data_Out <= temp(15);

 ELSIF sh_D = '1' THEN

 temp <= temp(14 DOWNTO 0) & '0';

 Data_Out <= temp(15);

 ELSE

 Data_Out <= temp(15);

 END IF;

 END PROCESS;

END BEHAVIOR;

----------------------------------End of 16-Bit Shift Register(Parallel-to-Serial)------------------

----------------------------------16-Bit Shift Register(Serial-to-Parallel)--------------

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

USE ieee.std_logic_unsigned.ALL;

USE ieee.numeric_std.ALL;

ENTITY Sreg_SP_16 IS

 PORT (

84

 ld_D, rst, clk : IN std_logic;

 Data_In : IN std_logic;

 Data_Out : OUT STD_LOGIC_VECTOR(15 DOWNTO 0));

END;

ARCHITECTURE BEHAVIOR OF Sreg_SP_16 IS

 SIGNAL temp : STD_LOGIC_VECTOR(15 DOWNTO 0);

BEGIN

 Counter_behav : PROCESS

 BEGIN

 WAIT UNTIL clk'event AND clk = '1';

 IF rst = '0' THEN

 temp <= (OTHERS => '0');

 Data_Out <= (OTHERS => '0');

 ELSIF ld_D = '1' THEN

 temp <= temp(14 DOWNTO 0) & Data_In;

 --temp(0) <= Data_In;

 Data_Out <= temp;

 ELSE

 Data_Out <= temp;

 END IF;

 END PROCESS;

END BEHAVIOR;

----------------------------------End of 16-Bit Shift Register(Parallel-to-Serial)------------------

---------------------------------- Standard Counter------------------------------------

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

USE ieee.std_logic_unsigned.ALL;

USE ieee.numeric_std.ALL;

ENTITY Std_Counter IS

 GENERIC (

 Width : INTEGER := 8 --width of counter

);

 PORT (

 INC, rst, clk : IN std_logic;

 Count : OUT STD_LOGIC_VECTOR(Width - 1 DOWNTO 0));

END;

ARCHITECTURE BEHAVIOR OF Std_Counter IS

 SIGNAL temp : STD_LOGIC_VECTOR(Width - 1 DOWNTO 0);

BEGIN

 Counter_behav : PROCESS

 BEGIN

 WAIT UNTIL clk'event AND clk = '1';

 IF rst = '0' THEN

 temp <= (OTHERS => '0');

 ELSIF INC = '1' THEN

 temp <= temp + 1;

85

 ELSE

 NULL;

 END IF;

 END PROCESS;

 Count <= temp;

END BEHAVIOR;

--#############################END Generic

Components##--

--

--############################# Serial

Components##--

-- Company: University of Arkansas (NCREPT)

-- Engineer: Chris Farnell

--

-- Create Date: 3Dec2018

-- Design Name: Bus_Interface_Common

-- Module Name: Bus_Interface_Common

-- Project Name: Bus Interface Example

-- Target Devices: LCMXO2-7000HE-4TG144C (MachXO2 Eval Board)

-- Tool versions: Lattice Diamond_x64 Build 3.10.2.115.1

-- Description:

-- This Package was created to allow for Memory Mapping as well as the declaration of various

needed constants.

---- Register and Memory Map Information:

-- This section describes the Memory Map used in this project.

-- This design contains a SPRAM Module which is 16 bits wide and 1024 entries deep.

-- Register addresses are from X"0000" to X"03FF".

-- All registers are 16-bits wide.

-- The SPRAM Module is located in the Bus_Master portion of the code.

-- This RAM Module may be accessed externally using either Serial Port interface.

-- Reserved for future use.

-- X"0200" - X"03FF"

-- LED Configuration Registers-

-- Range is X"0100" - X"010A"

-- Register Map is found as constants in Bus_Interface_Common and shared with all submodules

of this program.

-- Revisions:--

--

-- Revision 0.01 -

-- File Created; Basic\Classical Operation Implemented

--

--

-- Additional Comments:

--

--

--

86

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

USE ieee.std_logic_unsigned.ALL;

USE ieee.numeric_std.ALL;

ENTITY Bus_Master IS

 PORT (

 clk : IN STD_LOGIC;

 rst : IN STD_LOGIC;

 Data : INOUT STD_LOGIC_VECTOR (15 DOWNTO 0);

 Addr : IN STD_LOGIC_VECTOR (15 DOWNTO 0);

 Xrqst : IN STD_LOGIC;

 XDat : OUT STD_LOGIC;

 YDat : IN STD_LOGIC;

 BusRqst : IN STD_LOGIC_VECTOR (9 DOWNTO 0);

 BusCtrl : OUT STD_LOGIC_VECTOR (9 DOWNTO 0));

END Bus_Master;

ARCHITECTURE Behavioral OF Bus_Master IS

 TYPE state_type IS (S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11);

 SIGNAL CS, NS : state_type;

 --Signals for Mem1

 SIGNAL Mem1_wea : STD_LOGIC := '0';

 SIGNAL Mem1_rst : STD_LOGIC := '0';

 SIGNAL Mem1_addra : STD_LOGIC_VECTOR(15 DOWNTO 0) := (OTHERS => '0');

 SIGNAL Mem1_dina, Mem1_douta : STD_LOGIC_VECTOR(15 DOWNTO 0) :=

(OTHERS => '0');

 SIGNAL clk_en : STD_LOGIC := '1';

 --Signals for Registers

 SIGNAL LD_Addr, LD_Data, LD_BusCtrl : Std_Logic := '0';

 SIGNAL BusCtrl_Temp : STD_LOGIC_VECTOR(9 DOWNTO 0) := (OTHERS => '0');

 --declare SPRAM

 COMPONENT SPRAM

 PORT (

 Clock : IN std_logic;

 ClockEn : IN std_logic;

 Reset : IN std_logic;

 WE : IN std_logic;

 Address : IN std_logic_vector(9 DOWNTO 0);

 Data : IN std_logic_vector(15 DOWNTO 0);

 Q : OUT std_logic_vector(15 DOWNTO 0)

);

 END COMPONENT;

BEGIN

 --Instantiate SPRAM_16bx1024

 Mem1 : SPRAM PORT MAP(

 Clock => clk,

 ClockEn => clk_en,

87

 Reset => Mem1_rst,

 WE => Mem1_wea,

 Address => Mem1_addra(9 DOWNTO 0),

 Data => Mem1_dina,

 Q => Mem1_douta

);

 ----Registers

 Reg_Proc : PROCESS

 BEGIN

 WAIT UNTIL clk'event AND clk = '1';

 IF rst = '0' THEN

 Mem1_addra <= (OTHERS => '0');

 Mem1_dina <= (OTHERS => '0');

 BusCtrl <= (OTHERS => '0');

 ELSE

 IF (LD_Addr = '1') THEN

 Mem1_addra <= Addr;

 END IF; --Register for reading input address

 IF (LD_Data = '1') THEN

 Mem1_dina <= Data;

 END IF; --Register for writing input data

 IF (LD_BusCtrl = '1') THEN

 BusCtrl <= BusCtrl_Temp;

 END IF;

 END IF;

 END PROCESS;

 ----End Registers

 ----Next State Logic Bus Control

 NS_Bus_Ctrl : PROCESS (CS, BusRqst, XRqst, YDat, Mem1_douta)

 BEGIN

 ----Default States to remove latches

 Data <= (OTHERS => 'Z');

 XDat <= '0';

 BusCtrl_Temp <= (OTHERS => '0');

 LD_BusCtrl <= '0';

 NS <= S0;

 Mem1_wea <= '0';

 LD_Addr <= '0';

 LD_Data <= '0';

 clk_en <= '1';

 CASE CS IS

 WHEN S0 => -- Waits until a request is made.

 IF (BusRqst > 0) THEN

 NS <= S1;

 ELSE

 NS <= S0;

88

 END IF;

 WHEN S1 => -- Grant Control of the Bus (Priority Encoder)

 IF (BusRqst(0) = '1') THEN

 BusCtrl_Temp(0) <= '1';

 ELSIF (BusRqst(1) = '1') THEN

 BusCtrl_Temp(1) <= '1';

 ELSIF (BusRqst(2) = '1') THEN

 BusCtrl_Temp(2) <= '1';

 ELSIF (BusRqst(3) = '1') THEN

 BusCtrl_Temp(3) <= '1';

 ELSIF (BusRqst(4) = '1') THEN

 BusCtrl_Temp(4) <= '1';

 ELSIF (BusRqst(5) = '1') THEN

 BusCtrl_Temp(5) <= '1';

 ELSIF (BusRqst(6) = '1') THEN

 BusCtrl_Temp(6) <= '1';

 ELSIF (BusRqst(7) = '1') THEN

 BusCtrl_Temp(7) <= '1';

 ELSIF (BusRqst(8) = '1') THEN

 BusCtrl_Temp(8) <= '1';

 ELSIF (BusRqst(9) = '1') THEN

 BusCtrl_Temp(9) <= '1';

 END IF;

 LD_BusCtrl <= '1';

 NS <= S2;

 WHEN S2 => -- Bus Control granted. Wait until Read or Write Request.

 IF (XRqst = '1') THEN --Active High--Active Low because of

pull-ups for internal tristate

 NS <= S3;

 ELSIF (YDat = '1') THEN --Active High--Active Low because of

pull-ups for internal tristate

 NS <= S5;

 ELSE

 NS <= S2;

 END IF;

 LD_Addr <= '1';

 LD_Data <= '1';

 WHEN S3 => --(Read Operation) Send Data

 NS <= S4;

 WHEN S4 => --(Read Operation) Send Data

 data <= Mem1_douta;

 Xdat <= '1'; --Active High

 NS <= S6;

 WHEN S5 => --(Write Operation) Receive Data

 Mem1_wea <= '1';

 NS <= S6;

89

 WHEN S6 =>

 LD_BusCtrl <= '1';

 NS <= S0;

 WHEN OTHERS =>

 NS <= S0;

 END CASE;

 END PROCESS;

 ----End Next State Logic for Bus Interface

 ----State Sync

 sync_States : PROCESS

 BEGIN

 WAIT UNTIL clk'event AND clk = '1';

 IF rst = '0' THEN

 Mem1_rst <= '1'; --reset Memory

 CS <= S0;

 ELSE

 Mem1_rst <= '0';

 CS <= NS;

 END IF;

 END PROCESS;

 ----End State Sync

END Behavioral;

--##################################RS232 USR

INT##

#######

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

USE IEEE.std_logic_unsigned.ALL;

USE IEEE.numeric_std.ALL;

USE IEEE.std_logic_arith.ALL;

ENTITY RS232_Usr_Int IS

 GENERIC (

 Baud : INTEGER := 9600; --9,600 bps

 clk_in : INTEGER := 24930000); --24.93MHz

 PORT (

 clk : IN STD_LOGIC;

 rst : IN STD_LOGIC;

 rs232_rcv : IN STD_LOGIC;

 rs232_xmt : OUT STD_LOGIC;

 Data : INOUT std_logic_vector(15 DOWNTO 0);

 Addr : OUT std_logic_vector(15 DOWNTO 0);

 Xrqst : OUT std_logic;

 XDat : IN std_logic;

 YDat : OUT std_logic;

 BusRqst : OUT std_logic;

 BusCtrl : IN std_logic

90

);

END RS232_Usr_Int;

ARCHITECTURE Behavioral OF RS232_Usr_Int IS

 TYPE state_type IS (S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14,

S15, S16, S17, S18, S19, S20);

 SIGNAL CS_RS232_R, NS_RS232_R, CS_RS232_W, NS_RS232_W, CS_FIFO_Bus,

NS_FIFO_Bus : state_type;

 SIGNAL rx_done, tx_done : STD_LOGIC := '0';

 SIGNAL temp_rcv : STD_LOGIC_VECTOR(7 DOWNTO 0) := (OTHERS => '0');

 SIGNAL i, j : STD_LOGIC_VECTOR (15 DOWNTO 0) := (OTHERS => '0');

 SIGNAL uartclk : STD_LOGIC := '0';

 SIGNAL u : INTEGER;

 SIGNAL rs232_rcv_s, rs232_rcv_t : STD_LOGIC := '1';

 SIGNAL txbuff : STD_LOGIC_VECTOR(9 DOWNTO 0) := (OTHERS => '1'); --buff

used to transmit 1 bytes with start and stop bits

 --Declare Signals for FIFO Serial Read

 SIGNAL STD_FIFO_R_WriteEn, STD_FIFO_R_ReadEn : STD_LOGIC := '0';

 SIGNAL STD_FIFO_R_DataIn, STD_FIFO_R_DataOut : STD_LOGIC_VECTOR(7

DOWNTO 0) := (OTHERS => '0');

 SIGNAL STD_FIFO_R_Empty, STD_FIFO_R_Full : STD_LOGIC := '0';

 --Declare Signals for FIFO Serial Write

 SIGNAL STD_FIFO_W_WriteEn, STD_FIFO_W_ReadEn : STD_LOGIC := '0';

 SIGNAL STD_FIFO_W_DataIn, STD_FIFO_W_DataOut : STD_LOGIC_VECTOR(7

DOWNTO 0) := (OTHERS => '0');

 SIGNAL STD_FIFO_W_Empty, STD_FIFO_W_Full : STD_LOGIC := '0';

 --Declare Signals for Bus Interface

 SIGNAL Bus_Int1_WE, Bus_Int1_RE, Bus_Int1_Busy : STD_LOGIC := '0';

 SIGNAL Bus_Int1_DataIn, Bus_Int1_DataOut, Bus_Int1_AddrIn :

STD_LOGIC_VECTOR(15 DOWNTO 0) := (OTHERS => '0');

 --Declare Signals for Registers

 SIGNAL LD_busy, LD_busy2, LD_rx, LD_tx, LD_temp_data, LD_temp2 :

STD_LOGIC := '0';

 SIGNAL LD_Temp_Addr_High, LD_Temp_Addr_Low, LD_Temp_Data_High :

STD_LOGIC := '0';

 SIGNAL LD_Temp_Data_Low, ld_temp_cmd : STD_LOGIC := '0';

 SIGNAL busy, busy_reg_o, busy2, busy2_reg_o, rx, rx_reg_o, tx, tx_reg_o :

STD_LOGIC := '0';

 SIGNAL temp_data_reg_o, temp_data : STD_LOGIC_VECTOR(15 DOWNTO 0) :=

(OTHERS => '0');

 SIGNAL temp2_reg_o, temp2 : STD_LOGIC_VECTOR(7 DOWNTO 0) := (OTHERS

=> '0');

 SIGNAL Temp_Addr_High_reg_o, Temp_Addr_High : STD_LOGIC_VECTOR(7

DOWNTO 0) := (OTHERS => '0');

 SIGNAL Temp_Addr_Low_reg_o, Temp_Addr_Low : STD_LOGIC_VECTOR(7

DOWNTO 0) := (OTHERS => '0');

91

 SIGNAL Temp_Data_High_reg_o, Temp_Data_High : STD_LOGIC_VECTOR(7

DOWNTO 0) := (OTHERS => '0');

 SIGNAL Temp_Data_Low_reg_o, Temp_Data_Low : STD_LOGIC_VECTOR(7

DOWNTO 0) := (OTHERS => '0');

 SIGNAL Temp_Cmd_reg_o, Temp_Cmd : STD_LOGIC_VECTOR(7 DOWNTO 0) :=

(OTHERS => '0');

 ----User defined variables

 -- CM is the Clock Divder 25MHz/CM=115,200 Baud

 CONSTANT CM : INTEGER := clk_in/Baud;

 -- CN is the read offset for serial input

 CONSTANT CN : INTEGER := CM/2;

 ----End User defined variables

 --declare STD_FIFO

 COMPONENT STD_FIFO

 GENERIC (

 DATA_WIDTH : INTEGER; -- Width of FIFO

 FIFO_DEPTH : INTEGER; -- Depth of FIFO

 FIFO_ADDR_LEN : INTEGER -- Required number of bits to represent

FIFO_Depth

);

 PORT (

 CLK : IN STD_LOGIC;

 RST : IN STD_LOGIC;

 WriteEn : IN STD_LOGIC;

 DataIn : IN STD_LOGIC_VECTOR (7 DOWNTO 0);

 ReadEn : IN STD_LOGIC;

 DataOut : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);

 Empty : OUT STD_LOGIC;

 Full : OUT STD_LOGIC

);

 END COMPONENT;

 --declare Bus Interface

 COMPONENT Bus_Int

 PORT (

 clk : IN std_logic;

 rst : IN std_logic;

 DataIn : IN std_logic_vector(15 DOWNTO 0);

 DataOut : OUT std_logic_vector(15 DOWNTO 0);

 AddrIn : IN std_logic_vector(15 DOWNTO 0);

 WE : IN std_logic;

 RE : IN std_logic;

 Busy : OUT std_logic;

 Data : INOUT std_logic_vector(15 DOWNTO 0);

 Addr : OUT std_logic_vector(15 DOWNTO 0);

 Xrqst : OUT std_logic;

 XDat : IN std_logic;

92

 YDat : OUT std_logic;

 BusRqst : OUT std_logic;

 BusCtrl : IN std_logic

);

 END COMPONENT;

BEGIN

 --Instantiate STD_FIFO for Reading Serial Data

 STD_FIFO_R : STD_FIFO

 GENERIC MAP

 (

 DATA_WIDTH => 8, -- Width of FIFO

 FIFO_DEPTH => 512, -- Depth of FIFO

 FIFO_ADDR_LEN => 9 -- Required number of bits to represent FIFO_Depth

)

 PORT MAP

 (

 CLK => clk,

 RST => rst,

 WriteEn => STD_FIFO_R_WriteEn,

 DataIn => STD_FIFO_R_DataIn,

 ReadEn => STD_FIFO_R_ReadEn,

 DataOut => STD_FIFO_R_DataOut,

 Empty => STD_FIFO_R_Empty,

 Full => STD_FIFO_R_Full

);

 --Instantiate STD_FIFO for Writing Serial Data

 STD_FIFO_W : STD_FIFO

 GENERIC MAP

 (

 DATA_WIDTH => 8, -- Width of FIFO

 FIFO_DEPTH => 512, -- Depth of FIFO

 FIFO_ADDR_LEN => 9 -- Required number of bits to represent FIFO_Depth

)

 PORT MAP(

 CLK => clk,

 RST => rst,

 WriteEn => STD_FIFO_W_WriteEn,

 DataIn => STD_FIFO_W_DataIn,

 ReadEn => STD_FIFO_W_ReadEn,

 DataOut => STD_FIFO_W_DataOut,

 Empty => STD_FIFO_W_Empty,

 Full => STD_FIFO_W_Full

);

 --Instantiate Bus Interface

 Bus_Int1 : Bus_Int PORT MAP(

 clk => clk,

93

 rst => rst,

 DataIn => Bus_Int1_DataIn,

 DataOut => Bus_Int1_DataOut,

 AddrIn => Bus_Int1_AddrIn,

 WE => Bus_Int1_WE,

 RE => Bus_Int1_RE,

 Busy => Bus_Int1_Busy,

 Data => Data,

 Addr => Addr,

 Xrqst => Xrqst,

 XDat => XDat,

 YDat => YDat,

 BusRqst => BusRqst,

 BusCtrl => BusCtrl

);

 ----Registers

 Reg_Proc : PROCESS

 BEGIN

 WAIT UNTIL clk'event AND clk = '1';

 IF rst = '0' THEN

 busy_reg_o <= '0';

 busy2_reg_o <= '0';

 rx_reg_o <= '0';

 tx_reg_o <= '0';

 temp_data_reg_o <= (OTHERS => '0');

 temp2_reg_o <= (OTHERS => '0');

 Temp_Addr_High_reg_o <= (OTHERS => '0');

 Temp_Addr_Low_reg_o <= (OTHERS => '0');

 Temp_Data_High_reg_o <= (OTHERS => '0');

 Temp_Data_Low_reg_o <= (OTHERS => '0');

 Temp_Cmd_reg_o <= (OTHERS => '0');

 ELSE

 IF (LD_busy = '1') THEN

 busy_reg_o <= busy;

 END IF;

 IF (LD_busy2 = '1') THEN

 busy2_reg_o <= busy2;

 END IF;

 IF (LD_rx = '1') THEN

 rx_reg_o <= rx;

 END IF;

 IF (LD_tx = '1') THEN

 tx_reg_o <= tx;

 END IF;

 IF (LD_temp_data = '1') THEN

 temp_data_reg_o <= temp_data;

94

 END IF;

 IF (LD_temp2 = '1') THEN

 temp2_reg_o <= temp2;

 END IF;

 IF (LD_Temp_Addr_High = '1') THEN

 Temp_Addr_High_reg_o <= Temp_Addr_High;

 END IF;

 IF (LD_Temp_Addr_Low = '1') THEN

 Temp_Addr_Low_reg_o <= Temp_Addr_Low;

 END IF;

 IF (LD_Temp_Data_High = '1') THEN

 Temp_Data_High_reg_o <= Temp_Data_High;

 END IF;

 IF (LD_Temp_Data_Low = '1') THEN

 Temp_Data_Low_reg_o <= Temp_Data_Low;

 END IF;

 IF (LD_Temp_Cmd = '1') THEN

 Temp_Cmd_reg_o <= Temp_Cmd;

 END IF;

 END IF;

 END PROCESS;

 ----End Registers

 ----Next State Logic for Serial Interface Read

 NSL_RS232_R : PROCESS (CS_RS232_R, rs232_rcv_s, rx_done, STD_FIFO_R_Full,

temp_rcv)

 BEGIN

 ----Default States to remove latches

 busy <= '0';

 rx <= '0';

 NS_RS232_R <= S0;

 LD_busy <= '0';

 LD_rx <= '0';

 --Signals for FIFO

 STD_FIFO_R_WriteEn <= '0';

 STD_FIFO_R_DataIn <= (OTHERS => '0');

 CASE CS_RS232_R IS

 WHEN S0 => -- Waits until data is detected on rs232_rcv_s.

 IF (rs232_rcv_s = '1') THEN

 NS_RS232_R <= S0;

 ELSE

 NS_RS232_R <= S1;

 END IF;

 busy <= '0'; -- the busy signal stops the baud generator

 rx <= '0'; -- signals to stop reading data

 LD_rx <= '1';

 LD_busy <= '1';

95

 WHEN S1 => -- Starts the baud rate generator and reading

 NS_RS232_R <= S2;

 busy <= '1'; -- the busy signal starts the baud generator

 rx <= '1'; -- signals to start reading data

 LD_rx <= '1';

 LD_busy <= '1';

 WHEN S2 => -- Waits until all data is read

 IF (rx_done = '0') THEN

 NS_RS232_R <= S2;

 ELSE

 NS_RS232_R <= S3;

 END IF;

 WHEN S3 =>

 IF (STD_FIFO_R_Full = '0') THEN

 STD_FIFO_R_DataIn <= temp_rcv;

 STD_FIFO_R_WriteEn <= '1';

 END IF;

 NS_RS232_R <= S0;

 WHEN OTHERS =>

 NS_RS232_R <= S0;

 END CASE;

 END PROCESS;

 ----End Next State Logic for Serial Interface Read

 ----Next State Logic for Serial Interface Write

 NSL_RS232_W : PROCESS (CS_RS232_W, tx_done, STD_FIFO_W_Empty,

STD_FIFO_W_DataOut)

 BEGIN

 ----Default States to remove latches

 tx <= '0';

 NS_RS232_W <= S0;

 temp2 <= (OTHERS => '0');

 LD_tx <= '0';

 LD_temp2 <= '0';

 Busy2 <= '0';

 LD_Busy2 <= '0';

 --Signals for FIFO

 STD_FIFO_W_ReadEn <= '0';

 CASE CS_RS232_W IS

 WHEN S0 =>

 IF (STD_FIFO_W_Empty = '1') THEN

 NS_RS232_W <= S0;

 ELSE

 NS_RS232_W <= S1;

 STD_FIFO_W_ReadEn <= '1';

 END IF;

 busy2 <= '0'; -- the busy signal stops the baud generator

96

 tx <= '0'; -- signals to stop sending data

 LD_tx <= '1';

 LD_busy2 <= '1';

 WHEN S1 =>

 temp2 <= STD_FIFO_W_DataOut;

 LD_temp2 <= '1';

 NS_RS232_W <= S2;

 WHEN S2 =>

 busy2 <= '1'; -- the busy signal starts the baud generator

 tx <= '1'; -- signals to start sending data

 LD_tx <= '1';

 LD_busy2 <= '1';

 NS_RS232_W <= S3;

 WHEN S3 =>

 IF (tx_done = '0') THEN

 NS_RS232_W <= S3;

 ELSE

 NS_RS232_W <= S0;

 END IF;

 WHEN OTHERS =>

 NS_RS232_W <= S0;

 END CASE;

 END PROCESS;

 ----End Next State Logic for Serial Interface Write

 ----Next State Logic for FIFO to Bus

 NSL_FIFO_Bus : PROCESS (CS_FIFO_Bus, STD_FIFO_R_Empty, Temp_Cmd_reg_o,

Bus_Int1_Busy, STD_FIFO_R_DataOut, Temp_Addr_High_reg_o, Temp_Addr_Low_reg_o,

Temp_Data_High_reg_o, Temp_Data_Low_reg_o, Bus_Int1_DataOut, temp_data_reg_o)

 BEGIN

 ----Default States to remove latches

 NS_FIFO_Bus <= S0;

 Temp_Cmd <= (OTHERS => '0');

 LD_Temp_Cmd <= '0';

 Temp_Addr_High <= (OTHERS => '0');

 LD_Temp_Addr_High <= '0';

 Temp_Addr_Low <= (OTHERS => '0');

 LD_Temp_Addr_Low <= '0';

 Bus_Int1_AddrIn <= (OTHERS => '0');

 Bus_Int1_RE <= '0';

 Bus_Int1_DataIn <= (OTHERS => '0');

 Bus_Int1_WE <= '0';

 Temp_Data <= (OTHERS => '0');

 LD_Temp_Data <= '0';

 Temp_Data_High <= (OTHERS => '0');

 LD_Temp_Data_High <= '0';

 Temp_Data_High <= (OTHERS => '0');

97

 Temp_Data_Low <= (OTHERS => '0');

 LD_Temp_Data_Low <= '0';

 --Signals for FIFO

 STD_FIFO_R_ReadEn <= '0';

 STD_FIFO_W_DataIn <= (OTHERS => '0');

 STD_FIFO_W_WriteEn <= '0';

 CASE CS_FIFO_Bus IS

 WHEN S0 =>

 IF (STD_FIFO_R_Empty = '1') THEN --Check to see if

commands are in queue

 NS_FIFO_Bus <= S0;

 ELSE

 NS_FIFO_Bus <= S1;

 STD_FIFO_R_ReadEn <= '1'; --Assert Read Signal for

FIFO

 END IF;

 WHEN S1 => --Read Command from FIFO

 Temp_Cmd <= STD_FIFO_R_DataOut;

 LD_Temp_Cmd <= '1';

 NS_FIFO_Bus <= S2;

 WHEN S2 =>

 IF (STD_FIFO_R_Empty = '1') THEN --Check to see if

commands are in queue

 NS_FIFO_Bus <= S2;

 ELSE

 NS_FIFO_Bus <= S3;

 STD_FIFO_R_ReadEn <= '1'; --Assert Read Signal for

FIFO

 END IF;

 WHEN S3 => --Read Address_High from FIFO

 Temp_Addr_High <= STD_FIFO_R_DataOut;

 LD_Temp_Addr_High <= '1';

 NS_FIFO_Bus <= S4;

 WHEN S4 =>

 IF (STD_FIFO_R_Empty = '1') THEN --Check to see if

commands are in queue

 NS_FIFO_Bus <= S4;

 ELSE

 NS_FIFO_Bus <= S5;

 STD_FIFO_R_ReadEn <= '1';

 END IF;

 WHEN S5 => --Read Address_Low from FIFO

 Temp_Addr_Low <= STD_FIFO_R_DataOut;

 LD_Temp_Addr_Low <= '1';

 NS_FIFO_Bus <= S6;

 WHEN S6 =>

98

 IF (Temp_Cmd_reg_o = X"70") THEN --Check Cmd (Read)

 NS_FIFO_Bus <= S7;

 ELSIF (Temp_Cmd_reg_o = X"71") THEN --Check Cmd (Write)

 NS_FIFO_Bus <= S15;

 ELSE --Check Cmd (Invalid Data)

 NS_FIFO_Bus <= S0;

 END IF;

 --Read from Bus and Write to RS232 FIFO

 WHEN S7 =>

 Bus_Int1_AddrIn(15 DOWNTO 8) <= Temp_Addr_High_reg_o; -

-Send Address to Bus Interface for Read

 Bus_Int1_AddrIn(7 DOWNTO 0) <= Temp_Addr_Low_reg_o; --

Send Address to Bus Interface for Read

 Bus_Int1_RE <= '1'; --Read Flag to Bus Interface

 NS_FIFO_Bus <= S8;

 WHEN S8 => --Wait until data is ready

 IF (Bus_Int1_Busy = '1') THEN

 NS_FIFO_Bus <= S8;

 ELSE

 NS_FIFO_Bus <= S9;

 END IF;

 Temp_Data <= Bus_Int1_DataOut;

 LD_Temp_Data <= '1';

 WHEN S9 => --Form First byte of Packet(Start Deliminator)

 STD_FIFO_W_DataIn <= X"7E";

 STD_FIFO_W_WriteEn <= '1';

 NS_FIFO_Bus <= S10;

 WHEN S10 => --Form Second byte of Packet(Address_High)

 STD_FIFO_W_DataIn <= Temp_Addr_High_reg_o;

 STD_FIFO_W_WriteEn <= '1';

 NS_FIFO_Bus <= S11;

 WHEN S11 => --Form Third byte of Packet(Address_Low)

 STD_FIFO_W_DataIn <= Temp_Addr_Low_reg_o;

 STD_FIFO_W_WriteEn <= '1';

 NS_FIFO_Bus <= S12;

 WHEN S12 => --Form Fourth byte of Packet(Data_High)

 STD_FIFO_W_DataIn <= Temp_Data_reg_o(15 DOWNTO 8);

 STD_FIFO_W_WriteEn <= '1';

 NS_FIFO_Bus <= S13;

 WHEN S13 => --Form Fifth byte of Packet(Data_Low)

 STD_FIFO_W_DataIn <= Temp_Data_reg_o(7 DOWNTO 0);

 STD_FIFO_W_WriteEn <= '1';

 NS_FIFO_Bus <= S0;

 --End Read from Bus and Write to RS232 FIFO

 --Write to Bus from RS232 FIFO

 WHEN S15 =>

99

 IF (STD_FIFO_R_Empty = '1') THEN --Check to see if

commands are in queue

 NS_FIFO_Bus <= S15;

 ELSE

 NS_FIFO_Bus <= S16;

 STD_FIFO_R_ReadEn <= '1';

 END IF;

 WHEN S16 => --Read Data_High from FIFO

 Temp_Data_High <= STD_FIFO_R_DataOut;

 LD_Temp_Data_High <= '1';

 NS_FIFO_Bus <= S17;

 WHEN S17 =>

 IF (STD_FIFO_R_Empty = '1') THEN --Check to see if

commands are in queue

 NS_FIFO_Bus <= S17;

 ELSE

 NS_FIFO_Bus <= S18;

 STD_FIFO_R_ReadEn <= '1';

 END IF;

 WHEN S18 => --Read Data_Low from FIFO

 Temp_Data_Low <= STD_FIFO_R_DataOut;

 LD_Temp_Data_Low <= '1';

 NS_FIFO_Bus <= S19;

 WHEN S19 =>

 Bus_Int1_AddrIn(15 DOWNTO 8) <= Temp_Addr_High_reg_o; -

-Send Address to Bus Interface for Write

 Bus_Int1_AddrIn(7 DOWNTO 0) <= Temp_Addr_Low_reg_o; --

Send Address to Bus Interface for Write

 Bus_Int1_DataIn(15 DOWNTO 8) <= Temp_Data_High_reg_o; --

Send Data to Bus Interface for Write

 Bus_Int1_DataIn(7 DOWNTO 0) <= Temp_Data_Low_reg_o; --

Send Data to Bus Interface for Write

 Bus_Int1_WE <= '1'; --Write Flag to Bus Interface

 NS_FIFO_Bus <= S20;

 WHEN S20 => --Wait until data is ready

 IF (Bus_Int1_Busy = '1') THEN

 NS_FIFO_Bus <= S20;

 ELSE

 NS_FIFO_Bus <= S0;

 END IF;

 --End Write to Bus from RS232 FIFO

 WHEN OTHERS =>

 NS_FIFO_Bus <= S0;

 END CASE;

 END PROCESS;

 ----End Next State Logic for FIFO to Bus

100

 ----UART Clock Divider

 UART_Clk : PROCESS

 BEGIN

 WAIT UNTIL clk'event AND clk = '1';

 --Synchronize async signal

 rs232_rcv_t <= rs232_rcv; --Synchro1 rs232_rcv

 rs232_rcv_s <= rs232_rcv_t; --Synchro2 rs232_rcv

 IF (rst = '0' OR (busy_reg_o = '0' AND busy2_reg_o = '0')) THEN

 uartclk <= '0';

 i <= CONV_STD_LOGIC_VECTOR(CN, 16);

 ELSIF (i = CM) THEN

 uartclk <= '1';

 i <= X"0000";

 ELSE

 i <= i + 1;

 uartclk <= '0';

 END IF;

 END PROCESS;

 ---- End UART Clock Divider

 ----UART_Read

 UART_Read : PROCESS

 BEGIN

 WAIT UNTIL clk'event AND clk = '1';

 IF rst = '0' OR rx_reg_o = '0' THEN

 temp_rcv <= x"00";

 j <= x"0000";

 rx_done <= '0';

 ELSIF rx_reg_o = '1' THEN

 IF uartclk = '1' THEN

 IF j < X"09" THEN

 temp_rcv(7) <= rs232_rcv_s;

 temp_rcv(6 DOWNTO 0) <= temp_rcv(7 DOWNTO 1);

 j <= j + 1;

 rx_done <= '0';

 ELSE

 j <= X"0000";

 rx_done <= '1';

 END IF;

 ELSE

 rx_done <= '0';

 END IF;

 END IF;

 END PROCESS;

 ----End UART_Read

 -----UART_Xmit

 UART_Xmit : PROCESS

101

 BEGIN

 WAIT UNTIL clk'event AND clk = '1';

 IF (rst = '0' OR tx_reg_o = '0') THEN

 rs232_xmt <= '1';

 tx_done <= '0';

 u <= 0;

 --structure the 10-bit frame to be sent

 txbuff(9) <= '1'; --stopbit 2

 txbuff(8 DOWNTO 1) <= temp2_reg_o;

 txbuff(0) <= '0'; --startbit 2

 ELSE

 IF uartclk = '1' THEN

 IF (u < 10) THEN

 rs232_xmt <= txbuff(0);

 txbuff(8 DOWNTO 0) <= txbuff(9 DOWNTO 1);

 tx_done <= '0';

 u <= u + 1;

 ELSE

 u <= 0;

 tx_done <= '1';

 END IF;

 END IF;

 END IF;

 END PROCESS;

 -----End UART_Xmit

 ----State Sync

 sync_States : PROCESS

 BEGIN

 WAIT UNTIL clk'event AND clk = '1';

 IF rst = '0' THEN

 CS_RS232_R <= S0;

 CS_RS232_W <= S0;

 CS_FIFO_Bus <= S0;

 ELSE

 CS_RS232_R <= NS_RS232_R;

 CS_RS232_W <= NS_RS232_W;

 CS_FIFO_Bus <= NS_FIFO_Bus;

 END IF;

 END PROCESS;

 ----End State Sync

END Behavioral;

--#####################################LED

Controller###

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_ARITH.ALL;

102

USE IEEE.STD_LOGIC_UNSIGNED.ALL;

USE ieee.numeric_std.ALL;

ENTITY LED_Ctrl IS

 GENERIC (

 Addr_LED_En : STD_LOGIC_VECTOR(15 DOWNTO 0) := X"0100"; --Enable

LED Outputs (LSB)

 Addr_LED_Freq : STD_LOGIC_VECTOR(15 DOWNTO 0) := X"0101"; --LED

Blink Frequency

 Addr_LED_PW : STD_LOGIC_VECTOR(15 DOWNTO 0) := X"0102"; --LED

Pulse Width (On-Time)

 Addr_LED1_DC : STD_LOGIC_VECTOR(15 DOWNTO 0) := X"0103"; --

LED1 PWM Duty Cycle

 Addr_LED2_DC : STD_LOGIC_VECTOR(15 DOWNTO 0) := X"0104"; --

LED2 PWM Duty Cycle

 Addr_LED3_DC : STD_LOGIC_VECTOR(15 DOWNTO 0) := X"0105"; --

LED3 PWM Duty Cycle

 Addr_LED4_DC : STD_LOGIC_VECTOR(15 DOWNTO 0) := X"0106"; --

LED4 PWM Duty Cycle

 Addr_LED5_DC : STD_LOGIC_VECTOR(15 DOWNTO 0) := X"0107"; --

LED5 PWM Duty Cycle

 Addr_LED6_DC : STD_LOGIC_VECTOR(15 DOWNTO 0) := X"0108"; --

LED6 PWM Duty Cycle

 Addr_LED7_DC : STD_LOGIC_VECTOR(15 DOWNTO 0) := X"0109"; --

LED7 PWM Duty Cycle

 Addr_LED8_DC : STD_LOGIC_VECTOR(15 DOWNTO 0) := X"010A" --

LED8 PWM Duty Cycle

);

 PORT (

 clk : IN STD_LOGIC;

 rst : IN STD_LOGIC;

 Data : INOUT std_logic_vector(15 DOWNTO 0);

 Addr : OUT std_logic_vector(15 DOWNTO 0);

 Xrqst : OUT std_logic;

 XDat : IN std_logic;

 YDat : OUT std_logic;

 BusRqst : OUT std_logic;

 BusCtrl : IN std_logic;

 LED1_Out : OUT STD_LOGIC

);

END LED_Ctrl;

ARCHITECTURE Behavioral OF LED_Ctrl IS

 TYPE state_type IS (S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14,

S15, S16, S17);

 SIGNAL CS_Bus, NS_Bus, CS_Blink, NS_Blink : state_type;

 --declare Std_Counter Component

 COMPONENT Std_Counter IS

103

 GENERIC (

 Width : INTEGER --width of counter

);

 PORT (

 INC, rst, clk : IN std_logic;

 Count : OUT STD_LOGIC_VECTOR(Width - 1 DOWNTO 0));

 END COMPONENT;

 --Declare PWM

 COMPONENT PWM_16b IS

 GENERIC (

 Freq_in : INTEGER; --Clk

 Max_PWM : INTEGER; --PWM Resolution (2^16-1)

 Freq_Sw : INTEGER --Switching Freq

);

 PORT (

 clk : IN std_logic;

 rst : IN std_logic;

 DC : IN std_logic_vector(15 DOWNTO 0);

 Phase : IN std_logic_vector(15 DOWNTO 0);

 En : IN std_logic;

 PWM_Out : OUT std_logic

);

 END COMPONENT;

 --declare Bus Interface

 COMPONENT Bus_Int

 PORT (

 clk : IN std_logic;

 rst : IN std_logic;

 DataIn : IN std_logic_vector(15 DOWNTO 0);

 DataOut : OUT std_logic_vector(15 DOWNTO 0);

 AddrIn : IN std_logic_vector(15 DOWNTO 0);

 WE : IN std_logic;

 RE : IN std_logic;

 Busy : OUT std_logic;

 Data : INOUT std_logic_vector(15 DOWNTO 0);

 Addr : OUT std_logic_vector(15 DOWNTO 0);

 Xrqst : OUT std_logic;

 XDat : IN std_logic;

 YDat : OUT std_logic;

 BusRqst : OUT std_logic;

 BusCtrl : IN std_logic

);

 END COMPONENT;

 ----Signals

104

 SIGNAL PWM_En, PWM_Freq, PWM_PW, PWM1_DC, PWM2_DC, PWM3_DC,

PWM4_DC : STD_LOGIC_VECTOR(15 DOWNTO 0) := X"0000"; --Set initial Duty Cycles to

0

 SIGNAL PWM1_En, PWM2_En, PWM3_En, PWM4_En : STD_LOGIC := '0';

 CONSTANT PWM1_Phase : STD_LOGIC_VECTOR(15 DOWNTO 0) := X"0000"; --

Set Phase shift for PWM1 to 0

 CONSTANT PWM2_Phase : STD_LOGIC_VECTOR(15 DOWNTO 0) := X"0000"; --

Set Phase shift for PWM2 to 0

 CONSTANT PWM3_Phase : STD_LOGIC_VECTOR(15 DOWNTO 0) := X"0000"; --

Set Phase shift for PWM3 to 0

 CONSTANT PWM4_Phase : STD_LOGIC_VECTOR(15 DOWNTO 0) := X"0000"; --

Set Phase shift for PWM4 to 0

 --Max PWM Values

 CONSTANT PWM_Max : std_logic_vector(15 DOWNTO 0) := X"FFFF";

 CONSTANT PWM_Min : std_logic_vector(15 DOWNTO 0) := X"0000";

 --Declare Signals for Bus Interface

 SIGNAL Bus_Int1_WE, Bus_Int1_RE, Bus_Int1_Busy : STD_LOGIC := '0';

 SIGNAL Bus_Int1_DataIn, Bus_Int1_DataOut, Bus_Int1_AddrIn :

STD_LOGIC_VECTOR(15 DOWNTO 0) := (OTHERS => '0');

 SIGNAL Bus_Cnt_rst, Bus_Cnt_INC : STD_LOGIC := '0';

 SIGNAL Bus_Cnt_Out : STD_LOGIC_VECTOR(15 DOWNTO 0) := (OTHERS => '0');

 SIGNAL Delay_Cnt_rst, Delay_Cnt_INC : STD_LOGIC := '0';

 SIGNAL Delay_Cnt_Out : STD_LOGIC_VECTOR(7 DOWNTO 0) := (OTHERS =>

'0');

 --Signals for Registers

 SIGNAL LD_PWM_En, LD_PWM_Freq, LD_PWM_PW, LD_PWM1_DC,

LD_PWM2_DC, LD_PWM3_DC, LD_PWM4_DC : STD_LOGIC := '0';

 --Signals for Clock Divider

 SIGNAL clk_temp : STD_LOGIC_VECTOR(15 DOWNTO 0) := (OTHERS => '0');

 SIGNAL clk_Blink : STD_LOGIC := '0';

 --Signals for blink

 SIGNAL Freq_Cnt_rst, Freq_Cnt_Inc : STD_LOGIC := '0';

 SIGNAL Freq_Cnt_out : STD_LOGIC_VECTOR(15 DOWNTO 0) := (OTHERS => '0');

BEGIN

 --instantiate Bus_Cnt

 Bus_Cnt : Std_Counter

 GENERIC MAP

 (

 Width => 16

)

 PORT MAP

 (

 clk => clk,

 rst => Bus_Cnt_rst,

 INC => Bus_Cnt_INC,

 Count => Bus_Cnt_Out

105

);

 --instantiate Delay_Cnt

 Delay_Cnt : Std_Counter

 GENERIC MAP

 (

 Width => 8

)

 PORT MAP(

 clk => clk,

 rst => Delay_Cnt_rst,

 INC => Delay_Cnt_INC,

 Count => Delay_Cnt_Out

);

 -- Instantiate PWM1

 PWM1 : PWM_16b

 GENERIC MAP

 (

 Freq_in => 24930000,

 Max_PWM => 65535,

 Freq_Sw => 6104

)

 PORT MAP(

 clk => clk,

 rst => rst,

 DC => PWM1_DC,

 Phase => PWM1_Phase,

 En => PWM1_En,

 PWM_Out => LED1_Out

);

 --Instantiate Bus Interface

 Bus_Int1 : Bus_Int PORT MAP(

 clk => clk,

 rst => rst,

 DataIn => Bus_Int1_DataIn,

 DataOut => Bus_Int1_DataOut,

 AddrIn => Bus_Int1_AddrIn,

 WE => Bus_Int1_WE,

 RE => Bus_Int1_RE,

 Busy => Bus_Int1_Busy,

 Data => Data,

 Addr => Addr,

 Xrqst => Xrqst,

 XDat => XDat,

 YDat => YDat,

 BusRqst => BusRqst,

106

 BusCtrl => BusCtrl

);

 --instantiate Freq_Cnt

 Freq_Cnt : Std_Counter

 GENERIC MAP

 (

 Width => 16

)

 PORT MAP(

 clk => clk_Blink,

 rst => Freq_Cnt_rst,

 INC => Freq_Cnt_INC,

 Count => Freq_Cnt_Out

);

 ----Registers

 Reg_Proc : PROCESS

 BEGIN

 WAIT UNTIL clk'event AND clk = '1';

 IF rst = '0' THEN

 PWM1_DC <= (OTHERS => '0');

 PWM2_DC <= (OTHERS => '0');

 PWM3_DC <= (OTHERS => '0');

 PWM4_DC <= (OTHERS => '0');

 PWM_Freq <= (OTHERS => '0');

 PWM_PW <= (OTHERS => '0');

 PWM_En <= (OTHERS => '0');

 ELSE

 IF (LD_PWM1_DC = '1') THEN

 PWM1_DC <= Bus_Int1_DataOut;

 END IF;

 IF (LD_PWM2_DC = '1') THEN

 PWM2_DC <= Bus_Int1_DataOut;

 END IF;

 IF (LD_PWM3_DC = '1') THEN

 PWM3_DC <= Bus_Int1_DataOut;

 END IF;

 IF (LD_PWM4_DC = '1') THEN

 PWM4_DC <= Bus_Int1_DataOut;

 END IF;

 IF (LD_PWM_Freq = '1') THEN

 PWM_Freq <= Bus_Int1_DataOut;

 END IF;

 IF (LD_PWM_PW = '1') THEN

 PWM_PW <= Bus_Int1_DataOut;

 END IF;

 IF (LD_PWM_En = '1') THEN

107

 PWM_En <= Bus_Int1_DataOut;

 END IF;

 END IF;

 END PROCESS;

 ----End Registers

 ----Next State Logic for Bus Interface

 NSL_Bus : PROCESS (CS_Bus, Bus_Cnt_Out, Bus_Int1_Busy, Delay_Cnt_Out)

 BEGIN

 ----Default States to remove latches

 NS_Bus <= S0;

 Bus_Int1_AddrIn <= (OTHERS => '0');

 Bus_Int1_RE <= '0';

 Bus_Int1_DataIn <= (OTHERS => '0');

 Bus_Int1_WE <= '0';

 Bus_Cnt_rst <= '1';

 Bus_Cnt_INC <= '0';

 LD_PWM1_DC <= '0';

 LD_PWM2_DC <= '0';

 LD_PWM3_DC <= '0';

 LD_PWM4_DC <= '0';

 LD_PWM_Freq <= '0';

 LD_PWM_PW <= '0';

 LD_PWM_En <= '0';

 Delay_Cnt_INC <= '0';

 Delay_Cnt_rst <= '1';

 CASE CS_Bus IS

 WHEN S0 =>

 Bus_Cnt_rst <= '0'; -- Reset Bus Counter

 Delay_Cnt_rst <= '0'; -- Reset Delay Counter

 NS_Bus <= S1;

 WHEN S1 => --Initial Delay count for sync

 IF (Delay_Cnt_Out < 40) THEN

 NS_Bus <= S1;

 ELSE

 NS_Bus <= S2;

 END IF;

 Delay_Cnt_INC <= '1';

 WHEN S2 => --Wait (2^12-34) Clk Cycles for 1x per fs

 IF (Bus_Cnt_Out < 4062) THEN

 NS_Bus <= S2;

 ELSE

 NS_Bus <= S3;

 END IF;

 Bus_Cnt_INC <= '1';

 --Read Command Data from Bus

108

 WHEN S3 =>

 IF (Bus_Int1_Busy = '1') THEN

 NS_Bus <= S3;

 ELSE

 NS_Bus <= S4;

 END IF;

 Bus_Cnt_rst <= '0'; -- Reset Bus Counter

 WHEN S4 =>

 Bus_Int1_AddrIn <= Addr_LED_En; --Read Data from LED_En

Register

 Bus_Int1_RE <= '1';

 NS_Bus <= S5;

 WHEN S5 =>

 IF (Bus_Int1_Busy = '1') THEN

 NS_Bus <= S5;

 ELSE

 LD_PWM_En <= '1';

 NS_Bus <= S6;

 END IF;

 WHEN S6 =>

 Bus_Int1_AddrIn <= Addr_LED_Freq; --Read Data from LED

Freq Register

 Bus_Int1_RE <= '1';

 NS_Bus <= S7;

 WHEN S7 =>

 IF (Bus_Int1_Busy = '1') THEN

 NS_Bus <= S7;

 ELSE

 LD_PWM_Freq <= '1';

 NS_Bus <= S8;

 END IF;

 WHEN S8 =>

 Bus_Int1_AddrIn <= Addr_LED_PW; --Read Data from LED

PulseWidth Register

 Bus_Int1_RE <= '1';

 NS_Bus <= S9;

 WHEN S9 =>

 IF (Bus_Int1_Busy = '1') THEN

 NS_Bus <= S9;

 ELSE

 LD_PWM_PW <= '1';

 NS_Bus <= S10;

 END IF;

 WHEN S10 =>

 Bus_Int1_AddrIn <= Addr_LED1_DC; --Read Data from

LED1_DC Register

109

 Bus_Int1_RE <= '1';

 NS_Bus <= S11;

 WHEN S11 =>

 IF (Bus_Int1_Busy = '1') THEN

 NS_Bus <= S11;

 ELSE

 LD_PWM1_DC <= '1';

 NS_Bus <= S12;

 END IF;

 WHEN S12 =>

 Bus_Int1_AddrIn <= Addr_LED2_DC; --Read Data from

LED2_DC Register

 Bus_Int1_RE <= '1';

 NS_Bus <= S13;

 WHEN S13 =>

 IF (Bus_Int1_Busy = '1') THEN

 NS_Bus <= S13;

 ELSE

 LD_PWM2_DC <= '1';

 NS_Bus <= S14;

 END IF;

 WHEN S14 =>

 Bus_Int1_AddrIn <= Addr_LED3_DC; --Read Data from

LED3_DC Register

 Bus_Int1_RE <= '1';

 NS_Bus <= S15;

 WHEN S15 =>

 IF (Bus_Int1_Busy = '1') THEN

 NS_Bus <= S15;

 ELSE

 LD_PWM3_DC <= '1';

 NS_Bus <= S16;

 END IF;

 WHEN S16 =>

 Bus_Int1_AddrIn <= Addr_LED4_DC; --Read Data from

LED4_DC Register

 Bus_Int1_RE <= '1';

 NS_Bus <= S17;

 WHEN S17 =>

 IF (Bus_Int1_Busy = '1') THEN

 NS_Bus <= S17;

 ELSE

 LD_PWM4_DC <= '1';

 NS_Bus <= S2;

 END IF;

 WHEN OTHERS =>

110

 NS_Bus <= S0;

 END CASE;

 END PROCESS;

 ----End Next State Logic for Bus Interface

 ----Next State Logic for Blink Update

 NSL_Blink : PROCESS (CS_Blink, Freq_Cnt_Out, PWM_Freq, PWM_PW)

 BEGIN

 ----Default States to remove latches

 NS_Blink <= S0;

 Freq_Cnt_INC <= '0';

 Freq_Cnt_rst <= '1';

 PWM1_En <= '0';

 PWM2_En <= '0';

 PWM3_En <= '0';

 PWM4_En <= '0';

 CASE CS_Blink IS

 WHEN S0 =>

 Freq_Cnt_rst <= '0'; -- Reset Period Counter

 NS_Blink <= S1;

 WHEN S1 => -- Counter for Pulse Width

 IF (Freq_Cnt_Out < PWM_PW) THEN

 NS_Blink <= S1;

 ELSE

 NS_Blink <= S2;

 END IF;

 Freq_Cnt_INC <= '1';

 PWM1_En <= '1';

 PWM2_En <= '1';

 PWM3_En <= '1';

 PWM4_En <= '1';

 WHEN S2 => --Counter for Period

 IF (Freq_Cnt_Out < PWM_Freq) THEN

 NS_Blink <= S2;

 ELSE

 NS_Blink <= S0;

 END IF;

 Freq_Cnt_INC <= '1';

 WHEN OTHERS =>

 NS_Blink <= S0;

 END CASE;

 END PROCESS;

 ----End Next State Logic for Blink Update

 ----State Sync

 sync_States : PROCESS

 BEGIN

 WAIT UNTIL clk'event AND clk = '1';

111

 IF rst = '0' THEN

 CS_Bus <= S0;

 ELSE

 CS_Bus <= NS_Bus;

 END IF;

 END PROCESS;

 ----End State Sync

 ----State Sync for Blink

 sync_Blink : PROCESS

 BEGIN

 WAIT UNTIL clk_Blink'event AND clk_Blink = '1';

 IF rst = '0' THEN

 CS_Blink <= S0;

 ELSE

 CS_Blink <= NS_Blink;

 END IF;

 END PROCESS;

 ----End State Sync

 -- Clock Divider for LED_Blink

 Clk_Div_Blink : PROCESS

 BEGIN

 WAIT UNTIL clk'event AND clk = '1';

 clk_temp <= clk_temp + 1;

 clk_Blink <= clk_temp(9);

 END PROCESS;

END Behavioral;

--##################################Bus Interface

Top###

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

USE ieee.std_logic_unsigned.ALL;

USE ieee.numeric_std.ALL;

LIBRARY lattice;

USE lattice.components.ALL;

LIBRARY machxo2;

USE machxo2.ALL;

ENTITY Bus_Interface_Top IS

 PORT (

 --RESETn : in STD_LOGIC;-- Global Reset

 -- RS232 Communication

 Usr_RX : IN STD_LOGIC; -- Serial In for User Control

 Usr_TX : OUT STD_LOGIC; -- Serial Out for User Control

 -- Board LEDs

 LED_1 : OUT STD_LOGIC -- Board LED

);

112

END Bus_Interface_Top;

ARCHITECTURE Behavioral OF Bus_Interface_Top IS

 -- Declare Internal Oscillator

 COMPONENT OSCH

 GENERIC (NOM_FREQ : STRING := "8.31");

 PORT (

 STDBY : IN std_logic;

 OSC : OUT std_logic;

 SEDSTDBY : OUT std_logic

);

 END COMPONENT;

 -- Declare PLL

 COMPONENT PLL_Clk

 PORT (

 ClkI : IN std_logic;

 ClkOP : OUT std_logic;

 Lock : OUT std_logic

);

 END COMPONENT;

 -- Declare Bus_Master

 COMPONENT Bus_Master

 PORT (

 clk : IN std_logic;

 rst : IN std_logic;

 Data : INOUT std_logic_vector(15 DOWNTO 0);

 Addr : IN std_logic_vector(15 DOWNTO 0);

 Xrqst : IN std_logic;

 XDat : OUT std_logic;

 YDat : IN std_logic;

 BusRqst : IN std_logic_vector(9 DOWNTO 0);

 BusCtrl : OUT std_logic_vector(9 DOWNTO 0)

);

 END COMPONENT;

 -- Declare RS232_Usr_Int

 COMPONENT RS232_Usr_Int

 GENERIC (

 Baud : INTEGER; -- Baud Rate

 clk_in : INTEGER -- Input Clk

);

 PORT (

 clk : IN std_logic;

 rst : IN std_logic;

 rs232_rcv : IN std_logic;

 rs232_xmt : OUT std_logic;

 Data : INOUT std_logic_vector(15 DOWNTO 0);

 Addr : OUT std_logic_vector(15 DOWNTO 0);

113

 Xrqst : OUT std_logic;

 XDat : IN std_logic;

 YDat : OUT std_logic;

 BusRqst : OUT std_logic;

 BusCtrl : IN std_logic

);

 END COMPONENT;

 -- Declare LED_Ctrl

 COMPONENT LED_Ctrl IS

 PORT (

 clk : IN STD_LOGIC;

 rst : IN STD_LOGIC;

 Data : INOUT std_logic_vector(15 DOWNTO 0);

 Addr : OUT std_logic_vector(15 DOWNTO 0);

 Xrqst : OUT std_logic;

 XDat : IN std_logic;

 YDat : OUT std_logic;

 BusRqst : OUT std_logic;

 BusCtrl : IN std_logic;

 LED1_Out : OUT STD_LOGIC

);

 END COMPONENT;

 -- Declare Std_Counter Component

 COMPONENT Std_Counter IS

 GENERIC (

 Width : INTEGER -- width of counter

);

 PORT (

 INC, rst, clk : IN std_logic;

 Count : OUT STD_LOGIC_VECTOR(Width - 1 DOWNTO 0));

 END COMPONENT;

 ----Signals

 -- Declare Signals for Bus Interface

 SIGNAL Bus_Int1_WE, Bus_Int1_RE, Bus_Int1_Busy : STD_LOGIC := '0';

 SIGNAL Bus_Int1_DataIn, Bus_Int1_DataOut, Bus_Int1_AddrIn :

STD_LOGIC_VECTOR(15 DOWNTO 0) := (OTHERS => '0');

 -- Inputs

 SIGNAL Addr : STD_LOGIC_VECTOR(15 DOWNTO 0) := (OTHERS => '0');

 SIGNAL Xrqst : STD_LOGIC := '0';

 SIGNAL YDat : STD_LOGIC := '0';

 SIGNAL BusRqst : STD_LOGIC_VECTOR(9 DOWNTO 0) := (OTHERS => '0');

 SIGNAL Data : STD_LOGIC_VECTOR(15 DOWNTO 0) := (OTHERS => '0');

 SIGNAL XDat : STD_LOGIC := '0';

 SIGNAL BusCtrl : STD_LOGIC_VECTOR(9 DOWNTO 0) := (OTHERS => '0');

 -- Internal Clock

 SIGNAL OSC_Stdby, OSC_Out, OSC_SEDSTDBY, clk : STD_LOGIC := '0';

114

 -- Reset

 SIGNAL PLL_Lock, System_rst : STD_LOGIC := '0';

 SIGNAL Reset_Cnt_INC, Reset_Cnt_rst : STD_LOGIC := '0';

 SIGNAL Reset_Cnt_out : STD_LOGIC_VECTOR(7 DOWNTO 0) := (OTHERS => '0');

 -- For inverting LED Outputs

 SIGNAL LED_1n : STD_LOGIC := '0';

BEGIN

 -- Instantiate Internal Oscillator

 Int_OSC : OSCH PORT MAP(

 STDBY => OSC_Stdby,

 OSC => OSC_Out,

 SEDSTDBY => OSC_SEDSTDBY

);

 -- Instantiate PLL

 PLL_1 : PLL_Clk PORT MAP(

 ClkI => OSC_Out,

 ClkOP => clk,

 Lock => Pll_Lock

);

 -- Instantiate Bus_Master

 BM : Bus_Master PORT MAP(

 clk => clk,

 rst => System_rst,

 Data => Data,

 Addr => Addr,

 Xrqst => Xrqst,

 XDat => XDat,

 YDat => YDat,

 BusRqst => BusRqst,

 BusCtrl => BusCtrl

);

 -- Instantiate RS232_Usr_Int

 RS232_Usr : RS232_Usr_Int

 GENERIC MAP

 (

 Baud => 9600, -- Baud Rate

 Clk_In => 24930000 -- Input Clk

)

 PORT MAP(

 clk => clk,

 rst => System_rst,

 rs232_rcv => Usr_RX,

 rs232_xmt => Usr_TX,

 Data => Data,

 Addr => Addr,

 Xrqst => Xrqst,

115

 XDat => XDat,

 YDat => YDat,

 BusRqst => BusRqst(1),

 BusCtrl => BusCtrl(1)

);

 -- Instantiate LED_Ctrl

 LED_Ctrl1 : LED_Ctrl PORT MAP(

 clk => clk,

 rst => System_rst,

 Data => Data,

 Addr => Addr,

 Xrqst => Xrqst,

 XDat => XDat,

 YDat => YDat,

 BusRqst => BusRqst(0),

 BusCtrl => BusCtrl(0),

 LED1_Out => LED_1n

);

 -- Instantiate Reset_Cnt_8

 Reset_Cnt : Std_Counter

 GENERIC MAP

 (

 Width => 8

)

 PORT MAP(

 clk => OSC_Out,

 rst => Reset_Cnt_rst,

 INC => Reset_Cnt_INC,

 Count => Reset_Cnt_Out

);

 -- Oscillator

 OSC_Stdby <= '0';

 -- Tie unused ports to '0'

 BusRqst(9 DOWNTO 2) <= (OTHERS => '0');

 -- Reset Block1

 Reset_Blk1 : PROCESS

 BEGIN

 WAIT UNTIL OSC_Out'event AND OSC_Out = '1';

 IF (PLL_Lock = '0') THEN

 Reset_Cnt_rst <= '0';

 ELSE

 Reset_Cnt_rst <= '1';

 END IF;

 END PROCESS;

 -- Reset Block

 Reset_Blk : PROCESS

116

 BEGIN

 WAIT UNTIL OSC_Out'event AND OSC_Out = '1';

 IF (Reset_Cnt_out < X"7F") THEN

 System_rst <= '0';

 Reset_Cnt_Inc <= '1';

 ELSE

 System_rst <= '1';

 Reset_Cnt_Inc <= '0';

 END IF;

 END PROCESS;

 -- LED Invert due to Active Low Configuration on Dev Board

 LED_Invert : PROCESS

 BEGIN

 LED_1 <= NOT(LED_1n);

 END PROCESS;

END Behavioral;

--################################Hardware Authentication

Module###

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

USE IEEE.std_logic_arith.ALL;

USE IEEE.std_logic_unsigned.ALL;

USE IEEE.numeric_std.ALL;

LIBRARY machxo2;

USE machxo2.ALL;

LIBRARY lattice;

USE lattice.components.ALL;

ENTITY HW_AUTH_MODULE IS

 PORT (

 MISO : IN STD_LOGIC;

 CLK_IN : IN STD_LOGIC;

 CS : OUT STD_LOGIC;

 CLK_OUT : OUT STD_LOGIC;

 MOSI : OUT STD_LOGIC;

 HW_GOOD : OUT STD_LOGIC

);

END HW_AUTH_MODULE;

ARCHITECTURE Behavior OF HW_AUTH_MODULE IS

 TYPE MACHINE IS (START, SB, OPCODE_H, OPCODE_L, A5, A4, A3, A2, A1, A0,

W, D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0,

AUTHENTICATE, STDBY);

 SIGNAL STATE : MACHINE := STDBY;

 SIGNAL SB_VALUE : STD_LOGIC := '1';

 SIGNAL OP_READ : STD_LOGIC_VECTOR(1 DOWNTO 0) := "10";

 SIGNAL EEPROM_addr : STD_LOGIC_VECTOR(5 DOWNTO 0) := "000000";

117

 SIGNAL DATA_IN : STD_LOGIC_VECTOR(15 DOWNTO 0) := (OTHERS => '0');

 SIGNAL DELAY : INTEGER RANGE 0 TO 200_000 := 200_000; --1_500_000

 TYPE T_ARRAY IS ARRAY(0 TO 63) OF STD_LOGIC_VECTOR(15 DOWNTO 0);

 SIGNAL KEYS : T_ARRAY;

 SIGNAL KEY_INDEX : INTEGER RANGE 0 TO 63 := 0;

BEGIN

 HW_AUTH_INTERRUPT : PROCESS (CLK_IN)

 BEGIN

 KEYS(0) <= X"ABBA";

 KEYS(1) <= X"ABED";

 KEYS(2) <= X"BABE";

 KEYS(3) <= X"BADE";

 KEYS(4) <= X"BEAD";

 KEYS(5) <= X"BEEF";

 KEYS(6) <= X"CAFE";

 KEYS(7) <= X"CEDE";

 KEYS(8) <= X"DADA";

 KEYS(9) <= X"DEAD";

 KEYS(10) <= X"DEAF";

 KEYS(11) <= X"DEED";

 KEYS(12) <= X"FACE";

 KEYS(13) <= X"FADE";

 KEYS(14) <= X"FEED";

 KEYS(15) <= X"FEE0";

 KEYS(16) <= X"ABBA";

 KEYS(17) <= X"ABED";

 KEYS(18) <= X"BABE";

 KEYS(19) <= X"BADE";

 KEYS(20) <= X"BEAD";

 KEYS(21) <= X"BEEF";

 KEYS(22) <= X"CAFE";

 KEYS(23) <= X"CEDE";

 KEYS(24) <= X"DADA";

 KEYS(25) <= X"DEAD";

 KEYS(26) <= X"DEAF";

 KEYS(27) <= X"DEED";

 KEYS(28) <= X"FACE";

 KEYS(29) <= X"FADE";

 KEYS(30) <= X"FEED";

 KEYS(31) <= X"FEE0";

 KEYS(32) <= X"ABBA";

 KEYS(33) <= X"ABED";

 KEYS(34) <= X"BABE";

 KEYS(35) <= X"BADE";

 KEYS(36) <= X"BEAD";

118

 KEYS(37) <= X"BEEF";

 KEYS(38) <= X"CAFE";

 KEYS(39) <= X"CEDE";

 KEYS(40) <= X"DADA";

 KEYS(41) <= X"DEAD";

 KEYS(42) <= X"DEAF";

 KEYS(43) <= X"DEED";

 KEYS(44) <= X"FACE";

 KEYS(45) <= X"FADE";

 KEYS(46) <= X"FEED";

 KEYS(47) <= X"FEE0";

 KEYS(48) <= X"ABBA";

 KEYS(49) <= X"ABED";

 KEYS(50) <= X"BABE";

 KEYS(51) <= X"BADE";

 KEYS(52) <= X"BEAD";

 KEYS(53) <= X"BEEF";

 KEYS(54) <= X"CAFE";

 KEYS(55) <= X"CEDE";

 KEYS(56) <= X"DADA";

 KEYS(57) <= X"DEAD";

 KEYS(58) <= X"DEAF";

 KEYS(59) <= X"DEED";

 KEYS(60) <= X"FACE";

 KEYS(61) <= X"FADE";

 KEYS(62) <= X"FEED";

 KEYS(63) <= X"FEE0";

 IF (CLK_IN' EVENT) THEN

 IF (CLK_IN = '1') THEN

 CLK_OUT <= '1';

 END IF;

 IF (CLK_IN = '0') THEN

 CLK_OUT <= '0';

 CASE STATE IS

 WHEN START =>

 CS <= '0';

 MOSI <= '0';

 STATE <= SB;

 WHEN SB =>

 CS <= '1';

 MOSI <= SB_VALUE;

 STATE <= OPCODE_H;

119

 WHEN OPCODE_H =>

 CS <= '1';

 MOSI <= OP_READ(1);

 STATE <= OPCODE_L;

 WHEN OPCODE_L =>

 CS <= '1';

 MOSI <= OP_READ(0);

 STATE <= A5;

 WHEN A5 =>

 CS <= '1';

 MOSI <= EEPROM_addr(5);

 STATE <= A4;

 WHEN A4 =>

 CS <= '1';

 MOSI <= EEPROM_addr(4);

 STATE <= A3;

 WHEN A3 =>

 CS <= '1';

 MOSI <= EEPROM_addr(3);

 STATE <= A2;

 WHEN A2 =>

 CS <= '1';

 MOSI <= EEPROM_addr(2);

 STATE <= A1;

 WHEN A1 =>

 CS <= '1';

 MOSI <= EEPROM_addr(1);

 STATE <= A0;

 WHEN A0 =>

 CS <= '1';

 MOSI <= EEPROM_addr(0);

 STATE <= W;

 WHEN W =>

 CS <= '1';

 STATE <= D15;

 WHEN D15 =>

120

 CS <= '1';

 MOSI <= '0';

 DATA_IN(15) <= MISO;

 STATE <= D14;

 WHEN D14 =>

 CS <= '1';

 MOSI <= '0';

 DATA_IN(14) <= MISO;

 STATE <= D13;

 WHEN D13 =>

 CS <= '1';

 MOSI <= '0';

 DATA_IN(13) <= MISO;

 STATE <= D12;

 WHEN D12 =>

 CS <= '1';

 MOSI <= '0';

 DATA_IN(12) <= MISO;

 STATE <= D11;

 WHEN D11 =>

 CS <= '1';

 MOSI <= '0';

 DATA_IN(11) <= MISO;

 STATE <= D10;

 WHEN D10 =>

 CS <= '1';

 MOSI <= '0';

 DATA_IN(10) <= MISO;

 STATE <= D9;

 WHEN D9 =>

 CS <= '1';

 MOSI <= '0';

 DATA_IN(9) <= MISO;

 STATE <= D8;

 WHEN D8 =>

 CS <= '1';

 MOSI <= '0';

 DATA_IN(8) <= MISO;

 STATE <= D7;

121

 WHEN D7 =>

 CS <= '1';

 MOSI <= '0';

 DATA_IN(7) <= MISO;

 STATE <= D6;

 WHEN D6 =>

 CS <= '1';

 MOSI <= '0';

 DATA_IN(6) <= MISO;

 STATE <= D5;

 WHEN D5 =>

 CS <= '1';

 MOSI <= '0';

 DATA_IN(5) <= MISO;

 STATE <= D4;

 WHEN D4 =>

 CS <= '1';

 MOSI <= '0';

 DATA_IN(4) <= MISO;

 STATE <= D3;

 WHEN D3 =>

 CS <= '1';

 MOSI <= '0';

 DATA_IN(3) <= MISO;

 STATE <= D2;

 WHEN D2 =>

 CS <= '1';

 MOSI <= '0';

 DATA_IN(2) <= MISO;

 STATE <= D1;

 WHEN D1 =>

 CS <= '1';

 MOSI <= '0';

 DATA_IN(1) <= MISO;

 STATE <= D0;

 WHEN D0 =>

 CS <= '1';

 MOSI <= '0';

122

 DATA_IN(0) <= MISO;

 STATE <= AUTHENTICATE;

 WHEN AUTHENTICATE =>

 CS <= '0';

 MOSI <= '0';

 IF (DATA_IN = KEYS(KEY_INDEX)) THEN

 HW_GOOD <= '1';

 ELSE

 HW_GOOD <= '0';

 END IF;

 STATE <= STDBY;

 WHEN STDBY =>

 CS <= '0';

 MOSI <= '0';

 IF (DELAY > 0) THEN

 DELAY <= DELAY - 1;

 STATE <= STDBY;

 ELSIF (DELAY = 0) THEN

 EEPROM_addr <= EEPROM_addr +

"000001";

 KEY_INDEX <= KEY_INDEX + 1;

 DELAY <= 200_000;

 STATE <= START;

 ELSE

 DELAY <= 200_000;

 STATE <= STDBY;

 END IF;

 WHEN OTHERS =>

 CS <= '0';

 MOSI <= '0';

 STATE <= STDBY;

 END CASE;

 END IF;

 END IF;

 END PROCESS;

END Behavior;

--###Hardware Assisted

Supervisor###

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

LIBRARY lattice;

USE lattice.components.ALL;

ENTITY HARDWARE_ASSISTED_SUPERVISOR IS

123

 GENERIC (

 TIMEOUT : INTEGER := 2_000

);

 PORT (

 CLK_IN : IN STD_LOGIC;

 --Input Controller 1

 I1_0 : IN STD_LOGIC;

 I1_1 : IN STD_LOGIC;

 I1_2 : IN STD_LOGIC;

 I1_3 : IN STD_LOGIC;

 I1_4 : IN STD_LOGIC;

 I1_5 : IN STD_LOGIC;

 I1_6 : IN STD_LOGIC;

 I1_7 : IN STD_LOGIC;

 I1_8 : IN STD_LOGIC;

 I1_9 : IN STD_LOGIC;

 I1_10 : IN STD_LOGIC;

 I1_11 : IN STD_LOGIC;

 I1_12 : IN STD_LOGIC;

 I1_13 : IN STD_LOGIC;

 I1_14 : IN STD_LOGIC;

 I1_15 : IN STD_LOGIC;

 I1_16 : IN STD_LOGIC;

 I1_17 : IN STD_LOGIC;

 I1_18 : IN STD_LOGIC;

 I1_19 : IN STD_LOGIC;

 I1_20 : IN STD_LOGIC;

 I1_21 : IN STD_LOGIC;

 I1_22 : IN STD_LOGIC;

 I1_23 : IN STD_LOGIC;

 I1_24 : IN STD_LOGIC;

 I1_25 : IN STD_LOGIC;

 I1_26 : IN STD_LOGIC;

 I1_27 : IN STD_LOGIC;

 --Input Controller 2

 I2_0 : IN STD_LOGIC;

 I2_1 : IN STD_LOGIC;

 I2_2 : IN STD_LOGIC;

 I2_3 : IN STD_LOGIC;

 I2_4 : IN STD_LOGIC;

 I2_5 : IN STD_LOGIC;

 I2_6 : IN STD_LOGIC;

 I2_7 : IN STD_LOGIC;

 I2_8 : IN STD_LOGIC;

 I2_9 : IN STD_LOGIC;

 I2_10 : IN STD_LOGIC;

124

 I2_11 : IN STD_LOGIC;

 I2_12 : IN STD_LOGIC;

 I2_13 : IN STD_LOGIC;

 I2_14 : IN STD_LOGIC;

 I2_15 : IN STD_LOGIC;

 I2_16 : IN STD_LOGIC;

 I2_17 : IN STD_LOGIC;

 I2_18 : IN STD_LOGIC;

 I2_19 : IN STD_LOGIC;

 I2_20 : IN STD_LOGIC;

 I2_21 : IN STD_LOGIC;

 I2_22 : IN STD_LOGIC;

 I2_23 : IN STD_LOGIC;

 I2_24 : IN STD_LOGIC;

 I2_25 : IN STD_LOGIC;

 I2_26 : IN STD_LOGIC;

 I2_27 : IN STD_LOGIC;

 --Output Controller

 O_0 : OUT STD_LOGIC;

 O_1 : OUT STD_LOGIC;

 O_2 : OUT STD_LOGIC;

 O_3 : OUT STD_LOGIC;

 O_4 : OUT STD_LOGIC;

 O_5 : OUT STD_LOGIC;

 O_6 : OUT STD_LOGIC;

 O_7 : OUT STD_LOGIC;

 O_8 : OUT STD_LOGIC;

 O_9 : OUT STD_LOGIC;

 O_10 : OUT STD_LOGIC;

 O_11 : OUT STD_LOGIC;

 O_12 : OUT STD_LOGIC;

 O_13 : OUT STD_LOGIC;

 O_14 : OUT STD_LOGIC;

 O_15 : OUT STD_LOGIC;

 O_16 : OUT STD_LOGIC;

 O_17 : OUT STD_LOGIC;

 O_18 : OUT STD_LOGIC;

 O_19 : OUT STD_LOGIC;

 O_20 : OUT STD_LOGIC;

 O_21 : OUT STD_LOGIC;

 O_22 : OUT STD_LOGIC;

 O_23 : OUT STD_LOGIC;

 O_24 : OUT STD_LOGIC;

 O_25 : OUT STD_LOGIC;

 O_26 : OUT STD_LOGIC;

 O_27 : OUT STD_LOGIC;

125

 LOCK_STATE : OUT STD_LOGIC;

 C1_STATE : OUT STD_LOGIC;

 C2_STATE : OUT STD_LOGIC;

 NOM_STATE : OUT STD_LOGIC;

 USR_IN : IN STD_LOGIC_VECTOR(4 DOWNTO 1);

 HW_AUTH : IN STD_LOGIC

);

END HARDWARE_ASSISTED_SUPERVISOR;

ARCHITECTURE BEHAVIOR OF HARDWARE_ASSISTED_SUPERVISOR IS

 TYPE MACHINE IS (LOCKOUT, CONTROL_1, CONTROL_2, NOMINAL);

 SIGNAL STATE : MACHINE := LOCKOUT;

 SIGNAL CTRL1_CNT : INTEGER RANGE 0 TO 4_000 := 0;

 SIGNAL CTRL2_CNT : INTEGER RANGE 0 TO 4_000 := 0;

 SIGNAL HRTBT1_LAST : STD_LOGIC := '0';

 SIGNAL HRTBT1 : STD_LOGIC;

 SIGNAL CTRL1_ISLIVE : BOOLEAN := FALSE;

 SIGNAL HRTBT2_LAST : STD_LOGIC := '0';

 SIGNAL HRTBT2 : STD_LOGIC;

 SIGNAL CTRL2_ISLIVE : BOOLEAN := FALSE;

BEGIN

 CTRL_MUX : PROCESS (CLK_IN, HW_AUTH, USR_IN)

 BEGIN

 HRTBT1 <= I1_24;

 HRTBT2 <= I2_24;

 --Update liveness timers

 IF (CLK_IN'EVENT AND CLK_IN = '1') THEN

 IF (HRTBT1 = NOT HRTBT1_LAST) THEN

 CTRL1_CNT <= 0;

 CTRL1_ISLIVE <= TRUE;

 HRTBT1_LAST <= HRTBT1;

 ELSE

 IF (CTRL1_CNT < TIMEOUT) THEN

 CTRL1_CNT <= CTRL1_CNT + 1;

 CTRL1_ISLIVE <= TRUE;

 ELSE

 CTRL1_CNT <= TIMEOUT;

 CTRL1_ISLIVE <= FALSE;

 END IF;

 END IF;

 IF (HRTBT2 = NOT HRTBT2_LAST) THEN

 CTRL2_CNT <= 0;

 CTRL2_ISLIVE <= TRUE;

126

 HRTBT2_LAST <= HRTBT2;

 ELSE

 IF (CTRL2_CNT < TIMEOUT) THEN

 CTRL2_CNT <= CTRL2_CNT + 1;

 CTRL2_ISLIVE <= TRUE;

 ELSE

 CTRL2_CNT <= TIMEOUT;

 CTRL2_ISLIVE <= FALSE;

 END IF;

 END IF;

 END IF;

 --Set states from liveness

 IF (CTRL1_ISLIVE AND CTRL2_ISLIVE) THEN

 STATE <= NOMINAL;

 ELSE

 IF (CTRL1_ISLIVE) THEN

 STATE <= CONTROL_1;

 ELSIF (CTRL2_ISLIVE) THEN

 STATE <= CONTROL_2;

 ELSE

 STATE <= LOCKOUT;

 END IF;

 END IF;

 --Set state from hardware authentication module flag

 IF (HW_AUTH = '0') THEN

 STATE <= LOCKOUT;

 END IF;

 --Set states from user input via push buttons

 IF (USR_IN(1) = '0') THEN

 STATE <= LOCKOUT;

 END IF;

 IF (USR_IN(2) = '0') THEN

 STATE <= NOMINAL;

 END IF;

 IF (USR_IN(3) = '0') THEN

 STATE <= CONTROL_1;

 END IF;

 IF (USR_IN(4) = '0') THEN

 STATE <= CONTROL_2;

 END IF;

 --Route fabric according to set state

 CASE STATE IS

127

 WHEN LOCKOUT =>

 LOCK_STATE <= '1';

 C1_STATE <= '0';

 C2_STATE <= '0';

 NOM_STATE <= '0';

 O_0 <= '0';

 O_1 <= '0';

 O_2 <= '0';

 O_3 <= '0';

 O_4 <= '0';

 O_5 <= '0';

 O_6 <= '0';

 O_7 <= '0';

 O_8 <= '0';

 O_9 <= '0';

 O_10 <= '0';

 O_11 <= '0';

 O_12 <= '0';

 O_13 <= '0';

 O_14 <= '0';

 O_15 <= '0';

 O_16 <= '0';

 O_17 <= '0';

 O_18 <= '0';

 O_19 <= '0';

 O_20 <= '0';

 O_21 <= '0';

 O_22 <= '0';

 O_23 <= '0';

 O_24 <= '0';

 O_25 <= '0';

 O_26 <= '0';

 O_27 <= '0';

 WHEN CONTROL_1 =>

 LOCK_STATE <= '0';

 C1_STATE <= '1';

 C2_STATE <= '0';

 NOM_STATE <= '0';

 O_0 <= I1_0;

 O_1 <= I1_1;

 O_2 <= I1_2;

 O_3 <= I1_3;

 O_4 <= I1_4;

 O_5 <= I1_5;

 O_6 <= I1_6;

128

 O_7 <= I1_7;

 O_8 <= I1_8;

 O_9 <= I1_9;

 O_10 <= I1_10;

 O_11 <= I1_11;

 O_12 <= I1_12;

 O_13 <= I1_13;

 O_14 <= I1_14;

 O_15 <= I1_15;

 O_16 <= I1_16;

 O_17 <= I1_17;

 O_18 <= I1_18;

 O_19 <= I1_19;

 O_20 <= I1_20;

 O_21 <= I1_21;

 O_22 <= I1_22;

 O_23 <= I1_23;

 O_24 <= I1_24;

 O_25 <= I1_25;

 O_26 <= I1_26;

 O_27 <= I1_27;

 WHEN CONTROL_2 =>

 LOCK_STATE <= '0';

 C1_STATE <= '0';

 C2_STATE <= '1';

 NOM_STATE <= '0';

 O_0 <= I2_0;

 O_1 <= I2_1;

 O_2 <= I2_2;

 O_3 <= I2_3;

 O_4 <= I2_4;

 O_5 <= I2_5;

 O_6 <= I2_6;

 O_7 <= I2_7;

 O_8 <= I2_8;

 O_9 <= I2_9;

 O_10 <= I2_10;

 O_11 <= I2_11;

 O_12 <= I2_12;

 O_13 <= I2_13;

 O_14 <= I2_14;

 O_15 <= I2_15;

 O_16 <= I2_16;

 O_17 <= I2_17;

 O_18 <= I2_18;

129

 O_19 <= I2_19;

 O_20 <= I2_20;

 O_21 <= I2_21;

 O_22 <= I2_22;

 O_23 <= I2_23;

 O_24 <= I2_24;

 O_25 <= I2_25;

 O_26 <= I2_26;

 O_27 <= I2_27;

 WHEN NOMINAL =>

 LOCK_STATE <= '0';

 C1_STATE <= '0';

 C2_STATE <= '0';

 NOM_STATE <= '1';

 O_0 <= I1_0;

 O_1 <= I1_1;

 O_2 <= I1_2;

 O_3 <= I1_3;

 O_4 <= I1_4;

 O_5 <= I1_5;

 O_6 <= I1_6;

 O_7 <= I1_7;

 O_8 <= I1_8;

 O_9 <= I1_9;

 O_10 <= I1_10;

 O_11 <= I1_11;

 O_12 <= I1_12;

 O_13 <= I1_13;

 O_14 <= I1_14;

 O_15 <= I1_15;

 O_16 <= I1_16;

 O_17 <= I1_17;

 O_18 <= I1_18;

 O_19 <= I1_19;

 O_20 <= I1_20;

 O_21 <= I1_21;

 O_22 <= I1_22;

 O_23 <= I1_23;

 O_24 <= I1_24;

 O_25 <= I1_25;

 O_26 <= I1_26;

 O_27 <= I1_27;

 WHEN OTHERS =>

 LOCK_STATE <= '0';

130

 C1_STATE <= '0';

 C2_STATE <= '0';

 NOM_STATE <= '0';

 O_0 <= '0';

 O_1 <= '0';

 O_2 <= '0';

 O_3 <= '0';

 O_4 <= '0';

 O_5 <= '0';

 O_6 <= '0';

 O_7 <= '0';

 O_8 <= '0';

 O_9 <= '0';

 O_10 <= '0';

 O_11 <= '0';

 O_12 <= '0';

 O_13 <= '0';

 O_14 <= '0';

 O_15 <= '0';

 O_16 <= '0';

 O_17 <= '0';

 O_18 <= '0';

 O_19 <= '0';

 O_20 <= '0';

 O_21 <= '0';

 O_22 <= '0';

 O_23 <= '0';

 O_24 <= '0';

 O_25 <= '0';

 O_26 <= '0';

 O_27 <= '0';

 END CASE;

 END PROCESS CTRL_MUX;

END BEHAVIOR;

131

Appendix F: top.vhdl

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

LIBRARY LATTICE;

USE LATTICE.COMPONENTS.ALL;

LIBRARY WORK;

USE WORK.CSPR_MODULES.ALL;

ENTITY CSPR IS

 PORT (

 --Question: Why aren't we just using STD_LOGIC_VECTORs for the IDC ports?

 --Answer: These IDC ports have both input and output pins. It is much more clear

(but verbose) to handle them individually.

 --IDC A

 A0 : IN STD_LOGIC;

 A1 : IN STD_LOGIC;

 A2 : IN STD_LOGIC;

 A3 : IN STD_LOGIC;

 A4 : IN STD_LOGIC;

 A5 : IN STD_LOGIC;

 A6 : IN STD_LOGIC;

 A7 : IN STD_LOGIC;

 --A8 : IN STD_LOGIC;

 --A9 : IN STD_LOGIC;

 A10 : IN STD_LOGIC;

 A11 : IN STD_LOGIC;

 A12 : IN STD_LOGIC;

 A13 : IN STD_LOGIC;

 A14 : IN STD_LOGIC;

 A15 : IN STD_LOGIC;

 A16 : IN STD_LOGIC;

 A17 : IN STD_LOGIC;

 A18 : IN STD_LOGIC;

 A19 : IN STD_LOGIC;

 --A20 : IN STD_LOGIC;

 --A21 : IN STD_LOGIC;

 --A22 : IN STD_LOGIC;

 --A23 : IN STD_LOGIC;

 A24 : IN STD_LOGIC;

 A25 : IN STD_LOGIC;

 A26 : IN STD_LOGIC;

 A27 : IN STD_LOGIC;

 --IDC B

 B0 : OUT STD_LOGIC := 'Z';

 B1 : OUT STD_LOGIC := 'Z';

132

 B2 : OUT STD_LOGIC := 'Z';

 B3 : OUT STD_LOGIC := 'Z';

 B4 : OUT STD_LOGIC := 'Z';

 B5 : OUT STD_LOGIC := 'Z';

 B6 : OUT STD_LOGIC := 'Z';

 B7 : OUT STD_LOGIC := 'Z';

 B8 : OUT STD_LOGIC := 'Z';

 B9 : OUT STD_LOGIC := 'Z';

 B10 : OUT STD_LOGIC := 'Z';

 B11 : OUT STD_LOGIC := 'Z';

 B12 : OUT STD_LOGIC := 'Z';

 B13 : OUT STD_LOGIC := 'Z';

 B14 : OUT STD_LOGIC := 'Z';

 B15 : OUT STD_LOGIC := 'Z';

 B16 : OUT STD_LOGIC := 'Z';

 B17 : OUT STD_LOGIC := 'Z';

 B18 : OUT STD_LOGIC := 'Z';

 B19 : OUT STD_LOGIC := 'Z';

 B20 : OUT STD_LOGIC := 'Z';

 B21 : OUT STD_LOGIC := 'Z';

 --B22 : OUT STD_LOGIC := 'Z';

 --B23 : OUT STD_LOGIC := 'Z';

 B24 : OUT STD_LOGIC := 'Z';

 B25 : OUT STD_LOGIC := 'Z';

 B26 : OUT STD_LOGIC := 'Z';

 B27 : OUT STD_LOGIC := 'Z';

 --IDC C

 C0 : IN STD_LOGIC;

 C1 : IN STD_LOGIC;

 C2 : IN STD_LOGIC;

 C3 : IN STD_LOGIC;

 C4 : IN STD_LOGIC;

 C5 : IN STD_LOGIC;

 C6 : IN STD_LOGIC;

 C7 : IN STD_LOGIC;

 --C8 : IN STD_LOGIC;

 --C9 : IN STD_LOGIC;

 C10 : IN STD_LOGIC;

 C11 : IN STD_LOGIC;

 C12 : IN STD_LOGIC;

 C13 : IN STD_LOGIC;

 C14 : IN STD_LOGIC;

 C15 : IN STD_LOGIC;

 C16 : IN STD_LOGIC;

 C17 : IN STD_LOGIC;

 C18 : IN STD_LOGIC;

133

 C19 : IN STD_LOGIC;

 --C20 : IN STD_LOGIC;

 --C21 : IN STD_LOGIC;

 --C22 : IN STD_LOGIC;

 --C23 : IN STD_LOGIC;

 C24 : IN STD_LOGIC;

 C25 : IN STD_LOGIC;

 C26 : IN STD_LOGIC;

 C27 : IN STD_LOGIC;

 --IDC D

 D0 : OUT STD_LOGIC;

 D1 : OUT STD_LOGIC;

 D2 : OUT STD_LOGIC;

 D3 : OUT STD_LOGIC;

 D4 : OUT STD_LOGIC;

 D5 : OUT STD_LOGIC;

 D6 : OUT STD_LOGIC;

 D7 : OUT STD_LOGIC;

 D8 : OUT STD_LOGIC;

 D9 : OUT STD_LOGIC;

 D10 : OUT STD_LOGIC;

 D11 : OUT STD_LOGIC;

 D12 : OUT STD_LOGIC;

 D13 : OUT STD_LOGIC;

 D14 : OUT STD_LOGIC;

 D15 : OUT STD_LOGIC;

 D16 : OUT STD_LOGIC;

 D17 : OUT STD_LOGIC;

 D18 : OUT STD_LOGIC;

 D19 : OUT STD_LOGIC;

 D20 : OUT STD_LOGIC;

 D21 : OUT STD_LOGIC;

 D22 : OUT STD_LOGIC;

 D23 : IN STD_LOGIC; --EEPROM Master In Slave Out

 D24 : OUT STD_LOGIC;

 D25 : OUT STD_LOGIC;

 D26 : OUT STD_LOGIC;

 D27 : OUT STD_LOGIC;

 Usr_RX : IN STD_LOGIC;

 Usr_TX : OUT STD_LOGIC;

 BTN : IN STD_LOGIC_VECTOR(4 DOWNTO 1);

 LED : OUT STD_LOGIC_VECTOR(8 DOWNTO 1)

);

END CSPR;

134

ARCHITECTURE BEHAVIOR OF CSPR IS

 COMPONENT OSCH

 GENERIC (NOM_FREQ : STRING := "53.2");

 PORT (

 STDBY : IN STD_LOGIC;

 OSC : OUT STD_LOGIC;

 SEDSTDBY : OUT STD_LOGIC

);

 END COMPONENT;

 COMPONENT PLL

 PORT (

 CLKI : IN STD_LOGIC;

 CLKOP : OUT STD_LOGIC;

 CLKOS : OUT STD_LOGIC;

 CLKOS2 : OUT STD_LOGIC;

 CLKOS3 : OUT STD_LOGIC;

 LOCK : OUT STD_LOGIC

);

 END COMPONENT;

 COMPONENT HARDWARE_ASSISTED_SUPERVISOR

 PORT (

 CLK_IN : IN STD_LOGIC;

 --Input Controller 1

 I1_0 : IN STD_LOGIC;

 I1_1 : IN STD_LOGIC;

 I1_2 : IN STD_LOGIC;

 I1_3 : IN STD_LOGIC;

 I1_4 : IN STD_LOGIC;

 I1_5 : IN STD_LOGIC;

 I1_6 : IN STD_LOGIC;

 I1_7 : IN STD_LOGIC;

 I1_8 : IN STD_LOGIC;

 I1_9 : IN STD_LOGIC;

 I1_10 : IN STD_LOGIC;

 I1_11 : IN STD_LOGIC;

 I1_12 : IN STD_LOGIC;

 I1_13 : IN STD_LOGIC;

 I1_14 : IN STD_LOGIC;

 I1_15 : IN STD_LOGIC;

 I1_16 : IN STD_LOGIC;

 I1_17 : IN STD_LOGIC;

 I1_18 : IN STD_LOGIC;

 I1_19 : IN STD_LOGIC;

135

 I1_20 : IN STD_LOGIC;

 I1_21 : IN STD_LOGIC;

 I1_22 : IN STD_LOGIC;

 I1_23 : IN STD_LOGIC;

 I1_24 : IN STD_LOGIC;

 I1_25 : IN STD_LOGIC;

 I1_26 : IN STD_LOGIC;

 I1_27 : IN STD_LOGIC;

 --Input Controller 2

 I2_0 : IN STD_LOGIC;

 I2_1 : IN STD_LOGIC;

 I2_2 : IN STD_LOGIC;

 I2_3 : IN STD_LOGIC;

 I2_4 : IN STD_LOGIC;

 I2_5 : IN STD_LOGIC;

 I2_6 : IN STD_LOGIC;

 I2_7 : IN STD_LOGIC;

 I2_8 : IN STD_LOGIC;

 I2_9 : IN STD_LOGIC;

 I2_10 : IN STD_LOGIC;

 I2_11 : IN STD_LOGIC;

 I2_12 : IN STD_LOGIC;

 I2_13 : IN STD_LOGIC;

 I2_14 : IN STD_LOGIC;

 I2_15 : IN STD_LOGIC;

 I2_16 : IN STD_LOGIC;

 I2_17 : IN STD_LOGIC;

 I2_18 : IN STD_LOGIC;

 I2_19 : IN STD_LOGIC;

 I2_20 : IN STD_LOGIC;

 I2_21 : IN STD_LOGIC;

 I2_22 : IN STD_LOGIC;

 I2_23 : IN STD_LOGIC;

 I2_24 : IN STD_LOGIC;

 I2_25 : IN STD_LOGIC;

 I2_26 : IN STD_LOGIC;

 I2_27 : IN STD_LOGIC;

 --Output Controller

 O_0 : OUT STD_LOGIC;

 O_1 : OUT STD_LOGIC;

 O_2 : OUT STD_LOGIC;

 O_3 : OUT STD_LOGIC;

 O_4 : OUT STD_LOGIC;

 O_5 : OUT STD_LOGIC;

 O_6 : OUT STD_LOGIC;

 O_7 : OUT STD_LOGIC;

136

 O_8 : OUT STD_LOGIC;

 O_9 : OUT STD_LOGIC;

 O_10 : OUT STD_LOGIC;

 O_11 : OUT STD_LOGIC;

 O_12 : OUT STD_LOGIC;

 O_13 : OUT STD_LOGIC;

 O_14 : OUT STD_LOGIC;

 O_15 : OUT STD_LOGIC;

 O_16 : OUT STD_LOGIC;

 O_17 : OUT STD_LOGIC;

 O_18 : OUT STD_LOGIC;

 O_19 : OUT STD_LOGIC;

 O_20 : OUT STD_LOGIC;

 O_21 : OUT STD_LOGIC;

 O_22 : OUT STD_LOGIC;

 O_23 : OUT STD_LOGIC;

 O_24 : OUT STD_LOGIC;

 O_25 : OUT STD_LOGIC;

 O_26 : OUT STD_LOGIC;

 O_27 : OUT STD_LOGIC;

 LOCK_STATE : OUT STD_LOGIC;

 C1_STATE : OUT STD_LOGIC;

 C2_STATE : OUT STD_LOGIC;

 NOM_STATE : OUT STD_LOGIC;

 USR_IN : IN STD_LOGIC_VECTOR(4 DOWNTO 1);

 HW_AUTH : IN STD_LOGIC

);

 END COMPONENT;

 COMPONENT HW_AUTH_MODULE

 PORT (

 MISO : IN STD_LOGIC;

 CLK_IN : IN STD_LOGIC;

 CS : OUT STD_LOGIC;

 CLK_OUT : OUT STD_LOGIC;

 MOSI : OUT STD_LOGIC;

 HW_GOOD : OUT STD_LOGIC

);

 END COMPONENT;

 --COMPONENT Bus_Master

 --PORT (

 --clk : IN std_logic;

 --rst : IN std_logic;

137

 --Data : INOUT std_logic_vector(15 DOWNTO 0);

 --Addr : IN std_logic_vector(15 DOWNTO 0);

 --Xrqst : IN std_logic;

 --XDat : OUT std_logic;

 --YDat : IN std_logic;

 --BusRqst : IN std_logic_vector(9 DOWNTO 0);

 --BusCtrl : OUT std_logic_vector(9 DOWNTO 0)

 --);

 --END COMPONENT;

 --COMPONENT RS232_Usr_Int

 --GENERIC (

 --Baud : INTEGER; -- Baud Rate

 --clk_in : INTEGER -- Input Clk

 --);

 --PORT (

 --clk : IN std_logic;

 --rst : IN std_logic;

 --rs232_rcv : IN std_logic;

 --rs232_xmt : OUT std_logic;

 --Data : INOUT std_logic_vector(15 DOWNTO 0);

 --Addr : OUT std_logic_vector(15 DOWNTO 0);

 --Xrqst : OUT std_logic;

 --XDat : IN std_logic;

 --YDat : OUT std_logic;

 --BusRqst : OUT std_logic;

 --BusCtrl : IN std_logic

 --);

 --END COMPONENT;

 --COMPONENT LED_Ctrl

 --PORT (

 --clk : IN STD_LOGIC;

 --rst : IN STD_LOGIC;

 --Data : INOUT std_logic_vector(15 DOWNTO 0);

 --Addr : OUT std_logic_vector(15 DOWNTO 0);

 --Xrqst : OUT std_logic;

 --XDat : IN std_logic;

 --YDat : OUT std_logic;

 --BusRqst : OUT std_logic;

 --BusCtrl : IN std_logic;

 --LED1_Out : OUT STD_LOGIC

 --);

 --END COMPONENT;

 --COMPONENT Std_Counter

138

 --GENERIC (

 --Width : INTEGER -- width of counter

 --);

 --PORT (

 --INC, rst, clk : IN std_logic;

 --Count : OUT STD_LOGIC_VECTOR(Width - 1 DOWNTO 0));

 --END COMPONENT;

 SIGNAL OSC_Stdby : STD_LOGIC := '0';

 SIGNAL PLL_IN : STD_LOGIC := '0';

 SIGNAL OSC_SEDSTDBY : STD_LOGIC := '0';

 SIGNAL CLK53_2M : STD_LOGIC := '0';

 SIGNAL CLK24_93M : STD_LOGIC := '0';

 SIGNAL CLK8_31M : STD_LOGIC := '0';

 SIGNAL CLK1_5M : STD_LOGIC := '0';

 SIGNAL PLL_LOCK : STD_LOGIC := '0';

 SIGNAL MISO0 : STD_LOGIC := '0';

 SIGNAL CS0 : STD_LOGIC := '0';

 SIGNAL CLK_OUT0 : STD_LOGIC := '0';

 SIGNAL MOSI0 : STD_LOGIC := '0';

 SIGNAL HW_AUTH_FLAG : STD_LOGIC := '0';

 SIGNAL A : STD_LOGIC_VECTOR(27 DOWNTO 0) := (OTHERS => '0');

 SIGNAL B : STD_LOGIC_VECTOR(27 DOWNTO 0) := (OTHERS => '0');

 SIGNAL C : STD_LOGIC_VECTOR(27 DOWNTO 0) := (OTHERS => '0');

 SIGNAL D : STD_LOGIC_VECTOR(21 DOWNTO 0) := (OTHERS => '0');

 SIGNAL LOCK_S : STD_LOGIC := '0';

 SIGNAL C1_S : STD_LOGIC := '0';

 SIGNAL C2_S : STD_LOGIC := '0';

 SIGNAL NOM_S : STD_LOGIC := '0';

 SIGNAL LED_OUT : STD_LOGIC_VECTOR(8 DOWNTO 1);

 --From Bus_Interface_Top

 SIGNAL Bus_Int1_WE, Bus_Int1_RE, Bus_Int1_Busy : STD_LOGIC := '0';

 SIGNAL Bus_Int1_DataIn, Bus_Int1_DataOut, Bus_Int1_AddrIn :

STD_LOGIC_VECTOR(15 DOWNTO 0) := (OTHERS => '0');

 SIGNAL Addr : STD_LOGIC_VECTOR(15 DOWNTO 0) := (OTHERS => '0');

 SIGNAL Xrqst : STD_LOGIC := '0';

 SIGNAL YDat : STD_LOGIC := '0';

 SIGNAL BusRqst : STD_LOGIC_VECTOR(9 DOWNTO 0) := (OTHERS => '0');

 SIGNAL Data : STD_LOGIC_VECTOR(15 DOWNTO 0) := (OTHERS => '0');

 SIGNAL XDat : STD_LOGIC := '0';

 SIGNAL BusCtrl : STD_LOGIC_VECTOR(9 DOWNTO 0) := (OTHERS => '0');

139

 SIGNAL System_rst : STD_LOGIC := '0';

 SIGNAL Reset_Cnt_INC, Reset_Cnt_rst : STD_LOGIC := '0';

 SIGNAL Reset_Cnt_out : STD_LOGIC_VECTOR(7 DOWNTO 0) := (OTHERS => '0');

 SIGNAL LED_1n : STD_LOGIC := '0';

BEGIN

 Int_OSC : OSCH

 PORT MAP(

 STDBY => OSC_Stdby,

 OSC => PLL_IN,

 SEDSTDBY => OSC_SEDSTDBY

);

 PLL0 : PLL

 PORT MAP(

 CLKI => PLL_IN,

 CLKOP => CLK53_2M,

 CLKOS => CLK24_93M,

 CLKOS2 => CLK8_31M,

 CLKOS3 => CLK1_5M,

 LOCK => PLL_LOCK

);

 CTRL_MUX : HARDWARE_ASSISTED_SUPERVISOR

 PORT MAP(

 CLK_IN => CLK53_2M,

 I1_0 => A(0),

 I1_1 => A(1),

 I1_2 => A(2),

 I1_3 => A(3),

 I1_4 => A(4),

 I1_5 => A(5),

 I1_6 => A(6),

 I1_7 => A(7),

 I1_8 => '0', --A(8),

 I1_9 => '0', --A(9),

 I1_10 => A(10),

 I1_11 => A(11),

 I1_12 => A(12),

 I1_13 => A(13),

 I1_14 => A(14),

 I1_15 => A(15),

 I1_16 => A(16),

 I1_17 => A(17),

 I1_18 => A(18),

140

 I1_19 => A(19),

 I1_20 => '0', --A(20),

 I1_21 => '0', --A(21),

 I1_22 => '0', --A(22),

 I1_23 => '0', --A(23),

 I1_24 => A(24),

 I1_25 => A(25),

 I1_26 => A(26),

 I1_27 => A(27),

 I2_0 => C(0),

 I2_1 => C(1),

 I2_2 => C(2),

 I2_3 => C(3),

 I2_4 => C(4),

 I2_5 => C(5),

 I2_6 => C(6),

 I2_7 => C(7),

 I2_8 => '0', --C(8),

 I2_9 => '0', --C(9),

 I2_10 => C(10),

 I2_11 => C(11),

 I2_12 => C(12),

 I2_13 => C(13),

 I2_14 => C(14),

 I2_15 => C(15),

 I2_16 => C(16),

 I2_17 => C(17),

 I2_18 => C(18),

 I2_19 => C(19),

 I2_20 => '0', --C(20),

 I2_21 => '0', --C(21),

 I2_22 => '0', --C(22),

 I2_23 => '0', --C(23),

 I2_24 => C(24),

 I2_25 => C(25),

 I2_26 => C(26),

 I2_27 => C(27),

 O_0 => D(0),

 O_1 => D(1),

 O_2 => D(2),

 O_3 => D(3),

 O_4 => D(4),

 O_5 => D(5),

 O_6 => D(6),

 O_7 => D(7),

 O_8 => OPEN,

141

 O_9 => OPEN,

 O_10 => D(8),

 O_11 => D(9),

 O_12 => D(10),

 O_13 => D(11),

 O_14 => D(12),

 O_15 => D(13),

 O_16 => D(14),

 O_17 => D(15),

 O_18 => D(16),

 O_19 => D(17),

 O_20 => OPEN,

 O_21 => OPEN,

 O_22 => OPEN,

 O_23 => OPEN,

 O_24 => D(18),

 O_25 => D(19),

 O_26 => D(20),

 O_27 => D(21),

 LOCK_STATE => LOCK_S,

 C1_STATE => C1_S,

 C2_STATE => C2_S,

 NOM_STATE => NOM_S,

 USR_IN => BTN,

 HW_AUTH => HW_AUTH_FLAG

);

 AUTH_MODULE0 : HW_AUTH_MODULE

 PORT MAP(

 MISO => MISO0,

 CLK_IN => CLK1_5M,

 CS => CS0,

 CLK_OUT => CLK_OUT0,

 MOSI => MOSI0,

 HW_GOOD => HW_AUTH_FLAG

);

 --BM : Bus_Master

 --PORT MAP(

 --clk => CLK24_93M,

 --rst => System_rst,

 --Data => Data,

 --Addr => Addr,

 --Xrqst => Xrqst,

 --XDat => XDat,

 --YDat => YDat,

142

 --BusRqst => BusRqst,

 --BusCtrl => BusCtrl

 --);

 --RS232_Usr : RS232_Usr_Int

 --GENERIC MAP(

 --Baud => 9600, -- Baud Rate

 --Clk_In => 24937500 --Clk_Freq

 --)

 --PORT MAP(

 --clk => CLK24_93M,

 --rst => System_rst,

 --rs232_rcv => Usr_RX,

 --rs232_xmt => Usr_TX,

 --Data => Data,

 --Addr => Addr,

 --Xrqst => Xrqst,

 --XDat => XDat,

 --YDat => YDat,

 --BusRqst => BusRqst(1),

 --BusCtrl => BusCtrl(1)

 --);

 --LED_Ctrl1 : LED_Ctrl

 --PORT MAP(

 --clk => CLK24_93M,

 --rst => System_rst,

 --Data => Data,

 --Addr => Addr,

 --Xrqst => Xrqst,

 --XDat => XDat,

 --YDat => YDat,

 --BusRqst => BusRqst(0),

 --BusCtrl => BusCtrl(0),

 --LED1_Out => LED_1n

 --);

 --Reset_Cnt : Std_Counter

 --GENERIC MAP

 --(

 --Width => 8

 --)

 --PORT MAP(

 --clk => CLK8_31M,

 --rst => Reset_Cnt_rst,

 --INC => Reset_Cnt_INC,

143

 --Count => Reset_Cnt_Out

 --);

 --OSC_Stdby <= '0';

 --BusRqst(9 DOWNTO 2) <= (OTHERS => '0');

 --IDC A, INPUT from CONTROLLER 1

 A(0) <= A0;

 A(1) <= A1;

 A(2) <= A2;

 A(3) <= A3;

 A(4) <= A4;

 A(5) <= A5;

 A(6) <= A6;

 A(7) <= A7;

 A(8) <= '0';--A8;

 A(9) <= '0';--A9;

 A(10) <= A10;

 A(11) <= A11;

 A(12) <= A12;

 A(13) <= A13;

 A(14) <= A14;

 A(15) <= A15;

 A(16) <= A16;

 A(17) <= A17;

 A(18) <= A18;

 A(19) <= A19;

 A(20) <= '0';--A20;

 A(21) <= '0';--A21;

 A(22) <= '0';--A22;

 A(23) <= '0';--A23;

 A(24) <= A24;

 A(25) <= A25;

 A(26) <= A26;

 A(27) <= A27;

 --IDC C, INPUT from CONTROLLER 2

 C(0) <= C0;

 C(1) <= C1;

 C(2) <= C2;

 C(3) <= C3;

 C(4) <= C4;

 C(5) <= C5;

 C(6) <= C6;

 C(7) <= C7;

 C(8) <= '0';--C8;

144

 C(9) <= '0';--C9;

 C(10) <= C10;

 C(11) <= C11;

 C(12) <= C12;

 C(13) <= C13;

 C(14) <= C14;

 C(15) <= C15;

 C(16) <= C16;

 C(17) <= C17;

 C(18) <= C18;

 C(19) <= C19;

 C(20) <= '0';--C20;

 C(21) <= '0';--C21;

 C(22) <= '0';--C22;

 C(23) <= '0';--C23;

 C(24) <= C24;

 C(25) <= C25;

 C(26) <= C26;

 C(27) <= C27;

 --IDC D, OUTPUT from CONTROLLER 1 or CONTROLLER 2 to POWER

ELECTRONICS

 D0 <= D(0);

 D1 <= D(1);

 D2 <= D(2);

 D3 <= D(3);

 D4 <= D(4);

 D5 <= D(5);

 D6 <= D(6);

 D7 <= D(7);

 D8 <= '1';

 D9 <= NOT HW_AUTH_FLAG;

 D10 <= D(8);

 D11 <= D(9);

 D12 <= D(10);

 D13 <= D(11);

 D14 <= D(12);

 D15 <= D(13);

 D16 <= D(14);

 D17 <= D(15);

 D18 <= D(16);

 D19 <= D(17);

 D20 <= CLK_OUT0;

 D21 <= CS0;

 D22 <= MOSI0;

 MISO0 <= D23;

145

 D24 <= D(18);

 D25 <= D(19);

 D26 <= D(20);

 D27 <= D(21);

 LED(1) <= HW_AUTH_FLAG;

 LED(2) <= NOT(HW_AUTH_FLAG);

 LED(3) <= NOT(LED_1n);

 LED(4) <= '1';

 LED(5) <= NOT(LOCK_S);

 LED(6) <= NOT(NOM_S);

 LED(7) <= NOT(C1_S);

 LED(8) <= NOT(C2_S);

 --Reset_Blk1 : PROCESS

 --BEGIN

 --WAIT UNTIL CLK8_31M'event AND CLK8_31M = '1';

 --IF (PLL_Lock = '0') THEN

 --Reset_Cnt_rst <= '0';

 --ELSE

 --Reset_Cnt_rst <= '1';

 --END IF;

 --END PROCESS;

 --Reset_Blk : PROCESS

 --BEGIN

 --WAIT UNTIL CLK8_31M'event AND CLK8_31M = '1';

 --IF (Reset_Cnt_out < X"7F") THEN

 --System_rst <= '0';

 --Reset_Cnt_Inc <= '1';

 --ELSE

 --System_rst <= '1';

 --Reset_Cnt_Inc <= '0';

 --END IF;

 --END PROCESS;

END BEHAVIOR;

	Cybersecurity Methods for Grid-Connected Power Electronics
	Citation

	tmp.1595003408.pdf.wXHeB

