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Abstract 

 The present work shows a secure-by-design process, defense-in-depth method, and security 

techniques for a secure distributed energy resource. The distributed energy resource is a 

cybersecure, solar inverter and battery energy storage system prototype, collectively called the 

Cybersecure Power Router. Consideration is given to the use of the Smart Green Power Node for 

a foundation of the present work. Metrics for controller security are investigated to evaluate 

firmware security techniques. The prototype's ability to mitigate, respond to, and recover from 

firmware integrity degradation is examined. The prototype shows many working security 

techniques within the context of a grid-connected, distributed energy resource. Further work is 

expected in the Cybersecure Power Router project. Consideration is also provided for the 

migration of the present research and the Smart Green Power Node to realize a pre-production 

prototype. 
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Chapter 1 - Introduction 

 

The reliability and safety of the electrical grid face challenges. These challenges include aging 

infrastructure, tight regulatory environments, and the integration of new technologies. Power 

electronics are some of these new technologies, and provide a wide range of assets and liabilities 

to the electrical grid, its operation, and its evolution. Reactive power compensation, phase load 

balancing, battery energy storage systems, solar power, and flexible ac transmission are all 

potential assets. These devices may pose serious threats to both the electrical grid and 

interdependent critical infrastructure [1]. As these grid-connected power electronics permeate 

more of the electrical grid, the need for their security becomes greater [2]. 

A series of questions can begin this investigation of security for grid-connected power 

electronics, and establish appropriate security measures [3]. The first question is "what benefit 

does the device provide?" In the present case, the distributed energy device manages energy at the 

edge of the electrical grid, and supports grid resilience. 
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Fig. 1. Design Inventory for Distributed Energy Resource 

The next question is "how does the device provide those benefits?" A distinction in method and 

technique is useful, here. The methods to realize energy management at the grid-edge are energy 

generation, storage, dispatch, and arbitrage (see "Methods" in Figure 1). These methods identify a 

particular process or type of system. The techniques to realize energy management at the grid-edge 

include the use of photovoltaic panels, dc converters, inverters, batteries, and hierarchical controls. 

These techniques identify the practical elements of a method, that is, of a process or system. 

After arriving at a set of techniques, the next question is "what can happen to prevent this 

technique from working?" A boost converter or more complicated topology can be used to provide 

maximum power point tracking, current control, and hardware protection for a string of 

photovoltaic panels. In short, answering the question is difficult [4]. The hardware can fail, the 

switches can cause excessive electromagnetic interference, and noisy environments can corrupt 

transmitted data. Poor design can also cause various failures. The list of possible points and modes 

of failure is extensive for a complex system like a converter. Putting aside the incomplete answer, 

the next question is "what can be done to protect this technique?" In the case of a dc converter, 

more robust hardware can be used, filters can reduce electromagnetic interference, and error 

detection in communication can limit the use of corrupted data. This is not an exhaustive list of 

points and modes of failures or security measures. To better organize and address these questions, 

product lifecycle management and design dependency can be used (and will be discussed in greater 

depth in the next section). Product lifecycle management can be used to consider security of a 

device from specification all the way to end-of-life, and illustrates the security-by-design process. 

Design dependency can be used to build layers of security to protect an asset or the system as a 

whole, and illustrates the defense-in-depth method. A cyber-physical threat matrix is built on the 
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design dependencies listed and the implementation of security techniques to address the potential 

threats. 

The Cybersecure Power Router (CSPR) uses the security-by-design process and defense-in-

depth method to realize a cybersecure distributed energy resource. The CSPR operates as a solar 

inverter and battery energy storage system. It has hierarchical controls and network 

communication, allowing a utility operator to control the device, its operation, and its power flow. 

Finally, it employs a number of security features for a wide range of functionalities. These security 

features include AES-128 encryption for network communication, hardware-assisted monitoring 

for improved firmware integrity during runtime, hardware protection during nominal operation, 

and more. 

The Smart Green Power Node (SGPN) is a device developed at the University of Arkansas to 

manage energy resources at the grid edge, specifically in residential applications. The SGPN 

predicts and optimizes power flow of a solar inverter and battery energy storage system. 

Hierarchical controls and network communication are also included within the design of the 

SGPN. The system optimizes power flow of the energy resources through powerful predictive 

algorithms and weather data collection. The system is rated for 2 kW operation. 

The Unified Controller Board (UCB) project is a set of hardware, firmware, software, and 

instructional material also developed at the University of Arkansas. The devices within the UCB 

project include a DSP docking station; a complex programmable logic device (CPLD) PCB; buck 

and boost converter and inverter PCB; and several expansion boards. The Unified Controller 

Boards are designed around flexible controls and modular hardware. 

A real-world system of sophisticated, grid-tied power electronics is needed to show the 

practical demands and limits of security. The use of the Smart Green Power Node and the Unified 
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Controller Board devices as a prototype for the Cybersecure Power Router was used for such a 

real-world system. The SGPN is a distributed energy resource with many sophisticated assets. The 

2 kW power rating of the system provides an appreciable power flow for grid-connected 

applications. The UCB devices are modular, allowing for rapid configurability of hardware and 

controls. The UCB software and firmware is extensible, allowing for the integration of security 

features and changes in control hierarchy. The combination of these two systems provides the 

necessary power flows, complexity, and direct results necessary for this cyber-security 

investigation. 

The present work shows the security-by-design process and defense-in-depth method for a 

grid-connected, distributed energy resource prototype. The security features chosen are developed 

and tested within a grid-connected power electronics context. Security features to protect firmware 

integrity at runtime are specifically investigated. The ability for the CSPR prototype to quantify 

firmware integrity degradation and respond to firmware integrity failure is shown. This ability is 

provided by the CSPR prototype monitoring and maintaining liveness of controllers through 

control multiplexing. Future research into greater flexibility and resiliency of controls is discussed. 

Finally, the necessary work to migrate research from the Smart Green Power Node and the 

Cybersecure Power Router into a pre-production prototype is presented. 
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Chapter 2 - Technical Background 

 

Security-by-design ensures greater security of a device by considering both the processes 

behind the development and life of a device, and the device itself. Product lifecycle management 

[5] serves as the framework for security-by design. This process stands over and above the IEEE 

standard for system, software, and hardware verification and validation [6]. 

TABLE I: Security-by-Design cycles 

Lifecycle Stage Security Feature(s) 

Hardware 

Specification IEEE Standards (e.g., 1547) 

Simulation  Accurate Modeling, Thermal Co-Simulation 

Design  IEEE Standards (e.g., 3001, 3003), Thermal Co-Design 

Verification  Electrical Rule Checking, Design Review, Hardware-In-the-Loop 

Firmware 

Development Restricted Access, Version Control, Standard Protocols, Standard Libraries 

Distribution  Restricted Access, Message Digest, Server Authentication 

Installation  Message Digest, Error Detection and Correction 

Run-Time  Side Channel Analysis, Challenge-Response Authentication 

Manufacture 

Fabrication  Trusted Supplier, ISO 9001 Certification, Hardware Authentication 

Quality Control Burn-In Testing, Fuzz Testing, Standard Metrics 

Design Iteration Restricted Source Code and Design Files 

Operation 

Installation  Certified Installers, Standard Connections, Lockout-Tagout 

Use   Key Management, Challenge-Response Authentication, Behavior Analysis 

Aging  Hardware Health Diagnostics 

Attack  User Authentication, Command Whitelisting, Asset Segmentation 

Failure  Fails Safe, Hardware Protection, Resilient Communication 

Recovery  Startup Sequence, Sanity Check, Firmware Integrity Check 

Maintenance 

Update  Patching, Maintained Uptime 

Replacement  Modular Design 

Upgrade  Modular Design, Reconfigurable Architecture, Flexible Controls 

End of Life 

Removal  Lockout-Tagout 

Documentation Failure Modes, Effects, and Diagnostic Analysis (FMEDA) 

Reiteration  Restricted Access to Source Code, Specification and Quality Control 

Disposal  Certified eWaste Recycling and Disposal 
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Any device, a distributed energy resource in this case, has a lifecycle. It is specified, designed, 

fabricated, tested, installed, operated, uninstalled, and disposed of during that lifecycle. Each step 

in the lifecycle of a device serves some purpose. For instance, hardware specification creates the 

exhaustive list of design requirements for a device. The result of the hardware specification step is 

a list. How could security be applied to this step? The use of standards (in this case, IEEE 1547 

for the design of utility electric power systems and distributed energy resources) provides greater 

assurance that the list created in the hardware specification step is exhaustive. Stated another way, 

the IEEE standards secures the intended result of hardware specification. The product lifecycle 

security approach also requires a designer to consider the full lifecycle of a device, not just the 

useful life. In the context of the electric grid, people install and remove distributed energy 

resources. By considering the lifecycle of a device, the safe installation and removal of a device is 

considered and included in the hardware and firmware design stages. For instance, a 

Lockout/Tagout technique can be designed for a solar inverter to keep both people and hardware 

safe during installation and removal [7]. 

Defense-in-depth provides layered security for assets of a device [8]. Returning to the "Design 

Inventory" from the introductory section, each technique in the design inventory process has 

dependencies. These dependencies arise from the techniques chosen to realize a device. An 

inverter depends on various switches, gate drivers, feedback signal chains, capacitors, other 

hardware components, and firmware to operate. Examples of these dependencies are listed in Table 

II, along with possible methods of security. 

TABLE II: Defense-in-Depth Dependencies 

Design Category  Security Feature 

Component Health  Hardware Authentication, Hardware Protections, Safety Factor 

Feedback Signal Chain Galvanic Isolation, Buffered I/O 

Temperature Control  Thermal Management, Current Limitation 

Current Control  Controller Current Limiting, Body Diodes, Fuses 
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Voltage Control  Controller Voltage Limiting 

Firmware Execution  Hardware-Assisted Monitoring, Heartbeat, Hot Swapping 

Network Communication AES-128, MD5, Whitelisting 

 

These dependencies are not spread across the lifecycle of a device, as illustrated in the security-

by-design process. Rather, these dependencies are logical constituents of the design of a device, 

and are typically part of a complex, cyber-physical set of interdependencies [9]. For instance, how 

might one protect the current flow into the batteries from potentially damaging commands? Secure 

network communication [10] protects the battery energy storage system from noise and remote 

adversaries. If the secure network communication is defeated, current controls prevent harmful 

behavior of the device [11]. If the current controls are defeated, various design features (like 

galvanic isolation, buffered I/O, fuses, and over-design) allow the device to withstand or limit the 

harmful behavior [12]. In this case, the energy storage assets of the BESS are protected by layers 

of security. 

Security features have a range of costs and performance gains [13]. Any change to the design 

of a system, including those to increase security, comes at a cost. This cost may include the price 

of more sophisticated integrated circuits, hardware to support increased power consumption, time 

to develop new firmware, or expertise to identify and execute security strategies. Improvements to 

security may come at a low cost. An existing system may extensively benefit from simple firmware 

management [14]. Such management, including revision, could greatly increase system security 

without incurring costs from additional hardware and hardware development. Beyond firmware 

management, an example of a firmware security feature is a checksum for network communication 

[15]. The inclusion of this security feature is lightweight: incurring a small increase in firmware 

size, computational load, and communication overhead. Checksums can prevent electromagnetic 

noise from corrupting communication, and weakly protect against a malicious actor tampering 
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with communicated data. A checksum is an instance of a common security feature implemented 

in firmware, but is far from the full benefits of improved firmware management and security. 
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Fig. 2: Cost/Performance regions (left) for various security solutions (right) 

Not all development leads to increased security. Consider the use of encrypted communication for 

a controller using a digital signal processor. The controller is responsible for the power flow 

through a solar inverter. Processing resources are required to encrypt and decrypt communication 

with the controller. The increased demands on the DSP during communication may cause overrun 

conditions [16] and degrade power processing. The system has more confidential communication, 

but at the cost of lower integrity of power processing. The general effect may be a less secure 

system, despite the addition of a security feature and the costs of development. 

The cost/performance analysis for many security features used in the Cybersecure Power 

Router are readily available. The Advanced Encryption Standard 128-bit key (AES-128) is well 

defined [17],[18] and researched in various applications [19], [20], [21]. AES-128 is used in 

communication between hardware modules, and between outside controllers and the CSPR. The 

MD5 message-digest algorithm is also well researched [22], [23], [24]. The MD5 algorithm is used 
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to protect the integrity of firmware as it passes from an outside controller, to the Cybersecure 

Power Router, and into any on-board controller. Hardware protections against overcurrent [25] 

and shoot-through conditions [26] are also well understood. Overcurrent and shoot-through 

conditions are used in both controller firmware and within the hardware logic of the Digital Signal 

Processors. These techniques are robust and well researched. Security techniques are still needed 

for other essential functions of any grid-connected power electronics. 

Firmware security at runtime for power electronics is less researched and widely implemented 

[27]. Grid-connected power electronics typically use microprocessors, microcontrollers, or 

processors to run firmware. Microprocessors and microcontrollers often use watchdog timers to 

reset the device in the case firmware execution faults. If the controls of the power electronics run 

on the reset device, the power electronics will stop. The use of a watchdog timer may, therefore, 

be inappropriate for grid-connected power electronics, where downtime is to be minimized or 

eliminated [28]. Processors can provide more sophisticated techniques than microprocessors and 

microcontrollers to prevent, detect, identify, and recover from firmware execution faults, namely 

through using an embedded operating system [29], [30]. The choice of processors in grid-

connected power electronics may also be inappropriate, given their sophistication and cost. The 

purpose of the Cybersecure Power Router is to develop and show security design techniques, 

including the security of grid-connected power electronics at runtime. Is there an option between 

a simple watchdog timer and a sophisticated embedded operating system? If so, how can the cost 

and performance of that runtime security be evaluated? 

The two considered threats to CSPR firmware integrity during runtime are task overrun and 

firmware patching. Other threats are relevant [31], but fall outside the present scope of grid-

connected power electronics. A task overrun condition occurs if a controller is not able to finish 



 

10 

 

the various tasks before another set of tasks are started [32]. The result is a degradation in the 

power flow of the power electronics, as shown later. Unlike task overrun, firmware patching is 

more likely to halt power flow altogether. The patching process requires the rebooting of the DSP 

running a controller, halting the controller during the process. The power flow through the 

electronics is, therefore, also halted as the DSP reboots. 

Task overrun can be described as a controller's loss of liveness. Formally, liveness can be 

expressed as 

 ∀𝛼: 𝛼𝜖𝑆∗: (∃𝛽: 𝛽𝜖𝑆𝜔: 𝛼𝛽╞𝑃), (1) 

where α and β are a sequence of states, 𝑆∗ is a set of finite sequence states, 𝑆𝜔 is a set of infinite 

sequence states, and P is a property (executability, in this case) [33]. Formally, this definition reads 

as there exists a state within an infinite set of states that satisfies a given property (executable), 

such that it does so given any arbitrarily sized sequence of compossible states. Or, simply, liveness 

means a task will be executed, even if there are many more tasks for a controller to complete. The 

tasks to be executed are part of interrupt service routines on the DSP, and in the present work are 

initiated every switching period. Each interrupt request (IRQ) initiating an interrupt service routine 

(ISR) is assigned a priority. The DSP resources handling an ISR are a critical section to other ISRs, 

especially those at the same priority. A critical section is a set of resources accessed or used by 

multiple processes [34]. For the present architecture, an IRQ can cause the interruption of an ISR 

in progress. This is also true if the ISR in progress and raised IRQ have the same priority. Here is 

an example from the Cybersecure Power Router. Assume the switching frequency is set at 30 kHz. 

Every 33.33 μs, a number of interrupt requests will be raised within the DSP. These IRQs signal 

the DSP to read various voltages and currents, perform mathematical operations, look up values, 

and set the pulse width modulation of several switches. Let's assume the DSP requires 80 μs to 
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handle all of these tasks. While processing the last round of ISRs, new ISRs are created. The 

previous ISRs are interrupted and started again by the new IRQs. The tasks never complete, given 

their interruption and restart during processing. Theoretically, the result is the controller losing 

liveness. 

A simple consideration of timing can maintain liveness. The controller has a maximum 

duration of time to complete its tasks: 

 𝑇𝑑,𝑚𝑎𝑥 =
1

𝑓𝑠
, (2) 

where 𝑓𝑠 is the switching frequency. In the example above, the 30 kHz switching frequency 

provides a maximum duration of 33.33 μs for the controller to complete its tasks. This is the 

theoretical maximum amount of time the controller can take to process the tasks of one switching 

period before being interrupted by the next switching period. The time the controller requires to 

complete the switching period tasks is not dependent on the switching frequency, however. The 

time required dependents more on the firmware, speed of the DSP, and competing interrupts (such 

as those from communication). This required time can be measured. This duration of time can 

vary, even if the firmware and processor remain the same. A mean time for the completion of tasks 

can be empirically found, and used to quantify available processing resources. The expected 

available resources can be articulated as 

 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 (%) = (1 − (𝑇𝑑,𝑚𝑒𝑎𝑛 ∗ 𝑓𝑠)) ∗ 100%, (3) 

where 𝑇𝑑,𝑚𝑒𝑎𝑛 is the mean of the duration of time the controller requires to complete switching 

period tasks, and 𝑓𝑠 is the switching frequency. As this percentage approaches 0%, tasks are more 

likely to be interrupted, and liveness of the controller is more likely to be compromised. 

The Cybersecure Power Router uses a signal sensitive to controller liveness and hardware-

assisted monitoring to protect controller liveness. The next section details the design of the 
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Cybersecure Power Router, especially the security features protecting controller liveness. Later 

sections provide the results and examination of the operation and performance of those security 

designs.  
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Chapter 3 - Cybersecure Power Router 

3.1 System Description 

 

The Cybersecure Power Router is a set of switch-mode power electronics, controllers, and 

processors. The majority of controller devices used are from the Unified Controller Board project, 

developed by Chris Farnell at the University of Arkansas. These devices include the Power 

Electronics Evaluation Unified Controller Board (PE Eval UCB), Complex Programmable Logic 

Device Unified Controller Board (CPLD UCB), and the Digital Signal Processor Unified 

Controller Board (DSP UCB).  

 

Fig. 3. Cybersecure Power Router prototype 

The Digital Signal Processor Unified Controller Board uses many design features of the Texas 

Instruments' TMDSDOCK28335 Digital Signal Processor docking station. The power electronics 

of the PE Eval UCB are a buck converter, boost converter, and an inverter/rectifier. A testbed 

provides dc and ac power flow to provide safe and reliable conditions for testing. Two Digital 
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Signal Processors are used in the prototype. Each DSP is capable of controlling the power 

electronics. A Complex Programmable Logic Device UCB provides many security features, and 

multiplexes the control signals of the DSPs. The Hardware Authentication Module is used to 

authenticate the power electronics and enable power flow. The Signal Splitter routes analog signals 

to both DSPs from the power electronics. Finally, a BeagleBone Black provides high-level control 

and Ethernet communication to the CPLD UCB.  
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Fig. 4. Block diagram (left) and figure (right) of Cybersecure Power Router prototype 

The CSPR prototype can be reconfigured. The modular design allows flexibility in both hardware 

and control. A more simplified configuration of the prototype could use one or two DSPs on the 

CPLD UCB, as shown below. 
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Fig. 5. Minimal configuration of Cybersecure Power Router prototype 

The following table lists the security threats and mitigations chosen for the Cybersecure Power 

Router. 

TABLE III: Cyber-Physical Attack Matrix 

Asset    Threat    Mitigation 

Communication 

Confidentiality System Surveillance [35]  AES-128 Encryption [36] 

Integrity  Corrupted Firmware [37]  Error Detection 

Availability  Unauthorized User Access [38] HW-Asst. Monitor, Key Mgmt. 

Firmware 

Distribution  Tampered Firmware [39]  Encryption, Error-Detection 

Installation  Reduced Integrity   MD5 Hash Check 

Loading  System Downtime [40]  Control Multiplexing 

Runtime  Operation Outside Parameters [41] Heartbeat, HW-Asst. Monitor 

Hardware   

Authenticity  Counterfeit Hardware [42]  Hardware Authentication 

Power Processing 

Quality  Harmonic Distortion [43]  Robust Hardware/Controller Design 

Availability  System Downtime [44]  Control Multiplexing 

Response  Non-Recoverable State [45]  Robust Controller Design 

___ Chris Farnell’s contributions to the Cybersecure Power Router project 

The asset inventory, threats, and mitigations are not exhaustive. The above table shows the current 

work done and where the security is implemented. 
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3.2 Power Electronics 

 

The power electronics of the Power Electronics Evaluation Unified Controller Board consist 

of switch-mode power supplies, signal chains for controls and feedback, isolated power supplies, 

voltage and current sensors, filters, ports, ancillary circuits, and human-machine interfaces. 

Control signals routed from the Complex Programmable Logic Device enter the Power Electronics 

Evaluation Unified Controller Board through a 40 pin insulation-displacement connector. The 

control signals then pass through 120 Ω resistors to trigger HCPL-3120-300E optocouplers. The 

optocouplers then drive the STGP15H60DF insulated-gate bipolar transistors that act as switches. 

An isolated, flyback regulator using the LT3748EMS integrated circuit energizes the optocouplers 

to drive switching. The switch-mode power supplies of the board include an asynchronous buck 

converter, an asynchronous boost converter, and a three-phase inverter/rectifier. The buck 

converter provides current sensing before and after the 560μH, 100μF LC filter; and output voltage 

sensing. The buck converter is rated for an input voltage of 9 to 50 Vdc, and an output voltage of 

0 to 50 Vdc. The voltage ratings can be increased if higher voltage rated capacitors are used on the 

input and output of the buck converter. 

 
Fig. 6. Asynchronous buck converter schematic of Power Electronics Evaluation Board of the 

UCB project 
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The asynchronous boost converter provides current sensing at the input and output; and output 

voltage sensing. The boost converter is rated for an input voltage of 9 to 50 Vdc, and an output 

voltage of 9 to 50 Vdc. The voltage ratings can be increased if higher voltage rated capacitors are 

used on the input and output of the boost converter. 

 
Fig. 7. Asynchronous boost converter schematic of Power Electronics Evaluation Board of the 

UCB project 

The three-phase inverter/rectifier can operate bi-directionally. When acting as an inverter, it can 

output a 1 Hz to +1000 Hz sinusoid from 0 to 50 Vac. The inverter is rated for 0 to 50 Vdc input. 

Current sensing is available on all three phases after the inductive filtering, and after capacitive 

filtering on phase A. Voltage sensing is available on the output of all three phases. 

 
Fig. 8. 3-Phase inverter filter and current sensing schematic of Power Electronics Evaluation 

Board of the UCB project 

Three switching legs using STGP15H60DF insulated-gate bipolar transistors are the switching 

stage for the inverter/rectifier. As stated earlier, isolated power is provided to the gate drivers. The 
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low switches share the same isolated power rail. Jumper 1 (JP1) can be used to connect or 

disconnect the inverter/rectifier with the dc input used on the rest of the Power Electronics 

Evaluation board. Current and voltage sensing is provided between the dc bus and the capacitive 

filtering of the inverter/rectifier. 

 
Fig. 9. 3-Phase inverter/rectifier switching stage schematic of Power Electronics Evaluation 

Board of UCB project 

The PCB layout of the Power Electronics Evaluation board is shown below. Considerations were 

made for mixed analog/digital signals within the board. The isolated dc/dc power supplies and 

ACPL-C87B-000E optical isolation amplifiers provide isolation between analog signals in the 

mixed environment and the feedback signals supplied to the DSPs and CPLD. 
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Fig. 10. Power Electronics Evaluation Unified Controller Board, with Signal Splitter and 

Hardware Authentication Module, used in Cybersecure Power Router prototype 

The total system provides buffered, isolated control and feedback signal chains; and common types 

of switch-mode power conversion capable of various power flows, with switching frequencies 

exceeding 100 kHz. 

 

3.3 Digital Signal Processor Board 

 

Two Digital Signal Processor Unified Controller Boards are used in the Cybersecure Power 

Router prototype. The modular designs of the Unified Controller Board allow two DSPs to slot 

into the Complex Programmable Logic Device Unified Controller Board. However, having two, 

standalone DSP boards provide advantages to the testing of the prototype. One advantage is greater 

accessibility of tools and probes to the I/O of the boards. Another advantage is more direct access 

to the serial communication ports of the DSPs. A third advantage to using the standalone DSP 
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UCBs is the ability to apply power independent of the CPLD UCB. This allows DSPs to have 

controlled power disruptions while still allowing the rest of the CSPR prototype to continue 

operation. Serial communication with the DSPs in the DSP UCB is provided through a Future 

Technology Devices International (FTDI) Universal Serial Bus (USB) to Universal Asynchronous 

Receiver/Transmitter (UART) bridge. This USB to UART bridge is the FT2232D FTDI chip. The 

receive and transmit lines between the FTDI chip and the DSP are also accessible from the General 

Purpose Input/Output (GPIO)-28 and GPIO-29 pins. This configuration allows USB connectivity 

with a computer and with a UART device. For the Cybersecure Power Router prototype, the USB 

connectivity is used to control the DSP from Code Composer Studio and a LabVIEW script; and 

the UART connectivity is used to control the DSP from the CPLD UCB. 

 
Fig. 11. USB to UART schematic of Digital Signal Processor board of the UCB project 

The analog and digital I/O of the DSP within the DSP UCB is readily available to various tools 

and probes. A connection not pictured is the reset manually added to the TPS3828 𝑅𝐸𝑆𝐸𝑇̅̅ ̅̅ ̅̅ ̅̅ ̅ pin on 
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U6 of the F28335 DSP controller card. This reset connection cycles power to the DSP during 

firmware patching. 

 
Fig. 12. DIMM pinout of Digital Signal Processor board of the UCB project 

Two, 40-pin insulation-displacement connectors (IDCs) are used to bus analog and digital signals 

between the other Unified Controller Boards. The 28 digital signals use GPIO-00 through GPIO-

27. The eight analog feedback signals use ADC-A0 through ADC-A7 for IDC A, and ADC-B0 

through ADC-B7 for IDC B. Two 5 Vdc and Ground signals are provided within the 40-pin IDC. 
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Fig. 13. Majority of analog and digital I/O used by Digital Signal Processor board of UCB 

project 

The Digital Signal Processor Unified Controller Board differs from the Texas Instruments C2000 

DAF docking station source design. Mechanical holes are included to allow the use of standoffs. 

An isolated power supply provides steady power and noise rejection. The isolated power also 

overcomes ground loops that may be very problematic in noisy environments with long 

communication cables (such as those used in this prototype). 

 

3.4 Complex Programmable Logic Device Board 

 

The Complex Programmable Logic Device Unified Controller Board is the core of the 

Cybersecure Power Router. It routes digital control and communication signals between other 

Unified Controller Boards. It also instantiates the VHDL modules that provide functionality 

essential to the CSPR project. Four IDCs are provided to allow up to four converters or controllers 

to interface with each other. Presently, the IDCs allow converters or controllers to interface with 

one another and the CPLD. Each IDC provides 28 digital, GPIO channels; eight analog channels 

(typically as part of a feedback signal chain); two 5 Vdc output pins; and two Ground pins. High 
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frequency filtering is provided between the 5 Vdc power of the CPLD UCB and the 5 Vdc outputs 

of the IDCs. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 14. IDCs in Complex Programmable Logic Device Unified Controller Board 

The Complex Programmable Logic Device is Lattice's LCMXO2-7000HC. The IC is packaged 

as a TQFP with 144 pins. The XO2-7000 has the greatest resources of the MachXO2 family [46]. 
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TABLE IV: MachXO2 Family Features 

 
 

The CPLDs of the MachXO2 family also provide a number of internal clock frequencies for use, 

in addition to the phase lock loops provided. 

TABLE V: Available MCLK frequencies 

 
 

The extensive I/O of the MachXO2-7000HC is predominantly utilized by the GPIO of IDC A, B, 

C, and D; connections with the slots designed for DSP cards; serial peripheral interface with an 

analog to digital converter; Flash programmer/JTAG interface; button inputs; and an LED display.  

IDC A GPIO, dual in-line package (DIP) switches, push buttons, and four wire communication 

with the Lattice Flash Programmer connect to Bank 0 of the MachXO2-7000HC. Dual In-Line 

Memory Module (DIMM) slots connect DSPs cards to the MachXO2-7000HC. The connections 

between the DIMM-B slot and the MachXO2-7000HC are through Bank 1. The connections 

between the DIMM-C slot and the MachXO2-7000HC are through Bank 2. IDC C also connects 

with the MachXO2-7000HC through Bank 2. LED1 through LED8 interface with the MachXO2-
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7000HC through Bank 1. The XPort connections interface with MachXO2-7000HC with the 

Lantronix Ethernet adapter. This interface is not currently developed. Serial communication 

interface (SCI) receive and transmit port are connected to Bank 3. The two, serial peripheral 

interface (SPI) analog to digital converters (ADCs) are also connected to Bank 3. The serial 

communication with the two FTDI chips (one for the DSPs, the other for the CPLD) interface at 

Bank 3. Bank 4 of the MachXO2-7000HC provides an external clock and reset signal. Finally, 

Bank 5 provides connections to the IDC D port. 

 

 
Fig. 15. PCB layout of Complex Programmable Logic Device board of UCB project 

The components for the Complex Programmable Logic Device Unified Controller Board were 

reflowed using the Sikama 5/C reflow furnace in the Assembly Laboratory in the High Density 

Electronics Center at the University of Arkansas. A tin, silver, and copper alloy (SAC305) solder 

paste was applied using a stencil and squeegee. No solder paste was applied for the MachXO2-

7000HC. A thin layer of no clean flux was applied to the pads of the TQFP footprint on the 



 

26 

 

Complex Programmable Logic Device Unified Controller Board PCB. After the application of 

solder paste, flux, and the population of surface mount components, the boards were flowed in the 

Sikama 5/C reflow furnace. 

 
Fig. 16. Fabricated Complex Programmable Logic Device board of UCB project used in 

Cybersecure Power Router prototype 

After inspection and debugging, the through-hole components were populated. Another round of 

visual, manual, and electrical inspection tested for shorts, unconnected legs, high integrity solder 

joints, and correct part orientation. Finally, a debug utility was flashed onto the CPLD and tested 

the I/O. 

 

3.5 Signal Splitter 

 

Two DSPs are used in the Cybersecure Power Router prototype. Two DSP Unified Controller 

Boards were used to interface the DSPs to the rest of the prototype. To route the analog feedback 

signals, eight Y connections needed to be created from the output of the Power Electronics 

Evaluation Unified Controller Board to the ADC input of the two DSP UCBs. A simple printed 
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circuit board was designed and fabricated to provide this split analog feedback signal. No buffering 

is provided on the Signal Splitter on account of existing buffered output from the PE Eval UCB. 

 
Fig. 17. Complete schematic of Signal Splitter 

Test points are provided for each analog signal. Two ground test points are provided to reduce the 

size of the ground loop of a probe. Female/Female jumper wires connect the analog output of the 

Signal Splitter PCB to the ADC inputs of the two DSP UCBs. 

 

3.6 Hardware Authentication Module 

 

An embedded, 1 kilobyte password is used to authenticate the power electronics of the 

Cybersecure Power Router. This password is continually checked by the hardware-assisted 

monitor instantiated in the CPLD UCB. The password is stored in both the Microchip 93LC46BT-

I/OT EEPROM and within the memory of the hardware-assisted monitor. 
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Fig. 18. Complete schematic of Hardware Authentication Module 

The Hardware Authentication Module and the CPLD UCB communicate with a four-wire 

protocol, through the IDC D port. A Texas Instruments SN74LVC2G0 is included to drive two 

indicator LEDs. The pins for power, ground, the four-wire protocol, and the two indicator LEDs 

are routed through a 10-pin header. 

 
Fig. 19. Hardware Authentication Module used in Cybersecure Power Router prototype 
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This assembly plugs into the J7 header on the Power Electronics Evaluation Unified Controller 

Board. Test points are included for the four-wire protocol and a ground to minimize the ground 

loop during oscilloscope data collection. 

 

3.7 BeagleBone Black 

 

 

Texas Instruments' BeagleBone Black provides an embedded Linux environment for 

sophisticated, high-level operations. 

 

Fig. 20. BeagleBone Black 

The BeagleBone Black uses a 1 GHz ARM Cortex-A8 processor, and runs Debian Linux. The 

CPLD UCB and the BeagleBone Black communicate serially. The embedded operating system 

provides a platform for Python scripts and powerful utilities for automation, analysis, and 

debugging. 
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3.8 Test Bed 

 

 

A testbed provides controlled ac and dc power flow to and from the Cybersecure Power Router. 

~

Testbed

~
= ~

=

~
=

3ϕ 

ac

dc

 
Fig. 21. Block diagram of testbed used in Cybersecure Power Router project 

The testbed functions like a microgrid, allowing power assets to be added in a variety of ways 

while maintaining controlled power flow and a utility frequency (independent of the utility 

frequency of the electrical grid). The ac power is three phase, and galvanically isolated through 

low frequency transformers. 

 

3.9 Power Flow 

 

The Cybersecure Power Router shows a security-by-design process and defense-in-depth 

methods for a Distributed Energy Resource (DER). The security-by-design process outlines both 

the assets and their dependencies to be secured. To create this inventory of assets and 

dependencies, a specific device or system must be chosen. Presently, a modular, grid-tied 
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inverter/rectifier distributed energy resource is chosen. The power assets of this DER include on-

site energy generation, energy storage, and bi-directional power flow with the grid. 

 
Fig. 22. Simplified block diagram of grid-connected power flow capabilities of UCB hardware 

and Cybersecure Power Router 

Other resources can be integrated within the system. The diagram shows a three-phase 

inverter/rectifier working in tandem with a photovoltaic panel and battery energy storage system. 

The PE Eval UCB includes an asynchronous buck and boost converter that may be used to interface 

dc energy resources, in addition to the three-phase inverter/rectifier provided. 

 

3.10 Data Flow 

 

A hardware-assisted monitor and other utilities are instantiated within the complex 

programmable logic device on the CPLD Unified Controller Board. The monitor and utilities are 

developed in the Lattice Diamond integrated development environment. The monitor and utilities 

are developed using the Very high speed integrated circuit Hardware Description Language 

(VHDL). The complete source code is included in Appendix B. Not included in the appendix are 
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the Intellectual Property (IP) cores used within Lattice Diamond, such as the phase-locked loop 

(PLL) or the digital memory. An oscillator is instantiated within the CPLD to provide an internal 

clock at 53.2 MHz. This clock is supplied to an internal phase-locked loop. A 53.2 (1 ∙ 𝑓𝑐𝑙𝑘), 24.93 

(1 2⁄  ∙ 𝑓𝑐𝑙𝑘), and 1.5 (1 32⁄  ∙ 𝑓𝑐𝑙𝑘) MHz clock signal is derived from the original 53.2 MHz clock 

signal from the oscillator. The 53.2 MHz clock is used for the hardware-assisted monitor and other 

high speed applications. The 24.93 MHz clock is used for serial communication and the data bus. 

The 1.5 MHz clock is used for the four-wire communication with the Hardware Authentication 

Module. 

STDBY OSC, 53.2 MHz

Oscillator

SEDSTDBY

ClkI ClkOP

PLL

ClkOS

ClkOS2

Lock

CLK53_2M

CLK24_93M

CLK1_5M

PLL_LOCK
 

Fig. 23. Block diagram of clock generation within Complex Programmable Logic Device of the 

Cybersecure Power Router 

A data bus is instantiated to allow data flow between various modules. The bus uses 16-bit 

addresses and 16-bit data. Prioritized access to the bus is given to modules. Currently, ten modules 

can be prioritized according to access privileges. In addition to controlling the data bus, the Bus 

Master contains Randomly Accessible Memory (RAM). This memory is used as registers for 

various controls and functions. A separate memory allocation is used for the booting partition of 

the digital signal processors. 
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Fig. 24. Block diagram of data bus controller within Complex Programmable Logic Device of 

the Cybersecure Power Router 

The serial communication with the modules instantiated in the CPLD uses a 9600 baud rate, and 

connects through Bank 3 of the MachXO2-7000HC CPLD. The current serial communication is 

designed for fixed packet lengths. 
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Fig. 25 .Block diagram of serial interface within Complex Programmable Logic Device of the 

Cybersecure Power Router 

 

3.11 Control Multiplexing 

 

A defense-in-depth approach to controller security is explored in the Cybersecure Power 

Router. Control multiplexing strengthens the availability and integrity of the hardware controller, 

and the entire system by extension. The concept of multiplexing is common in telecommunication 
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[47], computer networks [48], and various signal conditioning and sampling [49] contexts. The 

concept is extended to an entire bus of control signals for the Cybersecure Power Router. The 

controllers running on the DSPs toggle a bit on GPIO-24 every time a switching cycle is 

completed. The firmware snippet is provided below. 

 
Fig. 26. Firmware code snippet to generate heartbeat from Digital Signal Processors 

The toggled GPIO-24 pin creates a clock signal visible to external devices. 

 
Fig. 27. Heartbeats of Controllers 1 and 2 while running identical firmware 

This clock signal is the heartbeat of the controller, and is used by the Hardware Assisted Monitor 

to assess the liveness of the controller. Presently, if the heartbeat of a controller beats more often 

than 75 μs, it is considered to maintain liveness. If the heartbeat takes longer than the given 75 μs 

to toggle, the Hardware Assisted Monitor considers the controller to have lost liveness. The period 
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of the heartbeat is a function of the controller’s clock rate and execution cycles of the firmware. A 

slower processor or a longer execution cycle would require a longer period between heartbeats.  

The security features instantiated in the CPLD communicates with the Hardware 

Authentication Module on the UCB PE Eval board to authenticate the power electronic hardware. 

The password stored in the EEPROM of the UCB Hardware Authentication Module is checked 

against the password stored in the memory of the CPLD Hardware Authentication Module. 
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Fig. 28. Block diagram of control multiplexing using Digital Signal Processor signals and 

Hardware Authentication Module within the Complex Programmable Logic Device of the 

Cybersecure Power Router 

If the two passwords match, then the "hardware is authorized" (HW_AUTH) signal goes HIGH 

(TRUE). If there is a mismatch between the symmetric keys, then the HW_AUTH signal goes 

LOW (FALSE). This mismatch will occur when the key stored in the power electronics (i.e., the 

Hardware Authentication Module) differs from the key stored in the controller (i.e., the Hardware 

Assisted Monitor).  

The Hardware Assisted Monitor uses the liveness of the controllers and the authentication of 

the power electronics to decide the routing of control signals. When the hardware is authenticated, 
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control signals from Controller 1 or Controller 2 are routed to the power electronics. The Hardware 

Assisted Monitor assigns priority to Controllers 1 over Controller 2 if both controllers have 

liveness. If only one controller has liveness, that controller's control signals are routed to the power 

electronics. If no controller has liveness, the hardware is held in a lockout state. User inputs from 

buttons 1 through 4 can override this logic to manually set the routing of control signals. 

 

3.12 Firmware and Boot Management 

 

The control multiplexing behavior of the Hardware Assisted Monitor prevents downtime 

during firmware updates. The firmware is loaded into memory instantiated in the CPLD UCB 

allocated for boot loading. The firmware is loaded through encrypted serial communication and 

the internal data bus. 
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Fig. 29. Block diagram of hot patching process 

When a command is given, the designated DSP is power cycled by the CPLD. The power cycled 

DSP boots from the allocated memory hosting the new firmware. The DSP boots using this new 

firmware. While the DSP is booting, hardware control is passed to the second DSP. The hardware 
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continues operating while the first DSP boots with the new firmware. When the first DSP resumes 

operation and provides a heartbeat with a period less than 75 μs, it is either passed control of the 

hardware, or remains on standby. The above block diagram illustrates this process for Controller 

1 being updated. A similar process is used for updating the firmware of Controller 2. As of the 

time of this writing, this uptime during update process is being developed. 

Hot patching refers to modifying currently used data in system memory. Hot patching, strictly 

speaking, refers to a process that only applies to software. The present process is similar, but works 

at the firmware and hardware level. Here, the process modifies currently used data flow (like 

control signals) in a running system. The result of both techniques is the same: a running system 

while patches, updates, and other fixes are applied. 

 

3.13 Hardware Authentication 

 

Authentication of the Power Electronics Evaluation Unified Controller Board requires the 

Hardware Authentication Module PCB, the PE Eval UCB, and the CPLD UCB. The process begins 

when power is applied to the PE Eval UCB. The on-board power is used to energize the Hardware 

Authentication Module PCB. The IDC D port is used to connect the PE Eval UCB and the CPLD 

UCB. In the CSPR prototype, the IDC D ribbon cable plugs into the Signal Splitter board, which 

plugs into the PE Eval UCB.  
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Fig. 30. Diagram of CSPR components involved in hardware authentication 

The CPLD UCB interfaces with the Hardware Authentication Module PCB through four 

connections in the IDC D connection. These four connections provide the chip select (CS), clock 

(CLK), master in slave out (MISO), and master out slave in (MOSI) signals between the EEPROM 

of the Hardware Authentication Module on the PE Eval UCB and the VHDL Hardware 

Authentication Module instantiated in the CPLD UCB. The clock signal provided is 1.5 MHz. 

Only the read command for the EEPROM is used in the authentication process. To read a specific 

memory address from the 93LC46BT-I/OT EEPROM [50], the following steps are required. 
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Fig. 31. Excerpt from EEPROM datasheet, with erroneous information noted 

First, the chip select must go high and remain high for the duration of the instruction. Sent data on 

the MOSI signal is read at the falling edge of the clock. The starting bit of "1" is given on the 

MOSI signal. The operational code for read, "10", is given over the next two clock cycles. A 6-bit 

address is then supplied. A hold cycle, not present in the datasheet, but present in the captured 

waveform below, is provided to transition between the final bit of the address (read on the falling 

edge of the clock) and the first data out (sent on the rising edge of the clock). 

SB OP1 OP2 A5 A4 A3 A2 A1 A0 HOLD D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 STB STB

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

State

CLK

CS

MISO

MOSI

 

Fig. 32: Hardware Authentication Module communication beside oscilloscope capture 

A 16-bit value is read from each address. After transmission, MOSI and CS are set low. The system 

is now in standby, and ready for another instruction cycle. The read values are parts of a 1 kilobit 
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password. There are 64 values in total. These values are flashed onto the EEPROM with an 

Arduino running the "EEPROM_Write_PASSWORD" program (source code provided in 

Appendix B). A matching password is included in the VHDL Hardware Authentication Module 

instantiated in the CPLD UCB. These values are polled by the Hardware Authentication Module 

in the CPLD UCB approximately five times a second. While the passwords match, a HW_AUTH 

("hardware is authorized") signal is provided to the Hardware Assisted Monitor to allow control 

signals to pass to the hardware. The result is that the CSPR hardware will only run if the Hardware 

Authentication Module is operational. 

 

3.14 Submodule Encrypted Communication 

 

Communication between components of the CSPR prototype is designed to be encrypted. This 

encrypted communication is the serial communication between the two digital signal processors 

and the complex programmable logic device, and serial communication between the BeagleBone 

Black and the complex programmable logic device.  

UART_RX FIFO
AES

DECRYPTION
FIFO

UART_TX FIFO
AES

ENCRYPTION
FIFO

KEY
FEEDER

BUS

 

Fig. 33. Block diagram of encrypted serial communication within Complex Programmable Logic 

Device used in the Cybersecure Power Router 
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The Advanced Encryption Standard 128-bit (AES-128) is used for this encryption. A key feeder 

supplies the 128-bit key to the two AES-128 instantiations used to encrypt and decrypt serial 

communication. This allows a rolling key to be used in later development of the CSPR project. 

Additionally, different keys can be used for each communication port, and have separate keys for 

receiving and transmitting serial information. First In, First Out (FIFO) buffers are used to queue 

data until the appropriate block length is reached for encryption or decryption. Serial 

communication is made available to the data bus instantiated within the CPLD UCB. Presently, 

superficial, bidirectional, encrypted exchanges are available between the CSPR and the test bed. 

This sets the groundwork for an encrypted, MD5 secured communication pipeline for later 

development of the CSPR project.  

 

3.15 Hardware Protections 

 

Simple hardware protections are available for instantiation in the Cybersecure Power Router 

prototype. These hardware protections prevent shoot-through faults in the switching legs of the PE 

Eval UCB. These faults result when the control signals of both the high and low switch positions 

are set to HIGH. This creates a direct connection between the rails of the dc bus of the PE Eval 

UCB. The digital signal processors used in the CSPR prototype have shoot-through protections 

built into the PWM modules that generate the control signals of the switching legs. These built in 

protections can be reinforced by the Hardware Assisted Monitor of the CPLD UCB. The logic of 

the shoot-through protection is to allow only one switching position to be ON at a time, and both 

to be OFF in all other cases. 
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Fig. 34. Shoot-Through hardware protection 

A delay or jitter of this protection on the order of 18.80 μs could be introduced by the sampling 

resolution of the CPLD UCB's Hardware Assisted Monitor. The resolution can be found with the 

following simple equation:  

Given the 52.3 MHz clock supplied to the Hardware Assisted Monitor, the resolution is limited to: 

The resolution may be increased with a faster clock, up to the limitation of the hardware. CPLD 

cost, power demands, parasitic capacitance from layout, and EMI are all likely to limit the clock 

frequency at which the Hardware Assisted Monitor operates. 

 

3.16 Display 

 

A bank of LEDs are used to display various system information of the CPLD UCB. 

PWM HIGH

PWM LOW

PWM HIGH

PWM LOW

 1

𝑓𝑐𝑙𝑜𝑐𝑘
 =  𝑇𝑝𝑒𝑟𝑖𝑜𝑑  

 

(2) 

 1

53.2 𝑀𝐻𝑧
 =  18.7969 𝜇𝑠 

 

(3) 
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Fig. 35. LED display diagram for Cybersecure Power Router 

LED(8) and LED(7) are dedicated to displaying the status of hardware authentication. The red 

LED(8) is ON and the greed LED (7) is OFF if the hardware is not authenticated. The red LED(8) 

is OFF and the greed LED (7) is ON if the hardware is authenticated. The yellow LED(6) is 

dedicated to displaying the serial connectivity between the BeagleBone Black and communication 

modules instantiated in the CPLD UCB. While serial connectivity is active, LED(6) will fade ON 

and OFF. LED(5) is dedicated to displaying the serial connectivity between the digital signal 

processors and the communication modules instantiated in the CPLD UCB. Finally, LED(4-1) are 

dedicated to display the state of the Hardware Assisted Monitor. LED(4) indicates a Lockout state. 

LED(3) indicates a nominal state of both Controller 1 and Controller 2 being live. LED(2) indicates 

that only Controller 1 is live. LED (1) indicates that only Controller 2 is live. 
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Chapter 4 - Results 

 

The maximum duration of time between firmware execution cycles is sampled across 

switching frequencies. Specifically, GPIO-24 of Controller 1 is probed, and measured for the 

maximum pulse width. Ideally, this maximum pulse width corresponds to the duration of time 

between interrupt service routines triggered at every switching cycle. An ideal trend line of 

duration between switching periods is included in teal, below. An ideal trend line of available 

controller resources is included in purple. These samples are plotted in orange as switching 

frequency is swept from 1 kHz to 160 kHz.  

 
Fig. 36. Time between execution cycles of controller firmware vs. switching frequency 
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The Cybersecure Power Router can operate up to 2050 kHz, but the samples produce a monotonic 

trend beyond 120 kHz. The detail of Fig. 36 shows this transition in trends. 

 

Fig. 37. Detail of Figure 36 

The inverter is set to a 60 Hz output. The voltage waveform of the inverter output is captured 

as the switching frequency is set to 114, 118, and 128 kHz. Compare these switching frequencies 

to those in the figure above (Fig. 37) to see the threshold of an increasing switching frequency to 

degrading and decreasing the inverter output frequency. These trends are intrinsic to a controller’s 

hardware. The operate at higher switching frequencies, all things being equal, a controller needs 

to do more processing in less time. This usually requires are more powerful controller. 
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The duration between switching period interrupts behaves ideally, until switching frequency is 

increased beyond 106 kHz. Increasing the switching frequency reduces the time a controller has 

to complete tasks required for controlling the power electronics. For the current controller 

hardware and firmware, a deterioration in power flow occurs when switching frequency is 

increased beyond 114 kHz. The output frequency of the inverter is set to 60 Hz. Yet, as switching 

frequency is increased, inverter output falls to 45.05 and finally 30.07 Hz.  

60.10 Hz

45.05 Hz

30.07 Hz

 114 kHz

118 kHz

128 kHz

 
Fig. 38. Inverter output voltage at 114, 118, and 128 kHz switching frequencies. 



 

47 

 

The interruption of ISRs before completion accounts for this. At 128 kHz switching frequency, 

only 10% of processing resources are expected to be available for a particular interrupt. This 

amount of resource utilization provides little insulation between the resources used of one task 

from another. A possible result is a metastable condition resulting in the inverter output frequency 

one half of the set output frequency. While an ISR is running, it is interrupted by another ISR. 

When the new ISR completes, the previous ISR is able to finish. The results of the new ISR are 

overwritten by the previous ISR. 

To safeguard against such overrun conditions, the sensitivity of the Hardware Assisted 

Monitor to loss of controller liveness can be adjusted. This can be done by adjusting the timing 

requirements of the controller heartbeat against the expected pulse width (as pictured in figures 36 

and 37). The Hardware Assisted Monitor can reroute control away from the deteriorating 

controller, such as one causing 45.05 Hz or 30.07 Hz inverter output (as pictured in figure 38). If 

the Hardware Assisted Monitor and heartbeat features are thus employed, the power flow of the 

power electronics will be protected in case of firmware loss of liveness. 

This security feature may result in disruptions and phase shifts if the controllers are not 

synchronized. Figure 39 shows the voltage waveform of the inverter output while control is 

rerouted. 
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Asynchronized

Synchronized

 
Fig. 39. Inverter output during controller transition 

The inset labeled “Asynchronized” shows the possible result of routing control between controllers 

out of phase with each other. A sharp transient or instability many result as the hardware jumps 

from one point in the phase to another as control shifts between controllers. This problem is 

avoided if the controllers are kept in phase, as show in the “Synchronized” inset. Here, both 
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controllers are synchronized to one another, or to the same signal. An example of this is grid-tied 

inverter controllers kept in phase with one another by locking onto the same grid frequency. 

A Hardware Assisted Monitor, firmware modification, and a second controller are required for 

these security features. These features maintain the operation of the system, rather than cause 

downtime in case of fault or failure. These features use a co-processor to instantiate the Hardware 

Assisted Monitor and a second DSP to instantiate the second controller. Both of these design 

choices incur an economic and non-recurring engineering cost relatively high to the cost of the 

CSPR prototype. Using the Hardware Assisted Monitor as a second controller or a failsafe is also 

a possibility. The present work shows one example of a secure system. It also raises many 

possibilities for new cybersecure architectures that balance security, cost, and performance. 
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Chapter 5 - Future Work 

 

5.1 Multi-Mission Controls 

 

The Cybersecure Power Router allows great flexibility in the operation of controls. This 

flexibility can be extended to allow multi-mission controls. The digital signal processor controls 

used in the present prototype are redundant. This is not by way of necessity, but of convenience. 

A different controller could operate in each DSP. These controllers could be optimized for energy 

management, maximally secure operation, communication network facilitation, grid-reliability, or 

other objectives or missions. Hardware assisted monitoring within the CSPR could provide 

sufficient situational awareness to route hardware control to different controllers in different 

contexts. Consider the following as an example. Controller 1 is optimized for efficient use of 

energy resources. To provide more resources to power processing, communication is limited in 

both volume and sophistication. Controller 2 is balanced to manage energy resources and provide 

more secure communication. Controller 1 is used nominally, and accomplishes the primary 

mission of efficient use of energy resources. If a communication anomaly or attack is detected, 

Controller 2 is given system control. The transition between the two controllers is made smooth 

through the control multiplexing technique shown earlier. When the anomaly or attack is cleared, 

system control can be returned to Controller 1. Another possibility is booting a new controller onto 

the DSP used by Controller 1 while the system is operated by Controller 2. This would allow a 

new controller, say Controller 3, to be instantiated. Controller 3 could be optimized for a different 

mission, say, to perform more conservative power management or provide forensic data in case of 

hardware failure. Control could be switched from Controller 2 to Controller 3, and the process 
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could be repeated. In this way, two DSPs within the Cybersecure Power Router could be used to 

provide controllers with many different missions. 

 

Fig. 40: Radar chart of missions for controls 

To reduce cost, controllers could be instantiated in the complex programmable logic device or 

other hardware of the Cybersecure Power Router. This would remove the need for a second DSP, 

or possibly both DSPs. 

 

5.2 SGPN and CSPR Integration and Completion 

 

The integration of the Cybersecure Power Router and the Smart Green Power Node are 

required to realize a secure distributed energy resource pre-production prototype. The Smart Green 

Power Node contributes hardware designs rated for 2 kW operation, power flow optimization, 

energy generation prediction, grid arbitrage, and sophisticated controls.  
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Fig. 41: CSPR and SGPN migration 

The Cybersecure Power Router provides tested primary and secondary controls, protected system 

operation, and enhanced security. Both projects, however, have challenges to their forward 

development towards a pre-production prototype. 

CSPR lacks the power ratings required in the prototype, and is not yet complete as a project. 

Five milestones remain in the CSPR project: external communication protocols, integrated 

user/server authentication, exhaustive testing, documentation, and project end. External 

communication protocols and User/Server authentication are developed, but have not been 

integrated with the CSPR prototype. Exhaustive testing of the cybersecure inverter is partially 

accomplished: the hardware has operated over 100 hours at various power levels. Superficial 

penetration tests on communication during operation were performed, and resulted in no 
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observable changes to system operation. Exhaustive penetration testing, specifically fuzz testing, 

during operation and hot-patching are suggested in further development. Finally, documentation 

and project end is also partially accomplished. 

The SGPN lacks proper thermal management, optimized PCB layout, and coherent system-

level design. Many switches are poorly cooled and some devices, such as snubber circuits, receive 

no forced cooling due to poor planning of thermal management. Electromagnetic interference from 

switching during typical operation destroyed gate drivers, disrupted serial communication, and 

deteriorated the integrity of feedback signals. The current SGPN has a poorly defined secondary 

and tertiary controller. The individual controllers are not able to coordinate power flow in a safe, 

autonomous way. The coordination and control of power flow through all these devices is manual. 

The prediction and optimization algorithms provide a simple schedule for charging and 

discharging the batteries throughout a day. These algorithms lack integration with the coordination 

and control of the system, and currently provide no improvement to system operation. 

Several considerations are necessary to realize a secure DER pre-production prototype. First, 

an analysis of the design specifications are required to re-evaluate design parameters. The typical 

operating voltage of the photovoltaic panels, power rating of the dc/dc converters, topology of the 

dual half bridge, and capabilities of the human-machine interface may warrant re-evaluation. 

Additionally, the inclusion or exclusion of security features from the CSPR project require 

consideration. Secondly, the power electronics are suggested to be redesigned with thermal co-

design. Forced air convection and an extruded heatsink common to all switching devices may 

provide a simple and effective means of cooling. The devices may be epoxied to aluminum nitride 

heat spreaders to provide high thermal conductivity and electrical insulation. Third, radiated and 

conducted EMI is suggested to be reduced through the reduction of PCB parasitics, and the 
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inclusion of snubbers and protection circuits during initial design. Finally, a well-defined, system-

level control scheme is suggested to be designed early in development. A comprehensive, robust 

scheme is recommended for the integration of: power optimization, prediction, user preference, 

current protections, battery protections, various modes of operation, and individual controller 

operation. These schemes are suggested to be well defined before the design of individual 

converter controls. 
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Chapter 6 - Conclusion 

 

A security-by-design process identified the key power and data assets and their dependencies 

for a distributed energy resource. The security-by-design process showed the dependencies 

between hardware, data, and power assets. Namely, firmware---as source code stored in memory 

and as a live instantiation as the controller---lies in the center of these dependencies. Defense-in-

depth was shown by layered security using AES-128 encryption, error detection, hardware assisted 

monitoring, key management, MD5 hash checking, control multiplexing, heartbeat monitoring, 

and hardware authentication, and hardware protections. This defense-in-depth protects the 

integrity, confidentiality, and availability of hardware, data, and power at every layer of design. 

Communication security includes encryption and error checking of transmitted messages, 

firmware, and data shared between CSPR modules. Hardware security includes robust controls, 

shoot-through protection, hardware authentication, galvanic isolation, and hardware failsafe 

controls of connected resources. Securing the power and data flow through the Cybersecure Power 

Router primarily means securing the integrity and availability of the hardware controller. The 

Cybersecure Power Router determines the proper functioning of the controller by means of a 

hardware assisted monitor and a controller’s heartbeat. The Cybersecure Power Router responds 

to a controller failure by multiplexing control signals, swapping control from a malfunctioning 

controller to a live one.  

The Cybersecure Power Router illustrates the security-by-design process and defense-in-depth 

method in a single prototype. The Smart Green Power Node was evaluated for present and future 

use as the hardware of the Cybersecure Power Router prototype. The security features protecting 

liveness of controllers of the Cybersecure Power Router was researched in depth. Decreased 

integrity of power flow through the power electronics was shown to correlate with the loss of 
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liveness of the controllers. The use of a heartbeat from the controllers provides a signal sensitive 

to the liveness of the controller. The Hardware Assisted Monitor uses this heartbeat to provide 

control signals to hardware from controllers with liveness. The resulting system is resilient to 

firmware failure and loss of integrity at runtime. This resilience protects against controller overrun 

and system downtime, such as during firmware patching. Further research can investigate greater 

flexibility and resiliency in controls, and methods to reduce costs. A pre-production prototype can 

be realized from the migration of features from both the Cybersecure Power Router and the Smart 

Green Power Node. 
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Appendix 

 

Appendix A: Hardware  and Software Design Details 

 

 The following figures are imbedded PDF objects. To fully view: right click on the figure, 

select Acrobat Document Object → Open. The PDF will open in a PDF reader. 

 

 

Fig. 42. Digital Signal Processor Unified Controller Board schematic 
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Fig. 43. Power Electronics Evaluation Unified Controller Board schematic 
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Fig. 44. Complex Programmable Logic Device Unified Controller Board schematic 
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Fig. 45. BeagleBone Black schematic 

 

 
Fig. 46. Hardware Authentication Module schematic 
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Fig. 47. Analog Splitter schematic 

 

 

Fig. 48. Crontab configuration on BeagleBone Black to run CPLD UCB LED control script on 

startup 
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Fig. 49. Content of LED control Python script running on the BeagleBone Black 
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Appendix B: EEPROM_WRITE_PASSWORD 

 

/* 

  MicrowireEEPROM Example Sketch 

 Reads and writes a Microwire EEPROM. 

 Written by Timo Schneider <timos@perlplexity.org> and Joe Moquin 

*/ 

#include <MicrowireEEPROM.h> 

 

// Microwire needs four wires (apart from VCC/GND) DO,DI,CS,CLK 

// configure them here, note that DO and DI are the pins of the 

// EEPROM, so DI is an output of the uC, while DO is an input 

int CS=13; int CLK=12; int DI=7; int DO=2; 

// EEPROMS have different sizes. Also the number of bits per page varies. 

// We need to configure the page size in bits (PGS) and address bus width 

// in bits (ADW). The speed at which the clock is run is configured in 

// microseconds. 

//int PGS=16; int ADW=8; int SPD=200; 

int PGS=16; int ADW=6; int SPD=700; 

unsigned int password[64] = { 

  0xABBA,0xABED,0xBABE,0xBADE,0xBEAD,0xBEEF,0xCAFE,0xCEDE, 

  0xDADA,0xDEAD,0xDEAF,0xDEED,0xFACE,0xFADE,0xFEED,0xFEE0, 

  0xABBA,0xABED,0xBABE,0xBADE,0xBEAD,0xBEEF,0xCAFE,0xCEDE, 

  0xDADA,0xDEAD,0xDEAF,0xDEED,0xFACE,0xFADE,0xFEED,0xFEE0, 

  0xABBA,0xABED,0xBABE,0xBADE,0xBEAD,0xBEEF,0xCAFE,0xCEDE, 

  0xDADA,0xDEAD,0xDEAF,0xDEED,0xFACE,0xFADE,0xFEED,0xFEE0, 

  0xABBA,0xABED,0xBABE,0xBADE,0xBEAD,0xBEEF,0xCAFE,0xCEDE, 

  0xDADA,0xDEAD,0xDEAF,0xDEED,0xFACE,0xFADE,0xFEED,0xFEE0 

}; 

 

// initialize the library 

MicrowireEEPROM ME(CS, CLK, DI, DO, PGS, ADW, SPD);  

 

void setup() { 

  Serial.begin(9600); 

  set_memory_map(); 

} 

 

void loop() { 

  for (int addr=0; addr < 64; addr++) { 

    unsigned int r = ME.read(addr); 

    String addr_reading = "Address " + String(addr, HEX) + "(" + String(addr, DEC) + ")  DO: " 

+ String(r, HEX) + " "; 

    Serial.println(addr_reading); 

    delay(100); 

  } 
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} 

 

void set_memory_map() { 

  ME.writeEnable(); 

  delay(10); 

  for (int addr=0; addr < 64; addr++) { 

    ME.write(addr,password[addr]); 

    delay(10); 

  } 

  ME.writeDisable(); 

  Serial.println("Write complete."); 

} 
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Appendix C: CSPR_V7.lpf 

 

#LCMXO2-7000HC 4FG484C WITHIN THE UCB V1.3A 

#DESIGNER:  CHRIS FARNELL 

#AUTHOR:    JOE MOQUIN 

#CONTACT:   CFARNELL@UARK.EDU 

#DATE:  3/12/2019 

# 

#CONTENTS: 

#  BLOCK 

#  GPIO: 

#     IDC-A 

#     IDC-B 

#     IDC-C 

#     IDC-D 

#  ADC: 

#     ADC1 

#     ADC2 

#  INTERFACE: 

#     BUTTONS 

#     LEDS 

#     DIP SWITCHES 

#  COMMUNICATION: 

#   SCI 

#  CLOCKS 

# 

#TO DO: XPORT, TI-RX/TX, LAT, EXT CLK/RST 

BLOCK RESETPATHS ; 

BLOCK ASYNCPATHS ; 

BANK 0 VCCIO 3.3 V; 

BANK 1 VCCIO 2.5 V; 

BANK 2 VCCIO 3.3 V; 

BANK 3 VCCIO 3.3 V; 

BANK 4 VCCIO 3.3 V; 

BANK 5 VCCIO 3.3 V; 

#IDC A 

LOCATE COMP "A0" SITE "A21" ; 

LOCATE COMP "A1" SITE "C19" ; 

LOCATE COMP "A2" SITE "A20" ; 

LOCATE COMP "A3" SITE "D18" ; 

LOCATE COMP "A4" SITE "B19" ; 

LOCATE COMP "A5" SITE "C18" ; 

LOCATE COMP "A6" SITE "F17" ; 

LOCATE COMP "A7" SITE "A18" ; 

#LOCATE COMP "A8" SITE "D17" ; 

#LOCATE COMP "A9" SITE "E17" ; 
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LOCATE COMP "A10" SITE "A17" ; 

LOCATE COMP "A11" SITE "C17" ; 

LOCATE COMP "A12" SITE "F16" ; 

LOCATE COMP "A13" SITE "E16" ; 

LOCATE COMP "A14" SITE "D16" ; 

LOCATE COMP "A15" SITE "B15" ; 

LOCATE COMP "A16" SITE "C16" ; 

LOCATE COMP "A17" SITE "E15" ; 

LOCATE COMP "A18" SITE "B14" ; 

LOCATE COMP "A19" SITE "F15" ; 

#LOCATE COMP "A20" SITE "C15" ; 

#LOCATE COMP "A21" SITE "B13" ; 

#LOCATE COMP "A22" SITE "D15" ; 

#LOCATE COMP "A23" SITE "G15" ; 

LOCATE COMP "A24" SITE "A13" ; 

LOCATE COMP "A25" SITE "E14" ; 

LOCATE COMP "A26" SITE "D14" ; 

LOCATE COMP "A27" SITE "B12" ; 

#IDC B 

LOCATE COMP "B0" SITE "AA22" ; 

LOCATE COMP "B1" SITE "T19" ; 

LOCATE COMP "B2" SITE "Y22" ; 

LOCATE COMP "B3" SITE "W22" ; 

LOCATE COMP "B4" SITE "W20" ; 

LOCATE COMP "B5" SITE "V19" ; 

LOCATE COMP "B6" SITE "V21" ; 

LOCATE COMP "B7" SITE "V22" ; 

LOCATE COMP "B8" SITE "U22" ; 

LOCATE COMP "B9" SITE "U19" ; 

LOCATE COMP "B10" SITE "T21" ; 

LOCATE COMP "B11" SITE "R19" ; 

LOCATE COMP "B12" SITE "U20" ; 

LOCATE COMP "B13" SITE "T22" ; 

LOCATE COMP "B14" SITE "R20" ; 

LOCATE COMP "B15" SITE "R18" ; 

LOCATE COMP "B16" SITE "R21" ; 

LOCATE COMP "B17" SITE "P19" ; 

LOCATE COMP "B18" SITE "T20" ; 

LOCATE COMP "B19" SITE "R22" ; 

LOCATE COMP "B20" SITE "P20" ; 

LOCATE COMP "B21" SITE "P18" ; 

#LOCATE COMP "B22" SITE "P21" ; 

LOCATE COMP "Usr_RX" SITE "P21" ; 

#LOCATE COMP "B23" SITE "N17" ; 

LOCATE COMP "Usr_TX" SITE "N17" ; 

LOCATE COMP "B24" SITE "N16" ; 
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LOCATE COMP "B25" SITE "N21" ; 

LOCATE COMP "B26" SITE "N20" ; 

LOCATE COMP "B27" SITE "M18" ; 

#IDC-C 

LOCATE COMP "C0" SITE "Y14" ; 

LOCATE COMP "C1" SITE "AB15" ; 

LOCATE COMP "C2" SITE "W12" ; 

LOCATE COMP "C3" SITE "V12" ; 

LOCATE COMP "C4" SITE "Y12" ; 

LOCATE COMP "C5" SITE "V13" ; 

LOCATE COMP "C6" SITE "AA15" ; 

LOCATE COMP "C7" SITE "Y15" ; 

#LOCATE COMP "C8" SITE "AB16" ; 

#LOCATE COMP "C9" SITE "AA16" ; 

LOCATE COMP "C10" SITE "T13" ; 

LOCATE COMP "C11" SITE "U13" ; 

LOCATE COMP "C12" SITE "Y16" ; 

LOCATE COMP "C13" SITE "AB17" ; 

LOCATE COMP "C14" SITE "W14" ; 

LOCATE COMP "C15" SITE "V14" ; 

LOCATE COMP "C16" SITE "Y17" ; 

LOCATE COMP "C17" SITE "AB18" ; 

LOCATE COMP "C18" SITE "W15" ; 

LOCATE COMP "C19" SITE "V15" ; 

#LOCATE COMP "C20" SITE "W16" ; 

#LOCATE COMP "C21" SITE "W17" ; 

#LOCATE COMP "C22" SITE "Y18" ; 

#LOCATE COMP "C23" SITE "AA19" ; 

LOCATE COMP "C24" SITE "AB20" ; 

LOCATE COMP "C25" SITE "AB21" ; 

LOCATE COMP "C26" SITE "V16" ; 

LOCATE COMP "C27" SITE "U15" ; 

#IDC D 

LOCATE COMP "D0" SITE "C3" ; 

LOCATE COMP "D1" SITE "C2" ; 

LOCATE COMP "D2" SITE "F6" ; 

LOCATE COMP "D3" SITE "F5" ; 

LOCATE COMP "D4" SITE "E4" ; 

LOCATE COMP "D5" SITE "D3" ; 

LOCATE COMP "D6" SITE "G6" ; 

LOCATE COMP "D7" SITE "H7" ; 

LOCATE COMP "D8" SITE "B1" ; 

LOCATE COMP "D9" SITE "C1" ; 

LOCATE COMP "D10" SITE "H6" ; 

LOCATE COMP "D11" SITE "G5" ; 

LOCATE COMP "D12" SITE "E2" ; 
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LOCATE COMP "D13" SITE "D1" ; 

LOCATE COMP "D14" SITE "F4" ; 

LOCATE COMP "D15" SITE "G4" ; 

LOCATE COMP "D16" SITE "F1" ; 

LOCATE COMP "D17" SITE "G3" ; 

LOCATE COMP "D18" SITE "J5" ; 

LOCATE COMP "D19" SITE "J4" ; 

LOCATE COMP "D20" SITE "G2" ; 

LOCATE COMP "D21" SITE "G1" ; 

LOCATE COMP "D22" SITE "K6" ; 

LOCATE COMP "D23" SITE "K7" ; 

LOCATE COMP "D24" SITE "H3" ; 

LOCATE COMP "D25" SITE "H2" ; 

LOCATE COMP "D26" SITE "K5" ; 

LOCATE COMP "D27" SITE "L3" ; 

#BUTTONS SW[1:4] ACTIVE LOW 

LOCATE COMP "BTN[1]" SITE "G13" ; 

LOCATE COMP "BTN[2]" SITE "F13" ; 

LOCATE COMP "BTN[3]" SITE "A12" ; 

LOCATE COMP "BTN[4]" SITE "C13" ; 

DEFINE PORT GROUP "BTN" "BTN[1]"  

"BTN[2]"  

"BTN[3]"  

"BTN[4]" ; 

IOBUF GROUP "BTN" IO_TYPE=LVCMOS33 ; 

#LEDS ACTIVE LOW 

LOCATE COMP "LED[1]" SITE "R17" ; 

LOCATE COMP "LED[2]" SITE "T18" ; 

LOCATE COMP "LED[3]" SITE "R16" ; 

LOCATE COMP "LED[4]" SITE "T17" ; 

LOCATE COMP "LED[5]" SITE "Y21" ; 

LOCATE COMP "LED[6]" SITE "Y20" ; 

LOCATE COMP "LED[7]" SITE "U18" ; 

LOCATE COMP "LED[8]" SITE "U17" ; 

DEFINE PORT GROUP "LED" "LED[1]"  

"LED[2]"  

"LED[3]"  

"LED[4]"  

"LED[5]"  

"LED[6]"  

"LED[7]"  

"LED[8]" ; 

IOBUF GROUP "LED" IO_TYPE=LVCMOS25 PULLMODE=DOWN DRIVE=8 

SLEWRATE=SLOW ; 

#SCI 

#LOCATE COMP "SCI_TX" SITE "W1" ; 
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#LOCATE COMP "SCI_RX" SITE "V2" ; 

#CLOCKS 

#LOCATE COMP "XTAL_CLK" SITE "V3" ; 

#FREQUENCY NET "CLK" 53.200000 MHZ ; 

IOBUF PORT "A0" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "A1" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "A2" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "A3" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "A4" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "A5" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "A6" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "A7" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "A10" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "A11" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "A12" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "A13" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "A14" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "A15" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "A16" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "A17" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "A18" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "A19" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "A24" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "A25" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "A26" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "A27" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "C0" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "C1" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "C2" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "C3" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "C4" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "C5" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "C6" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "C7" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "C10" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "C11" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "C12" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "C13" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "C14" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "C15" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "C16" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "C17" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "C18" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "C19" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "C24" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "C25" IO_TYPE=LVCMOS33 ; 
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IOBUF PORT "C26" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "C27" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "D23" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "D0" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "D1" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "D2" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "D3" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "D4" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "D5" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "D6" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "D7" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "D8" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "D9" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "D10" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "D11" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "D12" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "D13" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "D14" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "D15" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "D16" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "D17" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "D18" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "D19" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "D20" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "D21" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "D22" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "D24" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "D25" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "D26" IO_TYPE=LVCMOS33 ; 

IOBUF PORT "D27" IO_TYPE=LVCMOS33 ; 
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Appendix D: hardware_protections.vhd 

 

LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

 

ENTITY censor IS 

 PORT ( 

  pwm_i : IN STD_LOGIC_VECTOR(1 DOWNTO 0); 

  pwm_o : OUT STD_LOGIC_VECTOR(1 DOWNTO 0) 

 ); 

END censor; 

 

ARCHITECTURE behavior OF censor IS 

BEGIN 

 WITH pwm_i SELECT pwm_o <= 

  "01" WHEN "01", 

  "10" WHEN "10", 

  "00" WHEN OTHERS; 

 

END behavior; 
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Appendix E: CSPR_MODULES.vhdl 

 

---------------------------------------------------------------------------------- 

-- Company:  University of Arkansas (NCREPT) 

-- Engineer: Chris Farnell, Joe Moquin 

-- 

-- Create Date:   March 12, 2019 

-- Design Name:   Generic Components 

-- Module Name:   Various 

-- Project Name:   Cybersecure Power Router 

-- Target Devices:   LCMXO2-7000HC-4FG484C (MachXO2 Eval Board) 

--  

---------------------------------------------------------------------------------- 

--#############################Generic 

Components################################################-- 

------------------------------Bus Interface-------------------------------------------------- 

LIBRARY IEEE; 

USE IEEE.std_logic_1164.ALL; 

USE ieee.std_logic_unsigned.ALL; 

USE ieee.numeric_std.ALL; 

 

ENTITY Bus_Int IS 

 GENERIC ( 

  CONSTANT DATA_WIDTH : INTEGER := 16; 

  CONSTANT Address_WIDTH : INTEGER := 16 

 ); 

 PORT ( 

  clk : IN std_logic; 

  rst : IN std_logic; 

  DataIn : IN std_logic_vector(DATA_WIDTH - 1 DOWNTO 0); 

  DataOut : OUT std_logic_vector(DATA_WIDTH - 1 DOWNTO 0); 

  AddrIn : IN std_logic_vector(Address_WIDTH - 1 DOWNTO 0); 

  WE : IN std_logic; 

  RE : IN std_logic; 

  Busy : OUT std_logic; 

  Data : INOUT std_logic_vector(DATA_WIDTH - 1 DOWNTO 0); 

  Addr : OUT std_logic_vector(Address_WIDTH - 1 DOWNTO 0); 

  Xrqst : OUT std_logic; 

  XDat : IN std_logic; 

  YDat : OUT std_logic; 

  BusRqst : OUT std_logic; 

  BusCtrl : IN std_logic 

 ); 

END; 

ARCHITECTURE behavior OF Bus_Int IS 

 TYPE state_type IS (S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10); 
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 SIGNAL CS, NS : state_type; 

 SIGNAL AddrIn_reg_o : std_logic_vector(DATA_WIDTH - 1 DOWNTO 0) := 

(OTHERS => '0'); 

 SIGNAL DataIn_reg_o : std_logic_vector(DATA_WIDTH - 1 DOWNTO 0) := 

(OTHERS => '0'); 

 SIGNAL LD_AddrIn, LD_DataIn, LD_Data : std_logic := '0'; 

BEGIN 

 ----Registers 

 Reg_Proc : PROCESS 

 BEGIN 

  WAIT UNTIL clk'event AND clk = '1'; 

  IF rst = '0' THEN 

   AddrIn_reg_o <= (OTHERS => '0'); 

   DataIn_reg_o <= (OTHERS => '0'); 

   DataOut <= (OTHERS => '0'); 

  ELSE 

   IF (LD_AddrIn = '1') THEN 

    AddrIn_reg_o <= AddrIn; 

   END IF; --Register for reading input address 

   IF (LD_DataIn = '1') THEN 

    DataIn_reg_o <= DataIn; 

   END IF; --Register for reading input address 

   IF (LD_Data = '1') THEN 

    DataOut <= Data; 

   END IF; --Register for reading input address 

  END IF; 

 END PROCESS; 

 ----End Registers 

 ----Next State Logic Bus Interface 

 NS_Bus_Int : PROCESS (CS, WE, RE, XDat, BusCtrl, AddrIn_reg_o, DataIn_reg_o) 

 BEGIN 

  ----Default States to remove latches 

  Busy <= '1'; 

  Data <= (OTHERS => 'Z'); 

  Addr <= (OTHERS => 'Z'); 

  XRqst <= 'Z'; 

  YDat <= 'Z'; 

  BusRqst <= '0'; 

  NS <= S0; 

  LD_AddrIn <= '0'; 

  LD_DataIn <= '0'; 

  LD_Data <= '0'; 

  CASE CS IS 

   WHEN S0 => -- Waits until a read or write request is initiated. 

    IF (RE = '1') THEN 

     NS <= S1; 
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    ELSIF (WE = '1') THEN 

     NS <= S3; 

    ELSE 

     NS <= S0; 

    END IF; 

    Busy <= '0'; 

    LD_AddrIn <= '1'; -- Loads the Input Address 

    LD_DataIn <= '1'; -- Loads the Input Data 

    --Begin Read Process 

   WHEN S1 => -- Request Control of the Bus and wait. 

    IF (BusCtrl = '1') THEN 

     NS <= S2; 

    ELSE 

     NS <= S1; 

    END IF; 

    BusRqst <= '1'; 

   WHEN S2 => -- Bus Control granted. Request data. 

    IF (Xdat = '0') THEN --Active High 

     NS <= S2; 

    ELSE 

     NS <= S0; 

    END IF; 

    Addr <= AddrIn_reg_o; 

    XRqst <= '1'; --Active High--Active Low because of pull-ups for 

internal tristate 

    LD_Data <= '1'; 

    --End Read Process 

 

    --Begin Write Process 

   WHEN S3 => -- Request Control of the Bus and wait. 

    IF (BusCtrl = '1') THEN 

     NS <= S4; 

    ELSE 

     NS <= S3; 

    END IF; 

    BusRqst <= '1'; 

   WHEN S4 => -- Bus Control granted. Write data. 

    Addr <= AddrIn_reg_o; 

    Data <= DataIn_reg_o; 

    YDat <= '1'; --Active High--Active Low because of pull-ups for 

internal tristate 

    NS <= S0; 

    --End Write Process 

 

   WHEN OTHERS => 

    NS <= S0; 
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  END CASE; 

 END PROCESS; 

 ----End Next State Logic for Bus Interface 

 ----State Sync 

 sync_States : PROCESS 

 BEGIN 

  WAIT UNTIL clk'event AND clk = '1'; 

  IF rst = '0' THEN 

   CS <= S0; 

  ELSE 

   CS <= NS; 

  END IF; 

 END PROCESS; 

 ----End State Sync 

END behavior; 

----------------------------------End Bus Interface------------------------------------ 

------------------------------Generic FIFO-------------------------------------------------- 

LIBRARY IEEE; 

USE IEEE.std_logic_1164.ALL; 

USE ieee.std_logic_unsigned.ALL; 

USE ieee.numeric_std.ALL; 

ENTITY STD_FIFO IS 

 GENERIC ( 

  DATA_WIDTH : INTEGER := 8; -- Width of FIFO 

  FIFO_DEPTH : INTEGER := 512; -- Depth of FIFO 

  FIFO_ADDR_LEN : INTEGER := 9 -- Required number of bits to represent 

FIFO_Depth 

 ); 

 PORT ( 

  CLK : IN STD_LOGIC; -- Clock input 

  RST : IN STD_LOGIC; -- Active low reset 

  WriteEn : IN STD_LOGIC; -- Write enable signal 

  DataIn : IN STD_LOGIC_VECTOR (DATA_WIDTH - 1 DOWNTO 0); -- Data 

input bus 

  ReadEn : IN STD_LOGIC; -- Read enable signal 

  DataOut : OUT STD_LOGIC_VECTOR (DATA_WIDTH - 1 DOWNTO 0); -- 

Data output bus 

  Empty : OUT STD_LOGIC; -- FIFO empty flag 

  Full : OUT STD_LOGIC -- FIFO full flag 

 ); 

END STD_FIFO; 

ARCHITECTURE Behavioral OF STD_FIFO IS 

 TYPE FIFO_Memory IS ARRAY (0 TO FIFO_DEPTH - 1) OF STD_LOGIC_VECTOR 

(DATA_WIDTH - 1 DOWNTO 0); 

 SIGNAL Memory : FIFO_Memory; 

 SIGNAL Head : STD_LOGIC_VECTOR (FIFO_ADDR_LEN - 1 DOWNTO 0); 
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 SIGNAL Tail : STD_LOGIC_VECTOR (FIFO_ADDR_LEN - 1 DOWNTO 0); 

 SIGNAL Looped : BOOLEAN; 

BEGIN 

 -- Memory Pointer Process 

 fifo_proc : PROCESS (CLK) 

 BEGIN 

  IF rising_edge(CLK) THEN 

   IF RST = '0' THEN 

    Head <= (OTHERS => '0'); 

    Tail <= (OTHERS => '0'); 

    Looped <= false; 

    Full <= '0'; 

    Empty <= '1'; 

   ELSE 

    IF (ReadEn = '1') THEN 

     IF ((Looped = true) OR (Head /= Tail)) THEN 

      -- Update data output 

      DataOut <= Memory(CONV_INTEGER(Tail)); 

      -- Update Tail pointer as needed 

      IF (Tail = FIFO_DEPTH - 1) THEN 

       Tail <= (OTHERS => '0'); 

       Looped <= false; 

      ELSE 

       Tail <= Tail + 1; 

      END IF; 

     END IF; 

    END IF; 

    IF (WriteEn = '1') THEN 

     IF ((Looped = false) OR (Head /= Tail)) THEN 

      -- Write Data to Memory 

      Memory(CONV_INTEGER(Head)) <= DataIn; 

      -- Increment Head pointer as needed 

      IF (Head = FIFO_DEPTH - 1) THEN 

       Head <= (OTHERS => '0'); 

       Looped <= true; 

      ELSE 

       Head <= Head + 1; 

      END IF; 

     END IF; 

    END IF; 

    -- Update Empty and Full flags 

    IF (Head = Tail) THEN 

     IF Looped THEN 

      Full <= '1'; 

     ELSE 

      Empty <= '1'; 



 

81 

 

     END IF; 

    ELSE 

     Empty <= '0'; 

     Full <= '0'; 

    END IF; 

   END IF; 

  END IF; 

 END PROCESS; 

END Behavioral; 

------------------------------End Generic FIFO-------------------------------------------------- 

------------------------16-Bit PWM with Phase shift------------------------------- 

LIBRARY IEEE; 

USE IEEE.STD_LOGIC_1164.ALL; 

USE IEEE.STD_LOGIC_ARITH.ALL; 

USE IEEE.STD_LOGIC_UNSIGNED.ALL; 

USE ieee.numeric_std.ALL; 

ENTITY PWM_16b IS 

 GENERIC ( 

  Freq_in : INTEGER := 25000000; --Clk (25 MHz) 

  Max_PWM : INTEGER := 65535; --PWM Resolution (2^16-1) 

  Freq_Sw : INTEGER := 6104); --PWM Switching Frequency (Should be 

derived from Main Clock) (25e6/2^12) 

 PORT ( 

  clk : IN STD_LOGIC; 

  rst : IN STD_LOGIC; 

  DC : IN STD_LOGIC_VECTOR (15 DOWNTO 0); 

  Phase : IN STD_LOGIC_VECTOR (15 DOWNTO 0); 

  En : IN STD_LOGIC; 

  PWM_Out : OUT STD_LOGIC); 

END PWM_16b; 

ARCHITECTURE Behavioral OF PWM_16b IS 

 --Constants 

 CONSTANT Max_Period : INTEGER := (Freq_in/Freq_Sw) - 1; 

 CONSTANT PWM_Step_Inv : INTEGER := Max_PWM/Max_Period; --Clk cycle step 

size for Duty cycle 

 CONSTANT PWM_Max : INTEGER := Max_PWM; 

 CONSTANT PWM_Min : INTEGER := PWM_Step_Inv; 

 --Signals 

 SIGNAL PWM_Count, DC_Read, Phase_Read : STD_LOGIC_VECTOR(15 DOWNTO 

0) := (OTHERS => '0'); 

BEGIN 

 DC_Update : PROCESS 

 BEGIN 

  WAIT UNTIL clk'event AND clk = '1'; 

  IF rst = '0' THEN 

   DC_Read <= (OTHERS => '0'); 
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   Phase_Read <= (OTHERS => '0'); 

  ELSE 

   --   -- For 1.526 kHz 

   --   DC_Read(15 downto 14)<=(others => '0'); 

   --   DC_Read(13 downto 0)<= DC(15 downto 2);  

  --shift 2 places for divide by 4 (PWM_Step_Inv) 

   --   Phase_Read(15 downto 14)<=(others => '0'); 

   --   Phase_Read(13 downto 0)<= Phase(15 downto 2); 

 --shift 2 places for divide by 4 (PWM_Step_Inv) 

   -- For 3.052 kHz 

   --   DC_Read(15 downto 13)<=(others => '0'); 

   --   DC_Read(12 downto 0)<= DC(15 downto 3);  

  --shift 3 places for divide by 8 

   --   Phase_Read(15 downto 13)<=(others => '0'); 

   --   Phase_Read(12 downto 0)<= Phase(15 downto 3); 

 --shift 3 places for divide by 8 

   -- For 6.104 kHz 

   DC_Read(15 DOWNTO 12) <= (OTHERS => '0'); 

   DC_Read(11 DOWNTO 0) <= DC(15 DOWNTO 4); --shift 4 places for 

divide by 16 (PWM_Step_Inv) 

   Phase_Read(15 DOWNTO 12) <= (OTHERS => '0'); 

   Phase_Read(11 DOWNTO 0) <= Phase(15 DOWNTO 4); --shift 4 places 

for divide by 16 (PWM_Step_Inv) 

  END IF; 

 END PROCESS; 

 Count_Update : PROCESS 

 BEGIN 

  WAIT UNTIL clk'event AND clk = '1'; 

  IF rst = '0' THEN 

   PWM_Count <= (OTHERS => '0'); 

  ELSIF (PWM_Count <= (Max_Period + Phase_Read)) THEN 

   PWM_Count <= PWM_Count + 1; 

  ELSE 

   PWM_Count <= Phase_Read; 

  END IF; 

 END PROCESS; 

 PWM_Update : PROCESS 

 BEGIN 

  WAIT UNTIL clk'event AND clk = '1'; 

  IF rst = '0' THEN 

   PWM_Out <= '0'; 

  ELSIF en = '0' THEN 

   PWM_Out <= '0'; 

  ELSIF ((PWM_Count <= (DC_Read + Phase_Read)) AND ((PWM_Count) > 

(Phase_Read))) THEN 

   PWM_Out <= '1'; 
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  ELSE 

   PWM_Out <= '0'; 

  END IF; 

 END PROCESS; 

END Behavioral; 

-----------------------------End 16-Bit PWM with Phase shift------------------------------ 

----------------------------------16-Bit Shift Register(Parallel-to-Serial)-------------- 

LIBRARY IEEE; 

USE IEEE.std_logic_1164.ALL; 

USE ieee.std_logic_unsigned.ALL; 

USE ieee.numeric_std.ALL; 

ENTITY Sreg_PS_16 IS 

 PORT ( 

  ld_D, sh_D, rst, clk : IN std_logic; 

  Data_In : IN STD_LOGIC_VECTOR(15 DOWNTO 0); 

  Data_Out : OUT std_logic); 

END; 

ARCHITECTURE BEHAVIOR OF Sreg_PS_16 IS 

 SIGNAL temp : STD_LOGIC_VECTOR(15 DOWNTO 0); 

BEGIN 

 --Data_Out <= temp(15); 

 Counter_behav : PROCESS 

 BEGIN 

  WAIT UNTIL clk'event AND clk = '1'; 

  IF rst = '0' THEN 

   temp <= (OTHERS => '0'); 

   Data_Out <= '0'; 

  ELSIF ld_D = '1' THEN 

   temp <= Data_In; 

   Data_Out <= temp(15); 

  ELSIF sh_D = '1' THEN 

   temp <= temp(14 DOWNTO 0) & '0'; 

   Data_Out <= temp(15); 

  ELSE 

   Data_Out <= temp(15); 

  END IF; 

 END PROCESS; 

END BEHAVIOR; 

----------------------------------End of 16-Bit Shift Register(Parallel-to-Serial)------------------ 

----------------------------------16-Bit Shift Register(Serial-to-Parallel)-------------- 

LIBRARY IEEE; 

USE IEEE.std_logic_1164.ALL; 

USE ieee.std_logic_unsigned.ALL; 

USE ieee.numeric_std.ALL; 

ENTITY Sreg_SP_16 IS 

 PORT ( 
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  ld_D, rst, clk : IN std_logic; 

  Data_In : IN std_logic; 

  Data_Out : OUT STD_LOGIC_VECTOR(15 DOWNTO 0)); 

END; 

ARCHITECTURE BEHAVIOR OF Sreg_SP_16 IS 

 SIGNAL temp : STD_LOGIC_VECTOR(15 DOWNTO 0); 

BEGIN 

 Counter_behav : PROCESS 

 BEGIN 

  WAIT UNTIL clk'event AND clk = '1'; 

  IF rst = '0' THEN 

   temp <= (OTHERS => '0'); 

   Data_Out <= (OTHERS => '0'); 

  ELSIF ld_D = '1' THEN 

   temp <= temp(14 DOWNTO 0) & Data_In; 

   --temp(0) <= Data_In; 

   Data_Out <= temp; 

  ELSE 

   Data_Out <= temp; 

  END IF; 

 END PROCESS; 

END BEHAVIOR; 

----------------------------------End of 16-Bit Shift Register(Parallel-to-Serial)------------------ 

---------------------------------- Standard Counter------------------------------------ 

LIBRARY IEEE; 

USE IEEE.std_logic_1164.ALL; 

USE ieee.std_logic_unsigned.ALL; 

USE ieee.numeric_std.ALL; 

ENTITY Std_Counter IS 

 GENERIC ( 

  Width : INTEGER := 8 --width of counter 

 ); 

 PORT ( 

  INC, rst, clk : IN std_logic; 

  Count : OUT STD_LOGIC_VECTOR(Width - 1 DOWNTO 0)); 

END; 

ARCHITECTURE BEHAVIOR OF Std_Counter IS 

 SIGNAL temp : STD_LOGIC_VECTOR(Width - 1 DOWNTO 0); 

BEGIN 

 Counter_behav : PROCESS 

 BEGIN 

  WAIT UNTIL clk'event AND clk = '1'; 

  IF rst = '0' THEN 

   temp <= (OTHERS => '0'); 

  ELSIF INC = '1' THEN 

   temp <= temp + 1; 
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  ELSE 

   NULL; 

  END IF; 

 END PROCESS; 

 Count <= temp; 

END BEHAVIOR; 

--#############################END Generic 

Components################################################-- 

-- 

--############################# Serial 

Components####################################################-- 

-- Company:  University of Arkansas (NCREPT) 

-- Engineer: Chris Farnell 

-- 

-- Create Date:   3Dec2018 

-- Design Name:   Bus_Interface_Common 

-- Module Name:   Bus_Interface_Common 

-- Project Name:   Bus Interface Example 

-- Target Devices:   LCMXO2-7000HE-4TG144C (MachXO2 Eval Board) 

-- Tool versions:   Lattice Diamond_x64 Build 3.10.2.115.1 

-- Description: 

-- This Package was created to allow for Memory Mapping as well as the declaration of various 

needed constants. 

---- Register and Memory Map Information: 

-- This section describes the Memory Map used in this project. 

-- This design contains a SPRAM Module which is 16 bits wide and 1024 entries deep. 

-- Register addresses are from X"0000" to X"03FF". 

-- All registers are 16-bits wide. 

-- The SPRAM Module is located in the Bus_Master portion of the code. 

-- This RAM Module may be accessed externally using either Serial Port interface. 

-- Reserved for future use. 

-- X"0200" - X"03FF" 

-- LED Configuration Registers- 

-- Range is X"0100" - X"010A" 

-- Register Map is found as constants in Bus_Interface_Common and shared with all submodules 

of this program. 

-- Revisions:-- 

-- 

-- Revision 0.01 - 

-- File Created; Basic\Classical Operation Implemented 

-- 

-- 

-- Additional Comments: 

-- 

-- 

---------------------------------------------------------------------------------- 
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LIBRARY IEEE; 

USE IEEE.std_logic_1164.ALL; 

USE ieee.std_logic_unsigned.ALL; 

USE ieee.numeric_std.ALL; 

ENTITY Bus_Master IS 

 PORT ( 

  clk : IN STD_LOGIC; 

  rst : IN STD_LOGIC; 

  Data : INOUT STD_LOGIC_VECTOR (15 DOWNTO 0); 

  Addr : IN STD_LOGIC_VECTOR (15 DOWNTO 0); 

  Xrqst : IN STD_LOGIC; 

  XDat : OUT STD_LOGIC; 

  YDat : IN STD_LOGIC; 

  BusRqst : IN STD_LOGIC_VECTOR (9 DOWNTO 0); 

  BusCtrl : OUT STD_LOGIC_VECTOR (9 DOWNTO 0)); 

END Bus_Master; 

ARCHITECTURE Behavioral OF Bus_Master IS 

 TYPE state_type IS (S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11); 

 SIGNAL CS, NS : state_type; 

 --Signals for Mem1 

 SIGNAL Mem1_wea : STD_LOGIC := '0'; 

 SIGNAL Mem1_rst : STD_LOGIC := '0'; 

 SIGNAL Mem1_addra : STD_LOGIC_VECTOR(15 DOWNTO 0) := (OTHERS => '0'); 

 SIGNAL Mem1_dina, Mem1_douta : STD_LOGIC_VECTOR(15 DOWNTO 0) := 

(OTHERS => '0'); 

 SIGNAL clk_en : STD_LOGIC := '1'; 

 --Signals for Registers 

 SIGNAL LD_Addr, LD_Data, LD_BusCtrl : Std_Logic := '0'; 

 SIGNAL BusCtrl_Temp : STD_LOGIC_VECTOR(9 DOWNTO 0) := (OTHERS => '0'); 

 --declare SPRAM 

 COMPONENT SPRAM 

  PORT ( 

   Clock : IN std_logic; 

   ClockEn : IN std_logic; 

   Reset : IN std_logic; 

   WE : IN std_logic; 

   Address : IN std_logic_vector(9 DOWNTO 0); 

   Data : IN std_logic_vector(15 DOWNTO 0); 

   Q : OUT std_logic_vector(15 DOWNTO 0) 

  ); 

 END COMPONENT; 

BEGIN 

 --Instantiate SPRAM_16bx1024 

 Mem1 : SPRAM PORT MAP( 

  Clock => clk, 

  ClockEn => clk_en, 
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  Reset => Mem1_rst, 

  WE => Mem1_wea, 

  Address => Mem1_addra(9 DOWNTO 0), 

  Data => Mem1_dina, 

  Q => Mem1_douta 

 ); 

 ----Registers 

 Reg_Proc : PROCESS 

 BEGIN 

  WAIT UNTIL clk'event AND clk = '1'; 

  IF rst = '0' THEN 

   Mem1_addra <= (OTHERS => '0'); 

   Mem1_dina <= (OTHERS => '0'); 

   BusCtrl <= (OTHERS => '0'); 

  ELSE 

   IF (LD_Addr = '1') THEN 

    Mem1_addra <= Addr; 

   END IF; --Register for reading input address 

   IF (LD_Data = '1') THEN 

    Mem1_dina <= Data; 

   END IF; --Register for writing input data 

   IF (LD_BusCtrl = '1') THEN 

    BusCtrl <= BusCtrl_Temp; 

   END IF; 

  END IF; 

 END PROCESS; 

 ----End Registers 

 ----Next State Logic Bus Control 

 NS_Bus_Ctrl : PROCESS (CS, BusRqst, XRqst, YDat, Mem1_douta) 

 BEGIN 

  ----Default States to remove latches 

  Data <= (OTHERS => 'Z'); 

  XDat <= '0'; 

  BusCtrl_Temp <= (OTHERS => '0'); 

  LD_BusCtrl <= '0'; 

  NS <= S0; 

  Mem1_wea <= '0'; 

  LD_Addr <= '0'; 

  LD_Data <= '0'; 

  clk_en <= '1'; 

  CASE CS IS 

   WHEN S0 => -- Waits until a request is made. 

    IF (BusRqst > 0) THEN 

     NS <= S1; 

    ELSE 

     NS <= S0; 
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    END IF; 

   WHEN S1 => -- Grant Control of the Bus (Priority Encoder) 

    IF (BusRqst(0) = '1') THEN 

     BusCtrl_Temp(0) <= '1'; 

    ELSIF (BusRqst(1) = '1') THEN 

     BusCtrl_Temp(1) <= '1'; 

    ELSIF (BusRqst(2) = '1') THEN 

     BusCtrl_Temp(2) <= '1'; 

    ELSIF (BusRqst(3) = '1') THEN 

     BusCtrl_Temp(3) <= '1'; 

    ELSIF (BusRqst(4) = '1') THEN 

     BusCtrl_Temp(4) <= '1'; 

    ELSIF (BusRqst(5) = '1') THEN 

     BusCtrl_Temp(5) <= '1'; 

    ELSIF (BusRqst(6) = '1') THEN 

     BusCtrl_Temp(6) <= '1'; 

    ELSIF (BusRqst(7) = '1') THEN 

     BusCtrl_Temp(7) <= '1'; 

    ELSIF (BusRqst(8) = '1') THEN 

     BusCtrl_Temp(8) <= '1'; 

    ELSIF (BusRqst(9) = '1') THEN 

     BusCtrl_Temp(9) <= '1'; 

    END IF; 

    LD_BusCtrl <= '1'; 

    NS <= S2; 

   WHEN S2 => -- Bus Control granted. Wait until Read or Write Request. 

    IF (XRqst = '1') THEN --Active High--Active Low because of 

pull-ups for internal tristate 

     NS <= S3; 

    ELSIF (YDat = '1') THEN --Active High--Active Low because of 

pull-ups for internal tristate 

     NS <= S5; 

    ELSE 

     NS <= S2; 

    END IF; 

    LD_Addr <= '1'; 

    LD_Data <= '1'; 

   WHEN S3 => --(Read Operation) Send Data 

    NS <= S4; 

   WHEN S4 => --(Read Operation) Send Data 

    data <= Mem1_douta; 

    Xdat <= '1'; --Active High 

    NS <= S6; 

   WHEN S5 => --(Write Operation) Receive Data 

    Mem1_wea <= '1'; 

    NS <= S6; 
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   WHEN S6 => 

    LD_BusCtrl <= '1'; 

    NS <= S0; 

   WHEN OTHERS => 

    NS <= S0; 

  END CASE; 

 END PROCESS; 

 ----End Next State Logic for Bus Interface 

 ----State Sync 

 sync_States : PROCESS 

 BEGIN 

  WAIT UNTIL clk'event AND clk = '1'; 

  IF rst = '0' THEN 

   Mem1_rst <= '1'; --reset Memory 

   CS <= S0; 

  ELSE 

   Mem1_rst <= '0'; 

   CS <= NS; 

  END IF; 

 END PROCESS; 

 ----End State Sync 

END Behavioral; 

--##################################RS232 USR 

INT##########################################################################

####### 

LIBRARY IEEE; 

USE IEEE.std_logic_1164.ALL; 

USE IEEE.std_logic_unsigned.ALL; 

USE IEEE.numeric_std.ALL; 

USE IEEE.std_logic_arith.ALL; 

ENTITY RS232_Usr_Int IS 

 GENERIC ( 

  Baud : INTEGER := 9600; --9,600 bps 

  clk_in : INTEGER := 24930000); --24.93MHz 

 PORT ( 

  clk : IN STD_LOGIC; 

  rst : IN STD_LOGIC; 

  rs232_rcv : IN STD_LOGIC; 

  rs232_xmt : OUT STD_LOGIC; 

  Data : INOUT std_logic_vector(15 DOWNTO 0); 

  Addr : OUT std_logic_vector(15 DOWNTO 0); 

  Xrqst : OUT std_logic; 

  XDat : IN std_logic; 

  YDat : OUT std_logic; 

  BusRqst : OUT std_logic; 

  BusCtrl : IN std_logic 
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 ); 

END RS232_Usr_Int; 

ARCHITECTURE Behavioral OF RS232_Usr_Int IS 

 TYPE state_type IS (S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, 

S15, S16, S17, S18, S19, S20); 

 SIGNAL CS_RS232_R, NS_RS232_R, CS_RS232_W, NS_RS232_W, CS_FIFO_Bus, 

NS_FIFO_Bus : state_type; 

 SIGNAL rx_done, tx_done : STD_LOGIC := '0'; 

 SIGNAL temp_rcv : STD_LOGIC_VECTOR(7 DOWNTO 0) := (OTHERS => '0'); 

 SIGNAL i, j : STD_LOGIC_VECTOR (15 DOWNTO 0) := (OTHERS => '0'); 

 SIGNAL uartclk : STD_LOGIC := '0'; 

 SIGNAL u : INTEGER; 

 SIGNAL rs232_rcv_s, rs232_rcv_t : STD_LOGIC := '1'; 

 SIGNAL txbuff : STD_LOGIC_VECTOR(9 DOWNTO 0) := (OTHERS => '1'); --buff 

used to transmit 1 bytes with start and stop bits 

 --Declare Signals for FIFO Serial Read 

 SIGNAL STD_FIFO_R_WriteEn, STD_FIFO_R_ReadEn : STD_LOGIC := '0'; 

 SIGNAL STD_FIFO_R_DataIn, STD_FIFO_R_DataOut : STD_LOGIC_VECTOR(7 

DOWNTO 0) := (OTHERS => '0'); 

 SIGNAL STD_FIFO_R_Empty, STD_FIFO_R_Full : STD_LOGIC := '0'; 

 --Declare Signals for FIFO Serial Write 

 SIGNAL STD_FIFO_W_WriteEn, STD_FIFO_W_ReadEn : STD_LOGIC := '0'; 

 SIGNAL STD_FIFO_W_DataIn, STD_FIFO_W_DataOut : STD_LOGIC_VECTOR(7 

DOWNTO 0) := (OTHERS => '0'); 

 SIGNAL STD_FIFO_W_Empty, STD_FIFO_W_Full : STD_LOGIC := '0'; 

 --Declare Signals for Bus Interface 

 SIGNAL Bus_Int1_WE, Bus_Int1_RE, Bus_Int1_Busy : STD_LOGIC := '0'; 

 SIGNAL Bus_Int1_DataIn, Bus_Int1_DataOut, Bus_Int1_AddrIn : 

STD_LOGIC_VECTOR(15 DOWNTO 0) := (OTHERS => '0'); 

 --Declare Signals for Registers 

 SIGNAL LD_busy, LD_busy2, LD_rx, LD_tx, LD_temp_data, LD_temp2 : 

STD_LOGIC := '0'; 

 SIGNAL LD_Temp_Addr_High, LD_Temp_Addr_Low, LD_Temp_Data_High : 

STD_LOGIC := '0'; 

 SIGNAL LD_Temp_Data_Low, ld_temp_cmd : STD_LOGIC := '0'; 

 SIGNAL busy, busy_reg_o, busy2, busy2_reg_o, rx, rx_reg_o, tx, tx_reg_o : 

STD_LOGIC := '0'; 

 SIGNAL temp_data_reg_o, temp_data : STD_LOGIC_VECTOR(15 DOWNTO 0) := 

(OTHERS => '0'); 

 SIGNAL temp2_reg_o, temp2 : STD_LOGIC_VECTOR(7 DOWNTO 0) := (OTHERS 

=> '0'); 

 SIGNAL Temp_Addr_High_reg_o, Temp_Addr_High : STD_LOGIC_VECTOR(7 

DOWNTO 0) := (OTHERS => '0'); 

 SIGNAL Temp_Addr_Low_reg_o, Temp_Addr_Low : STD_LOGIC_VECTOR(7 

DOWNTO 0) := (OTHERS => '0'); 
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 SIGNAL Temp_Data_High_reg_o, Temp_Data_High : STD_LOGIC_VECTOR(7 

DOWNTO 0) := (OTHERS => '0'); 

 SIGNAL Temp_Data_Low_reg_o, Temp_Data_Low : STD_LOGIC_VECTOR(7 

DOWNTO 0) := (OTHERS => '0'); 

 SIGNAL Temp_Cmd_reg_o, Temp_Cmd : STD_LOGIC_VECTOR(7 DOWNTO 0) := 

(OTHERS => '0'); 

 ----User defined variables 

 -- CM is the Clock Divder 25MHz/CM=115,200 Baud 

 CONSTANT CM : INTEGER := clk_in/Baud; 

 -- CN is the read offset for serial input 

 CONSTANT CN : INTEGER := CM/2; 

 ----End User defined variables 

 --declare STD_FIFO 

 COMPONENT STD_FIFO 

  GENERIC ( 

   DATA_WIDTH : INTEGER; -- Width of FIFO 

   FIFO_DEPTH : INTEGER; -- Depth of FIFO 

   FIFO_ADDR_LEN : INTEGER -- Required number of bits to represent 

FIFO_Depth 

  ); 

  PORT ( 

   CLK : IN STD_LOGIC; 

   RST : IN STD_LOGIC; 

   WriteEn : IN STD_LOGIC; 

   DataIn : IN STD_LOGIC_VECTOR (7 DOWNTO 0); 

   ReadEn : IN STD_LOGIC; 

   DataOut : OUT STD_LOGIC_VECTOR (7 DOWNTO 0); 

   Empty : OUT STD_LOGIC; 

   Full : OUT STD_LOGIC 

  ); 

 END COMPONENT; 

 --declare Bus Interface 

 COMPONENT Bus_Int 

  PORT ( 

   clk : IN std_logic; 

   rst : IN std_logic; 

   DataIn : IN std_logic_vector(15 DOWNTO 0); 

   DataOut : OUT std_logic_vector(15 DOWNTO 0); 

   AddrIn : IN std_logic_vector(15 DOWNTO 0); 

   WE : IN std_logic; 

   RE : IN std_logic; 

   Busy : OUT std_logic; 

   Data : INOUT std_logic_vector(15 DOWNTO 0); 

   Addr : OUT std_logic_vector(15 DOWNTO 0); 

   Xrqst : OUT std_logic; 

   XDat : IN std_logic; 
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   YDat : OUT std_logic; 

   BusRqst : OUT std_logic; 

   BusCtrl : IN std_logic 

  ); 

 END COMPONENT; 

BEGIN 

 --Instantiate STD_FIFO for Reading Serial Data 

 STD_FIFO_R : STD_FIFO 

 GENERIC MAP 

 ( 

  DATA_WIDTH => 8, -- Width of FIFO 

  FIFO_DEPTH => 512, -- Depth of FIFO 

  FIFO_ADDR_LEN => 9 -- Required number of bits to represent FIFO_Depth 

 ) 

 PORT MAP 

 ( 

  CLK => clk, 

  RST => rst, 

  WriteEn => STD_FIFO_R_WriteEn, 

  DataIn => STD_FIFO_R_DataIn, 

  ReadEn => STD_FIFO_R_ReadEn, 

  DataOut => STD_FIFO_R_DataOut, 

  Empty => STD_FIFO_R_Empty, 

  Full => STD_FIFO_R_Full 

 ); 

 --Instantiate STD_FIFO for Writing Serial Data 

 STD_FIFO_W : STD_FIFO 

 GENERIC MAP 

 ( 

  DATA_WIDTH => 8, -- Width of FIFO 

  FIFO_DEPTH => 512, -- Depth of FIFO 

  FIFO_ADDR_LEN => 9 -- Required number of bits to represent FIFO_Depth 

 ) 

 PORT MAP( 

  CLK => clk, 

  RST => rst, 

  WriteEn => STD_FIFO_W_WriteEn, 

  DataIn => STD_FIFO_W_DataIn, 

  ReadEn => STD_FIFO_W_ReadEn, 

  DataOut => STD_FIFO_W_DataOut, 

  Empty => STD_FIFO_W_Empty, 

  Full => STD_FIFO_W_Full 

 ); 

 --Instantiate Bus Interface 

 Bus_Int1 : Bus_Int PORT MAP( 

  clk => clk, 



 

93 

 

  rst => rst, 

  DataIn => Bus_Int1_DataIn, 

  DataOut => Bus_Int1_DataOut, 

  AddrIn => Bus_Int1_AddrIn, 

  WE => Bus_Int1_WE, 

  RE => Bus_Int1_RE, 

  Busy => Bus_Int1_Busy, 

  Data => Data, 

  Addr => Addr, 

  Xrqst => Xrqst, 

  XDat => XDat, 

  YDat => YDat, 

  BusRqst => BusRqst, 

  BusCtrl => BusCtrl 

 ); 

 ----Registers 

 Reg_Proc : PROCESS 

 BEGIN 

  WAIT UNTIL clk'event AND clk = '1'; 

  IF rst = '0' THEN 

   busy_reg_o <= '0'; 

   busy2_reg_o <= '0'; 

   rx_reg_o <= '0'; 

   tx_reg_o <= '0'; 

   temp_data_reg_o <= (OTHERS => '0'); 

   temp2_reg_o <= (OTHERS => '0'); 

   Temp_Addr_High_reg_o <= (OTHERS => '0'); 

   Temp_Addr_Low_reg_o <= (OTHERS => '0'); 

   Temp_Data_High_reg_o <= (OTHERS => '0'); 

   Temp_Data_Low_reg_o <= (OTHERS => '0'); 

   Temp_Cmd_reg_o <= (OTHERS => '0'); 

  ELSE 

   IF (LD_busy = '1') THEN 

    busy_reg_o <= busy; 

   END IF; 

   IF (LD_busy2 = '1') THEN 

    busy2_reg_o <= busy2; 

   END IF; 

   IF (LD_rx = '1') THEN 

    rx_reg_o <= rx; 

   END IF; 

   IF (LD_tx = '1') THEN 

    tx_reg_o <= tx; 

   END IF; 

   IF (LD_temp_data = '1') THEN 

    temp_data_reg_o <= temp_data; 
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   END IF; 

   IF (LD_temp2 = '1') THEN 

    temp2_reg_o <= temp2; 

   END IF; 

   IF (LD_Temp_Addr_High = '1') THEN 

    Temp_Addr_High_reg_o <= Temp_Addr_High; 

   END IF; 

   IF (LD_Temp_Addr_Low = '1') THEN 

    Temp_Addr_Low_reg_o <= Temp_Addr_Low; 

   END IF; 

   IF (LD_Temp_Data_High = '1') THEN 

    Temp_Data_High_reg_o <= Temp_Data_High; 

   END IF; 

   IF (LD_Temp_Data_Low = '1') THEN 

    Temp_Data_Low_reg_o <= Temp_Data_Low; 

   END IF; 

   IF (LD_Temp_Cmd = '1') THEN 

    Temp_Cmd_reg_o <= Temp_Cmd; 

   END IF; 

  END IF; 

 END PROCESS; 

 ----End Registers 

 ----Next State Logic for Serial Interface Read 

 NSL_RS232_R : PROCESS (CS_RS232_R, rs232_rcv_s, rx_done, STD_FIFO_R_Full, 

temp_rcv) 

 BEGIN 

  ----Default States to remove latches 

  busy <= '0'; 

  rx <= '0'; 

  NS_RS232_R <= S0; 

  LD_busy <= '0'; 

  LD_rx <= '0'; 

  --Signals for FIFO 

  STD_FIFO_R_WriteEn <= '0'; 

  STD_FIFO_R_DataIn <= (OTHERS => '0'); 

  CASE CS_RS232_R IS 

   WHEN S0 => -- Waits until data is detected on rs232_rcv_s. 

    IF (rs232_rcv_s = '1') THEN 

     NS_RS232_R <= S0; 

    ELSE 

     NS_RS232_R <= S1; 

    END IF; 

    busy <= '0'; -- the busy signal stops the baud generator 

    rx <= '0'; -- signals to stop reading data 

    LD_rx <= '1'; 

    LD_busy <= '1'; 
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   WHEN S1 => -- Starts the baud rate generator and reading 

    NS_RS232_R <= S2; 

    busy <= '1'; -- the busy signal starts the baud generator 

    rx <= '1'; -- signals to start reading data 

    LD_rx <= '1'; 

    LD_busy <= '1'; 

   WHEN S2 => -- Waits until all data is read 

    IF (rx_done = '0') THEN 

     NS_RS232_R <= S2; 

    ELSE 

     NS_RS232_R <= S3; 

    END IF; 

   WHEN S3 => 

    IF (STD_FIFO_R_Full = '0') THEN 

     STD_FIFO_R_DataIn <= temp_rcv; 

     STD_FIFO_R_WriteEn <= '1'; 

    END IF; 

    NS_RS232_R <= S0; 

   WHEN OTHERS => 

    NS_RS232_R <= S0; 

  END CASE; 

 END PROCESS; 

 ----End Next State Logic for Serial Interface Read 

 ----Next State Logic for Serial Interface Write 

 NSL_RS232_W : PROCESS (CS_RS232_W, tx_done, STD_FIFO_W_Empty, 

STD_FIFO_W_DataOut) 

 BEGIN 

  ----Default States to remove latches 

  tx <= '0'; 

  NS_RS232_W <= S0; 

  temp2 <= (OTHERS => '0'); 

  LD_tx <= '0'; 

  LD_temp2 <= '0'; 

  Busy2 <= '0'; 

  LD_Busy2 <= '0'; 

  --Signals for FIFO 

  STD_FIFO_W_ReadEn <= '0'; 

  CASE CS_RS232_W IS 

   WHEN S0 => 

    IF (STD_FIFO_W_Empty = '1') THEN 

     NS_RS232_W <= S0; 

    ELSE 

     NS_RS232_W <= S1; 

     STD_FIFO_W_ReadEn <= '1'; 

    END IF; 

    busy2 <= '0'; -- the busy signal stops the baud generator 
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    tx <= '0'; -- signals to stop sending data 

    LD_tx <= '1'; 

    LD_busy2 <= '1'; 

   WHEN S1 => 

    temp2 <= STD_FIFO_W_DataOut; 

    LD_temp2 <= '1'; 

    NS_RS232_W <= S2; 

   WHEN S2 => 

    busy2 <= '1'; -- the busy signal starts the baud generator 

    tx <= '1'; -- signals to start sending data 

    LD_tx <= '1'; 

    LD_busy2 <= '1'; 

    NS_RS232_W <= S3; 

   WHEN S3 => 

    IF (tx_done = '0') THEN 

     NS_RS232_W <= S3; 

    ELSE 

     NS_RS232_W <= S0; 

    END IF; 

   WHEN OTHERS => 

    NS_RS232_W <= S0; 

  END CASE; 

 END PROCESS; 

 ----End Next State Logic for Serial Interface Write 

 ----Next State Logic for FIFO to Bus 

 NSL_FIFO_Bus : PROCESS (CS_FIFO_Bus, STD_FIFO_R_Empty, Temp_Cmd_reg_o, 

Bus_Int1_Busy, STD_FIFO_R_DataOut, Temp_Addr_High_reg_o, Temp_Addr_Low_reg_o, 

Temp_Data_High_reg_o, Temp_Data_Low_reg_o, Bus_Int1_DataOut, temp_data_reg_o) 

 BEGIN 

  ----Default States to remove latches 

  NS_FIFO_Bus <= S0; 

  Temp_Cmd <= (OTHERS => '0'); 

  LD_Temp_Cmd <= '0'; 

  Temp_Addr_High <= (OTHERS => '0'); 

  LD_Temp_Addr_High <= '0'; 

  Temp_Addr_Low <= (OTHERS => '0'); 

  LD_Temp_Addr_Low <= '0'; 

  Bus_Int1_AddrIn <= (OTHERS => '0'); 

  Bus_Int1_RE <= '0'; 

  Bus_Int1_DataIn <= (OTHERS => '0'); 

  Bus_Int1_WE <= '0'; 

  Temp_Data <= (OTHERS => '0'); 

  LD_Temp_Data <= '0'; 

  Temp_Data_High <= (OTHERS => '0'); 

  LD_Temp_Data_High <= '0'; 

  Temp_Data_High <= (OTHERS => '0'); 
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  Temp_Data_Low <= (OTHERS => '0'); 

  LD_Temp_Data_Low <= '0'; 

  --Signals for FIFO 

  STD_FIFO_R_ReadEn <= '0'; 

  STD_FIFO_W_DataIn <= (OTHERS => '0'); 

  STD_FIFO_W_WriteEn <= '0'; 

  CASE CS_FIFO_Bus IS 

   WHEN S0 => 

    IF (STD_FIFO_R_Empty = '1') THEN --Check to see if 

commands are in queue 

     NS_FIFO_Bus <= S0; 

    ELSE 

     NS_FIFO_Bus <= S1; 

     STD_FIFO_R_ReadEn <= '1'; --Assert Read Signal for 

FIFO 

    END IF; 

   WHEN S1 => --Read Command from FIFO 

    Temp_Cmd <= STD_FIFO_R_DataOut; 

    LD_Temp_Cmd <= '1'; 

    NS_FIFO_Bus <= S2; 

   WHEN S2 => 

    IF (STD_FIFO_R_Empty = '1') THEN --Check to see if 

commands are in queue 

     NS_FIFO_Bus <= S2; 

    ELSE 

     NS_FIFO_Bus <= S3; 

     STD_FIFO_R_ReadEn <= '1'; --Assert Read Signal for 

FIFO 

    END IF; 

   WHEN S3 => --Read Address_High from FIFO 

    Temp_Addr_High <= STD_FIFO_R_DataOut; 

    LD_Temp_Addr_High <= '1'; 

    NS_FIFO_Bus <= S4; 

   WHEN S4 => 

    IF (STD_FIFO_R_Empty = '1') THEN --Check to see if 

commands are in queue 

     NS_FIFO_Bus <= S4; 

    ELSE 

     NS_FIFO_Bus <= S5; 

     STD_FIFO_R_ReadEn <= '1'; 

    END IF; 

   WHEN S5 => --Read Address_Low from FIFO 

    Temp_Addr_Low <= STD_FIFO_R_DataOut; 

    LD_Temp_Addr_Low <= '1'; 

    NS_FIFO_Bus <= S6; 

   WHEN S6 => 
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    IF (Temp_Cmd_reg_o = X"70") THEN --Check Cmd (Read) 

     NS_FIFO_Bus <= S7; 

    ELSIF (Temp_Cmd_reg_o = X"71") THEN --Check Cmd (Write) 

     NS_FIFO_Bus <= S15; 

    ELSE --Check Cmd (Invalid Data) 

     NS_FIFO_Bus <= S0; 

    END IF; 

    --Read from Bus and Write to RS232 FIFO 

   WHEN S7 => 

    Bus_Int1_AddrIn(15 DOWNTO 8) <= Temp_Addr_High_reg_o; -

-Send Address to Bus Interface for Read 

    Bus_Int1_AddrIn(7 DOWNTO 0) <= Temp_Addr_Low_reg_o; --

Send Address to Bus Interface for Read 

    Bus_Int1_RE <= '1'; --Read Flag to Bus Interface 

    NS_FIFO_Bus <= S8; 

   WHEN S8 => --Wait until data is ready 

    IF (Bus_Int1_Busy = '1') THEN 

     NS_FIFO_Bus <= S8; 

    ELSE 

     NS_FIFO_Bus <= S9; 

    END IF; 

    Temp_Data <= Bus_Int1_DataOut; 

    LD_Temp_Data <= '1'; 

   WHEN S9 => --Form First byte of Packet(Start Deliminator) 

    STD_FIFO_W_DataIn <= X"7E"; 

    STD_FIFO_W_WriteEn <= '1'; 

    NS_FIFO_Bus <= S10; 

   WHEN S10 => --Form Second byte of Packet(Address_High) 

    STD_FIFO_W_DataIn <= Temp_Addr_High_reg_o; 

    STD_FIFO_W_WriteEn <= '1'; 

    NS_FIFO_Bus <= S11; 

   WHEN S11 => --Form Third byte of Packet(Address_Low) 

    STD_FIFO_W_DataIn <= Temp_Addr_Low_reg_o; 

    STD_FIFO_W_WriteEn <= '1'; 

    NS_FIFO_Bus <= S12; 

   WHEN S12 => --Form Fourth byte of Packet(Data_High) 

    STD_FIFO_W_DataIn <= Temp_Data_reg_o(15 DOWNTO 8); 

    STD_FIFO_W_WriteEn <= '1'; 

    NS_FIFO_Bus <= S13; 

   WHEN S13 => --Form Fifth byte of Packet(Data_Low) 

    STD_FIFO_W_DataIn <= Temp_Data_reg_o(7 DOWNTO 0); 

    STD_FIFO_W_WriteEn <= '1'; 

    NS_FIFO_Bus <= S0; 

    --End Read from Bus and Write to RS232 FIFO 

    --Write to Bus from RS232 FIFO 

   WHEN S15 => 
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    IF (STD_FIFO_R_Empty = '1') THEN --Check to see if 

commands are in queue 

     NS_FIFO_Bus <= S15; 

    ELSE 

     NS_FIFO_Bus <= S16; 

     STD_FIFO_R_ReadEn <= '1'; 

    END IF; 

   WHEN S16 => --Read Data_High from FIFO 

    Temp_Data_High <= STD_FIFO_R_DataOut; 

    LD_Temp_Data_High <= '1'; 

    NS_FIFO_Bus <= S17; 

   WHEN S17 => 

    IF (STD_FIFO_R_Empty = '1') THEN --Check to see if 

commands are in queue 

     NS_FIFO_Bus <= S17; 

    ELSE 

     NS_FIFO_Bus <= S18; 

     STD_FIFO_R_ReadEn <= '1'; 

    END IF; 

   WHEN S18 => --Read Data_Low from FIFO 

    Temp_Data_Low <= STD_FIFO_R_DataOut; 

    LD_Temp_Data_Low <= '1'; 

    NS_FIFO_Bus <= S19; 

   WHEN S19 => 

    Bus_Int1_AddrIn(15 DOWNTO 8) <= Temp_Addr_High_reg_o; -

-Send Address to Bus Interface for Write 

    Bus_Int1_AddrIn(7 DOWNTO 0) <= Temp_Addr_Low_reg_o; --

Send Address to Bus Interface for Write 

    Bus_Int1_DataIn(15 DOWNTO 8) <= Temp_Data_High_reg_o; --

Send Data to Bus Interface for Write 

    Bus_Int1_DataIn(7 DOWNTO 0) <= Temp_Data_Low_reg_o; --

Send Data to Bus Interface for Write 

    Bus_Int1_WE <= '1'; --Write Flag to Bus Interface 

    NS_FIFO_Bus <= S20; 

   WHEN S20 => --Wait until data is ready 

    IF (Bus_Int1_Busy = '1') THEN 

     NS_FIFO_Bus <= S20; 

    ELSE 

     NS_FIFO_Bus <= S0; 

    END IF; 

    --End Write to Bus from RS232 FIFO 

   WHEN OTHERS => 

    NS_FIFO_Bus <= S0; 

  END CASE; 

 END PROCESS; 

 ----End Next State Logic for FIFO to Bus 
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 ----UART Clock Divider 

 UART_Clk : PROCESS 

 BEGIN 

  WAIT UNTIL clk'event AND clk = '1'; 

  --Synchronize async signal 

  rs232_rcv_t <= rs232_rcv; --Synchro1 rs232_rcv 

  rs232_rcv_s <= rs232_rcv_t; --Synchro2 rs232_rcv 

  IF (rst = '0' OR (busy_reg_o = '0' AND busy2_reg_o = '0')) THEN 

   uartclk <= '0'; 

   i <= CONV_STD_LOGIC_VECTOR(CN, 16); 

  ELSIF (i = CM) THEN 

   uartclk <= '1'; 

   i <= X"0000"; 

  ELSE 

   i <= i + 1; 

   uartclk <= '0'; 

  END IF; 

 END PROCESS; 

 ---- End UART Clock Divider 

 ----UART_Read 

 UART_Read : PROCESS 

 BEGIN 

  WAIT UNTIL clk'event AND clk = '1'; 

  IF rst = '0' OR rx_reg_o = '0' THEN 

   temp_rcv <= x"00"; 

   j <= x"0000"; 

   rx_done <= '0'; 

  ELSIF rx_reg_o = '1' THEN 

   IF uartclk = '1' THEN 

    IF j < X"09" THEN 

     temp_rcv(7) <= rs232_rcv_s; 

     temp_rcv(6 DOWNTO 0) <= temp_rcv(7 DOWNTO 1); 

     j <= j + 1; 

     rx_done <= '0'; 

    ELSE 

     j <= X"0000"; 

     rx_done <= '1'; 

    END IF; 

   ELSE 

    rx_done <= '0'; 

   END IF; 

  END IF; 

 END PROCESS; 

 ----End UART_Read 

 -----UART_Xmit 

 UART_Xmit : PROCESS 
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 BEGIN 

  WAIT UNTIL clk'event AND clk = '1'; 

  IF (rst = '0' OR tx_reg_o = '0') THEN 

   rs232_xmt <= '1'; 

   tx_done <= '0'; 

   u <= 0; 

   --structure the 10-bit frame to be sent 

   txbuff(9) <= '1'; --stopbit 2 

   txbuff(8 DOWNTO 1) <= temp2_reg_o; 

   txbuff(0) <= '0'; --startbit 2 

  ELSE 

   IF uartclk = '1' THEN 

    IF (u < 10) THEN 

     rs232_xmt <= txbuff(0); 

     txbuff(8 DOWNTO 0) <= txbuff(9 DOWNTO 1); 

     tx_done <= '0'; 

     u <= u + 1; 

    ELSE 

     u <= 0; 

     tx_done <= '1'; 

    END IF; 

   END IF; 

  END IF; 

 END PROCESS; 

 -----End UART_Xmit 

 ----State Sync 

 sync_States : PROCESS 

 BEGIN 

  WAIT UNTIL clk'event AND clk = '1'; 

  IF rst = '0' THEN 

   CS_RS232_R <= S0; 

   CS_RS232_W <= S0; 

   CS_FIFO_Bus <= S0; 

  ELSE 

   CS_RS232_R <= NS_RS232_R; 

   CS_RS232_W <= NS_RS232_W; 

   CS_FIFO_Bus <= NS_FIFO_Bus; 

  END IF; 

 END PROCESS; 

 ----End State Sync 

END Behavioral; 

--#####################################LED 

Controller############################################### 

LIBRARY IEEE; 

USE IEEE.STD_LOGIC_1164.ALL; 

USE IEEE.STD_LOGIC_ARITH.ALL; 
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USE IEEE.STD_LOGIC_UNSIGNED.ALL; 

USE ieee.numeric_std.ALL; 

ENTITY LED_Ctrl IS 

 GENERIC ( 

  Addr_LED_En : STD_LOGIC_VECTOR(15 DOWNTO 0) := X"0100"; --Enable 

LED Outputs (LSB) 

  Addr_LED_Freq : STD_LOGIC_VECTOR(15 DOWNTO 0) := X"0101"; --LED 

Blink Frequency 

  Addr_LED_PW : STD_LOGIC_VECTOR(15 DOWNTO 0) := X"0102"; --LED 

Pulse Width (On-Time) 

  Addr_LED1_DC : STD_LOGIC_VECTOR(15 DOWNTO 0) := X"0103"; --

LED1 PWM Duty Cycle 

  Addr_LED2_DC : STD_LOGIC_VECTOR(15 DOWNTO 0) := X"0104"; --

LED2 PWM Duty Cycle 

  Addr_LED3_DC : STD_LOGIC_VECTOR(15 DOWNTO 0) := X"0105"; --

LED3 PWM Duty Cycle 

  Addr_LED4_DC : STD_LOGIC_VECTOR(15 DOWNTO 0) := X"0106"; --

LED4 PWM Duty Cycle 

  Addr_LED5_DC : STD_LOGIC_VECTOR(15 DOWNTO 0) := X"0107"; --

LED5 PWM Duty Cycle 

  Addr_LED6_DC : STD_LOGIC_VECTOR(15 DOWNTO 0) := X"0108"; --

LED6 PWM Duty Cycle 

  Addr_LED7_DC : STD_LOGIC_VECTOR(15 DOWNTO 0) := X"0109"; --

LED7 PWM Duty Cycle 

  Addr_LED8_DC : STD_LOGIC_VECTOR(15 DOWNTO 0) := X"010A" --

LED8 PWM Duty Cycle 

 ); 

 PORT ( 

  clk : IN STD_LOGIC; 

  rst : IN STD_LOGIC; 

  Data : INOUT std_logic_vector(15 DOWNTO 0); 

  Addr : OUT std_logic_vector(15 DOWNTO 0); 

  Xrqst : OUT std_logic; 

  XDat : IN std_logic; 

  YDat : OUT std_logic; 

  BusRqst : OUT std_logic; 

  BusCtrl : IN std_logic; 

  LED1_Out : OUT STD_LOGIC 

 ); 

END LED_Ctrl; 

ARCHITECTURE Behavioral OF LED_Ctrl IS 

 TYPE state_type IS (S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, 

S15, S16, S17); 

 SIGNAL CS_Bus, NS_Bus, CS_Blink, NS_Blink : state_type; 

 --declare Std_Counter Component 

 COMPONENT Std_Counter IS 
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  GENERIC ( 

   Width : INTEGER --width of counter 

  ); 

  PORT ( 

   INC, rst, clk : IN std_logic; 

   Count : OUT STD_LOGIC_VECTOR(Width - 1 DOWNTO 0)); 

 END COMPONENT; 

 --Declare PWM 

 COMPONENT PWM_16b IS 

  GENERIC ( 

   Freq_in : INTEGER; --Clk 

   Max_PWM : INTEGER; --PWM Resolution (2^16-1) 

   Freq_Sw : INTEGER --Switching Freq 

  ); 

  PORT ( 

   clk : IN std_logic; 

   rst : IN std_logic; 

   DC : IN std_logic_vector(15 DOWNTO 0); 

   Phase : IN std_logic_vector(15 DOWNTO 0); 

   En : IN std_logic; 

   PWM_Out : OUT std_logic 

  ); 

 END COMPONENT; 

 --declare Bus Interface 

 COMPONENT Bus_Int 

  PORT ( 

   clk : IN std_logic; 

   rst : IN std_logic; 

   DataIn : IN std_logic_vector(15 DOWNTO 0); 

   DataOut : OUT std_logic_vector(15 DOWNTO 0); 

   AddrIn : IN std_logic_vector(15 DOWNTO 0); 

   WE : IN std_logic; 

   RE : IN std_logic; 

   Busy : OUT std_logic; 

   Data : INOUT std_logic_vector(15 DOWNTO 0); 

   Addr : OUT std_logic_vector(15 DOWNTO 0); 

   Xrqst : OUT std_logic; 

   XDat : IN std_logic; 

   YDat : OUT std_logic; 

   BusRqst : OUT std_logic; 

   BusCtrl : IN std_logic 

  ); 

 END COMPONENT; 

 ----Signals 



 

104 

 

 SIGNAL PWM_En, PWM_Freq, PWM_PW, PWM1_DC, PWM2_DC, PWM3_DC, 

PWM4_DC : STD_LOGIC_VECTOR(15 DOWNTO 0) := X"0000"; --Set initial Duty Cycles to 

0 

 SIGNAL PWM1_En, PWM2_En, PWM3_En, PWM4_En : STD_LOGIC := '0'; 

 CONSTANT PWM1_Phase : STD_LOGIC_VECTOR(15 DOWNTO 0) := X"0000"; --

Set Phase shift for PWM1 to 0 

 CONSTANT PWM2_Phase : STD_LOGIC_VECTOR(15 DOWNTO 0) := X"0000"; --

Set Phase shift for PWM2 to 0 

 CONSTANT PWM3_Phase : STD_LOGIC_VECTOR(15 DOWNTO 0) := X"0000"; --

Set Phase shift for PWM3 to 0 

 CONSTANT PWM4_Phase : STD_LOGIC_VECTOR(15 DOWNTO 0) := X"0000"; --

Set Phase shift for PWM4 to 0 

 --Max PWM Values 

 CONSTANT PWM_Max : std_logic_vector(15 DOWNTO 0) := X"FFFF"; 

 CONSTANT PWM_Min : std_logic_vector(15 DOWNTO 0) := X"0000"; 

 --Declare Signals for Bus Interface 

 SIGNAL Bus_Int1_WE, Bus_Int1_RE, Bus_Int1_Busy : STD_LOGIC := '0'; 

 SIGNAL Bus_Int1_DataIn, Bus_Int1_DataOut, Bus_Int1_AddrIn : 

STD_LOGIC_VECTOR(15 DOWNTO 0) := (OTHERS => '0'); 

 SIGNAL Bus_Cnt_rst, Bus_Cnt_INC : STD_LOGIC := '0'; 

 SIGNAL Bus_Cnt_Out : STD_LOGIC_VECTOR(15 DOWNTO 0) := (OTHERS => '0'); 

 SIGNAL Delay_Cnt_rst, Delay_Cnt_INC : STD_LOGIC := '0'; 

 SIGNAL Delay_Cnt_Out : STD_LOGIC_VECTOR(7 DOWNTO 0) := (OTHERS => 

'0'); 

 --Signals for Registers 

 SIGNAL LD_PWM_En, LD_PWM_Freq, LD_PWM_PW, LD_PWM1_DC, 

LD_PWM2_DC, LD_PWM3_DC, LD_PWM4_DC : STD_LOGIC := '0'; 

 --Signals for Clock Divider 

 SIGNAL clk_temp : STD_LOGIC_VECTOR(15 DOWNTO 0) := (OTHERS => '0'); 

 SIGNAL clk_Blink : STD_LOGIC := '0'; 

 --Signals for blink 

 SIGNAL Freq_Cnt_rst, Freq_Cnt_Inc : STD_LOGIC := '0'; 

 SIGNAL Freq_Cnt_out : STD_LOGIC_VECTOR(15 DOWNTO 0) := (OTHERS => '0'); 

BEGIN 

 --instantiate Bus_Cnt 

 Bus_Cnt : Std_Counter 

 GENERIC MAP 

 ( 

  Width => 16 

 ) 

 PORT MAP 

 ( 

  clk => clk, 

  rst => Bus_Cnt_rst, 

  INC => Bus_Cnt_INC, 

  Count => Bus_Cnt_Out 
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 ); 

 --instantiate Delay_Cnt 

 Delay_Cnt : Std_Counter 

 GENERIC MAP 

 ( 

  Width => 8 

 ) 

 PORT MAP( 

  clk => clk, 

  rst => Delay_Cnt_rst, 

  INC => Delay_Cnt_INC, 

  Count => Delay_Cnt_Out 

 ); 

 -- Instantiate PWM1 

 PWM1 : PWM_16b 

 GENERIC MAP 

 ( 

  Freq_in => 24930000, 

  Max_PWM => 65535, 

  Freq_Sw => 6104 

 ) 

 PORT MAP( 

  clk => clk, 

  rst => rst, 

  DC => PWM1_DC, 

  Phase => PWM1_Phase, 

  En => PWM1_En, 

  PWM_Out => LED1_Out 

 ); 

 

 --Instantiate Bus Interface 

 Bus_Int1 : Bus_Int PORT MAP( 

  clk => clk, 

  rst => rst, 

  DataIn => Bus_Int1_DataIn, 

  DataOut => Bus_Int1_DataOut, 

  AddrIn => Bus_Int1_AddrIn, 

  WE => Bus_Int1_WE, 

  RE => Bus_Int1_RE, 

  Busy => Bus_Int1_Busy, 

  Data => Data, 

  Addr => Addr, 

  Xrqst => Xrqst, 

  XDat => XDat, 

  YDat => YDat, 

  BusRqst => BusRqst, 
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  BusCtrl => BusCtrl 

 ); 

 --instantiate Freq_Cnt 

 Freq_Cnt : Std_Counter 

 GENERIC MAP 

 ( 

  Width => 16 

 ) 

 PORT MAP( 

  clk => clk_Blink, 

  rst => Freq_Cnt_rst, 

  INC => Freq_Cnt_INC, 

  Count => Freq_Cnt_Out 

 ); 

 ----Registers 

 Reg_Proc : PROCESS 

 BEGIN 

  WAIT UNTIL clk'event AND clk = '1'; 

  IF rst = '0' THEN 

   PWM1_DC <= (OTHERS => '0'); 

   PWM2_DC <= (OTHERS => '0'); 

   PWM3_DC <= (OTHERS => '0'); 

   PWM4_DC <= (OTHERS => '0'); 

   PWM_Freq <= (OTHERS => '0'); 

   PWM_PW <= (OTHERS => '0'); 

   PWM_En <= (OTHERS => '0'); 

  ELSE 

   IF (LD_PWM1_DC = '1') THEN 

    PWM1_DC <= Bus_Int1_DataOut; 

   END IF; 

   IF (LD_PWM2_DC = '1') THEN 

    PWM2_DC <= Bus_Int1_DataOut; 

   END IF; 

   IF (LD_PWM3_DC = '1') THEN 

    PWM3_DC <= Bus_Int1_DataOut; 

   END IF; 

   IF (LD_PWM4_DC = '1') THEN 

    PWM4_DC <= Bus_Int1_DataOut; 

   END IF; 

   IF (LD_PWM_Freq = '1') THEN 

    PWM_Freq <= Bus_Int1_DataOut; 

   END IF; 

   IF (LD_PWM_PW = '1') THEN 

    PWM_PW <= Bus_Int1_DataOut; 

   END IF; 

   IF (LD_PWM_En = '1') THEN 
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    PWM_En <= Bus_Int1_DataOut; 

   END IF; 

  END IF; 

 END PROCESS; 

 ----End Registers 

 ----Next State Logic for Bus Interface 

 NSL_Bus : PROCESS (CS_Bus, Bus_Cnt_Out, Bus_Int1_Busy, Delay_Cnt_Out) 

 BEGIN 

  ----Default States to remove latches 

  NS_Bus <= S0; 

  Bus_Int1_AddrIn <= (OTHERS => '0'); 

  Bus_Int1_RE <= '0'; 

  Bus_Int1_DataIn <= (OTHERS => '0'); 

  Bus_Int1_WE <= '0'; 

  Bus_Cnt_rst <= '1'; 

  Bus_Cnt_INC <= '0'; 

  LD_PWM1_DC <= '0'; 

  LD_PWM2_DC <= '0'; 

  LD_PWM3_DC <= '0'; 

  LD_PWM4_DC <= '0'; 

  LD_PWM_Freq <= '0'; 

  LD_PWM_PW <= '0'; 

  LD_PWM_En <= '0'; 

  Delay_Cnt_INC <= '0'; 

  Delay_Cnt_rst <= '1'; 

 

  CASE CS_Bus IS 

   WHEN S0 => 

    Bus_Cnt_rst <= '0'; -- Reset Bus Counter 

    Delay_Cnt_rst <= '0'; -- Reset Delay Counter 

    NS_Bus <= S1; 

   WHEN S1 => --Initial Delay count for sync 

    IF (Delay_Cnt_Out < 40) THEN 

     NS_Bus <= S1; 

    ELSE 

     NS_Bus <= S2; 

    END IF; 

    Delay_Cnt_INC <= '1'; 

   WHEN S2 => --Wait (2^12-34) Clk Cycles for 1x per fs 

    IF (Bus_Cnt_Out < 4062) THEN 

     NS_Bus <= S2; 

    ELSE 

     NS_Bus <= S3; 

    END IF; 

    Bus_Cnt_INC <= '1'; 

    --Read Command Data from Bus 
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   WHEN S3 => 

    IF (Bus_Int1_Busy = '1') THEN 

     NS_Bus <= S3; 

    ELSE 

     NS_Bus <= S4; 

    END IF; 

    Bus_Cnt_rst <= '0'; -- Reset Bus Counter 

   WHEN S4 => 

    Bus_Int1_AddrIn <= Addr_LED_En; --Read Data from LED_En 

Register 

    Bus_Int1_RE <= '1'; 

    NS_Bus <= S5; 

   WHEN S5 => 

    IF (Bus_Int1_Busy = '1') THEN 

     NS_Bus <= S5; 

    ELSE 

     LD_PWM_En <= '1'; 

     NS_Bus <= S6; 

    END IF; 

   WHEN S6 => 

    Bus_Int1_AddrIn <= Addr_LED_Freq; --Read Data from LED 

Freq Register 

    Bus_Int1_RE <= '1'; 

    NS_Bus <= S7; 

   WHEN S7 => 

    IF (Bus_Int1_Busy = '1') THEN 

     NS_Bus <= S7; 

    ELSE 

     LD_PWM_Freq <= '1'; 

     NS_Bus <= S8; 

    END IF; 

   WHEN S8 => 

    Bus_Int1_AddrIn <= Addr_LED_PW; --Read Data from LED 

PulseWidth Register 

    Bus_Int1_RE <= '1'; 

    NS_Bus <= S9; 

   WHEN S9 => 

    IF (Bus_Int1_Busy = '1') THEN 

     NS_Bus <= S9; 

    ELSE 

     LD_PWM_PW <= '1'; 

     NS_Bus <= S10; 

    END IF; 

   WHEN S10 => 

    Bus_Int1_AddrIn <= Addr_LED1_DC; --Read Data from 

LED1_DC Register 



 

109 

 

    Bus_Int1_RE <= '1'; 

    NS_Bus <= S11; 

   WHEN S11 => 

    IF (Bus_Int1_Busy = '1') THEN 

     NS_Bus <= S11; 

    ELSE 

     LD_PWM1_DC <= '1'; 

     NS_Bus <= S12; 

    END IF; 

   WHEN S12 => 

    Bus_Int1_AddrIn <= Addr_LED2_DC; --Read Data from 

LED2_DC Register 

    Bus_Int1_RE <= '1'; 

    NS_Bus <= S13; 

   WHEN S13 => 

    IF (Bus_Int1_Busy = '1') THEN 

     NS_Bus <= S13; 

    ELSE 

     LD_PWM2_DC <= '1'; 

     NS_Bus <= S14; 

    END IF; 

   WHEN S14 => 

    Bus_Int1_AddrIn <= Addr_LED3_DC; --Read Data from 

LED3_DC Register 

    Bus_Int1_RE <= '1'; 

    NS_Bus <= S15; 

   WHEN S15 => 

    IF (Bus_Int1_Busy = '1') THEN 

     NS_Bus <= S15; 

    ELSE 

     LD_PWM3_DC <= '1'; 

     NS_Bus <= S16; 

    END IF; 

   WHEN S16 => 

    Bus_Int1_AddrIn <= Addr_LED4_DC; --Read Data from 

LED4_DC Register 

    Bus_Int1_RE <= '1'; 

    NS_Bus <= S17; 

   WHEN S17 => 

    IF (Bus_Int1_Busy = '1') THEN 

     NS_Bus <= S17; 

    ELSE 

     LD_PWM4_DC <= '1'; 

     NS_Bus <= S2; 

    END IF; 

   WHEN OTHERS => 
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    NS_Bus <= S0; 

  END CASE; 

 END PROCESS; 

 ----End Next State Logic for Bus Interface 

 ----Next State Logic for Blink Update 

 NSL_Blink : PROCESS (CS_Blink, Freq_Cnt_Out, PWM_Freq, PWM_PW) 

 BEGIN 

  ----Default States to remove latches 

  NS_Blink <= S0; 

  Freq_Cnt_INC <= '0'; 

  Freq_Cnt_rst <= '1'; 

  PWM1_En <= '0'; 

  PWM2_En <= '0'; 

  PWM3_En <= '0'; 

  PWM4_En <= '0'; 

  CASE CS_Blink IS 

   WHEN S0 => 

    Freq_Cnt_rst <= '0'; -- Reset Period Counter 

    NS_Blink <= S1; 

   WHEN S1 => -- Counter for Pulse Width 

    IF (Freq_Cnt_Out < PWM_PW) THEN 

     NS_Blink <= S1; 

    ELSE 

     NS_Blink <= S2; 

    END IF; 

    Freq_Cnt_INC <= '1'; 

    PWM1_En <= '1'; 

    PWM2_En <= '1'; 

    PWM3_En <= '1'; 

    PWM4_En <= '1'; 

   WHEN S2 => --Counter for Period 

    IF (Freq_Cnt_Out < PWM_Freq) THEN 

     NS_Blink <= S2; 

    ELSE 

     NS_Blink <= S0; 

    END IF; 

    Freq_Cnt_INC <= '1'; 

   WHEN OTHERS => 

    NS_Blink <= S0; 

  END CASE; 

 END PROCESS; 

 ----End Next State Logic for Blink Update 

 ----State Sync 

 sync_States : PROCESS 

 BEGIN 

  WAIT UNTIL clk'event AND clk = '1'; 
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  IF rst = '0' THEN 

   CS_Bus <= S0; 

  ELSE 

   CS_Bus <= NS_Bus; 

  END IF; 

 END PROCESS; 

 ----End State Sync 

 ----State Sync for Blink 

 sync_Blink : PROCESS 

 BEGIN 

  WAIT UNTIL clk_Blink'event AND clk_Blink = '1'; 

  IF rst = '0' THEN 

   CS_Blink <= S0; 

  ELSE 

   CS_Blink <= NS_Blink; 

  END IF; 

 END PROCESS; 

 ----End State Sync 

 -- Clock Divider for LED_Blink 

 Clk_Div_Blink : PROCESS 

 BEGIN 

  WAIT UNTIL clk'event AND clk = '1'; 

  clk_temp <= clk_temp + 1; 

  clk_Blink <= clk_temp(9); 

 END PROCESS; 

END Behavioral; 

--##################################Bus Interface 

Top########################################### 

LIBRARY IEEE; 

USE IEEE.std_logic_1164.ALL; 

USE ieee.std_logic_unsigned.ALL; 

USE ieee.numeric_std.ALL; 

LIBRARY lattice; 

USE lattice.components.ALL; 

LIBRARY machxo2; 

USE machxo2.ALL; 

 

ENTITY Bus_Interface_Top IS 

 PORT ( 

  --RESETn : in  STD_LOGIC;-- Global Reset 

  -- RS232 Communication 

  Usr_RX : IN STD_LOGIC; -- Serial In for User Control 

  Usr_TX : OUT STD_LOGIC; -- Serial Out for User Control 

  -- Board LEDs 

  LED_1 : OUT STD_LOGIC -- Board LED 

 ); 
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END Bus_Interface_Top; 

ARCHITECTURE Behavioral OF Bus_Interface_Top IS 

 -- Declare Internal Oscillator 

 COMPONENT OSCH 

  GENERIC (NOM_FREQ : STRING := "8.31"); 

  PORT ( 

   STDBY : IN std_logic; 

   OSC : OUT std_logic; 

   SEDSTDBY : OUT std_logic 

  ); 

 END COMPONENT; 

 -- Declare PLL 

 COMPONENT PLL_Clk 

  PORT ( 

   ClkI : IN std_logic; 

   ClkOP : OUT std_logic; 

   Lock : OUT std_logic 

  ); 

 END COMPONENT; 

 -- Declare Bus_Master 

 COMPONENT Bus_Master 

  PORT ( 

   clk : IN std_logic; 

   rst : IN std_logic; 

   Data : INOUT std_logic_vector(15 DOWNTO 0); 

   Addr : IN std_logic_vector(15 DOWNTO 0); 

   Xrqst : IN std_logic; 

   XDat : OUT std_logic; 

   YDat : IN std_logic; 

   BusRqst : IN std_logic_vector(9 DOWNTO 0); 

   BusCtrl : OUT std_logic_vector(9 DOWNTO 0) 

  ); 

 END COMPONENT; 

 -- Declare RS232_Usr_Int 

 COMPONENT RS232_Usr_Int 

  GENERIC ( 

   Baud : INTEGER; -- Baud Rate 

   clk_in : INTEGER -- Input Clk 

  ); 

  PORT ( 

   clk : IN std_logic; 

   rst : IN std_logic; 

   rs232_rcv : IN std_logic; 

   rs232_xmt : OUT std_logic; 

   Data : INOUT std_logic_vector(15 DOWNTO 0); 

   Addr : OUT std_logic_vector(15 DOWNTO 0); 
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   Xrqst : OUT std_logic; 

   XDat : IN std_logic; 

   YDat : OUT std_logic; 

   BusRqst : OUT std_logic; 

   BusCtrl : IN std_logic 

  ); 

 END COMPONENT; 

 -- Declare LED_Ctrl 

 COMPONENT LED_Ctrl IS 

  PORT ( 

   clk : IN STD_LOGIC; 

   rst : IN STD_LOGIC; 

   Data : INOUT std_logic_vector(15 DOWNTO 0); 

   Addr : OUT std_logic_vector(15 DOWNTO 0); 

   Xrqst : OUT std_logic; 

   XDat : IN std_logic; 

   YDat : OUT std_logic; 

   BusRqst : OUT std_logic; 

   BusCtrl : IN std_logic; 

   LED1_Out : OUT STD_LOGIC 

  ); 

 END COMPONENT; 

 -- Declare Std_Counter Component 

 COMPONENT Std_Counter IS 

  GENERIC ( 

   Width : INTEGER -- width of counter 

  ); 

  PORT ( 

   INC, rst, clk : IN std_logic; 

   Count : OUT STD_LOGIC_VECTOR(Width - 1 DOWNTO 0)); 

 END COMPONENT; 

 ----Signals 

 -- Declare Signals for Bus Interface 

 SIGNAL Bus_Int1_WE, Bus_Int1_RE, Bus_Int1_Busy : STD_LOGIC := '0'; 

 SIGNAL Bus_Int1_DataIn, Bus_Int1_DataOut, Bus_Int1_AddrIn : 

STD_LOGIC_VECTOR(15 DOWNTO 0) := (OTHERS => '0'); 

 --  Inputs 

 SIGNAL Addr : STD_LOGIC_VECTOR(15 DOWNTO 0) := (OTHERS => '0'); 

 SIGNAL Xrqst : STD_LOGIC := '0'; 

 SIGNAL YDat : STD_LOGIC := '0'; 

 SIGNAL BusRqst : STD_LOGIC_VECTOR(9 DOWNTO 0) := (OTHERS => '0'); 

 SIGNAL Data : STD_LOGIC_VECTOR(15 DOWNTO 0) := (OTHERS => '0'); 

 SIGNAL XDat : STD_LOGIC := '0'; 

 SIGNAL BusCtrl : STD_LOGIC_VECTOR(9 DOWNTO 0) := (OTHERS => '0'); 

 -- Internal Clock 

 SIGNAL OSC_Stdby, OSC_Out, OSC_SEDSTDBY, clk : STD_LOGIC := '0'; 
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 -- Reset 

 SIGNAL PLL_Lock, System_rst : STD_LOGIC := '0'; 

 SIGNAL Reset_Cnt_INC, Reset_Cnt_rst : STD_LOGIC := '0'; 

 SIGNAL Reset_Cnt_out : STD_LOGIC_VECTOR(7 DOWNTO 0) := (OTHERS => '0'); 

 -- For inverting LED Outputs 

 SIGNAL LED_1n : STD_LOGIC := '0'; 

BEGIN 

 -- Instantiate Internal Oscillator 

 Int_OSC : OSCH PORT MAP( 

  STDBY => OSC_Stdby, 

  OSC => OSC_Out, 

  SEDSTDBY => OSC_SEDSTDBY 

 ); 

 -- Instantiate PLL 

 PLL_1 : PLL_Clk PORT MAP( 

  ClkI => OSC_Out, 

  ClkOP => clk, 

  Lock => Pll_Lock 

 ); 

 -- Instantiate Bus_Master 

 BM : Bus_Master PORT MAP( 

  clk => clk, 

  rst => System_rst, 

  Data => Data, 

  Addr => Addr, 

  Xrqst => Xrqst, 

  XDat => XDat, 

  YDat => YDat, 

  BusRqst => BusRqst, 

  BusCtrl => BusCtrl 

 ); 

 -- Instantiate RS232_Usr_Int 

 RS232_Usr : RS232_Usr_Int 

 GENERIC MAP 

 ( 

  Baud => 9600, -- Baud Rate 

  Clk_In => 24930000 -- Input Clk 

 ) 

 PORT MAP( 

  clk => clk, 

  rst => System_rst, 

  rs232_rcv => Usr_RX, 

  rs232_xmt => Usr_TX, 

  Data => Data, 

  Addr => Addr, 

  Xrqst => Xrqst, 
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  XDat => XDat, 

  YDat => YDat, 

  BusRqst => BusRqst(1), 

  BusCtrl => BusCtrl(1) 

 ); 

 -- Instantiate LED_Ctrl 

 LED_Ctrl1 : LED_Ctrl PORT MAP( 

  clk => clk, 

  rst => System_rst, 

  Data => Data, 

  Addr => Addr, 

  Xrqst => Xrqst, 

  XDat => XDat, 

  YDat => YDat, 

  BusRqst => BusRqst(0), 

  BusCtrl => BusCtrl(0), 

  LED1_Out => LED_1n 

 ); 

 -- Instantiate Reset_Cnt_8 

 Reset_Cnt : Std_Counter 

 GENERIC MAP 

 ( 

  Width => 8 

 ) 

 PORT MAP( 

  clk => OSC_Out, 

  rst => Reset_Cnt_rst, 

  INC => Reset_Cnt_INC, 

  Count => Reset_Cnt_Out 

 ); 

 --  Oscillator 

 OSC_Stdby <= '0'; 

 -- Tie unused ports to '0' 

 BusRqst(9 DOWNTO 2) <= (OTHERS => '0'); 

 -- Reset Block1 

 Reset_Blk1 : PROCESS 

 BEGIN 

  WAIT UNTIL OSC_Out'event AND OSC_Out = '1'; 

  IF (PLL_Lock = '0') THEN 

   Reset_Cnt_rst <= '0'; 

  ELSE 

   Reset_Cnt_rst <= '1'; 

  END IF; 

 END PROCESS; 

 -- Reset Block 

 Reset_Blk : PROCESS 
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 BEGIN 

  WAIT UNTIL OSC_Out'event AND OSC_Out = '1'; 

  IF (Reset_Cnt_out < X"7F") THEN 

   System_rst <= '0'; 

   Reset_Cnt_Inc <= '1'; 

  ELSE 

   System_rst <= '1'; 

   Reset_Cnt_Inc <= '0'; 

  END IF; 

 END PROCESS; 

 -- LED Invert due to Active Low Configuration on Dev Board 

 LED_Invert : PROCESS 

 BEGIN 

  LED_1 <= NOT(LED_1n); 

 END PROCESS; 

END Behavioral; 

--################################Hardware Authentication 

Module################################################################# 

LIBRARY IEEE; 

USE IEEE.std_logic_1164.ALL; 

USE IEEE.std_logic_arith.ALL; 

USE IEEE.std_logic_unsigned.ALL; 

USE IEEE.numeric_std.ALL; 

LIBRARY machxo2; 

USE machxo2.ALL; 

LIBRARY lattice; 

USE lattice.components.ALL; 

ENTITY HW_AUTH_MODULE IS 

 PORT ( 

  MISO : IN STD_LOGIC; 

  CLK_IN : IN STD_LOGIC; 

  CS : OUT STD_LOGIC; 

  CLK_OUT : OUT STD_LOGIC; 

  MOSI : OUT STD_LOGIC; 

  HW_GOOD : OUT STD_LOGIC 

 ); 

END HW_AUTH_MODULE; 

 

ARCHITECTURE Behavior OF HW_AUTH_MODULE IS 

 TYPE MACHINE IS (START, SB, OPCODE_H, OPCODE_L, A5, A4, A3, A2, A1, A0, 

W, D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0, 

AUTHENTICATE, STDBY); 

 SIGNAL STATE : MACHINE := STDBY; 

 SIGNAL SB_VALUE : STD_LOGIC := '1'; 

 SIGNAL OP_READ : STD_LOGIC_VECTOR(1 DOWNTO 0) := "10"; 

 SIGNAL EEPROM_addr : STD_LOGIC_VECTOR(5 DOWNTO 0) := "000000"; 
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 SIGNAL DATA_IN : STD_LOGIC_VECTOR(15 DOWNTO 0) := (OTHERS => '0'); 

 SIGNAL DELAY : INTEGER RANGE 0 TO 200_000 := 200_000; --1_500_000 

 TYPE T_ARRAY IS ARRAY(0 TO 63) OF STD_LOGIC_VECTOR(15 DOWNTO 0); 

 SIGNAL KEYS : T_ARRAY; 

 SIGNAL KEY_INDEX : INTEGER RANGE 0 TO 63 := 0; 

BEGIN 

 

 HW_AUTH_INTERRUPT : PROCESS (CLK_IN) 

 BEGIN 

  KEYS(0) <= X"ABBA"; 

  KEYS(1) <= X"ABED"; 

  KEYS(2) <= X"BABE"; 

  KEYS(3) <= X"BADE"; 

  KEYS(4) <= X"BEAD"; 

  KEYS(5) <= X"BEEF"; 

  KEYS(6) <= X"CAFE"; 

  KEYS(7) <= X"CEDE"; 

  KEYS(8) <= X"DADA"; 

  KEYS(9) <= X"DEAD"; 

  KEYS(10) <= X"DEAF"; 

  KEYS(11) <= X"DEED"; 

  KEYS(12) <= X"FACE"; 

  KEYS(13) <= X"FADE"; 

  KEYS(14) <= X"FEED"; 

  KEYS(15) <= X"FEE0"; 

  KEYS(16) <= X"ABBA"; 

  KEYS(17) <= X"ABED"; 

  KEYS(18) <= X"BABE"; 

  KEYS(19) <= X"BADE"; 

  KEYS(20) <= X"BEAD"; 

  KEYS(21) <= X"BEEF"; 

  KEYS(22) <= X"CAFE"; 

  KEYS(23) <= X"CEDE"; 

  KEYS(24) <= X"DADA"; 

  KEYS(25) <= X"DEAD"; 

  KEYS(26) <= X"DEAF"; 

  KEYS(27) <= X"DEED"; 

  KEYS(28) <= X"FACE"; 

  KEYS(29) <= X"FADE"; 

  KEYS(30) <= X"FEED"; 

  KEYS(31) <= X"FEE0"; 

  KEYS(32) <= X"ABBA"; 

  KEYS(33) <= X"ABED"; 

  KEYS(34) <= X"BABE"; 

  KEYS(35) <= X"BADE"; 

  KEYS(36) <= X"BEAD"; 
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  KEYS(37) <= X"BEEF"; 

  KEYS(38) <= X"CAFE"; 

  KEYS(39) <= X"CEDE"; 

  KEYS(40) <= X"DADA"; 

  KEYS(41) <= X"DEAD"; 

  KEYS(42) <= X"DEAF"; 

  KEYS(43) <= X"DEED"; 

  KEYS(44) <= X"FACE"; 

  KEYS(45) <= X"FADE"; 

  KEYS(46) <= X"FEED"; 

  KEYS(47) <= X"FEE0"; 

  KEYS(48) <= X"ABBA"; 

  KEYS(49) <= X"ABED"; 

  KEYS(50) <= X"BABE"; 

  KEYS(51) <= X"BADE"; 

  KEYS(52) <= X"BEAD"; 

  KEYS(53) <= X"BEEF"; 

  KEYS(54) <= X"CAFE"; 

  KEYS(55) <= X"CEDE"; 

  KEYS(56) <= X"DADA"; 

  KEYS(57) <= X"DEAD"; 

  KEYS(58) <= X"DEAF"; 

  KEYS(59) <= X"DEED"; 

  KEYS(60) <= X"FACE"; 

  KEYS(61) <= X"FADE"; 

  KEYS(62) <= X"FEED"; 

  KEYS(63) <= X"FEE0"; 

 

  IF (CLK_IN' EVENT) THEN 

   IF (CLK_IN = '1') THEN 

    CLK_OUT <= '1'; 

   END IF; 

 

   IF (CLK_IN = '0') THEN 

    CLK_OUT <= '0'; 

 

    CASE STATE IS 

     WHEN START => 

      CS <= '0'; 

      MOSI <= '0'; 

      STATE <= SB; 

 

     WHEN SB => 

      CS <= '1'; 

      MOSI <= SB_VALUE; 

      STATE <= OPCODE_H; 
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     WHEN OPCODE_H => 

      CS <= '1'; 

      MOSI <= OP_READ(1); 

      STATE <= OPCODE_L; 

 

     WHEN OPCODE_L => 

      CS <= '1'; 

      MOSI <= OP_READ(0); 

      STATE <= A5; 

 

     WHEN A5 => 

      CS <= '1'; 

      MOSI <= EEPROM_addr(5); 

      STATE <= A4; 

 

     WHEN A4 => 

      CS <= '1'; 

      MOSI <= EEPROM_addr(4); 

      STATE <= A3; 

 

     WHEN A3 => 

      CS <= '1'; 

      MOSI <= EEPROM_addr(3); 

      STATE <= A2; 

 

     WHEN A2 => 

      CS <= '1'; 

      MOSI <= EEPROM_addr(2); 

      STATE <= A1; 

 

     WHEN A1 => 

      CS <= '1'; 

      MOSI <= EEPROM_addr(1); 

      STATE <= A0; 

 

     WHEN A0 => 

      CS <= '1'; 

      MOSI <= EEPROM_addr(0); 

      STATE <= W; 

 

     WHEN W => 

      CS <= '1'; 

      STATE <= D15; 

 

     WHEN D15 => 
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      CS <= '1'; 

      MOSI <= '0'; 

      DATA_IN(15) <= MISO; 

      STATE <= D14; 

 

     WHEN D14 => 

      CS <= '1'; 

      MOSI <= '0'; 

      DATA_IN(14) <= MISO; 

      STATE <= D13; 

 

     WHEN D13 => 

      CS <= '1'; 

      MOSI <= '0'; 

      DATA_IN(13) <= MISO; 

      STATE <= D12; 

 

     WHEN D12 => 

      CS <= '1'; 

      MOSI <= '0'; 

      DATA_IN(12) <= MISO; 

      STATE <= D11; 

 

     WHEN D11 => 

      CS <= '1'; 

      MOSI <= '0'; 

      DATA_IN(11) <= MISO; 

      STATE <= D10; 

 

     WHEN D10 => 

      CS <= '1'; 

      MOSI <= '0'; 

      DATA_IN(10) <= MISO; 

      STATE <= D9; 

 

     WHEN D9 => 

      CS <= '1'; 

      MOSI <= '0'; 

      DATA_IN(9) <= MISO; 

      STATE <= D8; 

 

     WHEN D8 => 

      CS <= '1'; 

      MOSI <= '0'; 

      DATA_IN(8) <= MISO; 

      STATE <= D7; 
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     WHEN D7 => 

      CS <= '1'; 

      MOSI <= '0'; 

      DATA_IN(7) <= MISO; 

      STATE <= D6; 

 

     WHEN D6 => 

      CS <= '1'; 

      MOSI <= '0'; 

      DATA_IN(6) <= MISO; 

      STATE <= D5; 

 

     WHEN D5 => 

      CS <= '1'; 

      MOSI <= '0'; 

      DATA_IN(5) <= MISO; 

      STATE <= D4; 

 

     WHEN D4 => 

      CS <= '1'; 

      MOSI <= '0'; 

      DATA_IN(4) <= MISO; 

      STATE <= D3; 

 

     WHEN D3 => 

      CS <= '1'; 

      MOSI <= '0'; 

      DATA_IN(3) <= MISO; 

      STATE <= D2; 

 

     WHEN D2 => 

      CS <= '1'; 

      MOSI <= '0'; 

      DATA_IN(2) <= MISO; 

      STATE <= D1; 

 

     WHEN D1 => 

      CS <= '1'; 

      MOSI <= '0'; 

      DATA_IN(1) <= MISO; 

      STATE <= D0; 

 

     WHEN D0 => 

      CS <= '1'; 

      MOSI <= '0'; 
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      DATA_IN(0) <= MISO; 

      STATE <= AUTHENTICATE; 

 

     WHEN AUTHENTICATE => 

      CS <= '0'; 

      MOSI <= '0'; 

      IF (DATA_IN = KEYS(KEY_INDEX)) THEN 

       HW_GOOD <= '1'; 

      ELSE 

       HW_GOOD <= '0'; 

      END IF; 

      STATE <= STDBY; 

 

     WHEN STDBY => 

      CS <= '0'; 

      MOSI <= '0'; 

      IF (DELAY > 0) THEN 

       DELAY <= DELAY - 1; 

       STATE <= STDBY; 

      ELSIF (DELAY = 0) THEN 

       EEPROM_addr <= EEPROM_addr + 

"000001"; 

       KEY_INDEX <= KEY_INDEX + 1; 

       DELAY <= 200_000; 

       STATE <= START; 

      ELSE 

       DELAY <= 200_000; 

       STATE <= STDBY; 

      END IF; 

 

     WHEN OTHERS => 

      CS <= '0'; 

      MOSI <= '0'; 

      STATE <= STDBY; 

    END CASE; 

   END IF; 

  END IF; 

 END PROCESS; 

END Behavior; 

--#########################################Hardware Assisted 

Supervisor############################################################### 

LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

LIBRARY lattice; 

USE lattice.components.ALL; 

ENTITY HARDWARE_ASSISTED_SUPERVISOR IS 
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 GENERIC ( 

  TIMEOUT : INTEGER := 2_000 

 ); 

 PORT ( 

  CLK_IN : IN STD_LOGIC; 

  --Input Controller 1 

  I1_0 : IN STD_LOGIC; 

  I1_1 : IN STD_LOGIC; 

  I1_2 : IN STD_LOGIC; 

  I1_3 : IN STD_LOGIC; 

  I1_4 : IN STD_LOGIC; 

  I1_5 : IN STD_LOGIC; 

  I1_6 : IN STD_LOGIC; 

  I1_7 : IN STD_LOGIC; 

  I1_8 : IN STD_LOGIC; 

  I1_9 : IN STD_LOGIC; 

  I1_10 : IN STD_LOGIC; 

  I1_11 : IN STD_LOGIC; 

  I1_12 : IN STD_LOGIC; 

  I1_13 : IN STD_LOGIC; 

  I1_14 : IN STD_LOGIC; 

  I1_15 : IN STD_LOGIC; 

  I1_16 : IN STD_LOGIC; 

  I1_17 : IN STD_LOGIC; 

  I1_18 : IN STD_LOGIC; 

  I1_19 : IN STD_LOGIC; 

  I1_20 : IN STD_LOGIC; 

  I1_21 : IN STD_LOGIC; 

  I1_22 : IN STD_LOGIC; 

  I1_23 : IN STD_LOGIC; 

  I1_24 : IN STD_LOGIC; 

  I1_25 : IN STD_LOGIC; 

  I1_26 : IN STD_LOGIC; 

  I1_27 : IN STD_LOGIC; 

  --Input Controller 2 

  I2_0 : IN STD_LOGIC; 

  I2_1 : IN STD_LOGIC; 

  I2_2 : IN STD_LOGIC; 

  I2_3 : IN STD_LOGIC; 

  I2_4 : IN STD_LOGIC; 

  I2_5 : IN STD_LOGIC; 

  I2_6 : IN STD_LOGIC; 

  I2_7 : IN STD_LOGIC; 

  I2_8 : IN STD_LOGIC; 

  I2_9 : IN STD_LOGIC; 

  I2_10 : IN STD_LOGIC; 
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  I2_11 : IN STD_LOGIC; 

  I2_12 : IN STD_LOGIC; 

  I2_13 : IN STD_LOGIC; 

  I2_14 : IN STD_LOGIC; 

  I2_15 : IN STD_LOGIC; 

  I2_16 : IN STD_LOGIC; 

  I2_17 : IN STD_LOGIC; 

  I2_18 : IN STD_LOGIC; 

  I2_19 : IN STD_LOGIC; 

  I2_20 : IN STD_LOGIC; 

  I2_21 : IN STD_LOGIC; 

  I2_22 : IN STD_LOGIC; 

  I2_23 : IN STD_LOGIC; 

  I2_24 : IN STD_LOGIC; 

  I2_25 : IN STD_LOGIC; 

  I2_26 : IN STD_LOGIC; 

  I2_27 : IN STD_LOGIC; 

  --Output Controller 

  O_0 : OUT STD_LOGIC; 

  O_1 : OUT STD_LOGIC; 

  O_2 : OUT STD_LOGIC; 

  O_3 : OUT STD_LOGIC; 

  O_4 : OUT STD_LOGIC; 

  O_5 : OUT STD_LOGIC; 

  O_6 : OUT STD_LOGIC; 

  O_7 : OUT STD_LOGIC; 

  O_8 : OUT STD_LOGIC; 

  O_9 : OUT STD_LOGIC; 

  O_10 : OUT STD_LOGIC; 

  O_11 : OUT STD_LOGIC; 

  O_12 : OUT STD_LOGIC; 

  O_13 : OUT STD_LOGIC; 

  O_14 : OUT STD_LOGIC; 

  O_15 : OUT STD_LOGIC; 

  O_16 : OUT STD_LOGIC; 

  O_17 : OUT STD_LOGIC; 

  O_18 : OUT STD_LOGIC; 

  O_19 : OUT STD_LOGIC; 

  O_20 : OUT STD_LOGIC; 

  O_21 : OUT STD_LOGIC; 

  O_22 : OUT STD_LOGIC; 

  O_23 : OUT STD_LOGIC; 

  O_24 : OUT STD_LOGIC; 

  O_25 : OUT STD_LOGIC; 

  O_26 : OUT STD_LOGIC; 

  O_27 : OUT STD_LOGIC; 
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  LOCK_STATE : OUT STD_LOGIC; 

  C1_STATE : OUT STD_LOGIC; 

  C2_STATE : OUT STD_LOGIC; 

  NOM_STATE : OUT STD_LOGIC; 

 

  USR_IN : IN STD_LOGIC_VECTOR(4 DOWNTO 1); 

  HW_AUTH : IN STD_LOGIC 

 ); 

END HARDWARE_ASSISTED_SUPERVISOR; 

 

ARCHITECTURE BEHAVIOR OF HARDWARE_ASSISTED_SUPERVISOR IS 

 TYPE MACHINE IS (LOCKOUT, CONTROL_1, CONTROL_2, NOMINAL); 

 SIGNAL STATE : MACHINE := LOCKOUT; 

 SIGNAL CTRL1_CNT : INTEGER RANGE 0 TO 4_000 := 0; 

 SIGNAL CTRL2_CNT : INTEGER RANGE 0 TO 4_000 := 0; 

 SIGNAL HRTBT1_LAST : STD_LOGIC := '0'; 

 SIGNAL HRTBT1 : STD_LOGIC; 

 SIGNAL CTRL1_ISLIVE : BOOLEAN := FALSE; 

 SIGNAL HRTBT2_LAST : STD_LOGIC := '0'; 

 SIGNAL HRTBT2 : STD_LOGIC; 

 SIGNAL CTRL2_ISLIVE : BOOLEAN := FALSE; 

 

BEGIN 

 CTRL_MUX : PROCESS (CLK_IN, HW_AUTH, USR_IN) 

 BEGIN 

  HRTBT1 <= I1_24; 

  HRTBT2 <= I2_24; 

 

  --Update liveness timers 

  IF (CLK_IN'EVENT AND CLK_IN = '1') THEN 

   IF (HRTBT1 = NOT HRTBT1_LAST) THEN 

    CTRL1_CNT <= 0; 

    CTRL1_ISLIVE <= TRUE; 

    HRTBT1_LAST <= HRTBT1; 

   ELSE 

    IF (CTRL1_CNT < TIMEOUT) THEN 

     CTRL1_CNT <= CTRL1_CNT + 1; 

     CTRL1_ISLIVE <= TRUE; 

    ELSE 

     CTRL1_CNT <= TIMEOUT; 

     CTRL1_ISLIVE <= FALSE; 

    END IF; 

   END IF; 

   IF (HRTBT2 = NOT HRTBT2_LAST) THEN 

    CTRL2_CNT <= 0; 

    CTRL2_ISLIVE <= TRUE; 
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    HRTBT2_LAST <= HRTBT2; 

   ELSE 

    IF (CTRL2_CNT < TIMEOUT) THEN 

     CTRL2_CNT <= CTRL2_CNT + 1; 

     CTRL2_ISLIVE <= TRUE; 

    ELSE 

     CTRL2_CNT <= TIMEOUT; 

     CTRL2_ISLIVE <= FALSE; 

    END IF; 

   END IF; 

  END IF; 

 

  --Set states from liveness  

  IF (CTRL1_ISLIVE AND CTRL2_ISLIVE) THEN 

   STATE <= NOMINAL; 

  ELSE 

   IF (CTRL1_ISLIVE) THEN 

    STATE <= CONTROL_1; 

   ELSIF (CTRL2_ISLIVE) THEN 

    STATE <= CONTROL_2; 

   ELSE 

    STATE <= LOCKOUT; 

   END IF; 

  END IF; 

 

  --Set state from hardware authentication module flag 

  IF (HW_AUTH = '0') THEN 

   STATE <= LOCKOUT; 

  END IF; 

 

  --Set states from user input via push buttons 

  IF (USR_IN(1) = '0') THEN 

   STATE <= LOCKOUT; 

  END IF; 

  IF (USR_IN(2) = '0') THEN 

   STATE <= NOMINAL; 

  END IF; 

  IF (USR_IN(3) = '0') THEN 

   STATE <= CONTROL_1; 

  END IF; 

  IF (USR_IN(4) = '0') THEN 

   STATE <= CONTROL_2; 

  END IF; 

 

  --Route fabric according to set state 

  CASE STATE IS 
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   WHEN LOCKOUT => 

    LOCK_STATE <= '1'; 

    C1_STATE <= '0'; 

    C2_STATE <= '0'; 

    NOM_STATE <= '0'; 

    O_0 <= '0'; 

    O_1 <= '0'; 

    O_2 <= '0'; 

    O_3 <= '0'; 

    O_4 <= '0'; 

    O_5 <= '0'; 

    O_6 <= '0'; 

    O_7 <= '0'; 

    O_8 <= '0'; 

    O_9 <= '0'; 

    O_10 <= '0'; 

    O_11 <= '0'; 

    O_12 <= '0'; 

    O_13 <= '0'; 

    O_14 <= '0'; 

    O_15 <= '0'; 

    O_16 <= '0'; 

    O_17 <= '0'; 

    O_18 <= '0'; 

    O_19 <= '0'; 

    O_20 <= '0'; 

    O_21 <= '0'; 

    O_22 <= '0'; 

    O_23 <= '0'; 

    O_24 <= '0'; 

    O_25 <= '0'; 

    O_26 <= '0'; 

    O_27 <= '0'; 

 

   WHEN CONTROL_1 => 

    LOCK_STATE <= '0'; 

    C1_STATE <= '1'; 

    C2_STATE <= '0'; 

    NOM_STATE <= '0'; 

    O_0 <= I1_0; 

    O_1 <= I1_1; 

    O_2 <= I1_2; 

    O_3 <= I1_3; 

    O_4 <= I1_4; 

    O_5 <= I1_5; 

    O_6 <= I1_6; 
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    O_7 <= I1_7; 

    O_8 <= I1_8; 

    O_9 <= I1_9; 

    O_10 <= I1_10; 

    O_11 <= I1_11; 

    O_12 <= I1_12; 

    O_13 <= I1_13; 

    O_14 <= I1_14; 

    O_15 <= I1_15; 

    O_16 <= I1_16; 

    O_17 <= I1_17; 

    O_18 <= I1_18; 

    O_19 <= I1_19; 

    O_20 <= I1_20; 

    O_21 <= I1_21; 

    O_22 <= I1_22; 

    O_23 <= I1_23; 

    O_24 <= I1_24; 

    O_25 <= I1_25; 

    O_26 <= I1_26; 

    O_27 <= I1_27; 

 

   WHEN CONTROL_2 => 

    LOCK_STATE <= '0'; 

    C1_STATE <= '0'; 

    C2_STATE <= '1'; 

    NOM_STATE <= '0'; 

    O_0 <= I2_0; 

    O_1 <= I2_1; 

    O_2 <= I2_2; 

    O_3 <= I2_3; 

    O_4 <= I2_4; 

    O_5 <= I2_5; 

    O_6 <= I2_6; 

    O_7 <= I2_7; 

    O_8 <= I2_8; 

    O_9 <= I2_9; 

    O_10 <= I2_10; 

    O_11 <= I2_11; 

    O_12 <= I2_12; 

    O_13 <= I2_13; 

    O_14 <= I2_14; 

    O_15 <= I2_15; 

    O_16 <= I2_16; 

    O_17 <= I2_17; 

    O_18 <= I2_18; 



 

129 

 

    O_19 <= I2_19; 

    O_20 <= I2_20; 

    O_21 <= I2_21; 

    O_22 <= I2_22; 

    O_23 <= I2_23; 

    O_24 <= I2_24; 

    O_25 <= I2_25; 

    O_26 <= I2_26; 

    O_27 <= I2_27; 

 

   WHEN NOMINAL => 

    LOCK_STATE <= '0'; 

    C1_STATE <= '0'; 

    C2_STATE <= '0'; 

    NOM_STATE <= '1'; 

    O_0 <= I1_0; 

    O_1 <= I1_1; 

    O_2 <= I1_2; 

    O_3 <= I1_3; 

    O_4 <= I1_4; 

    O_5 <= I1_5; 

    O_6 <= I1_6; 

    O_7 <= I1_7; 

    O_8 <= I1_8; 

    O_9 <= I1_9; 

    O_10 <= I1_10; 

    O_11 <= I1_11; 

    O_12 <= I1_12; 

    O_13 <= I1_13; 

    O_14 <= I1_14; 

    O_15 <= I1_15; 

    O_16 <= I1_16; 

    O_17 <= I1_17; 

    O_18 <= I1_18; 

    O_19 <= I1_19; 

    O_20 <= I1_20; 

    O_21 <= I1_21; 

    O_22 <= I1_22; 

    O_23 <= I1_23; 

    O_24 <= I1_24; 

    O_25 <= I1_25; 

    O_26 <= I1_26; 

    O_27 <= I1_27; 

 

   WHEN OTHERS => 

    LOCK_STATE <= '0'; 
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    C1_STATE <= '0'; 

    C2_STATE <= '0'; 

    NOM_STATE <= '0'; 

    O_0 <= '0'; 

    O_1 <= '0'; 

    O_2 <= '0'; 

    O_3 <= '0'; 

    O_4 <= '0'; 

    O_5 <= '0'; 

    O_6 <= '0'; 

    O_7 <= '0'; 

    O_8 <= '0'; 

    O_9 <= '0'; 

    O_10 <= '0'; 

    O_11 <= '0'; 

    O_12 <= '0'; 

    O_13 <= '0'; 

    O_14 <= '0'; 

    O_15 <= '0'; 

    O_16 <= '0'; 

    O_17 <= '0'; 

    O_18 <= '0'; 

    O_19 <= '0'; 

    O_20 <= '0'; 

    O_21 <= '0'; 

    O_22 <= '0'; 

    O_23 <= '0'; 

    O_24 <= '0'; 

    O_25 <= '0'; 

    O_26 <= '0'; 

    O_27 <= '0'; 

 

  END CASE; 

 END PROCESS CTRL_MUX; 

END BEHAVIOR; 
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Appendix F: top.vhdl 

 

LIBRARY IEEE; 

USE IEEE.STD_LOGIC_1164.ALL; 

LIBRARY LATTICE; 

USE LATTICE.COMPONENTS.ALL; 

LIBRARY WORK; 

USE WORK.CSPR_MODULES.ALL; 

 

ENTITY CSPR IS 

 PORT ( 

  --Question: Why aren't we just using STD_LOGIC_VECTORs for the IDC ports? 

  --Answer: These IDC ports have both input and output pins. It is much more clear 

(but verbose) to handle them individually. 

  --IDC A 

  A0 : IN STD_LOGIC; 

  A1 : IN STD_LOGIC; 

  A2 : IN STD_LOGIC; 

  A3 : IN STD_LOGIC; 

  A4 : IN STD_LOGIC; 

  A5 : IN STD_LOGIC; 

  A6 : IN STD_LOGIC; 

  A7 : IN STD_LOGIC; 

  --A8    : IN STD_LOGIC; 

  --A9    : IN STD_LOGIC; 

  A10 : IN STD_LOGIC; 

  A11 : IN STD_LOGIC; 

  A12 : IN STD_LOGIC; 

  A13 : IN STD_LOGIC; 

  A14 : IN STD_LOGIC; 

  A15 : IN STD_LOGIC; 

  A16 : IN STD_LOGIC; 

  A17 : IN STD_LOGIC; 

  A18 : IN STD_LOGIC; 

  A19 : IN STD_LOGIC; 

  --A20    : IN STD_LOGIC; 

  --A21    : IN STD_LOGIC; 

  --A22    : IN STD_LOGIC; 

  --A23    : IN STD_LOGIC; 

  A24 : IN STD_LOGIC; 

  A25 : IN STD_LOGIC; 

  A26 : IN STD_LOGIC; 

  A27 : IN STD_LOGIC; 

  --IDC B 

  B0 : OUT STD_LOGIC := 'Z'; 

  B1 : OUT STD_LOGIC := 'Z'; 
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  B2 : OUT STD_LOGIC := 'Z'; 

  B3 : OUT STD_LOGIC := 'Z'; 

  B4 : OUT STD_LOGIC := 'Z'; 

  B5 : OUT STD_LOGIC := 'Z'; 

  B6 : OUT STD_LOGIC := 'Z'; 

  B7 : OUT STD_LOGIC := 'Z'; 

  B8 : OUT STD_LOGIC := 'Z'; 

  B9 : OUT STD_LOGIC := 'Z'; 

  B10 : OUT STD_LOGIC := 'Z'; 

  B11 : OUT STD_LOGIC := 'Z'; 

  B12 : OUT STD_LOGIC := 'Z'; 

  B13 : OUT STD_LOGIC := 'Z'; 

  B14 : OUT STD_LOGIC := 'Z'; 

  B15 : OUT STD_LOGIC := 'Z'; 

  B16 : OUT STD_LOGIC := 'Z'; 

  B17 : OUT STD_LOGIC := 'Z'; 

  B18 : OUT STD_LOGIC := 'Z'; 

  B19 : OUT STD_LOGIC := 'Z'; 

  B20 : OUT STD_LOGIC := 'Z'; 

  B21 : OUT STD_LOGIC := 'Z'; 

  --B22    : OUT STD_LOGIC := 'Z'; 

  --B23    : OUT STD_LOGIC := 'Z'; 

  B24 : OUT STD_LOGIC := 'Z'; 

  B25 : OUT STD_LOGIC := 'Z'; 

  B26 : OUT STD_LOGIC := 'Z'; 

  B27 : OUT STD_LOGIC := 'Z'; 

  --IDC C 

  C0 : IN STD_LOGIC; 

  C1 : IN STD_LOGIC; 

  C2 : IN STD_LOGIC; 

  C3 : IN STD_LOGIC; 

  C4 : IN STD_LOGIC; 

  C5 : IN STD_LOGIC; 

  C6 : IN STD_LOGIC; 

  C7 : IN STD_LOGIC; 

  --C8    : IN STD_LOGIC; 

  --C9    : IN STD_LOGIC; 

  C10 : IN STD_LOGIC; 

  C11 : IN STD_LOGIC; 

  C12 : IN STD_LOGIC; 

  C13 : IN STD_LOGIC; 

  C14 : IN STD_LOGIC; 

  C15 : IN STD_LOGIC; 

  C16 : IN STD_LOGIC; 

  C17 : IN STD_LOGIC; 

  C18 : IN STD_LOGIC; 
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  C19 : IN STD_LOGIC; 

  --C20    : IN STD_LOGIC; 

  --C21    : IN STD_LOGIC; 

  --C22    : IN STD_LOGIC; 

  --C23    : IN STD_LOGIC; 

  C24 : IN STD_LOGIC; 

  C25 : IN STD_LOGIC; 

  C26 : IN STD_LOGIC; 

  C27 : IN STD_LOGIC; 

  --IDC D 

  D0 : OUT STD_LOGIC; 

  D1 : OUT STD_LOGIC; 

  D2 : OUT STD_LOGIC; 

  D3 : OUT STD_LOGIC; 

  D4 : OUT STD_LOGIC; 

  D5 : OUT STD_LOGIC; 

  D6 : OUT STD_LOGIC; 

  D7 : OUT STD_LOGIC; 

  D8 : OUT STD_LOGIC; 

  D9 : OUT STD_LOGIC; 

  D10 : OUT STD_LOGIC; 

  D11 : OUT STD_LOGIC; 

  D12 : OUT STD_LOGIC; 

  D13 : OUT STD_LOGIC; 

  D14 : OUT STD_LOGIC; 

  D15 : OUT STD_LOGIC; 

  D16 : OUT STD_LOGIC; 

  D17 : OUT STD_LOGIC; 

  D18 : OUT STD_LOGIC; 

  D19 : OUT STD_LOGIC; 

  D20 : OUT STD_LOGIC; 

  D21 : OUT STD_LOGIC; 

  D22 : OUT STD_LOGIC; 

  D23 : IN STD_LOGIC; --EEPROM Master In Slave Out 

  D24 : OUT STD_LOGIC; 

  D25 : OUT STD_LOGIC; 

  D26 : OUT STD_LOGIC; 

  D27 : OUT STD_LOGIC; 

 

  Usr_RX : IN STD_LOGIC; 

  Usr_TX : OUT STD_LOGIC; 

 

  BTN : IN STD_LOGIC_VECTOR(4 DOWNTO 1); 

  LED : OUT STD_LOGIC_VECTOR(8 DOWNTO 1) 

 ); 

END CSPR; 
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ARCHITECTURE BEHAVIOR OF CSPR IS 

 COMPONENT OSCH 

  GENERIC (NOM_FREQ : STRING := "53.2"); 

  PORT ( 

   STDBY : IN STD_LOGIC; 

   OSC : OUT STD_LOGIC; 

   SEDSTDBY : OUT STD_LOGIC 

  ); 

 END COMPONENT; 

 

 COMPONENT PLL 

  PORT ( 

   CLKI : IN STD_LOGIC; 

   CLKOP : OUT STD_LOGIC; 

   CLKOS : OUT STD_LOGIC; 

   CLKOS2 : OUT STD_LOGIC; 

   CLKOS3 : OUT STD_LOGIC; 

   LOCK : OUT STD_LOGIC 

  ); 

 END COMPONENT; 

 

 COMPONENT HARDWARE_ASSISTED_SUPERVISOR 

  PORT ( 

   CLK_IN : IN STD_LOGIC; 

   --Input Controller 1 

   I1_0 : IN STD_LOGIC; 

   I1_1 : IN STD_LOGIC; 

   I1_2 : IN STD_LOGIC; 

   I1_3 : IN STD_LOGIC; 

   I1_4 : IN STD_LOGIC; 

   I1_5 : IN STD_LOGIC; 

   I1_6 : IN STD_LOGIC; 

   I1_7 : IN STD_LOGIC; 

   I1_8 : IN STD_LOGIC; 

   I1_9 : IN STD_LOGIC; 

   I1_10 : IN STD_LOGIC; 

   I1_11 : IN STD_LOGIC; 

   I1_12 : IN STD_LOGIC; 

   I1_13 : IN STD_LOGIC; 

   I1_14 : IN STD_LOGIC; 

   I1_15 : IN STD_LOGIC; 

   I1_16 : IN STD_LOGIC; 

   I1_17 : IN STD_LOGIC; 

   I1_18 : IN STD_LOGIC; 

   I1_19 : IN STD_LOGIC; 
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   I1_20 : IN STD_LOGIC; 

   I1_21 : IN STD_LOGIC; 

   I1_22 : IN STD_LOGIC; 

   I1_23 : IN STD_LOGIC; 

   I1_24 : IN STD_LOGIC; 

   I1_25 : IN STD_LOGIC; 

   I1_26 : IN STD_LOGIC; 

   I1_27 : IN STD_LOGIC; 

   --Input Controller 2 

   I2_0 : IN STD_LOGIC; 

   I2_1 : IN STD_LOGIC; 

   I2_2 : IN STD_LOGIC; 

   I2_3 : IN STD_LOGIC; 

   I2_4 : IN STD_LOGIC; 

   I2_5 : IN STD_LOGIC; 

   I2_6 : IN STD_LOGIC; 

   I2_7 : IN STD_LOGIC; 

   I2_8 : IN STD_LOGIC; 

   I2_9 : IN STD_LOGIC; 

   I2_10 : IN STD_LOGIC; 

   I2_11 : IN STD_LOGIC; 

   I2_12 : IN STD_LOGIC; 

   I2_13 : IN STD_LOGIC; 

   I2_14 : IN STD_LOGIC; 

   I2_15 : IN STD_LOGIC; 

   I2_16 : IN STD_LOGIC; 

   I2_17 : IN STD_LOGIC; 

   I2_18 : IN STD_LOGIC; 

   I2_19 : IN STD_LOGIC; 

   I2_20 : IN STD_LOGIC; 

   I2_21 : IN STD_LOGIC; 

   I2_22 : IN STD_LOGIC; 

   I2_23 : IN STD_LOGIC; 

   I2_24 : IN STD_LOGIC; 

   I2_25 : IN STD_LOGIC; 

   I2_26 : IN STD_LOGIC; 

   I2_27 : IN STD_LOGIC; 

   --Output Controller 

   O_0 : OUT STD_LOGIC; 

   O_1 : OUT STD_LOGIC; 

   O_2 : OUT STD_LOGIC; 

   O_3 : OUT STD_LOGIC; 

   O_4 : OUT STD_LOGIC; 

   O_5 : OUT STD_LOGIC; 

   O_6 : OUT STD_LOGIC; 

   O_7 : OUT STD_LOGIC; 
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   O_8 : OUT STD_LOGIC; 

   O_9 : OUT STD_LOGIC; 

   O_10 : OUT STD_LOGIC; 

   O_11 : OUT STD_LOGIC; 

   O_12 : OUT STD_LOGIC; 

   O_13 : OUT STD_LOGIC; 

   O_14 : OUT STD_LOGIC; 

   O_15 : OUT STD_LOGIC; 

   O_16 : OUT STD_LOGIC; 

   O_17 : OUT STD_LOGIC; 

   O_18 : OUT STD_LOGIC; 

   O_19 : OUT STD_LOGIC; 

   O_20 : OUT STD_LOGIC; 

   O_21 : OUT STD_LOGIC; 

   O_22 : OUT STD_LOGIC; 

   O_23 : OUT STD_LOGIC; 

   O_24 : OUT STD_LOGIC; 

   O_25 : OUT STD_LOGIC; 

   O_26 : OUT STD_LOGIC; 

   O_27 : OUT STD_LOGIC; 

 

   LOCK_STATE : OUT STD_LOGIC; 

   C1_STATE : OUT STD_LOGIC; 

   C2_STATE : OUT STD_LOGIC; 

   NOM_STATE : OUT STD_LOGIC; 

 

   USR_IN : IN STD_LOGIC_VECTOR(4 DOWNTO 1); 

   HW_AUTH : IN STD_LOGIC 

  ); 

 END COMPONENT; 

 

 COMPONENT HW_AUTH_MODULE 

  PORT ( 

   MISO : IN STD_LOGIC; 

   CLK_IN : IN STD_LOGIC; 

   CS : OUT STD_LOGIC; 

   CLK_OUT : OUT STD_LOGIC; 

   MOSI : OUT STD_LOGIC; 

   HW_GOOD : OUT STD_LOGIC 

  ); 

 END COMPONENT; 

 

 --COMPONENT Bus_Master 

 --PORT ( 

 --clk     : IN std_logic; 

 --rst     : IN std_logic; 
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 --Data    : INOUT std_logic_vector(15 DOWNTO 0); 

 --Addr    : IN std_logic_vector(15 DOWNTO 0); 

 --Xrqst   : IN std_logic; 

 --XDat    : OUT std_logic; 

 --YDat    : IN std_logic; 

 --BusRqst : IN std_logic_vector(9 DOWNTO 0); 

 --BusCtrl : OUT std_logic_vector(9 DOWNTO 0) 

 --); 

 --END COMPONENT; 

 

 --COMPONENT RS232_Usr_Int 

 --GENERIC ( 

 --Baud   : INTEGER; -- Baud Rate 

 --clk_in : INTEGER -- Input Clk 

 --); 

 --PORT ( 

 --clk       : IN std_logic; 

 --rst       : IN std_logic; 

 --rs232_rcv : IN std_logic; 

 --rs232_xmt : OUT std_logic; 

 --Data      : INOUT std_logic_vector(15 DOWNTO 0); 

 --Addr      : OUT std_logic_vector(15 DOWNTO 0); 

 --Xrqst     : OUT std_logic; 

 --XDat      : IN std_logic; 

 --YDat      : OUT std_logic; 

 --BusRqst   : OUT std_logic; 

 --BusCtrl   : IN std_logic 

 --); 

 --END COMPONENT; 

 

 --COMPONENT LED_Ctrl  

 --PORT ( 

 --clk      : IN STD_LOGIC; 

 --rst      : IN STD_LOGIC; 

 --Data     : INOUT std_logic_vector(15 DOWNTO 0); 

 --Addr     : OUT std_logic_vector(15 DOWNTO 0); 

 --Xrqst    : OUT std_logic; 

 --XDat     : IN std_logic; 

 --YDat     : OUT std_logic; 

 --BusRqst  : OUT std_logic; 

 --BusCtrl  : IN std_logic; 

 --LED1_Out : OUT STD_LOGIC 

 --); 

 --END COMPONENT; 

 

 --COMPONENT Std_Counter 
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 --GENERIC ( 

 --Width : INTEGER -- width of counter 

 --); 

 --PORT ( 

 --INC, rst, clk : IN std_logic; 

 --Count         : OUT STD_LOGIC_VECTOR(Width - 1 DOWNTO 0)); 

 --END COMPONENT; 

 

 SIGNAL OSC_Stdby : STD_LOGIC := '0'; 

 SIGNAL PLL_IN : STD_LOGIC := '0'; 

 SIGNAL OSC_SEDSTDBY : STD_LOGIC := '0'; 

 

 SIGNAL CLK53_2M : STD_LOGIC := '0'; 

 SIGNAL CLK24_93M : STD_LOGIC := '0'; 

 SIGNAL CLK8_31M : STD_LOGIC := '0'; 

 SIGNAL CLK1_5M : STD_LOGIC := '0'; 

 SIGNAL PLL_LOCK : STD_LOGIC := '0'; 

 

 SIGNAL MISO0 : STD_LOGIC := '0'; 

 SIGNAL CS0 : STD_LOGIC := '0'; 

 SIGNAL CLK_OUT0 : STD_LOGIC := '0'; 

 SIGNAL MOSI0 : STD_LOGIC := '0'; 

 SIGNAL HW_AUTH_FLAG : STD_LOGIC := '0'; 

 

 SIGNAL A : STD_LOGIC_VECTOR(27 DOWNTO 0) := (OTHERS => '0'); 

 SIGNAL B : STD_LOGIC_VECTOR(27 DOWNTO 0) := (OTHERS => '0'); 

 SIGNAL C : STD_LOGIC_VECTOR(27 DOWNTO 0) := (OTHERS => '0'); 

 SIGNAL D : STD_LOGIC_VECTOR(21 DOWNTO 0) := (OTHERS => '0'); 

 

 SIGNAL LOCK_S : STD_LOGIC := '0'; 

 SIGNAL C1_S : STD_LOGIC := '0'; 

 SIGNAL C2_S : STD_LOGIC := '0'; 

 SIGNAL NOM_S : STD_LOGIC := '0'; 

 

 SIGNAL LED_OUT : STD_LOGIC_VECTOR(8 DOWNTO 1); 

 --From Bus_Interface_Top 

 SIGNAL Bus_Int1_WE, Bus_Int1_RE, Bus_Int1_Busy : STD_LOGIC := '0'; 

 SIGNAL Bus_Int1_DataIn, Bus_Int1_DataOut, Bus_Int1_AddrIn : 

STD_LOGIC_VECTOR(15 DOWNTO 0) := (OTHERS => '0'); 

 SIGNAL Addr : STD_LOGIC_VECTOR(15 DOWNTO 0) := (OTHERS => '0'); 

 SIGNAL Xrqst : STD_LOGIC := '0'; 

 SIGNAL YDat : STD_LOGIC := '0'; 

 SIGNAL BusRqst : STD_LOGIC_VECTOR(9 DOWNTO 0) := (OTHERS => '0'); 

 SIGNAL Data : STD_LOGIC_VECTOR(15 DOWNTO 0) := (OTHERS => '0'); 

 SIGNAL XDat : STD_LOGIC := '0'; 

 SIGNAL BusCtrl : STD_LOGIC_VECTOR(9 DOWNTO 0) := (OTHERS => '0'); 
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 SIGNAL System_rst : STD_LOGIC := '0'; 

 SIGNAL Reset_Cnt_INC, Reset_Cnt_rst : STD_LOGIC := '0'; 

 SIGNAL Reset_Cnt_out : STD_LOGIC_VECTOR(7 DOWNTO 0) := (OTHERS => '0'); 

 SIGNAL LED_1n : STD_LOGIC := '0'; 

 

BEGIN 

 Int_OSC : OSCH 

 PORT MAP( 

  STDBY => OSC_Stdby, 

  OSC => PLL_IN, 

  SEDSTDBY => OSC_SEDSTDBY 

 ); 

 

 PLL0 : PLL 

 PORT MAP( 

  CLKI => PLL_IN, 

  CLKOP => CLK53_2M, 

  CLKOS => CLK24_93M, 

  CLKOS2 => CLK8_31M, 

  CLKOS3 => CLK1_5M, 

  LOCK => PLL_LOCK 

 ); 

 

 CTRL_MUX : HARDWARE_ASSISTED_SUPERVISOR 

 PORT MAP( 

  CLK_IN => CLK53_2M, 

  I1_0 => A(0), 

  I1_1 => A(1), 

  I1_2 => A(2), 

  I1_3 => A(3), 

  I1_4 => A(4), 

  I1_5 => A(5), 

  I1_6 => A(6), 

  I1_7 => A(7), 

  I1_8 => '0', --A(8), 

  I1_9 => '0', --A(9), 

  I1_10 => A(10), 

  I1_11 => A(11), 

  I1_12 => A(12), 

  I1_13 => A(13), 

  I1_14 => A(14), 

  I1_15 => A(15), 

  I1_16 => A(16), 

  I1_17 => A(17), 

  I1_18 => A(18), 
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  I1_19 => A(19), 

  I1_20 => '0', --A(20), 

  I1_21 => '0', --A(21), 

  I1_22 => '0', --A(22), 

  I1_23 => '0', --A(23), 

  I1_24 => A(24), 

  I1_25 => A(25), 

  I1_26 => A(26), 

  I1_27 => A(27), 

  I2_0 => C(0), 

  I2_1 => C(1), 

  I2_2 => C(2), 

  I2_3 => C(3), 

  I2_4 => C(4), 

  I2_5 => C(5), 

  I2_6 => C(6), 

  I2_7 => C(7), 

  I2_8 => '0', --C(8), 

  I2_9 => '0', --C(9), 

  I2_10 => C(10), 

  I2_11 => C(11), 

  I2_12 => C(12), 

  I2_13 => C(13), 

  I2_14 => C(14), 

  I2_15 => C(15), 

  I2_16 => C(16), 

  I2_17 => C(17), 

  I2_18 => C(18), 

  I2_19 => C(19), 

  I2_20 => '0', --C(20), 

  I2_21 => '0', --C(21), 

  I2_22 => '0', --C(22), 

  I2_23 => '0', --C(23), 

  I2_24 => C(24), 

  I2_25 => C(25), 

  I2_26 => C(26), 

  I2_27 => C(27), 

  O_0 => D(0), 

  O_1 => D(1), 

  O_2 => D(2), 

  O_3 => D(3), 

  O_4 => D(4), 

  O_5 => D(5), 

  O_6 => D(6), 

  O_7 => D(7), 

  O_8 => OPEN, 
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  O_9 => OPEN, 

  O_10 => D(8), 

  O_11 => D(9), 

  O_12 => D(10), 

  O_13 => D(11), 

  O_14 => D(12), 

  O_15 => D(13), 

  O_16 => D(14), 

  O_17 => D(15), 

  O_18 => D(16), 

  O_19 => D(17), 

  O_20 => OPEN, 

  O_21 => OPEN, 

  O_22 => OPEN, 

  O_23 => OPEN, 

  O_24 => D(18), 

  O_25 => D(19), 

  O_26 => D(20), 

  O_27 => D(21), 

  LOCK_STATE => LOCK_S, 

  C1_STATE => C1_S, 

  C2_STATE => C2_S, 

  NOM_STATE => NOM_S, 

  USR_IN => BTN, 

  HW_AUTH => HW_AUTH_FLAG 

 ); 

 

 AUTH_MODULE0 : HW_AUTH_MODULE 

 PORT MAP( 

  MISO => MISO0, 

  CLK_IN => CLK1_5M, 

  CS => CS0, 

  CLK_OUT => CLK_OUT0, 

  MOSI => MOSI0, 

  HW_GOOD => HW_AUTH_FLAG 

 ); 

 

 --BM : Bus_Master 

 --PORT MAP( 

 --clk     => CLK24_93M, 

 --rst     => System_rst, 

 --Data    => Data, 

 --Addr    => Addr, 

 --Xrqst   => Xrqst, 

 --XDat    => XDat, 

 --YDat    => YDat, 
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 --BusRqst => BusRqst, 

 --BusCtrl => BusCtrl 

 --); 

 

 --RS232_Usr : RS232_Usr_Int 

 --GENERIC MAP( 

 --Baud   => 9600, -- Baud Rate 

 --Clk_In => 24937500 --Clk_Freq 

 --) 

 --PORT MAP( 

 --clk       => CLK24_93M, 

 --rst       => System_rst, 

 --rs232_rcv => Usr_RX, 

 --rs232_xmt => Usr_TX, 

 --Data      => Data, 

 --Addr      => Addr, 

 --Xrqst     => Xrqst, 

 --XDat      => XDat, 

 --YDat      => YDat, 

 --BusRqst   => BusRqst(1), 

 --BusCtrl   => BusCtrl(1) 

 --); 

 

 --LED_Ctrl1 : LED_Ctrl 

 --PORT MAP( 

 --clk      => CLK24_93M, 

 --rst      => System_rst, 

 --Data     => Data, 

 --Addr     => Addr, 

 --Xrqst    => Xrqst, 

 --XDat     => XDat, 

 --YDat     => YDat, 

 --BusRqst  => BusRqst(0), 

 --BusCtrl  => BusCtrl(0), 

 --LED1_Out => LED_1n 

 --); 

 

 --Reset_Cnt : Std_Counter 

 --GENERIC MAP 

 --( 

 --Width => 8 

 --) 

 --PORT MAP( 

 --clk   => CLK8_31M, 

 --rst   => Reset_Cnt_rst, 

 --INC   => Reset_Cnt_INC, 
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 --Count => Reset_Cnt_Out 

 --); 

 

 --OSC_Stdby           <= '0'; 

 --BusRqst(9 DOWNTO 2) <= (OTHERS => '0'); 

 

 --IDC A, INPUT from CONTROLLER 1 

 A(0) <= A0; 

 A(1) <= A1; 

 A(2) <= A2; 

 A(3) <= A3; 

 A(4) <= A4; 

 A(5) <= A5; 

 A(6) <= A6; 

 A(7) <= A7; 

 A(8) <= '0';--A8; 

 A(9) <= '0';--A9; 

 A(10) <= A10; 

 A(11) <= A11; 

 A(12) <= A12; 

 A(13) <= A13; 

 A(14) <= A14; 

 A(15) <= A15; 

 A(16) <= A16; 

 A(17) <= A17; 

 A(18) <= A18; 

 A(19) <= A19; 

 A(20) <= '0';--A20; 

 A(21) <= '0';--A21; 

 A(22) <= '0';--A22; 

 A(23) <= '0';--A23; 

 A(24) <= A24; 

 A(25) <= A25; 

 A(26) <= A26; 

 A(27) <= A27; 

 

 --IDC C, INPUT from CONTROLLER 2 

 C(0) <= C0; 

 C(1) <= C1; 

 C(2) <= C2; 

 C(3) <= C3; 

 C(4) <= C4; 

 C(5) <= C5; 

 C(6) <= C6; 

 C(7) <= C7; 

 C(8) <= '0';--C8; 
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 C(9) <= '0';--C9; 

 C(10) <= C10; 

 C(11) <= C11; 

 C(12) <= C12; 

 C(13) <= C13; 

 C(14) <= C14; 

 C(15) <= C15; 

 C(16) <= C16; 

 C(17) <= C17; 

 C(18) <= C18; 

 C(19) <= C19; 

 C(20) <= '0';--C20; 

 C(21) <= '0';--C21; 

 C(22) <= '0';--C22; 

 C(23) <= '0';--C23; 

 C(24) <= C24; 

 C(25) <= C25; 

 C(26) <= C26; 

 C(27) <= C27; 

 

 --IDC D, OUTPUT from CONTROLLER 1 or CONTROLLER 2 to POWER 

ELECTRONICS 

 D0 <= D(0); 

 D1 <= D(1); 

 D2 <= D(2); 

 D3 <= D(3); 

 D4 <= D(4); 

 D5 <= D(5); 

 D6 <= D(6); 

 D7 <= D(7); 

 D8 <= '1'; 

 D9 <= NOT HW_AUTH_FLAG; 

 D10 <= D(8); 

 D11 <= D(9); 

 D12 <= D(10); 

 D13 <= D(11); 

 D14 <= D(12); 

 D15 <= D(13); 

 D16 <= D(14); 

 D17 <= D(15); 

 D18 <= D(16); 

 D19 <= D(17); 

 D20 <= CLK_OUT0; 

 D21 <= CS0; 

 D22 <= MOSI0; 

 MISO0 <= D23; 
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 D24 <= D(18); 

 D25 <= D(19); 

 D26 <= D(20); 

 D27 <= D(21); 

 

 LED(1) <= HW_AUTH_FLAG; 

 LED(2) <= NOT(HW_AUTH_FLAG); 

 LED(3) <= NOT(LED_1n); 

 LED(4) <= '1'; 

 LED(5) <= NOT(LOCK_S); 

 LED(6) <= NOT(NOM_S); 

 LED(7) <= NOT(C1_S); 

 LED(8) <= NOT(C2_S); 

 

 --Reset_Blk1 : PROCESS 

 --BEGIN 

 --WAIT UNTIL CLK8_31M'event AND CLK8_31M = '1'; 

 --IF (PLL_Lock = '0') THEN 

 --Reset_Cnt_rst <= '0'; 

 --ELSE 

 --Reset_Cnt_rst <= '1'; 

 --END IF; 

 --END PROCESS; 

 

 --Reset_Blk : PROCESS 

 --BEGIN 

 --WAIT UNTIL CLK8_31M'event AND CLK8_31M = '1'; 

 --IF (Reset_Cnt_out < X"7F") THEN 

 --System_rst    <= '0'; 

 --Reset_Cnt_Inc <= '1'; 

 --ELSE 

 --System_rst    <= '1'; 

 --Reset_Cnt_Inc <= '0'; 

 --END IF; 

 --END PROCESS; 

 

END BEHAVIOR; 
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