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Abstract

We study the use of distance correlation for statistical inference on categorical data, espe-

cially the induction of probability networks. Szekely et al. first defined distance correlation for

continuous variables in [42], and Zhang translated the concept into the categorical setting in [57]

by defining dCor(X,Y ) for categorical variables X = (x1, . . . , xI) and Y = (y1, . . . , yJ) where

P (X = xi) = πi and P (Y = yj) = πj with the formula,√∑I
i=1

∑J
j=1 (πij − πi+π+j)
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Part I of the dissertation covers the background we need to understand this formula, and prepares

us to analyze the properties and performance of its applications.

Part II then presents the main results of the dissertation, applying distance correlation to

learn the structure of probability networks with categorical nodes. We cover in detail how the

distance correlation measure may be combined with search methods based on graphical models

to induce network structure. This leads to our empirical results obtained by enhancing the INeS

software library [6]. These results involve experiments using six data sets such as the Danish

Jersey cattle blood type determination data and the ALARM network; in terms of accuracy

metrics such as edges missed from the true network, induction with distance correlation achieves

higher accuracy relative on average than does induction with existing measures such as mutual

information and χ2. We conclude Part II by connecting to earlier joint work with Zhang in

[58] on the use of conditional distance covariance for conditional independence and homogeneity

tests in large sparse three-way tables. The simulation studies in this work offer another source of

intuition for why distance correlation may be able to recover network structure more accurately

than traditional measures.

In Part III, we end the dissertation by discussing another application of graphical models,

in this case to the derivation of a graph-based multivariate test. The test statistic is compu-

tationally cheap, and proven to converge to a χ2 distribution with favorable asymptotics. We

present empirical results in which we use the test to analyze the roles of various oncogenic and

suppressor pathways in tumor progression.
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Chapter 1

Fundamentals of Distance Correlation

In [42], Szekely et al. introduced the concept of distance correlation in the continuous setting.

They wished to overcome some of the weaknesses of traditional correlation measures; for exam-

ple, detecting nonlinear dependencies or maintaining power in multivariate independence tests.

In this chapter we review the continuous theory and then discuss Zhang’s translation to the

categorical setting from [57].

1.1 The continuous case

Distance correlation is a measure of dependence between random vectors, analogous to product-

moment correlation; but unlike the classical notion, it is zero only if the random vectors are

independent. Its empirical measures are based on Euclidean distance computed between sample

elements rather than sample moments. Nonetheless, these empirical measures retain a compact

representation analogous to classical covariance and correlation measures. We will consider their

asymptotic properties and usefulness for independence tests.

Notation

In what follows, X ∈ Rp and Y ∈ Rq are random vectors, where p and q are positive integers.

The characteristic functions of X and Y are denoted fX and fY , respectively, and the joint

characteristic function of X and Y is denoted fX,Y . The scalar product of vectors t and s is

denoted by 〈t, s〉.

For complex-valued functions f(·), the complex conjugate of f is denoted by f̄ and |f |2 = ff̄ .

The Euclidean norm of x in Rp is |x|p. A sample from the distribution of X in Rp is denoted

by the n× p matrix X, and the sample vectors (rows) are labeled X1, . . . , Xn.

A primed variable X ′ is an independent copy of X; that is, X and X ′ are independent and

identically distributed.

2



Motivation and introduction

Consider the problem of testing the joint independence of random vectors. For all distributions

with finite first moments, we seek a dependency measure R such that:

1. R(X, Y ) is defined for X and Y in arbitrary dimension;

2. R(X, Y ) = 0 characterizes independence of X and Y .

We will see that distance correlation has these properties; in particular, distance correlation

satisfies 0 ≤ R ≤ 1 and R = 0 only if X and Y are independent. Concretely, in the bivariate

normal case, R is a function of product-moment correlation ρ, and R(X, Y ) ≤ |ρ(X, Y )| with

equality when ρ = ±1.

We also wish a dependency measure R to reflect the distance ‖fX,Y (t, s)− fX(t)fY (s)‖ be-

tween the joint characteristic function and the product of the marginal characteristic functions;

hence allowing a powerful independence test for the null and alternative hypotheses,

H0 : fX,Y = fXfY vs. H1 : fX,Y 6= fXfY .

The empirical importance of testing independence assumptions is hard to overstate. For exam-

ple, consider clinical studies on gene interactions which use a case-only design; that is, which use

only diseased subjects which are assumed independent in the study population. In this design,

inferences on multiplicative gene interactions can be highly distorted when there is a departure

from independence.

As we will see, distance correlation also performs well here. The power of its associated

independence tests is a primary benefit, as Monte Carlo results on distance covariance tests

exhibit superior power against non-monotone types of dependence while maintaining good power

performance in the multivariate normal case (say, relative to the parametric likelihood ratio test).

Distance correlation can also be applied as an index of dependence; for example, meta-analysis

suggests distance correlation could be a more generally applicable index than product-moment

correlation—without requiring normality for valid inferences.

With these promises in mind, let us now define distance correlation.
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Derivation of the distance correlation measure

We need a few preparatory definitions following Szekely et al. in [42].

Definition 1.1. For complex functions γ defined on Rp×Rq the ‖ · ‖w-norm in the weighted L2

space of functions on Rp+q is defined by

‖γ(t, s)‖2
w =

∫
Rp+q
|γ(t, s)|2w(t, s) dt ds,

where w(t, s) is an arbitrary positive weight function for which the integral above exists.

Now, for any acceptable choice of weight w(t, s), we may use the ‖ · ‖w-norm to define a

measure of dependence.

Definition 1.2. Given characteristic functions fX , fY , and fX,Y with weight w(t, s) we define

the measure V2(X, Y ;w) by

V2(X, Y ;w) = ‖fX,Y (t, s)− fX(t)fY (s)‖2
w =

∫
Rp+q
|fX,Y (t, s)− fX(t)fY (s)|2w(t, s) dt ds.

In particular, V2(X, Y ;w) vanishes iff X and Y are independent.

We note that V is analogous to the absolute value of the classical product-moment covariance.

If we divide V(X, Y ;w) by
√
V(X;w)V(Y ;w) where

V2(X;w) =

∫
R2p

|fX,X(t, s)− fX(t)fX(s)|2w(t, s) dt ds,

we have a type of unsigned correlation Rw. Of course, not every weight function leads to an

“interesting”Rw. The coefficientRw should be scale invariant ; that is, invariant with respect to

transformations (X, Y ) 7→ (εX, εY ), for ε > 0. We also require that Rw is positive for dependent

variables.

One can show that if the weight function w(t, s) is integrable and both X and Y have finite

variance, then by Taylor expansions of the underlying characteristic functions,

lim
ε→0

V 2(εX, εY ;w)√
V2(εX;w)V 2(εY ;w)

= ρ2(X, Y ),

thus for integrable w, if ρ = 0, then Rw can be arbitrarily close to zero even if X and Y are

dependent.
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However, by applying a nonintegrable weight function, it is possible to obtain an Rw that

is scale invariant and cannot be zero for dependent X and Y . This is the key insight in [42],

and it leads to very simple and applicable empirical formulas. The crucial observation is the

following lemma.

Lemma 1.3. If 0 < α < 2, then for all x in Rd

∫
Rd

1− cos(t, x)

|t|d+α
d

dt = C(d, α)|x|α,

where

C(d, α) =
2πd/2Γ(1− α/2)

α2αΓ((d+ α)/2)
,

and Γ(·) is the complete gamma function. The integrals at 0 and ∞ are meant in the principal

value sense: limε→0

∫
Rd{εB+ε−1Bc}, where B is the unit ball (centered at 0) in Rd and Bc is the

complement of B.

In the simplest case, α = 1, the constant in Lemma 1.3 is

cd = C(d, 1) =
π(1+d/2

)
Γ((1 + d)/2)

.

In view of Lemma 1.3, it is natural to choose the weight function corresponding to α = 1.

w(t, s) =
(
cpcq|t|1+p

p |s|1+q
q

)−1
. (1.1)

Now, given the weight function 1.1 and the corresponding weighted L2 norm ‖ · ‖, omitting the

index w, we write the implied dependence measure from 1.2 as V2(X, Y ). Also, for conciseness

let us write,

dω =
(
cpcq|t|1+p

p |s|1+q
q

)−1
dt ds.

Then we are studying the integral,

V2(X, Y ) =

∫
Rp+q
|fX,Y (t, s)− fX(t)fY (s)|2 dω. (1.2)
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For finiteness of 1.2, it is sufficient that E|X|p < ∞ and E|Y |q < ∞. By the Cauchy-

Bunyakovsky inequality

|fX,Y (t, s)− fX(t)fY (s)|2 =
[
E
(
ei(t,X) − fX(t)

) (
ei(s,Y ) − fY (s)

)]2
≤ E

[
ei(t,X) − fX(t)

]2
E
[
ei(s,Y ) − fY (s)

]2
=
(
1− |fX(t)|2

) (
1− |fY (s)|2

)
.

If E (|X|p + |Y |q) <∞, then by an application of Fubini’s theorem it follows that

|fX,Y (t, s)− fX(t)fY (s)|2 dω ≤
∫
Rp

1− |fX(t)|2

cp|t|1+p
p

dt

∫
Rq

1− |fY (s)|2

cq|s|1+q
q

ds

= E

[∫
Rp

1− cos (t,X −X ′)
cp|t|1+p

p

dt

]
· E
[∫

Rq

1− cos (s, Y − Y ′)
cq|s|1+q

q

ds

]
= E |X −X ′|pE |Y − Y

′|q <∞.

This leads us to the following definition.

Definition 1.4. The distance covariance (dCov) between random vectors X and Y with finite

first moments is the nonnegative number V(X, Y ) defined by

V2(X, Y ) = ‖fX,Y (t, s)− fX(t)fY (s)‖2

=
1

cpcq

∫
Rp+q

|fX,Y (t, s)− fX(t)fY (s)|2

|t|1+p
p |s|1+q

q

dt ds.

Similarly, distance variance (dVar) is defined as the square root of

V2(X) = V2(X,X) = ‖fX,X(t, s)− fX(t)fX(s)‖2 .

Note that this definition can be extended to random vectors E (|X|p + |Y |q) = ∞ as long

as E
(
|X|αp + |Y |αq

)
< ∞ for some 0 < α < 1, in which case one considers V(α) and R(α). In

other cases, it may be possible to find a suitable transformation of (X, Y ) into bounded random

variables (X̃, Ỹ ) such that X̃ and Ỹ are independent iff X and Y are independent. These

adaptations can allow statistical analysis to proceed using distance covariance even when the

first moments are not finite.
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Definition 1.5. The distance correlation (dCor) between random vectors X and Y with finite

first moments is the nonnegative number R(X, Y ) defined by

R2(X, Y ) =


V 2(X,Y )√
V2(X)V2(Y )

, V2(X)V2(Y ) > 0

0, V2(X)V2(Y ) = 0.

Clearly the definition of R suggests an analogy with the product moment correlation coeffi-

cient ρ. In fact we can compute an explicit relation between V , R, and ρ in the bivariate normal

case. We now move to the empirical dependence measures.

Definition 1.6. For an observed random sample (X, Y ) = {(Xk, Yk) : k = 1, . . . , n} from the

joint distribution of random vectors X in Rp and Y in Rq, define,

akl = |Xk −Xl|p , āk. = 1
n

∑n
l=1 akl, ā.l,=

1
n

∑n
k=1 akl,

ā.. = 1
n2

∑n
k,l=1 akl, Akl = akl − āk. − ā.l + ā..,

where k, l = 1, . . . , n. Similarly, define bkl = |Yk − Yl|q and Bkl = bkl − b̄k. − b̄.l + b̄... Then the

empirical distance covariance Vn(X, Y ) is the nonnegative number defined by

V2
n(X, Y ) =

1

n2

n∑
k, l=1

AklBkl.

Similarly, Vn(X) is the nonnegative number defined by

V 2
n (X) = V2

n(X,X) =
1

n2

n∑
k, l=1

A2
kl.

Although it may not be immediately obvious, it is a fact that V2
n(X, Y ) ≥ 0.

Definition 1.7. The empirical distance correlation Rn(X, Y ) is defined by

R2
n(X, Y ) =


V2
n(X,Y )√
V2
n(X)V2

n(Y )
, V2

n(X)V2
n(Y ) > 0

0, V2
n(X)V2

n(Y ) = 0.

Note that the statistic Vn(X) = 0 iff every sample observation is identical. Indeed, if it

holds that Vn(X) = 0, then Akl = 0 for all k, l = 1, . . . , n. In particular, Akk = āk. − ā.k + ā..

vanishes, implying that āk. = ā.k = ā../2; and Akl = akl − āk. − ā.l + ā.. = akl = |Xk − Xl|p

so X1 = · · · = Xn. It is immediately clear that ease of computation is a major attraction

of the statistic Rn. The harder work is to show that Rn is also a good empirical measure of

dependence.
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1.2 Properties of distance covariance

It is interesting to note that it would have been natural (though less elementary) to define

Vn(X, Y ) as
∥∥fnX,Y (t, s)− fnX(t)fnY (s)

∥∥ , where

fnX,Y (t, s) =
1

n

n∑
k=1

exp {i〈t,Xk〉+ i〈s, Yk〉} ,

is the empirical characteristic function of the sample, {(X1, Y1) , . . . , (Xn, Yn)} and

fnX(t) =
1

n

n∑
k=1

exp {i〈t,Xk〉} , fnY (s) =
1

n

n∑
k=1

exp {i 〈s, Yk〉} ,

are the marginal empirical characteristic functions of the X sample and Y sample, respectively.

It is a fundamental fact that the two definitions are equivalent, which we now prove to give a

sense of the theory in the continuous setting.

Theorem 1.8. If (X, Y) is a sample from the joint distribution of (X,Y), then

V2
n(X, Y ) =

∥∥fnX,Y (t, s)− fnX(t)fnY (s)
∥∥2
.

Proof. Lemma 1.3 implies that there exist constants cp and cq such that for all X in Rp and Y

in Rq, ∫
Rp

1− exp{i〈t,X〉}
|t|1+p
p

dt = cp |X|p, (1.3)

∫
Rq

1− exp{i〈s, Y 〉}
|s|1+q

q

ds = cq |Y |q, (1.4)

∫
Rp

∫
Rq

1− exp{i〈t,X〉+ i〈s, Y 〉}
|t|1+p
p |s|1+q

q

dt ds = cp cq |X|p |Y |q, (1.5)

where the integrals are understood in the principal value sense.

For simplicity, consider the case p = q = 1. In this case, the distance between the em-

pirical characteristic functions in the weighted norm w(t, s) = π−2t−2s−2 involves
∣∣fnX,Y (t, s)

∣∣2,

|fnX(t)fnY (s)|2 and fnX,Y (t, s)fnX(t)fnY (s). For the first we have

fnX,Y (t, s) · fnX,Y (t, s) =
1

n2

n∑
k,l=1

cos (Xk −Xl) t cos (Yk − Yl) s+ V1,

8



where V1 represents terms that vanish when the integral
∥∥fnX,Y (t, s)− fnX(t)fnY (s)

∥∥2
is evaluated.

The second expression is

fnX(t)fnY (s) · fnX(t)fnY (s) =
1

n2

n∑
k,l=1

cos (Xk −Xl) t ·
1

n2

n∑
k,l=1

cos (Yk − Yl) s+ V2,

and the third is

fnX,Y (t, s) · fnX(t)fnY (s) =
1

n3

n∑
k,l,m=1

cos (Xk −Xl) t cos (Yk − Ym) s+ V3,

where V2 and V3 represent terms that vanish when the integral is evaluated.

Now, to evaluate the integral
∥∥fnX,Y (t, s)− fnX(t)fnY (s)

∥∥2
in this special case, we can apply

Lemma 1.3 and Equations 1.3, 1.4, and 1.5 using the identity

cosu cos v = 1− (1− cosu)− (1− cos v) + (1− cosu)(1− cos v).

After cancellation, the remaining integrals then evaluate as,∫
R2 (1− cos (Xk −Xl) t) (1− cos (Yk − Yl) s) dt

t2
ds
s2

=
∫
R (1− cos (Xk −Xl) t)

dt
t2
×
∫
R (1− cos (Yk − Yl) s) ds

s2

= c2
1 |Xk −Xl| |Yk − Yl| .

For random vectors X ∈ Rp and Y ∈ Rq, we apply the same steps, except now using w(t, s) ={
cpcq|t|1+p

p |s|1+q
q

}−1
.

We are left with ∥∥fnX,Y (t, s)− fnX(t)fnY (s)
∥∥2

= S1 + S2 − 2S3, (1.6)

where

S1 =
1

n2

n∑
k,l=1

|Xk −Xl|p |Yk − Yl|q , (1.7)

S2 =
1

n2

n∑
k,l=1

|Xk −Xl|p
1

n2

n∑
k,l=1

|Yk − Yl|q, (1.8)

S3 =
1

n3

n∑
k=1

n∑
l,m=1

|Xk −Xl|p |Yk − Ym|q . (1.9)

To complete the proof we only need the algebraic identity V 2
n (X, Y ) = S1 +S2− 2S3, as worked

out in the appendix of [42]. Taken with 1.6, it follows V2
n(X, Y ) =

∥∥fnX,Y (t, s)− fnX(t)fnY (s)
∥∥2

.
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With this equivalence in hand, it is relatively straightforward to prove the following key

properties of distance covariance and correlation. (See [42] for the proofs.)

Theorem 1.9 (Properties of distance covariance and distance correlation).

(i) If E(|X|p + |Y |q) <∞, then 0 ≤ R ≤ 1, and R(X, Y ) = 0 iff X and Y are independent.

(ii) If it also holds E(|X|2p + |Y |2q) <∞, then given three independent samples we have

V2(X,Y ) = E (|X1 −X2|p|Y1 − Y2|q) + E (|X1 −X2|p)E (|Y1 − Y2|q) − 2E (|X1 −X2|p|Y1 − Y3|q) . (1.10)

1.3 Power comparison with traditional independence tests

Although the theoretical properties of distance correlation and the ease of computing empirical

distance correlation are clearly attractive, we of course also want evidence that associated tests

perform well in practice. Szekely et al. proposed the following independence test.

Definition 1.10. With notation as above, let T (X, Y, α, n) be the test that rejects independence

of X and Y if

nV2
n(X, Y )

S2

> (φ−1(1− α/2))2,

where φ(·) is the standard normal cumulative distribution function, and S2 is from Equation 1.8.

They performed Monte Carlo power comparisons of this test against three classical tests of

multivariate independence based on likelihood ratios: the Wilks Lambda statistic, the Puri–Sen

rank correlation statistic, and the Puri–Sen sign statistic. The empirical powers of the various

tests were comparable for X and Y with different multivariate normal or t distributions.

But when considering X multivariate normal with p = 5, and Ykj = log(X2
kj), the simulations

showed the test in Definition 1.10 to be much more powerful. That is to say, given two ran-

dom vectors with nonlinear relations, traditional measures struggled to detect the dependence

structure, while distance correlation remained sensitive.

1.4 Translation to categorical variables

Given these results in the continuous setting, it is of interest to examine applications to categor-

ical random variables as well. Zhang took this step in [57], observing that categorical variables

10



X ∈ 1, 2, . . . , I and Y ∈ 1, 2, . . . , J can be represented as random vectors of dimension I and J ,

respectively, where

X = I(X = i)1≤i≤I , Y = I(Y = j)1≤j≤J ,

with I(·) the indicator function. Then under Euclidean distance, ‖X1−X2‖ vanishes if X1 = X2

and is
√

2 otherwise. Since the norms of such vectors of course have finite second moments,

the second equivalence in Theorem 1.9 applies, and this gives us a path to computing distance

covariance and distance correlation in the categorical setting.

Geometric intuition for inter-category distance

To make the intuition here explicit, we mention a geometric interpretation given by Vernizzi and

Nakai in [25]. In particular, a categorical variable with K possible outcomes can be represented

by K equidistant points v1,v2, . . . ,vk with coordinates,

v1 = (1, 0, 0, . . . , 0),

v2 = (0, 1, 0, . . . , 0),

. . .

vK = (0, 0, 0, . . . , 1).

All these vertices belong to the K-dimensional space RK , and they span a (K − 1)-dimensional

convex hull called a regular (K − 1)-simplex.

For instance, a categorical variable representing binary sex has two possible outcomes that

correspond to the two points v1 = (1, 0) and v2 = (0, 1) on the plane. The segment connecting

the two points is a regular one-simplex, and its length is l =
√

2. As another example, a

categorical variable associated with employment status might take one of four possible outcomes:

full-time, part-time, self-employed, and unemployed. It can be represented by four points v1 =

(1, 0, 0, 0),v2 = (0, 1, 0, 0),v3 = (0, 0, 1, 0), and v4 = (0, 0, 0, 1) in R4. The three-dimensional

hull spanned by the four vertices is a regular tetrahedron, as in Figure 1.1 below from [25].

Evidently all simplices have edge length l =
√

2, and this geometric interpretation makes it

explicit that the Euclidean distance between any pair of vertices vi and vj of a simplex (and

11



Figure 1.1: Regular simplices representing categorical variables with one to four outcomes

equivalently, between any two outcomes for the underlying categorical variable) is given by

dij = |vi − vj| = (1− δij)
√

2, where δij is the Kronecker delta function.

Definitions for categorical variables

Now returning to Zhang’s work, using a multinomial sampling scheme for the underlying vari-

ables X and Y , he derived in particular,

dCor(X,Y ) =

√∑I
i=1

∑J
j=1 (πij − πi+π+j)

2{∑I
i=1 π

2
i+

(∑I
i=1 π

2
i+ + 1

)
− 2

∑I
i=1 π

3
i+

}1/4 {∑J
j=1 π

2
+j

(∑J
j=1 π

2
+j + 1

)
− 2

∑J
j=1 π

3
+j

}1/4
, (1.11)

with a corresponding test statistic for a sample from the joint distribution of

TdCor =

√∑I
i=1

∑J
j=1 (pij − pi+p+j)

2{∑I
i=1 p

2
i+

(∑I
i=1 p

2
i+ + 1

)
− 2

∑I
i=1 p

3
i+

}1/4 {∑J
j=1 p

2
+j

(∑J
j=1 p

2
+j + 1

)
− 2

∑J
j=1 p

3
+j

}1/4
, (1.12)

where pij =
nij
n

, pi+ = ni+
n

, and p+j =
n+j

n
are the sampling proportions.

It is clear by inspection of Equation 1.11 that we retain the key property that dCor(X, Y ) = 0

iff X ⊥ Y . We will study how an extension of this statistic can be used for independence and

homogeneity tests in Chapter 6, in the context of our joint work with Zhang on empirical inves-

tigations of the power of TdCor test for conditional independence in sparse three-way contingency
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tables. The results there will indicate that a test using TdCor has more power to detect depen-

dence relations with sparse data than do traditional tests. This fact was a particular motivation

for our empirical study in Chapter 5 of using the dCor(X, Y ) measure to learn probability net-

works that capture the dependency structure among multiple categorical variables; since even

if we start with a large data set, dependence relations that condition on multiple variables will

usually result in a sparse test.

The study of network structure learning occupies most of Part II. There is a combinatorial

explosion of possible dependency relations to test using the measure; and even given a choice of

which tests to conduct, we need a way to induce the overall network structure from their results.

This leads us to the idea of graphical models, which are a powerful tool to devise induction

algorithms. The usefulness arises because of a deep equivalence between the set of separation

statements that hold for a graph, and the set of conditional independence statements that hold

among a set of random variables corresponding to the vertices of the graph. Fortunately, the

language of graphs is much easier to use and reason about than the language of conditional

independence. Hence it is very common to use graphical models when studying the dependence

structure of high-dimensional data; and graphical models are, in fact, the common theme that

connects Part II and Part III of the dissertation. We now turn to background on this topic.
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Chapter 2

Fundamentals of Graphical Models

2.1 Terminology

Although graphs are not our primary objects of investigation, they play a key role in facilitating

the algorithms used in this dissertation. In this section we cover the notation and terminology

we will need.

Definition 2.1. A graph is a pair G = (V,E), where V is a (finite) set of vertices or nodes and

E ⊆ X × X is a (finite) set of edges, links, or arcs. It is understood that there are no loops,

that is, there are no edges (A,A) for any A ∈ V . G is called undirected iff

∀A,B ∈ V : (A,B) ∈ E ⇒ (B,A) ∈ E.

That is, two ordered pairs (A,B) and (B,A) are identified and represent only one (undirected)

edge. G is called directed iff

∀A,B ∈ E : (A,B) ∈ E ⇒ (B,A) /∈ E.

An edge (A,B) is considered to be directed from A towards B.

The graphs defined above are “simple”; that is, there are no multiple edges between two

nodes and no loops. In order to distinguish between directed and undirected graphs, we write

−→
G = (V,

−→
E ) for directed graphs.

Definition 2.2. Let G = (V,E) be an undirected graph. A node B ∈ V is called adjacent to a

node A ∈ V or a neighbor of A iff there is an edge between them, i.e. iff (A,B) ∈ E. The set

of all neighbors of A is

neighbors(A) = {B ∈ V |(A,B) ∈ E},

and deg(A) = |neighbors(A)| is the degree of node A (number of incident edges). The set

neighbors(A) is also called the boundary of A. The boundary of A together with A is called the

closure of A:

closure(A) = neighbors(A) ∪ A.
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Definition 2.3. Let G = (V,E) be an undirected graph. Two distinct nodes A,B ∈ V are called

connected in G, written AG̃B, iff there exists a sequence C1, C2, . . . , Ck, k ≥ 2, of distinct nodes,

called path, with C1 = A, Ck = B, and ∀i, 1 ≤ i < k : (Ci, Ci+1) ∈ E.

Note that in this definition a path is defined as a sequence of nodes, not a sequence of edges.

Also note that the nodes on the path must be distinct; that is, the path must not lead back

to a node that has been visited. An important special case of an undirected graph is the tree,

which restricts the permissible set of paths.

Definition 2.4. An undirected graph is called singly connected or a tree iff any pair of distinct

nodes is connected by exactly one path.

Definition 2.5. Let G = (V,E) be an undirected graph. An undirected graph GX = (X,EX) is

called a subgraph of G (induced by X) iff X ⊆ V and EX = (X ×X)∩E, that is, iff it contains

a subset of the nodes in G and all corresponding edges. An undirected graph G = (V,E) is called

complete iff its set of edges is complete, that is, iff all possible edges are present, or formally iff

E = V × V − {(A,A)|A ∈ V }.

A complete subgraph is called a clique. A clique is called maximal iff it is not a subgraph of a

larger clique, that is , a clique having more nodes.

Definition 2.6. Let
−→
G = (V,

−→
E ) be a directed graph. A node B ∈ V is called a parent of a

node A ∈ V and, conversely, A is called the child of B iff there is a directed edge from B to A,

that is, iff (B,A) ∈ E. B is called adjacent to A iff it is either a parent or a child of A. The

set of all parent of a node A is denoted

parents(A) = {B ∈ V |(B,A) ∈
−→
E }

and the set of its children is denoted

children(A) = {B ∈ V |(A,B) ∈
−→
E }.

Definition 2.7. Let
−→
G = (V,

−→
E ) be a directed graph. Two nodes A,B ∈ V are called d-

connected in
−→
G , written A  −→

G
B, iff there is a sequence C1, . . . , Ck, k ≥ 2, of distinct nodes,
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called a directed path, with C1 = A,Ck = B, and ∀i, 1 ≤ i < k : (Ci, Ci+1 ∈
−→
E ).

−→
G is called

acyclic iff it does not contain a directed cycle, that is, iff for all pairs of nodes A and B with

A −→
G
B it is (B,A) /∈

−→
E .

Note that in a path—in contrast to a directed path—the edge directions are disregarded.

(An undirected path is sometimes called a “trail” in order to distinguish it from a directed

path.) With directed paths we can now define the notions of ancestor and descendant; as well

as the set of all non-descendants, which will be especially important for us.

Definition 2.8. Let
−→
G = (V,

−→
E ) be a directed acyclic graph. A node A ∈ V is called an ancestor

of another node B ∈ V and, conversely, B is called a descendant of A iff there is a directed path

from A to B. B is called a non-descendant of A iff it is distinct from A and not a descendant

of A. The set of all ancestors of a node A is denoted

ancestors(A) = {B ∈ V |B  −→
G
A},

the set of its descendants is denoted

descendants(A) = {B ∈ V |A −→
G
B},

and the set of its non-descendants is denoted

nondescs(A) = V − {A} − descendants(A).

In analogy to undirected graphs there are the special cases of a tree and a polytree, in which

the set of paths is severely restricted.

Definition 2.9. A directed acyclic graph is called singly connected or a polytree iff each pair of

distinct nodes is connected by exactly one path. A directed acyclic graph is called a (directed)

tree iff it is a polytree and exactly one node (the “root node”) has no parents.

An important concept for directed acyclic graphs is the notion of a topological order of the

nodes of the graph. It can be used to test whether a directed graph is acyclic, since it only

exists for acyclic graphs, and is often useful to fix the order in which the nodes of the graph are

to be processed.
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Definition 2.10. Let
−→
G = (V,

−→
E ) be a directed acyclic graph. A numbering of the nodes of

−→
G ,

that is, a function o : V → {1, . . . , |V |} satisfying

∀A,B ∈ V : (A,B) ∈
−→
E ⇒ o(A) < o(B),

is called a topological order of the nodes of
−→
G .

For any directed acyclic graph
−→
G a topological order can be constructed with the following

recursive algorithm: Select an arbitrary childless node A in
−→
G and assign to it the number

|V |. Then remove A and its incident edges from
−→
G , and recurse to the first step to append a

topological order for the reduced graph. It is clear that for graphs with directed cycles there is

no topological order, since a directed cycle cannot be reduced by the above algorithm—it will

eventually reach a situation in which there is no childless node but the graph is not empty.

2.2 Separation and the graphoid axioms

Graphical models exploit the structural similarity between the sets of conditional independence

statements that can hold in high-dimensional distributions; and the sets of node separation

statements that can hold in graphs (either directed or undirected). To be more specific, both

conditional independence statements and (node) separation statements satisfy the following

axioms.

Definition 2.11 (Semi-graphoid and graphoid axioms). Let V be a set of (mathematical) objects

and (· ⊥⊥ ·|·) a three-place relation of subsets of V . Furthermore, let W,X, Y, and Z be four

disjoint subsets of V. Then the four statements

• (X ⊥⊥ Y |Z)⇒ (Y ⊥⊥ X|Z), (symmetry)

• (W ∪X ⊥⊥ Y |Z)⇒ (W ⊥ Y |Z) ∧ (X ⊥⊥ Y |Z), (decomposition)

• (W ∪X ⊥⊥ Y |Z)⇒ (X ⊥⊥ Y |Z ∪W ), (weak union)

• (X ⊥⊥ Y |Z ∪W ) ∧ (W ⊥⊥ Y |Z)⇒ (W ∪X ⊥⊥ Y |Z), (contraction)
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are called the semi-graphoid axioms. A three-place relation (· ⊥⊥ ·|·) that satisfies the semi-

graphoid axioms for all W , X, Y , and Z is called a “semi-graphoid”. The above four statements

together with

(W ⊥⊥ Y |Z ∪X) ∧ (X ⊥⊥ Y |Z ∪W )⇒ (W ∪X ⊥ Y |Z), (intersection)

are called the graphoid axioms. A three-place relation (· ⊥⊥ ·|·) that satisfies the graphoid axioms

for all W , X, Y , and Z is called a “graphoid”.

The rationale underlying graphical models is that the three-place relation named in this

definition may either be interpreted as conditional independence or as separation, thus making

it possible to use graphs as a “language” for representing sets of conditional independence

statements. If the three-place relation is interpreted as conditional independence, X ⊥⊥ Y |Z

means that

∀x ∈ dom(X) : ∀y ∈ dom(Y ) : ∀z ∈ dom(Z) :

P (X = x, Y = y|Z = z) = P (X = x|Z = z) · P (Y = y|Z = z),

in the probabilistic case. It is easy to show that the semi-graphoid axioms hold for both prob-

abilistic conditional independence, as well as for strictly positive probability measures. When

X ⊥⊥ Y |Z is interpreted as a statement about separation (of nodes) in a graph, it depends on

whether the graph is directed or undirected. If it is undirected, the meaning is simply as below.

Definition 2.12. Let G = (V,E) be an undirected graph and X, Y , and Z be three disjoint

subsets of nodes. Z u-separates X and Y in G, written 〈X|Z|Y 〉G, iff all paths from a node in

X to a node in Y contain a node in Z. A path that contains a node in Z is called blocked (by

Z), otherwise it is called active.

For directed graphs the conditions are slightly more complicated:

Definition 2.13. Let ~G = (V, ~E) be a directed acyclic graph and X, Y , and Z three disjoint

subsets of nodes. Z d-separates X and Y in ~G, written 〈X|Z|Y 〉 ~G, iff there is no path from a

node in X to a node in Y along which the following two conditions hold.

1. Every node with converging edges either is in Z or has a descendant in Z; and,
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2. Every other node is not in Z.

A path satisfying these conditions is said to be active, otherwise it is said to be blocked (by Z).

It is easy to show that both u -separation and d -separation satisfy the graphoid axioms.

Hence one may use an appropriate graph to capture the set of conditional independence state-

ments that hold in a given distribution.

Definition 2.14. Let (· ⊥δ ·|·) be a three-place relation representing the set of conditional inde-

pendence statements that hold in a given distribution δ over a set U of attributes. A (directed or

undirected) graph G = (U,E) over U is called a conditional dependence graph or a dependence

map with regard to δ, iff for all disjoint subsets X, Y, Z ⊆ U of attributes

X ⊥⊥δ Y |Z ⇒ 〈X|Z|Y 〉G .

That is, if G captures by u-separation all (conditional) independences that hold in δ and thus

represents only valid (conditional) dependences.

Similarly, G is called a conditional independence graph or an independence map w.r.t. δ, iff

for all disjoint subsets X, Y, Z ⊆ U of attributes

〈X|Z|Y 〉G ⇒ X ⊥⊥δ Y |Z.

That is, if G captures by u-separation only (conditional) independences that are valid in δ. G is

said to be a perfect map of the conditional (in)dependences in δ, if it is both a dependence map

and an independence map.

Although the correspondence cannot always be made perfect, it is a very convenient tool.

Together with the core theorem of graphical models, which connect conditional independence

graphs with decompositions of distributions (factorizations in the case of probability distribu-

tions), these definitions are the basis of using graphs to capture essential properties of distri-

butions and to derive consistent and efficient methods for drawing inferences in them. When

learning graphical models from data, these definitions provide the basis for induction algorithms

based on conditional independence tests.
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2.3 Markov properties of graphs

Markov properties of graphs allow us to confine ourselves to checking a smaller set of conditional

independences when inducing graphs. For undirected graphs the Markov properties are defined

as below (see [22], [37], [54], and [38] for references).

Definition 2.15. Let (· ⊥⊥δ ·|·) be a three-place relation representing the set of conditional

independence statements that hold in a given joint distribution δ over a set U of attributes. An

undirected graph G = (U,E) is said to have, with regard to the distribution δ:

• The pairwise Markov property iff in δ any pair of attributes, which are nonadjacent in the

graph, are conditionally independent given all remaining attributes, that is, iff

∀A,B ∈ U,A 6= B : (A,B) /∈ E ⇒ A ⊥⊥δ B|U − {A,B}.

• The local Markov property iff in δ any attribute is conditionally independent of all remain-

ing attributes given its neighbors, that is, iff

∀A ∈ U : A ⊥⊥δ U − closure(A)| neighbors (A).

• The global Markov property iff in δ any two sets of attributes which are u-separated by a

third are conditionally independent given the attributes in the third set, that is, iff

∀X, Y, Z ⊆ U : 〈X|Z|Y 〉G ⇒ X ⊥⊥δ Y |Z.

Definition 2.16. Let (· ⊥⊥δ ·|·) be a three-place relation representing the set of conditional

independence statements that hold in a given joint distribution δ over a set U of attributes. A

directed acyclic graph ~G = (U, ~E) is said to have, with regard to the distribution δ:

• The pairwise Markov property iff in δ any attribute is conditionally independent of any

non-descendant not among its parents given all remaining non-descendants, that is, iff

∀A,B ∈ U : B ∈ nondescs (A)− parents(A)⇒ A ⊥⊥δ B | nondescs (A)− {B}.
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• The local Markov property iff in δ any attribute is conditionally independent of all remain-

ing non-descendants given its parents, that is, iff

∀A ∈ U : A ⊥⊥δ nondescs (A)− parents(A) | parents(A).

• The global Markov property iff in δ any two sets of attributes which are d-separated by a

third are conditionally independent given the attributes in the third set, that is, iff

∀X, Y, Z ⊆ U : 〈X|Z|Y 〉 ~G ⇒ X ⊥⊥δ Y | Z.
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Part II

Learning Networks with Distance Correlation
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Chapter 3

Algorithms for Inducing Network Structure

Given the equivalence in Section 2.2 between the separation statements that hold for a graph,

and the conditional dependencies of the random variables represented by its nodes, it becomes

very natural to look for ways to apply the ideas and algorithms of graph theory to statistical

inference. Suppose we a have an i.i.d. sample from the joint distribution of some random

variables. In general, the problem of inferring conditional dependencies from the sample is

intractable, given the combinatorial explosion of possible dependencies. We must find heuristic

methods that can recover (at least some of) the conditional dependencies by testing only a small

subset of the possible candidates. It turns out to be much easier to construct these heuristics

by drawing on existing ideas from graph theory.

Our discussion will follow Borgelt’s exposition in [8]. The main idea is to build up a graph

representing the dependence structure by testing marginal and relatively low-order conditional

dependencies (that is, with only a few conditioning attributes); where these tests use an arbitrary

dependence measure and are selected from the family of possible tests using a search method. It

will be clear that we can find examples in which such a heuristic approach fails, where attributes

that are not adjacent in the developing graph can ultimately exhibit a strong dependence. But

in practice, these approaches can perform reasonably well. Chapter 5 will provide numerous

empirical results in which we compare the performance of distance correlation to other well-

known dependence measures when using search methods based on graphical models.

It is worth noting that learning graphical models from data is a very broad idea. For example,

we can:

1. Test whether a distribution is decomposable with regard to a given graph.

2. Find a suitable graph by measuring the strength of dependences.

3. Find an independence map by performing conditional independence tests.
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We are focusing on examples of the third approach. This approach exploits the theorems that

connect conditional independence graphs and graphs that represent decompositions. It has the

advantage that a single conditional independence test can exclude several candidate graphs.

On the other hand, a conditional independence test that yields a false positive can have severe

consequences for the accuracy of the final model. To ensure good performance in the general

case, it is often necessary to assume that there exists a perfect map for the domain; and that

the the result of all conditional independence tests will coincide with true relationship in the

underlying distribution.

3.1 Dependence measures

A dependence measure is essentially a scoring function that rates the strength of the (condi-

tional) dependence of two variables, plus a threshold. If the value of the scoring function is below

the threshold, the variables are considered to be (conditionally) independent; otherwise they

are judged to be (conditionally) dependent. As mentioned above, a search method is necessary

to decide which conditional dependences to test. There is an abundance of scoring functions,

since apart from all the standard dependence measures used in classical statistics, almost any

measure used in decision tree induction can be adapted to serve as a scoring function. Even if

a measure was first intended for assessing the strength of marginal dependence, it can usually

be extended to yield a measure for conditional dependence by simply computing its value for

each possible instantiation of the conditioning attributes and then aggregating these values in a

suitable manner. For example, one of the most common measures for the strength of marginal

probabilistic dependence is the well-known information gain,

Igain(A,B) =
∑
i,j

pij log2

pij
pi.p.j

= −
∑
i

pi. log2 pi. +
∑
j

pj.
∑
i

pi|j log2 pi|j,

where A and B are two categorical variables; i and j range over their respective values; and

pij, pi, and pj,j are the probabilities of the joint and individual occurrence of these values, with

conditional probabilities defined in the standard way. (This quantity is also known as the mutual

information between A and B, and is equivalent to their Kullback-Leibler divergence). We can
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extend this to conditional information gain as follows:

Igain(A,B|C) =
∑
k

p..k
∑
i,j

pij|k log2

pij|k
pi.|kp.j|k

.

That is, by simply taking the expected information gain given the conditions, summing its value

over all possible instantiations of C. (Note that C may be an individual variable or a set of

variables, so that k will refer to individual values or value vectors, respectively.) It is also worth

recalling the standard χ2 measure,

χ2(A,B) = N..
∑
i,j

(pi.p.j − pij)2

pi.p.j
.

where N.. is the total number of sample cases in the database to learn from. Extended to

conditional tests it reads

χ2(A,B|C) = N..
∑
k

p..k
∑
i,j

(
pi.|kp.j|k − pij|k

)2

pi.|kp.j|k
.

We will use the performance of information gain and the χ2 measure as baselines for evaluating

distance correlation in later sections.

A general difficulty with conditional independence tests arises as the number of conditioning

attributes (the order of the test) increases. In practice, data sets are always of limited size,

so high-order conditional independence tests quickly become unreliable. Hence algorithms for

learning graphical models from data must be designed to limit the order of the conditional

independence tests involved. The Cheng-Bell-Liu algorithm, which we review in the next section,

attempts to do so by exploiting an already constructed graphical model to determine suitable

condition sets. If the occurring condition sets still become too large, the fallback is enforce to

a user-specified limit on the order; all conditional independence tests with a higher order are

taken as failures, no matter the score returned by the dependence measure.

3.2 Search methods

We now turn to the question of which conditional dependencies should be tested with our

chosen dependence measure. This is the question answered by a search method. We will focus

on search methods that use graphical models and the results of conditional dependence tests

25



already performed in the search. As mentioned above, the total search space is huge unless the

number of attributes is considerably small, so the search cannot be exhaustive. We also only

gain a small amount of information from each test—either a score is above the threshold or it

is not—and it can be difficult to aggregate this information into measure that provides a useful

overall measure of the “correctness” of an intermediate graph being built during the search. The

consequence of these obstacles is that, in general, it is very difficult to recover the dependence

structure of a large number of attributes from a small sample.

Let us think of a concrete example. Suppose the true network includes a simple undirected

chain. Then the two attributes at the ends of the chain must be conditionally independent,

given any nonempty subset of the attributes between them. (And note these true conditional

independence statements are only a small fraction of those we must consider.) For a long chain,

there is little hope of actually testing all these conditional independences. A strategy based

on only testing pairwise conditional independences will be severely lacking, even if it is able to

exploit some of the equivalences of different Markov properties of graphs from Section 2.3. More

creative search strategies are necessary; and no known approach is entirely satisfactory.

Baseline algorithm

Most approaches work by evolving from basic ideas developed by Spirtes et al. in [24]. They begin

with the assumption that there does exist a perfect map for the domain under consideration.

(That is, there exists a graph that represents exactly those conditional independence statements

that hold in the joint distribution on the domain.) Then we can infer from a conditional

independence A ⊥⊥ B|S, where A and B are attributes and S is a (possibly empty) set of

attributes, that there is no edge between A and B. The following exhaustive algorithm hence

works to recover the perfect map, with special treatment of the case where ~G is assumed to be

directed acyclic.

Algorithm 3.1. [Recovery of a perfect map from conditional independence tests]

Given a distribution δ over an attribute set U for which there exists a perfect map G = (U,E),

we recover G as follows:
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1. For each pair of attributes A and B, search for a set SAB ⊆ U − {A,B}, so that A ⊥⊥δ

B|SAB holds; that is, so that A and B are conditionally independent given SAB. If there

is no such set SAB, connect the two attributes by an undirected edge.

2. If ~G is directed acyclic, for each pair of nonadjacent A and B with common neighbor

C /∈ SAB, direct the edges towards C; that is, A→ C ← B.

3. If ~G is directed acyclic, repeatedly apply the following rules to direct all remaining undi-

rected edges:

• If for two adjacent attributes A and B there is a strictly directed path from A to B

not including the edge from A to B, then set A→ B.

• If for two nonadjacent attributes A and B there is an attribute C such that A → C

and C −B, then set C → B.

• If neither above rule applies, set an arbitrary direction on a given edge.

The first step of Algorithm 3.1 simply applies the core idea that attributes are only connected

by an edge for if there is no set of attributes that renders them conditionally independent. (But

note that if only an independence map exists, but not a perfect map, this step could omit edges

incorrectly.)

When the perfect map is directed acyclic, the second step draws on the insight that if a set

SAB of attributes renders two attributes A and B conditionally independent, it must block all

paths from A to B in the graph. In particular, it must block paths that run via a common

neighbor C of A and B. However, if this common neighbor C is not in SAB, the only way

in which this path can be blocked (given SAB) is by an edge orientation that converges at C.

Moving to the third step for ~G, the first rule simply exploits the acyclic nature of the map. If B

is reachable from A to B without using A−B, the alternative choice B → A would introduce a

cycle, directing the edge from B towards A would introduce a directed cycle. The logic for the

second rule is that, under the conditions in this rule, the attribute C must be in a separating set

SAB; as otherwise the algorithm would have set B → C in the second step. But if C is in SAB,

the path from A to B via C can only be blocked by SAB if it does not have converging edges at
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C. Consequently, the edge C −B cannot be directed towards C, but must be directed towards

B. The third rule is necessary to avoid “deadlock”; for example, suppose that the underlying

perfect map is a simple directed chain. The second step of the algorithm will have no effect;

and neither of the two preceding rules will immediately apply. This default rule of randomly

assigning a direction will break the deadlock.

Practical difficulties

Note that the actual learning takes place in the first two steps of Algorithm 3.1; where the first

step learns the skeleton of the graph in both the directed and undirected cases, and the second

step identifies the v-structures. (In the third step, we simply choose the remaining directions

in a fashion that does not introduce directed cycles or additional v-structures. Of course these

directions are not deterministic, given the third rule; but it is a fact that all directed acyclic

graphs with the same skeleton and the same v-structures are Markov-equivalent. Hence we

could also skip the third rule and accept a final graph with some possibly undirected edges as

a compact representation of the class of all Markov equivalent graphs that are perfect maps for

the domain being studied.) Although this learning in the first two steps is guaranteed to recover

a perfect map if it exists, there is no known efficient implementation. Indeed, to ensure that

there is no set SAB that renders two attributes A and B conditionally independent, in principle

we must check all subsets of U − {A,B}, of which there are

s =

|U |−2∑
i=1

 |U | − 2

i

 .

Even worse, unless |U | is quite small, some of these sets contain a large number of attributes, so

we must perform high-order conditional independence tests. With a finite database of samples,

it is likely we will not be able to get an accurate estimate of the joint distribution of A and B

for each instantiation of the conditioning attributes in U .

One response to this problem is to assume the existence of a sparse perfect map; that is,

a perfect map with only a limited number of edges. In this case, any pair of attributes can

be separated by an attribute set of limited size. Thus we only have to test for conditional

independence up the order that is fixed by the chosen size limit. If for two attributes A and B,
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all conditional independence tests with an order up to this upper bound failed, we infer from the

sparseness assumption there is no set SAB that renders them conditionally independent. The

sparsest connected graph is, of course, a tree (or its directed counterpart, a polytree). In this

extreme case, there are special versions of Algorithm 3.1. That is, when the underlying perfect

map is a polytree, the conditional independence tests can be restricted to at most order one,

since for any pair of attributes there is only one path connecting them; and this path can be

blocked with at most one attribute. A useful overview of specializations that consider other,

less restricted, classes of graphs is the contribution of Campos et al. in [16]. When a search

algorithm uses a sparseness assumption that does not hold in the true network, the result will

still be at least an independence map. This follows since assuming a sparse graph reduces the

set of tests for conditional independence, and may only lead to additional edges relative to the

true network. (In practice sparseness assumptions frequently do not hold.)

The second problem with Algorithm 3.1 arises when even the weaker assumption of existence

of a perfect map does not hold. The consequences of violating this assumption are more severe

than just finding an independence map; if the domain does not admit a perfect map, the network

induced by can be very distorted. To avoid this outcome, we must insert additional edges. This

requires much more than just a specialization of Algorithm 3.1, and Chapter 4 below will be

devoted to a reviewing more robust search algorithm due to Cheng et al., as well as an adaptation

due to Borgelt. We will then move in Chapter 5 to empirical studies of how well a dependence

measure using distance correlation will perform with this search method when learning networks.

For this we will build on a software library also developed by Prof. Borgelt.

3.3 The INeS Software Package

The Induction of Network Structure (INeS) software package [6] is available for download from

https://www.borgelt.net/ines.html. The package defines file formats to represent attribute

domains, probability networks, and databases of sample observations. It then features several

programs written in the C language, as below.

• gendb – Generates a database of a given number of random samples with attributes from
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a given domain, where those attributes have a given joint distribution.

• ines – Given a database of samples, induces a probability network that estimates the

joint distribution of the attributes in the sample database. The induction can use any

combination of dependence measure and search method supported by INeS.

• neval – Given a true network, a database of generated samples, and an induced network,

evaluates the log-likelihood of the database given the induced network; and compares the

induced network to the true network. This comparison consists of edges added and missed

relative to the DAG representing the true network. The neval program also reports the

number of parameters required to specify the conditions in the induced network.

Although INeS supports a wide variety of search methods (ranging from optimum weight

spanning tree construction to hypertree simulated annealing); and dependence measures (rang-

ing from information gain to stochastic complexity), it does not support any form of distance

correlation “out-of-the-box”. Hence a necessary step in our investigation must be to enhance

the ines program with an implementation of distance correlation for categorical variables as

defined by Zhang in [57].

30



Chapter 4

Chow-Liu Search Methods

There are many proposed search methods which try to overcome the weaknesses of Algo-

rithm 3.1—that is, its extremely high computational cost and need to assume existence of a

perfect map. We will focus on just few search methods with which to evaluate the performance

of distance correlation as a dependence measure. This will primarily be two methods which

both begin by constructing a skeleton graph called a Chow-Liu tree. The first method, know as

the Cheng-Bell-Liu algorithm, was introduced in [4], and builds the final model using a directed

graph. The second, from Borgelt in [7], uses an undirected graphical model for its intermediate

steps.

4.1 Induction with a directed graphical model

Drafting

The Cheng-Bell-Liu algorithm begins by drawing on ideas of Chow et al. in [14]. A so-called

Chow-Liu tree is formed from the attributes by evaluating all possible edges—that is, pairs of

attributes—using a provided independence test in which higher scores reject the null hypothesis

of independence. The evaluation compares each edge score to a minimum threshold; any edge

below the threshold is ignored. (The classical example uses information gain as the independence

test and a threshold of 0.1 bits.) Edges that survive this filter are then weighted by their score;

and we use a fast algorithm from graph theory to construct the optimum weight spanning

tree based on these edge weights. This is the algorithm’s “first draft” of the graphical model

representing the induced network.

Thickening

Next the Cheng-Bell-Liu algorithm “thickens” the developing graph with edges for which we

cannot find evidence of a conditional independence between the incident attributes. The evi-

dence for a candidate edge A−B is evaluated in a series of conditional independence tests where

the conditioning set is iteratively refined. (Note that at this stage, edges are still undirected.)
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To form the initial conditioning set, we pick one of the nodes, say A, and identify all adjacent

nodes which lie on a path from A to B. After computing the score of the independence test using

this set, we discard the node which leads to the largest decrease in the score of the independence

test and repeat. This continues until the score falls below the independence threshold, in which

case the edge is not added to the developing graph; or no further decrease is possible, in which

case the edge is added.

Since it is not yet known whether A or B will be the parent in the final directed graph, the

above process must be repeated with the roles reversed. The rationale for the iterative reduction

in this step is the local Markov property of directed graphs. In particular, the conditioning sets

may have adjacent nodes that are children in the directed graph. This is a problem because in

the underlying graphical model there may be a v-structure with the child; and including the

child in the conditioning set could activate a path and break the conditional independence test.

Thinning

It might happen during the thickening phase that the developing graph is too sparse to reveal

the conditional independence of a pair of attributes. That is, some of the true paths between

the attributes may not be present at the time of the independence test, resulting in a Type II

error. The algorithm attempts to fix such mistakes in the fourth step by retesting every edge

in the graph constructed in the first three steps, and “thinning” out any edges whose nodes

are now judged conditionally independent. The test for thinning an edge is conducted in two

ways. First, the algorithm repeats the approach used during thickening; that is, the score of

the conditional independence test given all neighbors of one incident attribute is compared to

the threshold. Second, the algorithm attempts to address certain degenerate cases which the

first test may mishandle. This requires a second test which conditions on not just the neighbors

of one attribute; but also the neighbors of these neighbors. (See [7] for a complete discussion

of the degenerate cases for when this is necessary.) If either test judges an edge to connect

conditionally independent attributes, the algorithm removes that edge.
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Orienting

The final step of the algorithm assigns directions to the edges that survived thinning. The

approach is actually identical to steps two and three of Algorithm 3.1. For each edge A − B,

we obtain an appropriate SAB ⊆ U \ {A,B} by another sequence of conditional independence

tests, starting with the “strict” test whose conditioning set is both the neighbors of A; and their

neighbors. Nodes are removed from conditioning set in a greedy fashion as long as the result of

the test still falls below the independence threshold.

4.2 Induction with an undirected graphical model

We now turn to Borgelt’s adaption of the Cheng-Bell-Liu algorithm. The result can be roughly

understood as what would be obtained by executing the Cheng-Bell-Liu algorithm, then remov-

ing the edge directions and adapting the result by adding edges between non-adjacent parents

of a node to obtain a roughly equivalent set of separation statements. Of course, Borgelt’s algo-

rithm does not actually form a directed graph and then remove the directions. Instead it drafts

a Chow-Liu tree as above, then uses a modified version of the thickening step and replaces the

final orienting step with a so-called “moralizing” step which comes directly after thickening. We

review these differences next.

Thickening

Borgelt’s algorithm continues after drafting by ordering the edges with a score above the thresh-

old, but not included in the Chow-Liu tree, by decreasing weight. It traverses them in this order,

and performs tests for conditional independence of the incident attributes, given the neighbors

of the incident attributes which lie on any of their connecting paths in the developing graph.

If this conditional independence test scores above the threshold, the edge is added to the can-

didate model. The rationale derives from the local Markov property of undirected graphs as

discussed in Section 2.3, which guarantees an attribute is conditionally independent of any other

attribute given its neighbors. It is possible to conduct additional tests in this step, conditioning

on just the neighbors of one attribute or the other. This can improve the robustness of the

overall algorithm, since the initial test may give a false positive for independence if the current
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graph is still too sparse and not all neighbors necessary to render the attributes conditionally

independent are already present.

However many conditioning sets are used, if any of the conditional independence tests returns

a score above the threshold, the developing graph is “thickened” by adding the edge. A key

difference with the thickening step in Subsection 4.1 above is that since here we do not require

a directed graph, the work performed by the Chow-Bell-Liu algorithm in iterative reduction

of condition sets is superfluous. This does result in some increased computational efficiency in

Borgelt’s approach—see [7] for details and simulation studies using INeS that compare the total

number of tests required by each algorithm in various settings.

Moralizing

The next step of the algorithm would not be necessary given an assumption of the existence

of an undirected perfect map of the domain, as made in Algorithm 3.1. However, this would

cripple the algorithm in practice, as dependence structures that contain directed v-structures

arise quite frequently. To address such structures in the undirected setting, the algorithm now

“moralizes” the graph by attempting to connect the parents of these underlying v-structures.

The reasoning is that even though the parents are independent given their common ancestors

(which may be the empty set), they become dependent in the presence of a common child. Note

the effect on the set of conditions is non-monotone—enlarging the set of conditions destroys

a conditional independence. Thus the algorithm may leave some conditional independences

unrepresented. In practice this is not a major problem, at least for reasoning applications, since

an independence map will often be adequate. Precisely, moralizing considers the edges in the

developing graph which share a common neighbor; but whose non-identical incident attributes

were judged conditionally independent during drafting. These attributes are now tested for

conditional independence given all of one of their neighbors. If the independence test scores

above the threshold, the algorithm adds edge between the non-identical incident attributes.

Note that such edges are the only candidates for connecting the parents of a v-structure in a

directed independence map of the domain.
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Additional thinning

The efficiency of Borgelt’s algorithm may improve in some cases by inserting an additional

thinning phase between thickening and moralizing above. The idea is that any edges removed

by this thinning would have been removed by the final thinning phase, but the order of the

conditional independence tests required may be lower, since a graph with fewer edges may of

course contain fewer neighbors to be included in the conditioning sets used. An added benefit is

that when edges are thinned before moralizing, this also reduces the number of tests that may

need to be carried out during moralizing. The final thinning phase will then target only edges

between attributes that received a new incident edge during moralizing. Careful caching of test

results can also reduce the overhead of inserting the “additional” thinning.
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Chapter 5

Experimental Evaluation of Distance Correlation

5.1 Implementation with INeS

It can be a challenging and time-consuming task to implement network induction algorithms

correctly and efficiently. For example, the INeS software package has been under development

as part of Prof. Borgelt’s research for over twenty years (see again [6]). We hence looked to build

on this foundation by extending the package with support for categorical distance correlation

as a dependence measure. As part of our research, we extended the INeS codebase with an

implementation of categorical distance correlation following Zhang’s formulation from [57]. This

implementation was done in C using the data structures built up during the development of

INeS. We then needed only to add the various “hooks” for this new dependence measure into

the ines runtime framework, and we were able to take full advantage of the various search

algorithms already implemented in ines, as well as the complementary tools such as gendb,

neval, and other scripts for conducting numerical experiments. This enhanced version of INeS

is available from the author on request.

5.2 Description of numerical studies

The focus of this chapter is a series of numerical studies using the INeS package enhanced with

distance correlation as just described. Each study has the following general pattern.

1. Let X be a source domain with known joint distribution, where this distribution is repre-

sented by a probability network in the INeS .net file format.

2. For various sample sizes N (or independence thresholds t), perform K experiments at each

sample size (or independence threshold) by repeating the following nested steps.

a) Use gendb to generate a training set of size N and a test set of fixed size for the

experiment as INeS .tab files.

b) For the three dependence measures based on distance correlation, information gain,
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and the χ2 statistic, use ines to induce a network from the training data with one or

both of the search methods described in Chapter 4 and an independence threshold t.

c) Evaluate the relative performance of the dependence measures using neval to com-

pute the log likelihood of the test data, number of edges missed in the induced

networks, and number of edges added to the induced networks.

3. Summarize the average relative performance of the dependence measures across the K ex-

periments for each sample size (or independence threshold); visualize examples of induced

networks if desired for additional intuition.

When visualizing an example of an induced network, we will add styling cues and edge data

to indicate which edges appeared in the true network, which edges were added, and which edges

from the true network were missed. Figure 5.1 clarifies this visualization strategy. Note in

particular that only the thick edges are present in the induced network (shaded darker if also

in the true network, and lighter if not). The thinnest and lightest edges were missed in the

induced network, and are added purely for visualization.

Figure 5.1: Interpretation of edge styles

The concluding sections of this chapter are each devoted to experimental results on a par-

ticular dataset. We will use varying choices of sample size, and conduct K = 10 experiments

in the fashion described above, so that we learn something about how the various dependence

measures are able to take advantage of more data to induce more accurate networks. It will

then be useful to plot curves displaying sample size against average performance in terms of

one of our main performance metrics—that is, true edges missed in the induced network, edges
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incorrectly added in the induced network, and the log-likelihood of the test data. It is useful to

look more concretely at this last metric.

5.3 Intuition of test log-likelihood

Suppose we have a small Bayesian network N over eight attributes labeled from A to H as in

Figure 5.2 on the following page. For simplicity, let each attribute has two levels, so that for

example dom(A) = {0, 1}. Now suppose we want to evaluate the performance of the network

on a test set X = {X1, . . . , Xn} where each vector Xi = (ai, bi, ci, di, ei, fi, gi, hi) ∈ {0, 1}8 is an

independent sample drawn from the true distribution. We can then compute the log-likelihood

of the observed data given the network by factorizing the joint distribution in terms of just the

conditional dependences that are present in N . In Equation 5.1 below we do this, abbreviating

for example pB(B = bi |A = ai) as pB(bi|ai) for readability. This equation makes it clear that to

specify the entire joint distribution p(A, . . . , H) we really only need to specify certain marginal

and conditional distributions for the individual attributes. Throughout this chapter, we will

always take such distributions to be multinomial.

l(X|N ) =
n∑
i=1

log p(Xi|N )

=
∑

log

[
pA(ai) ∗ pB(bi|ai) ∗ pC(ci|ai, bi) ∗ pD(di|ci, bi, ai) ∗ pE(ei|ci, di, bi, ai)

∗ pF (fi|ei, di, ci, bi, ai) ∗ pG(gi|fi, ei, di, ci, bi, ai)

∗ pH(hi|ei, fi, ei, di, ci, bi, ai)
]

=
indep.

∑
log

[
pA(ai) ∗ pB(bi|ai) ∗ pC(ci) ∗ pD(di|ci) ∗ pE(ei|ci)

∗ pF (fi|di, bi) ∗ pG(gi|fi) ∗ pH(hi|ei, fi)
]
.

(5.1)

Clearly this simplification will apply to any Bayesian network—the more conditional indepen-

dences that are identified during learning, the simpler the final model will be. The more condi-

tional dependences that are learned, the more complex the final model will be.
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Figure 5.2: Example network

5.4 The Danish Jersey cattle dataset

Description

A standard benchmark for testing the performance of a network induction algorithm is the

dataset from [40] that includes genotypical and phenotypical data associated to several lineages

of cattle. The dataset was originally used to guide the development of an expert domain model

for blood group determination of Danish Jersey cattle in the F-group blood system. This expert

model took the form of a Bayesian network, visualized below in Figure 5.3. The example

is particularly interesting because of its rich empirical derivation, and the INeS package is

distributed with a djc.net network file that expresses the “true” hand-crafted network in the

INeS format.

Figure 5.3: Manually constructed Bayesian network for cattle blood group determination
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Experimental results with the Cheng-Bell-Liu search algorithm

Given a sequence of sample sizes N = 1000, 1500, 2000, 2500, 3000 we proceeded as in Section 5.2

above. The results using the Cheng-Bell-Liu search algorithm from Chapter 4 with an inde-

pendence threshold of 0.1 are displayed in Figure 5.4 below. Alongside the performance of the

networks induced with the χ2, information gain, and distance correlation measures, we plot

the performance of the true generating network. This provides a sense of scale for the log-

likelihood of the test data. The three measures are quite similar on this metric; that is, they

learn networks which on average assign about the same likelihood to the test data drawn from

the original generating network. With more training data, the all induce networks which give

slightly higher average log-likelihood to the test data. The interesting differences appear with

the other performance metrics.

Figure 5.4: Average performance on Danish Jersey cattle data (Cheng-Bell-Liu search)

40



Here we see that networks with induced using distance correlation do have some noticeable

benefits. Networks induced with distance correlation—on average—miss fewer edges from the

true network; and add fewer edges that were absent from the true network. We can get a sense

of what this difference looks like by comparing some particular networks that were induced with

each dependence measure using the same training data set. (Recall the meanings of the three

edge styles from Figure 5.1.) In Figures 5.6, 5.7, and 5.8 on the following pages we visualize

networks induced using, respectively, distance correlation, the χ2 measure, and information

gain. All were induced from a particular training database of size N = 3000 generated in one of

the experiments conducted above. The attributes represented by each vertex are in Figure 5.5

below.

In Figure 5.6 we have the network induced with distance correlation. We see that distance

correlation was able to discover several true dependences that were missed when using χ2 and

information gain; for example, the dependence of lysis 40 on factor 40, the dependence of

lysis 42 on factor 42, and the dependence of lysis 43 on factor 43. This provides more

empirical evidence for one of the main themes of this dissertation—namely, that distance cor-

relation is more sensitive to some types of dependences than traditional measures. We can also

see that distance correlation is able to avoid most of the tendency of χ2 and information gain to

add spurious edges to the induced network. Both of the latter add three false dependences on

offspring genotype. Since this attribute has six levels, this increases the model complexity in

terms of the number of parameters needed to specify the factorized distribution for these net-

works relative to the network induced with distance correlation, as discussed in Section 5.3. For

example, the edge added from offspring genotype (attribute 12) to lysis 40 (attribute 17)

below in Figure 5.7 uses 28 more parameters than are required to represent the true conditional

dependence of lysis 40 on factor 40.

Note also the monotonic nature of the various performance curves in Figure 5.4. As the

sample size increases, the induced networks tend to miss fewer edges, add fewer edges, and

assign a higher log-likelihood to the test data. This shows that the learning process has the

capacity to extract more information about the generating distribution when it can perform
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more accurate independence and conditional independence tests.

Figure 5.5: Danish Jersey cattle attributes

Figure 5.6: Danish Jersey cattle network induced with distance correlation
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Figure 5.7: Network induced with the χ2 measure

Figure 5.8: Network induced with information gain
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Experimental results with Borgelt’s algorithm

We now consider the results of the above experiments when using Borgelt’s adaptation of the

Cheng-Bell-Liu algorithm. These are in Figure 5.9 below. The overall conclusions are very

similar to the conclusions with the Cheng-Bell-Liu algorithm. That is, across each set of K = 10

experiments at each sample size, the average log-likelihood of the test data for networks learned

with each of the three measures is quite similar. However the average number of edges added and

edges missed in networks learned using distance correlation is lower than for networks learned

with the χ2 measure or information gain.

Figure 5.9: Average performance on Danish Jersey cattle data (Borgelt search)

It is also possible to compare the performance of learning networks with distance corre-

lation, using both the Cheng-Bell-Liu algorithm and Borgelt’s adaptation. These results are
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in Figure 5.10. We see that the additional conditional independence tests conducted by the

Cheng-Bell-Liu result in generally better performance. For subsequent data sets we will focus

on results using Cheng-Bell-Liu only.

Figure 5.10: Average performance on Danish Jersey cattle data (search comparison)

5.5 The ALARM data set

Description

In developing the Cheng-Bell-Liu algorithm in [4], Cheng et al. tested their approach using

experimental results based on the ALARM network database from [10]. This database was

deployed in combination with a medical diagnostic alarm message system for patient monitoring

in intensive care units. The conditions for an alarm are modeled using a belief network of 37

attributes that represent various observable facts about a patient, as well as eight candidate
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diagnoses. For example, the hr attribute has three levels low, normal, and high that correspond

to the patient’s heart rate; and the intubation attribute has three levels normal, esophageal,

and onesided that correspond to the method of intubation. The “true” joint distribution of

these attributes is given by a sample database of 10, 000 observations.

Experimental results

We translated the ALARM belief network into the INeS .net format and followed the same

methodology as in Section 5.4, performing K = 10 network induction experiments with dis-

tance correlation, the χ2 measure, and information gain at the same sample sizes as above

(N = 1000, 1500, 2000, 2500, 3000). Figure 5.12 contains the attribute ids and number of levels

for the ALARM dataset; and Figure 5.13 includes an example network induced using distance

correlation. The most obvious result is once again that networks learned with distance correla-

tion miss fewer edges than networks induced with either information gain or the χ2 measure.

Figure 5.11: Average performance on ALARM data (Cheng-Bell-Liu search)
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Figure 5.12: ALARM attributes

Figure 5.13: ALARM network induced with distance correlation
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5.6 The barley data set

Description

Kristensen et al. studied pesticide use when producing beer from Danish malting barley in [34];

the associated data are available for download at [35]. Their goal was to create a decision

support system that would enable growers to predict yield and quality when growing barley

without pesticides in the presence of observables such as fungal diseases, weed infestations, the

techniques used for weed control and cultivation. Figure 5.14 reports the attribute metadata

and Figure 5.15 shows the complexity of the true network. Compared to either prior data sets,

there are significantly more attributes, edges, and numbers of levels per edge.

Experimental results

We can see from Figure 5.16 that, as with the Danish Jersey cattle and ALARM data, in every

case networks induced using distance correlation missed fewer edges than networks induced with

either the χ2 measure or information gain. This was especially true at the larger sample sizes,

though the greater accuracy did not lead to a dramatic difference in log-likelihood.

Figure 5.14: Barley attributes
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Figure 5.15: True network for barley data

Figure 5.16: Average performance on barley data (Cheng-Bell-Liu search)
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5.7 The mildew data set

Description

In [30], Jensen et al. used a Bayesian network to model the interactions of various environmental

factors with the timing and dosing of mildew treatments in wheat. Figure 5.17 displays the 35

attributes they identified; note that some attributes have significantly more levels than in the

datasets above. For example, the dm 4 attribute has 100 levels reflecting a wide range of choices

of kilograms used per square meter of a particular mildew treatment. Figure 5.18 visualizes the

structure of this network.

Experimental results

On this data set, the performance of networks induced with distance correlation is mostly

equivalent to that of networks induced with the χ2 measure and information gain. The only

clear difference is in the average number of edges added, where at smaller sample sizes, distance

correlation does noticeably better. This may be an artifact of the particularly high risk of

sparseness when conditioning on attributes with many levels.

Figure 5.17: Mildew attributes
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Figure 5.18: True network for mildew data

Figure 5.19: Average performance on mildew data (Cheng-Bell-Liu search)

51



5.8 The insurance dataset

Description

This dataset comes from a study by Binder et al. in [44] on the use of prior knowledge about

structure to improve the learning rate of a probabilistic network. It features a Bayesian network

of 27 attributes from the auto insurance domain, where the goal is to support decision-making in

insurance pricing. Example attributes include a (hidden) node riskaversion with levels such

as cautious and adventurous. The attribute list is in Figure 5.20, and the true network is in

Figure 5.21, where for example we see the dependence of riskaversion on age and socioecon.

Experimental results

The results here in Figure 5.22 continue to give empirical evidence of the superior power of

distance correlation in testing conditional independence, as networks learned with distance

correlation continue to miss the fewest edges on average. Perhaps because some of the edges

missed by the χ2 measure and information gain represent particularly strong dependences, on

this data set we see that average log-likelihood of the test data is substantially higher for

networks induced with distance correlation.

Figure 5.20: Insurance attributes
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Figure 5.21: True network for insurance data

Figure 5.22: Average performance on insurance data (Cheng-Bell-Liu search)
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5.9 The child data set

Description

In [48], Spiegelhalter et al. describe a Bayesian network used to aid diagnosis of congenital heart

disease in children born with certain symptoms. The key presenting symptom is birthasphyxia

with levels yes and no, and its child node disease then has six levels reflecting various possible

diagnoses. Other observables are present in Figure 5.23. We can see in Figure 5.24 that the

overall network is somewhat more structured than in most examples above.

Experimental results

Much as with the insurance data set above, this is a case in which networks learned with

distance correlation enjoy substantially better performance in terms of test log-likelihood; at

the larger sample sizes, the test log-likelihood using distance correlation is quite close to the

log-likelihood of the test data relative to the true network. Once again the simplest explanation

lies in the consistently better performance on edges missed. Compared to information gain,

networks learned with distance correlation miss approximately 50% fewer edges on average; and

compared to networks learned with the χ2 measure, approximately 33% fewer edges.

Figure 5.23: Child attributes

54



Figure 5.24: True network for child data

Figure 5.25: Average performance on child data (Cheng-Bell-Liu search)
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5.10 Results with varying independence thresholds

All the above experiments were conducted with the standard independence threshold of t = 0.1.

It is interesting to also explore how performance on various metrics changes with different

thresholds. Intuitively, with a higher threshold there is less risk of adding edges, as it is harder

to reject the null hypothesis of independence when performing tests. But of course this comes

with an increased risk of missing edges, since we may not recognize some weaker dependences

or conditional dependences based on the test with a higher threshold. In the figures following

below, we display the results of experiments for each of the six datasets above using a sample

size of N = 3000 and a sequence of independence thresholds t = 0.05, 0.10, 0.15, 0.20, 0.25. The

overall conclusion is quite clear—the conventional choice of t = 0.10 represents a good average-

case tradeoff for edges added and edges missed. There are special cases, as with the Danish

Jersey cattle data and distance correlation, we can see some overall improvement with higher

thresholds. But in general t = 0.10 appears a good choice.

Figure 5.26: Performance of various thresholds with the Danish Jersey cattle data
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Figure 5.27: Performance of various thresholds with the ALARM data

Figure 5.28: Performance of various thresholds with the barley data

57



Figure 5.29: Performance of various thresholds with the mildew data

Figure 5.30: Performance of various thresholds with the insurance data
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Figure 5.31: Performance of various thresholds with the child data

5.11 Computational cost of the distance correlation measure

There are many factors that influence the time needed to learn a network. Certainly the size of

the training data is important. Assuming the behavior of the learning algorithm is reasonably

correlated to the nature of the true network, the factors will also include number of attributes,

edges, and parameters in the true underlying network. The number of independence tests and

conditional independence tests performed by the search algorithm will also have a large impact.

Even given the same data and the same algorithm, it is also possible to implement an algorithm

more or less efficiently; and of course the underlying hardware being used will affect the running

time.

The consequence of this complexity is that it is hard to draw any clear conclusion about

the relative computational cost of learning networks with distance correlation rather than the

χ2 measure or information gain. Since our experiments indicate that, on average, distance

correlation misses fewer edges from the true network than the χ2 measure or information gain,

we might expect it to do more conditional independence tests during execution of the Cheng-Bell-
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Liu algorithm and require somewhat more time. As a basic comparison of computational cost,

we selected five datasets with varied characteristics from the BNLEARN repository of Bayesian

networks, available for download from https://www.bnlearn.com/bnrepository. The runtime

of using INeS to learn networks from training data of size N = 3000 for each network appears

in the table below. (The author’s system is a MacBook Pro with a 2.3 GHz 8-Core Intel Core

i9 processor and 16GB DDR4 memory.)

Network Attributes Edges Parameters infgain secs χ2 secs dc secs

ALARM 37 46 509 0.232 0.247 0.398

HAILFINDER 56 66 2656 0.388 0.419 0.769

HEPAR2 70 123 1453 0.484 0.484 0.482

BARLEY 48 84 114005 1.836 3.203 2.885

MILDEW 35 46 540150 7.702 10.262 7.840

5.12 Conclusions

In summary, there are several main conclusions we may draw from these empirical studies.

1. The most consistent and obvious result is the superior performance of distance correlation

on the “edges missed” metric. Of the 30 experiments we performed (five different sample

sizes for each of six datasets), in 29 of them the networks induced with distance correlation

missed fewer edges from the true network, on average, than networks induced with either

information gain or the χ2 measure.

2. There are no clear trends in the relative performance of distance correlation versus infor-

mation gain or the χ2 measure when comparing the log-likelihood on the test data or the

number of edges added to the true network.

3. Combined with the Cheng-Bell-Liu search algorithm, distance correlation is able to reliably

take advantage of increased sample data and learn more accurate networks, as evidenced

by the plotted curves across our six datasets.
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Chapter 6

Distance Correlation and Sparse Three-Way Contingency Tables

In this chapter we return to our joint work with Zhang in [58] on the use of distance covariance for

conditional independence tests and marginal distance covariance for homogeneity tests. It may

help give some intuition for why the networks induced in Chapter 5 using distance correlation

could achieve better performance to networks induced with other measures. All the results here

build on Zhang’s work in [57] translating distance correlation to the categorical setting, which

we outlined in Section 1.4. We also draw on the work of Wang et al. in [50] for mathematical

context. The primary goal is to move from two categorical variables X and Y in isolation, to

considering their dependence structure conditioned on a third categorical variable Z. Many

of the calculations and derivations are analogous to the unconditioned case, which is why we

omitted some details in the background material, and present them here in a more general

context.

In [57], Zhang also carried out a number of numerical studies comparing the empirical power

of an independence test based on TdCor from Equation 1.7 with other previously developed tests.

For example, given nominal X and Y with varying degrees of dependence and sample sizes of

varying sparsity, he compared with Pearson’s χ2 test at a significance level of α = 0.05. Note

that the p-value we compare to α when using TdCor is computed differently than in Pearson’s

χ2 test. In Pearson’s test, the statistic has an explicit asymptotic null distribution. However,

the asymptotic null distribution of TdCor depends on the true distributions of X and Y ; so if

it was available, there would be no need for an independence test! (See again [42] for more

details.) So instead we use a bootstrap procedure. That is, we permute the sample Y1, . . . , Yn

m times; compute a T ′dCor for each permutation; and let the p-value for TdCor be the proportion

of permutations with a smaller T ′dCor.

6.1 Tests in three-way contingency tables

There is an extensive literature analyzing contingency tables with three-way classifications,

particularly in the special case of a 2× 2×K table since this is a useful framework for testing
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association between treatment (for example, drug vs. placebo) and response (for example,

success vs. failure) while controlling for the effects of some covariates (for example, clinic,

gender, and age group). Similarly in genetic association studies, it is crucial to quantify the

association between genotype and phenotype while adjusting for environmental factors. In

the most general case, the analysis concerns the association between two categorical variables

X ∈ {1, 2, . . . , R} and Y ∈ {1, 2, . . . , C} while controlling for a possibly confounding variable

Z ∈ {1, 2, . . . , K}, and regularly appears in scientific contexts.

Two of the most popular traditional tests are the Cochran-Mantel-Haenszel test and the

conditional mutual information test. They are relatively simple to use, and perform quite well

given a large sample.

Cochran-Mantel-Haenszel (CMH) test

The CMH test was first proposed in 1959 for the special case of 2 × 2 × K tables and later

generalized to R×C×K tables (see [1]). It is essentially a score test that attempts to summarize

the dependence information from the K partial tables of size R × C. For the case R = C = 2,

the test statistic is simply,

CMH =

[∑K
k=1 (n11k − E (n11k))

]2

∑K
k=1 Var (n11k)

,

where E (n11k) and Var (n11k) can be estimated as follows:

Ê (n11k) = n1+kn+1k/n++k

̂Var(n11k) = n1+kn2+kn+1kn+2k/
(
n2

++k(n++k − 1)
)
.

Under the null hypothesis of independence and for large sample sizes, this statistic approximately

follows a χ2 distribution with one degree of freedom, and the approximation improves as the

total sample size n increases, regardless of whether K is small or large.

To generalize the statistic, we let nk be the vector of (R − 1)(C − 1) free counts in the kth

partial table, that is,

nk = (n11k, n12k, . . . , nR−1,C−1,k)
T ,
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with µk the expectation of nk given conditional independence. The sample estimate of µk can

be obtained as

µ̂k = (n1+kn+1k, n1+kn+2k, . . . , nR−1,+,kn+,C−1,k)
T /n++k.

Again assuming conditional independence, the covariance matrix Vk of nk is made up of elements

estimable by the formula,

Ĉov (nrck, nr′c′k) =
nr+kn+ck (δrr′n++k − nr′+k) (δcc′n++k − n+c′k)

n2
++k (n++k − 1)

,

where δab = 1 if a = b and δab = 0 otherwise. Then the generalized CMH statistic is,

CMH = (n− µ̂)T V̂−1(n− µ̂),

where n =
∑K

k=1 nk, µ̂ =
∑K

k=1 µ̂k, and V̂ =
∑K

k=1 V̂k. The general CMH statistic approximately

follows a χ2 distribution with (R− 1)(C − 1) degrees of freedom.

The conditional mutual information (CMI) test

CMI is an information-theoretic measure of conditional dependence. It has been applied to

many statistical problems, including the structural recovery of discrete networks, as discussed

in Section 3.1. The mutual information between X and Y given Z is defined as

I(X;Y |Z) =
∑

1≤r≤R

∑
1≤c≤C

∑
1≤k≤K

πrck log
π++kπrck
πr+kπ+ck

,

and it is known that I(X;Y |Z) = 0 iff X and Y are independent conditioning on Z (see [15]).

The empirical estimate for I(X;Y |Z) is naturally,

Î(X; Y|Z) =
1

n

∑
1≤r≤R

∑
1≤c≤C

∑
1≤k≤K

nrck log
n++knrck
nr+kn+ck

,

where we define nrck log {n++knrck/(nr+kn+ck)} = 0 if nrck = 0. Note that when nrck > 0, the

term n++knrck/ (nr+kn+ck) > 0 as nr+k, n+ck, and n++k are all positive.

Given a large sample, one can normalize I(X;Y |Z) by the marginal entropies H(X,Z) +

H(Y, Z) and then apply Fisher’s Z transformation to calculate the p value; where the asymptotic

distribution under H0 is N(0, 1/
√
n−K − 3). For smaller samples, it is preferable to use a

permutation test to evaluate the significance (see [27]).
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Motivation for new tests

As mentioned several times above in discussing CMH and CMI, these traditional tests of condi-

tional independence need large samples to perform well. For three-way tables with many sparse

counts, the tests become overly conservative and lose power (as will be clearly visible in the

simulation studies we present later in this chapter). It is thus desirable to find test statistics

based on measures which remain sensitive to dependence relations even with less data available.

This is our goal in what follows, as we will derive the explicit formula for conditional distance

covariance between nominal X and Y given some Z, and propose two types of statistics based

on this measure for testing the hypothesis of conditional independence for X and Y . We will

also propose a new statistic for testing homogeneity of XY at different levels of Z.

6.2 Definition and properties of conditional distance correlation

Wang et al. first extended distance covariance to conditional distance covariance in [50]. The

result is a nonparametric measure of conditional dependence for multivariate random variables

with arbitrary dimensions, retaining the property that measured correlation is zero almost

surely iff two multivariate random variables are conditionally independent given a third random

variable.

Definition 6.1. The conditional distance covariance (CDCov), notated D(X, Y |Z), between

random vectors X and Y with finite moments given Z is defined as the square root of,

D2(X, Y |Z) =
∥∥φX,Y |Z(t, s)− φX|Z(t)φY |Z(s)

∥∥2
,

= 1
cpcq

∫
Rp+q
|φX,Y |Z(t,s)−φX|Z(t)φY |Z(s)|2

|tp|p+1
p |s|q+1

q

dt ds,
(6.1)

where cp = π(p+1)/2
Γ((p+1)/2)

and cq = π(q+1)/2
Γ((q+1)/2)

. Similarly, the conditional distance variance (CDVar)

of a random vector X with finite moments is is defined as the square root of,

D2(X|Z) = D2(X,X|Z). (6.2)

The definition of conditional distance correlation is also completely analogous to the uncon-

ditioned case.
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Definition 6.2. The conditional distance correlation (CDCor) between random vectors X and

Y with finite moments given Z is defined as the square root of

ρ2(X, Y |Z) =
D2(X, Y |Z)√
D2(X|Z)D2(Y |Z)

, (6.3)

if the denominator in Equation 6.3 is not zero; or 0 otherwise.

Wang et al. demonstrated that the CDCov measure is nonnegative and equals zero iff X and

Y are independent conditioning on Z, as desired. It is important to note that CDCov is not the

same as the notion of partial distance correlation developed by Szekel and Rizzo in [49]. Partial

distance correlation (PDC) is defined as

R∗(X, Y |Z) =
R2(X, Y )−R2(X,Z)R2(Y, Z)√

1−R4(X,Z)
√

1−R4(Y, Z)
,

where R2(X, Y ) = V2(X, Y )/(V(X,X)V(Y, Y )) represents the marginal distance correlation

between X and Y . In particular, PDC is defined in a similar manner to Pearson’s correlation

coefficient; and in general R∗(X, Y |Z) = 0 does not imply conditional independence. We will

compare CDCor and PDC using numerical studies in what follows.

6.3 Translation to three-way contingency tables

Our main task is now to translate the above concepts into a form meaningful for categorical

variables whose joint outcomes form a R × C × K contingency table. We will wish to test a

hypothesis of conditional independence, as follows. Let πrc|k, πr+|k and π+c|k be the joint and

marginal probabilities in the kth partial table, that is, the two-way XY table obtained by fixing

Z. The null hypothesis of conditional independence of X and Y given Z, versus the alternative

hypothesis of conditional dependence, is then formulated as

H0 : πrc|k = πr+|k ∗ π+c|k for 1 ≤ r ≤ R, 1 ≤ c ≤ C, 1 ≤ k ≤ K,

vs.

Hα : πrck 6= πr+|k ∗ π+c|k for some (r, c, k).
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In the special case of a 2×2×K table, the null hypothesis is equivalent to θ1 = θ2 = . . . = θk = 1,

where θk = π11|kπ22|k/(π12|kπ21|k) is the odds ratio in the k-th partial table; because independence

is equivalent to an odds ratio of one.

Again using the geometric intuition from Section 1.4, we rewrite X, Y , and Z as random

vectors, X = {Xr}1≤r≤R , Y = {Yc}1≤c≤C , and Z = {Zk}1≤k≤K , where Xr, Yc, and Zk are

indicator variables for categories r, c and k, respectively. The characteristic functions are as

follows:

φX,Y |Zk=1(t, s) = E
(
ei<X,t>+i〈Y,s〉|Zk = 1

)
=

R∑
r=1

C∑
c=1

ei(tr+sc)πrc|k,

φX|Zk=1(t) = E
(
ei<X,t>

)
=

R∑
r=1

eitrπr+|k,

φY |Zk=1(s) = E
(
ei〈Y,s〉

)
=

C∑
c=1

eiscπ+c|k.

(Here < v1, v2 > represents the inner product of vectors v1 and v2.) So starting from Equa-

tion 6.1, we consider

φX,Y |Zk=1(t, s)− φX|Zk=1(t)φY |Zk=1(s) =
R∑
r=1

C∑
c=1

ei(tr+sc)
(
πrc|k − πr+|kπ+c|k

)
,

And continue,

|φX,Y |Zk=1(t, s)− φX|Zk=1(t)φY |Zk=1(s)|2 =[
R∑
r=1

C∑
c=1

cos (tr + sc)
(
πrc|k − πr+|kπ+c|k

)]2

+[
R∑
r=1

C∑
c=1

sin (tr + sc)
(
πrc|k − πr+|kπ+c|k

)]2

.

Now, by the sum and differences formula from Lemma 1 in [42], we can further simply to

V2 (X, Y |Zk = 1) = 2
R∑
r=1

C∑
c=1

(
πrc|k − πr+|kπ+c|k

)2
. (6.4)

It follows that V2 (X, Y |Zk = 1) = 0 is equivalent to πrc|k = πr+|kπ+c|k for all choices of (r, c);

that is, equivalent to independence between X and Y in the kth partial table.

66



The expression in Equation 6.4 is in fact a natural extension of the marginal distance co-

variance between two categorical variables. Now to obtain an estimator for conditional distance

covariance, we let nrck be the count for cell (r, c, k), and write,

nrc+ =
K∑
k=1

nrck,

nr+k =
C∑
c=1

nrck,

n+ck =
R∑
r=1

nrck.

That is, let the appearance of + in an index position denote the corresponding marginal sum, so

that for example n++k =
∑R

r=1

∑C
c=1 nrck. We then reach the following definition by replacing

the unknown parameters (πrc|k, πr+|k, π+c|k) for all (r, c) with the maximum likelihood estimates.

Definition 6.3. Given an i.i.d. sample of size n for vectors X, Y , and Z as above, the sample

conditional distance covariance is

V2
n (X, Y |Zk = 1) = 2

R∑
r=1

C∑
c=1

(
prc|k − pr+|kp+c|k

)2
,

where prc|k = nrck/n++k, pr+k = nr+k/n++k and p+c|k = n+ck/n++k.

6.4 Conditional independence tests with CDCov

We are now in a position to define tests for the hypothesis of conditional independence

H0 : V2 (X, Y |Zk = 1) = 0 ∀k = 1, 2, . . . , K. (6.5)

We propose two such tests.

Definition 6.4 (Average-type test statistic). Given X, Y , and Z as above, the average-type

test statistic for H0 in Equation 6.5 is,

K∑
k=1

pkVn (X, Y |Zk = 1) =
K∑
k=1

pk

√√√√ R∑
r=1

C∑
c=1

(
prc|k − pr+|kp+c|k

)2
.
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Definition 6.5 (Maximum-type test statistic). Given X, Y , and Z as above, the average-type

test statistic for H0 in Equation 6.5 is,

max
k
Vn (X, Y |Zk = 1) = max

k

√√√√ R∑
r=1

C∑
c=1

(
prc|k − pr+|kp+c|k

)2
.

Before these statistics can be used to test H0, we need an understanding of their asymptotic

distributions given H0. The following lemma due to Biau and Gyorfi (see [5]) will be very useful.

Lemma 6.6. Given n i.i.d. observations from a categorical variable X ∈ {1, 2, . . . , I}, where

πi = P (X = i) and pi = ni/n are the true and estimated probabilities of X; for any ε > 0, it

holds that,

P

(
I∑
i=1

|πi − pi| > ε

)
< 2Ie−nε

2/2.

We can now prove the strong consistency of the proposed maximum-type test statistic.

Theorem 6.7. With the notation from Lemma 6.6, under the multinomial model and null

hypothesis of conditional independence, for any ε > 0, it holds,

P

max
k

√√√√ R∑
r=1

C∑
c=1

(
prc|k − pr+|kp+c|k

)2
> ε

 <
(
2RC + 2R + 2C

) K∑
k=1

e
−n++kε

2

18 .

Proof. We begin with the triangle inequality,

R∑
r=1

C∑
c=1

|prck − pr+|kp+c|k| ≤

R∑
r=1

C∑
c=1

∣∣prc|k − πrc|k∣∣+
R∑
r=1

C∑
c=1

∣∣πrc|k − πr+|kπ+c|k
∣∣+

R∑
r=1

C∑
c=1

∣∣pr+|kp+c|k − πr+|kπ+c|k
∣∣ .

Under independence, the second term is zero; therefore, we only need bound the first and third

terms. By Lemma 6.6, the first term can be bounded as follows:

P

(
R∑
r=1

C∑
c=1

∣∣prc|k − πrc|k∣∣ > ε

3

)
< 2RCe

−n++kε
2

18 .
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For the third term, we have,

R∑
r=1

C∑
c=1

∣∣pr+|kp+c|k − πr+|kπ+c|k
∣∣ ≤ R∑

r=1

C∑
c=1

∣∣pr+|kp+c|k − πr+|kp+c|k
∣∣+ R∑

r=1

C∑
c=1

∣∣πr+|kp+c|k − πr+|kπ+c|k
∣∣ .

Which is equivalent to,
R∑
r=1

∣∣pr+|k − πr+|k∣∣+
C∑
c=1

∣∣p+c|k − π+c|k
∣∣ .

And again by Lemma 6.6 we have for any ε > 0

P
(∑R

r=1

∣∣pr+|k − πr+|k∣∣ > ε
3

)
< 2Re

−n++kε
2

18 ,

P
(∑C

c=1

∣∣p+c|k − π+c|k
∣∣ > ε

3

)
< 2Ce

−n++kε
2

18 .

Summarizing the results above, we have

P

(
R∑
r=1

C∑
c=1

∣∣prc|k − pr+|kp+c|k
∣∣ > ε

)
<
(
2RC + 2R + 2C

)
e
−n++kε

2

18 ,

Now, by the Cauchy-Schwarz inequality, it also holds√√√√ R∑
r=1

C∑
c=1

(
prc|k − pr+|kp+c|k

)2 ≤
R∑
r=1

C∑
c=1

∣∣prc|k − pr+|kp+c|k
∣∣

and we can complete the proof,

P

max
k

√√√√ R∑
r=1

C∑
c=1

(
prc|k − pr+|kp+c|k

)2
> ε

 ≤ P

(
max
k

R∑
r=1

C∑
c=1

∣∣prc|k − pr+|kp+c|k
∣∣ > ε

)

<
K∑
k=1

P

(
R∑
r=1

C∑
c=1

∣∣prc|k − pr+|kp+c|k
∣∣ > ε

)

<
(
2RC + 2R + 2C

) K∑
k=1

e
−n++kε

2

18 .

An immediate corollary is that the average-type statistic is also strongly consistent, as it

is less than or equal to the maximum-type statistic. Even given strong consistency, the distri-

butions of the average-type and maximum-type statistics are generally difficult to derive. So

as in Zhang’s approach in [57], it is preferable to use a permutation procedure to approximate

the p-value. For instance, one can randomly permute the X values of all samples and compute
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the average-type test statistic
∑K

k=1 pkVn (X, Y |Zk = 1) for each permuted table. This yields a

p-value based on the proportion of permuted test statistics smaller than the observed average-

type test statistic. We will use this approach in the numerical studies below; but first introduce

a third statistic meant to test the related but different hypothesis of homogeneity in a three-way

table.

6.5 Homogeneity test via marginal distance covariance

The homogeneity of XY on Z is equivalent to the joint independence between (X, Y ) and Z.

Hence there are two possible formulations. First,

H0 : πrc1 = πrc2 = . . . = πrcK for all 1 ≤ r ≤ R, 1 ≤ c ≤ C,

Hα : πrck = πrck′ for some (r, c, k, k′).
(6.6)

Or equivalently,

H0 : πrck = πrc+ ∗ π++k for all 1 ≤ r ≤ R, 1 ≤ c ≤ C, 1 ≤ k ≤ K,

Hα : πrck 6= πrc+ ∗ π++k for some (r, c, k).

The most popular homogeneity test for three-way tables is the Pearson χ2 test, for which the

test statistic is,

X2 =
R∑
r=1

C∑
c=1

K∑
k=1

(nrck − nrc)2

nrc
,

where nrc =
∑K

k=1 nnck/K. It is well-known that with large samples, X2 tends to a χ2 distribu-

tion with (RC − 1)(K − 1) degrees of freedom. Once again, the difficulty (which will appear in

our studies in Section 6.6), is that Pearson’s test suffers from low statistical power for without

the benefit of a large sample size.

To this end, we propose a new test of homogeneity of XY on Z that is based on marginal

distance covariance. It will be convenient to use the notation

R((X, Y ), Z) ≡ R(W,Z) where Wrc = 1 ⇐⇒ Xr = Yc = 1.

Let {X, Y,W,Z}, {X ′ , Y ′ ,W ′
, Z
′}, and {X ′′ , Y ′′ ,W ′′

, Z
′′} be three independent copies of {X, Y,W,Z}.

Now we can exploit another alternative formulation of V2(·, ·), again due to Szekely et al. [42],
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that is stated in terms of inter-point distance ‖ · ‖ = | · |2,

V2((X, Y ), Z) = R(W,Z)

= E(‖W −W ′‖ ‖Z − Z ′‖) + E(‖W −W ′‖)E (‖Z − Z ′‖)− 2E(‖W −W ′‖ ‖Z − Z ′′‖).

Now using the same geometric intuition as from Section 1.4, we see

E (‖Z − Z ′‖) =
√

2P (Z 6= Z ′) =
√

2

(
1−

K∑
k=1

π2
++k

)
.

And similarly,

E (‖W −W ′‖) =
√

2 (1− P (X = X ′, Y = Y ′)) =
√

2

(
1−

R∑
r=1

C∑
c=1

π2
rc+

)
.

For the covariance terms, we can also compute,

E (‖W −W ′‖ ‖Z − Z ′‖) = 2P (W 6= W ′, Z 6= Z ′)

= 2 (P (Z 6= Z ′)− P (X = X ′, Y = Y ′, Z 6= Z ′))

= 2

(
1−

K∑
k=1

π2
++k −

R∑
r=1

C∑
c=1

K∑
k=1

πrck (πrc+ − πrck)

)
.

E (‖W −W ′‖ ‖Z − Z ′′‖) = 2P (W 6= W ′, Z 6= Z ′′)

= 2 (P (Z 6= Z ′′)− P (X = X ′, Y = Y ′, Z 6= Z ′′))

= 2

(
1−

K∑
k=1

π2
++k −

R∑
r=1

C∑
c=1

K∑
k=1

πrckπrc+ (1− π++k)

)
.

Combining summations over the same indices,

V2((X, Y ), Z) =− 2
R∑
r=1

C∑
c=1

K∑
k=1

πrck (πrc+ − πrck)− 2

(
1−

K∑
k=1

π2
++k

)
R∑
r=1

C∑
c=1

π2
rc+

+ 4
R∑
r=1

C∑
c=1

K∑
k=1

πrckπrc+ (1− π++k)

= 2
R∑
r=1

C∑
c=1

K∑
k=1

π2
rck − 4

R∑
r=1

C∑
c=1

K∑
k=1

πrckπrc+π++k + 2
R∑
r=1

C∑
c=1

K∑
k=1

π2
rc+π

2
++k

= 2
R∑
r=1

C∑
c=1

K∑
k=1

(πrck − πrc+π++k)
2 .

Replacing the parameters with their maximum likelihoods, we have the following test statistic

V2
n((X, Y ), Z) for H0 in Equation 6.6,

V2
n((X, Y ), Z) = 2

R∑
r=1

C∑
c=1

K∑
k=1

(prck − prc+p++k)
2 . (6.7)
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Statistical significance of the test may be evaluated by a permutation approach, ranking the

observed statistic within a population of statistics computed from permuted data. The homo-

geneity test statistic is also strongly consistent.

Theorem 6.8. Under multinomial model and the null hypothesis of homogeneity, we have

P
(
V2
n((X, Y ), Z) > ε

)
<
(
2RCK + 2RC + 2K

)
e
−nε4
36 ,

for any ε > 0.

Proof. The proof proceeds in close analogy to the proof of Theorem 6.7.

6.6 Simulation studies and improved power

We now compare the empirical power of our new tests of conditional independence to the CMH,

CMI, and PDC tests discussed above. The comparison is based on simulated large sparse tables,

generated in four settings as below. In all cases K = 2; and X ⊥ Y |Z1 = 1 while X 6⊥ Y |Z2 = 1.

(Weak dependence, R = C = 10) With πrc|1 = 1
100

; and πrc|2 = 9
270

for 10 randomly selected

cells; and πrc|2 = 2
270

for the remaining 90 cells.

(Strong dependence, R = C = 10) With πrc|1 = 1
100

; and πrc|2 = 18
270

for 10 randomly selected

cells; and πrc|2 = 1
270

for the remaining 90 cells.

(Weak dependence, R = C = 20) With πrc|1 = 1
400

; and πrc|2 = 38
3800

for 20 randomly selected

cells; and πrc|2 = 8
3800

for the remaining 380 cells.

(Strong dependence, R = C = 20) With πrc|1 = 1
400

; and πrc|2 = 114
3800

for 20 randomly se-

lected cells; and πrc|2 = 4
3800

for the remaining 380 cells.

The results are below in Figure 6.1. In settings with only a weak dependence test, the CDC

test is significantly better than all tests across all sample sizes. When the dependence relation

is relatively strong, all tests achieve satisfactory power with large samples. However, the CDC

test is much more powerful when data is sparse. For these results we used the maximum-type

test statistic from Definition 6.5. The justification for this choice over the average-type statistic
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Figure 6.1: Empirical results of the four independence tests

from Definition 6.4 is in Figure 6.2; especially when dependence is weak, our results indicate

the maximum-type statistic is strictly preferable.

Finally, we performed the same experiments for the homogeneity statistic in Equation 6.7,

comparing its power to Pearson’s test for homogeneity (whose statistic is asymptotic χ2 with

df = RC−1 since K = 1). Figure 6.3 shows that in all settings, the marginal distance covariance

test greatly outperforms Pearson’s test, especially for relatively small sample sizes, where the

Pearson’s test failed to detect any true positives.
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Figure 6.2: Empirical results of the test statistic types

Figure 6.3: Empirical results of the two homogeneity tests
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Part III

A Novel Graph-Based Multivariate Test
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Chapter 7

Motivation and Definition of the Test

Biological processes are often highly heterogeneous. This can make it very complicated to

understand their evolution. Unfortunately, this includes cancer. There are many genetic and

epigenetic factors which, if they become abnormal, can cause cancer. Examples include gene

expression level, DNA methylation level, somatic mutation, and copy number variation. It is

possible to study these genes individually by performing univariate two-sample comparisons

between normal and tumor groups; and over the past decades, many genes have been discovered

to affect specific kinds of cancer. For instance, genes BRCA1, BRCA2, PIK3C, and GATA3

for breast cancer (see [18]); and genes MYC, RIT1, ECFR and ERBB2 for prostate cancer

(see [17]). But this kind of analysis provides limited insight into the molecular mechanisms

of tumorigenesis, as it ignores regulatory relations between genes (there is much literature

establishing the importance of these relations; see for example [46], [23], [45], [41], [29], [36], [2],

and [17]).

Thus we need robust multivariate tests when studying the genetic alterations involved in

pathways theorized to affect tumorigenesis. In this part of the dissertation, we present joint

work from [51] with Zhang, Mahdi, and Chen in which we propose a nonparametric and data-

driven approach to the problem. It begins by refining and expanding the pathways to be studied;

and then applies a novel graph-based multivariate test to analyze how genetic alterations in these

pathways affect the progression of ovarian cancer. Drawing on the KEGG pathway database

and a dataset from the Cancer Genome Atlas in [9], we find evidence that the cell cycle and

ERBB pathways play key roles in early-stage transitions; and evidence that the ECM receptor

and apoptosis pathways contribute to the progression from Stage III to Stage IV.

7.1 Typical challenges for parametric and non-parametric approaches

Researchers have in fact developed many computational models of genetic alterations caused

by metabolic pathways. (Examples include EnrichNet [52], GAGE [26], PAGE [33], MEGO

[56], GeneTrail [32], and Catmap [19]; to name a few.) But these models have tended to
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come from knowledge-based enrichment analyses and lack the flexibility to analyze user-defined

pathways or gene sets. The work of Edelman et al. in [20] is an interesting exception, as it

takes a more data-driven approach focused on pathway dependencies. This makes it flexible

enough to handle user-defined pathways as well. The analysis is hierarchical, modeling the

transitions from normal to primary tumor and from primary tumor to metastasis. However,

this desirable property come at a high computational price. Edelman et al. require steps such

as regularized multi-task learning, inverse regression, gradient learning, and leave-one-out cross-

validation. This limits the usefulness of their approach with large-scale data sets. We would

like a data-driven approach that retains the flexibility to analyze, for example, all 186 KEGG

pathways from http://www.genome.jp/kegg relative to a large clinical data set, at a reasonable

computational cost.

7.2 Statistical formulation of the problem

We first need a precise formulation of the problem, which is to detect differentially acted path-

ways between cancer stages. In statistical terms, we must test the equality of two or more joint

distributions, where each random variable represents the expression level of one gene. So given

a pathway to study, let i ∈ {1, 2, . . . , p} be the index for cancer stages, and (X
(i)
1 , . . . , X

(i)
d ) be

the expression levels of d genes in the pathway with a joint distribution F (i).

In this setting, given ni i.i.d. observations in stage i—that is, (x
(i)
1 ,x

(i)
2 , . . . ,x

(i)
ni ) where x

(i)
k =

(x
(i)
k1 , x

(i)
k2 , . . . , x

(i)
kd)—we wish to test the hypothesis,

H0 : F (1) = F (2) = . . . = F (p)

Hα : F (j) 6= F (j′) for some j, j′, 1 ≤ j, j′ ≤ p.
(7.1)

For a particular transition step, from stage i to stage i+1, we can conduct the following pairwise

test (corresponding to the special case p = 2):

H0 : F (i) = F (i+1)

Hα : F (i) 6= F (i+1).
(7.2)

For background, let us recall that the two-sample multivariate tests in the statistics literature

are broadly categorized as parametric or non-parametric.
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The classic example of a parametric test is Hotelling’s T 2 test, which compares the mean

vectors of two multivariate Gaussian distributed populations, and generally works well in low-

dimensional cases. High-dimensional tests for mean vectors have received special attention

recently (see for example [55], [3], and [31]). The famous Kolmogorov-Smirnov test (see [28] for

discussion of computational costs) is a nonparametric test for equality of arbitrary multivariate

distributions. Another very interesting family of nonparametric tests are “edge-count” tests

that draw from the intuition that if two groups have different distributions, samples will tend

to be “closer” (in an appropriate sense) to samples in the same group than to those from the

other group. If we then form a graph whose vertices represent the samples, and add edges only

between “sufficiently close” vertices, then counting the number of inter-group edges can yield

statistics for testing the hypothesis in Equation 7.2. We reject H0 if the number of between-

group edges is significantly less than expected. (See work of Friedman and Rafksy in [21]; and

Rosenbaum in [43] for examples of existing work in this family.)

7.3 Derivation of a novel graph-based test

All such tests have notable limitations in practical applications. The Kolmogorov-Smirnov

test is known to be overly conservative; it too often fails to reject H0. Moreover, sophisticated

implementations are needed to make the test usable in high-dimensional settings, as a brute force

approach is very computationally intensive. Existing edge-count tests are easier to implement

efficiently, but are problematic relative to choice of location and scale, as Chen and Friedman

detail in [12]. Their work on a modified edge-count test in the same work overcomes these

problems using a statistic with a computable asymptotic distribution. Not only does the test

work properly under different location and scale alternatives, it exhibits substantial power gains

over existing edge-count tests. The core ideas are still as above; for instance, the similarity

graph can be a minimum spanning tree (MST) as described in [13], where edge assignments are

made based on Euclidean distance.

In order to test the hypotheses in Equation 7.1, we will extend Chen and Friedmans test to

our multi-sample setting, and derive an asymptotic distribution for easy p-value approximation.

The first step is to pool the samples from all p groups (with ni observations in group i), writing
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N =
∑p

i=1 ni. The next step is to construct a similarity graph G with a vertex for each pooled

observation, letting Ri denote the number of edges in the graph that connect observations

within sample i. Now consider the permutation null distribution which assigns probability

1/

 N

n1, n2, . . . , np

 to each of the

 N

n1, n2, . . . , np

 choices of ni out of the total N observations—

where each observation is chosen once.

We can then denote by PP, EP, Varp, Covp probability expectation, variance, and covariance,

respectively, under the permutation null distribution. Direct computation then yields,

EP (Ri) = |G|ni(ni−1)
N(N−1)

, µi,

VarP (Ri) = µi (1− µi)

+ 2C ni(ni−1)(ni−2)
N(N−1)(N−2)

+ (|G|(|G| − 1)− 2C)ni(ni−1)(ni−2)(ni−3)
N(N−1)(N−2)(N−3)

, σ2
i ,

CovP (Ri, Rj) = (|G|(|G| − 1)− 2C)
ninj(ni−1)(nj−1)

N(N−1)(N−2)(N−3)
− µiµj for i 6= j.

(7.3)

where |G| is the number of edges in graph G and C is the constant 1
2

∑N
k=1 |Gk|2 − |G| with Gk

being the subgraph in G that includes all edge(s) that connect to node k. (That is, C is the

number of edge pairs that share a common node in G).

We are now in a position to define our test statistic, as follows:

S := (R1 − µ1, R2 − µ2, . . . , Rp − µp) Σ−1



R1 − µ1

R2 − µ2

· · ·

Rp − µp


. (7.4)

where Σ is the covariance matrix of vector (R1, R2, . . . , Rp)
T , whose explicit analytic expression

follows immediately from Varp, Covp in Equation 7.3. Having derived the test statistic, we now

consider some of key properties.

7.4 Properties of the test statistic

The fundamental property of the test statistic is its asymptotic convergence to a χ2 distribution

under certain conditions on the underlying graph. The proof, which is quite technical, is included

in Appendix A for completeness.
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Theorem 7.1. For an edge e ∈ G, let

Ae = {e} ∪ {e′ ∈ G : e′ and e share a node } .

Be = Ae ∪ {e′′ ∈ G : ∃e′ ∈ Ae, such that e′′ and e′ share a node}.

Now suppose that,

• |G| = O(N); and,

•
∑N

k=1 |Gk|2 − 4|G|2/N = O(N); and,

•
∑

e∈G |Ae| |Be| = o (N1.5); and,

• limN→∞ ni/N = λi ∈ (0, 1).

Then it follows that S → χ2
p under the permutation null.

7.5 Simulation studies

We now turn to two empirical studies of our statistic. First, we consider how accurately we can

approximate the p-value of the test statistic using a permutation approach. Second, we compare

the power of our test to three similar tests.

Accuracy of p-value approximation

The approximate p-value of the test statistic is obtained by a permutation approach in which

the sample is permuted m times, a S ′ is computed for each permutation, and the p-value is

taken to be the proportion of S ′ smaller than the observed S. To study the finite performance

of this approach under moderate sample sizes, we compared the approximate p-value from a

known χ2 distribution with the permutation p-value where m = 10000. This was done using

varying dimensions (d = 10 and d = 100) and sample sizes (N = 80, n1 = n2 = n3 = n4 = 20

and N = 140, n1 = n2 = 20, n3 = n4 = 50 and N = 200, n1 = n2 = n3 = n4 = 50). The data

were generated from a p-dimension Gaussian distribution with zero mean vector and identity

covariance matrix. The similarity graph was chosen to be a k-MST (k = 1, 3, 5) over the pooled

observations. (Recall that the k-MST is defined as the union of the first k disjoint minimum

spanning trees; it can be obtained cheaply using Chazelle’s algorithm from [11].)
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Figure 7.1: Boxplots for approximation accuracy with dimension d = 10

Figure 7.2: Boxplots for approximation accuracy with dimension d = 100

Since we know the true asymptotic distribution is, for example, χ2
df=4, the approximate p-

value is simply Pr
(
χ2
df=4 > S

)
. Figure 7.1 and Figure 7.2 above summarize the accuracy of

the approximate p-values by plotting the approximate p-value minus the permutation p-value

under the various dimensions, sample sizes, and similarity graphs mentioned above. It can be

seen that under all conditions, the approximate p-values tend to be slightly conservative and

increasing dimension leads to a slightly decreasing accuracy. We also note that using a denser

similarity graph such as a 3-MST or 5-MST can slightly improve the p-value approximation. As

for sample size, minini > 20 appears to suffice in practice in order to reasonably approximate

the p-value from the χ2 distribution.
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Figure 7.3: Empirical power of various tests

Power comparison with other tests

This second study compares the empirical statistical power of our proposed multi-sample edge-

count test with three similar tests examined by Chen and Friedman in [12]. The test statistics

are as follows:

T1 =
4∑
i=1

|Ri − µi| ,

T2 =
4∑
i=1

|Ri − µi| /
√

Σii,

T3 =
4∑
i=1

(Ri − µi)2 ,

where Ri and µi are as before; that is, the number of edges connecting samples within group i

and its expectation, respectively. Using p = 4 and dimension d = 100, we generated the study

data from a multivariate Gaussian distribution for each group, where the mean vector of group i

is ci and the covariance matrix is the identity. The choices of mean vector were c1 = 0, c2 = 0.1,

c3 = 0.2, and c4 = −0.3; the sample size varied from N = 100 to N = 500. Figure 7.3 shows

the empirical statistical power; our proposed test outperforms the three reference test statistics.
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Chapter 8

Application to KEGG Pathways in Ovarian Cancer

8.1 The Cancer Genome Atlas dataset

In [18], Hsu et al. published a rich data set as part of the Cancer Genome Atlas (TCGA) on 565

subjects diagnosed with ovarian cancer. Beyond clinical record data such as age, race, outcome

of debulking surgery, and chemotherapy, the data set has information on 17,813 genes; the gene

profiles include gene expression, exon expression, genotype, and copy number variation (CNV).

The subjects fell into four natural groups based on the clinical classification of their cancer

(Stage I, Stage II, Stage III, and Stage IV). In this chapter, we present an application of the

multivariate test from Chapter 7 to an enrichment of this data set. The goal is to discover

any metabolic pathways from the KEGG database (http://www.genome.jp/kegg) whose gene

profiles change in a significant way among the groups of subjects with different stages of cancer.

Our results recover the known importance of the ERBB, cell cycle, prostrate cancer, TGF β

signaling, pancreatic cancer, and p53 signaling pathways in the transition from Stage I to Stage

II cancer. They also suggest the ECM receptor and apoptosis pathways play a significant role

in the transition from Stage III to Stage IV.

8.2 Preprocessing of TCGA attributes

The CGA data set in [18] does require some preprocessing and refinement before we can apply

our test. From the profiling data, we decided to focus on gene expression level, CNV, and DNA

methylation from the genetic profiling data, which were downloaded from the Genomic Data

Commons portal in January 2017. Out of all genes in the data set, 12,831 had methylation level

measured for each CpG island located in their promoter regions. For genes containing more

than one CpG island, we took the average methylation level, as is standard practice. The copy

numbers were measured on each chromosome segment by circular binary segmentation. (If a

gene spans two chromosomal segments, its overall copy number is the average of the numbers

that would be assigned for each segment.) The expression level of each gene was quantified by

the count of reads mapped to the gene, where these quantifications were performed using the
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HTSeq software package, version 0.9.1 (see [39]); and the count data were log-transformed for

further processing.

We normalized each data type for each gene by subtracting the median and dividing by the

standard deviation to avoid any data type dominating. In addition, we removed the effects due

to different age groups and batches using a median-matching and variance-matching strategy

(see [9]). For example, the batch effect can be removed in the following way:

g∗ijk = Mi + (gijk −Mij)
σ̂gi
σ̂gij

, (8.1)

where gijk refers to the expression value for gene i from sample k in batch j, Mij represents the

median of gij = (gij1, . . . , gijn), Mi refers to the median of gi = (gi1, . . . , giJ); and σ̂gi , σ̂gij are

the standard deviations of gi and gij, respectively.

8.3 Pathway expansion and refinement

Now we describe how to integrate these gene profile data with the 186 metabolic pathways in

the KEGG data set. Consider a pathway, say the ERBB pathway, which contains 86 genes.

For each gene, define three variables corresponding to each data type above; that is, expression

level, CNV, and methylation level. (Since it is well known that the expression level of a gene can

be greatly affected by genetic or epigenetic changes such as copy number variation and DNA

methylation, including these factors together may provide insight about the upstream cause of

abnormal expression.) Now, to better adapt the KEGG pathways, we further refine the derived

variables by removing genes that are irrelevant to phenotypic changes. Following the example

of Edelman et al. in [20], we use an F -test to calculate the p-value of each single gene’s derived

variables. We exclude the variable if its p-value exceeds a predefined threshold of 0.1. This

refinement, for example, reduces the ERBB pathway expression level variables from 87 genes

to 29 genes; it also excludes 165 out of the 174 methylation and CNV variables. Thus in our

refined data set, an observation of the KEGG pathway is a vector xi ∈ R38.
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Figure 8.1: Pathway p-values for overall and individual transitions

8.4 Analysis of cancer-driving pathways

With these preprocessing steps completed, we are in a position to test H0 from Equation 7.1 for

each of the refined 186 KEGG pathways. By a Benjamin-Hochberg procedure with level 0.05

using our graph-based test from Chapter 7, we identified a set of nine pathways. These included

some well-studied cancer-related pathways such as the cell cycle, ERBB, p53 signaling, and

JAK-STAT signaling pathways. For each identified pathway, we continued with a two-sample

test in order to investigate the role of the pathways in each particular transition step. Figure 8.1

summarizes the results.

It is quite interesting to note that most of the pathways contributed only to a particular step;

the ERBB pathway is a notable exception, with significant p-values in both the transition from

Stage I to Stage II, as well as from Stage II to Stage III. Overall, five pathways were found to

contribute only to the first stage transition; and three pathways to contribute only to the final

transition. These results echo some prior knowledge; for instance, the ERBB pathway contains

important proto-oncogenes and tumor suppressors such as PIK3C, KRAS and STAT5. It is

also known that the ERBB pathway can be involved in the excessive signaling of growth factor

receptors ERBB1 and ERBB2, which are critical factors in the malignancy of solid tumors.

For example, several studies have shown a significant role for ERBB in the early progression
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of ovarian cancer and breast cancer. The cell cycle pathway also contains many genes that

co-regulate cell proliferation, including ATM, RB1, CCNE1 and MYC. When this regulation

becomes abnormal, it can cause cells to over-proliferate and tumors to accumulate—see again

[18]. The refined gene sets of ERBB pathway and cell cycle pathway clearly differentiate the

Stage I and Stage II groups, indicating their substantial involvement in this transition. One novel

finding from our analysis is the critical role of the extracellular matrix (ECM) receptor pathway

in the late-stage transition from Stage III to Stage IV. The ECM is a major component of the

local microenvironment in a cancer cell, and plays an important roles in cancer development

(see [53]).
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Appendix A

Proof of Theorem 7.1

We need a technical device of Chen and Friedmans (see [47] for details) to establish the asymp-

totic distribution of S in Theorem 7.1.

Theorem A.1 (Chen and Shao). Let J be an index set and let ξi denote a random variable

with Eξi = 0 and E (ξ2
i ) = 1. Consider sums of the form V =

∑
i∈J ξi.

Now assume a restriction on dependence among the {ξi : i ∈ J }. In particular, assume

that, for each i ∈ J , there exists Ki ⊂ Li ⊂ J such that ξi is independent of ξKc
i

and ξKi is

independent of ξLci . Under this assumption it holds that,

sup
h∈Lip(1)

|Eh(V )− Eh(Z)| ≤ δ,

where Lip(1) = {h : R→ R; ‖h′‖ ≤ 1}, Z ∼ N (0, 1), and

δ = 2
∑
i∈J

(E |ξiηiθi|+ |E (ξiηi)|E |θi|) +
∑
i∈J

E
∣∣ξiη2

i

∣∣ ,
with ηi =

∑
j∈Ki ξj and θi =

∑
j∈Li ξj, for some Ki and Li whose existence is guaranteed by the

above assumption.

The proof for Theorem 7.1 is then as below.

Proof. We begin by studying our statistic under the bootstrap null distribution, which is defined

as follows. For each observation, assign it to be from sample i with probability ni/N , indepen-

dent of other observations. Let Vi be the number of observations assigned to sample i. Then,

conditioning on {Vi = ni}i=1,...,p, the bootstrap null distribution is in fact the permutation null

distribution. We use PB,EB, Var B to denote the probability, expectation, and variance under

the bootstrap null distribution, respectively. Again direct computation shows,

EB (Ri) =
n2
i

N2
|G| ∆

= µB
i ,

VarB (Ri) =
n2
i (N − ni)2

N4
|G|+ n3

i (N − ni)
N4

N∑
k=1

|Gk|2 ,
(
σB
i

)2
.
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So let,

WB
i =

Ri − µB
i

σB
i

, Wi =
Ri − µi
σi

,

Ui =
Vi − ni√

Nλi,N (1− λi,N)
,

where λi,N = ni/N . We can now prove the following as N →∞,

1. Under the bootstrap null,
(
WB

1 ,W
B
2 , . . . ,W

B
p , U1, . . . , Up−1

)
goes to a multivariate normal

distribution with positive definite covariance matrix for (U1, . . . , Up−1).

2.
σB
i

σi
→ ci,

µBi −µi
σB
i
→ 0 for constants ci.

3. rank(Σ) = p.

Taken together, these will imply the conclusion of the theorem. First, (1) implies the condi-

tional distribution of
(
WB

1 ,W
B
2 , . . . ,W

B
p

)′
given (U1, . . . , Up−1) becomes a multivariate Gaus-

sian distribution under the bootstrap null distribution as N →∞. Since the permutation null

distribution is equivalent to the bootstrap null distribution given Ui = 0 ∀i, in particular(
WB

1 ,W
B
2 , . . . ,W

B
p

)′
becomes a multivariate Gaussian distribution under the permutation null

distribution as N →∞. Furthermore, since

Wi =
σB
i

σi

(
WB
i +

µB
i − µi
σB
i

)
,

given (2), it follows that (W1,W2, . . . ,Wp)
′ also becomes a multivariate Gaussian distribution

under the permutation null distribution as N →∞. Together with (3) we have the conclusion

in the theorem.

Let us now prove facts (1), (2), and (3). For the first part of (1), by the Cramér-Wold device,

we only need to show that W =
∑p

i=1 aiW
B
i +

∑p−1
i=1 biUi is asymptotically Gaussian distribution

for any combination of ai’s and bi’s such that VarB(W ) > 0. To show this, we can use Stein’s

method. For e ∈ G, let

ξe =

p∑
i=1

ai
IJe=i − λi,N

σB
i

,

where {Je = i} means the edge connects two observations from sample i.
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For k ∈ {1, . . . , N}, let

ξk =

p−1∑
i=1

bi
Igk=i − λi,N√
Nλi,N (1− λi,N)

,

where {gk = i} means node k is from sample i. Then W =
∑

e∈G ξe +
∑N

k=1 ξk. We have

EB (ξe) = 0,∀e ∈ G and EB (ξk) = 0,∀k ∈ {1, . . . , N}. Now we continue,

a = max

(
max

i∈{1,...,p}
|ai| , max

i∈{1,...,p−1}
|bi|
)
,

and

σ = min

(
min

i∈{1,...,p}
σBi , min

i∈{1,...,p−1}

√
Nλi,N (1− λi,N)

)
.

Then |ξe| , |ξk| ≤ pa/σ for all e ∈ G and i ∈ {1, . . . , N}. Since also |G| = O(N), we have

σ = O(
√
N). For e = (e−, e+) ∈ G, let

Ke = Ae ∪ {e−, e+} ,

Le = Be ∪ {nodes inAe} .

Note Ke and Le satisfy the assumption in Theorem A.1. Then for k ∈ {1, . . . , N}, let

Kk = {e ∈ Gk} ∪ {i},

Lk = {e ∈ Gk,2} ∪ { nodes in Gi} .

Here Kk and Lk also meet the dependence assumption in Theorem A.1. Now let J = {e : e ∈

G} ∪ {1, . . . , N}. For j ∈ J , let ηj =
∑

k∈Kj ξk and θj =
∑

k∈Lj ξk. By Theorem A.1, we then

have suph∈Lip(1) |Eh(W )− Eh(Z)| ≤ δ for Z ∼ N (0, 1) where

δ = 1√
VarB(W )

(
2
∑

j∈J (EB |ξjηjθj|+ |EB (ξjηj)|EB |θj|) +
∑

j∈J EB
∣∣ξjη2

j

∣∣)
≤ 1√

VarB(W )

(
5
∑

e∈G
p3a3

σ3 (|Ae|+ 2) (|Be|+ |Ae|+ 1) + 5
∑N

k=1 (|Gi|+ 1) (|Gi,2|+ 1)
)

≤ 1√
VarB(W )

90p3a3

σ3

∑
e∈G |Ae| |Be| .

Since σ = O(
√
N), when |Ae| |Be| = o (N1.5), we have δ → 0 as N →∞.

Finally we must check the covariance matrix of (U1, . . . , Up−1). The diagonal elements are

all unity and the off-diagonal element (i, j) with i 6= j is,

−

√
λi,Nλj,N

(1− λi,N) (1− λj,N)
.
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So the covariance matrix can be written as D− vvT where D is a diagonal matrix with the i-th

diagonal element 1+λi,N/ (1− λi,N) , and v = (
√
λ1,N/ (1− λ1,N), . . . ,

√
λp−1,N/ (1− λp−1,N))T .

Since 1−vTD−1v = 1−
∑p−1

i=1 λi,N = λp,N 6= 0, D−vvT is invertible. Now the covariance matrix

is inherently non-negative definite; and when it is full rank, it is positive definite.

We next prove the second fact from above. Notice that σ2
i can be re-written as

σ2
i =

ni (ni − 1) (N − ni) (N − ni − 1)

N(N − 1)(N − 2)(N − 3)

(
|G|+ ni − 2

N − ni − 1

(
N∑
k=1

|Gi|2 −
4|G|2

N

)
− 2

N(N − 1)
|G|2

)
,

since both |G| = O(N) and
∑N

k=1 |Gk|2−4|G|2/N = O(N). Now write a0 = limN→∞ |G|/N and

b0 = limN→∞

(∑N
k=1 |Gk|2 − 4|G|2/N

)
/N . It follows,

lim
N→∞

σ2
i /N = λ2

i (1− λi)2 (a0 + b0λi/ (1− λi)) ,

lim
N→∞

(
σBi
)2
/N = λ2

i (1− λi)2 a0 + λ3
i (1− λi)

(
b0 + 4a2

0

)
.

Hence,

lim
N→∞

σB
i

σi
=

√
1 +

4a2
0λi

a0 (1− λi) + b0λi
.

And since µB
i − µi = |G|ni(N−ni)

N2(N−1)
, we conclude

lim
N→∞

µB
i − µi
σB
i

= lim
N→∞

a0λi (1− λi)
σB
i

= 0.

It remains to prove the third fact from above. The diagonal elements of Σ are σ2
i ’s. The

off-diagonal elements are, for i 6= j,

Σ[i, j] =
ninj (ni − 1) (nj − 1)

N(N − 1)(N − 2)(N − 3)

(
|G| −

(
N∑
k=1

|Gk|2 −
4|G|2

N

)
− 2

N(N − 1)
|G|2

)
.

Then the leading terms of Σ can be decomposed as D̃ + (a0 − b0)uuT , where D̃ is a diagonal

matrix with

D̃[i, i] = λ2
i ((1− 2λi) a0 + λib0) and u =

(
λ2

1, . . . , λ
2
p

)T
.

Since 1 + (a0 − b0)uT D̃−1u = 1 +
∑p

i=1
λ2i (a0−b0)

(1−2λi)a0+λib0
is strictly larger than 0 (this quantity is

strictly increasing in a0 and equals 0 when a0 = 0), Σ is of full rank.
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