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Table 3.3. (Cont.)          

 

Chlorophyll_RST2 
Height_Non_Stress 

(cm) 
Height_Stress (cm) Height_RST 

Accession Mean SD Mean SD Mean SD Mean SD 

PI354835 0.37 0.02 ghijk 16.03 0.38 bc 8.60 0.40 defgh 0.54 0.02 efghijk 

PI354860 0.44 0.12 efghij 12.87 1.00 ghi 6.93 0.74 jklm 0.54 0.07 defghijk 

PI354864 0.53 0.22 defghi 10.87 0.55 jk 7.13 0.83 ijkl 0.66 0.11 ab 

PI354865 0.41 0.12 fghij 13.60 0.79 fgh 9.60 0.46 bcd 0.70 0.02 a 

PI582352 0.60 0.08 bcdef 18.57 0.93 a 9.57 0.38 bcd 0.52 0.03 hijk 

PI582353 0.62 0.18 bcde 20.00 0.36 a 10.50 0.95 b 0.53 0.06 ghijk 

PI582366 0.36 0.05 hijk 10.57 0.47 jk 5.93 0.49 lm 0.56 0.07 cdefghijk 

PI582368 0.42 0.20 fghij 12.67 0.95 hi 8.27 0.31 efghi 0.65 0.03 abc 

PI582402 0.50 0.11 defghij 16.50 0.20 b 9.27 0.60 cdef 0.56 0.03 cdefghijk 

PI582428 0.08 0.04 m 18.70 1.20 a 6.83 0.74 klm 0.37 0.05 l 

PI582468 0.97 0.12 a 15.67 0.74 bcd 7.67 1.36 hijk 0.49 0.07 k 

PI582551 0.56 0.08 cdefg 16.37 0.83 bc 10.30 0.82 bc 0.63 0.04 abcde 

PI582573 0.16 0.10 lm 10.57 0.31 jk 6.00 0.70 lm 0.57 0.08 bcdefghijk 

PI582697 0.38 0.08 ghijk 13.57 0.57 fgh 8.10 0.95 fghij 0.60 0.08 bcdefghi 

PI582812 0.67 0.09 bcd 10.43 0.85 k 5.87 0.75 m 0.57 0.10 bcdefghijk 

PI582852 0.31 0.12 jkl 14.97 0.70 cdef 7.83 1.40 hijk 0.52 0.08 ghijk 

PI582863 0.55 0.18 defgh 12.73 1.16 hi 7.83 0.80 hijk 0.62 0.03 abcdefg 

PI583232 0.62 0.22 bcde 16.43 0.95 bc 8.20 0.82 fghi 0.50 0.07 jk 

PI664515 0.33 0.04 jkl 13.17 0.25 ghi 7.27 0.23 ijk 0.55 0.01 defghijk 

PI664517 0.33 0.12 jkl 15.30 0.20 bcde 9.73 1.10 bcd 0.63 0.07 abcd 

PI664524 0.67 0.09 bcd 19.27 0.91 a 11.80 0.10 a 0.61 0.04 abcdefg 

1SD represents the standard deviation. 
2RST (Relative Salt Tolerance) was the ratio between the phenotypic values under salt stress  

and without salt stress.  
3Means followed by the same letter are not significantly different at α=0.05. 
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Table 3.4. LS Means of leaf biomass under non-salt conditions, leaf biomass under salt stress, relative salt tolerance for leaf biomass, 

stem biomass under non-salt conditions, stem biomass under salt stress, and relative salt tolerance for stem biomass. 

 
Leaf 

biomass_Non_Stress 

(g) 

Leaf biomass_Stress 

(g) 
Leaf biomass_RST 

Stem 

biomass_Non_Stress 

(g) 

Stem biomass_Stress 

(g) 
Stem biomass_RST (g) 

Accession Mean SD Mean SD Mean SD Mean SD Mean SD   Mean SD 

PI190191 2.33 0.24 ghijk 1.04 0.31 bcdefg 0.45 0.17 bcde 1.54 0.20 ijkl 0.66 0.10 ghijk 0.43 0.03 l 

PI229734 2.28 0.11 hijkl 0.24 0.09 no 0.10 0.04 hi 1.51 0.02 ijkl 0.53 0.04 ijklm 0.35 0.03 kl 

PI255774 1.77 0.16 lm 0.15 0.03 o 0.08 0.03 hi 1.29 0.34 klm 0.52 0.14 jklmn 0.40 0.06 jkl 

PI291140 2.49 0.23 fghij 0.83 0.13 efghij 0.34 0.04 cdefg 1.49 0.11 jkl 0.38 0.03 mn 0.25 0.03 ijkl 

PI292898 2.63 0.18 efghi 0.56 0.12 ijklmn 0.22 0.06 fghi 1.40 0.28 jklm 0.76 0.15 fg 0.55 0.11 hijk 

PI293469 1.78 0.11 lm 1.25 0.40 abcd 0.71 0.22 a 1.31 0.05 klm 0.66 0.04 ghijk 0.51 0.05 ghijk 

PI293586 2.53 0.32 fghij 0.84 0.32 efghij 0.35 0.16 cdefg 1.89 0.21 efgh 1.19 0.08 ab 0.64 0.10 ghijk 

PI349674 2.33 0.35 ghijk 1.38 0.25 ab 0.60 0.13 ab 1.97 0.10 defg 0.73 0.07 fgh 0.37 0.04 ghijk 

PI354832 3.37 0.54 bc 0.88 0.20 defghij 0.26 0.04 efghi 1.84 0.21 fghi 0.71 0.08 fgh 0.40 0.08 ghij 

PI354835 1.51 0.36 m 0.51 0.06 jklmno 0.35 0.09 cdefg 1.24 0.19 lm 0.74 0.09 fg 0.61 0.18 fghij 

PI354860 2.11 0.30 ijkl 1.09 0.37 bcdef 0.51 0.13 abc 1.24 0.25 lm 0.69 0.07 ghij 0.58 0.18 fghij 

PI354864 2.57 0.91 fghij 1.10 0.53 bcdef 0.54 0.46 abc 1.38 0.48 jklm 0.62 0.08 ghijkl 0.50 0.20 fghij 

PI354865 2.48 0.26 fghij 0.35 0.11 lmno 0.15 0.06 ghi 1.60 0.20 hijk 1.07 0.13 bc 0.68 0.13 fghi 

PI582352 2.83 0.15 cdefg 1.30 0.07 abc 0.46 0.02 bcde 2.28 0.12 abcd 0.88 0.12 def 0.39 0.07 efghi 

PI582353 3.26 0.26 bcd 0.95 0.27 cdefgh 0.29 0.07 defgh 2.47 0.27 ab 1.19 0.28 ab 0.48 0.11 efghi 

PI582366 2.15 0.26 ijkl 0.40 0.04 klmno 0.18 0.02 fghi 1.10 0.20 mn 0.36 0.07 n 0.34 0.15 defghi 

PI582368 2.18 0.15 ijkl 0.36 0.04 lmno 0.17 0.01 ghi 1.11 0.01 mn 0.66 0.10 ghijk 0.59 0.09 defghi 

PI582402 2.93 0.47 cdef 0.74 0.09 fghijk 0.25 0.03 efghi 1.66 0.07 ghij 0.73 0.07 fgh 0.44 0.04 defghi 

PI582428 3.21 0.42 bcd 0.30 0.02 mno 0.09 0.01 hi 2.49 0.08 ab 0.57 0.05 hijkl 0.22 0.02 cdefgh 

PI582468 3.15 0.40 bcde 1.18 0.33 abcde 0.38 0.11 cdef 2.03 0.09 cdef 0.77 0.14 efg 0.38 0.08 bcdefgh 

PI582551 2.17 0.16 ijkl 1.39 0.44 ab 0.65 0.24 ab 1.50 0.24 jkl 0.99 0.02 cd 0.68 0.13 bcdefgh 

PI582573 1.87 0.17 klm 0.24 0.13 no 0.12 0.07 hi 0.86 0.13 n 0.37 0.07 mn 0.44 0.13 bcdefg 

PI582697 1.54 0.14 m 0.69 0.08 ghijkl 0.45 0.07 bcde 1.30 0.25 klm 0.60 0.03 ghijkl 0.47 0.09 abcdef 

PI582812 2.05 0.41 jklm 0.93 0.18 cdefghi 0.47 0.15 bcd 1.22 0.16 lm 0.36 0.06 n 0.30 0.05 abcde 

 

1
4
7
 



 

148 

 

Table 3.4. (Cont.) 

 
                

 
Leaf 

biomass_Non_Stress 

(g) 

Leaf biomass_Stress 

(g) 
Leaf biomass_RST 

Stem 

biomass_Non_Stress 

(g) 

Stem 

biomass_Stress (g) 

Stem biomass_RST 

(g) 

Accession Mean SD Mean SD Mean SD Mean SD Mean SD   Mean SD 

PI582852 2.34 0.23 ghijk 0.53 0.20 jklmn 0.22 0.07 fghi 1.60 0.31 hijk 0.70 0.23 ghi 0.44 0.10 abcd 

PI582863 2.62 0.13 efghi 0.63 0.31 hijklm 0.24 0.11 fghi 1.23 0.20 lm 0.51 0.02 klmn 0.42 0.08 abcd 

PI583232 2.73 0.50 defgh 0.91 0.16 defghi 0.34 0.08 cdefg 1.54 0.13 ijkl 0.64 0.08 ghijk 0.41 0.06 abc 

PI664515 4.69 0.09 a 0.24 0.04 no 0.05 0.01 i 2.53 0.16 a 0.46 0.04 lmn 0.18 0.03 ab 

PI664517 3.50 0.30 b 0.59 0.23 hijklmn 0.17 0.05 ghi 2.36 0.16 abc 0.94 0.13 cde 0.40 0.08 a 

PI664524 3.19 0.39 bcd 1.50 0.16 a 0.48 0.09 bcd 2.19 0.17 bcde 1.28 0.03 a 0.59 0.05 a 

 

 

1
4
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Table 3.5. Pearson's correlation coefficients between trait values used for phenotyping salt 

tolerance at seedling stage in cowpea. 

 Dead Leaf_injury 
Chlorophyll_

NonStress 

Chlorophy

ll_Stress 

Chlorophyll_

RST 

Height 

NonStress 

Height_Str

ess 

Dead 1.00        

Leaf_injury 0.91 1.00      

Chlorophyll_

NonStress 
-0.22 -0.28 1.00     

Chlorophyll_

Stress 
-0.81 -0.85 0.32 1.00    

Chlorophyll_

RST 
-0.77 -0.79 0.07 0.96 1.00   

Height_NonSt

ress 
-0.10 -0.18 -0.18 0.13 0.19 1.00  

Height_Stress -0.04 -0.08 -0.22 0.22 0.30 0.66 1.00 

Height_RST 0.11 0.17 -0.09 0.07 0.10 -0.43 0.38 

LeafBiomass_

NonStress 
0.04 -0.02 0.20 0.10 0.08 0.29 0.13 

LeafBiomass_

Stress 
-0.52 -0.61 0.05 0.68 0.69 0.32 0.37 

LeafBiomass_

RST 
-0.46 -0.50 0.07 0.56 0.54 0.13 0.23 

StemBiomass_

NonStress 
-0.11 -0.19 0.19 0.17 0.14 0.66 0.38 

StemBiomass_

Stress 
-0.03 -0.10 -0.20 0.19 0.25 0.69 0.81 

StemBiomass_

RST 
0.14 0.12 -0.37 -0.03 0.05 0.15 0.48 

 

Height

_RST 

LeafBiomass_

NonStress 

LeafBiomass

_Stress 

LeafBioma

ss_RST 

StemBiomass_

NonStress 

StemBioma

ss_Stress 

StemBiom

ass_RST 

Dead 
       

Leaf_injury 
       

Chlorophyll_

NonStress 
       

Chlorophyll_

Stress 
       

Chlorophyll_

RST 
       

Height_NonSt

ress 
       

Height_Stress 
       

Height_RST 1.00       

LeafBiomass_

NonStress 
-0.21 1.00      

LeafBiomass_

Stress 
0.02 0.00 1.00     

LeafBiomass_

RST 
0.10 -0.36 0.89 1.00    

StemBiomass_

NonStress 
-0.35 0.79 0.15 -0.16 1.00   

StemBiomass_

Stress 
0.11 0.19 0.39 0.21 0.45 1.00  

StemBiomass_

RST 
0.40 -0.42 0.24 0.36 -0.37 0.62 1.00 
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Fig. 3.1. Phenotyping of salt tolerance in cowpea at seedling stage 14 days of salt stress. (R) 

Salt-tolerant genotype, PI582468, and (S) salt-sensitive genotype, PI255774 used as controls. 

Salt treatment was conducted by irrigating each plastic pot from the bottom. 
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Fig. 3.2. Differences in above ground traits between salt-tolerant and salt-sensitive genotypes 14 

days of salt stress (R: salt-resistant and S: salt-sensitive). 
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Fig. 3.3. Foliar injury due to salt stress: 1=healthy plants, 2=first sign of leaf chlorosis, 

3=expansion of chlorosis on leaf surface, 4= totally chlorotic leaf, 5=first sign of necrosis, 

6=expansion of necrosis on leaf surface, and 7=completely dead plants. 
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Fig. 3.4. Distributions of the average number of dead plants per pot and leaf injury score. 
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Fig. 3.5. Independent replicated trial involving the tolerant check (Tc: PI582468), the susceptible 

check (Sc: PI255774), and one of the salt-tolerant genotypes (T: PI349674) and salt-susceptible 

ones (S: PI582573) as identified in the previous experiment. The results from the independent 

replicated trials showed that the current methodology was stable. 
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Fig. 3.6. Distributions of chlorophyll content of non-salt-stressed and salt-stressed plants, and 

relative salt tolerance for chlorophyll content. 
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Fig. 3.7. Distributions of plant height of non-salt-stressed and salt-stressed plants, and relative 

salt tolerance for plant height. 
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Fig. 3.8. Distributions of leaf biomass of non-salt-stressed and salt-stressed plants, and relative 

salt tolerance for leaf biomass. 
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Fig. 3.9. Distributions of stem biomass of non-salt-stressed and salt-stressed plants, and relative 

salt tolerance for stem biomass. 
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Fig. 3.10. Network analysis between traits evaluated under salt stress and non-salt conditions. 

Pathways were shown using solid lines when absolute value of Pearson's correlations was greater 

than 0.65. 
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Abstract 

 Cowpea is a nutrient-dense legume that significantly contributes to the population’s diet 

in sub-Saharan Africa and other regions of the world. Improving cowpea cultivars to be more 

resilient to abiotic stress such as drought would be of great importance. The use of a MAGIC 

population has been shown to be efficient in increasing the frequency of rare alleles that could be 

associated with important agricultural traits. In addition, drought tolerance index has been 

reported to be a reliable parameter for assessing crop tolerance to water deficit conditions. 

Therefore, the objectives of this study were to evaluate the drought tolerance index for plant 

growth habit, plant maturity, flowering time, 100-seed weight, and grain yield in a MAGIC 

cowpea population, to conduct GWAS and identify single nucleotide polymorphism (SNP) 

markers associated with the drought tolerance indices, to investigate the potential relationship 

existing between the significant loci associated with the drought tolerance indices, and to 

conduct genomic selection (GS). The MAGIC population consisted of a total of 305 cowpea 

genotypes that were developed and phenotyped by the UC Riverside’s team. The results 

indicated that: 1) a large variation in drought tolerance indices existed among the cowpea 

genotypes, 2) a total of 14, 18, 5, 5, and 35 SNPs were associated with plant growth habit change 

due to drought stress, drought tolerance index for maturity, flowering time, 100-seed weight, and 

grain yield respectively, 3) the network-guided approach revealed clear interactions between the 

loci associated with the drought tolerance traits, and 4) GS accuracy varied from low to 

moderate. The results from this study will have practical applications in cowpea breeding 

programs through marker-assisted selection (MAS) and genomic selection (GS). To the best of 

our knowledge, this is the first study identifying loci associated with the aforementioned drought 

tolerance indices using a MAGIC population in cowpea. 
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Introduction 

Cowpea [Vigna unguiculata (L.) Walp.] is a diploid legume (2n=2x=22) grown for its 

relatively high amount of seed protein (Weng et al. 2017). Cowpea cultivation is prevalent in 

Asia, Oceania, the Middle East, southern Europe, Africa, southern USA, and Central and South 

America (Perrino et al. 1993). Cowpea has also been shown to be nutrient-dense. Cowpea seeds 

consisted on average of 6.8 iron, 4.1 zinc, 1.5 manganese, 510.0 phosphorus, and 1430.0 

potassium, in mg per 100-g seed (Frota et al. 2008). Cowpea consumption has been 

demonstrated to be health-promoting due to the high amount of antioxidant compounds found in 

cowpea seeds (Moreira-Araújo et al. 2017; Qin et al. 2016). In addition to being consumed for its 

good nutritional values, cowpea leaves can provide good quality feed for livestock and cowpea 

plants can be used as cover crops (Wison et al. 2006). Cowpea is grown on more than 11 million 

hectares worldwide and over 70% of the worldwide cowpea production has been provided by 

Africa with Nigeria being the top producer (Singh et al. 2003). Among the developed countries, 

the United States has the greatest potential for exporting cowpea with the highest average 

cowpea yield per hectare (Agbicodo et al. 2009).  

Cowpea cultivation is usually rain-dependent and water shortage during cowpea 

developmental and growth stages could be detrimental to cowpea production (Fatokun et al. 

2012). Evidence of the negative effects of drought stress on cowpea has been reported in areas 

where cowpea is cultivated (Burridge et al. 2017; Carvalho et al. 2017). Even though cowpea is 

one of the most drought-tolerant legumes, some cultivars with desirable agronomic traits were 

found to be sensitive to water deficit conditions (Verbree et al. 2015). Therefore, cowpea 

breeding program aiming at improving drought tolerance is still required. Breeding for drought 

tolerance requires a good understanding of the genetic mechanism conferring drought tolerance. 
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With an estimated genome size of 620 Mb (Timko et al. 2008), cowpea could be used as an 

excellent model crop for drought tolerance-related studies in legume research. The relatively 

small genome size of cowpea would allow for a rapid and efficient identification of genes 

contributing to drought tolerance. Drought tolerance in cowpea is a complex mechanism and 

involves sophisticated interactions between genes (Carvalho et al. 2017). Therefore, identifying 

genes for drought tolerance would be critical. However, incorporating the genetic finding into 

breeding programs for improving drought tolerance of the existing cowpea elite culticars would 

be time consuming. This could be addressed by performing drought tolerance research on a 

Multi-Parent Advanced Generation Inter-Cross (MAGIC) population derived from parents 

having drought tolerance and any other desirable agronomic traits.  

Investigation into the genetic architecture governing traits of interest using MAGIC 

populations has recently received significant consideration. MAGIC populations provide both 

greater diversity and a balanced allele frequency, which is critical for efficiently conducting 

genetic-related studies (Huang et al. 2015). MAGIC populations were first developed to dissect 

the genetic architecture of important traits in animals and results were promising (Ram et al. 

2014). For plants, MAGIC populations have been established for Arabidopsis thaliana (Kover et 

al. 2009), wheat (Huang et al. 2012), rice (Bandillo et al. 2013), and chickpea (Gaur et al. 2012). 

The genetics of yield and tolerance to abiotic stress such as drought have been successfully 

investigated in a MAGIC rice population (Bandillo et al. 2013). Investigating the genetics of 

drought tolerance on a MAGIC cowpea population could be also achieved. The first MAGIC 

cowpea population was developed by Huynh et al. (2018) from the University of California, 

Riverside. 
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This first MAGIC cowpea population was phenotyped under both full irrigation and 

restricted irrigation water regimes at UCR-CES (California) and CVARS (California). The 

MAGIC population was genotyped using a total of 51,128 SNPs postulated from the Illumina 

Cowpea Consortium Array (Muñoz-Amatriaín et al. 2017). Markers associated with drought 

tolerance and agronomic traits such as flowering time, growth habit, and maturity were 

investigated based upon QTL analysis. Genetic maps, recombination frequency analysis, and 

significant QTLs related to the aforementioned traits were established for the MAGIC cowpea 

population (B. Huynh et al. 2018). This study was complemented using a genome-wide 

association study (GWAS) approach as reported by Olatoye et al. (2019). GWAS provides a 

greater mapping resolution over QTL mapping and efficiently permits the discovery of new 

genes (Price 2006; Hamblin et al. 2011). However, the drought tolerance index trait, which is the 

relative change of the trait values due to drought stress (Ravelombola et al. 2018; Saad et al. 

2014), was not investigated in this MAGIC cowpea population. Investigating the genetic 

architecture of the drought tolerance indices could lead to the discovery of new significant loci 

associated with drought tolerance in cowpea. In addition, the analysis can be further enhanced 

using genomic selection. Predictive breeding involving genomic selection has become more and 

more popular since it is cost-effective and provides breeders with a rapid genetic gain per unit of 

time (Hayes et al. 2009). Genomic selection has been reported to be highly efficient in 

investigating the genetic architecture of complex trait such as drought tolerance (Heffner et al. 

2009). Therefore, the objectives of this study were to conduct a GWAS and GS for the drought 

tolerance indices, to identify SNP markers associated with drought tolerance indices, and to 

estimate the GS accuracy in predicting drought tolerance indices in a MAGIC cowpea 

population. 
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Materials and Methods 

MAGIC population development and genotyping 

 The MAGIC cowpea population was derived from crosses between eight different 

cowpea parents (IT89KD-288, IT84S-2049, CB27, IT82E-18, SuViTa_2, IT00K-1263, IT84S-

2246, and IT93K-503-1) (Huynh et al. 2018). The eight parents consisted of cultivars and 

breeding lines from Burkina Faso, Nigeria, and the United States. The parents were genetically 

diverse and details on population development were described previously (Huynh et al. 2018). 

IT93K-503-1 was an advanced drought-tolerant line developed by IITA, Nigeria (Muchero et al. 

2009). The remaining parents harbored a combination of important agronomic traits such as 

resistance to Striga, fungi, bacteria, viruses, foliar thrips, root-knot nematode, and heat stress 

(Ehlers et al. 2000; Huynh et al. 2016; Lucas et al. 2012; Muchero et al. 2009; Muchero et al. 

2011; Ouédraogo et al. 2002; Pottorff et al. 2014). The first crosses were done in early 2011. The 

resulting MAGIC population consisted of a total of 305 F8:10 RIL lines.  

 The 305 RIL lines along with the parents were genotyped using of total of 51,128 SNPs 

form the Illumina Cowpea Consortium Array (Muñoz-Amatriaín et al. 2017). After SNP 

filtering, a total of 32,059 high-quality SNPs were retained (missing data <10%, heterozygosity 

<10%, and minor allele frequency >5%).  

Growing conditions and phenotyping 

 Phenotypic data and filed phenotyping were conducted by Huynh et al. (2018) at 

CVARS. Data on plant growth habit, flowering date, maturity date, grain yield, and 100-seed 

weight were recorded under both full and restricted irrigation. A total of 12 seeds were planted 

for each MAGIC RIL line along with the 8 parents. Plantation areas were irrigated to field 

capacity before planting and restricted water regime was achieved by withholding water on the 
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2-week old cowpea plants (Huynh et al. 2018). Flowering date corresponded to the time where 

50% of plants within a row had flowers. Plant growth habit was rated based on a 1 to 6-scale (1: 

acute erect, 2: erect, 3: semi-erect, 4: indeterminate, 5: semi-prostrate, and 6: semi-prostrate). 

Maturity date was recorded when over 95% of pods within a row were dry. Grain yield and 100-

seed weight were recorded upon harvest as described by Huynh et al. (2018).  

In order to assess the effects of restricted irrigation on the aforementioned agronomic 

traits, drought stress tolerance index was computed and defined as following (Saad et al. 2014) 

and change in plant growth habit was quantified using a binary approach(1: no change in plant 

growth habit between full irrigation and restricted irrigation and 9: otherwise). 

Tolerance index= 100 * (Yrestricticed irrigation/Yfull irrigation) 

where Yrestricticed irrigation represented flowering time, maturity, grain yield, and 100-seed weight 

under restricted irrigation and Yfull irrigation referred to flowering time, maturity, grain yield, and 

100-seed weight under full irrigation treatment. Data were visualized using the ‘MASS’ package 

of R® v.3.6.1 (R Developlment Core Team 2011). 

Pearson’s correlation coefficients between the quantitatively evaluated traits were 

calculated using R® v.3.6.1 and the association between the qualitative trait (change in growth 

habit) and the quantitatively evaluated traits was investigated through a univariate logistic 

regression, which was run in R® v.3.6.1 as well. The logistic regression model was the 

following. 

log[π/(1- π)]= β0 + βiXi 

where π was the probability of success of an event from the conditional binomial distribution 

Y|N~Bin(N, π) with Y being the number of genotypes having change in plant growth habit under 

drought stress and N being the total number of genotypes, β0 was the intercept, βi was the effect 
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of the ith covariate on the binomial response, Xi denoted the ith covariate corresponding to each 

trait i={1: tolerance index for plant maturity, 2: tolerance for flowering time, 3: tolerance index 

for 100-seed weight, and 4: tolerance index for grain yield}. 

Genome-wide association study (GWAS) 

A Bayesian Information and Linkage Disequilibrium Iteratively Nested Keyway 

(BLINK) model was used to conduct GWAS. BLINK was run using in R® v.3.6.1 using the 

package ‘BLINK’ (Huang et al. 2019). Previous studies have shown that BLINK allowed for 

efficiently discovering SNPs highly associated with traits of interest over other models (Huang et 

al. 2019). SNPs with an LOD greater than 3 were declared significant (Kaler et al. 2017). 

 BLINK was a modified and improved version of Fixed and Random Model Circulating 

Probability Unification (FarmCPU). FarmCPU iteratively run both a fixed effect model (FEM) 

and a random effect model (REM). A major assumption when running FarmCPU was the even 

distribution of markers within the genome, which could be easily violated. In BLINK, this 

assumption was relaxed by using the information from a linkage disequilibrium (LD) analysis. 

The REM part of FarmCPU was replaced by a second FEM in BLINK, making the running time 

shorter. The two FEM models used in BLINK were the following  

FEM (1): yi= Mi1b1 + Mi2b2 + …+ Mikbk + Mijdj + ei 

FEM (2): yi= Mi1b1 + Mi2b2 + …+ Mijbj + ei 

with yi being the phenotypic data from the ith sample; Mi1,Mi2b2, …, Mik the genotypes of k 

pseudo QTNs, which were initially empty and with effects b1, b2, …, bk, respectively; Mij being 

the jth genetic marker of the ith sample; and ei being the residual having a distribution with mean 

zero and a variance σ2
e. In this study, we focused on the SNPs associated with the tolerance 

index trait. However, we re-ran the traits investigated by Huynh et al. (2018) and Olatoye et al. 

(2019) using BLINK and the SNPs identified for these traits were analyzed in the network 
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analysis section. LD heatmaps were established in R® v.3.6.1 using the package ‘LDheatmap’ 

(Shin et al. 2019). 

Candidate gene(s) discovery 

 Significant SNPs were used for candidate gene(s) discovery. The 40-kb region harboring 

the significant SNP was considered for candidate gene search using the Phytozome 12 database 

(https://phytozome.jgi.doe.gov/) based on the SNP density. Functional annotation pertaining to 

candidate gene(s) was investigated using the Phytozome 12 database as well.  

Association network 

 A network-guided association analysis was conducted to investigate the significant loci 

that were associated with two or more traits. The algorithm used for constructing the network 

was similar to that of established by Fang et al. (2017) with slight modifications. The nodes in 

the network corresponded to the traits and the significant SNPs associated with each trait. The 

traits investigated by Huynh et al. (2018) and Olatoye et al. (2019) were represented by solid 

circles, whereas the tolerance index traits were visualized by solid diamonds. The SNPs 

associated with each trait were denoted using solid dark grey circles. The size of each trait node 

was fixed, whereas the size of each SNP node was proportional to its LOD value that was 

obtained from GWAS. The bigger the SNP node was, the higher its LOD was. The edge of the 

network was represented using solid dark lines linking the SNP and trait nodes. The attribute of 

the edge between a pair of SNPs was proportional to the pairwise LD r2 between the two SNPs, 

which was estimated using PLINK (Purcell et al. 2007). The attribute of the edge between a SNP 

node and a trait node was fixed. No edges were used between trait nodes. The network was 

designed using Cytoscape v. 3.7.2 (Otasek et al. 2019). A network was established when a SNP 

was associated with two or more traits, which was easily identified using a GWAS approach. In 



 

169 

 

addition, a network could be also constructed when two different SNPs were associated with two 

different traits, but these two SNPs were in high LD. This could not be detected with GWAS. 

Finally, a network was also defined when two SNPs in high LD were associated to one trait, 

which could be considered as epistasis (Fang et al. 2017). 

Genomic selection (GS) 

 Genomic selection was carried out using all 32,059 high-quality SNPs. Genomic 

estimated breeding values (GEBVs) were estimated using a ridge regression best linear unbiased 

predictor model (rrBLUP) (Meuwissen et al. 2001). The rrBLUP model was y=WGβ + ε where y 

was the vector phenotype, β indicated the marker effect with β~N(0, Iσ2
β), W corresponded to the 

incidence matrix relating the genotype to the phenotype, G denoted the genetic matrix, and ε was 

the random error. The solution for the model was 
^
=(ZTZ + Iλ)-1ZTy with Z=WG. The ridge 

parameter used in this study was λ=σ2
e/σ

2
β. The parameter σ2

e denoted the residual variance and 

σ2
β the marker effect variance. rrBLUP was conducted in R® v.3.6.1 using the package 

‘rrBLUP’ (Endelman 2011). 

 Genomic estimated breeding values (GEBVs) were estimated using a training population 

randomly chosen from the MAGIC population (Shikha et al. 2017). Since the genotypes with 

missing data could impact the results, they were removed prior to conducting genomic selection, 

leaving with a total of 249 cowpea genotypes for the analysis. Genomic selection was conducted 

using a two-, three-, four-, five-, six-, seven-, and eight-fold cross validation corresponding to a 

training/testing set of 125/124, 166/83, 186/63, 199/50, 207/42, 213/36, and 217/32, respectively. 

The training and testing sets were two disjoint groups. The training population was used to fit the 

model and the testing population was used to assess the accuracy of the model. A total of 100 

replications were used for each cross-validation level. Genomic selection accuracy corresponded 
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to the Pearson’s correlation coefficient between the GEBVs and the observed phenotypic values 

in the testing set (Shikha et al. 2017). 

Results 

Phenotyping 

To quantify the relative change in maturity due to drought stress, tolerance index was 

evaluated. A tolerance index greater than 100 for plant maturity indicated that restricted 

irrigation made plant maturity longer, whereas a tolerance index lower than 100 suggested plant 

maturity being shorter due to water deficit. A large variation in tolerance index for maturity was 

identified among the RILs. Tolerance index was nearly normally distributed (Fig. 4.1A). 

Tolerance index ranged between 69.19 and 142.01, with an average of 104.74 and a standard 

deviation of 15.60.  

Tolerance index for flowering time varied from 78.41 to 126.67, with an average of 97.48 

and a standard deviation of 5.35. Tolerance index for flowering time was also approximately 

normally distributed (Fig. 4.1B). Tolerance index for 100-seed weight was approximately 

normally distributed (Fig. 4.1C) and ranged between 59.56 and 210.11, with an average of 

113.09 and a standard deviation of 17.54. 

Unlike the aforementioned parameters investigated in this study, tolerance index for grain 

yield was right-skewed as shown in Fig. 4.1D. Tolerance index ranged between 4.95 and 754.39, 

with an average of 41.89 and a standard deviation of 53.34, indicating that yield was negatively 

impacted by restricted irrigation. Plant growth habit under both full and restricted irrigations 

were recorded. A total of 154 RILs had a change in plant growth habit due to drought stress. 

Overall, the change pattern was semi erect and inderminate towards acute erect and erect.  



 

171 

 

 Pearson’s correlation coefficients between the different tolerance indices were calculated. 

Overall, correlation coefficients between traits were low. A moderate and positive Pearson’s 

correlation coefficient was found between tolerance index for grain yield and tolerance index for 

100-seed weight (r=0.33). A low Pearson’s correlation coefficient was found between tolerance 

index for maturity and tolerance index for flowering time (r=0.17). The lowest Pearson’s 

correlation coefficient was found between tolerance index for flowering time and tolerance index 

for 100-seed weight (r=0.01).  

A univariate logistic regression model was used to assess the relationship between change 

in growth habit due to drought stress and the previously assessed tolerance indices. The 

univariate logistic regression model was used to fit the change in growth habit to each tolerance 

index trait, where the growth habit was a binomial response and each tolerance index was a 

continuous predictor variable. The univariate model showed that all tolerance indices except for 

tolerance index for grain yield were insignificant. The estimate of the effects of tolerance index 

for plant maturity, tolerance index for grain yield, tolerance index for 100-seed weight, and 

tolerance index for flowering time on the change of growth habit due to drought stress were -

0.009 (Z-value=-1.170, p-value=0.142), 0.013 (Z-value=2.207, p-value=0.03), 0.006 (Z-

value=0.851, p-value=0.395), and -0.019 (Z-value=-0.775, p-value=0.438), respectively. These 

results indicate that there is a significant association between tolerance index for grain yield and 

change in growth habit to drought stress. 

Genome-wide association study (GWAS) 

 GWAS was conducted to identify SNP markers associated with growth habit change, 

tolerance indices for maturity, flowering time, 100-seed weight, and grain yield. A total of 14 

SNP markers were found to be associated with tolerance index to plant growth habit change 
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(Table 4.1) (Fig. 4.2A). Of which, eight were mapped on a 10.1-Mb region of chromosome 8, 

indicating a strong likelihood of significant loci associated with plant growth habit change under 

drought stress in this genomic region. The top five SNPs associated with plant growth habit 

change under drought stress were 2_26924 (LOD= 4.06, MAF= 17.67%), 2_01300 (LOD= 3.88, 

MAF= 17.27%), 2_10658 (LOD= 3.88, MAF= 17.27%), 2_54501 (LOD= 3.88, MAF= 17.27%), 

and 2_45332 (LOD= 3.88, MAF= 17.27%) (Table 4.1), which were all located on chromosome 

8. The LD analysis around the most significant SNP showed low pairwise LD values between 

SNPs (Fig. 4.3A). 

 The results indicated a total of 18 SNPs associated with tolerance index for maturity 

(Table 4.1) (Fig. 4.2B). Of which, 14 were found on a 584-Kb region of chromosome 8. A small 

portion of this region overlapped with the 10.1-Mb region found for plant growth habit change 

under drought stress. The remaining SNPs were located on chromosomes 2 and 7. The top 5 

SNPs with the highest LOD value were 2_21981 (LOD= 5.68, MAF= 20.08%), 2_40337 (LOD= 

4.27, MAF= 28.34%), 2_14976 (LOD= 4.23, MAF= 28.92%), 2_14158 (LOD= 3.63, MAF= 

33.33%), and 2_51274 (LOD= 3.54, MAF= 13.65%) (Table 4.1). The region in the vicinity of 

the SNP with the highest LOD value indicated a moderate LD (Fig. 4.3B). In addition, no SNPs 

located within the 30-kb region flanking the most significant SNP, 2_21981, had an LOD greater 

than the declared threshold (3) (Fig. 4.3B). 

 The discrepancy in change in flowering time between full irrigation and restricted 

irrigation was also assessed using tolerance index for flowering time. However, no SNPs 

exceeding the LOD threshold (3) were found. We only reported the top 5 SNPs, 2_06470 (LOD= 

2.84, MAF= 12.45%), 2_52919 (LOD= 2.84, MAF= 12.45%), 2_06137 (LOD= 2.84, MAF= 

12.45%), 2_27706 (LOD= 2.83, MAF= 19.68%), and 1_0946 (LOD= 2.83, MAF= 11.65%) that 
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the GWAS analysis suggested for tolerance index for flowering time (Table 4.1) (Fig. 4.2C). One 

of these SNPs were located on chromosome 8 (Fig. 4.2C). However, this SNP was not located 

within the significantly associated loci identified for plant growth habit change and tolerance 

index for plant maturity. The region harboring the most significant SNP, 2_06470, had a high LD 

(Fig. 4.3C).  

 The results did not show any SNPs having an LOD greater than the threshold (3) for 

tolerance index for 100-seed weight under restricted irrigation. We just reported the top 5 SNPs 

having the highest LOD values (Table 4.1). These SNPs were 2_11122 (LOD= 2.95, MAF= 

11.34%), 2_03731 (LOD= 2.89, MAF= 10.84%), 2_14932 (LOD= 2.89, MAF= 10.84%), 

2_34365 (LOD= 2.89, MAF= 10.84%), and 2_07882 (LOD= 2.89, MAF= 10.84%). These SNPs 

were all found on chromosome 4 (Fig. 4.2D). Among all traits evaluated in this study, tolerance 

index for grain yield had the highest number of significant SNPs. Our data suggested indicated a 

total of 35 SNPs associated with tolerance index for grain yield (Table 4.2) (Fig. 4.2E). Of 

which, 26 were mapped on a 566.5-Kb region of chromosome 6, seven on a 2.5-Mb region of 

chromosome 7, and two on a 703-Kb region of chromosome 8 (Table 4.2). These regions could 

harbor significant loci associated with tolerance index for grain yield under drought stress in 

cowpea. The top five SNPs with the highest LOD value were 2_25334 (LOD= 3.51, MAF= 

8.23%), 2_51818 (LOD= 3.38, MAF= 12.85%), 2_31565 (LOD= 3.35, MAF= 9.64%), 2_19053 

(LOD= 3.35, MAF= 9.64%), and 2_33474 (LOD= 3.35, MAF= 9.64%). The LD heatmap shown 

in Fig. 4.3E revealed an independent LD block, which contained the most significant SNP 

associated tolerance index for grain under drought stress. This LD pattern was not identified for 

traits such as change in plant growth habit, tolerance index for maturity, flowering time, and 100-



 

174 

 

seed weight. In addition, there is lack of overlap between the significant SNPs across different 

traits, indicating that drought stress is a complex mechanism.  

Candidate genes 

 A total of nine candidate genes were found for growth habit change under drought stress 

(Table 4.1). These candidate genes consisted of Vigun08g076600.1, Vigun08g077200.1, 

Vigun08g077800.1, Vigun08g080000.1, Vigun08g082400.1, Vigun08g082500.1, 

Vigun08g069700.1, Vigun10g104700.1, Vigun10g106600.1 that encode for aldehyde 

dehydrogenase family, organic solute transporter, multi-copper oxidase, TLC ATP/ADP 

transporter, membrane protein involved in ER to Golgi transport, cytochrome P450, and SNARE 

protein GS28, respectively (Table 4.1). Out of the 18 SNPs found to be associated with tolerance 

index for maturity, 15 had annotated genes in their vicinity. A significant cluster of patatin-like 

phospholipase was found and encoded by Vigun08g022000.1, Vigun08g022100.1, 

Vigun08g021900.1, and Vigun08g022200.1 (Table 4.1). The genes found close to the top five 

SNPs associated with tolerance index for maturity were Vigun08g020700.1, Vigun08g023500.1, 

Vigun08g023400.1, and Vigun08g023300.1. The annotated gene Vigun08g020700.1 encodes for 

a kinase. Both Vigun08g023500.1 and Vigun08g023400.1 encode for EF hands and 

Vigun08g023300.1 encodes for a phosphatidate phosphatase. An annotated gene encoding for a 

leucine rich repeat was also found. 

 A total of seven annotated genes were found in the vicinity of the five significant SNPs 

associated with tolerance index for flowering time (Table 4.1). The SNP 1_0946 was mapped 

within a cluster of aspartyl proteases. The other candidate genes consisting of 

Vigun03g417300.1, Vigun03g417700.1, Vigun08g220500.1, and Vigun08g220700.1 encode for 

importin alpha, Myb-like DNA-binding domain, 5'-AMP-activated protein kinase beta subunit, 
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and PPR repeat. No functional annotation was found for Vigun08g220600.1 (Table 4.1). The 

results indicated two or more annotated genes in the vicinity of the significant SNPs associated 

with tolerance index for 100-seed weight (Table 4.1). Out of the 5 SNPs associated with 

tolerance index for 100-seed weight, 4 were mapped within a large cluster of cytochrome P450 

and histone-modifying enzymes such as lysine-specific histone demethylase 1 homolog 1.  

GWAS suggested a total of 35 SNPs associated with tolerance index for grain yield under 

drought stress (Table 4.2). Of which, only three were not mapped in the vicinity of an annotated 

gene. The loci associated with tolerance index for grain yield was rich in biomolecule 

transporters such as transmembrane amino acid transporter protein, organic solute transporter 

Ostalpha, organic solute transporter, nucleoside transporter, organic anion transporter 

polypeptide (OATP) family, inositol transporter 4-related, and sodium-dependent phosphate 

transporters. Oxidoreductases such as quinone oxidoreductase PIG3 and pyridine nucleotide-

disulphide oxidoreductase were also found to be prevalent (Table 4.2). Epigenetic-related 

proteins such as lysine-specific histone demethylase 1 homolog 1, JMJC domain-containing 

histone demethylation protein, and demethylmenaquinone methyltransferase were also identified. 

A MYB transcription-related factor was also found for tolerance index for grain yield.  

Network-guided GWAS 

 An association network was established in order to investigate the possible interactions 

existing between loci which were found to be significantly associated to each tolerance index 

trait in the MAGIC cowpea population evaluated in this study under drought stress. In addition, 

significantly associated loci for traits reported by Huynh et al. (2018) and Olatoye et al. (2019) 

were also incorporated into the network. The network was designed to be an extension of the 
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GWAS analysis in such a way that the SNPs in high LD (Linkage disequilibrium) with the SNP 

having the highest LOD value for each trait were used to perform the analysis.  

The network-guided GWAS indicated 12 independent subnetworks as shown in Fig. 4.4. 

The solid diamonds on Fig. 4.4 showed the tolerance index trait, whereas the solid circles 

indicated to traits investigated by Huynh et al. (2018) and Olatoye et al. (2019). The solid dark 

grey circles surrounding each trait corresponded to the SNPs. These results provided a clear 

visualization of the genetic architecture affecting each trait and suggested that some traits were 

likely to be correlated at the genetic level, whereas other traits were more genetically 

independent from the others. Traits such as tolerance index for plant maturity (T2), tolerance 

index for flowering time (T3), and tolerance index for 100-seed weight (T6) had independent 

significant loci (Fig. 4.4), suggesting that these traits could have independent drought tolerance 

mechanism and should be investigated separately when studying drought tolerance in cowpea.  

The network-guided GWAS revealed interacting loci for change in growth habit and 

tolerance index for grain as shown by the solid blue and red diamonds, respectively, in the upper 

right-corner of Fig. 4.4. The two interacting loci were highlighted using the empty red circles. 

This result suggested that tolerance index for grain yield and change in growth habit had 

common significantly associated loci. Interestingly, this network existing between loci affecting 

tolerance index for grain yield and change in growth habit was not identified via GWAS alone, 

indicating that a network analysis could complement GWAS to provide additional information to 

investigate the genetics of drought tolerance in cowpea.  

The network analysis revealed common loci between traits, which were identified using 

GWAS. These findings showed that GWAS and network analysis could be used to validate each 

other. In addition, the network analysis displayed epistatic loci for each trait evaluated in this 
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study. Significant epistatic loci, shown by the interactions between SNPs within each trait, were 

found for tolerance index for grain yield, change in growth habit, and tolerance index for plant 

maturity (Fig. 4.4).  

Genomic selection 

 Genomic selection was conducted using a ridge regression best linear unbiased predictor 

model (rrBLUP) for change in plant growth habit due to a restricted irrigation, tolerance index 

for plant maturity, tolerance index for flowering time, tolerance index for 100-seed weight, and 

tolerance index for grain yield. The accuracy of genomic selection was evaluated under different 

cross-validation folds. Overall, genomic selection was low for almost all traits. At each cross-

validation fold, variation in genomic selection accuracy was identified between each tolerance 

index trait (Fig. 4.5). Genomic selection accuracy for change in growth habit was highest 

regardless of the training population size. The average genomic selection accuracy for change in 

growth habit was 0.18, 0.21, 0.19, 0.21, 0.19, 0.21, and 0.19 at 2-fold, 3-fold, 4-fold, 5-fold, 6-

fold, 7-fold, and 8-fold cross validation, respectively. Genomic selection accuracy for tolerance 

index for 100-seed weight was second highest at 2-fold (0.12), 3-fold (0.12), 5-fold (0.13), 6-fold 

(0.12), and 7-fold (0.15) cross validation (Fig. 4.5). The increase in training population size 

seemed to be more favorable to improving the genomic selection accuracy of tolerance for 100-

seed weight than enhancing the genomic selection accuracy for tolerance index for grain yield. 

The lowest genomic selection accuracy was recorded for tolerance index for flowering time (2-

fold: 0.05, 3-fold: 0.07, 4-fold: 0.07, 5-fold: 0.08, 6-fold: 0.08, 7-fold: 0.08, and 8-fold: 0.08) and 

for tolerance index for grain yield (2-fold: 0.05, 3-fold: 0.05, 4-fold: 0.05, 6-fold: 0.08, 7-fold: 

0.08, and 8-fold: 0.08) (Fig. 4.5). 
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Discussion 

 Change in plant growth habit, tolerance index for plant maturity, tolerance index for 

flowering time, tolerance index for 100-seed weight, and tolerance index for grain yield were 

evaluated to quantify the relative tolerance to drought stress of the MAGIC cowpea population 

used for this study. Tolerance index has been used for efficiently assessing plant stress tolerance 

in previous studies (Ravelombola et al. 2018; Saad et al. 2014). Our results indicated a large 

variation in tolerance index trait among the cowpea genotypes evaluated in this study, suggesting 

that this population is genetically diverse and could be used to enhance drought tolerance in a 

cowpea breeding program. However, the Pearson’s correlation coefficients analysis between the 

tolerance index traits were low, indicating that drought tolerance mechanism between the 

tolerance index traits could be independent. These results were in line with previously reported 

studies on the possible independent mechanisms affecting drought tolerance in cowpea (Singh et 

al. 1999; Verbree et al. 2015). The logistic regression model of change in plant growth habit on 

tolerance index for grain yield was significant, which suggested an association between these 

two traits. This funding was critical since it established a link between growth habit and 

tolerance to grain yield reduction due to drought stress in cowpea. Additional studies will be 

required to investigate the pathways that could lead to the association between plant growth habit 

and tolerance to the decrease in grain yield under restricted irrigation in cowpea. 

 Genome-wide association study (GWAS) was conducted to identify SNP markers 

associated with the tolerance index traits. The number of significant SNPs varied between the 

tolerance index traits. As expected, tolerance index for grain yield had the highest number of 

SNP markers, indicating that a large number of loci could contribute to maintaining high yield in 

cowpea genotypes subjected to restricted water supplies. These results were in agreement with 
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previous investigations reporting grain yield being a polygenic trait (Assefa et al. 2019; Diers et 

al. 2018). The MAGIC cowpea population used in this study was first investigated by Huynh et 

al. (2018) and Olatoye et al. (2019). They conducted GWAS for flowering time, plant maturity, 

plant growth habit, 100-seed weight, and grain yield under full irrigation and restricted irrigation, 

respectively. In this study, we improve their analysis by assessing the drought tolerance of each 

individual within the cowpea MAGIC population using the tolerance index formula 

(Ravelombola et al. 2018; Saad et al. 2014). The GWAS was re-analyzed based on tolerance 

indices. Results indicated the discovery of new loci affecting the tolerance index traits. These 

loci were not identified by Huynh et al. (2018) and Olatoye et al. (2019). Therefore, our findings 

complement the approach conducted by Huynh et al. (2018) and Olatoye et al. (2019) to 

investigate drought tolerance in the MAGIC cowpea population. In addition, we integrated the 

reported loci identified by Huynh et al. (2018) and Olatoye et al. (2019) into a network that 

displayed the newly discovered loci for tolerance index. The network analysis suggested a clear 

independency between the different loci, which supported our previous claim on the 

independency of drought tolerance mechanism affecting different traits in cowpea. Olatoye et al. 

(2019) investigated the epistatic interactions between loci affecting the traits evaluated by Huynh 

et al. (2018). These interactions were found using a network-guided approach as shown in Fig. 

4.4, which suggests that the algorithm we used to establish the network analysis was valid. One 

of the significant findings from this current study was the discovery of two loci affecting both 

change in plant growth habit and tolerance index for grain yield (Fig. 4.4). These loci were rich 

in transmembrane amino acid transporters and MYB-transcription factors. The role of 

biomolecule transporters in regulating plant response to water deficit conditions has been well-

documented. Jarzyniak and Jasiński (2014) stated that the transmembrane transporters 
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significantly affect stomatal and cuticular activities during drought stress in plant. These 

biomolecules could also affect root responses under water deficit conditions. MYB-transcription 

factors have been shown to assist plant with withstanding drought stress. The expression of 

MYB-transcription factors have been correlated with the capability of plants to survive under 

drought conditions (Butt et al. 2017; Tang et al. 2019; Stracke et al. 2001). These findings 

showed that the approach we used for investigating the genetic architecture of drought tolerance 

in this MAGIC cowpea population could efficiently target candidate genes that are relevant to 

drought tolerance. Genomic selection for change in growth habit, drought tolerance index for 

flowering time, plant maturity, 100-seed weight, and grain yield was conducted using a ridge 

regression best linear unbiased predictor model. Genomic selection has been proven to be 

effective when dealing with complex traits such as drought tolerance (Heffner et al. 2009; 

Ravelombola et al. 2019). In this study, genomic selection accuracy varied from low to 

moderate. This could be attributed to the complexity of the drought tolerance traits. Olatoye et al. 

(2019) evaluated the prediction accuracy of flowering time, maturity date, and seed size under 

full irrigation and restricted irrigation, respectively, from the data generated by Huynh et al. 

(2018) and using the same MAGIC population reported in this current work. The prediction 

accuracy was higher for flowering time, maturity date, and seed size under full irrigation and 

restricted irrigation, respectively. This could be explained by the fact that these traits were more 

heritable than their respective drought tolerance indices, which were calculated based on the ratio 

of the trait values from restricted irrigation and full irrigation, respectively. Even though the 

genomic selection accuracy varied from low to moderate, it can still supplement the phenotypic 

selection and would increase the genetic gain by at least 10% (Lozada et al. 2019). 
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Conclusions 

 In this study, a large variation in drought tolerance indices for plant growth habit, 

flowering time, plant maturity, 100-seed weight, and grain yield was found within the MAGIC 

cowpea population. New loci associated with these drought tolerance traits were identified and a 

network-guided strategy assisted with the discovery of overlapping significant loci associated 

with the drought tolerance indices. In addition, genomic selection accuracy varied from low to 

moderate. The results from this investigation will contribute to a better understanding of the 

genetic architecture governing drought tolerance in cowpea and could be used in cowpea 

breeding programs through marker-assisted selection (MAS) and genomic selection (GS). 
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