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ABSTRACT  

Microwave (MW) heating offers an energy-efficient, fast method to dry high moisture content 

(MC) parboiled rice to safe storage MC. However, there is limited research that describes the 

fundamentals of heat and mass transport in rice kernels exposed to MW energy at 915 MHz, the 

most promising heating frequency for industrialized processing. This information is vital to explain 

the implications of MW technology on dried rice quality. The overall objective of this study was 

to develop a microwave heating technology that can sufficiently dry high MC parboiled rough rice 

kernels in one pass using a 915-MHz industrial microwave system. An industrial type MW system 

operating at 915 MHz frequency was used to dry high MC long-grain parboiled rough rice samples 

that were harvested at initial MC of 23% to 24% wet basis (w.b). Long grain rough rice samples 

were soaked in a lab-scale hot water bath set to soaking temperatures of 71 oC, 73 oC and 76 oC 

for 3 hours. After soaking, the wet rough rice was steamed in a lab-scale autoclave set to a 

temperature of 113 oC and a corresponding pressure value of 67 kPa for 5, 10 and 15 minutes 

(mins). The MW drying was accomplished at MW specific powers that ranged from 0.37 to 8.77 

kW. [kg-DM]-1 (power per unit dry matter mass of the grain). During drying, fiber optic sensors 

were placed within the rice bed to collect real-time parboiled rough rice surface temperature. 

Results indicate that rough rice should be soaked at temperatures slightly below that of the onset 

gelatinization temperature of that rice cultivar and steamed for 10 min for optimal physiochemical 

and milling properties prior to drying by MW. Parboiled rough rice at initial MC of 35.88% 

reduced to a FMC of 13.48% after being treated with MW power level of 2 kW and drying duration  

of 31.5 min (MW specific energy of 3780 kJ.[kg-grain]-1) and at a low specific power of 2.92 

kW.[kg-DM]-1. Increased MW specific power has a positive effect on parboiled rough rice MC 

reduction but negatively effects the rice milling characteristics. The head rice yield (HRY) 



 
 

obtained from the treatment was dependent on the specific energy input and reduced at higher 

specific energies. The drying rate was highest during the beginning of drying then slowed down 

during the end and can be divided into 2 periods, a first falling rate period (1.5 min to 7.5 min), 

and the second falling rate period (7.5 min to 31.5 min). Of the Page, Newton, Logarithmic, and 

Henderson & Pabis semi-empirical drying models, the logarithmic model best represented the MW 

drying behavior of parboiled rough rice kernels as determined by the R2, Adjusted R2, Reduced χ 

2 and RMSE values. The effective moisture diffusivity was determined to be 5.04 × 10-11 m2.s-1. 

The activation energy was determined to be 3.02 kW.kg-1. The energy consumption was 

determined to be 1.05 kWh.[kg-grain]−1 with a drying efficiency of 18.89%. The drying cost for a 

ton of parboiled rough rice was $88.31 at a commercial energy rate of 8.41 cents per kWh in the 

state of Arkansas (2020). The models and parameters found in this study can be applied to 

industrial designs and act as an operational guide for the MW drying of parboiled rice. 
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CHAPTER 1: INTRODUCTION 

Rough rice sometimes referred to as paddy rice, is harvested directly from rice fields at 

high moisture content (MC) (typically around 20% wet basis). The grain is then dried down to safe 

storage MC of 12.5 to 13.5% wet basis (henceforth MC is in % wet basis) to avoid quality 

deterioration. Rough rice is made up of an outer hull, germ and bran layers with an inner starchy 

endosperm. Unlike some of the protective hulls found in many natural foods, the hull on rice is not 

edible, and thus is usually removed during processing, yielding brown rice kernels. Further 

processing is often done to remove the bran and germ layers to yield milled white rice kernels. 

Globally, approximately 480 million metric tons of milled rice is produced annually. Rice milling, 

however, results in the loss of a significant amount of B vitamins and minerals that are found in 

the outer germ and bran layers. Consequently, populations that subsist on white rice are at high 

risk of vitamin and mineral deficiency (Muthayya et al. 2014).  In addition to nutrient losses, the 

harsh conditions during the milling process can also encourage the development of fissures that 

can then lead to head rice yield reductions. 

The head rice yield (HRY) comprises milled rice kernels that are at least three-fourths of 

the original milled rice kernel length. HRY represents the mass percentage of a rough rice lot that 

remains as head rice after milling. Preventing HRY reduction during drying is very critical and 

bears significant economic importance to the rice industry (Cnossen and Siebenmorgen, 2000). 

The HRY is often the most critical quality parameter to rice millers since the HRY is linked to 

payment received for rice delivered at milling facilities. Under ideal conditions, a perfect HRY 

recovery would be about 70% of the total rough rice produced after the rice hulls and bran are 

removed. However, with current conventional rice drying methods, HRY recovery averages only 

about 58%, and can be even lower depending on other pre-harvest and post-harvest factors (USDA, 
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2014; Atungulu et al. 2016). Parboiling, however, presents an opportunity to reduce nutrient and 

HRY losses during milling. 

Parboiling is an energy and labor-intensive hydrothermal treatment that involves soaking 

the rice in water and steaming it under intense pressure. Parboiling makes rough rice less likely to 

break during milling and pushes nutrients from the bran layer into the endosperm, making 

parboiled white rice 80% nutritionally like brown rice kernels. Parboiled rice typically sells at a 

premium to regular milled rice (Chukwu, 1999). Parboiled rice is a favorable candidate for many 

convenience rice dishes produced by the food industry because the cooked rice kernel has reduced 

stickiness, and can sustain the industrial processes of cooking, freezing and canning without 

significant reduction in kernel integrity (FAO, 1998, Strandt, et al. 1995, Ong and Blanshard, 

1995). In addition to improving rice’s resistance to spoilage by insects and mold, parboiling also 

inactivates the lipase in the bran layer of brown rice, thusly reducing oxidative rancidification. As 

a result, parboiling improves the shelf life of parboiled brown rice products (Bhattacharya, 1985); 

Elbert et al., 2001).  

The first step in the parboiling process is the soaking step. The main objective of this step 

is to allow the rice kernels to absorb water and to initiate the starch’s gelatinization. Gelatinization 

is the process of breaking down the intermolecular bonds of starch molecules in the presence of 

water and heat, subsequently softening the starch granules. When the starch granules begin to 

swell, they begin to fill voids in the starchy endosperm, cementing fissures and effectively 

increasing the HRY. During soaking, the grain quickly absorbs moisture and can reach high MCs 

of 30-35% in 2 to 4 hours, depending on the cultivar. 

After soaking, the wet rough rice is heat-treated to complete the physicochemical changes 

of starch gelatinization. The use of steam is most preferred to other methods of heating, as it does 
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not remove moisture from the rough rice. The condensation from the steaming process adds water 

and increases the rough rice MC to about 38%.  

The commercial rice milling industry uses cross-flow dryers and rotary dryers in 

combination and at different temperatures to dry high MC parboiled rough rice. Rotary dryers are 

used to partially dry parboiled rough rice before loading it into the cross-flow dryer.  

Rotary dryers consist of a metal cylinder with internal flights or louvers. The cylinder is 

slightly inclined, and the parboiled rice is fed at the high end and discharged at the low end while 

hot air is being blown co-current or countercurrent to the direction of grain flow. Rotary dryers 

require drying air temperatures of up to 100°C. During drying, moisture removal takes place 

rapidly in the first stage of drying when the rice is at MC range of 36 to 18% w.b.; this is when a 

lot of the water is at the surface of the rice kernel.  After the parboiled rough rice is dried to about 

18% M.C. it is then transported to a cross-flow dryer to complete the drying process (Wimberly, 

1983). A schematic of a rotary dryer with co-current airflow is seen in figure 1.1. 

 

Figure 1.1: Schematic of a rotary dryer with co-current airflow 
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Cross-flow dryers consist of a metal column by which grain flows down due to gravity as 

the heated air blows across the grain column perpendicular to the grain flow (Rumsey and Rovedo, 

2001; Schluterman and Siebenmorgen, 2004). Drying air temperatures of up to 75°C are used in 

cross-flow dryers (Wimberly, 1983). A schematic of a cross-flow dryer with perpendicular airflow 

is seen in figure 1.2. 

 

Figure 1.2: Schematic of a cross-flow dryer with perpendicular airflow 

 

Between drying periods, rice millers employ a tempering step by stopping the drying 

process at about 18% MC to allow the rough rice MC to equilibrate for several hours before 

continuing the drying to 14%.  Tempering ensures that moisture gradients that develops during 

drying in the grain bulk are minimized.  Moisture gradients often lead to fissuring. By minimizing 

moisture gradients grain quality and thus HRY is maintained.  

Parboiling and drying operations consume more than 90% of the total energy needed in a 

rice milling system (Islam et al. 2004). Kasmaprapruet et al. (2009) reported that the drying step 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4571202/#CR34
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alone was the most energy-intensive unit operation in a rice milling system, accounting for 

approximately 55% of the total energy consumed. Kalchik et al. (1981) reported on a parboiled 

rough rice drying operation that used a high temperature column dryer to dry a ton of high MC 

parboiled rough rice. The energy requirement was calculated to be in the range of 489 kWh to 632 

kWh to dry a ton of parboiled rough rice from an initial MC of 35% to 15.5%.  However, it should 

be noted that the energy used to dry parboiled rough rice can vary considerably depending on many 

factors including the type and variety of grain, drying air temperature, relative humidity, airflow 

rate (and thus drying rate), and the initial and final MC of the parboiled rough rice (Simmonds et 

al., 1953; Henderson & Pabis, 1961; Otten et al., 1980; Cenkowski et al., 1992; Mulet et al., 1999; 

Cnossen et al., 2002; Iguaz et al., 2003; Aviara et al., 2004; Toğrul & Arslan, 2006). Additionally, 

although the equipment in most rice parboiling plants is very similar, the energy management and, 

consequently, the energy requirements of each parboiling plant may differ (Sehgal et al. 1982).  

This dissertation investigated a novel microwave (MW) method for drying parboiled rough 

rice. MWs are electromagnetic radiations with wavelengths approximately in the range of 30 cm 

(frequency = 1 GHz) to 1 mm (300 GHz). The frequencies reserved by the Federal 

Communications Commission (FCC) for industrial, scientific, and medical (ISM) purposes used 

for MW heating applications are 2450 MHz (2.45 GHz) and 915 MHz (0.915 GHz). The frequency 

choice is dictated by application-specific characteristics such as the permittivity of a material 

(Stuerga, 2006). 

MW drying of agricultural materials occurs because of exposure to electromagnetic 

radiation in the MW frequency range. This electromagnetic radiation induces polar molecules in 

the product to rotate and produce thermal energy in a process known as dielectric heating. 

Dielectric heating is a form of heating in which an electrically insulating material is heated by 
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being subjected to an alternating electric field. When MW radiation is incident on a dielectric 

material, the molecules of the material try to align themselves with the rapidly alternating electric 

field component of the MWs. At high frequencies, the inertia of the molecules retards this 

alignment, and the dipole motion lags behind the electric field. At MW frequencies, the phase lag 

absorbs power from the applied field, an effect known as dielectric loss. This power loss manifests 

as dielectric heating (Schiffmann, 1995).  

MW heating is fundamentally different from conventional heating. During MW heating, 

heat is evenly distributed throughout the entire volume of a flowing liquid, suspension, or semi-

solid. This contrasts with traditional thermal processing, which relies on conduction and 

convection from hot surfaces to deliver energy into the product. MW heating is very rapid as the 

material is heated by energy conversion rather than by energy transfer as with conventional 

techniques. MW heating is a function of the material being processed, and there is almost 100% 

conversion of electromagnetic energy into heat, mainly within the sample itself, unlike with 

convective heating where there are significant thermal energy losses. 

In convective drying systems, a bed or layer is sufficiently deep to extract a reasonable 

portion of the energy from the drying air. The layer nearest the incoming air begins to dry 

immediately, at its highest rate, acting as a thin layer. Successive layers start losing moisture only 

after the preceding ones no longer absorb all the drying potential from the air (Bern et al., 2019). 

In the case of MW heating, the drying is not controlled by the drying air (e.g., velocity, 

temperature, and relative humidity) but by the MW penetration depth and energy intensity. MW 

penetration depth is a measure of how deep the MW radiation can penetrate a given material. 

Penetration depth is defined as the depth at which the intensity of the radiation inside the material 

falls to 1/e (about 37%) of its original value at the surface. The parameters affecting the depth of 
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the MW field into a material are the wavelength, the dielectric constant, and the loss factor. 

Industrial MWs with a frequency of 915-MHz penetrate to a greater depth than does the 2450-

MHz frequency making the use of industrial MWs with 915 MHz frequencies suitable for large-

scale drying of agricultural products. 

Many recent studies focus on the MW processing of agricultural products as well as by-

products. To investigate the drying efficiency and energy costs of a MW employed for the 

dehydration of apple fruit, Hazervazifeh, et al. (2017) revealed that MW dehydration is highly 

time-efficient with an 80% reduction in processing durations compared to convectively heated air-

drying methods. They went further to state that this high drying efficiency was reduced by 99% in 

the convectively heated air-drying scenario. MW dehydration also decreased energy costs in the 

drying of apple fruit by 60 %. Soysal (2004) found that when compared to hot air dying, MW 

drying technology can significantly reduce the drying duration and successfully produce good 

quality dried parsley flakes in terms of color. Sharma (2006) found that the quality of garlic cloves, 

dehydrated by a hybrid MW-convective drying process, was superior to the commercial sample 

dried using convective only methods. Alibas (2007) sought to determine the energy consumption 

and color characteristics of nettle leaves during MW, vacuum, and convective drying. The author 

found that the optimum method was the MW drying at 850 W for durations of 4 to 6 minutes as it 

provided the lowest drying period and energy consumption and best color characteristics. Wang et 

al. (2007) also researched the aspects of thin layer MW drying of apple pomace in a laboratory-

scale MW dryer. They determined that the drying duration of apple pomace decreased compared 

to convective drying methods. The effective diffusivity also increased as the MW output power 

increased. Therdthai and Zhou (2009), in their research, were able to determine the characteristics 

of MW vacuum drying and hot air drying of mint leaves. Their study found that the effective 
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moisture diffusivity was significantly increased when MW drying was applied under vacuum 

condition, compared with hot air drying and that the color of the MW vacuum dried mint leaves 

was light green/yellow. In contrast, the hot air-dried mint leaves were dark brown. Additionally, 

many studies on the applications of MW for heating of beef, pork, and milk showed equal or better 

retention of some vitamins (B1, B2, B6, C, and folic acid) after MW heating compared with 

conventional heating (Cross and Fung 1982; Hoffman and Zabik 1985).  

MW heating at the 915 MHz frequency exemplifies a technology with great application 

possibilities in parboiling. In addition to the benefits of improved physical and chemical 

characteristics, MW parboiling may offer significant energy savings, shorter processing durations, 

and increased penetration depth (Bhattacharya and Ali, 1985; Marshall and Wadsworth, 1994; 

Wang et al., 2003; Smith et al., 2018). The optimization of MW drying of parboiled rough rice to 

attain high HRY requires vital information on the moisture diffusion behavior in parboiled rough 

rice kernels exposed to MW energy at the 915 MHz frequency. Simulation models are handy for 

analysis of drying processes. Several successful drying models have been developed to explain the 

convective drying kinetics of various agricultural products (Ertekin, and Firat, 2017). However, 

less effort has been made to model MW drying of parboiled rough rice.  

 

HYPOTHESIS 

Based on the literature review, the central hypotheses for this study are that: 

1. To have better results with MW drying of parboiled rough rice, there exists an optimum 

pre-drying steaming and soaking condition that provides desirable  parboiled rough rice 

final moisture content, milled rice yield, head rice yield, and physicochemical properties, 

including the total color difference, surface lipid content, and protein content. 
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2. One-pass drying of parboiled rough rice to  safe storage MC is attainable; however, 

increased MW specific energy and energy fluxes will negatively correlate with the rice 

milling and quality attributes. 

3. Moisture removal related characteristics  such as drying rate, effective moisture diffusivity 

and activation energy associated with MW drying of parboiled rough rice will demonstrate 

the superiority of the new process over the conventional convective heated air drying. 

4. The calculated energy requirements and costs associated with the MW drying of parboiled 

rough rice will be similar to or less than that of conventional drying methods. 

 

OBJECTIVES 

At present, there is no commercial use of microwave technology for parboiled rough rice 

drying. Therefore, the overall purpose of this study was to develop a microwave heating 

technology that can sufficiently dry high MC parboiled rough rice kernels in one pass using a 915-

MHz industrial microwave system. As a result, the objectives of this study were four-fold: 

 

1. Determine the implications of pre-drying steaming and soaking conditions on parboiled 

rough rice final moisture content, milled rice yield, head rice yield, and physicochemical 

properties, including the total color difference, surface lipid content, and protein content. 

2. Determine the implications of increased MW energy fluxes on parboiled rough rice final 

moisture content, milled rice yield, and head rice yield. 

3. Investigate the heat and moisture transport phenomena in high moisture long grain 

parboiled rough rice kernels, including the moisture removal rate, the effective moisture 

diffusivity characteristics, and the activation energy of the process.   
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4. Determine the energy requirements, efficiency, and costs associated with single-pass MW 

drying of parboiled rough rice and the associated milled rice quality characteristics. 
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CHAPTER 2: PROCESSING PARAMETERS FOR ONE-PASS DRYING OF HIGH-

MOISTURE PARBOILED ROUGH RICE WITH 915 MHZ MICROWAVES 

 

ABSTRACT 

The volumetric heating phenomenon of microwave (MW) offers a means to quickly dry high 

moisture content (MC) parboiled rough rice in one-pass. However, to successfully dry the 

parboiled rough rice in one pass using MW while also preserving the milled rice yields and quality 

characteristics, it is vital to investigate the impacts of the pre-drying parboiling conditions on the 

drying process and resulting product characteristics. The objectives of this research were to explore 

the feasibility of using a MW set at 915 MHz frequency to dry high MC parboiled rough rice and 

to determine the implications of pre-drying soaking and steaming conditions on the parboiled 

rough rice final moisture content (FMC), milled rice yield (MRY), head rice yield (HRY) and the 

milled rice physiochemical properties. Freshly-harvested, long-grain rough rice of the cultivar 

Mermentau at MC of 31.58% dry basis (d.b.) was used in the study. The parboiling process 

involved soaking the rough rice in water at temperatures of 71, 73, and 76 oC, and steaming for 5, 

10, and 15 mins. After parboiling, samples of rough rice for the controlled experiment were gently 

dried with natural air at 25 oC and 65% relative humidity whereas those for treatments were dried 

using the 915 MHz MW dryer which was set to deliver energy ranging from 0.04 to 0.29 kWh per 

kg of the rough rice dry matter content (kWh.[kg-DM]-1). The MW powers applied during the 

treatment ranged from 1 to 8 kW with heating durations of up to 6 mins. The rough rice MC 

immediately after the soaking and steaming processes increased; ranged from 42.59 to 48.21% 

d.b. Increasing soaking temperature led to increased uptake of water after parboiling, decreases in 

MRY, HRY, protein content, and milled rice surface lipid content (SLC) and increased total color 
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difference (TCD). Increasing steaming duration led to decreased moisture uptake during steaming, 

decreased MRY, protein content, SLC and TCD and increased HRY. Increasing MW specific 

energy led to decreases in rice FMC, HRY, protein content, and SLC and increased TCD. It is 

recommended that the long-grain rough rice should be soaked at 73 oC, steamed for 10 min, then 

treated at MW specific energy of 0.29 kWh.[kg-DM]-1 in one pass to achieve parboiled rough rice 

FMC of 18.79% d.b., and HRY of 69.33%, and desirable parboiled milled rice physicochemical 

and sensory properties. At the same parboiling conditions, the  control samples had MRY of 

74.98%, and HRY of 74.07%. MW specific energy greater than 0.29 kWh.[kg-DM]-1 was  

necessary to dry  the parboiled rough rice to  MC safe for long-term storage (14.29% to 15.61% 

d.b). However, application of specific energy beyond the 0.29 kWh.[kg-DM]-1 caused reduction 

of the HRY below that of control samples. Therefore, to preserve HRY, rice processors should use 

MW specific energy of 0.29 kWh.[kg-DM]-1 to partially dry the parboiled rice and then complete 

the drying to the safe storage MC by using natural or slightly-heated. This study demonstrated the 

feasibility of using 915 MHz MW heating of high-MC parboiled rough rice to achieve one-pass 

drying. 

 

Keywords: One-Pass Drying; 915 MHz Microwave; Milling Yields; Parboiled rough rice; 

Physicochemical Properties; Quality. 

 

INTRODUCTION  

World rice production is approximately 618 million tons per year, and about 50% of the 

world rice production is parboiled (Rahimi-Ajdadi et al., 2018). Parboiling is an energy and labor-

intensive hydrothermal treatment aimed at improving the nutritional and milling qualities of white 
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rice. The parboiling process involves the three necessary steps of soaking, steaming, and then 

drying (Chukwu, 1999). Parboiled rice is a favorable candidate for many convenience rice dishes 

produced by the food industry because the cooked rice kernel has reduced stickiness, increased 

head rice yield (HRY). Parboiled rice can also sustain the industrial processes of cooking, freezing 

and canning without significant reduction in kernel integrity (Bauer and Knorr, 2004; Ituen and 

Ukpakha, 2011; Taghinezhad et al., 2016). Additionally, parboiling drives nutrients from the bran 

to the endosperm, making parboiled white rice 80% nutritionally similar to brown rice (Akhter et 

al., 2014). Furthermore, parboiling inactivates the lipase in the bran layer of brown rice; this 

reduces oxidative rancidification and improves the shelf life of parboiled brown rice products (Koh 

and Surh, 2016).  

The first step in the parboiling process is the soaking step. During soaking, the grain 

quickly absorbs moisture and can reach high moisture contents (MC) of 43-54% dry basis (d.b) in 

2 to 4 hours depending on the cultivar. After soaking, the wet rough rice is steamed to complete 

the physicochemical changes of starch gelatinization. The condensation from the steaming process 

adds water and increases the rough rice MC to about 61% d.b. (henceforth MC is in dry basis 

unless stated otherwise) (Wimberly, 1983). Drying the parboiled rough rice to MCs necessary for 

safe storage conditions (14.29% to 15.61%) is necessary to preserve the quality of rice.  

Over 85% of industrial dryers are of the convective type using hot air (Mujumdar & 

Devahastin, 2008). With current conventional convective air-drying processes, not only is the 

drying of high MC parboiled rough rice energy-intensive, but the drying rate is low, thereby 

creating drying capacity bottlenecks at parboiling facilities especially at peak harvest times. As 

demand for parboiled rough rice continues to increase, with subsequent expansion of parboiled 

rough rice production in the United States to meet this demand, there is a critical need to improve 
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the current parboiled rough rice drying process. Improvements can be made to minimize energy 

use and costs, to increase throughput by reducing processing times, and to ensure food quality 

(FAOSTAT, 2007; Ricestat, 2007). 

Microwave (MW) drying has gained a renewed interest in both academia and industry as 

an alternative to conventional hot air drying. MW heating is fundamentally different from 

conventional heating. MW heating is very rapid as the material is heated by energy conversion 

rather than by energy transfer as with conventional drying techniques. MW heating is a function 

of the material being processed, and there is almost 100% conversion of electromagnetic energy 

into heat, mainly within the sample itself, unlike with convective heating where there are 

significant thermal energy losses. During MW heating, electromagnetic energy is absorbed and is 

converted directly into heat, which is evenly distributed throughout the entire volume of a flowing 

liquid, suspension, or semi-solid.  

Many recent studies focus on the MW processing of agricultural products as well as by-

products. To investigate the drying efficiency and energy costs of a MW employed for the 

dehydration of apple fruit, Hazervazifeh, et al. (2017) revealed that MW dehydration is highly 

time-efficient with an 80% reduction in processing durations compared to convectively heated air-

drying methods. They went further to state that this high drying efficiency was reduced by 99% in 

the convectively heated air-drying scenario. MW dehydration also decreased energy costs in the 

drying of apple fruit by 60%. Soysal (2004) found that when compared to hot air dying, MW 

drying technology can significantly reduce the drying duration and successfully produce good 

quality dried parsley flakes in terms of color. Alibas (2007) sought to determine the energy 

consumption and color characteristics of nettle leaves during MW, vacuum, and convective drying. 

The author found that the optimum method was the MW drying at a power level of 850 W for 
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durations of 4 to 6 minutes as it provided the lowest drying period and energy consumption and 

best color characteristics. Wang et al. (2007) also researched the aspects of thin layer MW drying 

of apple pomace in a laboratory-scale MW dryer. They determined that the drying duration of 

apple pomace decreased compared to convective drying methods. Additionally, many studies on 

the applications of MW for heating of beef, pork, and milk showed equal or better retention of 

some vitamins (B1, B2, B6, C, and folic acid) after MW heating compared with conventional 

heating (Cross and Fung, 1982; Hoffman and Zabik, 1985).  

Two MW frequencies are authorized for use in MW ovens: 915 and 2450 MHz. Both are 

useful for food processing; however, they are markedly different, and these differences make them 

useful for different scenarios. The major differences between MWs at 915 and 2450 MHz include 

the amount of power they provide. The magnetron of a  915 MHz MW can provide up to 100 kW. 

Whereas the magnetron of a 2450 MHz, although similar in cost, can provide powers up to 30 kW. 

It is also purported that one 100 kW generator for a 915 MHz MW can be approximately 50% 

cheaper than seven 15 kW generators for a 2450 MHz MW. The penetration depth of 

electromagnetic energy provided by a MW at 915 MHz frequency is about three times greater than 

that provided by a MW at 2450 MHz. This is due to the wavelengths in free space at the 915 and 

2450 MHz frequency being 32.78 and 12.24 cm, respectively (Hui & Evranuz, 2015). 

Additionally, the energy attenuation of a 915 MHz MW is less than that of a 2450 MHz MW as a 

result in the case for a 915 MHz MW more electromagnetic energy is converted to heat energy 

(Sun et al., 2009).  

Atungulu et al. (2016) demonstrated the feasibility of using an industrial-type MW heating 

system at the 915 MHz frequency to achieve one-pass drying of freshly-harvested medium-grain 

rough rice. The authors found that the volumetric heating and the high heat flux accorded by the 
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MWs were able to achieve single-pass rice drying of freshly harvested, high MC rice at an initial 

MC of 31.58% to safe storage MC (14.29% to 15.61%) with improved HRYs. In addition to the 

benefits of improved physical and chemical characteristics, MW parboiling may offer significant 

energy savings, shorter processing durations, and increased penetration depth (Bhattacharya and 

Ali, 1985; Marshall and Wadsworth, 1994; Wang et al., 2003; Smith et al., 2018). However, at 

present, there is no research on the commercial use of MW technology for parboiled rough rice 

drying.  

The introduction of a drying system that can dry high-MC parboiled rough rice lots to safe 

storage MC of 14.29% to 15.61%, in one pass, with rice milling and physicochemical properties 

comparable to or better than conventional drying methods could translate into considerable cost 

savings for the rice milling industry. However, to successfully dry high-MC parboiled rough rice 

in one pass using MW while also preserving the milled rice yields and quality characteristics, it is 

vital to investigate the impacts of the pre-drying parboiling conditions on the MW drying process 

and product characteristics. Therefore, the objectives of this research were to explore the feasibility 

of using a MW set at 915 MHz frequency to dry high-MC parboiled rough rice and to determine 

the implications of pre-drying conditions of soaking and steaming on rough rice final moisture 

content (FMC), milled rice yield (MRY), head rice yield (HRY) and the parboiled milled rice 

physiochemical properties  such as protein content, surface lipid content (SLC) and total color 

difference (TCD). 

 

METHODS 

Freshly-harvested, long-grain rough rice samples of cultivar Mermentau at MC of 31.58% 

were used in this study. The cultivar Mermentau is a semi-dwarf, early-maturing long-grain rice 
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with good grain and milling yields and excellent grain quality. It was chosen for this study as a 

representative, popular pureline (conventional) rice variety. The rice samples were cleaned using 

dockage equipment (MCi Kicker Dockage Tester, Mid-Continent Industries Inc., Newton, 

KS).   The equipment uses a series of small-sized sieves to provide a fast, accurate, and consistent 

way of separating shrunken, broken, scalped material, broken kernels, splits, and dust from rice. 

The cleaned rough rice samples were stored in a laboratory cold room set at 4°C. At the beginning 

of the experiments, the samples were retrieved from the cold room and allowed to equilibrate with 

room temperature (25 oC) overnight before conducting any experiments. The MCs of the samples 

that were reported in this study were determined using an AM 5200 Grain Moisture Tester 

(PERTEN Instruments, Hägersten, Sweden), which is calibrated according to Jindal and 

Siebenmorgen (1987). The FMC of each sample was validated using the oven method by placing 

15 g of samples into a conduction oven (Shellblue, Sheldon Mfg., Inc., Cornelius, OR) set at 130C 

for 24 h, followed by cooling in a desiccator for at least half an hour (Jindal and Siebenmorgen, 

1987).  

 

Parboiling Procedure 

A sample of 3600 g of rice was placed into a 45 cm by 45 cm piece of cheesecloth then 

allowed to soak in a lab-scale hot water bath set to soaking temperatures of 71, 73, and 76 oC for 

3 hours. After soaking, the wet rough rice was steamed to complete the physicochemical changes 

of starch gelatinization. Rice in cheesecloth was steamed in a lab-scale autoclave set to a 

temperature of 113 oC and pressure of 67 kPa for 5, 10, and 15 mins.  
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Microwave Equipment and Treatments 

The MW (AMTek, Applied Microwaves Technology Inc., Cedar Rapids, IW) used in this 

research was designed for high power operations (up to 75 kW) and had a frequency of 915 MHz, 

which may allow heating of a deep rice bed. The system (Fig. 2.1) consists of a transmitter, a wave-

guide, and the MW heating zone (oven).  The transmitter is a high-powered vacuum tube that 

works as a self-excited MW oscillator. It is used to convert high-voltage electric energy to MW 

radiation.  The wave-guide consists of a rectangular pipe through which the electromagnetic field 

propagates lengthwise. It is used to couple MW power from the magnetron into the lab oven. The 

lab oven is the internal cavity of the MW that provides uniform temperatures throughout while in 

use.  

For each MW treatment, freshly parboiled rough rice samples were placed into MW safe 

trays for treatments. The outsides of the trays are made of polypropylene with a Teflon coated 

fiberglass mesh at the bottom to hold the samples. The trays’ length, width and height were 40 cm, 

30 cm and 5 cm, respectively. The bed thickness of the parboiled rough rice samples was 3.5 cm. 

The trays with parboiled rough rice samples were set in the oven on the belt and treated for 6 mins 

in batches with power levels ranging from 1 to 8 kW (Figure 2.2). 

MW specific energy was defined as the energy applied per unit mass of the treated 

product’s dry matter (kg-DM). For this research, the reference mass (m) was set as the initial mass 

of the grain dry matter. The MW specific energy was calculated as follows: 

𝑄𝑠 =  
𝑝 × 𝑡𝑑

𝑚 × 3600
 (1) 

Where:  

Qs is the MW energy per unit dry matter mass of treated product (kWh.[kg-DM]-1) 

p is the electrical power supplied to the MW (kW) 
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td is the drying duration (s) 

m is dry matter mass of the treated product (kg or [kg-DM]-1) 

 

After MW treatments, the samples were transferred immediately to glass jars and sealed 

airtight. The jars were placed in an environmental chamber (Platinous chamber, ESPEC North 

America, Inc. Hudsonville, MI) set at a temperature of 60C. The rice was tempered for 4 h. After 

the tempering, the rice was spread uniformly on individual trays, transferred to an equilibrium 

moisture content (EMC) chamber (Platinous chamber, ESPEC North America, Inc. Hudsonville, 

MI) set at a temperature of 25C and relative humidity (RH) of 65%.The MW dried parboiled 

rough rice samples were allowed to cool naturally to 25C then MC measurements taken.  

For control experiments, rough rice samples (3 reps, 3600 g each) were soaked at 71 oC, 

73 oC, and 76 oC for 3 hours, then steamed at 67 kPa for 5, 10, and 15 mins. After that, the parboiled 

rough rice samples were tempered for 4 hours at a temperature of 60 oC. After tempering, the 

parboiled rough rice was placed in an EMC chamber (Platinous Chamber, ESPEC North America, 

Inc. Hudsonville, MI) set at 25oC, 65% RH, to allow for gentle drying to MC of 14.29%; the drying 

lasted 48 hours. 
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Figure 2.1: Schematic of the microwave system used in the study showing the transmitter (1), 

wave-guide (2), heating zone (3), conveyor belt (4), and control panel (5). 

 

 

Figure 2.2: Overall experimental process flow diagram; cv., HWB, MW, and MC indicates 

Cultivar, Hot Water Bath, Microwave and Moisture Content respectively; kg-DM indicates kg-

DM indicates kg of dry matter; d.b. indicates dry basis. 

 

Rice Milling 

Triplicate, 150 g subsamples of parboiled rough rice, obtained from each sample dried to 

14.29% MC, were dehulled using a laboratory huller (Satake Rice Machine, Satake Engineering 

Co., Ltd., Tokyo, Japan), milled for 30 s using a laboratory mill (McGill #2 Rice Mill, RAPSCO, 

Brookshire, TX) and aspirated for 30 s using a seed blower (South Dakota Seed Blower, Seedboro, 
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Chicago, IL). MRY was calculated as the mass proportion of parboiled rough rice that remains, 

including head rice and broken, after milling. Head rice was then separated from broken kernels 

using a double tray sizing machine (Grainman Machinery Manufacturing Corp., Miami, FL). Head 

rice are considered as kernels that remain at least three-fourths of the original kernel length after 

complete milling (USDA-GIPSA 2010). HRY was calculated as the mass proportion of parboiled 

rough rice that remains as head rice after complete milling. 

 

Crude Protein Determination 

Crude protein was measured by scanning 50 g of milled rice kernels using NIR reflectance 

(NIR, DA7200, Perten Instrument, Hagersten, Sweden) following the AACCI Approved Method 

(39-25.01) for whole-grain. Before the NIR analysis, the instrument was calibrated using the 

AACCI Approved Method 46-16.01 (Grigg et al., 2016). The resulting equation for calibration is 

shown in equation 1: 

 (1) 

where CP denotes crude protein content using an approved method, CPNIR denotes crude protein 

determined using the NIR method. The crude protein was reported as a mass percentage of protein 

in wet basis relative to the mass of white rice (Grigg et al., 2016).  

 

Surface lipid content determination 

Head rice surface lipid content, also known as fat content, was determined as an indicator of 

the degree of milling (DOM) using the previously described NIR system. The NIR was calibrated 

with AACCI Approved Method 30-25.01, and the resulting calibration curve is presented in 

equation 2 (Matsler & Siebenmorgen, 2005; Saleh et al., 2008): 

893.1747.0 += NIRCPCP
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(2) 

 

Where SLC is surface lipid content (%), and SLCNIR is surface lipid content (NIR method). 

 

Determination of Color Values 

The milled rice color indices (L*, a*, and b*) were measured using a colorimeter (Hunter 

Associates Laboratory, Reston, VA). This was done by placing the measuring arm of the hand-

held equipment in contact with and on top of the milled head rice. Before each test, the colorimeter 

was calibrated using a reference white plate provided by the manufacturer. The instrument 

measures color indices specified by the International Commission on Illumination (CIE). The 

parameters L* describes the lightness from 100 (light) to 0 (dark), parameter a* describes red-

green color with +a* values for redness and −a* values for greenness, and parameter b* indicates 

yellow-blue color with +b* values for yellowness and −b* values for blueness. The a* and b* 

parameters are chromatic components ranging from −120 to 120 (Khir et al., 2014). The total color 

difference (TCD) (Eqn. 3) is a combination of all the CIE parameters that indicate the TCD of the 

rice kernel after treatment (Anarjan et al., 2012; Xie et al., 2017; Liu et al., 2019): 

 

TCD =  √(∆L∗)2 + (∆a∗)2 + (∆b∗)2  (3) 

 

ΔL*, Δa*, and Δb* represent the difference in L*, a*, and b* values between conventionally- and 

MW-dried milled rice samples, respectively. 

 

092.0871.0 −= NIRSLCSLC
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Statistical Analysis  

Response surface methodology is a collection of mathematical and statistical techniques 

based on the fit of a polynomial equation to the experimental data, which must describe the 

behavior of a data set with the objective of making statistical provisions. It can be well applied 

when a response or a set of responses of interest are influenced by several variables. By evaluating 

the responses, the set of operating conditions for making the product with the overall best response 

was determined. This set of operating conditions is called the optimum condition for the process. 

The optimum condition for the response is represented by a function. The desirability of response 

is weighted by an importance value when it is considered against the goals of the other responses 

during optimization. The importance value is usually set when defining the responses.  

Statistical analyses were performed with statistical software (JMP version 15.0.0, SAS 

Institute). A second order response surface model was used to geometrically describe the 

relationship between the FMC, MRY, HRY, parboiled milled rice physiochemical properties 

including the milled rice protein content, surface lipid content and TCD responses and the 

parameters of MW specific energy, soaking temperature and steaming duration. FMC and HRY 

were weighted as the most important parameters. Prediction profiler was used to come up with 

acceptable operation parameters. Overall desirability at recommended parameters were given. 

Assessment of variable importance was simulated. All tests were considered to be significant when 

p < 0.05.  
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RESULTS AND DISCUSSION 

Implications of Soaking Temperature and Steaming Duration on Moisture Content, Milled Rice 

Yield and Head Rice Yield 

The least-square means and standard deviations of the control samples’ MC, MRY, and 

HRY after parboiling are presented in Table 2.1. 

 

Table 2.1: Least-square means of the control post-parboiling moisture content, milled rice yield 

and head rice yield* 

 
Steaming duration (min) 

5 10 15 

Soaking 

Temperature 

(oC) 

71 

MC  

MRY 

HRY 

42.59% ± 0.23% 

73.87% ± 0.09% 

73.13% ± 0.66% 

45.12% ± 0.37% 

73.53% ± 0.23% 

73.13% ± 0.78% 

43.29% ± 0.17% 

73.49% ± 0.15% 

73.13% ± 0.32% 

73 

MC  

MRY 

HRY 

44.30% ± 0.47% 

75.11% ± 0.70% 

74.07% ± 0.35 

46.84% ± 0.20% 

74.98% ± 0.17% 

74.07% ± .0.57% 

45.41% ± 0.13% 

74.96% ± 0.21% 

74.07% ± 0.62% 

76 

MC  

MRY 

HRY 

45.62% ± 0.51% 

72.50% ± 0.03% 

66.53% ± 0.33% 

48.21% ± 0.46% 

72.49% ± 0.15% 

66.16% ± 1.06% 

44.53% ± 0.53% 

72.44% ± 0.27% 

66.91% ± 0.84% 

*MC, MRY, and HRY indicates Moisture Content, Milled Rice Yield, and Head Rice Yield 

respectively 

 

It can be observed that increasing soaking temperatures from 71 oC to 76 oC caused an 

increase in rough rice MC before MW treatments. The average MC at soaking temperature of 71 

oC was 43.66%, which then increased to 45.52% at 73 oC and then to 46.11% at 76 oC. According 

to Fickian diffusion, the rate of water diffusion in the direction of flow is proportional to the 

concentration gradient; the diffusion coefficient is dependent on parameters such as temperature, 

initial MC, and internal composition of the grain. The major parameter that controlled hydration 

was temperature. Literature report that when the temperature exceeds the gelatinization 
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temperature, the water absorption increases significantly (Bakshi and Singh, 1980; Bello et al., 

2007).  

Increasing soaking temperature from 71 oC to 73 oC caused increases to the MRY and 

HRY. After increasing temperature from 73 oC to 76  oC, the MRY and HRY decreased. The 

average MRY and HRY at 71 oC were 73.78% and 73.13%, which then increased to 75.02% and 

74.07%, respectively, at 73 oC. At 76 oC, the average MRY and HRY decreased to 72.48% and 

66.53%, respectively. Sareepuang et al. (2008) corroborated this trend. They investigated the effect 

of soaking temperature on the physical, chemical, and cooking properties of parboiled rice. Their 

results indicate that HRY was significantly increased for parboiled rough rice soaked at water 

temperatures of 40 oC, 50 oC, and 60 oC to 59%, 83%, and 84%, respectively, from 51% for non-

parboiled rough rice samples. Miah et al. (2002) found that the increase in kernel hydration and 

gelatinization in parboiled rice leads to increases in milling recovery. They suggested that the 

parboiling process fills the void spaces and cements the cracks inside the endosperm, making the 

grain harder and minimizing internal fissuring and thereby breakage during milling. Saif et al. 

(2004) who looked at the effects of processing conditions and environmental exposure on the 

tensile properties of parboiled rice, reported that the parboiling process induces an increase in 

length, width and thickness leading to the strengthening of kernel integrity and increase of milling 

recovery. Soponronnarit et al. (2006), in a study of parboiling of brown rice using superheated 

steam fluidization, found that the gelatinization process induced by increased soaking temperatures 

lead to stronger rice starch structure which in turn caused the improvement of HRY. 

Increasing steaming duration from 5 to 10 mins caused increases to the MC before MW 

treatments. After increasing the steaming duration from 10 to 15 min, the MC before MW 

treatments decreased. The average MC at the 5 min steaming duration was 44.15%, which then 
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increased to 46.71% at the 10 min steaming duration. The MC then decreased to 44.40% at the 15 

min steaming duration. This trend was also supported by Islam, Shimizu, & Kimura (2002), who 

sought to investigate the effect of processing conditions on the physical properties of parboiled 

rice. Their investigation found that an increase in MC of rice was correlated with increasing 

steaming duration from 10 to 60 min. However, they noted that the MC hardly exceeded 53.85% 

and that at steaming durations above 20 min, there was observable husk splitting. 

Increasing steaming duration from 5 to 15 min caused slight decreases in MRY. The 

average MRY at the 5 min steaming duration was 73.83%, which then decreased to 73.67% at the 

10 min steaming duration. At 15 min, the average MRY decreased further to 73.63%. Increasing 

steaming duration from 5 to 10 mins caused decreases to the HRY. After increasing the steaming 

duration from 10 to 15 min, the HRY increased slightly. The average HRY at 5 min was 71.24%, 

which then decreased to 71.12% at 10 min. At 15 min the average HRY increased to 71.37%. 

Taghinezhad et al. (2015), in their research to investigate the effect of increasing steaming duration 

from 2 to 10 min on the quality of parboiled Iranian rough rice, found that milling yields 

significantly increased at the steaming duration of 4, 8 and 6 min. Steaming durations of 1 and 10 

min exhibited a significant decrease. They concluded that there exists an optimal steaming duration 

that increased the milling yields of parboiled rice. They explained that at this optimum steaming 

duration, gelatinization occurs, leading to stronger kernel structure.  

 

Implications of Soaking Temperature and Steaming Duration on Protein Content, Surface 

Lipid Content and Total Color Difference 

The least-square mean SLC, protein content, TCD of control samples, and their standard 

deviations are presented in Table 22. 
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Table 2.2: The least-square means of the control sample protein content, surface lipid content and 

total color difference* 

 
Steaming Duration (min) 

                5 10 15 

Soaking 

Temperature 

(oC) 

71 

Protein 

SLC 

TCD 

6.78% ± 0.25% 

0.88% ± 0.04% 

3.00 ± 0.26 

7.34% ± 0.20% 

0.97% ± 0.11% 

3.66 ± 0.04 

6.14% ± 0.82% 

0.83% ± 0.11% 

3.11 ± 0.41 

73 

Protein 

SLC 

TCD 

6.84% ± 0.25% 

0.66% ± 0.11% 

3.15 ± 0.61 

6.31% ± 0.40% 

0.66% ± 0.10% 

1.33 ± 0.45 

6.25% ± 1.07% 

0.62% ± 0.04% 

2.28 ± 2.37 

76 

Protein 

SLC 

TCD 

6.07% ± 0.38% 

0.36% ± 0.04% 

5.82 ± 0.04 

5.82% ± 0.17% 

0.34% ± 0.04% 

5.39 ± 0.08 

5.86% ± 0.09% 

0.33% ± 0.02% 

4.95 ± 0.06 

*SLC = Surface Lipid Content; TCD = Total Color Difference 

 

Increasing soaking temperature from 71 oC to 73 oC caused decreases in protein content. 

The average protein content at 71 oC was 6.75%, which then decreased to 6.47% at 73 oC soaking 

temperature. At 76 oC soaking temperature, the average protein content decreased further to 5.92%. 

The observed trends for protein content can be explained by research conducted by Otegbayo et 

al. (2001), who studied the effect of parboiling on the physicochemical qualities of two local rice 

varieties in Nigeria. They found that when comparing parboiled and non-parboiled samples, the 

parboiled samples showed a decrease in protein content. They explained that this was due to the 

leaching of protein substances during soaking. Paiva et al., (2016) also reported a decrease in the 

protein content of both parboiled unpolished black rice and parboiled unpolished red rice when 

compared to their respective non-parboiled unpolished rice, indicating that parboiling process 

promoted the leaching of proteins from the grains to the soaking water.  Ituen and Ukpakha (2011) 

reported that the parboiling process leads to the disintegration of protein bodies in the endosperm. 

Ibukun (2008) reported that the harsher the parboiling treatment, the lower the protein content, and 
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this might be due to the leaching out of non-protein nitrogen. This indicates that the broken-down 

protein molecules may still be available in forms other than crude protein that may still provide 

nutrition. 

Increasing soaking temperature from 71 oC to 73 oC caused decreases in SLC. The average 

SLC at 71 oC was 0.89%, which then decreased to 0.65% at 73 oC soaking temperature. At 76 oC 

soaking temperature, the average SLC decreased to 0.34%. Kato et al. (1983) evaluated the 

influence of parboiling on the volatiles of cooked rice of Japonica and Indica rice varieties. Their 

research indicates that parboiling resulted in a decrease of unbound lipid and free fatty acids in 

milled rice. 

Increasing soaking temperature from 71 oC to 73 oC caused decreases in TCD. The average 

TCD at 71 oC was 3.26, which then decreased to 2.25 at 73 oC soaking temperature. At 76 oC 

soaking temperature, the average TCD increased to 5.39. This result agreed with results seen in 

literature, which states that increased processing of rough rice during parboiling often causes 

increased changes in TCD (Yousaf et al., 2017).  

 Increasing steaming duration from 5 to 15 mins caused decreases in protein content. The 

average protein content at the 5 min steaming duration was 6.56%, which then decreased to 6.49% 

after 10 min of steaming. At 15 min of steaming, the average protein content decreased to 6.08%. 

Otegbayo et al. (2001), who researched the effect of parboiling, found that parboiled samples 

showed a decrease in protein content when compared to non-parboiled samples. They explained 

that this is due to the protein molecules rupturing during increased steaming. However, the broken-

down protein molecules may still be available in forms other than crude protein that may still 

provide nutrition. 

Increasing the steaming duration from 5 to 15 mins caused decreases in TCD. The average 
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TCD at 5 min steaming duration was 3.99, which then decreased to  3.46 after 10 min of steaming. 

At 15 min of steaming, the average TCD decreased to 3.45. This result was the opposite of results 

seen in literature, which states that increased processing of rough rice during parboiling often 

causes increased changes in TCD (Yousaf et al., 2017). Many researchers measured the changes 

in color value due to parboiling treatment (Bhattacharya, 1996; Bhattacharya & Subba Rao, 1966; 

Kimura et al., 1993; Pillaiyar & Mohandoss, 1981). They reported that as soaking temperatures 

and steaming durations increased, parboiled rice samples became darker. However, it should be 

noted that steaming durations present in these literatures were often longer than 15 minutes. 

Bhattacharya (1996) used steaming durations up to 60 mins and Kimura et al. (1993) used steaming 

durations up to 30 mins. Kimura et al. (1993) reported an increase in lightness of rice as steaming 

durations increased to 15 mins (for rice soaked at 130 oC) after which the lightness declined. It 

could be possible that this trend of increased discoloration with increased steaming duration was 

not seen in this research because the steaming durations were not long enough. 

Increasing steaming duration from 5 to 10 mins caused increases to the SLC. After 

increasing steaming duration from 10 to 15 min,  the SLC began to decrease. The average SLC at 

the 5 min steaming duration was 0.63%, which then increased to 0.66% at 10 min of steaming. 

The SLC then decreased to 0.59% at 15 min of steaming. Fonseca et al. (2014) reported in their 

research to evaluate the effect of combinations of soaking temperature and time during the 

parboiling on the physicochemical and sensory quality of two upland rice cultivars (BRS 

Primavera and BRS Sertaneja) that fat content increased by 83.3% after 10 min of steaming. The 

authors reported that the increase of fat content indicates that the water-soluble minerals from bran 

layer migrated into rice endosperm due to gelatinization during steaming process.  
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Implications of Microwave Specific Energy, Soaking Temperature and Steam Duration on 

Physicochemical and Milling Characteristics 

The MRY parameter was removed from the analysis because the variance of the MRY 

response data was too large and led to statistical insignificance of the entire model. Table 2.3 shows 

the effect summary table for the FMC and HRY responses. The table list the model effects. Smaller 

p-values indicate higher significance to the model.  

The effect summary table indicates high statistical significance (p<0.05) for the main 

effects (MW specific energy, soaking temperature and steaming duration) for the FMC response. 

There was also a quadratic effect in the model (soaking temperature*soaking temperature). This 

means that if the relationship between the FMC response and the parameter of MW specific energy 

were represented by a graph, the optimal response will not be at the extremes of the experimental 

region but inside it.  

The effect summary table also indicates high statistical significance (p<0.05) for the main 

effect of soaking temperature and MW specific energy for the HRY response. There were also 

quadratic effects in the model (soaking temperature*soaking temperature, and MW specific 

energy*MW specific energy). This means that if the relationship between the HRY response and 

the parameters of soaking temperature and MW specific energy were represented by a graph, the 

optimal response will not be at the extremes of the experimental region but inside it. There was 

also a statistically significant interaction between the soaking temperature and the MW specific 

energy (p = 0.03913). This means that both soaking temperature and the MW specific energy aided 

in the reduction of the HRY. 

Table 2.3 shows the effect summary table for the protein content, SLC and TCD responses. 

The table list the model effects. Smaller p-values indicate higher significance to the model.  
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The effect summary table indicates high statistical significance (p<0.05) for the main 

effects (MW specific energy, soaking temperature and steaming duration) for the protein content 

response. There were also quadratic effects in the model (soaking temperature*soaking 

temperature and MW specific energy*MW specific energy). This means that if the relationship 

between the protein content response and the parameters of MW specific energy and soaking 

temperature were represented by a graph, the optimal responses will not be at the extremes of the 

experimental region but inside it.  

The effect summary table indicates high statistical significance (p<0.05) for the main effect 

of  soaking temperature for the SLC response. There were also quadratic effects in the model 

(soaking temperature*soaking temperature, steam duration*steam duration, and MW specific 

energy*MW specific energy). This means that if the relationship between the SLC response and 

the parameters of soaking temperature, MW specific energy and steaming duration were 

represented by a graph, the optimal responses will not be at the extremes of the experimental region 

but inside it. There was also a statistically significant interaction between the soaking temperature 

and the steaming duration (p = 0.03455). This means that both soaking temperature and the 

steaming duration aided in the reduction of the SLC. 

The effect summary table indicates high statistical significance (p<0.05) for the main effect 

of  soaking temperature, MW specific energy and steaming duration for TCD. There were also 

quadratic effects in the model (soaking temperature*soaking temperature and MW specific 

energy*MW specific energy). This means that if the relationship between the TCD response and 

the parameters of soaking temperature and MW specific energy were represented by a graph, the 

optimal responses will not be at the extremes of the experimental region but inside it. There was 

also a statistically significant interaction between the soaking temperature and the steaming 
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duration (p = 0.04575). This means that both soaking temperature and the steaming duration aided 

in the increase of the TCD. There was also a statistically significant interaction between the 

soaking temperature and the MW specific energy (p = 0.04575). This means that both soaking 

temperature and the MW specific energy also aided in the increase of the TCD. 

 

Table 2.3: Effect summary table showing the effects of microwave specific energy, soaking 

temperature and steam duration on final moisture content, head rice yield, protein content, surface 

lipid content and total color difference* 

Response Source p-value 

FMC (% d.b) 

X1 0.00000 

X2*X2 0.00000 

X2 0.00026 

X3 0.04917 

HRY (%) 

X2 0.00000 

X2*X2 0.00000 

X1 0.00003 

X1*X1 0.00025 

X2*X1 0.03913 

Protein Content (%) 

X1 0.00000 

X2*X2 0.00000 

X2 0.00000 

X1*X1 0.00029 

X3 0.03552 

SLC (%) 

X2 0.00000 

X2*X2 0.00000 

X1*X1 0.00724 

X2*X3 0.03455 

X3*X3 0.04968 

TCD 

X2 0.00000 

X1*X1 0.00001 

X2*X1 0.00114 

X1 0.00896 

X3 0.01226 

X2*X2 0.03173 

X2*X3 0.04575 

*FMC = Final Moisture Content; HRY = Head Rice Yield; SLC = Surface Lipid Content; TCD = 

Total Color Difference; X1 = MW Specific Energy (kWh.[kg-DM]-1); X2 = Soaking Temperature 

(oC); X3 = Steam Duration (min) 

 

Table 2.4 shows the summary of fit table for the FMC, HRY, Protein content, SLC and 
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TCD parameters. This table shows the R-Square, adjusted R-Square, root mean square error and 

p-Values for those responses. R-square is a statistical measure that represents the proportion of the 

variance for a dependent variable that is explained by an independent variable or variables in a 

regression model. The adjusted R-square is a modified version of R-square that has been adjusted 

for the number of predictors in the model. Root mean square error is an estimate of standard 

deviation of the model. A low R-square value is most problematic when reasonably precise 

predictions are needed. Although a high R-square value is usually preferred as it provides an 

estimate of the strength of the relationship between the model and the response variable, it does 

not give a formal hypothesis test for this relationship. The F-test of overall significance determines 

whether this relationship is statistically significant as indicated by the p-value. 

The R-square error for the FMC response was 0.918359. This means that the fitted model 

respectively explains 91.84% of the variation in the FMC response. There was high statistical 

significance as indicated by the p-value (<.0001). The R-square error for the HRY response was 

0.750269. This means that the fitted model respectively explains 75.03% of the variation in the 

HRY response. There was high statistical significance as indicated by the p-value (<.0001). The 

R-square error for the protein content response was 0.755237. This means that the fitted model 

respectively explains 75.52% of the variation in the protein content response. There was high 

statistical significance as indicated by the p-value (<.0001). The R-square error for the SLC 

response was 0.758838. This means that the fitted model respectively explains 75.88% of the 

variation in the SLC response. There was high statistical significance as indicated by the p-value 

(<.0001). The R-square error for the TCD response was 0.419705. This means that the fitted model 

respectively explains 41.97% of the variation in the TCD response. There was high statistical 

significance as indicated by the p-value (<.0001).  
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Table 2.4: Summary of fit table for the final moisture content, head rice yield, protein content, 

surface lipid content and total color difference responses* 

Response R-Square Adjusted R-Square Root Mean Square Error p-value 

FMC (% d.b) 0.918359 0.913648 2.022007 <.0001 

HRY (%) 0.750269 0.726358 2.554543 <.0001 

Protein Content (%) 0.755237 0.735391 0.350042 <.0001 

SLC (%) 0.758838 0.739284 0.118517 <.0001 

TCD 0.419705 0.371347 1.334137 <.0001 

*FMC = Final Moisture Content; HRY – Head Rice Yield; SLC = Surface Lipid Content; TCD = 

Total Color Difference; d.b = dry basis 

 

Figure 2.3 shows the variable importance report for the overall, FMC, SLC, TCD, protein 

content and HRY responses. The variable importance report calculates indices that measure the 

importance of parameters in a model in a way that is independent of the model type and fitting 

method. This report estimates the variability in the predicted response based on a range of variation 

for each parameter. If variation in the parameter causes high variability in the response, then that 

effect is important relative to the model. 

The report indicates that the soaking temperature parameter was most important followed 

by MW specific energy then steaming duration for the overall model, the SLC, the protein content 

and the HRY responses. The parameters’ (soaking temperature, MW specific energy and steaming 

duration) main effects were (0.557, 0.353, 0.017), (0.937, 0.018, 0.013), (0.696, 0.248, 0.015) and 

(0.83, 0.112, 0.017) for the overall model, the SLC, the protein content and the HRY responses 

respectively. These main effects contributed the most to the total effects (0.616, 0.402, 0.037), 

(0.959, 0.028, 0.023), (0.716, 0.268, 0.026) and (0.858, 0.138, 0.029) for the overall model, the 

SLC, the protein content and the HRY responses, respectively.  

The MW specific energy parameter was most important followed by soaking temperature 

then steaming duration for the FMC and the TCD responses. The parameters’ (MW specific 
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energy, soaking temperature and steaming duration) main effects were (0.968, 0.007, 0.002) and 

(0.418, 0.315, 0.035). These main effects contributed the most to the total effects (0.985, 0.011, 

0.003) and (0.589, 0.537, 0.103) for the FMC and the TCD responses, respectively.  
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Figure 2.3: The variable importance report for the overall, final moisture content, surface lipid 

content, total color difference, protein content and head rice yield responses; FMC = Final 

Moisture Content; HRY – Head Rice Yield; SLC = Surface Lipid Content; TCD = Total Color 

Difference; MW = MW; d.b = dry basis; kg-DM = kg of dry matter 
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The implications of MW specific energy, steaming duration and soaking temperature on 

the rice FMC and HRY are graphically displayed in Figure 2.4.  The overall shape of the graph 

indicates that the FMC decreased with an increasing MW specific energy. The lowest FMCs were 

seen at the MW specific energy of 0.29 kWh.[kg-DM]-1. At this MW specific energy, the FMC 

response had the least mean square of 18.24% and a standard deviation of 0.89% (SD ± 0.89%).  

This FMC is 2.62 percentage points higher than the MC range necessary for safe storage conditions 

(14.29 to 15.61%). The trend of decreasing FMC as a result of increasing MW specific energy was 

also seen in a study by Smith & Atungulu, (2018) whose objective was to dry freshly-harvested 

rough rice using a 915 MHz MW. The researchers found that increasing MW specific energy led 

to corresponding increases in rice final surface temperature, which, congruently, lead to decreases 

in rice FMC, HRY, and MRY. 

It is noticeable that the FMC of samples that were soaked at 71, 73, and 76 oC makes a 

downward “U-shape” with that of the 73 oC soaking temperature having the highest FMC. The 

lowest FMC was seen for samples soaked at 76 oC. The average MC of the rough rice samples 

after soaking at temperatures of 71 oC, 73 oC, and 76 oC followed by steaming was 43.66%, 45.52% 

and 46.11%, respectively. The FMC of the samples after drying with MW at the specific energy 

of 0.29 kWh.[kg-DM]-1 MW had least mean squares of 17.38%, 20.03% and 17.32% (SD ± 0.50%, 

1.07% and 1.09%) for the 71, 73, and 76 oC soaking temperatures, respectively. These trends could 

be explained by gelatinization of the rice starch during the process of treatments. The gelatinization 

point of rice starch is the temperature at which further hydration and irreversible starch granule 

swelling take place and is specific for each rice cultivar (Ali and Ohja, 1976; Chattopadhyay and 

Kunze, 1986). Igathinathane et al. (2005) determined the gelatinization temperature of rice starch 

and found that soaking rough rice above the gelatinization temperature caused rapid and excessive 
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moisture absorption. Conversely, soaking at temperatures below the gelatinization temperature 

was found to increase the time for the raw rough rice to reach saturation MC; however, desirable 

milled rice characteristics and reduced chalky kernels were maintained. This was corroborated by 

Mir & Bosco (2013), who stated that the higher the parboiling temperature, the higher the rate of 

water absorption. However, Sareepuang et al. (2008), who investigated the effect of soaking 

temperature on the physical properties of parboiled rice, found that increased soaking temperatures 

caused decreases in protein content. The reduction in protein content can explain the decrease in 

MC at soaking temperatures of 76 oC. While there is expected to be an increase in MC as soaking 

temperatures increased from 71 oC to 76 oC, an apparent decrease in MC can be explained by a 

simultaneous decrease in protein content. MCs for this experiment were taken gravimetrically, and 

therefore, a decrease in protein content could alter the mass of the parboiled rough rice, which can 

erroneously be translated to a decrease in MC. 

As MW specific energy increased, the HRY increased to a peak response at 0.15 kWh.[kg-

DM]-1 (Fig. 2.4). At this MW specific energy, milled rice samples had the least-square means of 

69.76% (SD ± 2.44%). After which the HRY decreased to its lowest point at 0.29 kWh.[kg-DM]-

1 with an HRY of 66.67% (SD ± 4.72%). This reduction can be attributed to increasing MW 

specific energy. Higher MW specific energies have been shown to induce higher surface 

temperatures. High-temperature drying is known to lead to the formation of fissures. The presence 

of fissures on a rice kernel makes it more susceptible to breakage during subsequent hulling and 

milling processes (Smith & Atungulu, 2018). 

When compared to control samples, there was a noticeable decrease in HRY for samples 

treated with MW. The average HRY for control samples soaked at 71 oC was 73.13%, which then 

increased to 74.07% at 73 oC. For samples soaked at 76 oC, the average HRY decreased to 66.53%. 
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Upon drying of parboiled rough rice soaked at temperatures of 71 oC, 73 oC, and 76 oC  with MW 

at specific energy of 0.29 kWh.[kg-DM]-1, the HRY least-square were 66.84% (SD ± 2.57%), 

72.56% (SD ± 0.66%) and 59.80% (SD ± 2.93%) respectively (Fig. 2.4). The HRY is often the 

most critical quality parameter to rice millers since the HRY is linked to payment received for rice 

delivered at milling facilities. Under ideal conditions, a perfect HRY recovery would be about 70% 

of the total rough rice produced after the rice hulls and bran are removed. However, with current 

conventional rice drying methods, HRY recovery in controlled laboratory experiments averages 

only about 58% and can be even lower depending on other pre-harvest and post-harvest factors 

(USDA, 2014; Atungulu et al. 2016). 

Igathinathane et al. (2005) determined that soaking rough rice above the gelatinization 

temperature may cause quality concerns because of husk splitting and that soaking at temperatures 

below the gelatinization temperature was found to maintain desirable rice quality. This indicates 

that there exists an optimum soaking temperature for rice cultivars. In the case of the cultivar that 

was used for this experiment (Mermentau), it could be inferred that the optimum soaking 

temperature exists at 73 oC. 

When compared to rough rice samples that were not treated with MW, there was a 

noticeable decrease in MC when samples were treated with MW. The average MC of the rough 

rice samples after 5 min steaming duration was 44.15%, which then increased to 46.71% at the 10 

min steaming duration. The MC then decreased to 44.40% at the 15 min steaming duration. At 

0.29 kWh.[kg-DM]-1 the FMC least-square means were 19.33%, 19.43% and 16.51% (SD ± 

1.70%, 1.17% and 0.21%) for the 5, 10, and 15 min steaming duration. It is known that the 

condensation from the steaming process adds water and increases the MC of paddy before drying. 

Steaming is the preferred heating method for parboiling because of this fact. By increasing the MC 
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before the MW drying process, it is to be expected that increased steaming would lead to increases 

in the rice FMC.  

When compared to milled rice samples that were not treated with MW, there was a 

noticeable decrease in HRY when samples were treated with MW. The average HRY of the milled 

rice samples after the 5 min steaming duration was 71.24%, which then decreased to 71.12% at 10 

min. At 15 min the average HRY increased to 71.37%. At 0.29 kWh.[kg-DM]-1, the HRY least-

square means were 68.62%, 63.79% and 66.23% (SD ± 3.578%, 4.58% and 1.67%)  for the 5, 10, 

and 15 min steaming duration. 

The implications of MW specific energy, steaming duration and soaking temperature on 

the on the milled rice SLC, protein content, and TCD are graphically displayed in Figure 2.4.  The 

highest SLC was seen at specific energies of 0.04 kWh.[kg-DM]-1 and had the least-square means 

of 0.88%, 0.76% and 0.33% (SD ± 0.03%, 0.07% and 0.05%) for the 71, 73, and 76 oC soaking 

temperatures respectively. Additionally, when compared to milled rice samples that were not 

treated with MW there was a noticeable decrease. The average SLC of the rough rice samples after 

soaking at temperatures of 71 oC, 73 oC, and 76 oC followed by steaming was 0.89%, 0.65% and 

0.34%, respectively. At 0.29 kWh.[kg-DM]-1 the SLC least-square means were 0.87%, 0.75% and 

0.28% (SD ± 0.04%, 0.15% and 0.02%) for the 71, 73, and 76 oC soaking temperatures, 

respectively.  SLC is the mass percentage of lipids remaining on the surface of a rice kernel after 

milling. SLC affects the stability, quality, appearance, and end-use functionality of rice (Chen et 

al. 1997). The majority of the lipids of rice are concentrated in the bran, making it subject to 

rancidification. As a result, bran is often separated from the rice kernel before storage in a process 

called milling. As milling progresses, the DOM is said to increase, and the SLC decreases (Hogan 

and Deobald, 1961; Pomeranz et al. 1975; Miller et al. 1979). Consequently, rice SLC is often 

https://en.wikipedia.org/wiki/Rancidification
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used as a parameter to indicate DOM. Industrial milling practice for rough rice targets a DOM that 

has a resultant SLC of 0.4% for optimal HRY recovery and better storability. However, milling 

equipment is metered to obtain this SLC based on characteristics of rice dried using conventional 

drying methods. An excessively high SLC for rice kernels dried using MW indicates considerable 

kernel hardening resulting in less surface lipid being removed after milling. This result is congruent 

with past research that indicates that the DOM decreases due to the hardening of the rice kernels 

(Inprasit & Noomhorm, 2001; Smith et al., 2018). This data indicates that it is necessary to 

reconsider milling durations that give similar SLC for MW drying operations. 

When compared to parboiled milled rice samples that were not treated with MW there was 

a noticeable decrease in protein content when samples were treated with MW. The average protein 

content of the milled rice samples after soaking at temperatures of 71 oC, 73 oC, and 76 oC followed 

by steaming was 6.75%, which then decreased to 6.47% at 73 oC soaking temperature. At 76 oC 

soaking temperature, the average protein content decreased to 5.92%. At MW treatment with 

specific energy of 0.29 kWh.[kg-DM]-1 the protein content’s least-square means were 5.98%, 

6.30% and 4.96% (SD ± 0.45%, 0.46% and 0.22%) for the 71, 73, and 76 oC soaking temperatures, 

respectively. Protein fractions, known as starch granule-associated proteins (SGAPs), left on the 

rice kernel after the milling processes have been shown to influence endosperm texture, and 

gelatinization and pasting properties of the rice starch (Greenwell & Schofield, 1986; Morrison, 

Greenwell, Law, & Sulaiman, 1992; Hamaker & Griffin, 1993). During the process of drying, 

denaturation, and changes in the functionality of the rice proteins can take place, that may influence 

overall rice quality. Heat treatments induce non-covalent hydrophobic interactions and 

intermolecular disulfide crosslinks that denature proteins and contribute to their insolubilization 

(Odjo et al. 2015). Research on rice proteins extracted from defatted rice flour suggests that the 
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two major rice proteins (globulin and glutelin) progressively denatured upon heat treatments from 

45 oC to 80 oC for 10 min and leveled off from 80 oC to 95 oC for 10 min (Ju, Hettiarachchy & 

Rath, 2001). The high energy fluxes associated with MW are capable of heating rice to surface 

temperatures over 120 oC (Atungulu et al., 2016). Increasing specific energies resulted in 

increasing final surface temperatures and consequently could have an increase in the denaturation 

of rice proteins (Smith et al., 2018). Increasing soaking temperatures could also influence the 

denaturation of proteins in the parboiled milled rice samples. Sareepuang et al. (2008) investigated 

the effect of soaking temperature on physical, chemical and cooking properties of parboiled rice 

and found that soaking rough rice samples at 40, 50 and 60 °C for 3 h resulted in an initial increase 

in protein content as soaking temperature increased from 40 oC to 50 oC, upon further heating the 

protein content decreased as soaking temperature increased from 50 oC to 60 oC. This indicates 

that there exists an optimum soaking temperature for rice parboiling that can be cultivar dependent.  

When compared to milled rice samples that were not treated with MW, there was a 

noticeable increase in TCD when samples were treated with MW. The average TCD of the milled 

rice samples after soaking at temperatures of 71 oC was 3.26, which then decreased to 2.25 at 73 

oC soaking temperature. At 76 oC soaking temperature, the average TCD increased to 5.39. 

Treatment with MW at specific energy of 0.29 kWh.[kg-DM]-1 resulted in TCD least-square means 

of 5.05, 2.73 and 6.03 (SD ± 1.05, 1.25 and 3.46) for samples soaked at temperatures of 71, 73, 

and 76 oC, respectively. 

When compared to milled rice samples that were not treated with MW, there was a 

noticeable increase in SLC when samples were treated with MW. The average SLC of the milled 

rice samples after the 5 min steaming duration was 0.63%, which then increased to 0.66% at 10 

min of steaming. The SLC then decreased to 0.59% at 15 min of steaming. At 0.29 kWh.[kg-DM]-
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1, the least-square means of the SLC were 0.64%,0.71% and 0.68% (SD ± 0.03%, 0.03% and 

0.04%) for the 5, 10, and 15 min steaming duration. 

When compared to milled rice samples that were not treated with MW, there was a 

noticeable decrease in protein content when samples were treated with MW. The average protein 

content of the milled rice samples after the 5 min steaming duration was 6.56%, which then 

decreased to 6.49% after 10 min of steaming. At 15 min of steaming, the average protein content 

decreased to 6.08%. At 0.29 kWh.[kg-DM]-1, the least-square means of the protein content were 

5.65%, 6.25% and 4.87% (SD ± 0.47%, 0.45% and 0.43%) for the 5, 10, and 15 min steaming 

duration. 

When compared to milled rice samples that were not treated with MW, there was a 

noticeable decrease in TCD when samples were treated with MW. The average TCD of the milled  

rice samples after the 5 min steaming duration was 3.99, which then decreased to  3.46 after 10 

min of steaming. At 15 min of steaming, the average TCD decreased to 3.45. At 0.29 kWh.[kg-

DM]-1, the least-square means of the TCD were 2.62, 2.82, and 3.31 (SD ± 0.24, 0.24 and 0.25) 

for the 5, 10, and 15 min steaming duration. 

Prediction profiler was used to set desirability goals, which in this study was to maximize 

HRY, protein content and SLC and to minimize the FMC and TCD. This was done to find optimal 

settings for the parameters of MW specific energy, soaking temperature, and steaming duration. 

Of the possible MW specific energies (0.04 to 0.29 kWh.[kg-DM]-1), soaking temperatures  (71 

oC,73 oC and 76 oC) and steaming durations (5, 10 and 15 mins) it was determined that maximum 

HRY, protein content and SLC and minimum FMC and TCD is obtained at parameter settings of 

73 oC soaking temperature, MW specific energy of 0.29 kWh.[kg-DM]-1 and a steaming duration 

of 10 mins according to the prediction profile (Figure 2.4). At these parameters optimal FMC, 
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HRY, protein content, SLC and TCD were 18.79% d.b, 69.33%, 6.02%, 0.81% and 3.93. The 

prediction profile was colorized based on most important parameter for each response. 

In addition to the determination of the optimal parameter levels, the prediction profiler also 

gives insight to the significance of impact a parameter has on the performance parameter in 

question. A steep slope indicates that an operational parameter has a significant impact on the 

given performance parameter, whereas a shallow slope indicates little or no effect on a 

performance parameter. 

The last row of plots shows the desirability trace for each parameter. The numerical value 

beside the word ‘Desirability’ on the vertical axis is the geometric mean of the desirability 

measures. This row of plots shows both the current desirability and the trace of desirability that 

result from changing one parameter at a time. A desirability of 0.69 indicates that approximately 

69.81% of the goals to optimize HRY, protein content, SLC, FMC and TCD responses were 

reached. 
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Figure 2.4: Prediction profile for the head rice yield (HRY), protein content, surface lipid content 

(SLC), final moisture content (FMC) and total color difference (TCD) responses with parameter 

settings soaking temperature, MW specific energy and steaming duration; kg-DM indicates kg of 

dry matter 
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Figure 2.5 shows the contour profiler for the HRY, protein content, SLC, FMC and TCD. 

A contour profiler shows plots of response contours for multiple factors at a time. An upper limit 

for FMC and TCD were set as 19.72% and 4.68. A lower limit for HRY, SLC and protein content 

were set as 67.81%, 0.74% and 5.82. The white unshaded area shows the safe operating region for 

optimal HRY, protein content, SLC, FMC and TCD. This indicates that the optimized responses 

for HRY, protein content, SLC, FMC and TCD exists when parameter (factor) settings for soaking 

temperature, MW specific energy and steaming duration are set to 73 oC, 0.29 kWh.[kg-DM]-1 and 

10 mins. 
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Figure 2.5: Contour Profiler for the head rice yield (HRY), protein content, surface lipid content 

(SLC), final moisture content (FMC) and total color difference (TCD) responses with parameter 

settings soaking temperature, MW specific energy and steaming duration; kg-DM indicates kg of 

dry matter  
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CONCLUSION 

The feasibility of using a MW set at a frequency of 915 MHz to dry high-MC parboiled 

rough rice was investigated, and the implications of varied steaming and soaking conditions on the 

parboiled rough rice FMC, milling yield and physicochemical properties were determined. It was 

found that increasing soaking temperature from 71 oC to 76 oC led to increased uptake of water 

after parboiling, decreases in MRY, HRY, protein content, and SLC and increased TCD. 

Increasing steaming duration from 5 to 15 min led to decreased uptake of water by rice after the 

parboiling process, decreased MRY, protein content, SLC and TCD and increased HRY. 

Increasing MW specific energy from 0.04 to 0.29 kWh.[kg-DM]-1 led to decreases in FMC, HRY, 

protein content, and SLC and increased TCD. Based on this research, it is recommended that long-

grain rice of cultivar Mermentau is soaked at 73 oC, steamed for 10 min, then treated at MW 

specific energy of 0.29 kWh.[kg-DM]-1 to achieve rough rice FMC of 18.79%. At this parameter, 

parboiled rough rice had HRY of 69.33%, and desirable parboiled rough rice physicochemical and 

sensory properties. It may then be necessary to continue the drying process to the safe storage MC 

range of 14.29 to 15.61% using natural or hot air. 
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CHAPTER 3: IMPACTS OF SPECIFIC POWER OF MICROWAVE AT 915 MHZ 

FREQUENCY ON DRYING AND MILLING CHARACTERISTICS OF PARBOILED 

ROUGH RICE 

 

ABSTRACT 

The volumetric heating phenomenon provided by microwave (MW) may offer a means to quickly 

dry high moisture content (MC) parboiled rough rice in one-pass with minimal impacts on the 

kernel quality.  The objectives of this research were to study the impacts of specific power of MW 

generated at 915 MHz frequency to dry high MC parboiled rough rice on moisture removal and 

milling characteristics of the rice. Long-grain rough rice of the cultivar (cv.) Mermentau at harvest 

MC of 31.6% dry basis (d.b.) was parboiled by soaking at 73 oC for 3 hours and then steamed at 

67 kPa for 10 minutes. Following the parboiling process the sample was subjected to the MW 

drying. The drying was accomplished at MW specific powers that ranged from 0.37 to 8.77 kW. 

[kg-DM]-1 (power per unit dry matter mass of the grain). These treatment levels of MW specific 

power were varied by heating parboiled rough rice for 2 and 6 minutes (mins) at MW powers that 

ranged from 1 to 24 kW. The process of parboiling increased the rough rice MC to 44.30% dry 

basis (d.b.). During the MW drying, as the specific power increased, the general tendency was for 

rough rice final moisture content (FMC), milled rice yield (MRY) and head rice yield (HRY) to 

decrease while the drying rate increased. Parboiled rough rice samples treated with a specific 

power of 8.77 kW.[kg-DM]-1 while maintaining specific energy input at 0.29 kWh. [kg-DM]-1 had 

least-square means FMC, drying rate, MRY and HRY of 19.73% d.b. (S.D ± 1.11%), 12.29% d.b. 

[min-1] (S.D ± 0.79%), 68.18% (S.D ± 1.70%) and 67.51% (S.D ± 0.73%) respectively. However, 

treatment at a lower specific power of 2.92 kW.[kg-DM]-1 while maintaining the same specific 
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energy input of 0.29 kWh. [kg-DM]-1) resulted in least-square means FMC, drying rate, MRY and 

HRY of 21.21% d.b. (S.D ± 0.53%), 3.85% d.b. [min-1] (S.D ± 0.13%), 73.22% (S.D ± 0.84%) 

and 73.21% (S.D ± 0.21%) respectively. The observed higher drying rate for treatments with 

higher specific power was associated with higher treatment powers and shorter treatment 

durations. Higher specific powers negatively impacted the observed MRY and HRY. The findings 

suggest that increased MW specific powers have a positive effect on rice MC reduction but above 

a certain threshold of specific power (2.92 kW.[kg-DM]-1) may negatively affect the milling 

characteristics of the parboiled rice.  

 

Keywords: One-pass drying; 915 MHz microwave; Specific power; Milling Yields; Parboiled 

rough rice 

 

INTRODUCTION 

To achieve optimal milling yield and quality, rough rice is harvested at moisture content (MC) 

of 23.5-26.6% dry basis (d.b), then dried to 13.6-14.9% d.b. before storage or further processing 

(henceforth MC is in dry basis). High-temperature, cross-flow column dryers and natural air in-

bin dryers are the most common types of dryers used in the U.S. to dry rough rice (Maier & Bakker-

Arkema, 2002). Of the two types of dryers, the cross-flow column dryers are the most popular type 

of rice dryer used at the industrial scale. In such dryers, grain flows vertically downward between 

two perforated metallic screens forming the grain columns. Heated air flows through the grain 

column in a direction perpendicular (or “cross”) to that of the grain movement (Billiris & 

Siebenmorgen, 2014). The duration that kernels reside inside the drying section of the columns is 

varied by controlling the unloading feed rolls, which are located at the bottom of the dryer. In 
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cross-flow dryers, rice kernels dry at different rates across the column thickness. Kernels closer to 

the heated-air plenum interact with hotter air and dry faster, while the kernels away from the 

plenum interact with cooler, more humid air and dry more slowly. This characteristic non-

uniformity of cross-flow column dryers presents two challenges: under- and over-drying of the 

kernels and generation of fissures as a result of the MC and material state gradients in the kernels 

which impact the head rice yield (HRY).   

To reduce the non-uniformity in drying, the grain is dried in more than one pass with tempering 

stages in between passes. Some commercial cross-flow column dryers are equipped with grain 

inverters (also called turnflows or grain exchangers), which switch the positions of kernels in the 

column (Prakash & Siebenmorgen, 2018). Tempering the rice (i.e. holding rice at elevated 

temperatures, typically the drying temperature, for 8 to 12 hours) after each drying pass allow 

intra-kernel MC and material state gradients, which are typically created during heated-air drying, 

to subside.  Because these gradients are allowed to subside during tempering, fissuring and 

consequent HRY reductions are minimized (Atungulu & Sadaka, 2019). However, an increase in 

drying passes and the introduction of tempering stages lead to large drying energy inputs and 

longer drying duration. This puts a constraint on farmers since there already exists a short rice-

harvesting “window” typically characterized with limited drying capacity at some farms. 

For parboiled rough rice, rotary dryers are used to partially dry the rice before loading it into 

the cross-flow dryer. Rotary dryers require drying air temperatures of up to 100°C. During drying, 

the moisture removal takes place rapidly during the first stage of drying, when the rice is at MC 

range of 56 to 22% (d.b.). After the parboiled rice is partially dried in a rotary dryer, it is then 

transported to a cross-flow dryer to complete the drying process. Drying air temperatures of up to 

75°C are used in cross-flow dryers; between drying periods, rice millers employ a tempering step 
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by stopping the drying process at about 22% M.C (d.b) to allow the rough rice MC to equilibrate 

for several hours before continuing the drying to 14%. There is need to improve the parboiled 

rough rice drying process to improve energy efficiency, reduce drying duration, and simplify the 

multi-stage process involved in the drying infrastructure. Introduction of a drying system that can 

dry high-MC parboiled rough rice lots to a MC level that is safe for long-term storage (13.6 – 

14.9%), in one pass, with HRY comparable to or better than conventional drying methods could 

translate into considerable energy, time and cost savings for the rice milling industry. 

MW heating at the 915 MHz frequency exemplifies a technology with great application 

possibilities in parboiled rough rice drying. The heating process with MWs is fundamentally 

different from conventional heating. During MW heating, heat is evenly distributed throughout the 

entire volume of the heated material. This contrasts with traditional thermal processing, which 

relies on conduction and convection from hot surfaces to deliver energy into the product. MW 

heating is very rapid as the material is heated by energy conversion rather than by energy transfer 

as with conventional techniques. MW heating is a function of the material being processed, and 

there is almost 100% conversion of electromagnetic energy into heat, mainly within the sample 

itself, unlike with convective heating where there are significant thermal energy losses. Due to the 

increased penetration depth of MWs at the 915 MHz frequency, the heating process delivers 

increased energy absorption, which increases the rate at which water from the agricultural product 

is removed. Atungulu et al. (2016) demonstrated the feasibility of using an industrial-type MW 

heating system to achieve one-pass drying of freshly-harvested medium-grain rough rice. The 

authors found that the volumetric heating and the high heat fluxes accorded by the MW were able 

to achieve single-pass rice drying of freshly harvested, high-MC rice (36.2%) to safe storage MC 

(14.9%) with improved HRYs.  



63 

At present, there is no research in the U.S. on the commercial use of MW technology for 

parboiled rough rice drying; however, based on past experimental results, it is expected that MW 

heating can sufficiently dry high-MC parboiled rough rice kernels in one pass. The high and rapid 

heat fluxes accorded by MW heating can quickly dry high-MC rice to storage MC with minimized 

quality reduction; however, it is unclear how the rice milling yields are affected by the MW’s 

specific power. Rice milling yield is one parameter that determines the economic value of rice 

from the field to the mill and in the market (Lyman et al., 2013). Specific power is the rate at which 

MW specific energy is converted into internal thermal energy. As a result, this study specifically 

investigated the implications of increasing MW specific power on the final moisture content 

(FMC), drying rate, milled rice yield (MRY) and HRY of parboiled rough rice. By answering this 

question, insights can be given to rice processors, especially of parboiled rough rice, on the limits 

of processing durations for MW drying systems operated at the 915 MHz frequency. The rationale 

behind this study is that the successful implementation of the MW technology for parboiled rough 

rice drying would place the rice industry in a superior position to capitalize upon improved drying 

rates, HRY and possibly rice quality, thereby driving economic growth in the rice industry and in 

the U.S. agriculture sector as a whole. The development of the new technology aids in 

sustainability initiatives as it also minimizes food wastage and eliminates or reduces the use of 

fossil fuels that contribute to greenhouse gas emissions. 

 

METHODS 

Freshly-harvested, long-grain rice samples of cultivar (cv.) Mermentau at 31.58 % MC 

were used in this study. The samples were cleaned using dockage equipment (MCi Kicker Dockage 

Tester, Mid-Continent Industries Inc., Newton, KS).   The equipment uses a series of small-sized 



64 

sieves to provide a fast, accurate, and consistent way of separating shrunken, broken, scalped 

material, broken kernels, splits, and dust from rice. The cleaned rice samples were stored in a 

laboratory cold room set at 4°C. At the beginning of the experiments, the samples were retrieved 

from the cold room and allowed to equilibrate with room temperature (25oC) overnight before 

conducting any experiments. The MCs of the samples that were reported in this study were 

determined using an AM 5200 Grain Moisture Tester (PERTEN Instruments, Hägersten, Sweden), 

which was calibrated according to Jindal and Siebenmorgen (1987). The FMC of each sample was 

validated using the oven method by placing 15 g duplicate samples into a conduction oven 

(Shellblue, Sheldon Mfg., Inc., Cornelius, OR) set at 130C for 24 h, followed by cooling in a 

desiccator for at least half an hour (Jindal and Siebenmorgen, 1987).  

 

Parboiling Procedure 

A sample of 3600 g of rice was placed into a 45 cm by 45 cm piece of cheesecloth then 

allowed to soak in a lab-scale hot water bath set to soaking temperature of 73 oC for 3 hours. After 

soaking, the wet rough rice was steamed to complete the physicochemical changes of starch 

gelatinization. Rice in cheesecloth was steamed in a lab-scale autoclave set to a temperature of 113 

oC and a pressure of 67 kPa for 10 minutes (mins).  

The soaking temperature of 73 oC and steaming duration of 10 mins were decided based 

on a preliminary study. In this preliminary study it was determined that at these parboiling 

parameters, the long-grain rice of cv. Mermentau had optimum physiochemical and milling 

characteristics. 

 



65 

Microwave Equipment and Treatments 

The MW (AMTek, Applied Microwaves Technology Inc., Cedar Rapids, IW) used in this 

research was designed for high power operations (up to 75 kW) and had a frequency of 915 MHz, 

which may allow heating of a deep rice bed. The system (Fig. 3.1) consists of a transmitter, a wave-

guide, and the MW heating zone (oven).  The transmitter is a high-powered vacuum tube that 

works as a self-excited MW oscillator. It is used to convert high-voltage electric energy to MW 

radiation.  The wave-guide consists of a rectangular pipe through which the electromagnetic field 

propagates lengthwise. It is used to couple MW power from the magnetron into the lab oven. The 

lab oven is the internal cavity of the MW that provides uniform temperatures throughout while in 

use.  

For each MW treatment, freshly parboiled rough rice samples were placed into MW safe 

trays for treatments. The outsides of the trays are made of polypropylene with a Teflon coated 

fiberglass mesh at the bottom to hold the samples. The trays’ length, width and height were 40 cm, 

30 cm and 5 cm, respectively. The bed thickness of the rice samples was 3.5 cm. The trays with 

rice samples were set in the oven on the belt and samples dried with MW (Table 3.1). The drying 

was accomplished at MW specific powers that ranged from 0.37 to 8.77 kW. [kg-DM]-1 (power 

per unit dry matter mass of the grain). These treatment levels of MW specific power were varied 

by heating parboiled rough rice in batches for various durations (2 and 6 mins) at MW power that 

ranged from 1 to 24 kW. The specific power was obtained by dividing the MW specific energy by 

the drying duration. MW specific energy was defined as the energy applied per unit mass of the 

treated product’s dry matter (kg-DM). For this research, the reference mass (m) was set as the 

initial mass of the grain dry matter. The MW specific energy was calculated as follows: 

𝑄𝑠 =  
𝑝 × 𝑡𝑑

𝑚
 (1) 
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Where:  

Qs is specific energy per unit dry matter mass of treated product (kJ. kg-1 or  kJ.[kg-DM]-1) 

p is the microwave power supplied to the product (kW) 

td is the drying duration of the treatment (s) 

m is dry matter mass of the treated product (kg or [kg-DM]-1) 

After MW treatments, the samples were transferred immediately to glass jars and sealed 

airtight. The jars were placed in an environmental chamber (Platinous chamber, ESPEC North 

America, Inc. Hudsonville, MI) set at a temperature of 60C. The rice was tempered for 4 h. After 

the tempering, the rice was spread uniformly on individual trays, transferred to an equilibrium 

moisture content (EMC) chamber (Platinous chamber, ESPEC North America, Inc. Hudsonville, 

MI) set at a temperature of 25C and relative humidity (RH) of 65%.  

For control sample treatment, rice samples (3 reps, 3600 g each) were soaked at 73 oC for 

3 hours, then steamed at 67 kPa for 10 mins. After that the samples were tempered for 4 hours at 

a temperature of 60 oC. After tempering, the rice was placed in an EMC chamber (Platinous 

Chamber, ESPEC North America, Inc. Hudsonville, MI) set at 25oC, 65% RH, to allow for gentle 

drying to MC of 14.29%; the drying lasted 48 hours. 

Figure 3.1: Schematic of the microwave system used in the study showing the transmitter (1), 

wave-guide (2), heating zone (3), conveyor belt (4), and control panel (5). 
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Table 3.1: Experimental design showing microwave power, microwave drying duration, parboiled 

rough rice mass, microwave specific energy, and calculated specific power. 

Drying Duration  

(min) 

Power 

(kW) 

Mass  

(kg) 

Specific Energy 

(kWh.[kg-DM]-1) 

Specific power  

 (kW.[kg-DM]-1) 

2 3 3.6 0.04 1.10 

2 6 3.6 0.07 2.19 

2 9 3.6 0.11 3.29 

2 12 3.6 0.15 4.39 

2 15 3.6 0.18 5.48 

2 18 3.6 0.22 6.58 

2 21 3.6 0.26 7.68 

2 24 3.6 0.29 8.77 

6 1 3.6 0.04 0.37 

6 2 3.6 0.07 0.73 

6 3 3.6 0.11 1.10 

6 4 3.6 0.15 1.46 

6 5 3.6 0.18 1.83 

6 6 3.6 0.22 2.19 

6 7 3.6 0.26 2.56 

6 8 3.6 0.29 2.92 

 

The Drying rate (rd) was expressed as the percentage point of MC removed per unit of 

drying duration (% d.b. [min-1]) and computed using the following equation: 

 

𝑟𝑑 =  
𝑀𝐶(𝑡𝑑𝑜)−𝑀𝐶(𝑡𝑑𝑜+∆𝑡𝑑)

∆𝑡𝑑
  (2) 

 

Where: 

td is the drying duration (min) 
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𝑀𝐶(𝑡𝑑𝑜
) is the initial moisture content of the grain or at td of 𝑡𝑑𝑜

or 0 min (% d.b.) 

𝑀𝐶(𝑡𝑑𝑜
+ ∆𝑡𝑑) is the moisture content after drying duration of 𝑡𝑑𝑜  +∆td min (% d.b.) 

 

Rice Milling 

Triplicate, 150 g subsamples of rough rice, obtained from each treatment sample dried to 

12.5% MC, were dehulled using a laboratory huller (Satake Rice Machine, Satake Engineering 

Co., Ltd., Tokyo, Japan), milled for 30 s using a laboratory mill (McGill #2 Rice Mill, RAPSCO, 

Brookshire, TX) and aspirated for 30 s using a seed blower (South Dakota Seed Blower, Seedboro, 

Chicago, IL). MRY was calculated as the mass proportion of rough rice that remains, including 

head rice and broken, after milling. Head rice was then separated from broken kernels using a 

double tray sizing machine (Grainman Machinery Manufacturing Corp., Miami, FL). Head rice is 

considered as kernels that remain at least three-fourths of the original kernel length after complete 

milling (USDA-GIPSA 2010). HRY was calculated as the mass proportion of rough rice that 

remains as head rice after complete milling. 
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Statistical Analysis  

Statistical analyses using the Fit Model platform of JMP Pro (JMP Pro Version 15.1.0, 

SAS Institute). Standard least squares multiple regression models were using linear quadratic and 

two-way interactions among the predictors and to determine significant differences. The best 

predictors were selected using p-value (<0.05) to evaluate which independent variables 

(predictors) best-explained variations of continuous responses (dependent variables.) 

 

RESULTS AND DISCUSSION 

Impact of Specific Power on Drying Characteristics 

The process of parboiling increased the rough rice MC to 44.30% ± 0.20% dry basis (d.b.).  

It was clear that the input of the same specific energy into rice gave differences in results of FMC 

based on specific power input (Figure 3.2).  For instance, considering samples treated with a 

specific energy of 0.29 kWh.[kg-DM]-1 and specific power of 8.77 kW.[kg-DM]-1, the rice samples 

had least-square means FMC of 19.73% (S.D ± 1.58%), whereas at the same specific energy but 

with a lower specific power of 2.92 kW.[kg-DM]-1 the samples had least-square means FMC of 

21.22% (S.D ± 0.78%). The decreasing trend of FMC with decrease of specific power at constant 

specific energy was also observed in cases where the parboiled rough rice samples were exposed 

to low specific energies. For instance, considering samples treated with a specific energy of 0.04 

kWh.[kg-DM]-1  and specific power of 1.10 kW.[kg-DM]-1, the least-square means of FMC was 

35.75% (S.D ± 0.46%), whereas at the same specific energy but with specific power of 0.37 

kW.[kg-DM]-1  the rice samples had least-square means FMC of 37.64% (S.D ± 2.17%). The 

observed higher changes of FMC for treatments with higher specific power was associated with 

higher treatment power during shorter treatment durations.  
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Al-Harahsheh, Ala’a, & Magee (2009), whose research aimed at determining the effect of 

MW output power on the drying characteristics of tomato pomace, observed that substantially 

increasing MW output power increases the drying rate and thus decreasing drying duration. The 

mass transfer within the parboiled rough rice samples was higher when heated using higher MW 

powers as a result of the higher heat fluxes. These high heat fluxes create a substantial vapor 

pressure difference between the center and the surface of the product leading to higher drying rates. 

By contrast, at lower power levels, it will take a relatively longer duration before the temperature 

of the parboiled rough rice kernels reaches the level required for moisture transfer (evaporation) 

to take place. 

 

 

Figure 3.2: Effect of microwave specific power on the final moisture contents (FMC) of parboiled 

rough rice dried using a microwave at 915 MHz frequency; kg-DM indicates kg of dry matter 

(DM); initial moisture content of parboiled rough rice was 44.30% dry basis (d.b.). 
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The drying rate significantly changed as a result of increasing MW specific power (Figure 

3.3). As the specific power increased, the general tendency was for drying rate to increase. It was 

clear that the input of the same specific energy into rice gave differences in results of drying rate 

based on whether specific power applied.  For instance, considering samples treated with a specific 

energy of 0.29 kWh.[kg-DM]-1 and specific power of 8.77 kW.[kg-DM]-1, the rice samples had 

least-square means drying rate of 12.29% d.b. [min-1] (S.D ± 0.77%), whereas at the same specific 

energy but with a lower specific power of 2.92 kW.[kg-DM]-1 the samples had least-square means 

drying rate of 3.85% d.b. [min-1] (S.D ± 0.13%). The decreasing trend of drying rate with decrease 

of specific power at constant specific energy was also observed in cases where the parboiled rough 

rice samples were exposed to low specific energies. For instance, considering samples treated with 

a specific energy of 0.04 kWh.[kg-DM]-1 and specific power of 1.10 kW.[kg-DM]-1, the least-

square means of drying rate was 4.28% d.b. [min-1] (S.D ± 0.13%), whereas at the same specific 

energy but with specific power of 0.37 kW.[kg-DM]-1,  the rice samples had least-square means 

drying rate was 0.56% d.b. [min-1] (S.D ± 0.19%). The observed higher changes of drying rates 

for treatments with higher specific power was associated with higher treatment power during 

shorter treatment durations.    

Figure 3.3 indicates that the drying rate was more rapid during higher MW specific power 

because more heat was generated within the sample creating a large vapor pressure difference 

between the center and the surface of the product due to volumetric heating characteristic of MW. 

Similar findings were reported in previous studies by Wang et al., (2007), Soysal et al., (2006), 

and Therdthai and Zhou, (2009) who conducted MW drying treatments on apple pomace, parsley 

and mint leaves, respectively. 
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Figure 3.3: Effect of microwave specific power on the drying rate of parboiled rough rice dried 

using a microwave at 915 MHz frequency; % pt indicates percentage points; MC indicates 

moisture content in dry basis; kg-DM indicates kg of dry matter (DM). 

 

Impacts of Specific Power on Milled Rice Yield and Head Rice Yield 

The least-square means and standard deviations of the control samples that were parboiled 

and gently dried in the EMC chamber had MRY and HRY of 74.98% ± 0.17% and 74.07% ± 

0.57%, respectively. The implications of increasing the specific power for constant specific energy 

on the MRY were determined and are displayed in figure 3.4. As the specific power increased, the 

general tendency was for MRY to decrease. It was clear that the input of the same specific energy 

into rice gave differences in results of MRY based on specific power.  For instance, considering 

samples treated with a specific energy of 0.29 kWh.[kg-DM]-1 and specific power of 8.77 kW.[kg-

DM]-1, the rice samples had least-square means MRY of 68.18% (S.D ± 1.70%), whereas at the 

same specific energy but with a lower specific power of 2.92 kW.[kg-DM]-1 had least-square 

means MRY of 73.22% (S.D ± 0.84%). The increasing trend of MRY with decrease of specific 
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power at constant specific energy was also observed in cases where the parboiled rough rice 

samples were exposed to low specific energies. For instance, considering samples treated with a 

specific energy of 0.04 kWh.[kg-DM]-1  and specific power of 1.10 kW.[kg-DM]-1, the least-square 

means of MRY was 73.04% (S.D ± 0.10%), whereas at the same specific energy but with specific 

power of 0.37 kW.[kg-DM]-1  the rice samples had least-square means MRY of 73.78% (S.D ± 

0.21%). 

 

 

Figure 3.4: Effect of microwave specific power on the milled rice yields (MRY) of parboiled 

rough rice dried using a microwave at 915 MHz frequency; kg-DM indicates kg of dry matter 

(DM). 

 

The implications of increasing the specific power for constant specific energy on the HRY 

were determined and are displayed in figure 3.5. As Figure 3.5 indicates, as the specific power 

increased, the general tendency was for HRY to decrease. For instance, considering samples 

treated with a specific energy of 0.29 kWh.[kg-DM]-1 and specific power of 8.77 kW.[kg-DM]-1, 



74 

the rice samples had least-square means HRY of 67.51% (S.D ± 0.73%), whereas at the same 

specific energy but with a lower specific power of 2.92 kW.[kg-DM]-1 the samples had least-square 

means HRY of 73.21% (S.D ± 0.21%). The increasing trend of HRY with decrease of specific 

power at constant specific energy was also observed in cases where the parboiled rough rice 

samples were exposed to low specific energies. For instance, considering samples treated with a 

specific energy of 0.04 kWh.[kg-DM]-1  and specific power of 1.10 kW.[kg-DM]-1, the least-square 

means of HRY was 71.361% (S.D ± 0.20%), whereas at the same specific energy input but with 

specific power of 0.37 kW.[kg-DM]-1  the rice samples had least-square means HRY of 72.37% 

(S.D ± 0.24%). 

Heating of temperature-sensitive materials such as rice and other agricultural products can 

lead to gelatinization and cell damage, consequently leading to surface/case hardening. The case 

hardening in addition to causing differential stresses on the structure of the rough rice kernel 

thereby changing its tensile strength can also restrict moisture movement during the drying process 

leading to an accumulation of MC gradients. This subsequently leads to the formation of fissures. 

The presence of fissures on a rice kernel makes it more susceptible to breakage during subsequent 

hulling and milling processes and is correlated with decreases in milling yields (Smith & Atungulu, 

2018; Smith et al., 2018; Fernando et al., 2008).  

The decrease in MRY and HRY at high specific power can also be attributed to the 

increased surface temperatures and drying rates, which then contributed to increased MC and 

temperature gradients within the rice kernels. This increased MC and temperature gradients induce 

internal cracking of the kernel endosperm as a result of internal stresses and can lead to the 

development of fissures. According to Kunze & Hall (1967), MC gradients have a more significant 

effect than temperature gradients on stress creation within rice kernels. This was agreed upon by 



75 

Nagato et al. (1964), who researched crack development in rice kernels during drying. The authors' 

research indicated that crack formation is a consequence of the unequal shrinking of the 

endosperm, which results from uneven dehydration of the rice kernel. Schluterman and 

Siebenmorgen (2007) and Kobayashi et al. (1972) corroborated this theory by reporting that high-

temperature drying of rice can create MC gradients within kernels, which can ultimately lead to 

fissure formation as a result of multiple stresses; this subsequently reduces the milling yields. 

Kunze & Choudhury (1972); Rhind (1962); Kunze (1979); Kobayashi, Miwa & Ishikowa (1972) 

have all reported that MC gradients create differential swelling or shrinking within the rice kernel, 

which induces kernel fissuring. Craufurd (1963) reported that the development of fissures in rice 

grains occurred after rapid drying. Additionally, the cracks formed in individual rice kernels 

developed as the MC gradient within the grain is relaxing. Since cracks originate at the center of 

the grain, they develop while the center of the grain is losing moisture to the drier outer layers.  
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Figure 3.5: Effect of microwave specific power on the head rice yields (HRY) of parboiled rough 

rice dried using a microwave at 915 MHz frequency; kg-DM indicates kg of dry matter (DM). 

 

In general, increasing the specific power had a negative effect on the MRY and HRY 

responses but had positive effect on the MC reduction. Increasing MW specific power had a 

statistically significant (<0.05) quadratic effect on the FMC, drying rate and HRY and a 

statistically significant (<0.05) linear effect on the MRY (Table 3.2).  
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Table 3.2: The effects of increasing microwave specific power on the final moisture content, 

drying rate, milled rice yield, and head rice yield of parboiled rough rice dried using a microwave 

at 915 MHz frequency. 

Response Source P-Value 

Final Moisture Content (%) 

Specific Power <0.0001 

Specific Power *Specific 

Power 
0.01980 

Drying Rate (percent points of 

moisture removed in dry basis) 

Specific Power <0.0001 

Specific Power *Specific 

Power 
0.03974 

Milled Rice Yield (%) Specific Power <0.0001 

Head Rice Yield (%) 

Specific Power 0.00004 

Specific Power *Specific 

Power  

0.00196 

 

CONCLUSION 

This research investigated the feasibility of using a MW set at 915 MHz frequency to dry 

high-MC parboiled rough rice and evaluated impacts of specific power on post-drying milling 

characteristics. The process of parboiling long-grain rough rice of the cultivar (cv.) Mermentau at 

harvest MC of 31.6% by soaking at 73 oC for 3 hours and then steaming at 67 kPa for 10 minutes 

increased the rough rice MC to 44.30%. Results indicate that the high-MC parboiled rough rice 

treated at a low specific power of 2.92 kW.[kg-DM]-1 produced parboiled rough rice with FMC of  

21.22%, drying rate of 3.85% d.b. [min-1], MRY of 73.22%, and HRY of 72.37%. However, rough 

rice subjected to the same parboiling conditions but treated at higher specific power of 8.77 

kW.[kg-DM]-1 produced parboiled rough rice with FMC of 19.73%, drying rate of 12.29% d.b. 

[min-1], MRY of  68.18%, and HRY of 67.51%. The findings suggest that an increased MW 

specific power has a positive effect on rice MC reduction but negatively effects the rice milling 

characteristics. The least-square means and standard deviations of the control samples that were 
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soaked at 73oC, steamed for 10 min then gently dried in an EMC chamber set to 25 oC and 65% 

RH had MRY, and HRY of 74.98% and 74.07%, respectively. Compared to the MRY and HRY 

at the MW specific power of 2.92 kW.[kg-DM]-1  (MRY of 73.22%, and HRY of 73.21%) there 

was negligible decrease in the yields due to the treatment. Therefore, based on this research, it is 

recommended that treatments of parboiled rough rice with MW specific power of 2.92 kW.[kg-

DM]-1 should not be exceeded  to maintain MRY and HRY that are better or comparable to gently 

dried control samples. However, rice samples treated at this MW specific power but at lower MW 

specific energy was not able to sufficiently dry the parboiled rough rice from an initial MC of 

44.30% to the safe MC for storage and milling MC of 14.3%. At the MW specific energy of 0.29 

kWh.[kg-DM]-1 and MW specific power of 2.92 kW.[kg-DM]-1  rice was dried to 21.22%. 

Therefore, it is recommended that MW specific energies greater than 0.29 kWh. [kg-DM]-1 are 

used without exceeding the MW specific power of 2.92 kW.[kg-DM]-1. Alternatively, the rice can 

be dried to 21.22% using MW specific energy of 0.29 kWh. [kg-DM]-1 and MW specific power of 

2.92 kW.[kg-DM]-1 then continue the rest of drying to 14.3% using natural or hot air. 

This work showed that the use of MW energy at a frequency of 915 MHz for drying of 

rough rice holds promise as a rapid, one-pass drying method for parboiled rough rice. The 

technology could benefit the rice industry by reducing drying and/or overall processing durations, 

improve HRYs and implement an environmentally friendly drying method without greenhouse gas 

emissions.   
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CHAPTER 4: HEAT AND MASS TRANSFER CHARACTERISTICS IN PARBOILED 

RICE DURING HEATING WITH 915 MHZ MICROWAVE ENERGY  

 

ABSTRACT 

Microwave (MW) heating offers a fast method to dry high moisture content (MC) parboiled rough 

rice to safe storage MC in a single drying pass. However, there is limited research that describes 

the fundamentals of heat and mass transport in rice kernels exposed to MW energy at 915 MHz, 

which is the most promising heating frequency for industrialized processing. The objectives of this 

research were to investigate heat and moisture transport phenomena in high moisture long grain 

parboiled rice heated with MW energy at 915 MHz frequency. To simulate an industrial parboiling 

process, freshly-harvested rough rice was soaked for 3 hours (h) in a hot water bath with the 

temperature set at 73 oC and then steamed in a lab-scale autoclave for 10 minutes (mins). The high-

MC parboiled long-grain rice (cv. XL753) was then heated using MW at powers of 2, 3, and 4  kW 

which corresponded with MW specific energies of 1.38, 2.07 and 2.76 kWh per kilogram of dry 

matter (kWh.[kg-DM]-1) after drying durations of 31.5 mins. Results show that after parboiling, 

the rice MC increased from an initial harvest MC of 32% dry basis (d.b.) to 56% (d.b.). Increasing 

the MW specific energy resulted in a considerable increase in MC reduction.  The MW drying was 

characterized by two distinct drying-rate phases represented by first and  second falling rate drying 

periods. Much of the rice drying occurred in the first falling-rate drying period. The drying 

constants (k) corresponding to treatments at 2, 3, and 4 kW were 0.05, 1.77, and 2.28 h-1, 

respectively. The corresponding effective diffusivities (Deff) at the same power levels were 8.40 × 

10-10, 1.40 × 10-9 and 1.79 × 10-9 m2.s-1, respectively. The activation energy (Ea) of the drying 

process was determined to be 3.02 kW.kg-1. The information generated from this study is important 
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for understanding heat and mass transport in parboiled rough rice exposed to MWs at 915 MHz 

frequency. The data aid in the optimization of the MW drying process for parboiled rice drying.   

 

Keywords: One-pass drying, 915 MHz microwave, parboiled rice, drying kinetics, activation 

energy, effective diffusivity 

 

INTRODUCTION  

Parboiled rice is rice that has been partially boiled in the husk. The three necessary steps 

of parboiling are soaking, steaming, and drying. The hydrothermal parboiling process causes the 

moisture content (MC) of rice to rise, sometimes above 56% dry basis (henceforth MC is in % dry 

basis). The high MC parboiled rice must be quickly dried to safe storage MC to avoid microbial 

proliferation and loss of milled rice yields, nutritional, functional, and sensory attributes.  

Over 85% of industrial dryers are of the convective type using hot air (Mujumdar & 

Devahastin, 2008). The drying of parboiled rice is usually done in two stages. Rotary dryers are 

used to dry parboiled rough rice partially (to 22%) before loading it into cross-flow dryers. Rotary 

dryers require drying air temperatures of up to 100°C (Wimberly, 1983; Luh, 1991). After the 

parboiled rice is partially dried in a rotary dryer, it is then transported to a cross-flow dryer to 

complete the drying process. In this type of dryer, the airflow is generally perpendicular to the 

grain flow. Drying air temperatures of up to 75°C are used in cross-flow dryers (Wimberly, 1983; 

Luh, 1991). To minimize fissuring and potential breakage of rice kernels, rice is usually passed 

several times through the dryer removing limited percentage points of moisture in each pass 

(Ondier et al., 2012). Between drying periods, rice millers employ a tempering step by stopping 

the drying process. The process of tempering allows moisture and temperature gradients developed 
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inside rice kernels during drying to subside before continuing the drying to ~15% (Prakash, 2011). 

Drying in multiple passes to allow for tempering, however, is very energy-intensive and time-

consuming. At peak harvest times, low rates of drying can create bottlenecks by limiting drying 

capacity (Berruto et al. 2011).  

Microwave (MW) energy delivered at 915 MHz frequency is a very promising heating 

method for industrialized rice processing, especially for parboiled rice drying. The method of MW 

heating holds the potential to dry high-MC parboiled rice in one pass with the benefit of 

maintaining the grain quality. Atungulu et al. (2016) demonstrated the feasibility of using an 

industrial-type MW heating system to achieve one-pass drying of freshly harvested medium-grain 

rough rice.  The authors found that supplying MW specific energies up to 0.30 kWh per kilogram 

of dry matter (unit henceforth expressed as kWh.[kg-DM]-1), followed by 4 h of tempering at 60°C, 

was able to dry rice from 56% to final MCs in the range of 16% to 19%. The resulting head rice 

yield was not significantly different from that of rice gently dried with natural air at 25°C and 

relative humidity of 65%.   

Olatunde at al., (2017) investigated the use of industrial MW at 915 MHz frequency for 

drying of rough rice with an emphasis on rice quality and energy use. The authors found that the 

specific energies of 0.22 kWh.[kg-DM]-1 and 0.28 kWh.[kg-DM]-1 were able to dry rough rice from 

31.6% to 14.3% in one pass. Their energy analysis determined that at these MW specific energies, 

1.27 kWh and 1.66 kWh were required per kg of water removed, respectively; this translated to 

$13 and $16 per metric ton of dried rice, respectively. 

The ability to dry high-MC rice in one pass and the marginal reduction in head rice yield 

provided by MW drying could improve overall rice drying efficiency. The added merit of 

maintaining rice quality has the potential to boost financial returns to rice producers and 
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processors. This strongly justifies the need for research to optimize MW treatments to achieve 

commercially viable rice drying throughput, especially in rice parboiling operations, which 

typically require rapid drying of rice at very high initial MCs. 

To successfully implement MW technology for parboiled rice drying, there is a need to 

explain the influence of MW on moisture removal characteristics, including drying rate, effective 

diffusivity of moisture (Deff), and activation energy (Ea). The objective of this study was to 

investigate the heat and moisture transport phenomena in high moisture long-grain parboiled rice 

kernels heated by MW energy of the 915 MHz frequency. The investigated drying characteristics 

of the parboiled rice include moisture removal rate, the Deff characteristics, and Ea of the process.   

 

METHODS 

Freshly-harvested, long-grain rice samples of cultivar XL753 at MC of 32 % were used in 

this study. The samples were cleaned using dockage equipment (MCi Kicker Dockage Tester, 

Mid-Continent Industries Inc., Newton, KS). The cleaned rice samples were stored in a laboratory 

cold room set at 4°C. At the beginning of the experiments, the samples were retrieved from the 

cold room and allowed to equilibrate with room temperature (25 oC) overnight before conducting 

any experiments. The MCs of the samples that were reported in this study were determined using 

an AM 5200 Grain Moisture Tester (PERTEN Instruments, Hägersten, Sweden), which is 

calibrated according to Jindal and Siebenmorgen (1987).  

 

Differential Scanning Calorimetry 

To determine the appropriate soaking temperature for rice parboiling, it was necessary to 

determine the onset gelatinization temperature of the rice cultivar used in the experiment. This was 



86 

done using differential scanning calorimetry.  Rice at MC of 14.29% was milled then ground into 

flour using a cyclone mill with a 0.5 mm sieve (Model 2511, UDY Corp., Fort Collins, CO., USA). 

An 8 mg sample of rice flour was weighed into an aluminum pan, and 16 µL of deionized water 

was added. The aluminum pan was hermetically sealed and equilibrated for 1 h before scanning 

from 25 to 120 °C at 10 °C per minute using a Differential Scanning Calorimeter (PyrisDiamon, 

Perkin-Elmer Co., Norwalk, CT, USA).  

 

Parboiling Procedure 

Rice samples (3 reps, 1000 g each) were placed into a 45 cm by 45 cm piece of cheesecloth 

then allowed to soak for 3 h in a lab-scale hot water bath set to soaking temperature of 76 oC (onset 

gelatinization temperature specific to the rice cultivar used). After soaking, the wet rough rice still 

in the cheesecloth was steamed for 10 mins in a lab-scale autoclave set to a pressure of 67 kPa and 

a corresponding temperature of 113 oC.  

 

Control Samples 

After rice samples are parboiled, instead of drying using the MW, samples were transferred 

immediately to glass jars and sealed airtight for tempering. The jars were placed in an incubator 

(VWR General Purpose Incubator 1536, Sheldon Manufacturing Inc., Cornelius, OR., USA) set at 

a temperature of 60 oC. The rice was tempered for 4 h. After the tempering, the rice was spread 

uniformly on individual trays, and then transferred to an equilibrium moisture content (EMC) 

chamber (Platinous chamber, ESPEC North America, Inc. Hudsonville, MI., USA) set at a 

temperature of 25 oC and relative humidity (RH) of 65%. 
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Microwave  Equipment and Treatments 

A schematic and description of the MW system used in this experiment  (AMTek, Applied 

Microwaves Technology Inc., Cedar Rapids, IW.) are documented in our previous publication 

(Smith & Atungulu, 2018). For each MW treatment, freshly-parboiled rice samples were placed 

into MW safe trays for treatments. The outsides of the trays are made of polypropylene with a 

Teflon coated fiberglass mesh at the bottom to hold the samples.  

MW treatments were conducted on batch samples exposed to power doses of 2, 3, and 4  

kW with corresponding specific energies of 1.38, 2.07, and 2.76 kWh per kilogram of dry matter 

(kWh.[kg-DM]-1) for drying duration of 31.5 mins (Figure 4.1). The initial parboiled rice mass 

was held constant at 1000 g for all the experiments. The parboiled rice surface temperature during 

MW heating was measured using fiber optic temperature sensors (OMEGA Engineering, INC., 

Stamford, CT., USA). 

After MW treatments, the rice samples were tempered and allowed to dry using the same 

equipment and methodology used for the control samples after parboiling.  
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Figure 4.1: Overall experimental process flow diagram: cv., HWB, MW, and MC indicates 

Cultivar, Hot Water Bath, Microwave, and Moisture Content, respectively; kg-DM indicates kg-

DM indicates kg of dry matter; d.b. indicates dry basis. 

 

Drying Characteristics and modeling 

The drying rate (rd) was expressed as the percentage point of MC removed per unit of 

drying duration (td) (% d.b. [min-1]) and computed using the following equation: 

 

𝑟𝑑 =  
𝑀𝐶𝑡𝑑𝑜−𝑀𝐶𝑡𝑑𝑜+∆𝑡𝑑

∆𝑡𝑑
  (1) 

 

Where: 

𝑀𝐶𝑡𝑑𝑜
 is the initial MC at td = 0 min (% d.b.) 

𝑀𝐶𝑡𝑑𝑜
+ ∆𝑡𝑑 is the MC after td mins (𝑡𝑑𝑜  +∆td) (% d.b.) 

td is the drying duration (min) 
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The experimental drying data of MC during the drying process were used to calculate the 

dimensionless MR by using the following equation:  

 

𝑀𝑅 =
𝑀𝐶−MC𝑒

MC0−MC𝑒
                (2) 

 

Where:  

MC is the instantaneous MC (% d.b.) 

MCo is the initial MC (% d.b.) 

MCe is the equilibrium MC (% d.b.) 

 

 For MW drying, it can be assumed that MCe = 0 simplifying the equation (2) to: 

 

𝑀𝑅 =
𝑀𝐶

𝑀𝐶0
  (3) 

 

Parboiled rough rice surface temperature and MC measurements were taken at intervals on 

a new sample of parboiled rice for a drying duration that lasted 31.5 mins. The experimentally 

determined MR data were fitted to 4 semi-empirical drying models for describing the drying curve 

equation of parboiled rice (table 4.1). 
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Table 4.1: Semi-empirical drying models applied to drying curves of parboiled rice 

Model Name Model Reference 

Page MR=exp(-ktn) Alibas (2010) 

Newton MR=exp(-kt) Zanoelo et al. (2007)  

Logarithmic MR=a exp(-kt)+ c Tarafdar et al. (2019) 

Henderson and Pabis MR=a exp(-kt) Fathi et al. (2016) 

Note: k is the drying constant (h -1), t is the drying duration (h), n is the reaction order, and a and 

c are dimensionless constants. 

 

Microsoft Excel was used to calculate the constants k, a and c, of the 4 semi-empirical 

drying models using the solver tool. This was done by adjusting the model parameter values to 

minimize the sum of square errors (SSE) between the experimental MRs and the predicted MRs.   

 

Determination of Effective Moisture Diffusivity  

To determine the effective moisture diffusivity, Deff, Fick's second law (Crank, 1979), 

shown in equation (4) was used: 

 

𝜕𝑀𝑅

𝜕𝑡
= 𝐷𝑒𝑓𝑓 [

𝜕2𝑀𝑅

𝜕𝐿2 +  
2

𝐿

𝜕𝑀𝑅

𝜕𝐿
]  (4) 

 

Where: 

MR is the moisture ratio  

Deff is the effective moisture diffusivity (m2.s-1) 

L is the half-thickness of the rice kernel (m) 
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Under the assumptions that both shrinkage and resistance to mass transfer at the surface of the 

kernel are negligible and that mass transfer is symmetric (Aregbesola et al., 2015; Khir et al., 2011; 

Das et al., 2003), equation (4) can be reduced to: 

 

𝑀𝑅 =
6

𝜋2 exp(−
𝜋2  × 𝐷𝑒𝑓𝑓 × 𝑡𝑑

𝐿2 )   (5) 

 

The linear form of Eq. (5) can be obtained by applying the natural logarithms as: 

 

 𝐿𝑛 (𝑀𝑅) = 𝐿𝑛 (
6

𝜋2 ) − (
𝜋2 × 𝐷𝑒𝑓𝑓

𝐿2 )𝑡𝑑   (6) 

 

Where π is the mathematical constant, 3.14. A plot of 𝐿𝑛(𝑀𝑅) versus drying duration gives a 

straight line with a slope of: 

 

𝑆𝑙𝑜𝑝𝑒 =  −(
𝜋2  × 𝐷𝑒𝑓𝑓

𝐿2 )   (7) 

 

The half-thickness of the rice kernel (L) was obtained by averaging the half thicknesses of 100 

individual rice kernels. Measurements were taken using a caliper.  

 

Calculation of Activation Energy in Microwave Drying 

The Ea represents the minimum quantity of energy that the reacting species must possess 

to undergo a specified reaction. In a convective drying process, the Ea is calculated by using an 

Arrhenius type equation (Akpinar, & Toraman, 2016).  
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𝐷𝑒𝑓𝑓 = 𝐷𝑜 𝑒𝑥𝑝− 
𝐸𝑎
R𝑇  (8) 

 

Where: 

𝐷𝑜 is the pre-exponential factor of the Arrhenius equation (m2.s−1) 

Ea is the activation energy (kJ.mol−1) 

R is the universal gas constant (8.3143 kJ.mol−1.K−1) 

T is the absolute air temperature (K) 

 

The Ea is determined from the slope of the Arrhenius plot, ln (Deff) versus the inverse of the air 

temperature (T−1). Because the air temperature is not precisely measurable inside the MW oven, a 

modified form of the Arrhenius equation derived by Özbek and Dadali (2007) was used to illustrate 

the relationship between the Deff and the ratio of the MW output power to sample mass (m/p) 

instead of the air temperature for the calculation of Ea. 

 

𝐷𝑒𝑓𝑓 = 𝐷𝑜 𝑒𝑥𝑝
− 

𝐸𝑎𝑚

𝑝   (9) 

 

Where: 

p is the MW output power (kW) 

m is the initial wet mass of product being treated (kg) 

Ea is the activation energy (kW.kg−1) 

 

The linear form of Eq. (10) can be obtained by applying the natural logarithms as: 
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Ln(𝐷𝑒𝑓𝑓) = Ln(𝐷𝑜) −
𝐸𝑎𝑚

𝑝
  (10) 

 

A plot of Ln(𝐷𝑒𝑓𝑓) versus m/p can be used to determine the Ea associated with a process condition.  

 

Statistical Analysis  

Statistical analyses using the Fit Model platform of JMP Pro (JMP Pro Version 15.1.0, 

SAS Institute). Standard least squares multiple regression models were using linear quadratic and 

two-way interactions among the predictors and to determine significant differences. The best 

predictors were selected using p-value (<0.05) to evaluate which independent variables 

(predictors) best-explained variations of continuous responses (dependent variables.) 

The reduced χ2, RMSE, R2, and adjusted R2 values were used to evaluate the fit quality of 

selected models. Microsoft Excel was used to calculate the R2, and adjusted R2 values using the 

Data Analysis tool. The higher the R2 and Adjusted R2 values and the lower the reduced χ2 and 

RMSE values, the better is the goodness of fit (Ertekin and Yaldiz, 2004; Doymaz and Ismail, 

2011). 

The reduced χ2, and RMSE values can be calculated as follows: 

 

χ2 =
∑ (𝑀𝑅𝑒𝑥𝑝,𝑖−𝑀𝑅𝑝𝑟𝑒,𝑖)

2𝑁
𝑖=1

𝑁−𝑧
 (11) 

 

𝑅𝑀𝑆𝐸 = √[
1

𝑁
∑ (𝑀𝑅𝑒𝑥𝑝,𝑖 − 𝑀𝑅𝑝𝑟𝑒,𝑖)

2
]𝑁

𝑖=1  (12) 

Where: 

MRexp, i is the ith experimental MR  
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MRpre, i is the ith predicted MR  

N is the number of experimental data points  

z is the number of parameters in the model 

 

RESULTS AND DISCUSSION 

Gelatinization Properties 

The onset, peak, and end gelatinization temperatures were determined to be 76.4, 81.7, and 

89.0 °C (Fig. 4.2). The enthalpy was determined to be 10.1 J.g-1. Leethanapanich (2015) indicates 

that there is a more pronounced decrease in chalkiness and an increase in head rice yield for 

parboiled rice when the soaking temperature was closer to the onset gelatinization temperature. As 

a result, the soaking temperature used for parboiling in our experiment was 76 °C. 

 

 

Figure 4.2: A schematic differential scanning calorimetry curve generated for long-grain rice of 

cultivar XL-753 
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Parboiled Rice Moisture Removal Characteristics  

The MC of rough rice immediately after parboiling was determined to be 55.96 %. The 

FMC changes during the MW drying at MW power levels of 2, 3 and 4 kW were determined. For 

MW power levels of 2 and 3 kW, there was a statistically significant linear decrease in MC with 

respect to drying duration. Using 2 and 3 kW of MW treatment allowed drying durations of  up to 

31.5 min. However, treatments at 4 kW caused rice to burn within shorter drying durations which 

was less than 21.5 min. Table 4.2 shows the summary of fit table of the effect of drying duration 

on the FMC of parboiled rice dried with the 915 MHz microwave. 

 

Table 4.2: Summary of fit table showing the effect of drying duration (td) on the final moisture 

content of parboiled rice dried with a 915 MHz microwave; FMC is the final moisture content (% 

d.b.); Qs is the microwave specific energy (kWh.[kg-DM]-1) 

 Power Level = 2 kW 

[Qs = 1.38; td=31.5] 

Power Level = 3 kW 

[Qs = 2.07; td=31.5] 

Power Level = 4 kW 

[Qs = 1.89; td=21.5] 

Prediction 

Expression 

FMC = 38.02 – 

0.76(td) 

FMC =37.69 – 

1.02(td) 

FMC =38.30 – 

1.85(td) + 0.02(td)
2 

R-Square 0.974964 0.978996 0.998205 

Adjusted R-

Square 

0.973647 0.977683 0.997488 

Root Mean 

Square Error 

1.165311 1.3023 0.53855 

P-Value <0.0001 <0.0001 <0.0001 

 

 

Applying 2 kW of MW power over a 31.5 min drying duration to a 1 kg mass of parboiled 

rice (MW specific energy of  1.38 kWh.[kg-DM]-1) resulted in a parboiled rice FMC of 15.58% 

with a standard deviation of 1.40% (SD = 1.40%), which is within the desired FMC range for safe 

storage (14.29 to 15.61%).  Applying 3 kW of MW power over a 31.5 min drying duration to a 1 
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kg mass of parboiled rice (MW specific energy of 2.07 kWh.[kg-DM]-1) resulted in a parboiled 

rice FMC of 7.26% (SD = 0.23%) at drying duration of 31.5 min which  overdried the rice outside 

of the desired FMC range for marketing and safe storage (14.29 to 15.61%);  at this power level 

and drying duration of 31.5 min, there was visible popping of the individual rice kernels and the 

smell of burned grain. Applying 4 kW of MW power over a 21.5 min drying duration to  1 kg mass 

of parboiled rice (MW specific energy of 1.89 kWh.[kg-DM]-1) resulted in popping of the 

individual rice kernels and the smell of burning grain was noted after drying duration of 11.5 mins. 

The FMCs after treatment of  parboiled rough rice  for various durations and MW powers is shown 

in figure 4.3. 

 

 

Figure 4.3: Parboiled rice moisture removal kinetics during microwave drying with a 915 MHz 

microwave as a function of drying duration (initial product mass was 1 kg and the initial moisture 

content of the parboiled rice was 55.96%). 
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Drying Rate  

The drying rate significantly changed as a result of increasing drying duration for MW 

power levels of 2 and 3 kW. Unlike treatments with MW power of 2 and 3 kW, the drying rate 

response for treatment with MW power of 4 kW was not statistically significant (table 4.3). The 

treatment at MW powers of 2 and 3 kW resulted in statistically significant quadratic responses as 

drying duration increased.  

For the MW power of 2 kW, it was noted that the drying rate was highest from 1.5 mins to 

7.5 mins. For example, at the MW power at 2 kW, after 1.5 mins of drying, the least square mean 

of the drying rate was 13.39 percentage point MC removed per minute (% d.b. [min-1]) (S.D=1.67). 

This drying rate decreased quadratically to 2.83 (% d.b. [min-1]) (S.D = 0.03) at the 7.5 min drying 

duration. From the 7.5 min, the drying rate steadily decreased to the lowest drying rate of 1.34 (% 

d.b. [min-1]) (S.D = 0.04) at 31.5 min drying duration. 

For the MW power of 3 kW, the drying rate was also highest from 1.5 mins to 7.5 mins. 

For example, at the MW power of 3 kW, after 1.5 mins of drying, the least square mean of the 

drying rate was 26.46 (% d.b. [min-1]) (S.D=0.04). This drying rate decreased quadratically to 9.15 

(% d.b. [min-1]) (drying rate obtained from prediction expression) at the 7.5 min drying duration. 

From the 7.5 min, the drying rate steadily decreased to the lowest drying rate of 2.16 (% d.b. [min-

1]) (S.D = 0.01) at 31.5 min drying duration. 
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Table 4.3: Summary of fit table showing the effect of drying duration td (min) on drying rate of 

parboiled rice dried with a microwave ate 915 MHz; rd is the drying rate (min); Qs is the microwave 

specific energy (kWh.[kg-DM]-1) 

 Power Level = 2 kW 

[Qs = 1.38 at td=31.5]  

Power Level = 3 kW 

[Qs = 2.07 at td=31.5] 

Power Level = 4 kW 

[Qs = 1.89 at td=21.5] 

Prediction 

Expression 

rd = 10.08 – 0.86 (td) + 

0.02 (td)
2 

rd =21.79 – 2.06 (td) + 

0.05 (td)
2 

NA 

R-Square 0.724765 0.789396 0.806141 

Adjusted R-

Square 

0.694183 0.747275 0.612282 

Root Mean 

Square Error 

1.519667 3.67461 8.061078 

P-Value <0.0001 0.0004 0.2903 

 

Figure 4.4 indicates that the drying rate can be divided into two very distinct periods, the 

first rapid falling rate period (drying duration of 1.5 to 7.5 min), and the second slower falling rate 

period (drying duration of 7.5 to 31.5 min). The first rapid falling rate period corresponded with 

the duration when the parboiled rice mass contained a large amount of water, including free 

moisture at the surface. As a result, the parboiled rice mass drying behavior can be compared to 

the drying behavior of an open-faced body of water. After a short period of time the surface of the 

solid is no longer saturated, and the drying rate decreases with the decrease in MC. At the 

beginning of the second falling rate period (drying duration of 7.5 min), the surface moisture film 

has evaporated fully, and with the further decrease in MC, the drying rate is controlled by the rate 

of moisture movement through the solid. The second falling rate period (drying duration of 7.5 to 

31.5 min) took a far longer time than the falling rate period, even though moisture removal during 

the first falling rate period was much less than the second falling rate period. This trend was also 

seen in experiments by Standish, et al. (1988) in their research to dry brown coal agglomerates 
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using a MW at 2450 MHz frequency and power levels of up to 650 W. After the rapid initial 

moisture movement during the first falling rate period, the drying rate steadily slowed down. As 

the moisture from the sample is removed, the absorbed power decreases, and the drying 

characteristics approached that of convective drying (Perkin, 1980). Metaxas and Meredith (1988) 

also experienced this effect, which they called "moisture leveling." The authors explained that 

MWs selectively heat moist regions where MW absorption is higher. Since the loss factor is mostly 

related to MC, the wet parts of the material will absorb more MW energy leading to higher 

evaporation rates at the beginning of drying. Still, this rate tends to level off as drying continues 

as the less moist parts of the material will not absorb much of the MW energy. 

 

 

Figure 4.4: Parboiled rice drying rate kinetics during microwave drying with a 915 MHz 

microwave as a function of heating duration (initial product mass was 1 kg and the initial moisture 

content of the parboiled rice was 55.96% dry basis) 
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Drying Models 

It was determined that at MW power level of 2 kW with drying duration of 31.5 min (MW 

specific energy of 1.38 kWh.[kg-DM]-1), it was feasible to dry the parboiled rice, in one pass, from 

the initial MC of 55.96 % to a FMC of 15.58 %, which is within the desired FMC range for safe 

storage (14.29 to 15.61%). The MW power levels of 3 and 4 kW with drying duration of 31.5 mins 

and 21.5 mins respectively (MW specific energy of 2.07 and 1.89 kWh.[kg-DM]-1 respectively) 

dried the parboiled rice to FMCs outside of the desired FMC range for safe storage and 

marketability of the rice. Additionally, due to the high specific powers calculated of 3.95 and 5.26 

kW.[kg-DM]-1 at MW power levels of 3 and 4 kW with drying duration of 31.5 mins and 21.5 

mins respectively (MW specific energy of 2.07 and 1.89 kWh.[kg-DM]-1 respectively) the rice 

milling yields and quality characteristics are expected to be negatively affected. Furthermore, even 

at a MW power of 3 kW and a reduced drying duration of 21 mins or a MW power of 4 kW at a 

reduced drying duration of 15.75 mins (MW specific energy of 1.38 kWh.[kg-DM]-1) which would 

give FMCs of 15.46 and 14.84% respectively (MCs in the desirable range of 14.29 to 15.61% for 

safe storage) this would still result in specific powers greater than 2.92 kW.[kg-DM]-1. Specific 

powers greater than 2.92 kW.[kg-DM]-1 was determined to be unsafe for preserving rice milling 

yields and quality characteristics in preliminary experiments. The rice milling yields determine the 

economic value of rice (Lyman et al., 2013).  

Drying at MW power levels of 2, 3 and 4 kW with drying durations of 31.5, 31.5 and 21.5 

mins yielded drying constants (k) of 0.05, 1.77 and 2.28 h-1, respectively. If MW drying were 

conducted at MW power levels of 3 and 4 kW with reduced drying durations of 21 and 15.75 mins 

(MW specific energy of 1.38 kWh.[kg-DM]-1), the values of k would be 0.13 and 2.29 h-1. These 

results indicate a trend of increasing k values as power level increases even at the same MW 
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specific energy of 1.38 kWh.[kg-DM]-1.To mitigate impacts of high heat flux on rice quality, using 

a lower power level seems reasonable. The rough rice surface temperature immediately after 

parboiling was determined to be 54.73 oC. It was determined that as the drying duration increased, 

so did the parboiled rice surface temperature increase.  After Heating the parboiled rice at MW 

power level of 2 kW for drying duration of 31.5 min the parboiled rice surface temperature 

increased to 92.61 oC.  

The logarithmic model gave the best prediction of MR data during this treatment. The 

constants for each semi-empirical drying model are given in table 4.4. For the 4 semi-empirical 

drying models used, the k ranged from 0.311 to 2.805 h -1. Table 4.4 also shows the R-Square, 

Adjusted R-Square, χ 2, and Root Mean square Error values of the 4 semi-empirical drying models.  

Our results showed that the logarithmic model had the best agreement with the experimental data 

for the parboiled rice drying. The logarithmic model was chosen based on its R2 and Adjusted R2 

values being closest to 1 and having the lowest χ 2 and RMSE values.  
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Table 4.4: Semi-empirical drying models and constants for predicting the moisture ratio as 

affected by drying duration for drying parboiled rough rice with a 915 MHz microwave at a power 

of 2 kW for a drying duration of 31.5 mins (unit mass of parboiled rice at initial moisture content 

of 55.96%, MW specific energy of 1.38 kWh.[kg-DM]-1); R-square, adjusted R-square, reduced 

chi-square, and root mean square error values. 

Model 

Name 
Constants R-Square 

Adjusted 

R-Square 

Reduced 

Chi-Square 

Root Mean 

Square Error 

Page 
k = 0.31 h -1 

n = 9.01 
98.29 × 10-2 98.10 × 10-2 39.23 × 10-2 2.14 × 10-2 

Newton k = 2.81 h -1 98.29 × 10-2 98.10 × 10-2 39.23 × 10-2 2.14 × 10-2 

Logarithmic 

a = 15.85 

k = 0.05 h -1 

c = -15.18 

99.99 × 10-2 99.99 × 10-2 1.88 × 10-2 0.06 × 10-2 

Henderson 

& Pabis 

a = 0.73 

k = 1.87 h -1 
98.85 × 10-2 98.73 × 10-2 2.37 × 10-2 1.75 × 10-2 

 

 

Effective Moisture Diffusivity 

The Deff was calculated and is displayed in table 4.5. From this table, it can be extrapolated 

that when the original product mass and drying duration are held constant as power increases, the 

Deff also increases. For example, at the MW power level of 2 kW the Deff was 8.40 × 10-10 m2.s-1, 

at the MW power level of 3 kW   the Deff was 1.40 × 10-9 m2.s-1, and at the MW power level of 4 

kW  the Deff  was 1.79 × 10-9 m2.s-1. This trend was also seen by Demiray et al. (2017) and Panda 

et al. (2017).   

In the experiment by Demiray et al. (2017) to dry onion slices at 2450 MHz MW frequency, 

the authors calculated a Deff of 8.47 × 10-6 m2.s-1 for 0.557 kW power level of treatment, followed 

by 7.13 × 10-6 m2.s-1  at 0.447 kW with the MW power of 0.328 kW having the lowest Deff of 4.32 

× 10-6 m2.s-1. In the study by Panda et al. (2017), it was determined that at the 0.18 kW power 

level, the calculated Deff was 8.33 × 10-9 m2.s-1 , at the 0.36 kW power level, the calculated Deff was 
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2.22 × 10-8 m2.s-1 , at the 0.54 kW power level, the calculated Deff was 3.33 × 10-8 m2.s-1, and at the 

0.72 kW power level, the calculated Deff was 5.00 × 10-8 m2.s-1. These Deff values were calculated 

for rice of IR36 (semi-dwarf) cultivar at 1.5 cm bed thickness treated using a 2450 MHz MW. The 

increased heating energy can explain the trend of increasing Deff values that were correlated with 

increasing MW power output at higher MW power, which would increase the activity of the water 

molecules leading to higher Deff. The Deff for the MW power levels of 2, 3, and 4 kW lie in the 

range of Deff for food materials of 1.67 × 10-9 m2.s-1 to 1.67 × 10-7 m2.s-1 (Babalis and Belessiotis, 

2004; Kaushal & Sharma, 2013).  

It could be noted that the Deff values for the rice of IR36 (semi-dwarf) cultivar treated using 

a 2450 MHz MW (Panda et al. 2017) and the onion slices dried at 2450 MHz MW frequency 

(Demiray et al., 2017) were higher than the Deff values calculated for this experiment. This could 

be due to those products’ higher porosity compared to that of parboiled long grain rice kernels. 

Additionally, it is possible that case hardening of the parboiled rice kernels occurred at the elevated 

temperatures caused by the MW drying at high power levels (Fernando et al., 2008). As a result, 

moisture diffusion through the parboiled rice kernels was restricted during the drying process.  

 

Activation Energy 

Using the ratios of m/p  and Deff values for MW treatments at power levels of 2, 3, and 4 

kW the Ea was calculated. The Ea was calculated to be 3.02 kW.kg-1 (table 4.5). The Ea of Panda 

et al. (2017), which was a MW drying process of rough rice at 2450 MHz frequency was also very 

close to that calculated in this experimental MW drying process at 915 MHz and was determined 

to be 7.72 kW.kg−1. It is speculated that the Ea calculated for this experiment was lower than the 

Ea calculated by Panda et al. (2017) due to the increased penetration depth of MW at 915 MHz 
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frequency which is correlated with increased energy absorption, which increases the rate at which 

water from the agricultural product is removed. 

 

Table 4.5: Effective moisture diffusivities (Deff ), and activation energy (Ea) for microwave power 

levels of 2 and 3 kW at drying durations of 31.5 minutes (Microwave Specific Energy  of 1.38 and 

2.07 (kWh.[kg-DM]-1) and microwave power level of 4 kW at drying duration of 21.5 minutes 

(Microwave Specific Energy of 1.89 (kWh.[kg-DM]-1) with a 915 MHz microwave 

Power 

(kW) 

Drying 

Duration 

(min) 

Microwave 

Specific Energy 

(kWh.[kg-DM]-1) 

Deff  

(m2.s-1) 

EA  

(kW.kg-1) 

2 31.5 1.38 8.40 × 10-10 

3.02 3 31.5 2.07 1.40 × 10-9 

4 21.5 1.89 1.79 × 10-9 

 

 

CONCLUSION 

The objective of this study was to investigate the heat and moisture transport phenomena 

in high-MC, long-grain parboiled rice kernels of cultivar XL753 exposed to MW heating at the 

915 MHz frequency. The rough rice surface temperature immediately after parboiling was 

determined to be 54.73 oC. The parboiling process increased the rough rice MC from 32% to 

55.61%. The MW specific energy to dry parboiled  rough rice at  MC of 55.61% to the desired 

FMC for safe storage and marketability (14.29 to 15.61% d.b.) with 2 kW of MW  power, in one 

pass was 1.38 kWh.[kg-DM]-1 for which the drying duration was 31.5 mins. Although applying 

MW power of 3 kW for drying duration of 21 mins or MW power of 4 kW for drying duration of 

15.75 mins (MW specific energy of 1.38 kWh.[kg-DM]-1) would give FMCs meeting that in safe 

storage range (14.29 to 15.61%), the resulting specific powers were greater than 2.92 kW.[kg-

DM]-1 which, based on our preliminary studies, is the specific power that was determined to be 
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safe for preserving rice milling yields and quality characteristics. MW power levels of 2, 3 and 4 

kW with drying durations of 31.5, 31.5 and 21.5 mins had drying constant of 0.05, 1.77 and 2.28 

h-1, respectively indicating an increasing trend that correlated with increasing power levels. Of the 

Page, Newton, Logarithmic, and Henderson & Pabis models, the logarithmic model best 

represented the MR profiles during MW drying of parboiled rice kernels with R2 = 99.99 × 10-2, 

Adjusted R2 = 99.99 × 10-2, Reduced χ 2 = 1.88 × 10-2 and RMSE = 0.06 × 10-2. The Deff  increased 

with increasing power levels. For example, at the power of 2, 3 and 4 kW the Deff was 8.40 × 10-

10, 1.40 × 10-9 and 1.79 × 10-9 m2.s-1, respectively. The Ea associated with the MW drying process 

was determined to be 3.02 kW.kg-1.  In summary, the ability to dry high-MC parboiled rough rice 

in one pass strongly justifies the need to optimize MW treatments to achieve commercially viable, 

MW-assisted parboiled rice drying process.   
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CHAPTER 5: ENERGY USE ASSOCIATED WITH ONE-PASS DRYING OF 

PARBOILED ROUGH RICE WITH MICROWAVES AT 915 MHZ 

 

ABSTRACT 

Despite recent advances with conventional heated-air rice drying, it remains difficult to completely 

eliminate the drying-induced intra-kernel rice material state gradients, which are largely 

responsible for head rice yield (HRY) reduction. It is even more difficult to eliminate these 

gradients without multiple drying passes that disproportionately lead to extended drying durations 

and increased drying-energy expenditure. Volumetric heating with microwave (MW) energy at 

915 MHz frequency has the potential to achieve one-pass parboiled rough rice drying while 

reducing development of the intra-kernel state gradient in the process which thereby improves 

HRY recovery.  Although to the rice industry this would represent a great breakthrough, it is 

essential to examine MW energy use associated with the process of  attaining the one-pass drying 

of parboiled rough rice.  In this study, MW treatments of parboiled rough rice were conducted at 

a select power for various durations. The temperature changes of the parboiled rough rice during 

the treatments, and energy requirements to dry the parboiled rough rice to safe storage moisture 

content (MC) were evaluated. In addition, variation of the rice milling yields during the treatments  

were investigated. Specifically, freshly-harvested rough rice with initial MC of 31.58% dry basis 

(d.b.) was parboiled by soaking in a hot water bath set at 76 oC for 3 hours followed by high 

pressure steaming at 113 oC (67 kPa) for 10 mins which raised the parboiled rough rice MC to 

55.96% d.b. The parboiled rough rice was then dried in a pilot-scale 915 MHz MW dryer. The 

dryer was set to transmit MW power of 2 kW. The energy required to dry the parboiled rough rice 

from 55.96% down to 15.58% d.b. MC was determined to be 1050 kWh per ton of high-MC 
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parboiled rough rice; at the studied treatment power, the total drying duration lasted 0.525 hours. 

The energy efficiency associated with the treatment was determined to be 18.89%. The maximum 

grain surface temperature recorded during the treatment was 92.61 oC. The HRY after the one-

pass drying was 59.98%. Although one-pass MW drying of parboiled rough rice was feasible and 

may simplify the many stages involved in conventional parboiled rough rice drying with rotary 

and cross-flow dryers, it is important to optimize the MW energy delivery system to improve the 

process efficiency if the new approach is to be competitive for implementation by the rice industry.  

 

Keywords: One-pass drying, 915 MHz microwave, milling yields, parboiled rough rice, energy 

requirement, drying efficiency 

 

INTRODUCTION 

Parboiled rice is rice that has been subjected to hydrothermal treatment prior to milling. 

Traditional parboiling operation involves soaking in water, steaming, and drying (Bhattacharya 

2004). The process could be simplified by a new technology that combines all these steps into one. 

The current parboiling operation consumes more than 90% of the total energy required in a rice 

milling system (Islam et al. 2004). Kalchik et al. (1981) reported on a parboiled rough rice drying 

operation that used a high temperature column dryer to dry a ton of high moisture content (MC) 

parboiled rough rice. The energy requirement was calculated to be in the range of 489 kWh to 632 

kWh to dry a ton of parboiled rough rice from an initial MC of 53.85% to 18.34% dry basis (d.b).  

Kasmaprapruet et al. (2009) reported that the drying step alone was the most energy-intensive unit 

operation in a rice milling system, accounting for approximately 55% of the total energy 

consumed.  



112 

The commercial rice milling industry uses cross-flow dryers and rotary dryers in 

combination and at different temperatures to dry high-MC parboiled rough rice.  Rotary dryers are 

used to partially dry parboiled rough rice before loading it into the cross-flow dryer. Rotary dryers 

require drying air temperatures of up to 100°C (Wimberly, 1983). During drying, the moisture 

removal takes place rapidly in the first stage of drying when the parboiled rough rice is at MC 

range of 56.25 to 21.95% d.b (henceforth MC is in % dry basis); this is when a lot of the water is 

at the surface of the parboiled rough rice kernel. After the parboiled rice is partially dried in a 

rotary dryer, it is then transported to a cross-flow dryer to complete the drying process. Drying air 

temperatures of up to 75°C are used in cross-flow dryers (Wimberly, 1983). Between drying 

periods, rice millers employ a tempering step by stopping the drying process at about 21.95% MC 

to allow the parboiled rough rice MC to equilibrate for several hours before continuing the drying 

to 16.28%. 

Atungulu et al. (2016) demonstrated the feasibility of using an industrial-type microwave 

(MW) heating system to achieve one-pass drying of freshly-harvested medium-grain rough rice. 

The authors found that the volumetric heating and the high heat flux accorded by the MWs were 

able to attain one-pass rough rice drying of freshly-harvested, high MC rice (26.58%) to safe 

storage MC (14.94%) while maintaining the head rice yield (HRY). Olatunde et al. (2017) 

investigated the use of industrial MW at 915 MHz frequency for drying of freshly-harvested rough 

rice with an emphasis on energy use. The authors found that the specific energies of 0.17 kWh.[kg-

grain]-1 and 0.21 kWh.[kg-grain]-1  were able to dry freshly-harvested rough rice from 31.58% to 

14.29% in one pass. Their energy analysis determined that at these MW specific energies, 1.27 

kWh and 1.66 kWh were required per kg of water removed, respectively. However, the previous 

authors did not report how the process may apply in drying of parboiled rough rice. Following 
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parboiling, the high MC rough rice (typically 53.85-66.67%) need to be dried as soon as possible 

to the safe storage MC range of 14.29-15.61%.  

The present research aims to investigate the energy use and drying efficiency associated 

with MW drying of parboiled rough rice at a selected power (2 kW) that was found in preliminary 

studies to result in specific power favorable for maintaining high rice milling yield and milled rice 

quality characteristics.  The changes in the parboiled rough rice surface temperature and milling 

yields profiles were also recorded. The ability to dry high MC parboiled rough rice in one pass 

with preserved HRYs could boost financial returns of rice producers and processors. At present, 

there is no commercial use of MW technology for parboiled rough rice drying in the USA; there 

is a lack of documented energy analysis of the process.   

 

METHODS 

Freshly-harvested, long-grain rough rice samples of cultivar XL753 at MC of 31.58 % were 

used in this study. The samples were cleaned using dockage equipment (MCi Kicker Dockage 

Tester, Mid-Continent Industries Inc., Newton, KS).   The equipment uses a series of small-sized 

sieves to provide a fast, accurate, and consistent way of separating shrunken, broken, scalped 

material, broken kernels, splits, and dust from the rough rice. The cleaned rough rice samples were 

stored in a laboratory cold room set at 4°C. At the beginning of the experiments, the samples were 

retrieved from the cold room and allowed to equilibrate with room temperature (25 oC) overnight 

before conducting any experiments. The MCs of the samples that were reported in this study were 

determined using an AM 5200 Grain Moisture Tester (PERTEN Instruments, Hägersten, Sweden), 

which is calibrated according to Jindal and Siebenmorgen (1987). The final MC (FMC) of each 

sample was validated using the oven method by placing 15 g duplicate samples into a conduction 
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oven (Shellblue, Sheldon Mfg., Inc., Cornelius, OR) set at 130 oC for 24 h, followed by cooling in 

a desiccator for at least half an hour (Jindal and Siebenmorgen, 1987).  

 

Parboiling Procedure 

To determine the appropriate soaking temperature for rough rice parboiling, it was 

necessary to determine the onset gelatinization temperature of the rice cultivar used in the 

experiment. This was done using differential scanning calorimetry.  Rough rice at MC of 14.29% 

was milled then ground into flour using a cyclone mill with a 0.5 mm sieve (Model 2511, UDY 

Corp., Fort Collins, CO., USA). An 8 mg sample of rice flour was weighed into an aluminum pan, 

and 16 µL of deionized water was added. The aluminum pan was hermetically sealed and 

equilibrated for 1 h before scanning from 25 to 120 °C at 10 °C per minute using a Differential 

Scanning Calorimeter (PyrisDiamon, Perkin-Elmer Co., Norwalk, CT, USA). Thermal properties, 

including onset, peak, and end gelatinization temperature and enthalpy, were determined in 

duplicate. 

Following the determination of the thermal properties, rough rice samples  were prepared 

(3 reps, 1000 g each) and placed into a 45 cm by 45 cm piece of cheesecloth then allowed to soak 

for 3 h in a lab-scale hot water bath set to soaking temperature slightly below the determined onset 

gelatinization temperature (this was specific to the rice cultivar, XL753). After soaking, the wet 

rough rice still in the cheesecloth was steamed for 10 mins in a lab-scale autoclave set to a pressure 

of 67 kPa and a corresponding temperature of 113 oC. After, the parboiling the samples were 

immediately treated with MW. 
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Microwave Equipment and Treatment 

The MW (AMTek, Applied Microwaves Technology Inc., Cedar Rapids, IW) used in this 

research was designed for high power operations (up to 75 kW) and had a frequency of 915 MHz. 

The system consists of a transmitter, a wave-guide, and the MW heating zone (oven).  The 

transmitter is a high-powered vacuum tube that works as a self-excited MW oscillator. It is used 

to convert high-voltage electric energy to MW radiation.  The wave-guide consists of a rectangular 

pipe through which the electromagnetic field propagates lengthwise. It is used to transport MW 

power from the magnetron into the lab oven. The lab oven is the internal cavity of the MW that 

provides uniform MW heating throughout while in use. 

For each MW treatment, freshly-parboiled rough rice samples (1000 g) were placed into 

MW safe trays for treatments. The parboiled rough rice bed thickness was 3 cm. The outsides of 

the trays are made of polypropylene with a Teflon coated fiberglass mesh at the bottom to hold the 

samples. The trays with parboiled rough rice samples were set in the oven on the belt and treated 

(Figure 5.1). The parboiled rough rice surface temperature during MW heating was measured using 

fiber optic temperature sensors (OMEGA Engineering, INC., Stamford, CT., USA). After MW 

treatments, the parboiled rough rice samples were transferred immediately to glass jars and sealed 

airtight for tempering. The jars were placed in an incubator (VWR General Purpose Incubator 

1536, Sheldon Manufacturing Inc., Cornelius, OR., USA) set at a temperature of 60 oC. The 

parboiled rough rice was tempered for 4 h. After the tempering, the parboiled rough rice was spread 

uniformly on individual trays, and then transferred to an EMC chamber (Platinous chamber, 

ESPEC North America, Inc. Hudsonville, MI., USA) set at a temperature of 26 oC and RH of 65%.  
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Figure 5.1: Experiment process flow diagram; cv., d.b., HWB, MW, and MC indicates cultivar, 

dry basis, hot water bath, microwave, and moisture content, respectively; kg-DM indicates kg-DM 

indicates kg of dry matter; d.b. indicates dry basis. 

 

In case of control experiments, the rough rice samples were parboiled in a manner similar 

to the procedures previously described; following parboiling, the rough rice samples were 

immediately transferred to glass jars and sealed airtight for tempering. The jars were placed in an 

incubator (VWR General Purpose Incubator 1536, Sheldon Manufacturing Inc., Cornelius, OR., 

USA) set at a temperature of 60 oC. The parboiled rough rice was tempered for 4 h. After the 

tempering, the parboiled rough rice was spread uniformly on individual trays, and then transferred 

to an equilibrium moisture content (EMC) chamber (Platinous chamber, ESPEC North America, 

Inc. Hudsonville, MI., USA) set at a temperature of 26 oC and relative humidity (RH) of 65%. The 

control samples  are considered to be dried the gentlest and therefore are expected to result in the 

best attainable HRY and rice quality which are compared with results obtained from the studied 

MW treatments.  
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Drying Energy and Efficiency Determination 

MW specific energy was defined as the energy transferred per unit mass of product treated. 

For this research, the reference mass (m) was set as the initial wet mass of the grain (before the 

commencement of the MW treatment, and mass unit expressed as kg-grain). The MW specific 

energy was calculated as follows: 

𝑄𝑠 =  
𝑝 × 𝑡𝑑

𝑚 × 3600
 (1) 

Where:  

Qs is the MW specific energy (kWh.[kg-grain]-1) 

p is the electrical power supplied to the MW (kW) 

td is the drying duration (s) 

m is the initial wet mass of product being treated (kg-grain) 

 

The theoretical energy consumption during the drying process per kg of wet grain mass 

(kWh. [kg-grain]-1) was calculated as: 

𝑄 = (mdw Cprice ΔƟs) + (mw Cpw ΔƟs) + (mwλw) (2) 

Where: 

Q is the energy consumption of MW drying (kWh. [kg-grain]-1) 

mw  is the mass of water removed (kg) 

mdw is the mass of the sample after water was removed (kg) 

Cprice is the specific heat capacity of the parboiled rough rice, 6.45 × 10-4 kWh.[kg. oC]−1 

ΔƟs is the change in parboiled rough rice surface temperature during drying (oC) 

Cpw is the specific heat capacity of water, 1.16 × 10-3 kWh.[kg. oC]-1 

λw is the latent heat of vaporization of water, 0.63 kWh.[kg]-1 



118 

The MW drying efficiency was calculated as following (Soysal et al., 2006): 

ŋ =
𝑄

𝑄𝑠
     (3) 

Where: 

ŋ is the drying efficiency (%) 

Q is the theoretical drying energy per kg of wet grain mass (kWh. [kg-grain]-1) 

Qs is the MW energy  input  per kg of wet grain mass (kWh. [kg-grain]-1) 

 

Rice Milling 

Triplicate, 150 g subsamples of parboiled rough rice, obtained from each sample dried to 

14.29% MC, were dehulled using a laboratory huller (Satake Rice Machine, Satake Engineering 

Co., Ltd., Tokyo, Japan), milled for 30 s using a laboratory mill (McGill #2 Rice Mill, RAPSCO, 

Brookshire, TX., USA) and aspirated for 30 s using a seed blower (South Dakota Seed Blower, 

Seedboro, Chicago, IL., USA). MRY was calculated as the mass proportion of parboiled rice that 

remains, including head rice and broken, after milling. Head rice was then separated from broken 

kernels using a double tray sizing machine (Grainman Machinery Manufacturing Corp., Miami, 

FL., USA). Head rice is considered as kernels that remain at least three-fourths of the original 

kernel length after complete milling (Siebenmorgen, 2014). HRY was calculated as the mass 

proportion of parboiled rice that remains as head rice after complete milling. 

 

Statistical Analysis  

Statistical analyses using the Fit Model platform of JMP Pro (JMP Pro Version 15.1.0, 

SAS Institute). Standard least squares multiple regression models were using linear quadratic and 

two-way interactions among the predictors and to determine significant differences. The best 
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predictors were selected using p-value (<0.05) to evaluate which independent variables 

(predictors) best-explained variations of continuous responses (dependent variables.) 

 

RESULTS AND DISCUSSION 

Parboiling Conditions of Soaking Temperature 

The onset, peak, and end gelatinization temperatures were determined to be 76.4, 81.7, and 

89.0 °C, respectively. Consequently, for this research the rough rice was soaked at 76 °C.  

Leethanapanich (2015) indicates that there is a more pronounced increase in HRY for parboiled 

rough rice when the soaking temperature was closer to the onset gelatinization temperature. 

Cnossen et al., (2003) proposed that the increase in HRY was as a result of reduction of fissured 

kernels that may break during milling (Cnossen et al., 2003). HRY reduces when soaking is done 

above the onset gelatinization temperature due to excessive swelling of starch after gelatinization, 

leading to husk splitting (Bhattacharya and Subba Rao, 1966).  

 

Moisture and Temperature Profiles  

Kinetics of parboiled rough rice MC during drying is shown in figure 5.2. Based on the 

experimental data, the FMC could be predicted using the following equation (R2=0.93415; 

Adjusted R2 =0.931955; RMSE = 2.009613;  p = <.0001):  

FMC (% d.b.) = 42.24 + 13.33 Qs + 9.93 Qs
2
                                                                     (4) 

Where Qs is the MW specific energy (kWh.[kg-grain]-1). The changes in FMC following the MW 

treatments were statistically significant (p < 0.0001) with increasing  MW specific energy. The 

observed trends agree with  a study by Smith & Atungulu, (2018) and Al-Harahsheh, Ala’a, & 

Magee (2009).  
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The surface temperature of the rough rice immediately after parboiling was determined to 

be 54.73 oC (SD = 0.79 oC). As the drying duration increased, so did the parboiled rice surface 

temperature increase. The parboiled rice surface temperature  was 92.61 oC (SD = 0.46 oC) after 

31.5 mins of the MW drying (Figure 5.2). The changes in parboiled rice surface temperature 

profiles exhibited three distinct phases (I, II, and III), significantly (p < 0.05) increased with drying 

duration, could be predicted using equations in Table 5.1. Atungulu et al. (2016) found that the 

surface temperature of rough rice increased when the MW power level and drying duration 

increased. In the authors’ study, the initial surface temperature of the rough rice at 17.5 °C 

increased to 50°C, 80°C, and 95°C when the rough rice was heated with MW at the power level 

of 5 kW for 1, 2, and 3 mins, respectively. 

 

Table 5.1: Summary of fit table showing the surface temperature of parboiled rough rice (55.96 

MC%, dry basis) during microwave drying with a microwave at 915 MHz frequency; td is the 

drying duration (min); Ɵs is parboiled rough rice surface temperatures (°C). 

 Drying Phase I 

Ɵs = f(0 ≤ td ≤ 4.5) 

Drying Phase II 

Ɵs = f(4.5 ≤ td ≤ 10.5) 

Drying Phase III 

Ɵs = f(10.5 ≤ td ≤ 31.5) 

Prediction 

Expression 

Ɵs = 43.36 + 7.74(td) Ɵs = 23.91 + 7.32 (td ) 

- 0.03 (td )
2 

Ɵs = 76.82 – 0.42 (td ) 

+ 0.03 (td )
2 

R-Square 0.998736 0.998373 0.99717 

Adjusted R-

Square 

0.998556 0.998102 0.997035 

Root Mean 

Square Error 

0.382184 0.036956 0.306368 

P-Value <.0001 <.0001 <.0001 

 

 

It was noted in our experiments that the parboiled rough rice surface temperature did not 

exceed 92.61 oC. Feng and Tang (1998) observed similar trends in the study which used a MW at 
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2450 MHz frequency to dry diced apples in a spouted bed. The researchers found that there was a 

slight temperature reduction towards the end of the drying process. The authors suggested that this 

temperature reduction was due to the decrease in moisture of the diced apples. Thus, sample 

temperatures were slightly reduced due to the combined effects of evaporative cooling and heat 

transfer from the sample to air. Evaporative cooling is the reduction in temperature resulting from 

the evaporation of a liquid, which removes latent heat from the surface from which evaporation 

takes place. Atungulu et al. (2016) and Gunasekaran (1990) found that the surface temperature of 

the drying grain decreased due to moisture evaporating continuously from the grain surface 

because of this evaporative cooling effect. Evaporative cooling effects were also observed by Adu, 

Otten and Brown (1994) in their MW drying tests of soybeans. 

In phase II of the parboiled rice surface temperature profile, temperature steadily decreased 

quadratically from 77.94 oC to 75.69 oC (SD = 0.49 oC). The parboiled rice surface temperature at 

the start of the phase II (77.94 oC) is almost directly at the midpoint between the onset and peak 

gelatinization temperature of 76.4 and 81.7 oC, respectively. Parboiling was conducted slightly 

below the onset gelatinization temperature (76 oC). Although steaming was conducted at 113 oC 

which was well above the peak gelatinization temperature, this temperature was only held for 10 

mins. As a result, it is quite possible that the rice did not fully gelatinize during parboiling, and the 

reduction in parboiled rice surface temperature during the MW drying process as observed in phase 

II, was due to the rice starches completing gelatinization. The behavior of starch at the 

gelatinization temperature affects the availability of free water due to its absorption by the swelling 

starch granules. Since water works as a plasticizer during glass transition and gelatinization of 

food materials, the process of gelatinization is expected to affect the dielectric properties of rice 

starch during heating. Ahmed et al. (2007), whose research aimed at determining the dielectric 
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properties of Indian Basmati rice samples processed at a frequency range of 500 to 2500 MHz 

indicated that the dielectric loss factor of the rice kernels showed an increasing trend as the initial 

rice surface temperatures increased from 30 to 70 oC. However, the researchers indicated that there 

was a sharp decrease in dielectric parameters, and by extension, the rate of surface temperature 

increase above the rice gelatinization temperature of 70 oC. Chungcharoen & Lund (1987) also 

observed this phenomenon in rice flours and their isolated starch components.  

In phase III of the parboiled rice surface temperature profile,  the parboiled rice surface 

temperature increased quadratically from 75.69 oC to 92.61 oC (SD = 0.46 oC). This trend is 

consistent with trends expected with the continuous heating of high dielectric loss materials that 

is not undergoing gelatinization. 
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Figure 5.2: Parboiled rough rice moisture content and surface temperature kinetics during 

microwave drying with a microwave at 915 MHz frequency as a function of drying duration 

(treatment power was 2 kW, initial product mass was 1 kg, and the initial moisture content of the 

parboiled rough rice was 55.96%); d.b. indicates dry basis. 

 

Drying Energy Requirement and Efficiency 

Parboiled rough rice kernels are considered high dielectric loss materials due to their ability 

to absorb MW energy. As a result, when placed in a MW field, the parboiled rough rice kernels 

absorb MW energy, and this energy is subsequently converted into heat through the molecular 

vibration of the polar molecules and friction (Fan et al., 2017). In our study, MW specific energy 

of 1.05 kWh.[kg-grain]−1 was required to dry the parboiled rough rice from an initial MC of 55.96% 

to 15.58%. This translates to 1050 kWh per ton of the initial mass of rough rice at MC of 55.96%. 

This energy can be translated to 4.04 kWh.[kg-H2O removed]−1  and 1416.81 kWh to produce a 

ton of parboiled rough rice at an MC of 15.58%. Olatunde et al. (2017) reported that the energy 

requirement to remove a kg of water from freshly-harvested rough rice samples from 31.58% to 
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14.29% in one pass using an industrial MW at 915 MHz frequency at the MW specific energy of 

0.21 kWh.[kg-grain]-1 was 1.66 kWh.[kg-H2O removed]−1. This energy requirement by Olatunde 

et al. (2017) was 2.43 times lower than the energy requirement to remove a kg of water calculated 

for this research in large part because the researcher dried freshly-harvested rice in contrast with 

parboiled rice which is considered in our experiment. The parboiling process induces the rice 

starch’s gelatinization, whereby breaking down of the intermolecular bonds of starch molecules in 

the presence of water and heat to allow the hydrogen bonding sites (the hydroxyl hydrogen and 

oxygen) to engage more water. As a result, it is expected that more energy would be needed to 

break the water bound to the hydrogen binding sites of starch in parboiled rough rice kernels 

compared to the unbound water found in freshly-harvested rough rice kernels. 

Based on the “commercial energy” rates in the state of Arkansas in the U.S.A. (8.41 cents 

per kWh), the cost to dry a ton of high-MC parboiled rough rice from an initial MC of 55.96% to 

15.58% would be estimated at $88.31. Kalchik et al. (1981) reported on a parboiled rough rice 

drying operation that used a high temperature column batch dryer supplying air at 165 m3/min per 

ton of high MC parboiled rough rice. The energy requirement was calculated to be 632 kWh to dry 

a ton of parboiled rough rice from an initial MC of 53.85% to 18.34%. This translates to a drying 

cost of $53.15 per ton of high-MC parboiled rough rice. The cost and energy calculated by Kalchik 

et al. (1981)  was 1.66 times lower than that of the cost to dry a ton of high-MC parboiled rough 

rice calculated for this research.  Kalchik et al. (1981)  also  reported on a parboiled rough rice 

drying operation that used a high temperature continuous flow column dryer supplying air at 110 

m3/min per ton of high-MC parboiled rough rice. The energy requirement was calculated to be 489 

kWh to dry a ton of parboiled rough rice from an initial MC of 53.85% to 18.34%. This translates 

to a drying cost of $41.12 per ton of high-MC parboiled rough rice; the cost and energy calculated 
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was 2.15 times lower than that determined in our research.  It should be noted that the energy used 

to dry parboiled rough rice can vary considerably depending on many factors including the type 

and variety of grain, drying air temperature, RH, airflow rate (and thus drying rate), and the initial 

and final MC of the parboiled rough rice (Simmonds et al., 1953; Henderson & Pabis, 1961; Otten, 

1980; Cenkowski et al., 1992; Cnossen et al., 2002; Mulet et al., 1999; Iguaz et al., 2003; Aviara 

et al., 2004; Toğrul & Arslan, 2006). 

The drying efficiency determined in this experiment was 18.89%. In part, the determined 

efficiency is low because in calculation of the theoretical energy, it assumed that the latent heat of 

vaporization of water is same as that on a free surface, 0.63 kWh.[kg]-1. In reality the water is 

being evaporated from parboiled rice, which due to gelatinization the water is more bound to the 

hydrogen bonding sites of starch thereby requiring higher energy to remove. Theoretical energy 

consumption calculated for 100% and 80% efficiencies to dry a ton of parboiled rough rice from 

55.96% to 15.58% is 198.30 kWh and 247.90 kWh, respectively; this translates to $16.68 and 

$20.85, respectively, per ton of parboiled rough rice. If we were to assume that the latent heat of 

vaporization was 2.43 times higher for parboiled rice drying as indicated by the energy requirement 

calculated by Olatunde et al. (2017) who dried freshly-harvested rice the efficiency would increase 

to 41.27%.Theoretical energy consumption calculated for 41.27% efficiency to dry a ton of 

parboiled rough rice from 55.96% to 15.58% would be 433.29 kWh; this translates to $36.40 per 

ton of parboiled rough rice. 

Although the MW drying duration in our experiment was tremendously shorter than that 

of conventional industrial practice, there is still room and need to optimize the process to drive 

down the energy cost. Opportunity exists to optimize the energy required to below those using 

conventional means by accurately measuring and quantifying dielectric properties of parboiled 
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rough rice of different cultivars and characteristics such as MC; use this information for 

mathematical modeling to simulate use of different MW applicators and susceptors; describe 

parboiled rough rice kernel material state transitions during MW heating processes at various 

power densities and frequencies; and based on the generated information design, fabricate and 

validate the performance of new optimized MW applicators, MW susceptors, and MW processing 

conditions.   

 

Post-Drying Rice Characteristics 

The MRY of control samples was determined to be 70.14%, and HRY was 67.86%. The 

kinetics of MRY and HRY changes during the treatments are shown in figure 5.3. The summary 

of fit table showing the effect of MW drying duration on the MRY and HRY of parboiled rough 

rice dried is shown in Table 5.2. The MRY and HRY responses had a statistically significant 

change (p <  0.05) as a result of increasing drying duration (Table 5.2).  

The increased surface temperatures and drying rates induced by MW drying contributed to 

increased MC gradients within the rice kernels, subsequently leading to the formation of fissures. 

The formation of fissures within the kernel is a consequence of the differential shrinking and 

swelling of the endosperm, which results from uneven dehydration of the rice kernel during rapid 

drying when the grain is losing moisture to the drier outer layers (Nagato et al., 1964; Kunze & 

Hall, 1967; Kobayashi et al., 1972; Schluterman and Siebenmorgen, 2007). The presence of 

fissures on a rice kernel makes it more susceptible to breakage during the subsequent hulling and 

milling processes and is correlated with decreases in milling yields (Rhind, 1962; Craufurd, 1963; 

Kunze & Choudhury, 1972; Kobayashi, Miwa & Ishikowa, 1972; Kunze, 1979; Fernando et al., 

2008; Smith & Atungulu, 2018; Smith et al., 2018). 
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Table 5.2: Summary of fit table showing the effect of microwave drying duration on the milled 

rice yields (MRY), and head rice yields (HRY) of parboiled rough rice during microwave drying 

at a frequency of 915 MHz  

 MRY HRY 

R-Square 0.222049 0.432959 

Adjusted R-Square 0.202601 0.418783 

Root Mean Square Error 2.19895 2.869362 

P-Value 0.0016 <.0001* 

 

The MRY and HRY responses at the drying duration of 31.5 mins (power level of 2kW;  

MW specific energy of 1.05 kWh.[kg-grain]-1) were 65.01% and 59.98%, respectively. The HRY 

obtained from the treatment is still some eight percentage points lower than control samples. It is 

possible to stop the MW treatments after a drying duration that gives competitive HRY. For 

instance, if the high MC parboiled rice was dried at drying duration of 10.5 min at the power level 

of 2 kW (MW specific energy of 0.35 kWh.[kg-grain]-1 and the rest of the drying was completed 

with natural or hot air the parboiled rough rice MC would be 30.04%. The approach of pre-drying 

with MW may still significantly reduce drying duration, energy cost and result in HRY comparable 

to or greater than that of control samples. Under ideal conditions, a perfect HRY recovery would 

be about 70% of the total rough rice produced after the rice hulls and bran are removed (USDA, 

2014; Atungulu et al. 2016). Therefore, the goal should be to get a HRY closest to 70%. 
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Figure 5.3: Effect of microwave drying duration on the milled rice yields, and head rice yields of 

parboiled rough rice during microwave drying with a microwave at 915 MHz frequency  

 

 

CONCLUSION 

The objective of this study was to investigate the energy use and drying efficiency 

associated with drying of parboiled rough rice with 915 MHz MW dryer. A MW power level of 2 

kW was used to investigate specific energy and durations required to dry parboiled rough  rice in 

one pass from parboiled rough rice MC to safe storage MC. The following conclusions were 

drawn: 

• Following parboiling of the long-grain rough rice (XL 753) harvested at a MC of 

31.58% d.b., the MC increased to 55.96%.  

• The changes in parboiled rice surface temperature profiles exhibited three distinct 

phases characterized by an initial rapid linear increase in temperature, followed by 

a quadratic declining temperature speculated to result from starch gelatinization 
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process, and a final steady and quadratic increase in the grain temperature; the  

maximum grain surface temperature recorded during the treatment was 92.61 oC. 

•  MW specific energy of 1.05 kWh.[kg-grain]-1 was required to dry the parboiled 

rough rice from initial MC of 55.96% down to 15.58% d.b.; this translated to a 

drying energy requirement of 1050 kWh per ton of high MC parboiled rough rice; 

and a drying efficiency of 18.89%.  In general, the energy use was high  and the 

process need to be optimized to be competitive for industrial implementation.  

• The MRY and HRY associated with the one pass drying  at specific energy of 1.05 

kWh.[kg-grain]-1 were 65.01% and 59.98%, respectively. The HRY obtained from 

the treatment was some eight percentage points lower than that of control samples 

which suggest that partial MW drying and finishing the drying to safe storage with 

gently air drying might be better for preserving the rice HRY. Therefore, it 

recommended to stop the MW treatments after a drying duration that gives 

competitive HRY (10.5 min) and complete the rest of drying with natural air. The 

approach of pre-drying with MW may significantly reduce drying duration, energy 

cost and result in high HRY that are comparable to or greater than that of control 

samples.   
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CHAPTER 6: PROJECT CONCLUSIONS 

The performance of an industrial type microwave system for parboiled rough rice drying 

was tested. The microwave (MW) system was operated at a frequency of 915 MHz to dry high 

moisture content parboiled long grain rough rice samples of cultivar Mermentau (2018) and XL753 

(2019) which were harvested at initial MC of 23% to 24% wet basis (w.b).  

Long grain rough rice samples were placed into a 45 cm by 45 cm piece of cheesecloth 

then allowed to soak in a lab-scale hot water bath set to soaking temperature of 71, 73 and 76 oC 

for 3 hours. After soaking, the wet rough rice in cheesecloth was steamed in a lab-scale autoclave 

set to a temperature of 113 oC and a corresponding pressure value of 67 kPa for 5, 10 and 15 

minutes to complete the parboiling process. 

It was found that increasing soaking temperature from 71 oC to 76 oC led to increased 

uptake of water after parboiling, decreases in MRY, HRY, protein content, and SLC and increased 

TCD. Increasing steaming duration from 5 to 15 min led to decreased uptake of water by rice after 

the parboiling process, decreased MRY, protein content, SLC and TCD and increased HRY. It was 

recommended that for further parboiling research, rough rice is soaked at the onset gelatinization 

temperature, steamed for 10 min for optimal milling and physiochemical characteristics. 

In preparation for MW drying, the parboiled rough rice was placed in a MW blind tray. 

The outsides of the trays were made of polypropylene plastic on the sides with a Teflon coated 

fiberglass mesh at the bottom to hold the rough rice samples. The trays with rough rice samples 

were set on the belt of the MW oven and treated at specific energies ranging from 100 to 5650 

kJ.[kg-grain]-1 for drying durations in the range of 1.5 to 31.5 minutes. It was determined that 

increasing the MW specific energy led to decreases in the parboiled rough rice FMC, protein 

content, surface lipid content, peak and setback viscosity.  
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Experiments conducted to determine the implications of MW specific power on parboiled 

rough rice determined that rough rice soaked at 73oC, steamed for 10 min then treated at a low 

specific power of 2.92 kW.[kg-DM]-1 produced parboiled rough rice with FMC of  21.22%, drying 

rate of 3.85% d.b. [min-1], MRY of 73.22%, and HRY of 72.37%. However, rough rice subjected 

to the same parboiling conditions but treated at higher specific power of 8.77 kW.[kg-DM]-1 

produced parboiled rough rice with FMC of 19.73%, drying rate of 12.29% d.b. [min-1], MRY of  

68.18%, and HRY of 67.51%. The findings suggest that an increased MW specific power has a 

positive effect on rice MC reduction but negatively effects the rice milling characteristics. 

Experiments conducted to determine the fundamentals of heat and mass transport in 

parboiled rough rice kernels exposed to MW energy determined that parboiled rough rice soaked 

at 76oC then steamed for 10 min had a MC immediately after parboiling of 35.88%. This MC 

reduced to a FMC of 13.48% after being treated with power level of 2 kW and drying duration  of 

31.5 min (MW specific energy of 3780 kJ.[kg-grain]-1)  and at a low specific power of 2.92 kW.[kg-

DM]-1. The drying rate was highest during the beginning of drying then slowed down during the 

end and can be divided into 2 periods, an initial falling rate period (1.5 min to 7.5 min), and the 

second falling rate period (7.5 min to 31.5 min). Of the Page, Newton, Logarithmic, and Henderson 

& Pabis semi-empirical drying models, the logarithmic model best represented the MW drying 

behavior of parboiled rough rice kernels as determined by having the highest R2 = 99.99 × 10-2 and 

Adjusted R2 = 99.99 × 10-2 and lowest Reduced χ 2 = 1.88 × 10-2 and RMSE = 0.06 × 10-2. The 

drying constant (k) was determined to be 0.05 h -1. The effective moisture diffusivity (Deff) was 

determined to be 5.04 × 10-11 m2.s-1. The activation energy (Ea)  was determined to be 3.02 kW.kg-

1.  
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Parboiled rough rice surface temperature had statistically significant increases as a result 

of increasing drying duration at a power level of 2 kW. The rough rice surface temperature 

immediately after parboiling was determined to be 54.73 oC. During microwave drying, as the 

drying duration increased, so did the parboiled rough rice surface temperature increase to a final 

surface temperature of 92.61 oC at a power level of 2 kW and drying duration of 31.5 mins (MW 

specific energy of 3780 kJ.[kg-grain]-1)  and at a low specific power of 2.92 kW.[kg-DM]-1. The 

energy consumption of the MW drying process was determined to be 1.05 kWh.[kg-grain]−1. The 

drying efficiency of the MW drying process was determined to be 18.89%. The cost to dry a ton 

of high MC parboiled rough rice was $88.31 at a commercial energy rate of 8.41 cents per kWh in 

the state of Arkansas (2020). There was a statistically significant reduction in MRY and HRY as 

a result of increasing MW drying duration. Control samples dried gently using natural-air had 

MRY and HRY of 70.14% and 67.86%, respectively. The MRY and HRY associated with the one 

pass drying  at specific energy of 3780 kJ.[kg-grain]-were 65.01% and 59.98%, respectively.  

These findings suggest that MW drying of parboiled rough rice followed by tempering 

could be optimized to remove significant amounts of moisture from high MC parboiled rough rice 

in one pass. However, there is an opportunity to refine the MW drying process to improve 

efficiency and to reduce the cost. 
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