
University of Arkansas, Fayetteville University of Arkansas, Fayetteville 

ScholarWorks@UARK ScholarWorks@UARK 

Graduate Theses and Dissertations 

7-2020 

Genetics of Physiological Traits Associated with Drought Genetics of Physiological Traits Associated with Drought 

Tolerance in Soybean (Glycine max) Tolerance in Soybean (Glycine max) 

Sumandeep Kaur Bazzer 
University of Arkansas, Fayetteville 

Follow this and additional works at: https://scholarworks.uark.edu/etd 

 Part of the Agronomy and Crop Sciences Commons, Cellular and Molecular Physiology Commons, 

and the Plant Breeding and Genetics Commons 

Citation Citation 
Bazzer, S. K. (2020). Genetics of Physiological Traits Associated with Drought Tolerance in Soybean 
(Glycine max). Graduate Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/
3819 

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for 
inclusion in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more 
information, please contact scholar@uark.edu, uarepos@uark.edu. 

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F3819&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/103?utm_source=scholarworks.uark.edu%2Fetd%2F3819&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/70?utm_source=scholarworks.uark.edu%2Fetd%2F3819&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/108?utm_source=scholarworks.uark.edu%2Fetd%2F3819&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/3819?utm_source=scholarworks.uark.edu%2Fetd%2F3819&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/3819?utm_source=scholarworks.uark.edu%2Fetd%2F3819&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20uarepos@uark.edu


 

 

Genetics of Physiological Traits Associated with Drought Tolerance in Soybean (Glycine max) 

 

 

A dissertation submitted in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy in Crop, Soil, and Environmental Sciences 

 

 

by 

 

 

Sumandeep Kaur Bazzer 

Punjab Agricultural University 

Bachelor of Science in Biotechnology, 2013 

Punjab Agricultural University 

Master of Science in Plant Breeding and Genetics, 2015 

 

 

 

July 2020 

University of Arkansas 

 

 

 

This dissertation is approved for recommendation to the Graduate Council. 

 

 

 

 

__________________________ 

Larry C. Purcell, Ph.D. 

Dissertation Director 

 

 

 

__________________________                                                    __________________________ 

Jeffery D. Ray, Ph.D.                                                                       Richard E. Mason, Ph.D. 

Committee Member                                                                        Committee Member 

 

 

 

__________________________                                                    __________________________ 

Mary C. Savin, Ph.D.                                                                      Ken Korth, Ph.D. 

Committee Member                                                                        Committee Member 

 



 

 

Abstract 

Soybean (Glycine max L.) is one of the major row crops in the United States, and its 

production is often limited by drought stress. Physiological traits from exotic germplasm that 

confer drought tolerance may be useful in improving commercial soybean production. For 

example, carbon isotope ratio (δ13C) is positively correlated with water use efficiency (WUE), 

and nitrogen isotope ratio (δ15N) is negatively correlated with N2 fixation; canopy temperature 

(CT) is an indicator for genetic variation in transpiration and stomatal conductance. Therefore, 

the objectives of this research were to identify the genomic regions associated with: (1) δ13C and 

δ15N using a population of 196 F6-derived recombinant inbred lines (RIL) from PI 416997 × PI 

567201D that was phenotyped in four environments, (2) CT and δ13C using a population of 168 

F5-derived RILs from KS4895 × Jackson that was phenotyped in multiple environments and 

irrigation treatments. In the PI 416997 × PI 567201D population, δ13C and δ15N had a wide 

phenotypic range in all environments, and PI 416997 had higher δ13C and lower δ15N values than 

PI 567201D. δ13C had  high heritability (90%) whereas the heritability of δ15N was relatively 

lower (35%), indicating that  δ15N was more affected by the environment. QTL mapping 

identified eight loci on seven chromosomes associated with δ13C, and these loci explained 

between 2.5 to 30% of the phenotypic variation. There were 13 loci on 10 chromosomes 

associated with δ15N, explaining 1.7 to 14.4% of the phenotypic variation. There were strong 

interactions between QTLs and environments for δ15N. In the KS4895 × Jackson RIL population, 

Jackson had a cooler canopy than KS4895, and the heritability of CT had low heritability (31%) 

across environments. There were 11 loci present on eight chromosomes associated with CT that 

individually explained 4.6 to 12.3% of the phenotypic variation. The heritability of δ13C in 

KS4895 × Jackson RIL population heritability was 83% when estimated over environments and 



 

 

over irrigation treatments. A total of 24 QTLs associated with δ13C were identified and clustered 

in nine genomic loci on seven chromosomes. The identified QTLs for δ13C, δ15N, and CT were 

co-localized with genomic regions associated with drought tolerance-related traits from previous 

studies. These genomic regions may be important resources in soybean breeding programs to 

improve tolerance to drought. Further research is needed to fine map the identified QTLs and 

validate markers linked with these regions 

.
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CHAPTER I 

Introduction and Literature Review 

 



 

2 

Introduction 

Soybean [Glycine max (L.) Merr.] is one of the most important economic legume crops. 

It is widely cultivated around the world due to its high protein and oil concentration. Soybean 

faces many challenges posed by various environmental stresses, and drought is a major 

constraint to global soybean production and yield (Boyer, 1982; Hufstetler et al., 2007). Specht 

et al. (1999) reported that insufficient moisture and unpredictable rainfall can reduce soybean 

yield by 36% in the US. Drought stress affects soybean yield by reducing photosynthesis, leaf 

area, leaf number, and symbiotic N2 fixation (Serraj et al., 1999a; Sinclair and Serraj, 1995). 

Also, N2 fixation is more sensitive to water stress conditions than other physiological processes 

(Serraj and Sinclair, 1997; Sinclair, 1986). Therefore, there is a need for the development of 

soybean cultivars with high yield potential under water stress to maintain or increase soybean 

productivity (Polania et al., 2016). 

The direct selection of soybean genotypes with high yield stability under water deficit 

conditions is difficult due to its polygenic nature, low heritability, and significant genotype × 

environment (G × E) interactions (Ceccarelli et al., 1991; Teulat et al., 2002). As an alternative, 

yield can be improved by identifying morpho-physiological traits that are genetically associated 

with yield under water deficit conditions (Babu et al., 2003; Slafer et al., 2005; Teulat et al., 

2002). Among those traits, water use efficiency (WUE), cooler canopy, and insensitivity of N2 

fixation to drought have been considered important physiological traits and indicators of drought 

tolerance. Dissecting the genetic basis of these traits may help to improve yield under drought 

stress conditions in soybean and other crops. 

Under water-limited conditions, crop yield can be expressed as a function of the water 

transpired, WUE, and harvest index (Passioura, 1996). The improvement of any of these traits 
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may ultimately leads to increased yield in water deficit conditions. The use of the WUE trait in 

drought tolerance breeding programs is often limited by difficulties associated with its 

measurement in large populations. Farquhar et al. (1982) and Farquhar and Richards (1984) 

proposed a promising screening for WUE based on carbon isotope composition present in plant 

samples. The ratio of 13C to 12C (13C/12C) isotope in plants is less than that of 13C/12C in the 

atmosphere because there is discrimination of the heavier isotope of carbon (13C) over the lighter 

isotope of carbon (12C) during carboxylation process of photosynthesis in plants. The plant 

carbon isotope composition is either expressed as the carbon isotope ratio (δ13C) or carbon 

isotope discrimination (Δ13C), and it provides an integrated measurement of WUE in C3 plants 

(Farquhar and Richards, 1984). The δ13C is directly proportional to WUE, whereas Δ13C is 

inversely proportional to WUE (Farquhar et al., 1982). The δ13C or Δ13C have been used widely 

for the selection of genotypes with improved WUE in various crops (Cattivelli et al., 2008; 

Condon et al., 2004; Dhanapal et al., 2015a; Kaler et al., 2017b). 

Canopy temperature (CT) is an important physiological trait and can be used as a 

surrogate measurement of transpiration, stomatal conductance, and leaf water potential (Jones et 

al., 2009; Rebetzke et al., 2013). Under sufficient soil moisture, increased air temperature and 

vapor pressure deficit lead to an increased transpiration, resulting in canopy cooling (Tanner, 

1963). However, under water deficit conditions, reduced stomatal conductance and transpiration 

results in high CT (Gates, 1968; Tanner, 1963). Therefore, selecting genotypes that maintain 

lower CT compared with other genotypes under water deficit conditions could be useful to 

improve drought tolerance (Blum, 2004). Manual recording of CT of a large number of 

genotypes is difficult and tedious due to temporal variation in air temperature, solar radiation, 

wind, and soil moisture. Therefore, high throughput phenotyping through aerial thermal infrared 
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imaging could be one of the approaches to measure relative CT differences among genotypes 

under different environmental conditions (Knipling, 1970; Merlot et al., 2002). Various studies 

have shown that thermal infrared imaging is an effective tool to evaluate CT differences among 

genotypes (Kaler et al., 2018a; O’Sgaughnessy et al., 2011; Zia et al., 2011). 

The symbiotic relationship between soybean and N2-fixing soil bacteria is sensitive to 

drought conditions, resulting in decreased N accumulation and crop yield (Márquez-García et al., 

2015; Purcell et al., 1997; Serraj et al., 1999a). Differences among genotypes for their sensitivity 

to N2 fixation under drought conditions can evaluated by 15N natural abundance. Nitrogen 

isotope ratios between 15N and 14N (δ15N) can serve as an index of N2 fixation differences among 

soybean genotypes, as δ15N is negatively associated with N2 fixation (Andrews and Lea, 2013; 

Barrie et al., 1995; Letolle, 1980). This method compares the abundance of 15N isotope to 14N 

isotope in plant tissue, the atmosphere, and soil environment. The atmosphere has a lower 

concentration of the 15N isotope compared to the soil, and biological N2 fixation dilutes the 15N 

in plant tissue as compared to plants that depend on mineral N as a N source (Doughton et al., 

1995). Various studies have shown that δ15N can be used to estimate the amount of N fixed by 

genotypes via N2 fixation (Dhanapal et al. 2015b; Steketee et al. 2019). 

The physiological traits associated with drought tolerance are complex quantitative traits, 

controlled by a large number of genes and environmental factors (Blum, 2011; Reynolds and 

Tuberosa, 2008). Understanding the genetic basis of drought tolerance may help breeders and 

geneticists to develop cultivars with high yield potential and improved drought tolerance (Chen 

et al., 2011; Zhang et al., 2001). Recent advances in genome sequencing and genotyping 

platforms along with a continuous decline in genotyping cost, facilitate the development of high 

density linkage maps in various crops (Byrne et al., 2013; Chen et al., 2014; Poland et al., 2012; 
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Rafalski, 2010) including soybean (Cregan et al., 1999; Hyten et al., 2010; Song et al., 2004, 

2013). Single nucleotide polymorphisms (SNPs) and simple sequence repeats (SSRs) markers 

have been widely used and have high applicability in breeding and genetic studies. With the 

development of high-density linkage maps in soybean, linkage mapping and genome wide 

association mapping (GWAM) have been conducted to identify the genomic regions associated 

with drought tolerance related traits (Abdel-Haleem et al., 2012; Bazzer et al., 2020a, 2020b, 

2020c; Charlson et al., 2009; Dhanapal et al., 2015a, 2015b; Hwang et al., 2013, 2014, 2015; 

Kaler et al., 2017a, 2017b, 2018a, 2018b).  

Linkage mapping, or QTL mapping, provides opportunities to identify the number of 

QTLs controlling the phenotypic variation in a trait, the effect of each QTL, and the interaction 

of QTLs with the environment (Tanksley, 1993). Advanced populations such as recombinant 

inbred lines (RILs) are frequently used for QTL mapping in soybean (Abdel-Haleem et al., 2012; 

Bazzer et al., 2020a, 2020b, 2020c; Charlson et al., 2009; Hwang et al., 2013, 2014, 2015) to 

identify the QTLs and underlying genes related to drought tolerance traits. The molecular 

markers that are closely linked to identified QTLs/genes facilitate the selection of superior 

genotypes and have potential advantage for marker assisted selection (MAS) (Collard and 

Mackill, 2008; Ribaut and Hoisington, 1998).  

Previous studies have investigated the genomic regions associated with drought-

tolerance-related traits by using GWAM and linkage mapping in soybean. More studies are 

needed to map new QTLs across various environments and across different genetic backgrounds, 

as well as to confirm QTLs identified previously mapped in different soybean populations. The 

findings from these studies provide useful information to improve drought tolerance in soybean. 
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Literature Review 

Soybean [Glycine max (L.) Merr.] is a major feed crop which belongs to the genus 

Glycine, family Fabaceae (Leguminosae), subfamily Faboideae, order Fabales, and tribe 

Phaseoleae. The genus Glycine was divided by Hermann (1962) into three subgenera: 

Leptocyamus (Benth.), Glycine, and Soja (Moench). The subgenus Glycine consists of 26 wild 

perennial species, whereas Glycine soja (wild progenitor) and Glycine max (cultivated soybean) 

belong to subgenus Soja (Chung and Singh, 2008; Kim et al., 2010a). The cultivated soybean 

(Glycine max (L.) Merr.) was domesticated from its annual wild relative (G. soja Seib. & Zucc.) 

around 5000 years ago, and the Yellow River region of China is the origin of cultivated soybean 

(Carter et al., 2004; Dong et al., 2001; Li et al., 2008). The major differences between the wild 

and cultivated soybean are seed color, seed size, seed oil and protein concentrations, grain yield, 

and tolerance to different biotic and abiotic stresses (Joshi et al., 2013). Soybean was first 

introduced into North America in 1765 (Hymowitz and Harlan, 1983), and it is now widely 

grown and consumed in the US for food primarily as feed and various industrial products. 

Cultivated soybean is paleopolyploid in nature. There was an ancient whole genome 

duplication that occurred approximately 59 million years ago in the legume lineage, and a second 

genome duplication that occurred approximately 13 million years ago specific in the soybean 

lineage (Cannon et al., 2006). Glycine max and Glycine soja behave like diploids cytogenetically 

and both have 20 chromosomes (2n=40). The genome size of soybean is 1.1 Gb (Schemitz et al., 

2010). 

Bottleneck events include inbreeding, domestication, founding effect, and selective 

breeding over the past 75 years decreased the genetic diversity that resulted in narrow genetic 

diversity of soybean (Hyten et al., 2006). In North America, 35 ancestors contributed around 
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95% of the genes found in modern cultivars (Cui et al., 2001; Delannay et al., 1983; Gizlice et 

al., 1994, 1996; Salado-Navarro et al., 1993). The narrow genetic base of soybase cultivars and 

loss of tolerance genes during domestication increases their susceptibility to various biotic and 

abiotic stresses. 

Soybean is grown and consumed worldwide due to its high protein (~40%) and edible oil 

(~18-19%) concentrations. Globally, soybean has annual production of 341.8 million metric 

tons. It is the world’s leading economic oilseed crop as it contributes about 59% to world oilseed 

production (www.soystats.com). Depending upon global oil markets, soybean has also been at 

times an attractive crop for biodiesel production (Pimentel and Patzek, 2008). 

The symbiotic association of soybean with Bradyrhizobium japonicum soil bacteria 

reduces atmospheric N2 into ammonium (Strodtman and Emerich, 2009). This association 

decreases or eliminates the requirement of N fertilizer for soybean (Giller, 2001; Jensen and 

Hauggaard-Nielsen, 2003). Depending upon soil N concentration, N2 fixation may provide from 

50% to 85-90% of the N requirement (Mastrodomenico and Purcell, 2012).  

Soybean is a short-day plant, which begins flowering in response of short photoperiods 

(Garner and Allard, 1920). Soybean growing season ranges from 70 to 140 days depending on 

the cultivar and regions where it is planted. Flowering in soybean is sensitive to photoperiod, 

which results into divisions of cultivars into different maturity groups according to latitudes. 

Soybean is classified into different maturity groups (MGs) that ranging from 000 to X 

(McWilliams et al., 1999). Soybean grown on lower latitudes initiate flowering at shorter 

daylength (e.g. 10 hours) and those belong to late maturity groups. Whereas, soybean grown at 

higher latitudes initiate flowering at longer daylengths (e.g. 13 hours) and those belong to earlier 

maturity groups. Arkansas typically grows cultivars belonging to MGs III, IV, and V. 
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Soybean Yield and Impact of Drought 

Drought stress is a major constraint on the production and yield stability of soybean 

(Heatherly and Elmore, 1986; Manavalan et al., 2009) and leads to the reduction of 5 to 50% 

soybean yield (Sadeghipour and Abbasi, 2012). In the US, approximately 90% of the agricultural 

area is non-irrigated (Board and Kahlon, 2011). In Arkansas, approximately 80% of the soybean 

crop is irrigated; however, the depletion of ground water brings into question the long-term 

viability of irrigation. There was a linear increase in soybean yield by 22.6 kg ha-1 year-1 in the 

US from 1924 to 1998 (Specht et al., 1999). In the US, a severe drought stress in 2012 resulted in 

a 1594 kg ha-1 yield reduction under non-irrigated conditions compared with irrigated production 

(USDA, 2013). In 2013, a significant difference in soybean yield was reported under irrigated 

(3,531 kg ha-1) compared with non-irrigated (2596 kg ha-1) conditions in Arkansas (USDA, 

2014).Therefore, there is need for development of soybean cultivars that can better withstand 

water deficit conditions. 

 Gleick (2003) reported that 70 to 85% of water withdrawals worldwide are used for 

agricultural irrigation. This level of water consumption by agriculture is not sustainable into the 

future. As the result, drought seriously threatens crop production and food security in the 21st 

century (Tuberosa et al., 2002). Drought is generally accepted as a major abiotic stress on crop 

plants and is increasingly becoming a severe problem in many regions of the world. It is assumed 

that by the year 2025, around 1.8 billion people will face absolute water shortage and 65% of the 

world’s population will live under water-deficit environments (Nezhadahmadi et al., 2013). 

Drought alone accounts for global annual crop yield losses, ranging from 0 to 40%. Up to 

45% of the world’s agricultural lands are subjected to continuous or frequent drought (Ashraf and 

Foolad, 2007).  Drought stress has been reported to severely reduce germination and seedling 
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stand in a large number of plant species (Kaya et al., 2006). The nature of drought is complex, 

and it is considered as a set of climatic pressures that are produced by several phenomena such as 

heat, water deficiency, evaporative demand, and high irradiance. Plant response to drought stress 

is complex, because it reflects combining the effects of stress, which influences almost all 

processes of plant growth, and important factors controlling crop yield (Bahari, 2014). Most of 

the soybean hectarage in the USA is grown in areas where erratic and low rainfall often reduces 

yield (Dogan et al., 2007; Hufstetler et al., 2007).  

Mechanisms to Ameliorate Drought Impacts 

Mechanisms of drought tolerance in plants can be grouped into three broad categories: 

drought escape, dehydration avoidance, and dehydration tolerance (Carrow, 1996; Turner et al., 

2001). Drought escape is the mechanism in which plants complete their life cycle before the 

onset of drought stress. The Early Soybean Planting System (ESPS) is example of drought 

escape, and it is widely used in the southern US. In ESPS, the early maturing cultivars are 

planted in March or early April. These cultivars start flowering in late April to early May and set 

seed by mid-July to early August. Plentiful rainfall early in the season avoids drought that occurs 

most years in August (Heatherly and Elmore, 2004). 

Drought avoidances strategies result in the maintenance of high-water status during water 

deficit conditions by reducing evapotranspiration and stomatal conductance, increasing water use 

efficiency and root growth, and limiting vegetative growth. In dehydration tolerance, plants 

maintain their cell turgor pressure by accumulation of osmolytes or osmoprotectants (Nguyen et 

al., 1997). Drought tolerant genotypes are able to continue the primary growth and development 

activities (Chandler and Bartels, 1999). 
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Drought stress has significant effects during both vegetative and reproductive stages. In 

Nebraska, Specht et al. (1999) reported that there can be up to 40% losses in soybean yield under 

drought during both the vegetative and the reproductive stages. During vegetative stages, drought 

stress leads to reduction in leaf number, leaf curling, reduced plant growth and ultimately 

reduction in soybean yield. During reproductive stages, there is increased flower abortion, 

shriveled seeds, and a 24 to 50% in yield reduction (Frederick et al., 2001; Boyer, 1983). 

Morphological Responses to Water Stress 

Different severity levels of drought result in differential responses by plants to maintain 

their growth and development. The morphological traits related to leaves (shape, expansion, size, 

pubescence, waxiness, senescence, and cuticle) and roots (length, area, density, and dry weight) 

offer potential mechanisms to lessen the impact of drought. Leaf area or leaf expansion is 

reduced under water stress to maintain the balance between water absorbed by roots and water 

transpired by leaves (to achieve less transpiration per unit leaf area). Reduced tillering, 

branching, and number of leaves per branch in response to drought lead to reduced leaf area 

(Kim et al., 2010b). In grasses, leaf rolling is a common response to drought stress and leads to a 

50 to 70% reduction in water loss by transpiration (Sirault et al., 2004).  

Root development increases in response to moderate stress due to an increased allocation 

of carbon to roots (Smith and De Smet, 2012). Under terminal drought stress, extensive primary 

root development and greater root density leads to improved/greater extraction of available soil 

water, resulting in increased seed yield (Ludlow and Muchow, 1990; Kashiwagi et al., 2005; 

Subbarao et al., 1995; Turner et al., 2001). In soybean, root-related traits such as root density, 

volume, and root distribution in the soil profile induced by drought stress have been proposed as 

indicators of drought tolerance (Garay and Wilhelm, 1982; Liu et al., 2005). In soybean, slow 
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canopy wilting was found to be correlated with seed yield under water deficit conditions (Bai 

and Purcell, 2018b).  

Physiological Responses to Water Stress 

Drought stress affects various physiological processes, mainly cell growth due to a 

reduction in cell turgor pressure (Taiz and Zeiger, 2006). Plant water balance is impacted by 

transpiration rate, stomatal conductance (Gs), leaf water potential, and uptake of soil moisture 

(Gerhards et al., 2018). Stomatal closure and stomatal conductance are sensitive plant responses 

to soil moisture status across plant species (Jones, 2004; Lawlor and Cornic, 2002). A reduction 

in transpiration and stomatal conductance under water deficit conditions result in increased 

canopy temperature (Turner et al., 2001).  

Genotypes with drought tolerance can maintain a favorable water balance by limiting 

water loss while soil-moisture is still plentiful or improving soil moisture extraction. Water use 

efficiency (defined as ratio of the dry matter accumulated to the water consumed) is an important 

physiological trait that is highly affected by drought conditions (Monclus et al., 2006). The 

closing of stomata and reduced transpiration in response to water deficit conditions leads to 

improved WUE (Abbate et al., 2004). Under drought, closure of stomata and decreased stomatal 

conductance lead to a rapid decline in photosynthesis and limits the contribution of current 

assimilates to grain (Akram 2011; Sueedipour and Moradi, 2011).  

A number of genes are activated in response to drought stress, and these genes are 

involved in the perception of drought and transmission of stress stimuli to other plant parts. 

Some genes over-expressed in early response to drought are involved in signal transduction, 

regulatory transcriptional and translational factors, and production of plant regulatory 

compounds (abscisic acid, salicylic acid, and brassinosteroids) (Kulkarni et al., 2017; Reddy et 
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al., 2004; Schachtman and Goodger, 2008; Shinozaki et al., 2003; Verma et al., 2016). Genes 

related to osmotic balance, water transport, and oxidative stress are activated through signal 

transduction late in the response to stress (Knight and Knight, 2001; Shinozaki and Yamaguchi-

Shinozaki, 2000). Abscisic acid (ABA) plays a significant role in response to water stress and is 

linked with rapid stomatal closure, reduced transpiration, increased water flux into the root 

system, and rapid accumulation of osmotic solutes (proline and betaine) (Davis and Mansfield, 

1983; Prasad et al., 2008).  

Breeding for Drought Tolerance 

To overcome the devasting effects of drought and improve production efficiency in the 

face of a burgeoning world population, more stress tolerant crops must be developed (Khush, 

1999). Improved cultivars with drought tolerance is the best solution to lessen the impact of 

drought on crop productivity. For developing varieties for drought conditions, conventional 

breeding methods are time consuming and labor intensive due to the quantitative nature of yield 

and drought tolerance (McWilliam, 1989; Ribaut et al., 1997). This problem is compounded in 

soybean because human selection has reduced the genomic diversity of cultivated soybean 

(Carter et al., 2004), limiting the availability of favorable alleles that could improve drought 

tolerance in adapted germplasm (Hyten et al., 2006; Lam et al., 2010). Understanding the genetic 

basis of drought tolerance in soybean is a prerequisite for developing genotypes with high yield 

potential under drought. 

An alternative strategy of improving drought tolerance in crops is based upon identifying 

specific physiological traits that improve the crop adaptation to water deficit conditions 

(Subbarao et al., 1995). Dissecting the physiological basis of drought tolerance will help 

elucidate the mechanisms controlling drought tolerance and seed yield (Chen et al., 2011). 
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Therefore, a detailed understanding of the genetics and physiology of drought tolerance as well 

as the use of the proper germplasm and selection methods will facilitate the development of 

drought tolerant cultivars (Mohammadi et al., 2004). Moreover, identifying the genes controlling 

the physiological responses of plants to drought may lead to targeted genetic improvement 

strategies.  

Traits Associated with Drought Tolerance 

Measurement of physiological traits associated with drought tolerance should 

discriminate tolerant and susceptible genotypes. Traits associated with plant water status that 

have demonstrated genetic differences include canopy wilting (Abdel-Haleem et al., 2012; 

Charlson et al., 2009; Hwang et  al., 2015; Kaler et al., 2017a; Sloane et al., 1990), canopy 

temperature (Bai and Purcell, 2018b; Blum, 1988; Ludlow and Muchow, 1990; Kaler et al., 

2018a), carbon isotope ratio (Bai and Purcell, 2018a; Bazzer et al., 2020a, 2020b; Dhanapal et 

al., 2015a; Kaler et al., 2017b), canopy coverage (Kaler et al., 2018b), rate of excised leaf water 

loss (Basal et al., 2005), leaf relative water content (Babu et al., 2003), relative electrical 

conductivity (Lafitte and Courtois, 2002), and malondialdehyde content (Sairam et al., 1997). A 

better understanding of the physiological basis for yield improvements under water-deficit 

conditions will help to identify targets for soybean yield improvement in the future (Koester et 

al., 2014).  

Carbon Isotope Ratio: 

Water use efficiency (WUE), which is defined as the amount of dry matter produced per 

unit of water transpired, is one among several physiological traits that impart drought tolerance 

(Condon et al., 2004). Direct measurement of WUE depends either on extensive leaf gas-

exchange data or long-term measures of plant water consumption and biomass production 
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(Manavalan et al., 2009). Thus, WUE is closely associated with total biomass yield (Chen et al., 

2011; Passioura, 1996; Wright, 1996). Passioura (1996) proposed a simple model to view yield 

as a multiplicative function of water transpired (T, m3), water use efficiency (WUE, kg Biomass 

m-3), and harvest index (HI, kg grain kg-1 Biomass) under water limited environments: 

Y = T × WUE × HI 

 In short, crop performance could be improved through increases in T, WUE, or HI 

(Wright, 1996). Richards et al. (2002) pointed out that these three components are likely 

independent of each other. Thus, an improvement in any one of these components could result in 

an increase in yield. Greater WUE can be achieved by coordination between photosynthesis and 

transpiration (Chen et al., 2011). Genetic variability for WUE has been found in many cultivars 

or lines of several crop species including soybean (Mian et al., 1996), peanut (Wright et al., 

1994), cowpea (Ashok et al., 1999; Ismail and Hall, 1992), cotton (Quisenberry and McMichael, 

1991; Saranga et al., 1999), sorghum (Donatelli et al., 1992), barley (Hubick and Farquhar, 

1989), and wheat (Ehdaie and Waines, 1993; Van Den Boogaard et al., 1997).  

The application of WUE for improving drought tolerance, however, has been limited by 

lack of suitable screening methods in large populations under field conditions (Chen et al., 2011, 

2012). To avoid the difficulty of measuring WUE of field grown plants, Farquhar et al. (1982) 

and Farquhar and Richards (1984) proposed that the discrimination of the heavier isotope of 

carbon (13C) over the lighter isotope of carbon (12C) in C3 plants, could serve as a proxy for 

WUE. This discrimination occurs in the carbon assimilation process, mainly at the initial 

carboxylation step catalyzed by Rubisco (Xu et al., 2009). The extent of this carbon isotope 

discrimination (Δ13C) is related to the ratio of the internal to external concentrations of CO2 

(Ci/Ca) which is further controlled by stomatal conductance and photosynthetic capacity 
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(Brugnoli and Farquhar, 2000; Farquhar et al., 1989). An approximate expression for the overall 

Δ13C in leaves for C3 plants during photosynthesis has been described by Farquhar et al. (1989) 

as: 

Δ13C = a + (b-a) Ci/Ca 

where ‘a’ is the discrimination that occurs during diffusion of CO2 into the intercellular airspaces 

and ‘b’ is the discrimination associated with carboxylation by Rubisco. 

Therefore, Δ13C is positively correlated with the ratio of internal leaf CO2 concentration 

to ambient CO2 concentration (Ci/Ca) and has a negative relationship with WUE (Ehdaie et al., 

1991; Farquhar and Richards, 1984; Johnson and Bassett, 1991). Thus, a high Ci/Ca leads to a 

higher Δ13C and a lower WUE (Farquhar and Richards, 1984). This negative correlation with 

WUE has been used for indirect selection of improved WUE in C3 plants under selected 

environments (Cattivelli et al., 2008). The linkage between Δ13C and WUE was predicted on the 

concept that both are functionally dependent on Ci (Farquhar et al., 1989). Thus, Δ13C provides 

an integrated measurement of WUE in C3 plants (Farquhar and Richards, 1984).  The alternative 

expression of Δ13C is carbon isotope ratio (δ13C) which is directly proportional to WUE, whereas 

Δ13C is inversely proportional to WUE. 

Canopy Temperature 

It is also difficult to measure transpiration (T) on a large number of genotypes in a field 

experiment, but canopy temperature (CT) variation due to water stress can be used as an 

indicator for transpiration differences among genotypes. Under sufficient soil moisture, 

transpiration results in canopy cooling (Tanner, 1963). Under water deficit conditions, there is a 

decrease in stomatal conductance and closure of stomata which results in increased CT due to 

lack of transpirational cooling (Gates, 1968; Tanner, 1963). Thus, CT can be used as a surrogate 
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measure of stomatal conductance, plant transpiration, and plant water status (Amani et al., 1996; 

Araus et al., 2003; Jones et al., 2009; Rebetzke et al., 2013). Therefore, selecting genotypes that 

maintain lower CT compared with other genotypes under water deficit conditions may be useful 

to improve drought tolerance (Blum, 2004).  

In wheat, Olivares-Villegas et al. (2007) reported that lower CT is a highly heritable 

(h2=0.65) drought-adaptive trait that significantly contributed to improved crop performance. 

They suggested that lower CT as a dehydration-avoidance mechanism can be used as a selection 

criterion to identify high yielding genotypes or as an important predictor of yield performance 

under drought (Fischer et al., 1998). 

Field measurement of CT of a large number of genotypes is difficult because of 

temperature variation over time due to solar radiation, wind, soil moisture, and air temperature. 

Therefore, high throughput phenotyping through aerial thermal infrared imaging could be one of 

the approaches to measure relative CT differences among genotypes (Knipling, 1970; Merlot et 

al., 2002). In recent years, unmanned aerial systems (UAS) with thermal infrared imaging have 

become an advanced field phenotyping platform to  monitor crop water status, improving 

irrigation, and managing irrigation (Jackson et al., 1981; Jones, 2004; Martínez et al., 2016; 

Santesteban et al., 2017; Zhang et al., 2018). 

Nitrogen Fixation  

Legumes have the ability to fix atmospheric N2 by establishing a symbiotic relationship 

with N2-fixing soil bacteria. This symbiotic interaction between soybean and rhizobia is the most 

significant natural pathway for the introduction of atmospheric N into the biosphere. But growth 

of legume plants and number of nodules is depressed under drought conditions, which results in 

decreased N accumulation and crop yield (Márquez-García et al., 2015; Serraj et al., 1999a). 
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Proposed mechanisms decreasing N2 fixation during drought include carbon shortage, oxygen 

limitation, and feedback regulation by nitrogen accumulation (Purcell, 2009; Serraj et al., 

1999b). The process of root hair infection by Rhizobium and the formation of infection threads 

have also been found to be seriously inhibited by water deficit (Graham, 1992; Purcell et al., 

1997).  

Differences among genotypes in the sensitivity of N2 fixation to drought can be evaluated 

by 15N natural abundance, which provides a snapshot of the fraction of N derived from the 

atmosphere (NDFA) (Shearer et al., 1986) and serves as an index of N2 fixation (Andrews and 

Lea 2013; Barrie et al., 1995; Letolle, 1980). The 15N natural abundance (δ15N) method 

compares the abundance of 15N isotope to 14N isotope in plant tissue, the atmosphere, and soil 

environment. The atmosphere has lower concentration of 15N isotope compared to the soil. As a 

result, biological N2 fixation dilutes the 15N in plant tissue as compared to plants that depend on 

mineral nitrogen as a nitrogen source (Doughton et al., 1995). The difference in 15N and 14N 

concentration between soil and atmosphere is expressed in terms of parts per thousand (‰) and 

is referred to as the N isotope ratio (δ15N) (Peoples et al., 1989).  The fraction of NDFA from 

δ15N is determined as (Kohl and Shearer, 1981): 

NDFA = (δ15Nref - δ
15Nsamp)/(δ

15Nref - δ
15N0) 

where δ15Nref  and δ15Nsamp are the 15N composition of  the reference plant (non-nodulating 

soybean) and the plant sample, respectively, and  δ15N0 is a constant (-1.30 for soybean, 

Bergersen et al., 1989) that represents the δ15N value of soybean totally dependent upon N2 

fixation. Genetic variability for NDFA or δ15N has been found in soybean genotypes/accessions 

and has been used to study the inheritance of N2 fixation (Dhanapal et al., 2015b; Steketee et al., 
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2019). These studies have shown that NDFA or δ15N can be used to estimate the amount of N 

fixed by genotypes via N2 fixation. 

Mapping QTLs for Drought Tolerance Related Traits 

Drought tolerance is a complex and quantitatively inherited trait that is governed by 

several complex factors including genotype, environment, and genotype × environment 

interactions (Carter et al., 1999). Quantitative trait loci (QTL) are regions in the genome that are 

associated with a quantitative trait. Identification of QTLs related to drought tolerance via 

molecular markers is one approach to improve selection efficiency (Pathan et al., 2007).  

The availability of high density molecular marker maps allows the genetic analysis of 

physiological traits and provides additional information on the identification of the number of 

QTLs affecting the trait, genomic location of the QTLs, and which parent contributes the 

favorable allele for each QTL (Mian et al., 1996). Linkage mapping is a statistical procedure to 

identify QTLs associated with a trait in a segregating bi-parental population across multiple 

environments. 

The biparental segregating populations such as recombinant inbred lines (RIL), 

backcross, double haploid line, and F2 populations have been widely used for QTL mapping and 

these populations have several advantages and disadvantages over other (Collard et al., 2005; 

McCouch and Doerge, 1995; Paterson, 1996). The RIL population is derived from a cross of two 

homozygous (inbreds) parents follow by continuous selfing over several generations resulting 

homozygous lines known as RILs. Time required for development of RILs (usually 6-8 

generations) is the major disadvantage of this population. The RIL population is permanent and 

immortal as the composition of this population is not altered over time, which allows to replicate 

the experiments across multiple environments.  
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Analysis of QTLs in replicated, segregating RIL populations under different 

environments allows the variance to be partitioned into genotype and environment components, 

together with an estimate of the number of genetic loci controlling traits (Kearsey and Hyne, 

1994).  Recent advances in high throughput genotyping and phenotyping platforms have 

revolutionized the dissection of the genetic basis of traits associated with drought tolerance and 

will accelerate soybean breeding research for drought tolerance.  

In soybean, a large number of QTLs have been identified for agronomic and 

physiological traits, seed composition, and responses to both biotic and abiotic stresses 

(Manavalan et al., 2009). To date, only a few QTLs associated with drought tolerance have been 

reported in soybean, and these identified QTLs explained less than 10 % of the phenotypic 

variation for those traits (Manavalan et al., 2009; Mian et al., 1998; Monteros et al., 2006). In 

soybean, QTLs associated with WUE have been identified using an F4-derived population 

developed from a cross between “Young” (PI 508266) and PI 416937 (Mian et al., 1996). A total 

of four QTLs were associated with WUE and when combined, these QTLs explained 38% of the 

variability for WUE. Mian et al. (1998) identified two independent QTLs associated with WUE 

in a F2- derived population from a cross of S100 × Tokyo.  

In a field experiment, Specht et al. (2001) evaluated Δ13C RILs developed from a cross 

between ‘Minsoy’ and ‘Noir 1’ and identified five QTLs associated with Δ13C in soybean. 

Dhanapal et al. (2015a) and Kaler et al. (2017b) used GWAM to identify SNPs associated with 

δ13C using a panel of 373 diverse soybean accessions. A total of 39 SNPs was significantly 

associated with δ13C and likely tagged 21 different loci (Dhanapal et al., 2015a). Kaler et al. 

(2017b) identified 54 SNPs for δ13C that likely tagged 46 loci. Kaler et al. (2018a) conducted the 

first GWAM study for CT using a diverse panel of 345 maturity group IV soybean accessions 
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and association analysis identified 34 loci associated with CT. Bai and Purcell (2018b) found 

that slow wilting genotypes under water deficit conditions had a cooler canopy than fast wilting 

genotypes and that a cooler canopy has a positive correlation with grain yield.  

In soybean, GWAM and linkage mapping studies have dissected the genetic basis of 

several morpho-physiological traits such as canopy wilting (Abdel-Haleem et al., 2012; Charlson 

et al., 2009; Hwang et al., 2015, 2016; Kaler et al., 2017a), oxygen isotope ratio (δ15O, Kaler et 

al., 2017b), and canopy coverage (Kaler et al., 2018b). Charlson et al. (2009) evaluated soybean 

canopy wilting in a population of 92 F3- and F5- derived recombinant inbred lines (RILs) 

generated from cross of KS4895 and Jackson and identified four putative QTLs linked with 

canopy wilting on Gm08, Gm14, Gm17, and Gm13. Du et al. (2009) used a mapping population 

of 184 RILs developed from a cross of Kefeng1 and Nannong1138-2 and identified two QTLs 

(Gm08 and Gm20) for wilting coefficient. Abdel-Haleem et al. (2012) identified seven QTLs for 

wilting on Gm02, Gm04, Gm05, Gm12, Gm14, Gm17, and Gm19. 

Hwang et al. (2015, 2016) used multiple bi-parental populations to identify QTLs linked 

with canopy wilting and found eight QTL clusters associated with canopy wilting. Previously, 

GWAM experiments in soybean identified loci associated with canopy coverage, canopy wilting, 

and oxygen isotope ratio. GWAM identified  between 33 and 50 putative loci associated with 

canopy coverage (Kaler et al., 2018b), 23 putative loci associated with canopy wilting (Kaler et 

al., 2017a), and  31 loci with oxygen isotope ratio (Kaler et al., 2017b). Steketee et al. (2020) 

also conducted a GWAM for canopy wilting using a different diverse panel of soybean 

accessions and identified 44 loci were associated with canopy wilting under rainfed conditions.  

Various QTL analyses have been performed to identify the genomic regions associated 

with N2 fixation related traits under drought. Hwang et al. (2013) conducted QTL analysis for 
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shoot ureide and N concentration by using a mapping population derived from the cross of 

KS4895 and Jackson and identified two QTLs for ureide and shoot N concentration under 

drought conditions. Hwang et al. (2014) were the first to map QTLs for nodule number, nodule 

size, and nodule weight in field experiments. Dhanapal et al. (2015b) conducted GWAM on a 

panel of 374 maturity group 4 accessions and identified 17 and 19 SNPs significantly associated 

with NDFA and N concentration, respectively. Steketee et al. (2019) were the first to perform 

association mapping for δ15N using a panel of 211 diverse soybean accessions and found 23 and 

26 SNPs significantly associated with δ15N and N concentration, respectively. 

To improve drought tolerance in soybean, more studies are needed to identify and 

confirm QTLs associated with drought tolerance, to map new QTL(s)/gene(s), and to determine 

gene action under drought. High-density genetic maps and confirmed QTLs/genes, which are 

screened across the various environments and across genetic backgrounds, are the most 

important criteria for developing drought-resistant soybean through marker-assisted selection 

(Manavalan et al., 2009). Subsequently, the next steps will be to confirm these QTLs in different 

genetic backgrounds and in different environments to evaluate the efficacy of identified QTLs in 

selecting drought tolerant/resistant genotypes. 

Objectives 

The objective of this research was to identify the genomic regions (QTLs) associated 

with drought-related traits. In this research, two different biparental populations were 

phenotyped on field scale experiments for δ13C, δ15N, and CT at multiple locations under 

different environmental conditions. We have been able to identify genomic regions and link 

molecular markers with identified genomic loci responsible for these targeted traits. A deeper 

understanding of genetic control of physiological traits associated with drought tolerance will 
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help improve drought tolerance in soybean. The overall objective of this study was to identify the 

QTLs associated with drought tolerance-related traits and to confirm the identified QTLs from 

previous studies. This dissertation is divided into four chapters that detail the specific aims of 

this research: 

• Identification of quantitative trait loci for carbon isotope ratio (δ13C) in a recombinant inbred 

population of soybean  

• Mapping quantitative trait loci (QTL) for plant nitrogen isotope ratio (δ15N) in soybean  

• Mapping and confirmation of quantitative trait loci (QTLs) associated with carbon isotope 

ratio (δ13C) in soybean 

• Identification of quantitative trait loci associated with canopy temperature in soybean 
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Abstract 

Drought is a major limitation to soybean yield, and the frequency of drought stress is 

likely to increase under future climatic scenarios. Water use efficiency (WUE) is associated with 

drought tolerance, and carbon isotope ratio (δ13C) is positively correlated with WUE. In this 

study, 196 F6-derived recombinant inbred lines from a cross of PI 416997 (high WUE) × PI 

567201D (low WUE) were evaluated in four environments to identify genomic regions 

associated with δ13C. There were positive correlations of δ13C values between different 

environments (0.67 ≤ r ≤ 0.78). Genotype, environment, and genotype × environment 

interactions had significant effects on δ13C. Narrow sense heritability of δ13C was 90% when 

estimated across environments. There was a total of 16 QTLs on seven chromosomes with 

individual QTLs explaining between 2.5 to 29.9% of the phenotypic variation and with additive 

effects ranging from 0.07 to 0.22‰. These 16 QTLs likely identified eight loci based on their 

overlapping confidence intervals. Of these eight loci, two loci on chromosome 20 (Gm20) were 

detected in at least three environments and were considered as stable QTLs. Additive QTLs on 

Gm20 showed epistatic interactions with 10 QTLs present across nine chromosomes. Five QTLs 

were identified across environments and showed significant QTL × environment interactions. 

These findings demonstrate that additive QTLs and QTL × QTL interactions play significant 

roles in genetic control of the δ13C trait. Markers flanking identified QTLs may facilitate marker 

assisted selection to accumulate desirable QTLs to improve WUE and drought tolerance in 

soybean. 
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Introduction 

Water deficit is a major abiotic stress that limits soybean (Glycine max (L.) Merr.) 

production and yield in many regions of world. The demand for agricultural water is expected to 

increase in the future due to predicted climatic change that may result in the occurrence of 

various crop stresses (Knox et al. 2018). Development of cultivars with increased drought 

tolerance may reduce irrigation requirements and help to improve crop performance under water 

deficit conditions (Polania et al. 2016). Under drought conditions, direct selection for yield is 

difficult due to low heritability and significant interaction of genotypes with the environment 

(Ceccarelli et al. 1991). A large number of morpho-physiological traits have been proposed as 

indirect selection criteria for genetic improvement of drought tolerance (Ludlow and Muchow 

1990; Purcell and Specht 2004). Among these, water use efficiency (WUE) (defined as the ratio 

of biomass production to water transpired) was proposed as a genetic selection tool for 

improving adaptation in drought-prone environments.  

Although WUE is recognized as an important trait for drought-prone environments, 

phenotyping for WUE at the field level is time-consuming, difficult, and expensive (Chen et al. 

2011). Carbon isotope ratio (δ13C), through its positive relationship with WUE, has been proposed 

as a selection criterion for improved WUE (Farquhar and Richards 1984). In C3 plants, differences 

in δ13C among genotypes are due to the variation in the intercellular CO2 concentration (Ci) in the 

leaves that is regulated by carboxylation capacity of the enzyme Rubisco (ribulose-1,5-

bisphosphate carboxylase/oxygenase) and by stomatal conductance (Brugnoli and Farquhar 2000; 

Farquhar et al. 1989). Therefore, δ13C is negatively correlated with the ratio of intercellular to 

atmospheric CO2 concentrations (Ci/Ca) and positively related with WUE (Farquhar et al. 1982). 
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In C4 plants, the relationship between δ13C and WUE is more complicated as carbon isotope 

discrimination occurs at both carboxylation phases (in mesophyll and bundle sheath cells); 

therefore, δ13C in C4 plants depends on the ratio of intercellular to atmospheric CO2 concentrations 

and CO2 leaking from the bundle sheath cells back to the mesophyll (Farquhar 1983). In contrast 

to C3 plants, the correlation between δ13C and Ci/Ca in C4 plants is positive, negative or zero 

depending on extent of leakiness (Cernusak et al. 2013; Henderson et al. 1992; Hubick et al. 1990; 

Sandquist and Ehleringer 1995). Therefore, relationship between δ13C and WUE in C4 plants is not 

as strong as in C3 plants. 

Selection for high δ13C may provide a useful method for indirect selection of high WUE 

due to its substantial genetic variance, high heritability, and small genotype by environment 

interaction (G×E) in water-limited environments (Hall et al. 1990; Kaler et al. 2017, 2018; 

Richards et al. 1999, Voltas et al. 1999). Several greenhouse and field experiments have shown 

genetic variation in δ13C and close associations of both Δ13C (carbon isotope discrimination; 

negatively correlated with WUE) or δ13C with WUE in many crop species including barley 

(Hordeum vulgare) (Çag˘irgan et al. 2005), bread wheat (Triticum aestivum) (Condon et al. 

1987; Ehdaie et al. 1991; Read et al. 1991), cotton (Gossypium hirsutum) (Brugnoli et al. 1988), 

cowpea (Vigna unguiculata) (Hall et al. 1990), durum wheat (Triticum durum) (Araus et al. 

1998), maize (Zea mays) (Gresset et al. 2014; Monneveux et al. 2007; Twohey et al. 2019), 

peanut (Arachis hypogaea) (Hubick et al. 1986), sorghum (Sorghum bicolor) (Henderson et al. 

1998; Hubick et al.1990), and soybean (White et al. 1996). These properties of δ13C make it an 

attractive surrogate for WUE in research and breeding programs (Farquhar and Richards 1984; 

Xu et al. 2008). 
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Linkage mapping is a statistical procedure to identify the genomic regions or quantitative 

trait loci (QTLs) associated with a trait in a segregating population across multiple environments. 

In addition, QTL × environment interactions also affect the expression of identified QTLs and 

detection of QTLs that are stable across different environments (Campbell et al. 2003). In 

soybean, genomic regions associated with WUE have been identified using an F4-derived 

population developed from a cross between Young (PI 508266) and PI 416937 (Mian et al. 1996) 

and from an F2-derived population from a cross of S100 × Tokyo (Mian et al. 1998).  

Several QTLs associated with δ13C or Δ13C have been identified in tomato (Solanum 

lycopersicum) (Martin et al. 1989), barley (Teulat et al. 2002), pasture legume (Stylosanthes 

scabra) (Thumma et al. 2001), rice (Oryza sativa) (Ishimaru et al. 2001; Price et al. 2002; Xu et 

al. 2009), cotton (Gossypium spp.) (Saranga et al. 2001), Brassica oleracea (Hall et al. 2005), 

maritime pine (Pinus pinaster) (Brendel et al. 2002), maize (Avramova et al. 2019; Gresset et al. 

2014), wheat (Triticum spp.) (Peleg et al. 2009), and soybean (Bazzer et al. 2019; Dhanapal et al. 

2015; Kaler et al. 2017; Specht et al. 2001). Genome wide association mapping studies on a 

panel of 373 diverse soybean accessions identified 39 (Dhanapal et al. 2015) and 54 SNPs (Kaler 

et al. 2017) associated with δ13C. 

In this study, a high-density genetic map was developed for 196 F6-derived recombinant 

inbred lines (RILs) developed from a cross between PI 416997 × PI 567201D. Plant 

introductions, PI 416997 and PI 567201D belong to maturity group 4 and were originally 

collected from Japan and Georgia, respectively (www.ars-grin.gov). PI 416997 was selected for 

high δ13C while PI 567201D was selected for low δ13C based on data from a multi-environment 

study conducted previously (Dhanapal et al. 2015) and because PI 416997 had higher genomic 

estimated breeding values for δ13C than PI 567201D (Kaler et al. 2018). Our objectives in the 
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present research were to: (1) identify the genomic regions associated with δ13C within and across 

environments; (2) confirm identified QTLs for δ13C with the genomic regions identified in 

previous mapping studies; and (3) identify potential candidate genes associated with δ13C 

underlying detected QTLs. 
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Materials and Methods 

Field Experiments 

A population of 196 F6-derived RILs was developed from a cross between PI 416997 

(high δ13C and WUE) × PI 567201D (low δ13C and WUE). Each of the 196 RILs was developed 

by single-plant descent from a single random F2 plant and each F2 plant produced only one RIL. 

Hence, this RIL population represents a population of random F2 plants. Along with both 

parents, five check cultivars (AG4632, Dillon, Maverick, Osage, and Pella 86) were grown with 

the RILs at Stoneville, MS (33.42° N, 90.90° W) in 2016 and 2017, at Bradford Research Center 

near Columbia, MO (38.95° N, 92.33° W) in 2017, and at Main Arkansas Agricultural Research 

Center, Fayetteville, AR (36.05° N, 94.15° W) in 2017. At Stoneville, the soil was a Bosket very 

fine sandy loam (fine-loamy, mixed, active, thermic, Mollic Hapludalfs) in 2016 and a Dundee 

silty clay loam (Dundee fine-silty, mixed, active, thermic, Typic Endoaqualfs) in 2017. At 

Columbia, the soil was a Mexico silt loam (fine, smectitic, mesic Vertic Epiaqualf), and at 

Fayetteville, the soil was a Captina silt loam (fine-silty, siliceous, active, mesic Typic 

Fragiudult).  

For both years at Stoneville, plots consisted of one row, 66 cm apart and 2.74 m in 

length. At Columbia, 3.05 m long single row plots were spaced 76 cm apart. At Fayetteville, 

plots consisted of two rows, 6 m in length with 45 cm spacing between rows. At each 

experimental site, treatments (genotypes) were analyzed as a randomized complete block design 

with two replications.  

All seeds were treated with Apron Maxx RTA and Moly (Syngenta, Greenboro, NC) 

prior to planting at Stoneville and Columbia in 2017, and with IleVo (Bayer CropScience, 

Research Triangle Park, NC) and CruiserMaxx (Syngenta, Greenboro, NC) at Fayetteville. 
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Sowing occurred on 6 May 2016 and 16 May 2017 at Stoneville, 14 May 2017 at Columbia, and 

10 June 2017 at Fayetteville. At Stoneville in both years, furrow irrigation was applied as 

needed, while experiments were conducted under rainfed conditions at Columbia. At 

Fayetteville, irrigation was applied with a sprinkler irrigation system as required. Insecticides 

and herbicides were applied as needed at all environments. Rainfall data were collected online 

from the Southern Regional Climate Center (https://www.srcc.lsu.edu/station_search) for 

Stoneville in 2016 and 2017, from Missouri Historical Agricultural Weather Database 

(http://agebb.missouri.edu/weather/history/index.asp?station_prefix=bfd) for Columbia in 2017, 

and from the University of Arkansas Weather Station for Fayetteville in 2017. 

Phenotypic Evaluations 

Between the R1 (beginning bloom) and R2 (full bloom) developmental stages (Fehr and 

Caviness 1977), the aboveground portion of four random plants from each plot was harvested on 

29 June 2016 and 21 June 2017 (Stoneville), and 21 July 2017 (Columbia and Fayetteville). 

Plants were selected at this time to be consistent with the methodology of Dhanapal et al. (2015) 

and because small differences in maturity were assumed to have little or no physiologically 

impact relative to differences among genotypes that would be evident during seedfill. After 

drying at 60 C until weight was constant, samples were coarse ground to pass a 6 mm sieve 

using a Wiley Mill (Thomas Model 4 Wiley® Mill, Thomas Scientific, NJ USA). A subsample 

of the coarse-ground samples was finely-ground to pass a 1 mm sieve. About 0.4 to 0.5 g of the 

finely ground sample was transferred to a 15 mL tube (part # 2252-PC-30; SPEX CertiPrep, Inc., 

NJ USA) along with two 9.52 mm diameter stainless steel balls (440C Stainless Steel Ball, 

Tolerance/Grade: 100, Abbott Ball Company, Inc., CT USA) and ground to a fine powder using 

a Geno Grinder (SPEX CertiPrep, Inc., NJ USA) at 1,500 rpm for 10 min. About 3-5 mg of the 
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powdered sample was packed into tin capsules and arranged in 96-well plates (Costech 

Analytical Technologies Inc., CA USA). The 13C isotope analysis was conducted at the 

University of California-Davis Stable Isotope Facility (https://stableisotopefacility.ucdavis.edu/) 

using an elemental analyzer interfaced with a continuous flow isotope ratio mass spectrometer. 

Data from the stable isotope facility were received as δ13C (‰) and were expressed relative to 

the international standard of the 13C/12C ratio of Vienna PeeDee Belemnite (V-PDB) as follows: 

𝛿13𝐶 =
𝑅𝑠𝑎𝑚𝑝𝑙𝑒

(𝑅𝑠𝑡𝑑 − 1)
∗ 1000 

where, Rsample and Rstd are the isotope ratios of the sample and standard, respectively. 

Additional methodological information is available from the Stable Isotope facility website, 

http://stableisotopefacility.ucdavis.edu/13cand15n.html. 

Statistical Analysis 

Combinations of location and year were considered as individual environments and were 

designated as ST16, ST17, CO17, and FAY17 for Stoneville 2016, Stoneville 2017, Columbia 

2017, and Fayetteville 2017, respectively. The data from each environment were subjected to 

descriptive statistics and Pearson correlation analysis using the PROC UNIVARIATE and PROC 

CORR procedures (α = 0.05) of SAS version 9.4 (SAS, Institute 2013), respectively. Overall 

analysis of variance (ANOVA) was performed using the PROC MIXED procedure (α = 0.05) of 

SAS version 9.4 (SAS Institute, 2013) by using the data collected from all environments. 

Genotype and environment were considered as fixed effects, and replication within environment 

was considered a random effect according to the model proposed by Bondari (2003). 

Yijk = μ + Gi + Ej + GEij + Bjk + ɛijk 

where, Yijk  is phenotypic value of the ith genotype in the jth environment in the kth replication, μ 

is the mean, Gi is the effect of the ith genotype, Ej is the effect of the jth environment, GEij is the 
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interaction of the ith genotype with the jth environment, Bjk is the effect of the kth replication in 

the jth environment and ɛijk is the error effect. ANOVA was also performed for individual 

environments (ST16, ST17, CO17, and FAY17) to check the significant effect of genotypes 

(RILs). 

The variance components were estimated using the PROC VARCOMP procedure of SAS 

9.4 with the restricted maximum likelihood estimation (REML) method. Heritability (h2) was 

calculated as follows (Holland et al. 2003): 

Across environments:        h2 =
𝜎𝐺

2

𝜎𝐺
2 + (

𝜎𝐺𝐸
2

𝐸
)+ (

𝜎𝑒
2

𝑟𝐸
)

 

Within environments:        h2 =
𝜎𝐺

2

𝜎𝐺
2 +  (

𝜎𝑒
2

𝑟
)
 

where, 𝜎𝐺
2

  is the genotypic variance, 𝜎𝐺𝐸
2  is the genotype × environment interaction variance, 𝜎𝑒

2 

is the residual error variance, E is the number of environments, and r is the number of 

replications. Because RILs were F6-derived, there was minimal heterozygosity within lines and 

𝜎𝐺
2 is therefore composed almost entirely of additive variance, with only negligible dominance 

variance and additive × dominance variance. Therefore, this heritability should be considered a 

narrow sense estimate. To minimize the effects of environmental variation, the best linear 

unbiased prediction (BLUP) values for each individual environment and across environments 

were estimated by using the PROC MIXED procedure. For calculation of BLUP values for 

individual environments, all factors were considered as random effects, and for calculation of 

BLUP values across environments, environment was considered a fixed effect, while genotypes 

and replications were considered as random effects (Littell et al. 1996; Piepho et al. 2008). QTL 

analysis was performed using BLUP values. 
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GBS Library Construction, Genotyping and SNP Calling 

Leaf samples were collected from one replication of the field experiment conducted at 

Stoneville in 2017. Genomic DNA was isolated by using a Maxwell 16™ automated DNA 

isolation machine (Promega, Madison, WI 53711, USA) following the manufacturer’s protocol 

for leaf tissue after being lyophilized in a Model 2400 freeze dryer (The Freeze Dry Company, 

Nisswa, MN 56468, USA). Genotype-By-Sequencing (GBS, Elshire et al. 2011) analysis was 

conducted by LGC Genomics GmbH (Berlin, Germany) following their established protocols 

(https://www.biosearchtech.com/) for normalized GBS (nGBS) with MsII and Illumina NextSeq 

(2×150 bp) sequencing. LGC Genomics bioinformaticists processed sequences for quality and 

aligned sequences against the “Williams 82” soybean reference genome assembly 1 

(https://www.soybase.org/). Sequencing reads were separated for each sample using the in-line 

barcode sequences. The reads were processed to remove the barcode and adapter sequences. The 

Burrows-Wheeler Aligner (BWA v.0.7.12; http://bio-bwa.sourceforge.net/) software was used 

for alignment (Li and Durbin 2009), and SNPs were called using Freebayes v.1.92-16 (Garrison 

and Marth 2012).   

Marker Quality Control 

Markers that were monomorphic, had more than 15% missing data, that were 

heterozygous, and that did not follow a 1:1 segregation ratio (chi-square P-value ≤ 0.01) were 

removed, leaving 3,234 SNPs (3,221+13 scaffold) for further analysis. Missing marker data were 

imputed using a LD-kNNi method, which is based on a k-nearest neighbor-genotype (Money et 

al. 2015) implemented in TASSEL software (https://www.maizegenetics.net/tassel). The filtered 

and imputed 3,234 polymorphic SNPs were used for construction of the linkage map. 
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Construction of Linkage Map 

Initially, 3,234 polymorphic SNPs were used for the construction of the linkage map. 

Binning of markers based on their segregation pattern resulted in the elimination of redundant 

and low-quality markers (approximately 766 SNPs). The final genetic map was constructed 

using 2,468 polymorphic markers with MAP functionality of QTL IciMapping v4.1 software 

(Meng et al. 2015). MAP functionality has three steps: grouping, ordering, and rippling. 

Grouping of binned markers was performed using logarithm of the odds (LOD) threshold values 

≥ 4.5 and resulted in 23 linkage groups representing the 20 chromosomes of soybean. Linkage 

groups (LGs) were assigned to different chromosomes by using the genomic position of SNP 

markers determined during the SNP calling. Linkage groups belonging to the same chromosome 

were merged together, and LGs with less than five SNPs or unlinked LGs were not used in 

further genetic map construction. The RECORD (Recombination Counting and ORDering) 

algorithm was used to order 2,466 SNP markers within LGs over 20 chromosomes. 

Recombination frequencies between markers were converted into centiMorgans by using the 

Kosambi mapping function. To identify the final order of markers within each linkage group, 

fine tuning of marker order was performed by the sum of adjacent recombination fractions with a 

window size of 5 cM as a rippling criterion. Marker order was adjusted or reversed within a LG 

or rippled again to get the shortest linkage map length. Finally, a genetic map was constructed 

using Prism software (https://www.graphpad.com/) to show the marker density among 

chromosomes. 

QTL Analysis 

The BIP functionality of QTL IciMapping v4.1 software (http://www.isbreeding.net/) 

was used to conduct QTL analysis. Inclusive Composite Interval Mapping of Additive (ICIM-
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ADD) and Epistatic QTL (ICIM-EPI) functions were used as mapping methods to detect putative 

additive QTLs and QTL × QTL interactions, respectively. The mapping parameters were 1.0 cM 

scanning steps and a probability of 0.01 in stepwise regression for additive QTL identification. 

Significant LOD thresholds to declare QTLs were determined by 1000 permutation tests using a 

Type I error set at P < 0.05. For the detection of epistasis, scanning steps of 5 cM, a probability 

of 0.0001 in stepwise regression, and a LOD threshold of 5.0 or more were used to declare 

significant epistasis. Identification of QTLs across environments and QTL × environment 

interactions were evaluated by using MET (Multi-Environment Trials) functionalities of 

IciMapping software by using individual values of δ13C for each RIL from each environment. 

The whole genome was scanned with walking speed of 1.0 cM, a probability of 0.001 in 

stepwise regression, and a LOD threshold was calculated by 1000 permutations test using a Type 

I error set at P < 0.05 for claiming significant additive QTL × environment (AE) interactions. 

The MET functionality uses multi-environment data to identify QTL × environment interactions 

and detects additional QTLs that may not be identified in analysis by BIP functionality.  

A QTL with a LOD score ≥ 3 and that explained phenotypic variation (R2) of 

approximately 10% or more in two or more environments was considered a major QTL. A QTL 

detected in at least two of the four environments (ST16, ST17, CO17, and FAY17) was defined 

as a stable QTL (Cao et al. 2019; Li et al. 2015). Prism software (https://www.graphpad.com/) 

was used for the graphical representation of QTLs on the soybean chromosomes. 

Identification of Putative Candidate Genes and their Functions  

Glycine max genome sequence (Williams 82 assembly 1) in Soybase 

(https://www.soybase.org/) was scanned for potential genes present between markers flanking 
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identified QTLs in each environment. Only those genes that had a biological connection with 

abiotic stresses were considered putative candidate genes. 
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Results 

Total cumulative rainfall was calculated from planting to sampling date for each 

individual environment (ST16, ST17, CO17, and FAY17) (Figure 2_1). ST16 and CO17 

received more rainfall than ST17 and particularly FAY17. All environments except CO17 

received irrigation as needed, but there were 17 days prior to plant sampling for CO17 when 

there was only a total of 6 mm of rainfall. This resulted in moderate water deficit for CO17 at the 

time of plant sampling whereas soil moisture at all other environments was considered adequate.  

The δ13C values among the RILs extended beyond that of both parents (transgressive 

segregation) in all environments except ST17 (Figure 2_2, Table 2_1), indicating that alleles 

with positive (favorable) and negative effects were derived from both parents. A favorable allele 

was defined as an allele that increased δ13C values (increased WUE). Values of δ13C had a range 

of 2.38‰ (ST16), 2.44‰ (ST17), 2.36‰ (CO17), and 2.85‰ (FAY17) with RIL means of -

29.61‰ (ST16), -29.22‰ (ST17), -28.32‰ (CO17), and -28.40‰ (FAY17). A broad range of 

δ13C indicated considerable phenotypic variation for this trait in all environments and its 

quantitative inheritance.  

The parents, PI 416997 and PI 567201D, were significantly different for δ13C in ST16 (P 

≤ 0.10), ST17 (P ≤ 0.05), and CO17 (P ≤ 0.05) as PI 416997 had greater δ13C values (high 

WUE) compared to PI 567201D (low WUE). The δ13C value of parents, PI 416997 and PI 

567201D, was similar for FAY17 and parents were not significantly different. Among check 

cultivars (AG4632, Dillon, Maverick, Osage, and Pella 86), Pella 86 had low δ13C, close to the 

δ13C value of PI 567201D (data not shown). Other checks (AG4632, Dillon, Maverick, and 

Osage) had moderate δ13C values lying between the δ13C of the parents. 
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A significant positive correlation (P < 0.001) was observed between all environments for 

δ13C of RILs, ranging from 0.67 to 0.78 (Table 2_2). Analysis of variance (ANOVA) across 

environments showed that δ13C was significantly affected by genotype (G), environment (E), and 

the interaction of genotype with environment (G × E) (Table 2_3). ANOVA performed by 

environment showed a significant effect (P < 0.05) of genotypes in all environments (Table 3). 

Narrow sense heritability of δ13C on an entry-mean basis over all environments was 90% (Table 

2_3). For individual environments, heritability was 89% (ST16), 64% (ST17), 80% (CO17), and 

78% (FAY17).  

Genetic Map Construction 

The genetic map constructed using 2,466 polymorphic SNPs had a total length of 3,836 

cM with an average marker density of 0.64 markers per cM. The number of markers per 

chromosome ranged from 38 on Gm12 to 321 on Gm18. Approximately 90% of the markers had 

a distance of 3 cM or less between adjacent markers. Several gaps > 20 cM between markers 

were present on different chromosomes with the largest gaps often appearing near the 

centromere (Figure 2_3) where recombination is less frequent. The presence of large gaps 

resulted in a larger linkage map size than previously reported maps for soybean (Abdel-Haleem 

et al. 2011; Charlson et al. 2009; Cui et al. 2008; Du et al. 2009; Hwang et al. 2013, 2015). 

Figure 2_3 shows the physical location of the SNPs on soybean chromosomes based on their 

genomic sequence location. 

QTL Analysis 

A total of 16 additive QTLs associated with δ13C were identified in the four environments 

(ST16, ST17, CO17, and FAY17) using BIP functionality of ICIM mapping (Figure 2_3, Table 

2_4). These QTLs were distributed on seven chromosomes (Gm06, Gm07, Gm10, Gm11, Gm15, 
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Gm17, and Gm20) with additive effects that ranged from 0.07 to 0.22‰ and individually 

explained 2.50 to 29.88% of the phenotypic variation. The additive effect is defined as one-half 

of the difference between the average effects of parental alleles (PI 416997 and PI 567201D). A 

positive additive effect indicates that the favorable allele (allele that increases the δ13C value) 

was contributed by PI 416997, whereas a negative additive effect indicates that the favorable 

allele was contributed by PI 567201D. The additive effects (0.07 to -0.22‰) of identified QTLs 

were positive and negative, indicating that the favorable alleles were contributed by both parents. 

Of these 16 QTLs, eight QTLs were detected for ST16, two QTLs for ST17, five QTLs for 

CO17, and one QTL for FAY17. Due to their overlapping confidence intervals, these QTLs 

identified in different environments denoted eight putative loci associated with δ13C distributed 

on seven chromosomes (Figure 2_3, Table 2_4). The average distance between the markers 

flanking a QTL was 0.9 MB and had a range of 0.04 MB to 3 MB. 

Locus 7 (Gm20 at 108 cM, Table 2_4) was stable and consistently appeared in all 

environments, explaining 4.58 to 29.88% of the phenotypic variation and additive effects that 

ranged from -0.08 to -0.22‰. Locus 8 (Gm20 at 121-125 cM, Table 4) was observed in three 

environments (ST16, ST17, and CO17) and across environments (AE; Table 2_5). The favorable 

alleles for both these loci on Gm20 were from PI 567201D. Locus 1 (Gm06 at 61-67 cM, Table 

2_4) was identified in ST16, CO17, and AE (56 cM, Table 2_5). Locus 3 (Gm10 at 94 cM) was 

identified in CO17 and AE (Tables 2_4 and 2_5). Similarly, Locus 6 (Gm17 at 96-102 cM) was 

identified in ST16, CO17, and AE (Tables 2_4 and 2_5). The favorable alleles for the Loci 1, 3, 

and 6 were from PI 416997, and the other loci derived favorable alleles from PI 567201D.  
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QTL × Environment Interaction for δ13C 

MET functionality (Table 2_5) was used to identify QTL interactions with different 

environments. Across environments, QTL analysis by MET functionality identified a total of five 

QTLs that were present on Gm06 (56 cM), Gm10 (93 cM), Gm17 (97 cM), and two QTLs on 

Gm20 (108 and 122 cM) with additive effects that ranged from 0.05 to 0.13‰ and individually 

explained 3.80 to 23.89% of the phenotypic variation (Table 2_5). These QTLs on Gm06, Gm10, 

Gm17, and Gm20 were also identified as additive QTLs by BIP functionality, which were 

designated as Loci 1, 3, 6, 7, and 8, respectively (Figure 2_3, Table 2_4). The total phenotypic 

variation (PVE), phenotypic variation explained by additive effects (PVE (A)), and phenotypic 

variation explained by additive × environment effects (PVE (A × E)) along with their LOD 

scores are presented in Table 2_5. The QTLs present at Loci 1, 3, 6, and 7 showed relatively 

small QTL × environment interactions as indicated by the high LOD score for additive effects 

(LOD (A)) and low LOD score for the additive × environment effects (LOD (A×E)). In contrast, 

Locus 8 on Gm20 had a strong QTL × environment interaction as indicated by a low LOD score 

(4.08) for additive effects (LOD (A)) compared to the LOD score (4.63) for the additive × 

environment effects (LOD (A×E)). In addition, the phenotypic variation explained by additive 

effects (PVE (A)) for Loci 1, 3, 6, and 7 was considerably greater than the additive × 

environment effects (PVE (A × E)) and showed the stability for these four QTLs across 

environments. 

QTL × QTL Interaction 

The polygenic nature of δ13C may result in identification of a large number of QTLs with 

smaller effects and epistasis between different loci. Numerous interactions were identified 

between loci for δ13C in individual environments (ST16, ST17, CO17, and FAY17) (Table 2_6). 
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A QTL × QTL interaction with a threshold LOD score greater than 5.0 was used to declare a 

significant epistatic interaction (Cao et al. 2019; Li et al. 2015). Loci present on Gm02, Gm03, 

Gm04, Gm05, Gm06, Gm09, Gm11, Gm17, and Gm19 showed QTL × QTL interactions with 

the additive QTLs present on Gm20 (Loci 7 and 8, Table 2_4 and 2_6). Among all QTL × QTL 

interactions, one or more loci on Gm20 (between 42-45 million base pairs) were involved. QTLs 

on Gm03, Gm05, Gm06, Gm 09, and Gm19 had significant interactions in three or more 

environments with the identified additive QTLs on Gm20 located between 42 and 45 million 

base pairs. Epistatic loci present on Gm20 were also identified as additive QTLs (Loci 7 and 8, 

Table 2_4) but epistatic loci on other chromosomes were not identified as additive QTLs. The 

phenotypic variation explained by identified epistatic interactions ranged from 3 to 4%. The 

favorable alleles for identified QTL × QTL interactions were contributed by both parents.  
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Discussion 

The broad range of phenotypic variation for δ13C found in all environments indicates that 

δ13C has quantitative inheritance and could be useful for QTL analysis. We found that the 

parental genotype PI 416997 had statistically greater δ13C than PI 567201D in ST16, ST17, and 

CO17. Our results agree with previous experiments indicating that PI 416997 had higher δ13C 

(high WUE) than PI 567201D (low WUE) based on the genomic estimated breeding values 

(GEBVs) (Dhanapal et al. 2015, Kaler et al. 2018).  

The δ13C of parents and RIL means were overall greater in CO17 as compared to other 

environments (ST16, ST17, and FAY17) (Table 1). The greater δ13C for CO17 is consistent with 

this environment being the only rainfed environment and for which there were 17 days prior to 

sampling with a total of only 6mm of rainfall (Figure 2_1). Previous research has found that 

WUE increases under water deficit due to the partial stomatal closure (Bloch et al. 2006; Condon 

et al. 2002). Environmental factors such as temperature, radiation, vapor pressure deficit, and soil 

water availability affect WUE (Hopkins 1999) and results in the differential response of 

genotypes to environmental conditions. The greater total cumulative rainfall and constant 

irrigation application in ST16 compared to other environments was associated with low δ13C 

values of parents and RILs in ST16. 

Presence of significant positive correlations of δ13C among different environments (Table 

2_2) indicates the stability of δ13C across environments although there were significant genotype 

and G × E interaction effects (P < 0.001) (Table 2_3). Kaler et al. (2018) found high 

repeatability (0.79 to 0.94) of δ13C in soybean across environments. The heritability of δ13C 

within environments ranged from 64 to 89%, which is moderate to high compared with other 

physiological traits associated with drought tolerance such as root score (h2 = 39%, Pantalone et 
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al. 1996), canopy wilting (h2=60%, Abdel-Haleem et al. 2012; h2 =46%, Charlson et al. 2009; h2 

=58-78%, Hwang et al. 2015), and shoot ureides (h2 =73%, Hwang et al. 2013). Similarly, high 

heritability of δ13C was reported in soybean (h2= 85%, Bazzer et al. 2019; h2 =80%, Specht et al. 

2001). High heritability of δ13C indicates strong genetic control and that the direct selection of 

genotypes based on δ13C (indirect measure of WUE) for drought tolerance could be effective in 

soybean breeding.   

Among the identified eight putative loci, three loci (Locus 1, 2, and 6; Table 2_4) derived 

the favorable allele from PI 416997, and five loci (Locus 3, 4, 5, 7, and 8) received the favorable 

alleles from PI 567201D (Table 2_4). The presence of alternative alleles at multiple loci 

inherited from both parents in the RILs resulted in transgressive segregants (Tanksley 1993). 

That is, specific RILs exceeded the parental values for both high and low δ13C, and these 

extreme lines may be further utilized in understanding the physiology of δ13C and WUE. 

Among these eight loci, Locus 7 was found in all environments and when averaged 

across environments (Tables 2_4 and 2_5). This locus explained approximately 10% of the 

phenotypic variation in three of environments and was considered a major and stable QTL. 

Locus 8 appeared in three environments and when averaged across environments.  Locus 1 and 

Locus 6 appeared in two individual environments and when averaged across environments 

(Table 2_4 and 2_5). These loci (1, 6, and 8) were also considered stable QTLs, although they 

explained less phenotypic variation than Locus 7. The favorable alleles for these stable loci were 

from PI 416997 (Loci 1 and 6) and PI 567201D (Loci 7 and 8). The remaining Loci (Loci 2, 3, 4, 

and 5) were found in individual environments (Table 2_4). Inconsistent detection of QTLs 

among environments indicates that there may be differential expression of genes that are 
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environment specific (Campbell et al. 2003; Crossa et al. 1999; Veldboom and Lee 1996), 

resulting in QTL × environment interactions.  

Across environments, QTL analysis identified five QTLs (on Gm06 at 56 cM, Gm10 at 

93 cM, Gm17 at 97 cM, and Gm20 at 108 and 122 cM) with QTL × environment interactions 

(Table 2_5). Although all interactions were significant, the additive × environment effect was 

comparatively small as indicated by their low LOD (A×E) score. Less phenotypic variation was 

explained by these interactions except for the QTL on Gm20 at 122 cM, which had high QTL × 

environment interaction (PVE (A × E) among all identified interactions. Low QTL × 

environment interaction of most of the QTLs across environments indicates that these QTLs 

were stable across environments, and that selection will be effective for genotypes with high 

δ13C (or WUE). These QTLs also had additive QTL effects in specific environments. The QTL 

with environment interactions located on Gm20 at 108 cM explained the highest phenotypic 

variation (23.89%) and had a high LOD score (Table 2_5); this QTL was also identified as a 

major and stable additive QTL (Table 2_4). Loci 7 and 8 on Gm20 had more additive effects and 

explained high phenotypic variation in individual environments and across environment 

compared to all other identified loci; the favorable alleles for these loci were from PI 567201D. 

It is noteworthy that the low WUE parent (PI 567201D) contributed favorable alleles on Gm20, 

increasing δ13C for specific RILs. 

Besides the additive main effects and G × E interactions, QTL × QTL interactions 

between different genomic regions were detected, indicating the complex nature of δ13C. 

Epistasis between QTLs contributes significantly to the genetic variance of many agronomic 

traits (Ma et al. 2005; Rebetzke et al. 2007; Reif et al. 2011; Zhang et al. 2008). Epistasis was 

found between the additive QTLs on Gm20 with the genomic regions that were not identified as 
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additive QTLs. It is possible that two QTLs without additive effects can result in significant 

epistasis (Carlborg and Haley 2004). An advantage of ICIM mapping is that it can identify the 

epistasis between QTLs regardless of whether those QTLs have any additive effects. We used 

conservative criteria to determine epistasis (LOD score > 5.0 and R2 > 0.03). One of the QTLs 

involved in the most QTL × QTL interactions was present on Gm20 at 105-125 cM (Table 2_6). 

It may be that the genomic regions on Gm20 play an important role in controlling δ13C. The 

presence of genetic effects of additive and additive × additive epistasis plays a significant role in 

controlling complex traits (Jiang et al. 2011; Zhao et al. 2005), and also appears to be the case 

for δ13C. 

Co-localization of QTL for δ13C with QTLs for other Agronomic Traits 

Based on the physical positions of the SNP markers, the QTLs identified in the present 

study were compared using Soybase (http://www.soybase.org/) with QTLs for other traits 

mapped in previous studies. Locus 1 (Gm06), Locus 2 (Gm07), and Locus 5 (Gm15) were 

previously identified as associated with δ13C in genome wide association studies (GWAS) using 

373 diverse soybean accessions (Dhanapal et al. 2015; Kaler et al. 2017). Locus 3 (Gm10) 

coincided with the genomic regions previously reported for aluminum tolerance (Korir et al. 

2011), low leaf hydraulic conductance (Carpentieri-Pipolo et al. 2011), and flood tolerance 

(Githiri et al. 2006) QTLs. Presence of Al3+ in soil limits root growth and the absorption of water 

and nutrients from soil, ultimately decreasing soybean yield (Foy 1984; Ma and Furukawa 2003). 

Low leaf hydraulic conductance increases transpiration efficiency during drought stress (Sadok 

and Sinclair 2010). A QTL associated with WUE (Kumar and Lal 2015) was also identified in 

the same genomic region of Locus 3. The presence of low hydraulic conductance QTLs and 

WUE in the same genomic regions indicates a potential pleiotropic effect. The co-localization of 
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genomic regions associated with several stress tolerances indicates that this genomic region may 

have multiple genes that undergo differential gene expression under stress. 

Locus 6 (Gm17) overlapped with the QTLs associated with canopy wilting that were 

detected in multiple mapping populations (Abdel-Haleem et al. 2012; Charlson et al. 2009; 

Hwang et al. 2015, 2016). Likewise, Locus 6 overlapped with a QTL for drought index (Du et al. 

2009) (measure of yield under drought stress) along with canopy wilting QTL. This δ13C locus 

also co-localized with a significant SNP associated with δ13C and oxygen isotope ratio (δ18O) 

identified by GWAS of diverse soybean accessions (Kaler et al. 2017). Transpiration and 

stomatal conductance are closely associated with δ18O (Bindumadhava et al. 1999; Dhanapal et 

al. 2015; Kaler et al. 2017; Sheshshayee et al. 2005).  

The loci on Gm20 (Loci 7 and 8) identified in the present study coincide with genomic 

regions associated with δ13C QTLs identified by GWAS (Kaler et al. 2017). These loci on Gm20 

also overlapped with δ13C QTLs identified in a bi-parental population developed from KS4895 

and Jackson (Bazzer et al. 2019). A QTL associated with WUE (Kumar and Lal 2015) and 

drought index (Du et al. 2009) were identified in this same genomic region on Gm20. Co-

localization of QTLs associated with different traits in the same genomic interval may be due to 

the presence of different genes controlling those traits or those traits may be directly or indirectly 

co-related (Prioul et al. 1997). The major stable QTL identified on Gm20 (108 cM) in this study 

may be valuable in marker-assisted selection (MAS) to improve drought tolerance in soybean 

and in confirmation of QTLs identified by GWAS.  

Candidate genes were identified that underlie the position of identified QTLs that may 

directly or indirectly be related to physiological mechanisms associated with drought tolerance. 

For example, the gene AP2-1 (Glyma.06g08990) encodes a dehydration responsive protein, and 
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gene BT093886.1 (Glyma.06g08910) regulates the aquaporin protein function underlying Locus 

1 (Gm06). Further, the gene BT097722.1 (Glyma.17g13350) on Gm17 (Locus 6) is involved in 

production of dehydration induced proteins, and BT098823.1 (Glyma.06g14000) on Gm06 

(Locus 1) produces a heat shock protein that is up regulated during stress conditions and helps 

maintain membrane stability. The presence of potential candidate genes in identified QTL 

regions may support the association of the identified QTLs to WUE or δ13C and help in 

validating the accuracy of the QTL identification. Further studies are needed for fine resolution 

of the identified QTLs and use of flanking markers of QTLs for marker assisted selection. 
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Conclusions 

A high-density genetic map of 196 recombinant inbred lines was used to dissect the 

inheritance of δ13C in soybean. A total of 16 additive QTLs denoting eight putative loci were 

identified in four environments. Of these, two loci on Gm20 at 108 cM and 121-125 cM were 

stable across different environments. The favorable alleles for both of these QTLs were from PI 

567201D, the parent with low δ13C (low WUE). Out of eight putative loci, three loci inherited 

their favorable alleles from PI 416997. Several QTLs were detected in individual environments 

indicating the presence of QTL × environment interactions. Detection of additive QTLs, QTL × 

environment interactions, and QTL × QTL interactions indicated the complex inheritance of the 

δ13C trait.  Moderate-to-high narrow sense heritability estimates indicate that progress can be 

made through traditional plant breeding for increasing WUE in future cultivars. Additionally, 

identified QTLs may be useful in MAS.  Combined traditional and MAS approaches will ensure 

more rapid progress.  The findings from this study provide useful information on the genetic 

basis of WUE and may be helpful in the genetic improvement of yield potential in drought-prone 

environments. 
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Table 2_1. Phenotypic data of δ13C (‰) for parents (PI 416997 and PI 567201D) and 

recombinant inbred lines (RILs) evaluated at Stoneville, MS in 2016 (ST16) and in 2017 (ST17), 

Columbia, MO in 2017 (CO17), and Fayetteville, AR in 2017 (FAY17). 

 

† Absolute value of coefficient of variation 
 

 

Table 2_2. Pearson correlation coefficients between δ13C of RILs derived from PI 416997 × PI 

567201D at Stoneville, MS in 2016 (ST16) and in 2017 (ST17), Columbia, MO in 2017 (CO17), 

and Fayetteville, AR in 2017 (FAY17). 

 

*** Significant at the 0.001 probability level. 

 

 

 

 

 

 

 

 

 

Descriptive statistics ST16 ST17 CO17 FAY17 

PI 416997 -29.24 -28.39 -27.81 -27.94 

PI 567201D -30.08 -30.47 -28.75 -27.99 

RILs mean -29.61 -29.22 -28.32 -28.40 

Range 2.38 2.44 2.36 2.85 

Std. deviation 0.42 0.44 0.42 0.63 

Variance 0.17 0.19 0.18 0.40 

Skewness 0.20 0.97 1.06 1.18 

Kurtosis 1.31 1.21 1.04 0.73 

Coefficient of variation (%)† 1.41 1.51 1.49 2.43 

 ST16 ST17 CO17 

ST17 0.69***   

CO17 0.74*** 0.67***  

FAY17 0.76*** 0.72*** 0.78*** 
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Table 2_3. Analysis of variance and heritability (h2) of δ13C across environment and for 

individual environment.  

 

G, RILs; E, environment; G×E, RILs × environment interaction. 

 *, **, ***, ns, significant at 0.05, 0.01, 0.001 probability levels, or non-significant, respectively. 

ST16, ST17, CO17, and FAY17 represent the experiments at Stoneville in 2016, at Stoneville in 

2017, at Columbia in 2017, and at Fayetteville in 2017, respectively. 

 

Analysis Genotype (G) Environment (E) G × E h2 (%) 

Across E *** *** *** 90 

     

By E     

ST16 *** - - 89 

ST17 *** - - 64 

CO17 *** - - 80 

FAY17 *** - - 78 
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Table 2_4. Quantitative trait loci (QTLs) associated with δ13C detected in four environments (ST16, ST17, CO17, and FAY17) in the 

RIL population derived from the cross of PI 416997 and PI 567201D using ICIM mapping.  

 

Locus## Chrom.† Env‡ 
Position 

(cM)§ 
Flanking markersƣ LOD# R2†† Add‡‡ 

Favorable 

allele§§ 

1 Gm06 

ST16 67 
S_006_011_083_603-- 

S_006_011_720_632 
3.37 2.50 0.07 PI416997 

CO17 61 
S_006_009_849_532-- 

S_006_010_818_547 
4.76 6.63 0.09 PI416997 

2 Gm07 

ST16 26 
S_007_008_123_545-- 

S_007_008_253_555 
21.81 20.05 0.21 PI416997 

ST16 38 
S_007_010_062_239-- 

S_007_010_105_271 
4.93 3.60 0.09 PI416997 

3 Gm10 CO17 94 
S_010_039_228_834-- 

S_010_041_413_938 
5.24 9.22 -0.10 PI567201D 

4 Gm11 ST16 19 
S_011_002_798_050-- 

S_011_005_908_494 
3.61 2.98 -0.08 PI567201D 

5 Gm15 ST16 16 
S_015_001_550_336-- 

S_015_002_934_524 
4.49 3.34 -0.08 PI567201D 

6 Gm17 

ST16 96 
S_017_008_851_004--

S_017_007_961_686 
3.94 2.93 0.08 PI416997 

CO17 102 
S_017_007_961_686-- 

S_017_010_605_971 
3.99 6.75 0.09 PI416997 

7 Gm20 

ST16 108 
S_020_042_507_730 -- 

S_020_042_835_316 
5.97 4.58 -0.10 PI567201D 

ST17 108 
S_020_042_507_730 -- 

S_020_042_835_316 
4.58 11.22 -0.08 PI567201D 

CO17 108 
S_020_042_507_730 -- 

S_020_042_835_316 
7.28 10.33 -0.11 PI567201D 

FAY17 108 
S_020_042_507_730 -- 

S_020_042_835_316 
13.13 29.88 -0.22 PI567201D 

8 Gm20 ST16 122 
S_020_044_532_207-- 

S_020_044_686_226 
10.05 7.88 -0.13 PI567201D 
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## Closely spaced putative QTL falling within the same flanking markers were consider as one locus. 

† Glycine max chromosome on which putative QTL was identified. 

‡ Environment in which a significant QTL was identified. 
§ Position of QTL in centiMorgans on Glycine max chromosome 
ƣ SNPs identified in the mapping analysis as flanking the putative QTL. 
# Log-likelihood at QTL peak position 
†† Phenotypic variation explained by putative QTL 

‡‡ Additive effect explained by the QTL 
§§ Allele that increases δ13C value 
 

 

 

 

 

 

 

 

 

 

Table 2_4. (Cont.)  

Locus## Chrom.† Env‡ 
Position 

(cM)§ 
Flanking markersƣ LOD# R2†† Add‡‡ 

Favorable 

allele§§ 

8 Gm20 ST17 121 
S_020_042_835_366 -- 

S_020_044_532_207 
6.51 17.04 -0.10 PI567201D 

  CO17 125 
S_020_044_865_885-- 

S_020_044_973_367 
3.61 4.78 -0.07 PI567201D 



 

 

6
8
 

Table 2_5. QTLs identified across environments for δ13C and QTL × environment interaction detected in four environments using 

MET functionality.  
 

##Locus number was assigned same as to locus number used for QTLs identified by BIP functionality of ICIM Mapping in Table 2_4 

† Glycine max chromosome on which putative QTL was identified 
§ Position of QTL in centiMorgans on Glycine max chromosome 
ƣ Markers flanking identified QTL on specific chromosome 

‡ LOD score for additive effects 
# LOD score for additive by environment effects   

†† Total phenotypic variance explained by QTL × environment interaction 
‡‡ Phenotypic variance explained by additive effects 
§§ Phenotypic variance explained by additive by environments effects. 

ƣƣ Additive effect explained by the QTL 

 

Locus## Chrom.† 
Position 

(cM)§ Marker interval ƣ LOD 
LOD 

(A)‡ 

LOD 

(A × E)# 
PVE†† 

PVE 

(A)‡‡ 

PVE 

(A × E)§§ 
Add ƣƣ 

1 Gm06 56 
S_006_006_069_381--

S_006_009_849_532 
6.68 5.93 0.75 5.00 4.68 0.32 0.06 

3 Gm10 93 
S_010_039_228_834--

S_010_041_413_938 
5.50 4.43 1.08 3.80 3.43 0.37 -0.05 

6 Gm17 97 
S_017_007_961_686--

S_017_010_605_971 
7.62 6.79 0.83 5.31 5.23 0.08 0.06 

7 Gm20 108 
S_020_042_507_730--

S_020_042_835_316 
25.12 24.83 0.29 23.89 21.28 2.61 -0.13 

8 Gm20 122 
S_020_044_532_207--

S_020_044_686_226 
8.70 4.08 4.63 5.45 3.17 2.28 -0.05 
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Table 2_6. Epistatic QTLs identified for δ13C in RIL population derived from cross of PI 416997 

× PI 567201D by the ICIM-EPI method implemented in QTL IciMapping. 
 

Chrom. 1† Env.‡ Pos. 1§ Chrom. 2ƣ Pos. 2# Add-by-Add†† 

Gm02 

ST16 

38,198,173 - 

44,554,449 
Gm20 

42,835,366 - 

44,532,207 

0.20 

ST17 -0.15 

FAY17 
44,865,885 - 

44,973,367 
-0.23 

Gm03 

FAY17 
8,323,204 - 

20,069,692 

Gm20 

44,865,885 - 

44,973,367 
0.27 

ST16 

20,069,801 - 

28,771,952 

42,835,366 - 

44,532,207 

0.19 

ST17 0.14 

CO17 0.16 

Gm04 FAY17 
34,130,710 - 

47,240,282 
Gm20 

42,835,366 - 

44,532,207 
-0.24 

Gm05 

ST16 

41,542,487 - 

36,175,591 
Gm20 

42,182,496 - 

42,095,689 
0.15 

ST17 

42,835,366 - 

44,532,207 

0.13 

CO17 0.15 

FAY17 0.21 

Gm06 

ST16 

18,147,076 - 

49,721,339 
Gm20 

42,835,366 - 

44,532,207 

-0.16 

ST17 0.15 

CO17 0.17 

FAY17 0.21 

Gm09 

ST16 

20,208,823 - 

39,516,946 
Gm20 

42,835,366 - 

44,532,207 

0.18 

CO17 0.18 

FAY17 0.25 

ST17 
44,429,663 - 

43,615,936 
0.15 

Gm11 ST16 
10,996,050 - 

12,268,323 
Gm20 

42,182,496 - 

42,095,689 
0.18 
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Glycine max chromosome on which first QTL involved in epistasis was identified 

‡ Environment in which a significant QTL × QTL interaction was identified 
§ Position of flanking markers of first QTL in epistasis on specific chromosome 
ƣ Glycine max chromosome on which second QTL involved in epistasis was identified  
# Position of flanking markers of second QTL in epistasis on specific chromosome  
††Epistatic effect between two QTLs 
 

Table 2_6. (Cont.)     

Chrom. 1† Env.‡ Pos. 1§ Chrom. 2ƣ Pos. 2# Add-by-Add†† 

Gm11 FAY17 
10,996,050 - 

12,268,323 
Gm20 

42,835,366 - 

44,532,207 
-0.25 

Gm17 

ST16 
897,750 - 

2,482,975 
Gm20 

42,835,366 - 

44,532,207 
-0.15 

FAY17 
44,865,885 - 

44,973,367 
-0.21 

Gm19 

ST16 

22,947,398 - 

22,051,112 
Gm20 

42,835,366 - 

44,532,207 

-0.15 

ST17 -0.15 

CO17 -0.18 

FAY17 -0.23 
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Figure 2_1. Total cumulative rainfall (mm) for the four environments (ST16, ST17, CO17, and 

FAY17). At ST16, ST17, and FAY17 irrigation was applied (stars indicate the time of irrigation) 

as needed whereas CO17 was rainfed. Sampling dates for δ13C for each environment are 

indicated by a filled circle.  
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Figure 2_2. Frequency distribution showed broad range of δ13C within each environment. 

Vertical lines indicate the mean of the parental genotypes PI 416997 (Red) × PI 567201D (Blue). 

Mean of RILs and Standard deviation (SD) were shown on the top corner of each histogram. A, 

B, C, and D indicated the environment ST16, ST17, CO17, and FAY17, respectively. 
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Figure 2_3. Physical position of SNPs on soybean chromosomes and position of loci associated 

with δ13C identified by ICIM mapping. The physical positions of SNP markers indicated in base 

pairs are shown on the x-axis and the y-axis represents chromosome number. The solid blue 

diamond represents the centromere location. The numbers in the black circles represent the locus 

numbers on a specific chromosome. The QTL positions for individual loci are designated by a 

blue bar above the respective chromosome. The length of the blue bar represents the distance 

between flanking markers. 
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Abstract 

Soybean (Glycine max (L.) Merr.) meets a large portion of its nitrogen (N) need via 

biological N2 fixation, which is highly sensitive to drought stress. Nitrogen isotope ratios 

between 15N and 14N (δ15N) can be used as a metric for relative differences among soybean 

genotypes for N2 fixation, as δ15N is negatively associated with N2 fixation. This study evaluated 

the genetic basis of δ15N using a mapping population of 196 F6-derived recombinant inbred lines 

(RILs) developed from a cross between PI 416997 and PI 567201D that was assessed in multiple 

environments. There was a wide range of δ15N in all environments and narrow-sense heritability 

for δ15N was 35% when estimated across environments. Analysis of variance of δ15N showed 

significant effects of genotype and environment, whereas the genotype × environment interaction 

was not significant (P<0.05). Inclusive composite interval mapping for individual environments 

identified 10 additive QTLs on seven chromosomes with additive effects ranging from 0.02 to 

0.13‰ and that individually explained phenotypic variation from 1.72 to 9.34%. In total, eight 

QTL × environment interactions were found, and several genomic regions were involved in QTL 

× QTL interactions that were not identified as additive QTLs. These identified QTLs were co-

localized with genomic regions associated with N2 fixation and other physiological traits 

identified in previous studies. A search for candidate genes resulted in detection of genes for 

nodulation and N-metabolism underlying many additive and epistatic QTLs. These identified 

regions may serve as potential targets for enhancing N2 fixation in soybean. 
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Introduction 

Soybean (Glycine max (L.) Merr.) is one of the most important leguminous crops grown 

and consumed worldwide due to its high protein (~40%) and oil (~18-19%) concentrations. 

Soybean establishes symbiotic associations with Bradyrhizobium japonicum (Strodtman and 

Emerich 2009) which reduces atmospheric N2 to ammonia and provides N to the plant. This 

association decreases the requirement for N fertilizers for soybean and other leguminous crops 

and improves soil fertility (Giller 2001; Jensen and Hauggaard-Nielsen 2003). In soils with little 

available soil N, symbiotic N2 fixation can meet up to 85-90% of the soybean N requirement 

(Mastrodomenico and Purcell 2012).  

Symbiotic N2 fixation is sensitive to various abiotic stresses including drought, flooding, 

soil salinity, soil acidity, mineral deficiency or toxicity, and low/high temperature (Ramaekers et 

al. 2013). Water deficit conditions negatively impact N2 fixation in soybean by reducing 

nodulation and nitrogenase activity, which ultimately decreases soybean yield (Márquez-García 

et al. 2015; Serraj et al. 1999a). Also, it has been reported that N2 fixation is more sensitive to 

water deficit than photosynthesis under both controlled and field conditions (Adams et al. 2016; 

Djekoun and Planchon 1991; Durand et al. 1987; Kuo and Boersma 1971; Sinclair et al. 1987). 

Proposed mechanisms for decreased N2 fixation during water deficit conditions include carbon 

shortage, oxygen limitation, and feedback inhibition by products of N2 fixation (Purcell 2009; 

Serraj et al. 1999b).  

Methods for quantifying N2 fixation include the N-difference method (Weaver and Danso 

1994), acetylene reduction assay (ARA) (Hardy et al. 1968), 15N enrichment (Fried and 

Broeshart 1975; Fried and Middleboe 1977), 15N natural abundance (Shearer and Kohl 1986), 

and relative abundance of ureides (Serraj et al. 1999b; Sinclair and Serraj 1995). Each method 
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has specific advantages over others, but easy, rapid, inexpensive, and quantitative methods for 

estimation of N2 fixation under both controlled and field conditions are still needed.  

Among the various methods for estimatingN2 fixation, 15N natural abundance (δ15N) is 

frequently used to quantify the fraction of N derived from the atmosphere (NDFA) in large scale 

field experiments and to serve as an index of N2 fixation (Andrews and Lea 2013; Barrie et al. 

1995; Letolle 1980). This method compares the abundance of the 15N isotope in plant tissue, the 

atmosphere, and the soil environment with respect to the 14N isotope. The atmosphere has a 

lower concentration of 15N compared to the soil due to the N transformations in soil. The 

difference in 15N and 14N concentration between soil and atmosphere is expressed in terms of 

parts per thousand (‰) and is referred to as the N isotope ratio (δ15N) (Peoples et al. 1989). N2 

fixation dilutes the 15N in plants actively fixing N2 as compared to plants that depend on mineral 

N as a N source (Doughton et al. 1995; Shearer and Kohl 1986). A low δ15N value is a favorable 

trait for selection because it indicates greater dilution of 15N by biological N2 fixation.  

The percentage of NDFA from δ15N (Kohl and Shearer 1981) is calculated according to 

the equation below: 

% 𝑁𝐷𝐹𝐴 =  
𝛿15𝑁𝑟𝑒𝑓 −  𝛿15𝑁𝑠𝑎𝑚𝑝

𝛿15𝑁𝑟𝑒𝑓 −  𝛿15𝑁0
∗ 100 

where δ15Nref is the composition of a plant totally dependent on soil N (non-nodulating 

genotype), δ15Nsamp is the composition of the individual samples, and δ15No (-1.30 for soybean, 

Bergersen et al. 1989) is the δ15N from a plant totally dependent on N2 fixation. The reference 

genotype in this equation reduces the error/noise caused by soil N variability in calculating % 

NDFA. However, the δ15N of the reference genotype is often relatively uniform across a field 

(Peoples et al. 2002), indicating that in the absence of a reference crop, δ15N can be used directly 

to estimate the amount of N fixed by genotypes via N2 fixation (Steketee et al. 2019). 
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The difference among genotypes for N2 fixation under normal and stress conditions may 

help identify genomic regions controlling N2 fixation under water deficit conditions. Quantitative 

trait loci (QTLs) mapping is the molecular approach used to understand the genetic architecture 

of many physiological and agronomical traits. Recent advances in high throughput genotyping 

and phenotyping platforms have revolutionized the dissection of the genetic basis of quantitative 

traits like N2 fixation and will accelerate development of soybean lines with enhanced N2 

fixation.  

Several studies have mapped QTLs for N2 fixation or related traits in soybean 

(www.soybase.org). Tanya et al. (2005) used a population of 136 F2-derived recombinant inbred 

lines (RILs) to identify a total of nine QTLs for nodule number per plant, nodule fresh and dry 

weight per plant, and acetylene reduction activity (ARA). Nicolás et al. (2006) identified two 

genomic regions associated with nodule number and nodule dry weight. Santos et al. (2013) 

studied the genetic control of nodule number and individual nodule weight and confirmed a QTL 

for nodule number identified previously by Nicolás et al. (2006). Hwang et al. (2014) were the 

first to map QTLs for nodule number, nodule size, and nodule weight in field experiments. 

Dhanapal et al. (2015b) used association mapping on a diverse panel of 374 maturity 

group 4 accessions to identify QTLs for NDFA and N concentration. This analysis identified 17 

and 19 SNPs significantly associated with NDFA and N concentration, respectively. Steketee et 

al. (2019) used association mapping for δ15N using a panel of 211 diverse soybean accessions 

and found 23 and 26 SNPs associated with δ15N and N concentration, respectively. To date, more 

than 70 QTLs for N2 fixation or traits directly or indirectly linked with N2 fixation have been 

mapped on all 20 chromosomes of soybean (www.soybase.org). 
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In the present study, a high-density genetic linkage map was constructed using 196 F6-

derived RILs developed from PI 416997 × PI 567201D. The parents of this population were 

originally chosen because they were extremes for the ratio between 13C and 12C (Bazzer et al. 

2020), which serves as a surrogate measure of water use efficiency (Farquhar and Richards 

1984). Although the parents were not selected for δ15N or N2 fixation, their RILs segregated for 

δ15N. Therefore, the main objectives of our study were to identify additive QTLs for δ15N, 

epistatic QTLs, and QTL × environment interactions. Further characterization of genes 

underlying the QTLs identified in this study will help to understand the biological mechanisms 

regulating N2 fixation in soybean and the genetic basis of N2 fixation.  
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Material and Methods 

Development of RIL Population 

The cross between PI 416997 and PI 567201D was made at Stoneville, MS in 2011. The 

F1 generation was grown during the winter of 2011-2012 at the Tropical Agricultural Research 

Station at Isabela, Puerto Rico. The F2 generation was grown in Stoneville in 2012, where over 

200 individual F2 plants were harvested without selection. Leaf tissue was harvested from each 

tagged F2 plant for DNA extraction and genotyping of the population. The F2:3 and F4:5 

generations were grown in Homestead, FL during the winters of 2012-2013 and 2013-2014, 

respectively, harvesting one random plant from each single-plant-derived row in each nursery. 

The F3:4, F5:6, and F6:7 generations were grown in Stoneville, with the former two generations 

being advanced by single-plant descent in 2013 and 2014, respectively, and the latter generation 

being bulk harvested in 2015 to create bulked F6-derived lines for phenotyping. 

Field Trials 

A mapping population consisting of 196 F6-derived RILs generated from a cross between 

PI 416997 × PI 567201D was used to identify the genomic regions associated with δ15N. The 

RIL population and parents were evaluated in four environments: at Stoneville, MS (33.42° N, 

90.90° W) on a Bosket very fine sandy loam soil (fine-loamy, mixed, active, thermic, Mollic 

Hapludalfs) in 2016 and on a Dundee silty clay loam soil (Dundee fine-silty, mixed, active, 

thermic, Typic Endoaqualfs) in 2017, at the Milo J Shult Arkansas Agricultural Research Center, 

Fayetteville, AR (36.05° N, 94.15° W) on a Captina silt loam soil (fine-silty, siliceous, active, 

mesic Typic Fragiudult) in 2017, and at the Bradford Research Center near Columbia, MO 

(38.95° N, 92.33° W) on a Mexico silt loam soil (fine, smectitic, mesic Vertic Epiaqualf) in 

2017. The combinations of locations and years were considered as individual environments and 
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designated as ST16 (Stoneville in 2016), ST17 (Stoneville in 2017), FAY17 (Fayetteville in 

2017), and CO17 (Columbia in 2017). Plantings occurred on 6 May 2016 at ST16 and 16 May 

2017 at ST17 in one-row plots (0.66 m wide by 2.74 m long), 10 June 2017 at FAY17 in two 

rows plots (0.45 m wide by 6 m long), and 14 May 2017 at CO17 in  single row plots (0.76 m 

wide by 3.05 m long). At each environment, the experimental design was a randomized complete 

block design with two replications. Experiments were irrigated as needed. Recommended 

practices were followed for insect and weed control.  

Data Collection 

Shoot biomass of four random plants was sampled from each plot between beginning 

bloom (R1) and the full bloom (R2) stages (Fehr and Caviness 1977) on 29 June 2016 at ST16, 

21 June 2017 at ST17, and 21 July 2017 at FAY17 and CO17. Biomass samples were dried at 

60C and coarse ground with a Wiley Mill (Thomas Model 4 Wiley® Mill, Thomas Scientific, 

NJ USA). Subsamples were finely-ground to pass a 1 mm sieve, and then ground to a fine 

powder with a Geno Grinder (SPEX CertiPrep, Inc., NJ USA) as described by Bazzer et al. 

(2020). About 3-5 mg of the powdered sample was weighed into tin capsules, for 15N isotope 

analysis which was conducted at the University of California-Davis Stable Isotope Facility 

(https://stableisotopefacility.ucdavis.edu/) using an elemental analyzer interfaced to a continuous 

flow isotope ratio mass spectrometer. Data from the stable isotope facility were expressed as 

δ15N in per mil (‰) and determined according to the equation below: 

𝛿15𝑁 =
𝑅𝑠𝑎𝑚𝑝𝑙𝑒

(𝑅𝑎𝑖𝑟 − 1)
∗ 1000 

where, Rsample and Rair are the isotope ratios (15N/14N) of the sample and air, respectively. 

For more information refer to the Stable Isotope facility website, 

http://stableisotopefacility.ucdavis.edu/13cand15n.html. 
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Statistical Analysis 

Descriptive statistics of δ15N for each environment and correlation coefficients between 

different environments for δ15N were calculated with SAS version 9.4 (SAS, Institute 2013). The 

difference between parents for δ15N in different environments was determined using a t-test. 

Analysis of variance (ANOVA) was conducted using SAS version 9.4 (SAS Institute, 2013) with 

the PROC MIXED procedure (α=0.05). Genotype and environment were considered as fixed 

effects and replication nested within environment was considered as a random effect (Bondari 

2003). Heritability (h2, Holland et al. 2003) of δ15N for each environment and averaged across 

environments was computed using the PROC VARCOMP procedure of SAS 9.4 based on the 

following formula: 

Across environments:         h2 =
𝜎𝐺

2

𝜎𝐺
2 + (

𝜎𝐺𝐸
2

𝑒
)+ (

𝜎𝑒
2

𝑟𝑒
)

 

Within environments:        h2 =
𝜎𝐺

2

𝜎𝐺
2 +  (

𝜎𝑒
2

𝑟
)
 

where, 𝜎𝐺
2, 𝜎𝐺𝐸

2 , and 𝜎𝑒
2 are the genotypic variance, genotypic × environment interaction variance, 

and residual error variance, respectively, e is the number of environments, and r is the number of 

replications within environment. This heritability should be considered a narrow sense estimate, 

as F6-derived RILs have a minimal level of heterozygosity within lines. Hence, most of the 

genotypic variance is composed of additive variance, with negligible variance due to dominance 

effects and its interaction with additive effects. The best linear unbiased prediction (BLUP) 

values for each individual environment and across environments were calculated using a mixed 

model to reduce environmental variance. All factors were considered as random effects in the 

case of individual environments. For calculation of BLUP values averaged across environments, 

environment was considered a fixed effect and genotypes and replications were considered as 
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random effects (Littell et al. 1996; Piepho et al. 2008). QTL analysis was conducted using BLUP 

values for individual environments and across environments.  

Selection of lines with Extreme Values for δ13C and δ15N 

As described previously (Bazzer et al. 2020), this population was also evaluated for 

carbon isotope ratio (δ13C) (a proxy measurement for water use efficiency, WUE) as the parents 

were different in their δ13C values based on phenotypic values and genomic estimated breeding 

values (GEBVs) (Dhanapal et al. 2015a; Kaler et al. 2017). The linear regression between δ13C 

and δ15N was performed using phenotypic values from each individual environment and 

averaged across environments. The biplots were divided into four quadrants using median values 

of δ13C and δ15N to select the lines that were extremes for both traits.  

Genotyping-by-Sequencing and Construction of Linkage Map 

Detailed information on genotyping and linkage map construction of this population were 

provided by Bazzer et al. (2020), which are summarized below. The 196 RILs, together with 

their two parents, were sequenced and genotyped using genotype-by-sequencing (GBS). DNA 

was isolated from lyophilized leaf tissue of the 196 RILs and both parents, and GBS library 

construction was conducted at LGC Genomics GmbH (Berlin, Germany). The sequence reads 

were mapped to the ‘Williams 82’ soybean reference genome (assembly 1). Markers with more 

than 15% missing data, markers that were heterozygous, or did not follow a 1:1 segregation ratio 

pattern (chi-square P-value ≤ 0.01) were removed, resulting in a total of 3,234 polymorphic 

markers. Missing marker data were imputed using a LD-kNNi method which was implemented 

in TASSEL software (https://www.maizegenetics.net/tassel). 

The filtered and imputed 3,234 polymorphic SNPs were used initially for construction of 

the linkage map. The MAP functional module of IciMapping software v4.1 (Meng et al. 2015) 
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was used for the genetic linkage map construction using 2,468 out of 3,234 polymorphic markers 

after dropping redundant and low-quality markers. Genetic linkage groups, marker order and 

distances between markers were determined as described previously (Bazzer et al. 2020). 

Linkage groups were numbered as soybean chromosomes according to the genomic position of 

SNPs on the reference genome. Finally using 2,466 SNPs, a map with 20 linkage groups was 

constructed that corresponded to the 20 soybean chromosomes. The SNP markers information 

along with their position (in base pairs and cM) on specific chromosomes were reported by 

Bazzer et al. (2020). 

QTL Analysis 

The BLUP values calculated for each individual environment and averaged across 

environments were used for QTL analysis. QTL mapping was performed using the QTL 

IciMapping v4.1 software (http://www.isbreeding.net/) through BIP and MET functional 

modules. A BIP module of inclusive composite interval mapping (ICIM) was used to detect the 

additive QTLs within and across environments. QTL × QTL interactions were identified by 

using the Inclusive Composite Interval Mapping of Epistatic QTL (ICIM-EPI) function. The 

LOD threshold to declare significant additive QTLs and interactions between QTLs was 

calculated using 1,000 iteration permutation tests with a genome-wide significance level of 0.05 

(Doerge and Churchill 1996; Li et al. 2007). The mapping parameters were 1.0 cM walking 

speed with P-value inclusion threshold of 0.01 for ICIM-ADD and 5 cM walking speed with a P-

value inclusion threshold of 0.0001 for ICIM-EPI. Multi-Environment Traits (MET) module was 

used for detection of QTL × environment interactions using δ15N BLUP data from all four 

environments. The missing phenotypic values were calculated by using the ‘mean replacement’ 

method. The specific parameters for detecting QTL× environment interactions were 1.0 cM 
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walking speed and a probability of 0.01 in stepwise regression. Finally, the position of SNPs on 

different chromosomes and the position of identified QTLs on the genetic map were drawn using 

Prism software (https://www.graphpad.com/). 

Identification of Putative Candidate Genes 

The search for putative candidate genes related to nodulation and N-metabolism 

underlying the genomic regions associated with δ15N identified in the present study was 

performed using the genome browser option (William 82 assembly 1) of Soybase 

(www.soybase.org). Genes between flanking markers and up to ±1MB outside of the confidence 

interval for flanking markers were considered as potential candidate genes. Additionally, the 

position of 54 soybean genes (28 nodulin + 24 regulatory genes) associated with nodulation or 

biological N2 fixation (Schmutz et al. 2010) were compared to the genomic regions of the δ15N 

QTLs identified in the present research.  
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Results 

Phenotypic Evaluation 

The phenotypic values of parents and descriptive statistics of the RIL population are 

presented in Table 3_1. The parent PI 416997 had lower δ15N values than PI 567201D in all 

environments, but parents were not significantly (P<0.05) different in any single environment. 

However, ANOVA across environments did indicate that δ15N for PI 416997 was significantly 

(P<0.01) lower than PI 567201D (data not shown). There was wide segregation in the RIL 

population for δ15N (Figure 3_1, Table 3_1) as indicated by δ15N ranges of 3.96‰ in ST16, 

4.08‰ in ST17, 3.43‰ in FAY17, and 4.55‰ in CO17. The frequency distribution of δ15N was 

normal in all environments except CO17, as indicated by Shapiro-Wilk test (data not shown, 

Shapiro and Wilk 1965) and absolute values of skewness and kurtosis (less than 1.0, Table 3_1). 

Transgressive segregants exceeding both parents were observed, which indicates that favorable 

alleles for δ15N were distributed between both parents. A significant positive correlation 

(P<0.05) was found between ST16 and ST17 (r=0.15), ST17 and FAY17 (r=0.15), and ST17 and 

CO17 (r=0.14) (data not shown).  

Analysis of variance (ANOVA) averaged across environments showed significant 

(P<0.05) effects of genotype (G) and environment (E), whereas the interaction of genotype and 

environment (G × E) was not significant (Table 3_2). The narrow sense heritability of δ15N 

averaged across environments was 35%. Estimates of narrow sense heritability for δ15N within 

environments were 8% (ST16), 13% (ST17), 27% (FAY17), and 24% (CO17). Overall, low 

narrow sense heritability estimates across and within environments indicate that environmental 

effects play a major role in the expression of this trait and that phenotypic selection for this trait 
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may only be successful using replicated trials of homogeneous lines across multiple 

environments.  

The RIL population used in the present study was also evaluated for δ13C because the 

parents, PI 416997 and PI 567201D, also differed in WUE (Bazzer et al. 2020). Although no 

significant correlation was found between these traits, regression analysis was performed 

between δ15N and δ13C phenotypic values for within and across environments to identify 

extremes among RILs for different combinations of δ15N and δ13C. The selected five RILs for 

high relative N2 fixation and high WUE in individual environments and averaged across 

environments are listed in Table 3_3. The lines RIL.14, RIL.25, RIL.75, and RIL.135 were 

identified in at least two individual environments and across environments as having a favorable 

combination (low δ15N and high δ13C). Similarly, lines with the unfavorable combination of high 

δ15N and low δ13C values were identified in individual environments and averaged across 

environments. The lines RIL.24, RIL.127, and RIL.161 were identified in at least two individual 

environments and RIL.112 appeared across environments in addition to individual environments.  

QTL Analysis 

The linkage map was 3,836 cM with individual linkage groups varying between 116 to 

409 cM, based on the construction using 2,466 SNP markers (data not shown, Bazzer et al. 

2020). QTL analysis conducted using δ15N BLUP values from individual environments 

identified a total of 10 additive QTLs within environments (Figure 3_2, Table 3_4), which were 

distributed on seven chromosomes (Gm01, Gm04, Gm07, Gm08, Gm10, Gm13, and Gm17). Of 

these QTLs, there were four QTLs in ST16, two QTLs in ST17, and four QTLs in Fay17. No 

QTLs were identified in CO17. The phenotypic variation explained by individual QTLs (denoted 

as R2), their additive effect, and parent contributing favorable alleles are presented in Table 3_4. 
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These QTLs individually accounted for 1.72 to 9.34% of the phenotypic variation and had 

additive effects ranging from 0.02 to 0.13‰. The QTL present on Gm04 at 49,247,258 bp 

detected in ST17 had a high R2 value (9.34) as compared to other QTLs.  

QTL analysis by using the BLUP values averaged across environment (AE) by the ICIM-

ADD mapping method identified eight QTLs (Figure 3_2, Table 3_4). These QTLs were present 

on Gm01 (2), Gm04 (1), Gm07 (1), Gm13 (1), Gm14 (1), and Gm15 (2) and had additive effects 

that ranged from 0.04 to 0.12‰ that explained individually 1.83 to 14.39 % of the phenotypic 

variation (Table 3_4). The QTLs on Gm01, Gm04, Gm07, and Gm13 appeared in both 

individual environments and across environments. The QTLs on remaining chromosomes were 

detected only in single environments or only across environments. An allele decreasing δ15N 

values was considered as the favorable allele, and the favorable allele for these QTLs was 

equally distributed between parents (PI 416997 and PI 567201D). When considering overlapping 

confidence intervals, there were 13 loci detected within and across environments (Figure 3_2, 

Table 3_4).  

QTL × Environment and QTL × QTL Interactions Analysis 

The interactions between QTL × environment and QTL × QTL play important roles in 

the genetic control of quantitative traits (Rebetzke et al. 2007; Reif et al. 2011). Eight QTLs 

present on Gm01 (2), Gm04, Gm07, Gm08 (2), Gm10, and Gm13 showed significant QTL × 

environment interactions as identified by MET functionality (Table 3_5). This interaction 

explained phenotypic variation that ranged from 1.17 to 28.25% and with additive effects from 

0.01 to 0.03‰ (Table 3_5). Phenotypic variation due to additive × environment effects (PVE (A 

× E)) was greater than additive effects (PVE (A)) and the LOD score of additive effects (LOD 

(A)) was less than the LOD score for additive × environments effects (LOD (A × E)) for most of 
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these QTLs, indicating that these QTLs had strong interaction with environments. The QTL on 

Gm01 (3,032,794 bp) had a greater LOD score and PVE for additive effect than additive × 

environment effect (Table 3_5), indicating the stability of this QTL across environments. 

QTL × QTL interactions were detected using the Epistatic QTL (ICIM-EPI) method of 

BIP functional module for δ15N values from individual environments. Epistatic interactions 

between different genomic regions were detected in ST16 and FAY17 and across environments 

(AE) (Table 3_6). The phenotypic variation explained by these interactions ranged from 3.53 to 

7.78 %, with the LOD score of these interactions being greater or equal to 3.5. The QTLs 

involved in epistasis were not identified as additive QTLs. No epistasis was detected in ST17 or 

CO17. 

Identification of Putative Candidate Genes 

Of 13 additive loci, five loci (loci 1, 3, 6, 9, and 12) fell in the genomic regions carrying 

published soybean nodulation genes reported by Schmutz et al. (2010) (Figure 3_2) that are 

directly involved in nodulation through production of nodulin proteins, nodulation signaling 

proteins, and different regulatory proteins. For example, Glyma.01g03470 (Locus 1), 

Glyma.04g43090 (Locus 3), Glyma.08g05370 (Locus 6), Glyma.14g05690 (Locus 9), and 

Glyma.17g08110 (Locus 12) genes (Schmutz et al. 2010) are involved directly in the process of 

nodulation. The nodulation genes, Glyma.11g06740, Glyma.13g40400, and Glyma.15g05010 

were in the genomic regions of epistatic QTLs present on Gm11, Gm13, and Gm15, respectively.  
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Discussion 

A prerequisite for genetic improvement of N2 fixation is adequate genetic variability for 

the trait, and understanding the genetic basis of this variability using a dense genetic map would 

be helpful for implementing the most appropriate strategies in a soybean breeding programs. In 

this study, we investigated the variability in δ15N as a proxy for biological N2 fixation using a 

population of RILs. In previous studies, NDFA was used for estimation of N2 fixation in soybean 

and other legumes (Dhanapal et al. 2015b; Heilig et al. 2017; Ramaekers et al. 2013). In the 

present study, δ15N values were directly used as an estimate of N2 fixation, as a non-

nodulating/reference genotype was not planted with the experimental material in order to 

calculate NDFA values. Steketee et al. (2019) also used δ15N values in mapping N2 fixation in a 

GWAS panel for soybean. Our results found a significant difference (P<0.01) between the 

parents when combined over environments, with PI 416997 having lower δ15N values than PI 

567201D. The low δ15N value of PI 416997 indicates that the proportion of N from N2 fixation 

was greater for PI 416997 compared to PI 567201D. 

The RILs had a wide phenotypic range for δ15N in all environments (ranged 3.43 to 

4.55‰) (Table 3_1), but the specific range of δ15N in soybean is not well defined (Dhanapal et 

al. 2015b; Ludidi et al. 2007). The presence of transgressive segregants indicates that selection of 

lines for both low and high δ15N (along with low and high δ13C) values would be possible. Biplot 

analysis of δ15N and δ13C identified five RILs with favorable (low δ15N and high δ13C) and 

unfavorable (high δ15N and low δ13C) phenotypic combinations for δ13C and δ15N (Table 3_3). 

For the favorable combination of δ15N and δ13C, RIL.25 and RIL.135 were among the five top 

RILs in three of the four environments as well as across environments. Comparison of lines with 



 

99 

contrasting δ15N and δ13C signatures may be important in characterizing the physiological and 

interactions between of N2 fixation and WUE. 

Narrow sense heritability of δ15N across environments was 35% and for individual 

environments ranged from 8 to 27% in this study. Steketee et al. (2019) reported low broad sense 

heritability of δ15N (H=17%) in an association study conducted using a diverse panel of soybean 

accessions. Similarly, Dhanapal et al. (2015b) found that broad sense heritability of NDFA was 

low (H=21%) in a GWAS panel. In previous research, several physiological traits linked with N2 

fixation were used for studying the genetic basis of N2 fixation (Hwang et al. 2013; Ray et al. 

2015; Santos et al. 2013; Vieira et al. 2006). Narrow sense heritability was 18% (Vieira et al. 

2006) and 33% (Santos et al. 2013) for nodule number, and 27% for weight per nodule (Santos et 

al. 2013). Broad sense heritability ranged from 33% (Ray et al. 2015) to 73% (Hwang et al. 

2013) for shoot ureides and 59% for shoot N concentration (Hwang et al. 2013). Therefore, 

heritability of traits related to N2 fixation generally appear to be low to moderate, which is 

consistent with strong influence of environmental conditions on N2 fixation (Mastrodomenico 

and Purcell 2012; Ramaekers et al. 2013; Serraj et al. 1999a; Sinclair et al. 1987). 

BLUP values of δ15N were used in the QTL analysis as it increases the accuracy of 

detection of QTLs by reducing the impact of environment. QTL analysis for δ15N by individual 

environment identified 10 QTLs present on seven chromosomes (Figure 3_2, Table 3_4). No 

common QTLs were detected in two or more environments, but five QTLs were detected in 

specific environments that were also found across environments (Table 3_4). In addition to 

identified additive QTLs by individual environment analysis, one QTL on Gm14 and two QTLs 

on Gm15 were detected in QTL analysis across environments (Table 3_4). When considering 
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QTLs detected in individual environments and across environments and overlapping confidence 

intervals, a total of 13 loci (Figure 3_2, Table 3_4) were identified. 

Of the eight QTLs that had significant QTL × environment interaction, six were also 

detected in individual environment analysis (Table 3_5). Although we did not find any QTLs 

common among individual environments, the detection of additive QTLs in joint-environment 

analysis by MET functionality increases the confidence of detection of these QTLs. The low 

phenotypic variation explained by the additive effect (PVE (A)) compared with the additive × 

environment effect (PVE (A×E)) indicates a large effect of environment for all QTLs except for 

the QTL on Gm01 (3,032,794 bp) (Table 3_5). The phenotypic variation explained by these 

additive QTLs is small (R2 <10%), which indicates the complex nature of biological N2 fixation 

(Santos et al. 2013).  

In this study, eight epistatic interactions explained 41% of the phenotypic variation 

present on different chromosomes (Table 3_6). Further, these epistatic QTLs were not identified 

as additive QTLs (Table 3_4). An epistatic QTL present on Gm05 was detected in both ST16 

and FAY17, but this QTL interacted with different epistatic QTLs in ST16 (Gm06) and FAY17 

(Gm02). Also, an epistatic QTL present on Gm03 that was detected in both FAY17 and AE 

interacted with the QTLs present on Gm15 (FAY17) and Gm14 (AE) (Table 3_6). Our results 

indicate that additive QTLs, QTL × environment interactions, and epistasis were important 

factors influencing the variations in δ15N in soybean. 

The presence of QTLs associated with N2 fixation and other N-related physiological traits 

in the genomic regions of identified δ15N loci were screened in Soybase (www.soybase.org). 

Loci 3, 7, and 12 co-localized with previously identified QTLs for nodule-related traits such as 

nodule size (Hwang et al. 2013), nodule number (Shi et al. 2018), and nodule weight (Hwang et 
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al. 2013; Shi et al. 2018). Locus 4 and Locus 10 coincided with ureide QTLs (Ray et al. 2015), 

and Locus 1 with a shoot N QTL (Dhanapal et al. 2015b) identified in a GWAS panel. Also, 

Loci 1, 7, and 12 co-localized with QTLs for δ15N identified in an association study (Steketee et 

al. 2019). Among these loci, Loci 1, 3, and 12 were located in candidate genes involved in the 

nodulation process. Gene N36 (Glyma.01g03470), underlying Locus 1, is an early nodulin gene 

involved in initiation of nodule development (Kouchi and Hata 1993). This gene also plays an 

important role in translocation of photosynthate into nodule tissue. Glyma.04g43090, underlying 

Locus 3, encodes for a nodulation signaling proteins (NSP2), which are Nod-factor activated 

transcriptional factors required for nodulation initiation (Murakami et al. 2006). Similarly, the 

N315 gene (Glyma.17g08110, underlying Locus 12) is expressed at the time of nodule 

emergence and plays a unique role in nodule formation (Kouchi and Hata 1993).  

The δ15N QTLs at Loci 4 and 12 also overlapped with the genomic regions associated 

with δ13C identified in the same population (Bazzer et al. 2020). Additionally, Loci 1, 3, 8, and 

12 coincided with δ13C QTLs identified in GWAS mapping (Dhanapal et al. 2015a; Kaler et al. 

2017). The greater δ13C may indirectly lead to high N2 fixation under drought due to a greater 

supply of carbohydrates to nodules. The co-localized QTLs with genomic regions providing 

drought tolerance may also increase N2 fixation through reducing drought sensitivity of N2 

fixation. 

Similarly, epistatic QTLs (except QTLs present on Gm02) coincided with QTLs reported 

for nodule related traits (Hwang et al. 2013; Nicolás et al. 2006; Santos et al. 2013; Shi et al. 

2018), ureide concentration (Ray et al. 2015), NDFA (Dhanapal et al. 2015b), and δ15N 

(Stekettee et al. 2019). Epistatic QTLs on Gm11, Gm13, and Gm15 were in the genomic regions 

carrying nodulation genes Glyma.11g06740, Glyma.13g40400, and Glyma.15g05010, 



 

102 

respectively (Schmutz et al. 2010). Epistatic QTLs present on Gm06, Gm11, Gm15, and Gm 17 

coincided with additive QTLs for δ13C (Bazzer et al. 2020). In addition, epistatic QTLs also co-

localized with δ13C QTLs found in various studies (Bazzer et al. 2019; Dhanapal et al. 2015a; 

Kaler et al. 2017). 

The co-localization of identified additive and epistatic δ15N QTLs with N2 fixation and 

WUE related traits supports the evidence that genetic links exist between these traits in soybean. 

This is the first study on QTLs analysis for δ15N using a biparental population in soybean. The 

QTLs identified in this study as being associated with N2 fixation are supported by the presence 

of genes directly involved in nodulation in soybean. These QTLs could be of great interest to 

breeders for developing soybean varieties with higher yields through optimization of N2 fixation 
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Conclusion 

In the present study, a mapping population of 196 F6-derived RILs was evaluated in 

multiple environments to understand the genetic basis of δ15N. A wide range of δ15N values were 

observed in all environments and narrow sense heritability of δ15N was low, indicating 

significant effects of environment on δ15N. Transgressive segregants for δ15N were observed 

among the RILs, indicating that it is possible to create, from the specific parents used, extreme 

genotypes with lower and higher δ15N values than observed in either parent. Both parents 

contributed to the higher and lower values observed. The extreme genotypes created in this 

population may be useful in future studies to better assess the physiological mechanisms of N2 

fixation. QTL analysis by environment identified 10 additive QTLs present on seven 

chromosomes that individually explained less than 10% of the observed phenotypic variation. 

Considering QTLs identified across environments, along with individual environments, there 

were 13 loci for δ15N based on their overlapping confidence intervals. A lack of consistency of 

QTL detection was found as QTLs identified in an individual environment did not overlap with 

QTLs in any of the other environments. Co-localization of δ15N QTLs with QTLs for important 

agronomic and physiological traits related to N2 fixation, and the presence of reported nodulation 

genes associated with these QTLs, increases the likelihood that the newly identified regions are 

associated with N2 fixation. Further studies are needed for fine mapping these QTLs to 

understand their expression and to determine how they interact with putative candidate genes. 
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Table 3_1. Phenotypic variation for δ15N (‰) in the parents (PI 416997 and PI 567201D) and RIL 

population grown in four environments: Stoneville in 2016 (ST16), Stoneville in 2017 (ST17), 

Fayetteville in 2017 (FAY17), and Columbia in 2017 (CO17). 

 

 

 

 

 

 

Table 3_2. Analysis of variance (ANOVA) for δ15N in the RIL population along with parents 

evaluated in four environments (ST16, ST17, FAY17, and CO17). 

h2, Narrow sense heritability  

 

Environment 
Parent RIL Population 

PI 416997 PI 567201D Mean±SD Range Skewness Kurtosis 

ST16 1.99 2.78 2.79±0.70 3.96 0.17 0.01 

ST17 3.15 3.65 4.20±0.84 4.08 0.19 -0.11 

FAY17 2.25 4.41 3.01±0.68 3.43 0.14 -0.35 

CO17 1.07 3.12 2.02±0.88 4.55 0.45 0.06 

Effect DF P-value h2 (%) 

Genotypes (G) 195 <0.0001 35 

Environments (E) 3 0.016  

G × E 585 0.267  
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Table 3_3. RILs with high δ13C and low δ15N phenotypic values or RILs with low δ13C and high δ15N phenotypic values in individual 

environments (ST16: Stoneville in 2016, ST17: Stoneville in 2017, FAY17: Fayetteville in 2017, and CO17: Columbia in 2017) and 

across environments (AE). Values in parentheses are the phenotypic values of δ13C and δ15N for that RIL. Bold values indicate the RILs 

appeared within multiple individual environments as well as across environments.  

 

 

 

 

 

 

ST16 ST17 CO17 FAY17 AE 

RILs with high δ13C (>WUE and > N2 fixation) 

RIL.14 (-28.85, 1.89) RIL.25 (-27.70, 3.39) RIL.14 (-27.54, 0.25) RIL.25 (-26.56, 2.43) RIL.14 (-28.02, 2.02) 

RIL.25 (-28.38, 2.18) RIL.75 (-28.02, 3.31) RIL.42 (-27.27, 1.02) RIL.69 (-26.93, 1.98) RIL.25 (-27.34, 2.55) 

RIL.132 (-29.02, 1.79) RIL.120 (-28.02, 3.63) RIL.75 (-27.17, 1.00) RIL.85 (-26.94, 1.93) RIL.75 (-27.65, 2.49) 

RIL.193 (-28.75, 2.13) RIL.135 (-27.99, 3.03) RIL.85 (-27.44, 1.50) RIL.135 (-26.69, 2.52) RIL.135 (-27.59, 2.47) 

RIL.209 (-28.87, 2.30) RIL.204 (-28.10, 3.19) RIL.135 (-27.18, 1.13) RIL.151 (-26.92, 1.71) RIL.204 (-27.72, 2.86) 

     

RILs with low δ13C and high δ15N (< WUE and < N2 fixation) 

RIL.12 (-29.96, 3.77) RIL.24 (-30.14, 6.25) RIL.15 (-28.66, 3.25) RIL.92 (-29.06, 3.73) RIL.112 (-29.18, 3.87) 

RIL.24 (-30.19, 3.19) RIL.50 (-29.97, 4.91) RIL.112 (-28.89, 3.55) RIL.127 (-29.29, 4.23) RIL.154 (-29.17, 3.81) 

RIL.86 (-30.17, 3.59) RIL.52 (-29.77, 5.09) RIL.127 (-28.61, 3.60) RIL.129 (-28.99, 3.79) RIL.177 (-29.12, 3.81) 

RIL.112 (-30.14, 3.28) RIL.110 (-29.86, 4.76) RIL.195 (-28.55, 3.97) RIL.161 (-29.06, 3.76) RIL.203 (-29.03, 4.24) 

RIL.114 (-30.02, 4.32) RIL.161 (-29.86, 5.77) RIL.205 (-28.51, 4.80) RIL.213 (-29.03, 3.82) RIL.205 (-29.10, 4.01) 
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Table 3_4. Quantitative trait loci (QTLs) associated with δ15N detected in individual environments (ST16, ST17, FAY17, and CO17) 

and across environment (AE) in the RIL population of PI 416997 and PI 567201D using BIP functional module of ICIM mapping.  

a Closely spaced putative QTL falling within the same flanking markers were consider as one locus 

b Glycine max chromosome on which putative QTL is present 

c Environment in which a significant QTL was identified 

Locusa Chrom.b Envc 
Nearest SNP position 

(bp)d 
LODe R2f Addg 

Favorable 

alleleh 

1 Gm01 
ST16 

3,284,926 
10.56 3.14 -0.08 

PI567201D 
AE 18.36 7.93 -0.09 

2 Gm01 
ST16 3,955,325 6.08 1.72 0.06 

PI416997 
AE 3,605,601 12.57 5.16 0.07 

3 Gm04 
ST17 49,247,258 6.25 9.34 0.06 

PI416997 
AE 49,618,681 4.87 1.83 0.04 

4 Gm07 
FAY17 15,382,101 7.15 6.80 -0.03 

PI567201D 
AE 15,546,393 8.31 3.21 -0.05 

5 Gm08 ST16 2,681,851 24.21 9.10 -0.13 PI567201D 

6 Gm08 ST16 2,960,542 18.44 6.26 0.11 PI416997 

7 Gm10 FAY17 41,413,995 5.11 4.71 0.02 PI416997 

8 Gm13 
FAY17 27,584,266 5.98 6.88 0.03 

PI416997 
AE 30,216,959 28.57 14.39 0.12 

9 Gm14 AE 4,448,348 4.37 1.63 -0.04 PI567201D 

10 Gm15 AE 17,072,416 6.17 2.35 -0.05 PI567201D 

11 Gm15 AE 23,341,546 12.63 5.22 0.07 PI416997 

12 Gm17 ST17 7,961,686 4.29 7.64 -0.06 PI567201D 

13 Gm17 FAY17 40,829,268 3.40 3.02 -0.02 PI567201D 
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d Nearest marker position in base pairs (bp) on specific chromosome 
e Log-likelihood at QTL peak position 
f  Phenotypic variation explained by putative QTL 

g Additive effect of the QTL 
h Allele that decreases δ15N value 
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Table 3_5. QTLs showing QTL × environment interaction in four environments detected using MET functional module of ICIM 

mapping. 

a Locus number  assigned is the same as the locus number used for QTLs identified by BIP functionality of ICIM Mapping in Table 4 
* New loci, not identified earlier in ICIM-ADD analysis 
b Glycine max chromosome on which putative QTL is present 
c Nearest marker position in base pairs (bp) on specific chromosome  
d Total LOD score for QTL × environment interaction 
e LOD score for additive effects 
f LOD score for additive by environment effects   

g Total phenotypic variance explained by QTL × environment interaction 
h Phenotypic variance explained by additive effects 
i Phenotypic variance explained by additive by environments effects. 

j Additive effect explained by the QTL 

 

 

 

 

 

Locusa Chrom.b 
Nearest SNP 

positionc 
LODd 

LOD 

(A)e 

LOD 

(A × E)f PVEg 
PVE 

(A)h 

PVE 

(A × E)i Addj 

1 Gm01 3,032,794 13.17 11.42 1.75 12.25 6.43 5.83 -0.03 

2 Gm01 3,955,325 6.18 2.11 4.07 5.75 1.21 4.53 0.01 

3 Gm04 49,247,258 6.86 4.38 2.49 7.11 2.46 4.65 0.02 

4 Gm07 15,382,101 7.25 0.90 6.35 1.40 0.50 0.90 -0.01 

5 Gm08 2,681,851 24.21 13.82 10.38 28.25 8.06 20.19 -0.03 

6 Gm08 2,960,542 18.44 7.87 10.57 19.68 4.45 15.23 0.03 

7 Gm10 41,413,995 7.28 1.97 5.31 2.94 1.11 1.82 0.01 

-* Gm13 27,584,266 6.03 0.49 5.54 1.17 0.25 0.92 0.01 
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Table 3_6. Epistatic QTLs identified for δ15N in the RIL population of PI 416997 × PI 567201D by the ICIM-EPI method of BIP 

functional module. 
 

a Environment in which a significant QTL × QTL interaction was identified 
b Glycine max chromosome on which first QTL involved in epistasis present 

c Position of flanking markers of first QTL in epistasis on specific chromosome 
d Glycine max chromosome on which second QTL involved in epistasis present  
e Position of flanking markers of second QTL in epistasis on specific chromosome  
f Phenotypic variation explained by epistasis 
g Additive by additive epistatic effect  

Env.a Chrom. 1b Pos. 1c Chrom. 2d Pos. 2e PVEf Add×Addg 

ST16 

1 52,051,133--52,386,863 15 1,550,336--2,934,524 4.13 0.06 

5 41,542,487--36,175,591 6 12,165,433--12,361,723 7.78 0.08 

12 4,858,604--6,236,974 12 7,201,220--7,201,391 4.45 -0.08 

13 35,909,641--40,053,812 16 33,339,297--33,694,437 6.08 -0.07 

FAY17 
3 43,610,628--44,233,282 15 7,684,532--8,529,280 3.53 -0.03 

5 41,542,487--36,175,591 2 4,726,469--5,730,965 4.44 0.03 

AE 
3 41,518,436--43,565,653 14 7,259,215--8,645,366 4.60 0.05 

6 14,794,344--18,148,587 11 585,930--1,088,794 6.17 -0.07 
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Figure 3_1. Distribution of δ15N among recombinant inbred lines and parental genotypes at Stoneville, MS in 2016 (a), Stoneville,  

MS in 2017 (b), Fayetteville, AR in 2017 (c), and Columbia, MO in 2017 (d). 
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Figure 3_2. Physical position of SNPs on soybean chromosomes and position of loci (horizontal 

red bars) associated with δ15N identified by ICIM mapping for additive QTLs. The numbers in 

the black circles represent the loci number on a specific chromosome. Green, pink, and light-blue 

vertical bars indicate QTLs found at the same positions in previous studies, and yellow circles 

indicate the position of nodulation genes. 
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CHAPTER IV 

Mapping and Confirmation of Quantitative Trait Loci (QTLs) Associated with Carbon 

Isotope Ratio (δ13C) in Soybean. 
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Abstract 

Insufficient moisture availability often limits soybean [Glycine max (L.) Merr.] yield. 

Carbon isotope ratio (δ13C) provides an integrated measure of water use efficieny in C3 plants 

due to its substantial genetic variance, high heritability, and small genotype × environment 

interaction (G×E). The objective of this study was to identify quantitative trait loci (QTLs) 

associated with δ13C using a recombinant inbred line population derived from a cross between 

KS4895 and Jackson. The field experiment was conducted in five environments to evaluate δ13C 

under rainfed and irrigated conditions. Analysis of variance of δ13C averaged over environment 

and irrigation treatment showed significant effects of genotype (G), environment (E), and G × E 

interactions. Heritability of δ13C in different environments and irrigation treatments ranged from 

66 to 79%. Averaged over environments and irrigation treatments heritability was 83%. A total 

of 24 QTLs associated with δ13C were identified and clustered in nine genomic regions on seven 

chromosomes. The QTL clusters on Gm05 (1), Gm06 (2) and Gm20 (1) were detected across 

different environments and irrigation regimes. Collectively, these four QTL clusters accounted 

for 55% of the phenotypic variation in δ13C. The QTLs on Gm06 and Gm20 also showed 

additive × additive epistasis that contributed approximately 4.2% to the total phenotypic 

variation. Several identified δ13C QTLs overlapped with QTLs associated with other 

physiological traits related to plant water status, biological nitrogen fixation, and plant 

morphology. The identified genomic regions may be an important resource in genomic selection 

studies to improve drought tolerance in soybean. 
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Introduction 

Soybean [Glycine max (L.) Merr.] production and yield stability are often limited by 

drought because most of the soybean hectarage in the Inited States is grown in areas of erratic 

rainfall (Dogan et al., 2007). The nature of drought is complex and is caused by insufficient 

rainfall to replenish the soil moisture supply to the point that plant growth, development and yield 

are impacted. Yield improvements in rainfed environments could be achieved by identifying 

secondary traits contributing to drought tolerance. Traits associated with plant water status and 

drought tolerance include: carbon isotope ratio (Bai and Purcell, 2018a; Dhanapal et al., 2015; 

Kaler et al., 2017a, 2018a),  canopy wilting (Charlson et al., 2009; Hwang et al., 2015b;  Kaler et 

al., 2017b; Sloane et al., 1990), canopy temperature (Bai and Purcell, 2018b; Blum, 1988; Kaler 

et al., 2018b; Ludlow and Muchow, 1990; Pinto et al., 2010), canopy coverage (Kaler et al., 

2018c), leaf relative water content (Babu et al., 2003), and rooting depth (Purcell and Specht, 

2004). 

Water use efficiency (WUE) is an important physiological trait associated with drought 

tolerance and is defined as the amount of dry matter produced per unit of water transpired. Thus, 

WUE is an important yield-determining factor due to its positive association with total biomass 

yield (Chen et al., 2011; Passioura, 1996; Wright, 1996). Direct measurement of WUE depends 

either on extensive leaf gas-exchange data or long-term measures of plant water consumption 

and biomass production (Manavalan et al., 2009).  

To avoid the difficulty of measuring WUE of field grown plants, Farquhar et al. (1982) 

and Farquhar and Richards (1984) proposed the use of differences in carbon isotopes of 13C and 

12C in plant tissues. The carbon isotope ratio between 13CO2 and 12CO2 (δ
13C) reflects the 

isotopic fractionation that occurs mainly at the initial carboxylation step in the photosynthetic 



 

120 

CO2 fixation that is catalyzed by Rubisco (Xu et al., 2009). In this process, plants discriminate 

against the heavier isotope of carbon (13C) over the lighter isotope of carbon (12C) during carbon 

fixation. The extent of this carbon isotope discrimination is related to the ratio of internal to 

external concentration of CO2 (Ci/Ca), which is further controlled by stomatal conductance and 

photosynthetic capacity (Brugnoli and Farquhar, 2000; Farquhar et al., 1989).  

Therefore, δ13C is negatively correlated with Ci/Ca and has a positive relationship with 

WUE (Ehdaie et al., 1991; Farquhar and Richards, 1984; Johnson and Bassett, 1991). Carbon 

isotope composition can also be expressed as carbon isotope discrimination (Δ13C). While δ13C is 

positively related to WUE, Δ13C is negatively related to WUE (Condon et al., 1987; Farquhar 

and Richards, 1984). Several greenhouse and field experiments have documented close 

associations of both Δ13C and δ13C with WUE in many crop species including barley (Hordeum 

vulgare) (Çag˘irgan et al., 2005), bread wheat (Triticum aestivum) (Condon et al., 1987; Read et 

al., 1991; Ehdaie et al., 1991), cotton (Gossypium hirsutum) (Brugnoli et al., 1988), cowpea 

(Vigna unguiculata) (Hall et al., 1990), durum wheat (Triticum durum) (Araus et al., 1998), 

peanut (Arachis hypogaea) (Hubick et al., 1986), and soybean (White et al., 1996). The major 

advantage of using δ13C or Δ13C in selection is its substantial genetic variance, high heritability, 

and small genotype by environment interaction (G×E) in dryland areas (Hall et al., 1990; Kaler 

et al., 2017a, 2018a; Merah et al., 2001; Richards et al., 1999).  

Identification of quantitative trait loci (QTLs) associated with δ13C (or Δ13C) in 

replicated, segregating populations under different environments allows the variance to be 

partitioned into genotype and environment components together with an estimate of the number 

of loci controlling the trait (Kearsey and Hyne, 1994). The first QTLs identified for Δ13C were 

reported in tomato (Solanum lycopersicum) by Martin et al. (1989), and subsequently QTLs for 
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Δ13C were reported in Arabidopsis thaliana (Hausmann et al., 2005; Juenger et al., 2005), barley 

(Diab et al., 2004; Ellis et al., 1997, 2002; Teulat et al., 2002), cotton (Saranga et al., 2001), rice 

(Oryza sativa) (Laza et al., 2006; Takai et al., 2006; This et al., 2010; Xu et al., 2009), soybean 

(Dhanapal et al., 2015; Kaler et al., 2017a; Specht et al., 2001), and wheat (Peleg et al., 2009; 

Rebetzke et al., 2008). 

Mian et al. (1996) identified soybean QTLs associated with WUE and leaf ash using a F4- 

derived population developed from a cross between Young (PI 508266) and PI 416937. A total 

of four and six independent QTLs were associated with WUE and leaf ash, respectively. Mian et 

al. (1998) identified two independent markers associated with WUE in a F2- derived population 

from a cross of S100 × Tokyo. Dhanapal et al. (2015) and Kaler et al. (2017a) used genome-wide 

association mapping (GWAM) to identify single nucleotide polymorphism (SNPs) associated 

with δ13C on a panel of 373 diverse soybean accessions. Genome-wide association analysis 

identified 39 SNPs associated with δ13C, which likely tagged 21 different loci (Dhanapal et al., 

2015). Subsequently Kaler et al. (2017a) identified 54 SNPs for δ13C that likely tagged 46 loci. 

To improve drought tolerance in soybean, more studies are needed to identify and 

confirm QTLs associated with drought tolerance, to map new QTL(s)/ gene(s), and to determine 

gene action under drought. High-density genetic maps and confirmed QTLs/genes, which are 

screened across the various environments and across genetic backgrounds, are the most 

important criteria for developing drought-resistant soybean (Manavalan et al., 2009). The next 

steps are to confirm QTLs identified previously in different genetic backgrounds, in different 

environments, and to evaluate the efficacy of identified QTLs in conferring drought 

tolerant/resistant genotypes. 
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In the present research, recombinant inbred lines (RILs) derived from a cross between 

‘KS4895’ (PI 595081) (Schapaugh and Dille, 1998) with ‘Jackson’ (PI 548657) (Johnson HW, 

1958) were used to: identify the genomic regions associated with the δ13C under rainfed (RF) and 

irrigated (IRR) conditions, identify the common QTL regions across environments, confirm 

QTLs identified previously by GWAM, and to find potential markers associated with these 

identified genomic regions which can be used to improve WUE in soybean. 
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Materials and Methods 

Field Experiments 

A population of 168 F5- derived RILs (Hwang et al., 2015b) from a cross between 

KS4895 and Jackson was used to identify the genomic regions (QTLs) associated with δ13C. 

KS4895 is a Maturity Group (MG) IV cultivar that was developed by the Kansas Agricultural 

Experiment Station, and Jackson is a MG VII cultivar developed by the North Carolina 

Agricultural Experiment Station and the USDA-ARS. Beginning at the F2 generation, individual 

plants were selected to have a maturity similar to that of ‘Hutcheson’ (PI 518664, Buss et al., 

1988), which has a relative maturity of 5.4. The full range of maturity differences of plants at the 

F2 generation was approximately 20 d, but after selecting for similar maturity at each generation 

the F5-derived RILs had a maturity range of approximately 3 d with an average relative maturity 

of 5.5.  These two genotypes were chosen as parents because previous research reported that 

Jackson was more tolerant than KS4895 with regards to N2 fixation in response to drought (King 

and Purcell, 2001, 2006).  

Field experiments evaluating the 168 RILs along with both parents were conducted under 

rainfed (RF) and irrigated (IRR) conditions at the Arkansas Rice Research and Extension Center 

near Stuttgart, AR (34.50° N, 91.55° W) in 2012 and 2013 (ST12, ST13, respectively) on a 

Crowley silt loam (Fine, montmorillonitic, thermic Typic Albaqualfs), and at the Northeast 

Research and Extension Center near Keiser, AR (35.06° N, 90.80° W) in 2013 (KS13) on a 

Sharkey silty clay soil (Very-fine, smectitic, thermic Chromic Epiaquerts). Similar experiments 

were conducted under RF conditions in 2017 at the Pine Tree Research Station near Colt, AR 

(35.11° N, 90.91° W) (PT17) on a Calloway silt loam soil (Fine, montmorillonitic, thermic Typic 

Albaqualfs) and at the Southeast Branch Research Station near Rohwer, AR (33.80° N, 91.28° 
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W) (RH17) on a Sharkey silty clay soil (Very-fine, smectitic, thermic Chromic Epiaquerts). 

Planting dates were 4 June 2012 and 31 May 2013 at Stuttgart, 26 June 2013 at Keiser, 9 June 

2017 at Pine Tree and 8 June 2017 at Rohwer.  At Stuttgart, there were two rows per plot that 

were 76 cm apart and 4.5 m long in both years. Plots at Keiser consisted of two rows that were 

96 cm apart and 5.2 m in length. At Pine Tree, plots consisted of nine rows spaced 18 cm apart 

that were 4.26 m in length, whereas at Rohwer, there were nine-row plots spaced 15 cm apart 

that were 3.96 m long.  

Plant samples for δ13C estimation were harvested 80 d after planting in 2012 and 89 d 

after planting in 2013 at Stuttgart, 71 d after planting in 2013 at Keiser, 60 d after planting in 

2017 at Pine Tree, and 70 d after planting in 2017 at Rohwer. Rainfed and IRR experiments at 

ST12, ST13 and KS13 were conducted in side by side fields. Experiments were furrow irrigated 

at Stuttgart and irrigated with an overhead, lateral-move sprinkler at Keiser when the estimated 

soil-moisture deficit exceeded 37 and 50 mm, respectively (Purcell et al., 2007). Irrigation was 

terminated in RF blocks when plants reached the full bloom (R2) growth stage (Fehr and 

Caviness, 1977) but continued until late full seed (R6) growth stage in the IRR blocks. 

Maximum temperature, minimum temperature, and rainfall were collected online from Southern 

Regional Climate Center (https://www.srcc.lsu.edu/station_search) using Climate Data Portal for 

each experimental site.  

Phenotypic Evaluations 

Between beginning seedfill and mid-seedfill, the aboveground portion of four random 

plants from each plot was harvested. The plant samples were completely dried at 60 C and then 

coarse ground to pass a 6 mm sieve using a Wiley Mill (Thomas Model 4 Wiley Mill, Thomas 

Scientific, Swedesboro, NJ). A subsample of the coarse-ground samples was finely ground to 
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pass a 1 mm sieve. After thoroughly mixing the finely ground samples, about 500 mg was 

transferred to a 15 ml tube (part # 2252-PC-30; SPEX CertiPrep, Metuchen, NJ ) and two 9.52-

mm diameter stainless steel balls (440C Stainless Steel Ball, Tolerance/Grade: 100, Abbott Ball 

Company, West Hartford, CT) were placed inside the tube. Each sample was ground to a fine 

powder using a Geno Grinder (SPEX CertiPrep, Metuchen, NJ) for 10 min at 1,500 rpm. 

Thereafter, about 3–5 mg of powdered sample was carefully packed in tin capsules and arranged 

in 96-well plates (Costech Analytical Technologies, Vaalencia, CA).  The 13C isotope analysis 

was performed at the University of California–Davis Stable Isotope Facility 

(http://stableisotopefacility.ucdavis.edu/13cand15n.html) using an elemental analyzer interfaced 

to a continuous flow isotope ratio mass spectrometer. Data from the stable isotope facility were 

received as δ13C (‰) and were expressed relative to the international standard of the 13C/12C 

ratio Vienna PeeDee Belemnite (V-PDB) as: 

𝛿13𝐶 =
𝑅𝑠𝑎𝑚𝑝𝑙𝑒

(𝑅𝑠𝑡𝑑 − 1)
∗ 1000 

where, Rsample and Rstd are the isotope ratios of the sample and standard, respectively. 

Statistical Analysis 

At ST12, ST13, and at KS13, the experimental design was a randomized complete block 

with two replications and two irrigation conditions, that is, RF and IRR, whereas at PT17 and 

RH17, the experiments were conducted only under RF conditions with two replications. 

Combinations of location and year were considered as separate environments. Descriptive 

statistics and Pearson correlation analysis for δ13C for each environment under different 

irrigation conditions were calculated using the PROC UNIVARIATE and PROC CORR 

procedures (α = .05) of SAS version 9.4 (SAS, Institute 2013), respectively. Tests of 

homogeneity of variance (Levene’s test, Levene, 1960) were performed by environment and by 
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treatment before pooling of δ13C data across environments and treatments. The δ13C data 

collected in PT17 and RH17 were not included in the overall analysis of variance because the 

experiments were only conducted under RF conditions. Analysis of variance (ANOVA) was 

performed using the PROC MIXED procedure (α = .05) of SAS version 9.4 (SAS Institute, 

2013). In the overall ANOVA, all factors were considered fixed except replication within 

environment × irrigation treatment (Table 3). For ANOVA of individual environments (KS13, 

ST12, and ST13) and of different irrigation treatments (RF and IRR), genotype, environment, 

treatment, genotype × environment, and genotype × treatment effects were fixed and replication 

within irrigation treatment and replication within environment were considered as random 

effects. The variance components were estimated using the PROC VARCOMP procedure of 

SAS 9.4 with the restricted maximum likelihood estimation (REML) method. Heritability (h2) 

was calculated as follows: 

Within each environment:        h2 =
𝜎𝐺

2

𝜎𝐺
2 + (

𝜎𝐺𝑇
2

𝑡
)+ (

𝜎𝑒
2

𝑟𝑡
)

 

Within each treatment:            h2 =
𝜎𝐺

2

𝜎𝐺
2 + (

𝜎𝐺𝐸
2

𝐸
)+ (

𝜎𝑒
2

𝑟𝐸
)

 

Over environments and treatments: h2 =
𝜎𝐺

2

𝜎𝐺
2 + (

𝜎𝐺×𝑇(𝐸)
2

𝑡
) + (

𝜎𝐺×𝐸
2

𝐸
) + (

𝜎𝑒
2

𝑟𝑡𝐸
)

 

where 𝜎𝐺
2

  is the genotypic variance, 𝜎𝐺𝑇
2  is the genotype × treatment interaction variance, 𝜎𝐺𝐸

2
 is 

the genotype × environment interaction variance, 𝜎𝑒
2 is the residual error variance, t is the 

number of treatments, E is the number of environments, and r is the number of replications. As 

F5- derived RILs were used in present study, 𝜎𝐺
2 is mostly composed of additive variance and 

additive × additive epistasis variance with negligible variance associated with dominance, 

additive × dominance epistasis, and dominance × dominance epistasis. Therefore, this 
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heritability should be considered as narrow sense heritability. To reduce the environmental 

variation, the best linear unbiased prediction (BLUP) for each environment under RF and IRR 

conditions, across environments, and across irrigation conditions were estimated using the PROC 

MIXED procedure. For calculation of BLUP values, all factors were considered as random 

effects. The QTL analysis was performed using BLUP values. 

QTL Analysis 

A genetic map of 2,089 cM that was previously constructed using 548 polymorphic 

markers (37 asimple sequence repeats and 511 SNPs) (Hwang et al., 2015b) was used to identify 

the genomic regions associated with the variation of δ13C in different environments and irrigation 

conditions. The QTL analysis was performed using WinQTL Cartographer version 2.5 (Wang et 

al., 2007). Single marker analysis (SMA) was used to identify genetic markers associated with 

the δ13C. Markers significant at P < .05 identified by SMA were used as cofactors in composite 

interval mapping (CIM) to control the genetic background noise (Zeng, 1994). The CIM analysis 

was performed using Model 6 of the Zmapqtl program module (Zeng, 1994) with forward and 

backward stepwise regression (α = .05) to detect QTLs and estimate the magnitude of their 

effects (Jansen and Stam, 1994). The genome was scanned with walking speed of 1 cM along the 

chromosome with a window size of 1 cM. A permutation test (1000 times) at a significance level 

of P = .05 was used to determine the genome-wide likelihood ratio test (LRT) threshold 

(Churchill and Doerge, 1994). A minimum logarithm of odds (LOD) declination value of 2 was 

used to declare two peaks as separate QTLs (if both peaks exceeded the LOD threshold value).  

Multiple interval mapping (MIM) was performed using the stepwise model procedure of 

Kao et al. (1999) in which QTLs identified by CIM were used in an initial MIM selection model 

of markers. The pre-selected model was optimized to find the maximum likelihood position of 
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QTLs, searching for new QTLs and epistasis between identified QTLs using the “optimize QTL 

positions”, “search for new QTL”, and “QTL interaction” options. Settings for MIM included a 

genome walk speed and window size of 1 cM with Bayesian information criterion (BIC), c(n) = 

3*In(n) for fitting the best QTL model.  

The QTL Network v.2.0 (Yang et al., 2008) was also used to determine the QTL × QTL 

interactions and their interaction with environments. The QTL Network v.2.0 software uses the 

mixed-model based CIM method. In the one- dimensional genome scan, a significant marker 

interval was identified by a marker pair selection (Piepho and Gauch, 2001). All possible 

significant epistasis between marker intervals were identified by two-dimension genome scans. 

Permutation tests were conducted 1,000 times to determine a critical F-value. The QTL effects 

were estimated by using the Monte Carlo Markov Chain (MCMC) method (Yang et al., 2007) 

with Gibbs sampler iterations of 20,000. A genome-wide threshold value of .05 was used for the 

selection of the best model based on F-statistic values. Mapchart (Voorrips, 2002) was used for 

the graphical representation of QTLs on the genetic linkage map according to the data from 

WinQTLCartographer. 
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Results 

The monthly average maximum and minimum temperature from planting to plant 

sampling indicated that ST12 was warmer than other environments (data not shown). 

Temperatures at PT17 and RH17 were 1 to 2.5C cooler compared to other environments at the 

time of plant sampling. Overall averaged minimum temperatures ranged from 20 to 22 C and 

maximum temperatures ranged from 30 to 34 C during the growing season. All environments 

differed in total cumulative rainfall (Figure 4_1). Rainfall at ST13 was the least whereas RH17 

received the most rainfall from the period of planting to sample harvesting. The experiments at 

ST12 and ST13 had relatively little rainfall throughout the season (Figure 4_1). Although total 

rainfall was high for KS13, there was a period of 24 d prior to sampling without rainfall. At 

RH17, rainfall throughout the season minimized drought stress prior to plant sampling. At PT17, 

there was relatively high rainfall, but there was a period of 12 d prior to plant sampling without 

rainfall. 

Descriptive statistics of δ13C under RF and IRR conditions within environments (Table 

4_1) indicated a significant range of phenotypic variation. Under RF conditions, δ13C had a 

range of 1.22‰ when averaged over environments, whereas under IRR conditions, δ13C had a 

range of 1.68‰ when averaged over environments (Figure 4_2). In all cases, δ13C within 

environment, averaged over RILs, was lower (more negative) for the IRR than the RF 

conditions, which is consistent with greater WUE under drought conditions. 

The average δ13C values of the two parents at ST12_RF, ST12_IRR, ST13_RF, and 

ST13_IRR environments indicated that mid-parent values were close to the population mean 

(Table 4_1). In contrast, mid-parent values were less than population mean in KS13_RF, 

KS13_IRR, and PT17_RF and greater than the population mean in RH17_RF. Values of δ13C for 
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KS4895 tended to be greater than Jackson in all environments and treatments except for 

ST12_IRR (Table 4_1). When data were analyzed by environment over treatment, δ13C of 

KS4895 was greater than Jackson for ST13 (P ≤ .001) and KS13 (P ≤ .01) (data not shown). 

Similarly, when data were analyzed by treatment over environments, δ13C of KS4895 was 

significantly greater than Jackson in IRR (P ≤ 0.05) and RF (P ≤ .01) conditions (Figure 4_2). 

Importantly, the δ13C values among the RILs extended beyond that of the parents in all 

environments under both irrigation conditions (Table 4_1), indicating the possibility of multi-

genetic inheritance and transgressive segregation (Rieseberg et al., 1999). 

The δ13C values followed a normal distribution in all environments under RF and IRR 

conditions as indicated by the Shapiro-Wilk test (P > .05, Table 4_1). There was a significant 

positive correlation (P ≤ .01) of δ13C of RILs between all environments and irrigation conditions 

(.27 ≤ r ≤ .65) except for ST12_RF and PT17_RF in which the correlation (r = .13) was not 

significant (Table 4_2). The homogeneity of variance analysis showed that there was no 

significant difference (P < .05) of variance among different environments and treatments. 

Data collected from ST12, ST13, and from KS13 under RF and IRR conditions were used 

in an overall analysis of variance (Table 4_3). There was a significant effect (P < .05) of 

genotype (G), environment (E), and the interaction of G × E on δ13C, whereas the main effect of 

irrigation treatment within environment and its interaction with G was non-significant. Analysis 

of variance by irrigation treatment showed the significant effect of G and E under both irrigation 

conditions, but G × E was only significant under RF conditions. Analysis of variance by E 

indicated a significant effect of G in all cases, but the effect of treatment was only significant in 

ST13. Data collected from Pine Tree (PT17_RF) and Rohwer (RH17_RF) were not included in 

either the overall analysis of variance or the analysis of variance by environment because δ13C 
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data were collected only under RF conditions. Analysis of variance for each irrigation condition 

within an environment indicated a significant effect (P < .05) of G in all cases.  

Heritability of δ13C on an entry-mean basis combined across all environments and both 

irrigation treatments was 83% (Table 4_3). Heritability under RF and IRR conditions over 

environments was 72 and 79%, respectively. For individual environments averaged over 

irrigation treatments, heritability was 66 (KS13), 77 (ST12), and 78% (ST13). Heritability for 

different irrigation treatment and environment combinations ranged from 35 (PT17_RF) to 70% 

(ST13_RF). 

Among locations there were large differences in the number of rows per plot (from 2 to 

9) and row spacing (15 - 96 cm) that could potentially contribute to the G × E effects observed 

(Table 4_3). However, we could find no discernable patterns in RIL means of δ13C among 

locations that were associated with row spacing, but this remains a possibility that would require 

further experimentation to determine. Given the relatively high heritability of δ13C across 

environments (h2 = 83%) and the large differences among environments with regards to soil 

characteristics, rainfall/irrigation distribution, and temperature, it is not likely that row spacing 

had a major effect on δ13C. Additionally, Kaler et al. (2018a) evaluated soybean δ13C in four 

environments with row spacing ranging between 19- and 76-cm. Although they found significant 

main effects of environment and genotype on δ13C, they did not find a significant G × E effect, 

indicating that genotypes responded similarly with different row spacing.  

QTL Analysis  

Table 4 describes the QTLs identified by CIM for δ13C in each environment (ST12, 

ST13, and KS13), under RF and IRR conditions, and over environments and irrigation treatments 

(AEI). Significant markers (P < .05) identified by SMA were located near the maximum likely 
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QTL positions. Multiple significant markers (P < .01) were found on different positions within 

each chromosome by SMA. The marker explaining the largest phenotypic variation (R2) on the 

specific position of each chromosome was chosen as the representative QTL for that 

chromosomal regions. Although PT17 and RH17 were only conducted under RF conditions, the 

data from these environments were included in the QTL analysis to identify the QTLs associated 

with δ13C across a wider range of environments. 

QTL Analysis by Environment: 

For the analysis averaged over irrigation treatments by individual environments (KS13, 

ST12, and ST13), there were a total of eight QTLs identified on Gm04 (1), Gm06 (4), Gm18 (1), 

and Gm20 (2) with R2 values ranging from .07 to .24 and with additive effects that ranged from 

0.05 to 0.13‰ (Table 4_1; Figure 4_3). Additive QTL effects were calculated as one-half of the 

difference between the average effects of parental alleles (KS4895 and Jackson). Of these eight 

QTLs, two favorable QTLs were from KS13 (Gm06 and Gm18), three favorable QTLs were 

from ST12 (Gm04, Gm06, and Gm20), and three favorable QTLs were from ST13 (Gm06 (2) 

and Gm20 (1)). The QTL on Gm06 positioned at 247.3 cM (47,413,332 bp) from ST12 had an 

overlapping confidence interval with QTLs from ST13 (248.3 cM) and KS13 (248.3 cM), and 

had R2 values ranging from .12 to .18 and additive effects ranging from 0.07 to 0.10‰. The QTL 

on Gm20 from ST12 positioned at 95 cM (41,983,096 bp) was also found in ST13 and accounted 

for the highest phenotypic variation (R2 = .18 and .24) and the highest additive effect (0.10 to 

0.13 ‰). Using the MIM model, one QTL on Gm05 at 232.9 cM (37,322,242 bp) was detected 

in ST13 that was not detected by CIM with a R2 value of .05 (Table 4_5). Favorable parental 

alleles were defined as ones that increased δ13C (increase WUE) at a QTL position. The 

favorable allele for the QTLs present on Gm06 were from KS4895 except for the QTL at 204.8 
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cM (14,849,154 bp) identified in ST13, which was from Jackson. The QTLs positioned at 78 cM 

(9,299,958 bp) on Gm04 and at 125.2 cM (5,8976,307 bp) on Gm18 appeared only in ST12 and 

KS13, respectively. Favorable alleles for QTLs found on Gm04, Gm05, Gm18, and Gm20 were 

from Jackson. There was no significant interaction among QTLs in MIM models, but significant 

(P ˂ .05) interactions were identified by QTL Network between the QTLs present on Gm18 and 

Gm20 for KS13 and QTLs present on Gm06 and Gm20 for ST13. 

QTL Analysis by Irrigation Treatment: 

When analysis was performed by treatment averaged over environment using the CIM 

model, five QTLs were detected under RF conditions and four were found under IRR conditions 

(Table 4_4, Figure 4_3). QTLs detected under RF were present on Gm05 (1), Gm06 (3), and 

Gm20 (1) with R2 values ranging from .06 to .25 and additive effects from 0.05 to 0.10‰. The 

QTL present on Gm05 at 232.9 cM (37,322,242 bp) was only detected under RF conditions. The 

three QTLs found on Gm06 at 206.3 cM (14,849,154 bp), 248.3 cM (47,413,332 bp), and 253.4 

cM (47,823,144 bp), collectively explained 53% of the phenotypic variation, and the favorable 

allele for two of these QTLs (248.3 and 253.4 cM) were from KS4895. Jackson contributed the 

favorable allele for the QTL present on Gm20 (95 cM) with an additive effect of 0.07‰. Out of 

the five QTLs identified by the CIM model, only two QTLs were detected with MIM on Gm06 

at 246.3 cM (47,413,332 bp) and Gm20 at 95.0 cM (41,983,096 bp; Table 4_5). QTL Network 

detected an additive × additive interaction between above QTLs identified by MIM with R2 = 

.08. 

The QTL analysis was also performed separately for δ13C data collected from RH17 and 

PT17 under RF conditions (Table 4_4). Three QTLs were identified by the CIM model in 

PT17_RF on Gm06, Gm12, and Gm19 with R2 values that ranged from 0.07 to 0.13 and additive 
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effects from 0.03 to 0.05‰ (Table 4_4). The QTLs on Gm06, Gm12, and Gm19 positioned at 

246.3 cM (47,413,332 bp), 35.2 cM (6,621,791 bp), and 102.7 cM (44,658,800 bp), respectively, 

had favorable alleles that were from KS4895. No QTLs were identified for RH17. 

For the four putative QTLs identified with the CIM model for the IRR treatment (Table 

4_4; Figure 4_3), three QTLs on Gm06 positioned at 241.8 cM (43,167,030 bp), 247.3 cM 

(47,413,332 bp), and 267.4 cM (47,413,332 bp), together explained 34% of the phenotypic 

variation. For these three QTLs, the KS4895 allele increased the δ13C and had an additive effect 

that ranged from 0.07 to 0.09‰. Of these QTLs on Gm06, the QTL at 247.3 cM was also 

detected with the MIM model in addition to a QTL on Gm05 at 231.9 cM (37,322,242 bp) (R2 = 

.05 and additive effect of 0.06‰; Table 4_5). The QTL present on Gm20 at 95 cM (41,983,096 

bp) was detected by both CIM and MIM models and had the favorable allele from Jackson. No 

significant QTL × QTL interactions were identified in the MIM model. However, an additive × 

additive epistasis was found between the QTL present on Gm06 and Gm20 by QTL Network, 

which had an epistatic effect of 0.05‰ with a R2 = .05. 

QTL Analysis over Environment and Irrigation Treatment (AEI): 

When analysis was performed by using δ13C data averaged over all environments 

(excluding data from PT17 and RH17) and from both irrigation conditions,  one QTL was found 

on Gm05 and Gm20, and two on Gm 06 (Table 4_4; Figure 4_3). Thus, these QTLs were stable 

over environments and over irrigation conditions. The QTL present on Gm05 (positioned at 

229.9 cM (37,322,242 bp) explained 9% of the phenotypic variation and had an additive effect of 

0.07‰. The two QTLs present on Gm06 at 206.3 (14,849,154 bp) and 247.3 cM (47,413,332 bp) 

collectively accounted for 14% of the phenotypic variation, whereas the QTL on Gm20 (at 95 

cM (41,983,096 bp) had an additive effect of 0.11‰ and explained the highest phenotypic 



 

135 

variation (23%) among identified QTLs. For three of these QTLs (Gm05, Gm06, and Gm20), the 

favorable allele was from Jackson, while the QTL on Gm06 (247.3 cM), the favorable allele was 

from KS4895. The QTLs on Gm06 (247.3 cM) and Gm20 (95 cM) had a significant interaction 

(P < .00001) with an effect of -0.06‰. 
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Discussion 

The present study mapped δ13C in a population derived from KS4895 × Jackson under 

RF and IRR conditions across different environments. A broad range of δ13C within each 

environment indicated a wide phenotypic range, which is the first requisite for QTL analysis. 

Within environment and irrigation treatment, δ13C values averaged over RILs were lower for the 

IRR than the RF conditions. Similarly, in cotton, there was high δ13C values in water deficit 

treatment as compared to well-watered conditions, indicating greater WUE (Saranga et al., 1999; 

Yakir et al., 1990). Under water deficit conditions, there is partial closure of stomata, which may 

lead to an increase in WUE (Specht et al., 2001).  

The parents of this population were originally selected because they differed in their 

response of N2 fixation to drought with KS4895 being affected considerably more by drought 

than was Jackson (King and Purcell, 2001, 2006). It is interesting to note, however, that KS4895 

generally had greater δ13C than Jackson (Table 4_1) that was significant for both IRR (P ≤ .05) 

and RF (P ≤ .01) treatments when analyzed over environments (Figure 4_2). Surprisingly, these 

results are consistent with KS4895 having greater water use efficiency than Jackson despite 

having N2 fixation more sensitive to drought than Jackson (King and Purcell, 2001, 2006). 

Nevertheless, there was transgressive segregation among RILs with favorable alleles at five of 

the nine QTLs for δ13C being derived from Jackson (Tables 4_4, 4_5).  

The significant positive correlation for δ13C between different environments and 

irrigation conditions ranged from r = .27 to .65 (Table 4_2). Likewise, correlations between RF 

and IRR conditions from different environments were positively related (r = .49 to .65), which is 

consistent with non-significant interactions of genotype × treatment for all the environments. The 

strong correlation between RF and IRR environments and a lack of genotype and environment 
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interaction was previously reported for many crops (Ashok et al., 1999; Impa et al., 2005; Ismail 

and Hall, 1992; Kaler et al., 2017a, 2018a).  

The heritability of δ13C averaged over irrigation and environments (83%) is similar to 

broad-sense heritability (H = 0.76, Kaler et al., 2017a; H = 0.76, Hall et al., 1990; H = 0.81, 

Hubick et al., 1988; H = 0.68, Stiller et al., 2005) and narrow-sense heritability (h2 = 0.80, Specht 

et al., 2001; h2 = 0.37-0.91, Rebetzke et al., 2008) for δ13C reported previously. The heritability 

of δ13C suggests that selection on the basis of δ13C could be effective for improving WUE under 

drought conditions. 

In soybean, there are 11 known genes controlling maturity and flowering date (Cober et 

al., 2010; Kong et al., 2014; Li et al., 2017; Ray et al., 1995). Because this population was 

developed to have a narrow range of maturity (~3 d), the full range of potential segregants was 

not evaluated. Therefore, genes associated with δ13C and linked with maturity and flowering-date 

would not likely be identified in the present research. However, by having similar maturity 

among the RILs, QTLs associated with δ13C would not be confounded with large differences in 

developmental stages at the time of plant sampling that may have occurred had the full range of 

segregants been used. Others have noted the advantages of selecting for a relatively narrow 

soybean maturity range for mapping physiological traits (Abdel-Haleem et al., 2012; Charlson et 

al., 2009; Hwang et al., 2013, 2014, 2015a, 2015b). 

The QTL analysis identified a total of 24 QTLs on seven chromosomes (Gm04, Gm05, 

Gm06, Gm12, Gm18, Gm19, and Gm20) when δ13C data were analyzed by environment, by 

irrigation, and over environment and irrigation treatment (Table 4_4; Figure 4_3), indicating 

polygenic inheritance of δ13C. Considering the overlapping confidence intervals, we conclude 

that there were nine genomic loci on seven chromosomes (Gm04, Gm05, Gm06, Gm12, Gm18, 
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Gm19, and Gm20) associated with δ13C (Figure 4_3). On Gm06, the QTLs present between 

197.0 and 220.0 cM were considered as one locus (Locus 3; Table 4_4). The nine QTLs (KS13, 

ST12, ST13, PT17_RF, IRR [2], RF [2], and AEI) present between 232.0 and 263.0 cM on 

Gm06 (Locus 4) had over lapping confidence intervals with one or more QTLs in this region and 

were also considered as one locus. There is the possibility of more than one locus at this position 

that would require fine mapping to resolve. Of these nine loci, Loci 2 (Gm05), 3 (Gm06), 4 

(Gm06), and 9 (Gm20) were identified consistently in multiple environments and both irrigation 

conditions, which explained phenotypic variation from 9 to 23%. A QTL on Gm06 (Locus 4) 

and on Gm20 (Locus 9) collectively accounted for most of the phenotypic variation and had the 

largest additive effect (Table 4_4) with the favorable alleles coming from Jackson. The nearest 

marker linked with these QTLs are candidates for marker assisted selection in future breeding 

efforts to improve WUE.  

The 93705 KS4895 × Jackson population (93705KJ), which consisted of 97 RILs, was 

developed earlier to study the inheritance of traits associated with nitrogen fixation (Hwang et 

al., 2013; Hwang et al., 2014) as both parents differed in nitrogen fixation. To study the 

inheritance of other physiological responses associated with drought, crosses between parents 

were made in 2008 to increase the population size; the resulting population, consisting of 168 

RILs, was designated as 08705 KS4895 × Jackson population and was used in the present study. 

Hwang et al. (2015b) described the 08705 KS4895 × Jackson population as a confirmation 

population of the 93705 KJ population, which was mapped for canopy wilting QTLs. It was of 

interest to consider if wilting and QTLs for other traits co-segregated with δ13C QTLs. To 

confirm the identified QTLs with previously reported QTLs, the identified δ13C QTLs were 

aligned with the soybean linkage map in Soybase (http://soybase.org/). For this analysis, we 
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included QTLs associated with other traits within the 95% confidence interval and ± 5 cM 

beyond the identified δ13C QTL boundary in this study. We found numerous QTLs from 

previous reports for traits related to abiotic stresses, plant morphology and development, seed 

composition and nitrogen accumulation that overlapped with δ13C QTLs identified in the present 

research (Table 4_6). 

The QTL on Gm04 (Locus 1) at 78 cM overlapped with the canopy wilting QTL 

identified by Abdel-Haleem et al. (2012) in a population derived from Benning (PI 595645) × PI 

416937. This QTL was also close to a δ13C QTL found in a GWAM study using a diverse panel 

of soybean accessions (Kaler et al., 2017a). At the genomic location of the QTL cluster on Gm05 

(Locus 2), there were QTLs reported for oxygen isotope ratio (δ18O; Kaler et al., 2017a), low 

hydraulic conductance (Carpentieri-Pipolo et al., 2011), drought index (Du et al., 2009a), and 

canopy wilting (Hwang et al., 2016; Kaler et al., 2017b). Leaf hydraulic conductance and δ18O 

are traits associated with transpiration. Low hydraulic conductance QTLs identified by 

Carpentieri-Pipolo et al. (2011) in a Benning and PI 416937 population, may conserve soil water 

by limiting hydraulic conductance leading to increase WUE and slow canopy wilting. The 

genomic region on Gm05 associated with low hydraulic conductance (Carpentieri-Pipolo et al., 

2011) and slow canopy wilting (Kaler et al., 2017b) were consistent and stable across different 

environments and irrigation conditions in this study.  

The QTL on Gm06 (Locus 3, 197.0-220.0 cM) was associated with Δ13C in RILs 

developed from a cross of Minsoy × Noir 1 (Specht et al., 2001). Using the 93705 KS4895 × 

Jackson population, Hwang et al. (2014) identified QTLs associated with nodule number that 

mapped to this position on Gm06 and with the favorable allele coming from KS4895, as was 

similar for the δ13C QTL. Likewise, Hwang et al. (2015b) located a QTL for canopy wilting at 
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the same genomic region (Locus 4, 232.0-263.0 cM ) on Gm06 in the 93705 KS4895 × Jackson 

population. Both QTLs (canopy wilting and δ13C) had the same marker, ss107921293, as the 

nearest marker but carried the favorable allele from different parents. Significant associations of 

SNPs with canopy wilting (Kaler et al., 2017b), canopy temperature (Kaler et al., 2018b), and 

canopy coverage (Kaler et al., 2018c) were identified from GWAM within the confidence 

interval of this δ13C QTL. The canopy related traits may function to conserve soil moisture 

(Jones et al., 1981; Valliyodan and Nguyen, 2006), resulting in increased WUE. 

The δ13C QTL on Gm18 (Locus 7, 125.2 cM) coincided with a significant SNP 

associated with δ13C identified by GWAM of diverse soybean accessions, which found that this 

QTL was stable across several environments (Kaler et al., 2017a; Dhanapal et al., 2015). 

Similarly, the δ13C on Gm18 co-segregated with a wilting QTL identified by GWAM (Kaler et 

al., 2017b).  

The QTL on Gm19 (Locus 8, 102.7 cM) appeared only in the PT17 environment under 

RF conditions. This QTL co-localized with QTLs reported previously for WUE (Mian et al., 

1998), Δ13C (Specht et al., 2001), oxygen isotope ratio (Kaler et al., 2017a), and canopy wilting 

(Kaler et al., 2017b). For this same genomic region, Hwang et al. (2015b) reported a QTL for 

canopy wilting from four different populations.  

The QTL cluster on Gm20 (Locus 9, 95.0 cM) co-localized with markers associated with 

δ13C and canopy wilting from previous GWAM (Kaler et al., 2017a, 2017b). Du et al. (2009a) 

also identified a QTL for drought susceptibility index (measurement of yield under drought 

conditions) located within the confidence interval for the δ13C on Gm20. Previously reported 

QTLs for canopy width (Mian et al., 1998) and root morphology (Abdel-Haleem et al., 2011; 
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Hwang et al., 2014, Liang et al., 2014) were also co-localized with the identified QTLs on 

Gm20.  

The Glycine max genome sequence (Williams 82 assembly 1) in the Soybase database 

(https://www.soybase.org/) was scanned for potential genes present between flanking markers of 

identified QTLs. Around 106 potential candidate genes were identified in the flanking-marker 

regions of nine loci associated with δ13C. Most of the candidate genes either have unknown 

functions or have annotated functions related to regulation and signaling through various 

transcription factors. Of the 106 candidate genes we considered, only two genes had functions 

that we could relate to carbon assimilation, drought response, or WUE. In the genomic region of 

locus 1, there was a DREB3 gene (Glyma.04g11290 – Williams 82 assembly 1, 

Glyma.04g103900 – Williams 82 assembly 2) that encodes for a dehydration responsive element 

binding protein. In the genomic region of locus 7, there was a BT098288.1 gene 

(Glyma.18g49410 – Williams 82 assembly 1, Glyma.18g259500 – Williams 82 assembly 2) that 

encodes an aquaporin protein, which may have roles in water transport and transpiration. Further 

comprehensive research is needed to narrow down the regulatory genes that are directly or 

indirectly involved in pathways associated with WUE and drought tolerance. 

The QTLs on Gm05 (~230.0 cM), Gm06 (~248.0 cM), and Gm20 (~95.0 cM) were 

identified in all environments, irrigation conditions, and combined environment and irrigation 

treatment analysis. These QTLs also had large allelic effects (Table 4_4). The stability of these 

genomic regions would make them attractive for use in marker-assisted selection for δ13C under 

RF and IRR conditions. Several of these identified QTLs coincided with previously reported 

QTLs associated with δ13C, canopy wilting, canopy temperature, and canopy coverage and 

indicated multiple mechanisms associated with tolerance to soil moisture deficit. Further 
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research will be required for fine mapping of identified QTLs and expression analysis of 

underlying genes at putative identified QTLs to understand the complex quantitative nature of 

drought tolerance. 
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Table 4_1. Descriptive statistics of δ13C (‰) of parents and recombinant inbred lines (RILs) evaluated at Keiser, AR in 2013 (KS13) 

and Stuttgart, AR in 2012 and 2013 (ST12 and ST13) under rainfed (RF) and irrigated (IRR) conditions, and at Pine Tree (PT17) and 

Rohwer (RH17) in 2017 under RF conditions. 

ans not significant at the .05 probability level. 
b Absolute value of coefficient of variation.  

 

 

 

 

 

 

Descriptive 

statistics KS13_RF KS13_IRR ST12_RF ST12_IRR ST13_RF ST13_IRR PT17_RF RH17_IRR 

KS4895 -28.40 -28.46 -28.45 -28.74 -28.45 -28.38 -27.87 -27.88 

Jackson -29.02 -28.95 -28.62 -28.57 -29.00 -29.24 -28.42 -28.13 

Parents mean -28.71 28.71 -28.54 -28.65 -28.73 -28.81 -28.15 -28.00 

RILs mean -28.13 -28.28 -28.49 -28.59 -28.68 -28.87 -27.87 -28.18 

Range 1.64 1.68 1.97 2.34 1.69 1.97 2.15 1.60 

Std. deviation 0.30 0.33 0.37 0.36 0.31 0.35 0.37 0.32 

Variance 0.09 0.11 0.14 0.13 0.09 0.12 0.14 0.10 

Skewness 0.18 -0.15 0.16 0.30 0.25 0.26 -0.05 0.19 

Kurtosis 0.18 -0.27 -0.05 0.10 0.05 0.25 -0.15 0.02 

Shapiro-Wilk test 

(P-values) 
0.42nsa 0.73ns 0.54ns 0.13ns 0.38ns 0.59ns 0.24ns 0.45ns 

Coefficient of 

variation (%)b 
1.05 1.15 1.31 1.26 1.08 1.20 1.33 1.13 
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Table 4_2. Pearson correlation coefficients between δ13C of RILs derived from KS4895 x Jackson in different environments including 

Stuttgart in 2012 (ST12) and 2013 (ST13), Keiser in 2013 (KS13), Pine Tree in 2017 (PT17), and Rohwer in 2017 (RH17) under 

rainfed (RF) and irrigated (IRR) conditions. Correlation coefficients were calculated using RIL means (n=166-168). 

** Significant at the .01 probability level. 
*** Significant at the .001 probability level. 
ans, not significant (P > .05) 
 

 

 

 

 

 

 

 

 

 

 

 KS13_RF KS13_IRR ST12_RF ST12_IRR ST13_RF ST13_IRR PT17_RF 

KS13_IRR .49***       

ST12_RF .35*** .47***      

ST12_IRR .51*** .53*** .62***     

ST13_RF .59*** .54*** .47*** .63***    

ST13_IRR .49*** .48*** .44*** .64*** .65***   

PT17_RF .27** .32*** .13nsa .38*** .41*** .37***  

RH17_RF .43*** .44*** .33*** .44*** .58*** .56*** .32*** 
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Table 4_3. Analysis of variance and heritability (h2) of δ13C over environment and irrigation treatment, by environments (KS13, 

ST12, and ST13), by irrigation treatment (rainfed, RF; irrigated, IRR) and for individual environments within irrigation treatment. 

G, RILs; E, environment; T, irrigation treatments; G*E, RILs × environment interaction; G*T(E), RILs and treatment interaction 

within environment. 
a For analysis by E, this represents G × T. 
b RF, rainfed; IRR, irrigation. 

*, **, *** Significant at the .05, .01, .001 probability level, repectively; ns, nonsignificant. 

Analysis Genotype (G) Environment (E) 
Irrigation treatment 

(T(E)) 
G × E G × T[E]a h2 (%) 

Combined over 

E and T 
*** *** ns *** ns 83 

       

By T       

RFb *** * - *** - 72 

IRR *** *** - ns - 79 

       

By E       

KS13 *** - ns - ns 66 

ST12 *** - ns - ns 77 

ST13 *** - * - ns 78 

       

By E and T       

KS13_RF *** - - - - 52 

KS13_IRR *** - - - - 53 

ST12_RF *** - - - - 67 

ST12_IRR *** - - - - 66 

ST13_RF *** - - - - 70 

ST13_IRR *** - - - - 64 

PT17_RF ** - - - - 35 

RH17_RF *** - - - - 48 
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Table 4_4. Quantitative trait loci (QTLs) associated with δ13C identified by composite interval mapping (CIM) using δ13C BLUP 

values by environments (ST12, ST13, and KS13) averaged over irrigation treatment, by irrigation treatment (RF and IRR) averaged 

over environments, and averaged over both environments and irrigation treatments (AEI). 

 

Locus 
Chrom-

osome 
Nearest marker 

Nearest marker 

positiona 

(bp) 

QTL 

position 

(cM) 

Env/Trtb LODc 
QTL effect

d
 

(‰) 
R2e 

Favorable  

allelef 

FM at 95% 

confidence intervalg 

1 Gm04 ss107923464 9,299,958 78.0 ST12 4.40 -0.07 .07 Jackson 
ss107923464-

ss107920293 

2 Gm05 Sat_267 37,322,242 

232.9 RF 3.67 -0.05 .07 Jackson 
ss107921710-

ss107923047 

229.9 AEI 4.00 -0.07 .09 Jackson 
ss107921710-

ss107923047 

3 Gm06 ss107921293 14,849,154 

204.8 ST13 4.00 -0.07 .08 Jackson 
ss107913501- 
ss107917110 

206.3 RF 3.37 -0.05 .06 Jackson 
ss107913501- 

ss107917110 

206.3 AEI 3.38 -0.05 .05 Jackson 
ss107913501- 

ss107917110 

4 Gm06 

ss107928665 43,167,030 241.8 IRR 6.02 0.09 .14 KS4895 
ss107928665-

ss107914184 

ss107914184 47,413,332 

248.3 KS13 6.50 0.07 .14 KS4895 
ss107914184- 

ss107919937 

247.3 ST12 6.70 0.09 .12 KS4895 
ss107914184-

ss107913752 

248.3 ST13 9.10 0.10 .18 KS4895 
ss107928665-

ss107913752 

248.3 RF 11.45 0.09 .22 KS4895 
ss107914184-

ss107913752 

247.3 IRR 5.96 0.08 .11 KS4895 
ss107914184- 
ss107919937 

246.3 PT17_ RFh 4.36 0.04 .09 KS4895 
ss107928665-

ss107913752 

247.3 AEI 8.61 0.09 .16 KS4895 
ss107914184-

ss107913752 

ss107913752 47,823,144 253.4 RF 10.67 0.10 .25 KS4895 
ss107913752-

ss107919937 

5 Gm06 ss107912626 49,974,718 267.4 IRR 4.53 0.07 .09 KS4895 
ss107912626-

ss107918790 
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Table 4_4. (Cont.)         

Locus 
Chrom-

osome 
Nearest marker 

Nearest marker 

position† 

(bp) 

QTL 

position 

(cM) 

Env/Trt‡ LOD§ 
QTL effect

¶
 

(‰) 
R2# 

Favorable 

allele†† 

FM at 95% 

confidence interval‡‡ 

           

6 Gm12 ss107924439 6,621,791 35.2 PT17_ RFh 3.10 0.03 .07 KS4895 
ss107913327-

ss107913253 

7 Gm18 ss107912608 5,8976,307 125.2 KS13 4.50 -0.05 .09 Jackson 
ss107919928-

ss107917416 

8 Gm19 ss107912574 44,658,800 102.7 PT17_ RFh 3.92 0.05 .13 KS4895 
ss107912574-

ss107929955 

9 Gm20 ss107920249 41,983,096 

95.0 ST13 9.80 0.10 .18 Jackson 
ss107920249-

ss107927898 

95.0 ST12 12.70 -0.13 .24 Jackson 
ss107913931-

ss107927898 

95.0 RF 7.90 -0.07 .15 Jackson 
ss107913931-

ss107927898 

95.0 IRR 9.04 -0.10 .19 Jackson 
ss107913931-

ss107927898 

95.0 AEI 12.77 -0.11 .23 Jackson 
ss107913931-

ss107927898 
a SNP position or simple sequence repeat start position in base pairs (bp) according to Soybase (www.soybase.org). 
b Environment (KS13, ST12, and ST13) or Treatment (RF and IRR) or averaged over environments and irrigation treatments (AEI). 
c LOD is the log-likelihood threshold score at which significant QTLs were declared. 
d QTL effect is equal to half of difference between the average effects of two parental alleles (Jackson and KS4895) 
e The proportion of phenotypic variation explained by specific QTL. 
f Allele that increases δ13C value at QTL position.  
g Flanking markers indicates the markers present near or at 95% confidence interval of the maximum likely QTL positions. The LOD 

values with ±2 declination was used to estimate the 95% confidence interval. 
h PT17_RF denotes experiments at Pine Tree conducted in 2017 under rainfed conditions 
 

 

 



 

 

1
4
8
 

Table 4_5. Quantitative trait loci (QTLs) associated with δ13C identified by multiple interval mapping (MIM) using δ13C data by 

environments (ST12, ST13, and KS13) averaged over irrigation treatment, by irrigation treatment (rainfed, RF; irrigated,  IRR) 

averaged over environments, and averaged over both environments and irrigation treatments (AEI) in a KS4895 × Jackson population. 

Locusa 
Chrom-

osome 

Nearest 

marker 

Nearest 

marker 

positionb 

(bp) 

QTL 

position 

(cM) 

Env/Trtc LODd 
QTL 

effecte (‰) 
R2f 

Favorable 

alleleg 

FM at 95% 

confidence 

intervalh 

1 Gm04 ss107923464 9,299,958 77.4 ST12 3.85 -0.06 .08 Jackson 
ss107923464-

ss107920293 

2 Gm05 Sat_267 37,322,242 

232.9 ST13 3.71 -0.06 .05 Jackson 
ss107921710-

ss107923047 

232.9 IRR 3.08 -0.06 .05 Jackson 
ss107921710-

ss107923047 

231.0 AEI 4.37 -0.07 .07 Jackson 
ss107921710-

ss107923047 

3 Gm06 ss107921293 14,849,154 

203.8 ST13 3.32 -0.06 .05 Jackson 
ss107913501-

ss107921293 

204.8 AEI 3.27 -0.05 .04 Jackson 
ss107913501-

ss107921293 

4 Gm06 

ss107914184 47,413,332 

247.3 ST12 7.66 0.10 .14 KS4895 
ss107914184-

ss107913752 

243.8 ST13 9.81 0.11 .20 KS4895 
ss107928665-

ss107914184 

246.3 RF 9.03 0.08 .17 KS4895 
ss107914184-

ss107913752 

247.3 IRR 7.20 0.09 .14 KS4895 
ss107914184-

ss107913752 

247.3 AEI 12.66 0.11 .21 KS4895 
ss107914184-

ss107913752 

ss107913752 47,823,144 252.5 KS13 4.27 0.06 .12 KS4895 
ss107913752-

ss107919937 

7 Gm18 ss107912608 5,8976,307 126.0 KS13 4.12 -0.05 .10 Jackson 
ss107919928-

ss107917416 

9 Gm20 ss107920249 41,983,096 95.0 ST12 11.98 -0.12 .23 Jackson 
ss107913931-

ss107927898 

    95.0 ST13 10.49 -0.11 .20 Jackson 
ss107913931-

ss107927898 
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a Locus number is assigned as according to locus identified in composite interval mapping (CIM). 
b Single nucleotide polymorphism position or simple sequence repeat start position in base pairs (bp) according to soybase 

(www.soybase.org). 
c Environment (KS13, ST12, and ST13) or Treatment (RF and IRR) or averaged over environments and irrigation treatments (AEI). 
d LOD is the log-likelihood threshold score at which significant quantitative trait loci (QTLs) were declared. 
e QTL effect is equal to half of difference between the average effects of two parental alleles (Jackson and KS4895) 
f The proportion of phenotypic variation explained by specific QTL. 
g Allele that increases δ13C value at QTL position.  
h Flanking markers indicates the markers present near or at 95% confidence interval of the maximum likely QTL positions. The LOD 

values with ±2 declination was used to estimate the 95% confidence interval. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4_5. (Cont.)         

Locus## 
Chrom-

osome 
Nearest 

marker 

Nearest 

marker 

position† 

(bp) 

QTL 

position 

(cM) 

Env/Trt‡ LOD§ 
QTL 

effect¶ (‰) 
R2# 

Favorable 

allele†† 

FM at 95% 

confidence 

interval‡‡ 

    95.0 RF 9.57 -0.08 .19 Jackson 
ss107913931-

ss107927898 

    95.0 IRR 12.00 -0.11 .24 Jackson 
ss107913931-

ss107927898 

    95.0 AEI 12.31 -0.10 .23 Jackson 
ss107920249-

ss107927898 
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Table 4_6. Reported genomic regions associated with other traits overlapping with the quantitative trait loci positions for the δ13C 

identified in the KS4895 × Jackson population. 

 

Chromosome Locus 
Traits overlapping chromosomal regions associated with δ13C from different mapping 

studies 

Gm04 1 

δ13C (Kaler et al., 2017a), Canopy wilting (Abdel-Haleem et al., 2012), Seed protein (Orf et 

al., 1999), Seed glycinin plus beta conglycinin (Ma et al., 2016), and Isoflavone (Ma et al., 

2016) 

Gm05 2 

Oxygen isotope ratio (δ18O) (Kaler et al., 2017a), Low hydraulic conductance (Carpentieri-

Pipolo et al., 2011), Drought susceptibility index (Du et al., 2009a), Canopy wilting (Hwang 

et al., 2016, Kaler et al. 2017b), Canopy coverage (Kaler et al., 2018c), Plant height (Chen et 

al., 2007), Node number (Chen et al., 2007), Flood tolerance (Carpentieri-Pipolo et al., 2011), 

Seed yield (Li et al., 2008), and Seed oil (Orf et al., 1999). 

Gm06 3 

∆13C (Specht et al., 2001), Internode length (Alcivar et al., 2007), Node number 

(Moongkanna et al., 2011), Nodule number (Hwang et al., 2014), Nodule size (Hwang et al., 

2014), Root nodule (Shi et al., 2018), Seed protein (Csanadi et al., 2001, Lu et al., 2013), and 

Leaflet area (Mian et al., 1998) 

Gm06 4 

Canopy wilting (Hwang et al., 2015b), Canopy width (Mian et al., 1998), Flood tolerance 

(Githiri et al., 2006), Aluminum tolerance (Sharma et al., 2010), Internode length (Alcivar et 

al., 2007), Node number (Gai et al., 2007), Primary root length (Brensha et al. 2012), Seed 

protein (Hyten et al., 2004), and Seed yield (Gai et al., 2007) 

Gm12 6 

Total growth duration (Qi et al., 2014), Isoflavone (Gutierrez-Gonzalez et al., 2009), 

Reproductive stage length (Li et al., 2008), Seed protein (Liang et al., 2010), and Seed 

sucrose (Kim et al., 2006) 

Gm18 7 

δ13C (Kaler et al., 2017a), Canopy wilting (Kaler et al., 2017b), Flood tolerance (Van Toai et 

al., 2001), Isoflavone (Yoshikawa et al., 2010), Seed oil (Lee et al., 1996), Seed protein 

(Brummer et al., 1997, Mao et al., 2013), and Reproductive stage length (Cheng et al., 2011) 
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Table 4_6. (Cont.)   

Chromosome Locus 
Traits overlapping chromosomal regions associated with δ13C from different mapping 

studies 

Gm19 8 

Water use efficiency (Mian et al., 1998), ∆13C (Specht et al., 2001), Canopy wilting (Kaler et 

al., 2017b, Hwang et al., 2015b), Seed oil (Qi et al., 2011), Seed weight (Pathan et al., 2013), 

and Reproductive stage length (Orf et al., 1999) 

Gm20 9 

δ13C (Kaler et al., 2017a), Canopy wilting (Kaler et al., 2017b), Drought susceptibility index 

(Du et al., 2009a), Canopy width (Mian et al., 1998), Nodule number (Hwang et al., 2014), 

Root morphology (Abdel-Haleem et al., 2011), Seed yield (Du et al., 2009b), and Seed oil 

(Specht et al., 2001) 
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Figure 4_1. Cumulative rainfall (mm) starting from planting to sampling period for the five 

environments (Stuttgart in 2012 (ST12) and in 2013 (ST13), Keiser in 2013 (KS13), Pine Tree in 

2017 (PT17), and Rohwer in 2017 (RH17)). Stars indicate dates of irrigation for the irrigated 

treatment. 
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Figure 4_2. Frequency distribution of δ13C (‰) averaged over environments for rainfed (A) and irrigated conditions (B) in 

recombinant inbred lines (RILs) derived from a cross between KS4895 and Jackson. Values of δ13C for KS4895 were greater than for 

Jackson in both rainfed (P ≤ .01) and irrigated (P ≤ .05) treatments.   

 

A) B) 
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Figure 4_3. Position of quantative trait loci associated with δ13C based on composite interval 

mapping (CIM) in the KS4895 × Jackson population.  

†Cross-hatched bar indicates the QTLs identified in different environments (Keiser in 2013 

(KS13), Stuttgart in 2012 and 2013 (ST12, ST13), open bar indicates the QTLs were identified in 

different irrigation conditions (Rainfed, RF and Irrigated, IRR), and solid bars indicate the QTLs 

were identified when averaged over environments and irrigation conditions (AEI). Bars with 

horizontal lines indicates the QTLs were identified in the Pine Tree environment in 2017 (PT17) 

under rainfed conditions. The length of the QTL bar indicates the LOD-1 confidence interval and 

error bar extended to the LOD-2 confidence interval based on the maximum likelihood value. 
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Abstract 

A consistent risk for soybean (Glycine max L.) production is the impact of drought on 

growth and yield. Canopy temperature (CT) is an indirect measure of transpiration rate and 

stomatal conductance and may be valuable in distinguishing differences among genotypes in 

response to drought. The objective of this study was to map quantitative trait loci (QTLs) 

associated with CT using thermal infrared imaging in a population of recombinant inbred lines 

(RIL) developed from a cross between KS4895 and Jackson. Heritability of CT was 35% when 

estimated across environments. QTL analysis identified 11 loci for CT distributed on eight 

chromosomes that individually explained between 4.6 to 12.3% of the phenotypic variation. The 

locus on Gm11 was identified in two individual environments and across environments and 

explained the highest proportion of phenotypic variation (9.3% to 11.5%) in CT. Several of these 

CT loci coincided with the genomic regions from previous studies associated with canopy 

wilting, canopy temperature, water use efficiency, and other morpho-physiological traits related 

with drought tolerance. Candidate genes with biological function related to transpiration, root 

development, and signal transduction underlie these putative CT loci. These genomic regions 

may be important resources in soybean breeding programs to improve tolerance to drought.  
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Introduction 

Soybean (Glycine max (L.) Merr.) is one of the most important crops grown in the US on 

an area of 30.8 million hectares with a production of 96.8 million metric tons and that contributes 

around 28% to global production (www.soystats.com). The sustainability of soybean production 

is threatened by climate changes such as increased temperature, erratic precipitation, and variable 

weather patterns. Among these factors, drought is one of the major constraints limiting yield 

potential in legumes and other cereal crops. Various field studies had reported that drought stress 

leads to the reduction of 5 to 50% of soybean yield1,2. Thus, there is need for development of 

cultivars with drought tolerance to cope with adverse climatic conditions and to improve crop 

performance. Selection for high yield is difficult under drought stress conditions due to its 

quantitative nature and because of a high interaction of genotype with the environment3. 

Therefore, it is important to identify specific physiological traits that may improve the crop 

performance and yield under water deficit conditions. 

Canopy temperature can be used as surrogate measurement of plant water 

balance/relations and is an important physiological trait associated with drought tolerance4-10. 

Canopy temperature is closely associated with transpiration rate and stomatal conductance in 

many crops8,11. Due to evaporative cooling, transpiration is negatively correlated with canopy 

temperature12. Under optimum moisture conditions, increased vapor pressure deficit increases 

evaporative demand resulting in higher transpiration rate and a decrease in canopy temperature 

provided that stomatal conductance does not change. However, decreased transpiration rate and 

stomatal conductance under water deficit conditions limits evaporative cooling and leads to 

increased canopy temperature13-15. The genotypes with a cooler canopy under water deficit 
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condition continue transpiration at a relatively high rate, presumably due to a larger store of soil 

available water compared to genotypes with higher canopy temperature16-18. 

In bread wheat (Triticum aestivum) and durum wheat (Triticum durum), there is a 

significant correlation between cooler canopy temperature high yield19,20,10. Likewise, there were 

significant genetic gains in wheat yield when direct selection was made based on a cooler 

canopy21,22,18. A significant correlation between canopy temperature and transpiration was found 

in sugar beet (Beta vulgaris), rice (Oryza sativa), and potatoes (Solanum tuberosum)23. Cooler 

canopy (or canopy temperature depression) was positively correlated with grain yield in rice24, 

sugarcane (Saccharum officinarum)25,5, and chickpea (Cicer arietinum)26,27, pearl millet 

(Penniserum americanum)28, and soybean29 under water deficit conditions. Canopy temperature 

depression (CTD) is defined as deviation of plant canopy temperature from the air temperature. 

Bai and Purcell4 found that slow wilting genotypes under drought had a cooler canopy than fast 

wilting genotypes and that a cooler canopy was positively associated with grain yield. 

Manual phenotyping/measurement of transpiration and stomatal conductance to detect 

canopy temperatures differences is difficult and tedious. Therefore, selection criteria for 

genotypes with cooler canopy must be rapid, relatively simple, and allow the screening of large 

number of field plots in a short period of time30,31. The advent of high throughput phenotyping 

platforms has led to rapid, accurate, and non-destructive monitoring of whole-plant responses 

and differences in stomatal behavior to water stress32-35. Unmanned aerial systems (UAS) 

provide an efficient phenotyping platform to evaluate a large number of experimental fields for 

precise, quantitative assessment of CT in segregating mapping populations, and allowing a 

comparison among genotypes for CT differences8. Thermal infrared imaging from a UAS has 
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become an important tool in early growth stages to detect drought stress, improve water use 

efficiency (WUE), and precisely manage irrigation36,37,7,38,39. 

Combining thermal infrared imaging with genetic mapping may help in understanding 

the genetic architecture of drought tolerance40-44. Mapping studies for CT have been reported in 

wheat11, rice45, and maize (Zea mays)46. In soybean, genome wide association mapping 

(GWAM) and linkage mapping studies have dissected the genetic basic of several morpho-

physiological traits such as canopy wilting47-51, carbon isotope ratio (δ13C)52-55, oxygen isotope 

ratio (δ15O)55, and canopy coverage56. The first GWAM study for CT in soybean was conducted 

using a diverse panel of 345 maturity group IV accessions9. Association analysis identified 34 

loci associated with CT. However, to date, there has been no report of linkage mapping using 

thermal infrared imaging to study the genetic basis of CT in soybean. 

Thus, the present study aimed to identify the genomic regions associated with CT using a 

mapping population of 168 recombinant inbred lines (RILs) developed from a cross between 

KS4895 and Jackson. The objectives of this study were to (i) identify QTLs associated with CT 

(ii) confirm identified CT QTLs with previously mapped QTLs associated with drought 

tolerance; and (iii) search for putative candidate genes underlying these QTLs. 
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Material and Methods 

One hundred and sixty-eight F5-derived recombinant inbred lines (RILs) generated from 

a cross between KS4895 (PI 595081)57 and Jackson (PI 548657)58 were used to identify genomic 

regions associated with CT. KS4895 is a maturity group (MG) IV cultivar developed by the 

Kansas Agricultural Experiment Station, and Jackson is a MG VII cultivar developed by the 

North Carolina Agricultural Experiment Station and the USDA-ARS. This RIL population was 

previously used to study the genetic control of canopy wilting49,50 and δ13C53. 

The RIL population along with parents were evaluated for CT at the Pine Tree Research 

Station, AR (35.11° N, 90.91° W) on a Calloway silt loam soil (fine, montmorillonitic, thermic 

Typic Albaqualfs) and Rohwer Research Station, AR (33.80° N, 91.28° W) on a Sharkey silty 

clay soil (very-fine, smectitic, thermic Chromic Epiaquerts) in three consecutive years (2017-

2019). Each location by year combination was treated as an individual environment and 

designated as PT17 (Pine Tree 2017), RH17 (Rohwer 2017), PT18 (Pine Tree 2018), RH18 

(Rohwer 2018), PT19 (Pine Tree 2019), and RH19 (Rohwer 2019). A randomized complete 

block experimental design with two replications was employed at each environment. The details 

of planting date, CT measurement date, and weather data on the CT measurement day are 

presented in Table 1. The RILs were planted in nine-row plots that were 4.0-4.5 m long with 

0.15-0.18 m spacing between rows. The average minimum temperature, maximum temperature, 

and rainfall for Pine Tree and Rohwer in 2017, 2018, and 2019 were collected from Southern 

Regional Climate Center (www.srcc.lsu.edu/station_search) using Climate Data Portal. An 

irrigation scheduling program59 was used to estimate soil moisture deficit. Vapor pressure deficit 

(VPD) for each environment was estimated from daily maximum and minimum temperatures, 

assuming that water vapor pressure was saturated at the minimum temperature60,61. The 
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experiments were rainfed for all environments, and experimental fields were managed using 

recommended practices. 

Phenotypic Evaluation: 

Canopy temperature was determined by using aerial infrared image analysis. A drone 

(DJI Phantom 4 Pro, www.dji.com/phantom-4-pro) equipped with an infrared (IR) camera 

(Model: FLIR Tau 2, www.flir.com) with a sensor size of 640 × 512 pixels, 25 mm focal length, 

sensitivity of 0.05°C, and an accuracy of ±5%, was flown at a height of 120 meters above the 

ground at full canopy coverage. A digital video recorder recorded the video stream from the 

camera. The IR camera is not calibrated. That is, values of CT from the IR range from 0 (cool) to 

255 (hot) and cover a range of 12.5C, but the specific temperature of the canopy is not 

determined. Herein, we report values directly from the IR camera as a measure of CT. 

 The IR images were extracted from the video file using VLC video player 

(www.videolan.org), and 6 to 17 images representing each plot multiple times were selected 

manually. Selected IR images were processed using FieldAnalyzer software 

(www.turfanalyzer.com/field-analyzer) to extract CT values from the average values of 400 to 

2000 pixels from the center portion of the IR image of each plot and was used as a measure of 

CT. There were multiple CT values of each plot extracted from multiple selected images. The 

final CT values used for analysis was the average CT values determined from analyzing multiple 

images and after removing values that were more than ±2 standard errors from the mean. 

Statistical Analysis 

The phenotypic analysis of CT was performed using SAS v.9.2 software (SAS Institute, 

2013). The normality of CT in an individual environment was checked using a Q-Q plot of 

residuals and the Shapiro-Wilk test62. The presence of statistical differences between parents for 
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CT was estimated using a t-test. Pearson’s correlation analysis between environments and 

analysis of variance (ANOVA) averaged over environments were performed using PROC CORR 

(α=0.05) and PROC MIXED procedures, respectively. Heritability was estimated from the 

variance components calculated with restricted maximum likelihood (REML) method of 

VARCOMP procedure. Narrow sense heritability (h2) was calculated using the following 

formula63: 

Across environments:         h2 =
𝜎𝐺

2

𝜎𝐺
2 + (

𝜎𝐺𝐸
2

𝐸
)+ (

𝜎𝑒
2

𝑅𝐸
)

 

Within environments:        h2 =
𝜎𝐺

2

𝜎𝐺
2 +  (

𝜎𝑒
2

𝑅
)
 

where 𝜎𝐺
2, 𝜎𝐺𝐸

2 , 𝜎𝑒
2 are genotypic variance, genotype-by-environment variance, and error 

variance, respectively, and E and R are the number of environments and replications, 

respectively. Because F5-derived RILs were used in this research, 𝜎𝐺
2 was composed entirely of 

additive variance and additive × additive epistasis variance, with negligible variance associated 

with other components of dominance variance. As the result, this heritability should be 

considered as narrow sense heritability. BLUPs (best linear unbiased predictions) were 

calculated using PROC MIXED procedure for individual environments and averaged across 

environments, considering all factors in the model as random. Environment was considered a 

fixed effect in the combined data analysis. QTL analysis of CT was performed using BLUP 

values to reduce the environmental variations. 

QTL Analysis 

The genetic map for the KS4895 × Jackson mapping population was previously described 

by Hwang et al.49 and used for QTL analysis in the present study. Briefly, the linkage map 

consists of 37 simple-sequence repeat (SSR) and 511 single-nucleotide polymorphism (SNP) 
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markers with a map size of 2089 cM. The BLUP estimates calculated for individual 

environments and averaged across environments were used for QTL analysis. The QTL analysis 

was performed with WinQTL Cartographer v.2.564 using composite interval mapping (CIM) and 

multiple interval mapping (MIM) methods. CIM was performed using Model 6 (standard model) 

of the Zmapqtl program module65. Markers as co-factors to control background noise were 

selected with forward and backward stepwise regression methods with a walk speed and window 

size of 1 cM. A significant LOD (log of odds) threshold score was determined by a permutation 

test with 1,000 runs and with a genome wide type I error of 5%66. The most likely position of 

QTLs and an estimate of the magnitude of their additive effects were determined using the CIM 

method67. The confidence interval for putative QTL positions was determined by one-LOD drop 

on either side of the LOD peak. 

Multiple interval mapping (MIM) is a stepwise model procedure68 in which presence of 

significant QTLs and QTL × QTL interactions are detected using QTLs identified in the CIM 

method as an initial MIM selection model. This pre-selected MIM model was optimized for 

identified QTLs, search for new QTLs, and QTL × QTL interactions by using the ‘optimize 

QTLs positions’, ‘search for new QTLs’, and ‘QTL interactions’ options, respectively. The MIM 

model was determined with the minimum Bayesian information criterion (BIC), c(n) =In(n), and 

with genome walk speed and window size of 1 cM. The criterion used to declare coincident 

QTLs between environments was based on at least a 10 cM overlap in QTL intervals on the 

linkage map. In this study, a QTL that explain more than 10% of phenotypic variation was 

considered a major QTL. 
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Candidate Genes Identification 

The genomic regions underlying the putative QTLs for CT identified in each environment 

and across environments were searched for candidate genes using the genome browser of 

Soybase (www.soybase.com). The candidate genes falling within ±1MB from the nearest marker 

of putative QTLs were selected according to the Glyma1.1 assembly in Soybase 

(www.soybase.org) with consideration for those genes having biological function related to 

transpiration, canopy temperature, rooting, and plant water relations. 
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Results 

Phenotypic Evaluation 

CT measurement dates, weather data, estimated VPD, and soil moisture deficit for all 

environments are presented in Table 1. From all the CT measurements, CT data were extracted 

from the flight made on the date/day when canopy was completely closed and had the most 

intense water deficit conditions. The maximum temperature ranged from 29C (PT17) to 37C 

(PT19) and minimum temperature ranged from 15C (PT17) to 25C (RH17) on the day of CT 

measurements (Table 5_1). The estimated VPD was ≥ 2.3 kPa on day of CT measurements in all 

environments except for RH18 in which VPD=1.6 kPa. There had been no rainfall from 4 days to 

13 days prior to CT measurements. The estimated soil moisture deficit ranged from 49 mm to 

more than 75 mm on the day of CT measurements (Table 5_1). Irrigation is recommended if 

estimated soil moisture deficit exceeds 37 mm for silt loam soils present at Pine Tree and 50 mm 

for silt clay soils present at Rohwer59, indicating drought-stress conditions on the day of CT 

measurements. 

The CT values had a wide range in all environments with RIL means that ranged from 50 

to 64 (Figure 5_1, Table 5_2). Jackson had lower CT values than KS4895 in all environments 

except RH17 (Table 5_2), and parents were significantly (P<0.05) different in PT17, RH19, and 

across environments (AE) (Table 5_2). Averaged over environments, IR values were 12 units 

less for Jackson than KS4895, which indicate a CT that was approximately 0.59C cooler for 

Jackson. The distributions of CT values were approximately normal (P<0.001) except for PT18 

and RH18 which were slightly skewed left as indicated by the Shapiro and Wilk test (data not 

shown, Figure 5_1). There were weakly significant correlations for CT between environments 

for PT17 and PT18 (r = 0.18*), PT17 and RH19 (r = 0.26**), RH17 and RH19 (r = 0.15*), PT19 
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and RH18 (r = -0.16*), and PT19 and RH19 (r = 0.49***). Across environments, ANOVA 

indicated that there was a significant effect (P<0.05) of RILs, environment, and RILs × 

environment interaction on CT, indicating that CT among RILs was affected differently by 

environmental conditions (data not shown). The narrow sense heritability of CT for individual 

environments was 9% (PT17), 11% (PT18), 51% (PT19), 22% (RH17), 7% (RH18), and 62% 

(RH19) and was 35% when estimated across environments (Table 5_1). 

QTL Analysis  

Analysis of QTLs associated with CT in individual environments identified seven QTLs 

present on five chromosomes using the CIM method. Of these seven QTLs, one QTL was 

identified in RH17, PT18, and RH18 and two QTLs were identified in PT19 and RH19. No 

QTLs were detected in PT17. These QTLs had additive effects that ranged from -0.08 to -1.17 

and explained 5.7% to 12.3% of the phenotypic variation (Table 5_3). The QTLs identified in 

PT18 (1), PT19 (2), RH18 (1), and RH19 (1) were also identified by the MIM method. Two 

additional QTLs present on Gm13 (at 30,174,729 bp) in RH18 and on Gm16 (at 26,399,875 bp) 

in PT19 were identified by the MIM method but were not identified by the CIM method (Table 

5_3).  

Across environment (AE) QTL analysis of CT identified five QTLs present on Gm02 (1), 

Gm11 (1), and Gm18 (3) with additive effects ranging from -0.39 to -0.51 and explaining 

phenotypic variation from 5.3% to 9.3%. Three out of five AE QTLs were common between 

CIM and MIM methods, and one new QTL on Gm15 (at 52,582,411 bp) was identified only by 

the MIM method (Table 5_3). The QTL present on Gm11 (at 10,319,200 bp) was common 

among PT19, RH19, and AE. The QTL on Gm18 (at 55,000,978 bp) was identified in RH17 and 

AE, and the QTL on Gm18 (at 60,441,713 bp) was common for RH19 and AE. All other QTLs 
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were environmentally specific (Table 5_3). The favorable alleles for deceasing CT at all the 

QTLs were from KS4895 except for the QTLs on Gm10 and Gm16. QTL × QTL interactions 

were identified between the QTLs present on Gm11 and Gm16 in PT19 by the MIM method. 

This interaction explained 5.7% of the phenotypic variation with the favorable allele contributed 

by KS4895 

Candidate Gene Identification 

There were more than 1200 candidate genes present within ±1MB of the nearest markers 

for putative QTLs with a range from 75 to 208 genes for individual QTLs. Out of these 1200 genes, 

those having biological function related to stomatal complex morphogenesis, regulation of 

stomatal movement, response to water deprivation, response to abscisic acid (ABA), ABA 

mediated signaling pathway, ABA transport, root hair elongation, root hair cell differentiation, 

primary and adventitious root development, root morphogenesis, water transport, response to 

osmotic and oxidative stress, signal transduction, and response to different hormones stimulus 

were considered to play a potential role in controlling CT in response to different soil moisture 

conditions.  

 



 

178 

Discussion 

The present study investigated the genetic control of CT in a population derived from a 

cross between KS4895 and Jackson, which was evaluated across six environments. Under replete 

soil moisture and aerial environmental conditions, plants continue to transpire through open 

stomata. In contrast, as soil moisture becomes limiting, plants close stomata as a preventive 

mechanism, transpiration decreases, and there is an increase in CT26. Those genotypes that have 

access to soil moisture continue transpiration during drought stress, resulting in a cooler canopy. 

High soil moisture deficit and VPD at the time of CT measurements resulted in drought stress in 

all environments (Table 5_1). The PT19 and RH19 environments had greater soil moisture 

deficit and VPD, resulting in greater differences among RILs and higher heritability of CT as 

compared to other environments. 

For all environments there was transgressive segregation among RILs with lower and 

greater CT than the parents, indicating the distribution of favorable alleles for cooler canopy 

temperature in both parents. CT is highly influenced by environmental conditions (soil moisture 

availability, vapor pressure deficit, air temperature) and plant morphology (canopy and root 

architecture conditions)69,29, resulting in significant genotype × environment interactions. While 

the h2 of CT was 35% when estimated across six environments, and the range of h2 among 

environments was from 7% to 62% (Table 5_1). The two environments in which h2 was >50% 

were noticed for a severe soil moisture deficit (>75mm) and maximum temperatures ≥ 36 C 

(Table 5_1). Kaler et al.9 reported a broad sense heritability (H) of 19% for CT in a diverse panel 

of soybean accessions evaluated in different environments using GWAM. Likewise, low to 

moderate broad sense heritability of CT/CTD was reported in wheat (H=16% to 38%)70-72, in 

sugarcane (H=9% to 44%)73, and in rice (H=21% to 30%)74. The low heritability of CT/CTD in 
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soybean and other crops indicated that this trait is highly influenced by environmental 

conditions75. 

The complexity of CT in soybean is further indicated by detection of multiple QTLs by 

CIM and MIM methods. The QTL analysis for CT using CIM and MIM methods identified a 

total of nine QTLs in individual environments and six QTLs when data were averaged across 

environments (Table 5_3). Most of these QTLs were environmentally specific except the QTLs 

present on Gm11 (at 10,319,200 bp) and Gm18 (at 55,000,978 bp and 60,441,713 bp), which 

were common in at least one individual environment and across environments (Table 5_3). The 

QTLs present on Gm11 explained phenotypic variation more than 10% (or ranged from 9.3% to 

11.5%) and is considered as a major QTL (Table 5_3). The markers linked with these QTLs have 

potential utility using marker assisted selection or genomic selection in a breeding program. The 

inconsistency of QTLs among environments might be due to different environmental factors 

such as field moisture status, soil temperature and depth, solar radiation, and VPD. Although 

QTLs were generally environmentally specific, most of these QTLs were detected by both CIM 

and MIM methods, which increases the confidence of these results. Of particular interest are 

environmental conditions that could improve consistency and increase heritability of CT. More 

research is needed to increase the utility of markers linked with QTLs identified in specific 

environments in selecting genotypes with a cooler canopy and to determine environmental 

conditions that optimize heritability. 

Considering the overlapping confidence interval of QTLs identified in individual 

environments and across environments, we found 11 loci on eight chromosomes (Table 5_3, 

Figure 5_2). Even though Jackson tended to have lower CT among environments (Table 5_2), 

there were nine favorable loci from KS4895 and two favorable loci from Jackson. Hwang et al.49 
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found that KS4895 contributed the favorable alleles for slow canopy wilting for most canopy 

wilting QTLs identified in multiple biparental populations. Bai and Purcell4 found a positive 

correlation (0.37< r < 0.62) between cooler CT and slow canopy wilting. There is a possibility 

that KS4895 has both slow canopy wilting and cooler canopy temperature alleles at these 

genomic loci in the KS4895 × Jackson population. 

For comparative analysis of CT loci with QTLs associated with plant water relations and 

drought tolerance related traits, the putative CT loci were aligned on the soybean linkage map in 

Soybase (www.soybase.com). The QTLs previously mapped within the 95% confidence interval 

of putative QTLs in this study were considered to be present in same genomic regions. The CT 

Loci 1 and 2 (on Gm02) coincide with a canopy wilting QTL found in a population derived from 

KS4895 and Jackson (09705KJ population) that is different from the population used in the 

present research and in a population derived from Benning and PI 41693749. The favorable 

alleles for slow canopy wilting at this locus are from KS4895 and PI 416937, consistent with the 

present research that the KS4895 allele is associated with cool CT. These loci localized in a 

genomic cluster found in meta-analysis of canopy wilting QTLs using multiple biparental 

populations50. The loci were also mapped in an association panel in the genomic regions 

associated with canopy wilting51, canopy coverage56, and δ13C55. The co-localization of these 

drought-related QTLs with CT indicates the strong relationship among transpiration, WUE, 

canopy wilting, and CT. 

Locus 3 (on Gm03) and Locus 4 (on Gm10) coincide with QTLs for CT9 and canopy 

wilting51, respectively, that were identified in GWAM studies. Locus 5 (on Gm11) maps to the 

same genomic region associated with CT9, canopy wilting51, and canopy coverage56 identified in 

GWAM analysis conducted using a diverse panel of soybean accessions. Locus 5 also coincides 
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with the QTLs for canopy wilting identified in population with KS4895 as a parent49; the 

favorable alleles for slow canopy wilting in both these populations were from KS4895 as they 

were for CT in the present study.  

Locus 6 (on Gm13) overlaps with δ13C found by GWAM55. Nguyen et al.76 mapped a 

QTL for root area and root length at the same genomic location in a population derived from 

Tachinagaha × Iyodaizu. Rooting depth and area are drought avoidance mechanisms that may 

increase water availability77. The coincidence of CT and root morphology QTLs may point to a 

root system that extracts water from deeper soil horizons and results in cooler canopy during 

drought. In wheat, CT QTLs have been linked with rooting traits that allow extraction of more 

water from soil under drought78. 

Locus 7 (on Gm15) and Locus 8 (on Gm16) coincide with canopy wilting51 and canopy 

coverage56 in GWAM studies. In addition, Locus 8 also overlaps with δ13C55. Earlier canopy 

coverage helps to decrease the water loss by soil evaporation relative to transpiration and improve 

WUE79. Locus 9 (on Gm18 at 17,568,794 bp) coincides with the WUE QTLs mapped in a Young 

× PI416937 population with the ‘Young’ allele increasing WUE80. Locus 9 and Locus 10 (on 

Gm18 at 55,000,978 bp) also fall in the genomic region harboring QTLs for CT9, canopy wilting51, 

δ13C54,55 identified in GWAM studies. In addition, Locus 10 overlaps with the oxygen isotope 

ratio55, which is a proxy for measurement of transpiration and is associated with stomatal 

conductance81.  

Locus 11 (on Gm18 at 60,441,713 bp) coincides with δ13C identified in the same 

population as the present research53. The favorable allele for δ13C at this locus was from Jackson, 

while KS4895 provided the favorable allele for CT at this locus. The coincidence of δ13C and CT 

QTLs illustrates a shared genetic relationship between these two physiological traits. The co-
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localization of putative CT loci with QTLs associated with other morpho-physiological traits 

such as WUE, canopy wilting, canopy coverage, and transpiration may be a pleiotropic effect of 

the same genes controlling these traits or that the genes are spaced closely together on specific 

chromosomes. 

The candidate gene search underlying putative CT loci identified genes with functions 

related to plant water relations, root morphology, and transpiration. These include genes 

involved in stomatal complex morphogenesis, regulation of stomatal movement, response to 

water deprivation, response to abscisic acid (ABA), ABA mediated signaling pathway, ABA 

transport, root hair elongation, root hair cell differentiation, response to oxidative stress, and 

signal transduction. 

The upregulation of root morphology (lateral root formation, root hair elongation, root 

development response to ABA) related genes during drought may result in extracting residual 

soil moisture that maintains primary growth and developmental processes. In wheat, deeper root 

development in response to drought stress resulted in a cooler canopy and an increase in 

yield20,82. Aquaporin-related genes were also found in underlying CT loci and these membrane 

proteins allow movement of water throughout plant in response to stress83. The co-localization of 

CT loci with QTLs associated with drought tolerance related traits and with underlying candidate 

genes with biological function related to transpiration, stomatal conductance, and plant water 

relations increases the probability that putative CT loci are associated with variation in CT in the 

present research. Additional research is needed to confirm the canopy temperature QTLs in 

different populations and in different environments to increase the efficiency of these genomic 

regions in selecting genotypes with a cooler canopy and with drought tolerance. 

 



 

183 

Conclusion 

In the present study, we identified genomic regions associated with CT in a recombinant 

inbred population derived from KS4895 and Jackson that was phenotyped in six different 

environments. These results represent the first QTLs for CT identified in soybean using a 

biparental population. The population segregated for CT in all environments and was used for 

QTLs analysis. The heritability of CT was relatively low as compared to other morpho-

physiological traits due to greater influence of different environmental factors. Eleven genomic 

loci present on eight chromosomes for CT were identified across several environments. The CT 

locus present on Gm11 explained phenotypic variation more than 10% and was considered as 

major QTL. The favorable allele for cooler canopy for most of the loci were from KS4895, 

which were also coincident with canopy wilting QTLs identified in multiple biparental 

populations by Hwang et al.49. The identified CT QTLs coincided QTLs associated with drought 

tolerance related traits mapped in previous studies and genomic regions underlying these putative 

CT have the genes with biological function related to transpiration, stomatal conductance, and 

plant water relations. More research is needed to confirm these QTLs in different genetic 

backgrounds and in multiple/different environments to evaluate the efficiency of these QTLs to 

use in soybean breeding program for selecting genotypes with a cooler canopy and drought 

tolerance. 
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Table 5_1. Planting date and weather data including maximum temperature (MaxT), minimum temperature (MinT), No. of days 

without rainfall, estimated vapor pressure deficit (VPD), and estimated soil moisture deficit at the time of canopy temperature 

measurements for the field experiments conducted at Pine Tree (PT) and Rohwer (RH) in 2017, 2018, and 2019. 

a AE denote averaged across environments. 
b h2, Narrow sense heritability 

Table 5_2. A summary statistic of  canopy temperature (CT) in the parents (KS4895 and Jackson) and RILs (n=168) population of 

KS4895 and Jackson evaluated at Pine Tree and Rohwer in 2017, 2018 and 2019. 

 

a Environments: Prefixes PT and RH denotes Pine Tree and Rohwer, respectively followed by 17 (2017), 18 (2018), and 19 (2019) for 

years. 
b AE denote averaged across environments. 
* Indicated significant difference (P≤0.05) between parents 

Env. Planting date CT recording date 
MaxT 

(C) 

MinT 

(C) 

No. of 

Days 

VPD 

(kPa) 

Soil moist. 

deficit (mm) 

h2b 

(%) 

PT17 9 June 2017 25 Aug 2017 29 15 8 2.3 49 9 

RH17 8 June 2017 21 July 2017 34 25 4 2.3 50 22 

PT18 7 June 2018 25 July 2018 33 19 8 2.9 >75 11 

RH18 31 May 2018 19  July 2018 31 24 11 1.6 71 7 

PT19 31 May 2019 10 Sept 2019 37 22 13 3.5 >75 51 

RH19 12 June 2019 9 Sept 2019 36 21 13 3.3 >75 62 

AEa - - 33 21 57 2.6 66 35 

Trait Env.a 
Parental means RILs population 

KS4895 Jackson Mean Range 

CT PT17 70* 59 63 45 

 RH17 57 67 60 29 

 PT18 71 54 58 37 

 RH18 59 47 50 24 

 PT19 71 63 64 39 

 RH19 86* 53 63 36 

 AEb 69* 57 60 35 
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Table 5_3. The QTLs associated with canopy temperature identified by composite interval mapping (CIM) and multiple interval 

mapping (MIM) in a RIL population of KS4895 and Jackson which were evaluated at Pine Tree and Rohwer in 2017, 2018, and 2019. 

a Glycine max chromosome on which QTL was present 
b Environment in which specific QTL was identified. Prefixes PT and RH denotes Pine Tree and Rohwer, respectively followed by 17 

(2017), 18 (2018), and 19 (2019) for years. AE denotes averaged across environments 
c QTL position in base pairs on respective chromosomes according to Soybase (www.soybase.com) 

Locus Chrom.a Env.b 
Position 

(bp)c 

Nearest 

markerd 

Additive 

effecte 
R2f 

Favorable 

alleleg 
FM at 95% CIh Method 

1 Gm02 PT18 2,145,083 ss107919808 -0.27 12.3 KS4895 ss107919971-ss107912545 CIM, MIM 

2  AE 3,111,654 ss107912545 -0.42 6.3 KS4895 ss107919808-ss107913715 CIM, MIM 

3 Gm03 RH18 3,827,362 ss107929820 -0.08 6.5 KS4895 ss107913533-ss107912527 CIM, MIM 

4 Gm10 PT19 2,445,123 ss107921662 1.19 8.5 Jackson ss107921662-ss107930841 CIM, MIM 

5 Gm11 PT19 10,319,200 ss107919087 -1.28 11.5 KS4895 ss107919087-ss107913812 CIM, MIM 

  RH19 10,319,200 ss107919087 -1.47 10.8 KS4895 Satt197-ss107927406 CIM, MIM 

  AE 10,319,200 ss107919087 -0.51 9.3 KS4895 Satt197-ss107927406 CIM, MIM 

6 Gm13 RH18 30,174,729 ss107912665 -0.07 4.6 KS4895 ss107915606-ss107912922 MIM 

7 Gm15 AE 50,582,411 ss107925861 -0.42 5.4 KS4895 ss107914616-Sat_376 MIM 

8 Gm16 PT19 26,399,875 ss107927055 0.65 4.9 Jackson ss107927440-ss107913908 MIM 

9 Gm18 AE 17,568,794 ss107921048 -0.39 5.3 KS4895 ss107920369-ss107914987 CIM 

10 Gm18 RH17 55,000,978 ss107913405 -0.27 5.7 KS4895 ss107919708-ss107921608 CIM 

  AE 55,000,978 ss107913405 -0.40 5.4 KS4895 ss107919708-ss107913107 CIM 

11 Gm18 RH19 60,441,713 ss107929216 -1.29 8.8 KS4895 ss107929175-ss107919550 CIM 

  AE 60,441,713 ss107929216 -0.41 6.2 KS4895 ss107929175-ss107919550 CIM, MIM 
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d Nearest marker to the QTL  
e Additive effect of the QTL 
f  Proportion (%) of phenotypic variation explained by specific QTL 
g Allele that decreases CT values considered as favorable allele; Positive sign indicates that favorable alleles (decreasing CT) were 

from Jackson and negative sign indicates the KS4895 allele  
h Flanking markers (FM) present near or at 95% confidence interval (CI) of the maximum likely QTL positions. The LOD values with 

±1 declination was used to estimate the 95% confidence interval. 
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Figure 5_1. The box plots showed a broad range of canopy temperature in KS4895 × Jackon RIL population within each 

environment. Environment prefixes PT and RH denotes Pine Tree and Rohwer, respectively followed by 17 (2017), 18 (2018), and 19 

(2019) for years. Box edges represent the upper and lower quartile with a median (bold line in the middle of box) and mean value 

(cross in the middle of box). 
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Figure 5_2. Physical position of SNPs on soybean chromosomes and position of loci (red downward triangle) associated with CT. 

The numbers in the black circles represent the loci number on a specific chromosome. Vertical colored bars (except blue) indicate the 

other QTLs found at the same positions in previous studies. CW, CT, CW denote canopy wilting, canopy temperature, and canopy 

wilting, respectively. 
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Conclusion 
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Drought stress is one of the major factors limiting crop production worldwide. The 

frequency, duration, and severity of drought, which leads to a significant reduction in crop 

productivity. Demand for agricultural water is expected to increase in the future due to an 

increase in human population and the impact of climatic change. Thus, there is need for 

development of cultivars with drought tolerance to cope with adverse climatic conditions and to 

improve crop performance. The direct selection for high yield under water deficit conditions is 

difficult due to its quantitative nature, low heritability, and interaction with environmental 

factors. Therefore, selection of various morpho-physiological traits that contribute to drought 

tolerance may help improve yield in water limited environments. The identification of genomic 

regions associated with physiological traits and understanding the genetic basis of physiological 

traits associated with drought tolerance would enable breeders to develop high yielding cultivars 

with improved drought tolerance.  

In this research, physiological traits in soybean were studied to identify quantitative trait 

loci (QTLs) associated these traits and to compare the identified QTLs with QTLs mapped in 

previous studies. These traits included carbon isotope ratio (δ13C, positively correlated with 

water use efficiency), nitrogen isotope ratio (δ15N, negatively correlated with N2 fixation), and 

canopy temperature (CT, an index for transpiration and stomatal conductance). To accomplish 

the proposed objectives, two different biparental populations were used: (1) a population of 196 

F6-derived recombinant inbred lines (RILs) developed from cross between PI 416997 and PI 

567201D and (2) a population of 168 F5-derived RILs developed from a cross between KS4895 

and Jackson. Linkage mapping was performed to identify the QTLs associated with drought 

tolerance related traits in these genetically different biparental populations.  
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The δ13C and δ15N experiments with the PI 416997 × PI 567201D population were 

conducted in four environments (Stoneville, MS in 2016, Stoneville, MS in 2017, Columbia, MO 

in 2017, and Fayetteville, AR in 2017). Plant samples were collected at flowering, dried, ground, 

and sent to UC Davis for δ13C and δ15N isotope analysis. These results determined that δ13C has 

high narrow sense heritability (90%) and δ15N has low narrow sense heritability (35%) when 

estimated across environments, indicating that environmental factors had a greater influence on 

δ15N than on δ13C. Parent PI 416997 had higher δ13C and lower δ15N values than PI 567201D, 

indicating that PI 416997 had greater WUE and fixed more N2 than did PI 567201D.  

QTL analysis for δ13C identified eight loci present on seven chromosomes with 

individual loci explaining between 2.5 and 29.9% of the phenotypic variation. Of these eight 

loci, two loci on chromosome Gm20 were detected in at least three environments and were 

considered as stable loci. QTL analysis for δ15N identified 13 loci present on nine chromosomes 

and these loci explained the phenotypic variations ranging from 1.7 to 9.3%. QTL × environment 

interaction analysis indicated that δ15N loci showed greater interactions with different 

environments than δ13C loci. The loci present on chromosomes Gm10 and Gm17 were associated 

with both δ13C and δ15N. The favorable alleles (allele that increases δ13C and decreases δ15N 

values) at these specific loci were derived from different parents, indicating that the same allele 

at this locus has opposite effect for these traits. The identified QTLs for δ13C and δ15N coincided 

with genomic regions associated with N2 fixation and other physiological traits related to drought 

tolerance from previous mapping studies. A search for candidate genes resulted in detection of 

genes that may directly or indirectly be related to physiological mechanisms associated with 

drought tolerance, nodulation, and N-metabolism. 
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The CT measurements in the KS4895 × Jackson population were made in six 

environments including two locations (Pine Tree, AR and Rohwer, AR) over three years (2017, 

2018, and 2019) using aerial thermal infrared imaging. There was large segregation of CT in the 

KS4895 × Jackson population in all environments. The narrow sense heritability of CT was low 

(35%) when averaged over environments, indicating the impact of environmental conditions on 

CT measurements. The QTL analysis identified 11 loci distributed on eight chromosomes that 

individually explained phenotypic variation ranging from 4.6 to 12.3%. Nine loci out of 11 

derived the cooler canopy allele from KS4895. Identified CT loci co-localized with the QTLs 

associated with canopy wilting, canopy temperature, WUE, and other drought-tolerance-related 

traits that were mapped previously. 

The KS4895 × Jackson RIL population was also evaluated for  δ13C in five environments 

(Stuttgart, AR in 2012, Stuttgart, AR in 2013, Keiser, AR in 2013, Pine Tree, AR in 2017, and 

Rohwer, AR in 2017) under irrigated (IRR) and rainfed (RF) conditions. The heritability of δ13C 

was moderate to high and ranged from 66% to 79% in different environments and irrigation 

treatments. The QTL analysis for δ13C identified nine loci on seven chromosomes. Out of the 

nine loci, four loci (on Gm05, Gm06, and Gm02) collectively accounted for 55% of the 

phenotypic variation in δ13C and were considered stable loci as they were identified across 

environments and irrigation treatments. The identified δ13C loci coincided with previously 

reported QTLs linked with physiological traits related with drought tolerance. 

In this research, identified genomic loci for δ13C, δ15N, and CT co-localized with QTLs 

associated with drought tolerance related traits mapped in previous studies Candidate genes 

underlying these QTLs may directly or indirectly be related to physiological mechanisms of 

drought tolerance. The identified QTLs for δ13C, δ15N, and CT may be an important resource for 
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marker-assisted selection and genomic selection studies to improve drought tolerance in soybean. 

Further research will be required for fine mapping the identified QTLs and for expression 

analysis of underlying genes to understand the quantitative nature of drought tolerance. In 

addition, more research is needed to confirm these QTLs in different genetic backgrounds and in 

other environments to evaluate the efficacy of these QTLs. 
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