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Abstract  

Corticotropin releasing hormone (CRH) neurons located within the paraventricular nucleus 

(PVN) are known to be involved in regulation of stress responses. Recently, CRH neurons were 

identified above the PVN within the nucleus of the hippocampal commissure (NHpC) that located 

in the septum. We hypothesized that CRH neurons in the NHpC play a critical role in the stress 

response due to their rapid activation and could be a part of the traditional hypothalamo-pituitary-

adrenal (HPA) axis. The dissertation addresses the role of 1) CRH expressing neurons in the NHpC 

compared with those within the PVN utilizing two different stressors, food deprivation (FD) and 

immobilization stress, 2) arginine vasotocin (AVT) neurons in the late phase of stress responses to 

sustain CRH neuron activities, 3) CRH and AVT receptors within the NHpC, PVN, and anterior 

pituitary (APit), 4) brain derived neurotrophic factor, BDNF, in the regulation of the stress 

response, particularly, interactions of CRH and AVT and their, major receptors, CRHR1 and 

V1aR, and 5) the glucocorticoid receptor (GR) and its role in regulating CRH neurons in the NHpC 

and PVN, and POMC transcripts within the APit. Results showed that CRH neurons in the NHpC 

are activated rapidly and help initiate the general response of both types of stressors investigated, 

namely, FD and immobilization. rapid activation of CRH neurons in the NHpC indicated that the 

NHpC contributes significantly in the initial upregulation of POMC transcripts and plasma CORT 

concertation increase; however, persistence of high CORT levels seemed to be attributed to both 

CRH and AVT activation in the PVN demonstrating that the two neuropeptides are working 

together to maintain a response to continued stress. Additionally, a delayed increase of AVT 

expression in the PVN is associated with upregulation of its major receptor, V1aR, showing a 

positive feedback indicating that AVT and V1aR are involved when a stressor persists.  CRH and 

AVT receptors within the two structures, NHpC and PVN, are regulated differentially during the 



   
 

stress response. Specifically, CRH and its major receptor, CRHR1, are regulated negatively in the 

NHpC and positively within the PVN; however, CRHR2 has a positive feedback with its ligand in 

both neural structures. Importantly, BDNF appeared to play a critical role in the upregulation of 

CRH followed by AVT activation in the PVN as well as for the positive feedback relationship 

between CRH and CRHR1 and AVT and V1aR within the PVN. Additionally, the V1bR mRNA 

was detected and shown upregulated within the NHpC and PVN. Increased neuronal secretion 

during stress downregulated CRHR1 and V1aR gene expression in the APit resulting in an absence 

of stimulating POMC transcripts thereby reducing their effect on CORT release. In contrast, 

upregulation of the V1bR in the APit maintains a significant CORT release when stressors persist. 

Upregulation of GR within the brain functions to inhibit CRH neurons in the NHpC followed by 

those in the PVN in order to decrease peak plasma levels of CORT. Hence, CRH neurons in the 

NHpC function to assist in initiating the stress response and, therefore, play a significant role in 

the early phase of HPA axis activation. CRH and AVT in the PVN sustain the stress response as 

evidenced by plasma CORT levels. The GR functions to dampen peak levels of CORT thereby 

effecting a homeostatic response to persistent stressors.  
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Chapter 1 

Literature Review 

1. Stress Response System: Hypothalamo-Pituitary-Adrenal (HPA) axis. 

Even though often considered as a negative factor, the stress response is essential for survival 

and adaptation of an organism to environmental threats. The main function of the stress response 

is to destabilize the prospective stressor and restore homeostasis. Early work reported that 

releasing of adrenaline and adrenal cortical hormones was due to any kind of threat to homeostasis 

(Selye, 1937). Two major stress response systems in mammals, the sympatho-adrenomedullary 

and HPA axis, work to restore homeostasis. Studies in the early 20th century characterized that the 

autonomic nervous system initiates an immediate response - the “flight or fight” response. Once 

the autonomic stress response is activated of by a stressor, there is an increase in adrenaline or 

noradrenaline that causes an increase of heart rate, vasoconstriction, and energy mobilization. The 

major brain regions involved in the autonomic nervous system response are the brainstem, 

hypothalamus and the circumventricular organs (Ulrich-Lai and Herman, 2009). In parallel, but 

slower, compared to the autonomic nervous system, activation of the HPA axis involves both the 

central nervous system and endocrine system responsible for the neuroendocrine, sustained 

adaptation component of the stress response. 

The hypothalamus, pituitary and adrenals work together in a regulated cascade of events in 

response to stress. In the diencephalon, the hypothalamus is located and is composed of specialized 

nuclei that control all endocrine systems and regulate hormone secretion targeting many organs 

(Skinner, 2003). Communication between the hypothalamus and endocrine system occurs through 

specialized neurons that synthesize and release their products (neurohormones) directly into blood 
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vessels targeting specific organs. Many neurohormones target the pituitary (hypophysis) gland that 

is cradled in the sphenoid bone of the skull and attached to the base of the hypothalamus by a stem 

called infundibulum or pituitary stalk. 

The pituitary gland consists of two lobes, posterior pituitary (neurohypophysis) and anterior 

pituitary (APit, adenohypophysis), that originate embryologically from neural tissue and primitive 

digestive tract, respectively. The pituitary gland is one of the most important endocrine glands 

secreting different kinds of hormones or neuropeptides that control several biological functions. 

Additionally, functions of the pituitary gland are controlled by the hypothalamus based on 

information from other brain regions. The communication between hypothalamus and anterior 

pituitary occurs through chemicals that are produced by the hypothalamus and delivered to the 

APit through blood vessels system called hypophyseal portal veins. In contrast, hormones 

produced by cell bodies of neurosecretory cells within hypothalamus are packaged in vesicles and 

transported through the axon and stored in the axon terminals that are located in the posterior 

pituitary. When the neurosecretory cells are stimulated, the release of the stored hormones from 

the axon terminals to a capillary network within the posterior pituitary occurs. The posterior 

pituitary portion releases two hormones, oxytocin (OT) and arginine vasopressin or anti-diuretic 

hormone (AVP or ADH). On other hand, the anterior portion of the pituitary contains six types of 

specialized cells each producing a specific hormone: corticotropes (adrenocorticotrophic hormone, 

ACTH), lactotrophs (prolactin, PRL), somatotrophs (growth hormone, GH), gonadotrophs (follicle 

stimulating hormone, FSH, and luteinizing hormone, LH), thyrotropes (thyroid stimulating 

hormone, TSH), and melanotrophs (melanocyte stimulating hormone, MSH) (Carsia, 2015). Once 

APit cells are activated via specialized hypothalamic neuropeptides released from different 

hypothalamic nuclei, pituitary hormones are produced and secreted into the bloodstream targeting 
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peripheral endocrine glands. Hormones from peripheral organs feedback to the hypothalamus and 

pituitary and are continually monitored and regulated by the brain.  

2. Major drivers of the HPA axis  

2.1 Corticotropin releasing hormone neurons 

Parvocellular neurons located within PVN produce corticotropin-releasing hormone/factor 

(CRH/F). CRH contains 41-amino acids with an amidated C terminus, vital for physiological 

activity produced in the brain. It is chemically classified as a neuropeptide hormone, a protein-like 

molecule, because it is made up of a short chain of amino acids. CRH has a critical role in the 

regulation of the HPA axis modulating fight-or-flight responses to stress (Vale et al., 1981). CRH 

was first isolated from sheep’s hypothalamus in 1981 and named for its stimulatory actions on 

corticotropin release by the APit. Thereafter, it was confirmed in other species, including human, 

mouse, rat, pigs, amphibians, and chicken (Vale et al., 1981; Holsboer, 1999). The chicken CRH 

gene is located on chromosome # 2 and consists of two exon and one intron. Interestingly, 

Vandenborne et al. (2005) found that the amino acid sequence of chicken CRH is identical to CRH 

in human and rat. When CRH neurons get activated in response to a stressor, an increase of stress 

hormone in the blood is the outcome. Furthermore, CRH acts as neuromodulator in the brain and 

regulates the immune system, autonomic nervous system, and endocrine system in response to a 

stress response (Lovejoy and Balment, 1999; Orozco-Cabal et al., 2006). In addition to the stress 

response, CRH is involved in multiple physiological functions such as regulation of body 

temperature, growth, suppression of food intake, metamorphosis, reproduction, metabolism, 

diuresis, and learning and memory consolidation (Croiset et al., 2000; Crespi and Denver, 2004; 

Crespi et al., 2004; Mastorakos and Zapanti, 2004; Gulpinar and Yegen, 2005; Amano, 2016). 
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CRH is widely distributed in body tissues. Within the central nervous system (CNS), the major 

concentration of CRH immunoreactive (ir) neurons has been identified in the hypothalamus, 

several nuclei of the basal forebrain and brain stem, the cerebral cortex, part of the limbic system, 

preoptic septal area, thalamus, and the spinal cord (Deussing and Chen, 2018). Furthermore, CRH-

ir has been observed outside of the CNS. Specifically, CRH-ir has been found in endocrine cells 

of pancreas, gastrointestinal system, liver, pituitary, adrenal gland, lung, ovary, testes, thymus, 

spleen, heart, and placenta (Petrusz et al., 1985; Suda et al., 1993; Muglia et al., 1994; Boorse and 

Denver, 2006).   

In the avian brain, Richard et al. (2004) examined the distribution of CRH and found CRH 

fibers and/or perikarya in the hyperpallium, hippocampus, nidopallium, medial striatum, 

arcopallium, nucleus taeniae of the amygdala, nucleus accumbens, nucleus of the stria terminalis, 

and ventral pallidum. Furthermore, CRH neurons have been identified in the NHpC within chicken 

brain (Nagarajan et al., 2014). The CRH neurons in the NHpC are large and multipolar neurons 

(Fig. 1). However, less attention has been devoted to the roles of CRH neurons outside the 

hypothalamus. It is important to note that another CRH called CRH2 has been documented 

recently. Specifically, CRH2 has been identified in avian species (Bu et al., 2019). Of interest, 

CRH2 shares 63% of its amino acid sequence with the original avian CRH peptide and has one 

less amino acid (40AA).  
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Fig. 1. Corticotropin releasing hormone neurons located in the nucleus of hippocampal 
commissure (NHpC) are showing at the level A8.2 adopted from (Nagarajan et al., 2017). CA-
anterior commissure, PPoN- periventricular preoptic nucleus; L – Lateral group of neurons. 
 

2.1.1. Corticotropin releasing hormone receptors 

CRH actions are initiated and mediated by binding to two heptahelical receptors, corticotropin 

releasing hormone receptor 1 and 2 (CRHR1 and -2). The binding site is located along the seventh 

transmembrane domain (7TMD) of each G – protein-coupled receptors. CRH has a tenfold higher 

affinity to CRHR1 than CRHR2 (de Souza and Grigoriadis, 2002; De Kloet et al., 2005; Hauger 

et al., 2008). However, CRH2 has higher affinity for CRHR2 than CRHR1. It has been proposed 

that CRH2 activates the hypothalamic- pituitary- thyroid (HPT) axis as well as stimulates ACTH 

secretion (Bu et al., 2019). The two receptors, CRHR1 and CRHR2, are encoded by two different 

genes, and they share roughly 70% of their amino acid sequences. CRHR1 and CRHR2 consist of 

420 (48.6 kDa) and 412 (47.6 kDa) amino acids, respectively. A third type of receptor, CRHR3, 

has been identified in the catfish species Ameiurus nebulosus (Arai et al., 2001) that is more similar 
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in its amino acid sequence with CRHR1 than CRHR2. However, it appears to be a rare receptor 

due to a lack of reports identifying the receptor in other species of vertebrates.  

 CRHR1 is widely distributed in body organs including the brain, pituitary gland, and 

peripheral tissues such as the testis, ovary, skin, and uterus. In contrast, CRHR2 is mainly 

expressed in peripheral tissues, specifically in cardiac myocytes, lung, skeletal muscle, ovary, and 

gastrointestinal tract. In the brain, CRHR2 was found with higher concentration in the forebrain, 

limbic structures, amygdala, cerebellar cortex, and diencephalon. However, the highest densities 

of CRHR2 in the brain were observed in the PVN, amygdala, and lateral septum (Hillhouse et al., 

2002). Of the two receptors, CRHR1 has been implicated in facilitating the normal stress response.  

While CRHR2 appeared to be involved in maintaining HPA drive and modified the recovery phase 

of the HPA response as CORT levels remain elevated 90 minutes after stress termination in mice 

lacking CRHR2 (CRHR2-/-) (Coste et al., 2000). Interestingly, the two receptors seem to have 

opposite effects regarding behavior of animals. For example, regarding anxiety regulation, 

anxiogenic actions of CRH were mediated through CRHR1, while CRHR2 displayed anxiolytic 

properties, opposite to the properties of CRHR1.   

The most common, cellular mechanism of action for CRH, but not solely, is that binding of 

CRH to the CRHR1 or CRHR2 in most, but not all, tissues activates adenylyl cyclase leading to 

an increase of cAMP and activation of protein kinase (PKA) called the cAMP/PKA signaling 

pathway (Fig. 2) that is involved in activation of POMC gene and ACTH release from pituitary 

corticotropes (Reisine et al., 1985; Aguilera and Liu, 2012). Therefore, the biological activity of 

CRH is mediated by its two receptors. Note, however, that CRH availability is controlled by CRH 

binding protein (CRH-BP), 345 amino acids molecule (38.427 kDa), designed to sequester the 
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peptide. The CRH-BP complex binds to CRH and neutralizes its biological activity to prevent 

unwanted activation of the HPA axis (Deussing and Chen, 2018). 

 

Fig. 2. Schematic diagram showing the mechanism of CRH action on corticotropes via CRHR1. 
Binding CRH to CRHR1 activates cAMP-protein kinase A (PKA) dependent cascades, that 
triggers two main pathways: calcium dependent (far right pathway) and calcium independent. PKA 
activates the transcription factor CREB, c-fos, and Nur77, which ultimately drive the transcription 
of POMC gene (Rofojo and Holsboer, 2009; Bonfiglio et al., 2011). 

 

2.2. Arginine vasopressin/ vasotocin (AVP/AVT) 

Over two centuries ago, Oliver and Schäfer (1895) reported that elevation of blood pressure 

occurred when pituitary extracts were given intravenously (IV). Furthermore, Dale (1906) 

observed that contraction of mammalian uterus occurred following IV injection of components of 

pituitary. Then, scientific research was conducted to identify components of pituitary extracts from 

several nonmammalian vertebrates which resulted in the discovery of vasopressin, oxytocin, and 

vasotocin in several vertebrates including chickens (Katsoyannis and Du Vigneaud, 1958; Sawyer, 
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1960). Studies to identify roles of nine peptide (nonapeptide) hormones discovered that AVP was 

associated with different physiological functions including blood pressure, anti-diuresis/osmotic 

regulation, and reproduction (Sawyer, 1960; Heller and Pickering, 1961). One hormone was 

named anti-diuretic hormone, a classical name, due to its ability to regulate extracellular fluid 

volume via acting on the collecting duct of nephrons to increase water reabsorption and retention 

of body water (Grantham and Burg, 1966). In birds, AVT, a homolog of AVP in mammals, has 

been historically recognized as the avian physiological regulator of water balance (Munsick et al., 

1960). Similar to mammals, AVT is primarily synthesized in specialized neurons and transported 

to the internal zone of ME to be released from neurosecretory neurons into the neurohypophysis. 

From there, it is secreted as active hormone into the general circulation to execute its function in 

the kidney so that reabsorption of water occurred to prevent water loss in the body (Skadhauge 

and Schmidt-Nielsen, 1967). 

Neurons synthesizing AVP/AVT are mainly found in two subpopulations on either side of the 

hypothalamus, SO and PVN (Swanson and Sawchenko, 1983). Utilizing IHC methods, AVP-ir 

neurons in the rodent brain were identified (Vandesande and Dierickx, 1975). In rodents, 

magnocellular AVP-ir was observed in the SO, PVN, medial preoptic area, bed nucleus of the stria 

terminalis (BNST), and lateral hypothalamic (LH) area. Most thick terminal fields projecting to 

ME originate from perikarya of the SO or PVN. Additionally, a large number of parvocellular 

AVP-ir neurons was observed in the suprachiasmatic nucleus (Valesky et al., 2012).   

In several avian species, AVT-ir neurons were studied using a specific antibody targeting AVT 

and reported occurring in different types of neurons (Goossens et al., 1977; Bons, 1980; Berk et 

al., 1982; Tennyson et al., 1985; Kiss et al., 1987; Panzica et al., 1999; Fabris et al., 2004; 
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Montagnese et al., 2015). First, large or magnocellular AVT-ir neurons were identified as the 

source of neurohormone release into the peripheral system (Mikami et al., 1978; Mikami, 1986). 

Second, another small type of AVP/AVT neuron called parvocellular neurons was detected in the 

hypothalamus. Parvocellular neurons project either into the ME where their terminals release 

peptides into the portal system to modulate physiological responses (by binding to receptors 

located on pituitary cells), or to brain stem and spinal cord to modulate autonomic functions. 

AVP/AVT has different functions, such as osmoregulation, blood regulation, reproduction 

behavior, and the stress response. AVT neurons were identified in the hypothalamus and extra-

hypothalamic structures in both mammals and birds. Nonetheless, both hypothalamic and extra-

hypothalamic distributions of AVT-ir neurons are presumed to play distinct roles in the physiology 

and behavior of birds. 

2.2.1. AVP/AVT receptors 

AVP/AVT neuropeptides initiate their functions and effects via binding to specific receptors, 

G-protein coupled receptors, that are located on the cell membrane and distributed in a variety of 

cells including the cardiovascular system, kidney, brain, pituitary and blood platelets. Different 

functions of vasopressin receptors have been identified including those in the visceral system and 

central nervous system to facilitate physiological as well as behavioral functions (Koshimizu et 

al., 2012; De Wied et al., 1984). Over the past decade, four different types of vasotocin receptors 

have been identified in vertebrates, namely V1a, V1b, V2 and V3 (oxytocin receptor). These 

receptors are conserved between mammalian and avian species throughout evolution (Ocampo et 

al., 2012; Yamaguchi et al., 2013). The distributions of AVP receptor subtypes in the CNS show 

significant differences among species. In rodents, the V1a and OT receptor subtypes are 
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abundantly expressed receptors in the brain (Johnson et al., 1993; Tribollet et al., 1999). 

Furthermore, V2 receptor mRNA has been reported within mammalian brains, particularly, AVP 

producing neurons possess the V2 that mediates autocrine role of somatodendritic release of AVP 

in rat vasopressin neurons under hypo-osmotic conditions (Sato et al., 2011). The V1b receptor in 

the mouse CNS is found most prominently in the hippocampus, cerebral cortex, amygdala, 

olfactory bulb, and hypothalamus, including the PVN. Although, the AVP/AVT receptors are 

conserved, the second messenger system within the cells varies to a smaller extent depending upon 

the receptor subtype. In a variety of cells, the V1aR, V1bR and oxytocin receptor (V3) were found 

to have a signal transduction pathway associated with phosphatidylinositol breakdown leading to 

calcium signaling (Woods et al., 1986; Hatton et al., 1992; Dayanithi et al., 1996; Cornett et al., 

2003), while V2 receptors are involved in activating adenylate cyclase leading to the release of 

cAMP serving as the second messenger. 

In birds, the first type of vasotocin receptor identified was the VT1 receptor and found in the 

eggshell gland and brain of chickens (Tan et al., 2000). Although, V2 receptors have been 

identified in the kidney of mammals (Bankir, 2001) and associated with the regulation of ionic 

balance, its function in the avian kidney is unknown. The second receptor type detected in birds 

was the VT2 receptor. Based upon its similar sequence to the mammalian V1b receptor gene, it 

was suggested to be equivalent to the mammalian V1b receptor (Cornett et al., 2003). Studies with 

an antibody to the avian VT2R (V1bR) showed that the receptor protein occurred primarily on 

corticotropes in the chicken APit (Jurkevich et al., 2005, 2008). Unlike, mammalian V1b, the avian 

V1b receptor has not been detected in the chick brain utilizing IHC (Jurkevich et al., 2005). In 

contrast, the avian VT4R was proposed to be homologous to the mammalian V1a, based upon its 

specific immunoreactivity shown on corticotropes in the APit and presence in specific neurons as 
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well as in circumventricular organs within the brain of chickens (Selvam et al., 2013; 2015) as 

well as songbird in the brains (Leung et al., 2009). The last of the four different types, the avian 

VT3 receptor subtype also known as the mesotocin receptor and was proposed to be comparable 

to the mammalian oxytocin receptor, due to its presence in the shell gland of birds (Gubrij et al., 

2005). Although VT3 receptors have not been studied in the chicken brain, evidence using in situ 

hybridization showed that VT3 receptors are expressed in several brain regions of the white-

throated sparrow (Zonotrichia albicollis) and zebra finch (Taeniopygia guttata) (Leung et al., 

2011).  

3. Stress Response and CORT release.   

Stress was introduced by Hans Selye as “the triphasic general adaptation syndrome (GAS)”. 

In the response to stress, there are many stages: the first stage is the initial alarm reaction where 

the body prepares itself for “fight or flight”; the second is the stage of resistance involving 

adaptation to the stressor; and exhaustion is the last stage which might lead to an organism’s death 

(Wang et al., 2017). While investigating the endocrinology of stress, Selye (1937) was one of first 

scientists who recognized the relationship between stress and adrenocortical activation. The HPA 

axis sensitivity and activity depend on the type, duration, and intensity of stressors (Pacák and 

Palkovits, 2001) and predefined by exposure to CORT (Buckingham, 2006).   

Early studies showed that the HPA axis activation was associated with hypothalamic factors. 

First, it was found that arginine vasopressin (AVP)/ vasotocin (AVT) enhanced ACTH release 

from APit cells with lower efficiency compared with other hypothalamic or pituitary stalk extracts 

(Gillies et al., 1978; 1982). Upon the discovery of a 41 amino acids peptide hormone in the early 

1980’s (Vale et al., 1981), the major increase of ACTH release by hypothalamic extracts was 
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attributed for CRH. Eventually, it was found that CRH and AVP/AVT work synergistically to 

augment the release of ACTH (Castro et al., 1986), and are present in a sub-population of neurons 

within the medial parvocellular division of the PVN (Sawchenko et al., 1992). Thereafter, 

immunohistochemical (IHC) data showed AVP and CRH co-localization within some 

parvocellular neurons in the PVN and about 50% of the cells contain both CRH and AVP within 

the cell bodies. Similarly, the axon terminals of parvocellular neurons displayed co-localization of 

the two peptides in the external zone of the median eminence (ME) (Sawchenko et al., 1984; 

Whitnall et al., 1985;  Antoni, 1993; Whitnall, 1993, Aste et al., 1998). Later, co-localization of 

both neuropeptides in neurons was reported in birds (Kuenzel and Jurkevich, 2010). In vertebrates, 

AVP/AVT and CRH produced by parvocellular neurons are released and transported to the APit 

to trigger ACTH release from corticotropes (Antoni, 1993). However, CRH and AVT genes within 

parvocellular neurons have different sensitivities for stress. For example, ether inhalation stress, a 

potent stressor, triggers expression of hnCRH primary transcripts (hn-heteronuclear) as early as 

5m followed by hnAVP expression at 1h (Kovács and Sawchenko, 1996; Ma et al., 1997). 

Likewise, temporal mRNA expression of CRH and AVP following stressors were also reported in 

a number of studies (Lightman and Young, 1989;Baitanusz et al., 1993; Nagarajan et al., 2017a). 

Parvocellular neurons producing CRH and AVP/AVT are controlled by distinct cells in other brain 

areas (described in 4. Section below). 

In the anterior pituitary, CRH and AVP/AVT act on corticotropes within APit via their 

respective receptors (CRH – CRHR1/CRHR2 and AVT – V1a/V1b) to stimulate synthesis and 

release of ACTH into the systemic circulation. Upon binding of CRH and AVP/AVT to their 

receptors, dimerization of CRHR1 and V1b receptors occurs on corticotropes of mammals (Young 

et al., 2007) and birds (Mikhailova et al., 2007). The dimerization of CRHR1 and V1bR provides 
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structural evidence that CRH and AVP/AVT are working together in response to stress stimuli not 

only at the level of hypothalamus but also at the levels of the APit. Activation of receptors by their 

ligands leads to stimulations of cyclic adenosine monophosphate (cAMP) dependent pathway 

causing the increase of proopiomelanocortin (POMC) synthesis. POMC is a polypeptide (241 

amino acid residues) termed a prohormone because it contains multiple peptide sequences which 

when processed results in ACTH, α- melanocyte stimulating hormone (α-MSH), β--lipotropin, β-

-endorphin, and some other unknown fragments. Once ACTH, a 39 amino acid, reaches the adrenal 

glands via the general circulation, it binds to its receptor, melanocortin receptor 2 (MC2), on the 

zona fasciculata (mammals) or adrenocortical cell (birds) causing cortisol/ corticosterone  release 

(Fig. 3) , the end product of the HPA axis, produced by the adrenal glands (Carsia, 2015).  

 

 

Fig. 3. Side view (Sagittal view) of the HPA axis in avian species adopted from (Nagarajan et al., 
2017a).  The NHpC and PVN have neurons (CRH and AVT type) that project to the median 
eminence, a structure just dorsal to the anterior pituitary. The anterior pituitary releases ACTH and 
within the avian adrenal gland, the interrenal tissue produces the product, corticosterone (CORT), 
transported throughout the body by the cardiovascular system. 
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4. Neural pathways and inputs for PVN 

The hypothalamic PVN is an integrative site linking autonomic and neuroendocrine systems 

during stress conditions. Stress stimuli are either transmitted directly to the PVN or integrated by 

the limbic system and conveyed to the parvocellular neurons located in the PVN. An immediate 

response for systemic physical and metabolic stressors utilizes monosynaptic ascending pathways 

projections directly from the brain stem and spinal cord to the PVN (Herman et al., 2003). In 

addition to direct projection to the PVN, neurons within brain stem project and also interact with 

other limbic areas within the brain such as, the dorsal raphe, dorsomedial hypothalamic nucleus 

(DMH), and forebrain. In addition to monosynaptic ascending pathways, complex polysynaptic 

pathways have been identified that activate or inhibit neurons within the PVN arise from different 

brain areas such as the prefrontal cortex (PFC), hippocampus, amygdala, and BNST. Activation 

of afferent neural pathways terminating on the PVN during stress results in rapid release of 

neuropeptides followed by an increase of their transcription and de novo synthesis of peptides. For 

example, a rapid activation of neural afferent pathways is caused by acute stress leading to rapid 

release of CRH followed by increasing CRH transcription and de novo synthesis of CRH. Also, an 

increasing of AVP expression in CRH neurons was reported during stress and adrenalectomy 

(Whitnall, 1989). Furthermore, the fast release of CRH and AVP/AVT is followed by a rapid 

increase of gene transcription documented by steady-state mRNA level elevation at 4h after acute 

stress. In stress studies, CRH gene expression precedes or is followed by AVP gene activation 

(Kovács and Sawchenko, 1996; Ma et al., 1997; Herman et al., 2003). 

Parvocellular neurons located in the PVN are the main neurons responsible for the stress 

response and regulated by several inputs such as, noradrenergic, glutamatergic, GABAergic, and 
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peptidergic neural pathways (Aguilera and Liu, 2012). The PVN receives abundant ascending 

adrenergic or noradrenergic projections that innervate parvocellular neurons originating from the 

brain stem (Cunningham and Sawchenko, 1988; Füzesi et al.,  2007). Major ascending 

noradrenergic neurons originate from the nucleus tractus solitarius (NTS) and locus coeruleus 

(LC). Additionally, adrenergic α1 and α2 receptors were identified on the CRH neurons and 

parvocellular neurons (Cummings and Seybold,, 1988; Little et al., 1992). Electrical stimulation 

of the ascending noradrenergic bundle and intra-PVN or intracerebroventricular application of 

norepinephrine activate the HPA axis and cause a significant increase in the CRH gene expression 

and CORT concentration. However, stress-induced ACTH and CORT releases were reduced after 

administration of an α1-adrenoceptor antagonist in the PVN (Plotsky, 1987; Itoi, 1994; Itoi et al., 

1999; Helmreich et al., 2001; Cole and Sawchenko, 2002). Furthermore, despite an intra-PVN 

glutamate injection, an impaired HPA response to stress, particularly, decreased ACTH and CORT 

response occurred when noradrenergic inputs to the PVN were reduced (Feldman and Weidenfeld, 

1997; Bienkowski and Rinaman, 2008). However, an activation  of noradrenergic terminals in the 

PVN resulted in CORT hypersecretion (Laorden et al., 2002). The noradrenergic afferents are 

positively regulating the HPA axis and are activated by systemic sensory stimulation or 

physiological stress signals, such as immune system activation and hypoglycemia (Ritter et al., 

2003). In addition to direct projections to the PVN and synapses with CRH neurons, noradrenergic 

and adrenergic neurons within the brain stem project and interact with other limbic areas within 

the brain such as, dorsal raphe; that regulates serotoninergic activity, dorsomedial hypothalamic 

nucleus (DMH); which control autonomic activity, and the forebrain.   

In addition to the excitatory noradrenergic inputs to the PVN, parvocellular neurons within the 

PVN receive another excitatory input from glutamatergic neurons. Glutamatergic inputs to the 
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PVN originate from intrahypothalamic glutamatergic interneurons or the peri-PVN area (Boudaba 

et al., 1997; Daftary et al., 1998, 2000) to control the activity of neuroendocrine responses 

(Boudaba et al., 1997; Herman et al., 2004; Iremonger et al., 2010). All main subtypes of the 

ionotropic glutamatergic receptors were found within or around the PVN (Day et al., 1999; 

Herman et al., 2000). It has been demonstrated that an enhanced secretion of ACTH and CORT  

was reported when glutamate was injected directly into the PVN (Darlington et al., 1989; Feldman 

and Weidenfeld, 1997). However, a weaker activation of the HPA axis following restraint stress, 

as measured by plasma corticosterone level, was observed after bilateral injection of a 

glutamatergic receptor antagonist (Ziegler and Herman, 2000). 

Unlike the noradrenergic and glutamatergic inputs, parvocellular neurons in the PVN receive 

inhibitory inputs which are GABAergic neurons that originate from interneurons located in the 

surrounding area of the PVN (Boudaba et al., 1996; Herman et al., 2002). The GABA interneurons 

in the peri-PVN region orchestrate the information from limbic inputs originating mainly from 

several brain areas such as, the hippocampus-ventral subiculum, prefrontal cortex, medial 

amygdala, lateral septum, paraventricular thalamus, and suprachiasmatic nucleus. The other 

proportion of the GABAergic terminals within the PVN originates from limbic and diencephalic 

regions such as the dorsomedial and medial preoptic nucleus and the bed nucleus of the stria 

terminalis (Herman et al., 2002). It was reported that in vivo blockage of GABA A receptors within 

the PVN caused a significant increase of CRH transcription resulted in the increase of plasma 

glucocorticoid levels displaying that CRH neurons are under the inhibitory effects of GABAergic 

inputs (Cole and Sawchenko, 2002). Furthermore, decreasing of ACTH secretion in response to 

an acute stress was reported after bilateral injection off bicuculline which is a GABA A receptor 

agonist into the PVN. Hence, the activation of the HPA axis when triggered by stress is inhibited 
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by GABAergic inputs (Stotz-Potter et al., 1996). Other neurons in the NTS express other 

neuropeptides, such as neuropeptide (NPY), glucagon-like peptide 1 (GLP-1), inhibin-β, 

somatostatin and enkephalin, that are able to influence parvocellular neurons and HPA axis 

activities (Wahlestedt et al., 1987; Suda et al., 1993; Ziegler and Herman, 2000; Nakade et al., 

2007).  

5. Neurotrophic factors involved of stress response  

Stress results in a wide range of effects that influence many different factors, such as CREB 

and brain-derived neurotrophic factor (BDNF) in the hippocampus and other brain regions. BDNF, 

246 amino acid (27.715 kDa), is a neurotrophin widely expressed in the mammalian brain (Hofer 

et al., 1990) and was initially purified from mammalian brains based on its ability to promote 

neuronal survival in vitro (Barde et al., 1982). It is expressed highly in the hippocampus followed 

by cortex, amygdala, and hypothalamus. Furthermore, it can be observed outside the brain in the 

thymus, liver, spleen, heart, and lung (Pruunsild et al., 2011). BDNF gene is composed of 11 exons 

and contains 9 functional promoters located on chromosome 11p13 producing 24 different 

transcripts that are all translated to the same mature protein (Pruunsild et al., 2011). BDNF 

transcription is regulated by many elements, including estrogens, promoter-specific methylation, 

and the c-AMP response element-binding protein (CREB) (Sohrabji et al., 1995; Tao et al., 1998; 

Aid et al., 2007). BDNF is essential to many facets of CNS functions, such as, neuronal 

development and survival, migration, dendritic arborization, synaptic plasticity, and cognitive 

function (Greenberg et al., 2009). BDNF has been able to prevent the negative effects of oxidative, 

metabolic and excitotoxic stress on neurons in experimental models. Dysregulation of BDNF 
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signaling has been shown in several neurodegenerative disorders (Mattson et al., 2004; Marini et 

al., 2007).  

Differences in levels of BDNF expression have been investigated during social defeat 

paradigm in many species. For this form of stress, BDNF expression decreased significantly in the 

hippocampus and piriform cortex of golden hamster contributing to atrophy and decreased 

neurogenesis (Arendt et al., 2012). However, an acute increase in BDNF expression was reported 

in the PFC, nucleus accumbens (nAcc), amygdala, and ventral tegmental area (VTA) of rats 

(Nikulina et al., 2012). Furthermore, social isolation induced a decrease in BDNF protein levels in 

the midbrain, hypothalamus, PFC, and hippocampus in rats and mice (Berry et al., 2012). In rodent 

model studies, expression of BNDF has been measured during restraint stress and found an 

increase in BDNF mRNA preceding its protein level increase in the hippocampus (Marmigère et 

al., 2003). In contrast, other studies demonstrated that the protein and mRNA levels decreased 

during acute stress (Ueyama et al., 1997; Franklin and Perrot-Sinal, 2006; Mazon et al., 2006; Lee 

et al., 2008; Roth and Sweatt, 2011). Researchers reported the increase in the BDNF mRNA 

relative levels during stress compared to unstressed control (Nair et al., 2007; Alboni et al., 2011). 

Effects of immobilization were not uniform across all brain regions. Specifically, some groups 

reported a transient upregulation of BDNF in the hypothalamus (Rage et al., 2002), but others 

demonstrated no effect of this form of stress on BDNF levels in the basolateral amygdala or PFC 

(Roth and Sweatt, 2011). The results suggest a complex relationship between the type and duration 

of stressors and do not indicated a clear results or exact conclusion on the expression of BDNF or 

specific structures involved in the response.  
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 In addition to BDNF, another important neurotrophic factor called glial-derived neurotrophic 

factor (GDNF) was discovered in 1993 and found that GDNF is essential for midbrain 

dopaminergic neurons. GDNF was initially identified and produced as proGDNF, 211 amino acid, 

that is cleaved mature, active form by endoproteolytic enzymes into the 134 amino acid (Lin et al., 

1993). Uchida et al. (2011) found that individuals who cannot upregulate GDNF during stress 

exhibit anxiety and avoidance of social interactions, possibly due to the negative consequences of 

chronic stress on the dopaminergic circuits. Later, Buhusi et al. (2016) demonstrated that an 

increase of vulnerability to stress was observed in GDNF heterozygous mice manifested by 

alterations in their executive functions. Furthermore, intraventricular administration of GDNF 

revealed its role in weight loss (Manfredsson et al., 2009). The mechanism for that results was due 

to the ability of GDNF to phosphorylate an extracellular signal-regulated kinase (p-ERK) in a 

small population of CRH neurons located specifically in the hypothalamus PVN. Activation of 

these hypothalamic CRH via GDNF might enhance hypothalamo– pituitary–adrenal axis. 

However, less is known about the mRNA expression pattern of GNDF during stress response.  

6. Peripheral regulation of stress response  

CRH neurons show different patterns of activity under resting and stress conditions.  The 

activity of CRH neurons is regulated by several stimulatory and inhibitory neural pathways as well 

as hormonal pathways that originate peripherally. Several peripheral factors such as, sex steroids, 

glucocorticoids, peptides, and cytokines, can affect the stress response through modulating CRH 

neurons either positively or negatively. For example, CRH transcription activation depends mainly 

on cAMP/PKA pathways occurred when phosphorylated cAMP response elements binding 

proteins (pCREB) bind to the cAMP response element (CRE) of the CRH promoter (Seasholtz et 
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al., 1988). Moreover, binding sites of immediate early genes such as c-fos and NGFI-B (nerve 

growth factor inducing factor- B) have been identified in the promoter regions of CRH and AVP 

(Chan et al., 1993) and associated with the differences in expression patterns of the neuropeptides. 

Also, it was found that CRH autoregulates itself via its receptor CRHR1, which is coupled to 

adenylate cyclase (De Goeij et al., 1991; Di et al., 2003). CRHR1 activation by locally secreted 

CRH would provide a source of cyclic AMP, which is necessary for activation of CRH 

transcription. Also, during stress response, the release of pituitary adenylate cyclase activating 

polypeptide (PACAP) in the brain could provide an additional cAMP stimulator in the CRH 

neuron via PACAP innervation contacting CRH perikarya (Grinevich et al., 1997; Légrádi et al., 

1998). CRH neurons inhibition is essential for homeostasis and health. It is well known that CRH 

transcription is inhibited by in vivo or in vitro glucocorticoids. However, the molecular mechanism 

is not fully understood. Further, evidence showed that AVP and OXT could inhibit CRH secretion 

and expression and attenuate c-fos mRNA in forebrain regions involved in the regulation of the 

HPA axis, yet the mechanism has to be understood ( Plotsky et al., 1984; Windle et al., 1997, 2004; 

Neumann et al., 2000; Ochedalski et al., 2007). The influence of different types of stressors is still 

unidentified in the avian species because of a mixed population of magnocellular and parvocellular 

neurons in the PVN. Furthermore, the stress response in the avian species regarding the activity of 

CRH and AVT neurons in the PVN needs further research. 

6.1. Corticosteroid and glucocorticoid receptors (GRs) 

The final product of the HPA axis is a corticosteroid which is one of a class of steroid hormones 

secreted by adrenal glands. Low density lipoprotein is a substrate that enters cells and is broken 

down to a release of free cholesterol in the cytoplasm. Cholesterol, the precursor for corticosteroid, 
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enters a series of enzymatic processes in the mitochondria and endoplasmic reticulum leading to 

steroidogenesis. Corticosteroids are not stored in cells nor packed into vesicles due to their 

lipophilic nature. Therefore, they pass through the cell membrane into the blood and reversibly 

bind to a carrier protein called corticosteroid- binding globulin (CBG) that carries them to target 

tissues to induce their effects. Corticosteroids have essential roles in maintaining homeostasis in 

response to stress, immune response, electrolyte balance, carbohydrate metabolism, emotion, and 

cognition. Glucocorticoid refers to the product of glucose metabolism and synthesis within the 

adrenal cortex that produces steroid. Glucocorticoids effects are mediated by two receptors, which 

are mineralocorticoids (MRs) and glucocorticoids (GRs). The MRs have higher affinity for 

corticosteroid than the GRs. Therefore,  most MRs are fully occupied under basal conditions (Karst 

et al., 2005). The MRs are highly expressed in the hippocampus, lateral septum, and brain stem 

motor nuclei, and moderately expressed in the amygdala, PVN and locus coeruleus. However, GRs 

are ubiquitously expressed on neurons and glia throughout the brain, particularly, in the 

hippocampus, lateral septum, PVN, and pituitary (Joëls and Baram, 2009).  

There are two ways for glucocorticoids to exert their effects on the cells, which are genomic 

and nongenomic actions. The genomic way occurs after binding of a corticosteroid to the 

cytoplasmic GR, the activated receptor is translocated to the nucleus and binds to a specific DNA 

sequence located in the promotor region of the targeted gene known as the glucocorticoid response 

element (GRE), and subsequent activation or repression of de novo synthesis of mRNA and protein 

production (Hinz and Hirschelmann, 2000). Therefore, an activated GR is regulating targeted 

genes by acting as a transcription factor or interacting with other transcription factors.  In contrast, 

the non-genomic effects of glucocorticoids occur when glucocorticoids bind to the membrane 

associated GR. Unlike the slow genomic effect of glucocorticoids, the non-genomic effect is very 
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fast and usually affects neurons by changing synaptic transmission, occurs within minutes, and 

induced by conjugated glucocorticoids that do not permeate the cell membrane. The non-genomic 

effects of glucocorticoids do not alter gene transcription and protein synthesis (Keller-Wood, 

2015). 

During stressful situation, corticosteroids bind GRs in targeted tissues to enhance the body 

utilizing stored energy more efficiently and increase the organisms’ performance. At the same 

time, corticosteroids target GRs located in the brain and pituitary to inhibit corticosteroid release 

and to prevent long-term exposure to high levels of corticosteroid. The main sites for negative 

feedback are hippocampus, hypothalamus, and pituitary. The negative feedback occurs at the 

hippocampus to shut down excitation signals, while it limits ACTH at the pituitary and inhibits 

CRH and AVP/AVT release at the PVN (Buckingham, 2006). In addition, the presence of GRs on 

CRH neurons indicate that glucocorticoids regulate CRH neurons directly via GRs (Uth et al., 

1988). Within the HPA axis, the expression of the POMC gene in the APit and the CRH gene in 

the PVN parvocellular neurons is downregulated during the stress response by high CORT 

utilizing GRs. Furthermore, it has been found that corticosterone and dexamethasone are able to 

regulate glutamatergic and GABAergic inputs to the PVN via the non-genomic way in a process 

called glucocorticoid-induced suppression of excitation. Glucocorticoid-induced suppression of 

excitation can be found in CRH, VP and OT neurons (Di et al., 2003; 2009). 

7. Rationale and aims of the dissertation 

Maintenance of internal milieu in the presence of real or perceived challenges is carried out 

during the physiological stress response. Sustaining homeostasis of an organism is conducted by 

interaction of different body systems that cause the release of different biochemical molecules. 
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Even though there are two major stress response systems in mammals, the sympatho-

adrenomedullary and HPA axis response, the nervous system plays critical roles in both systems. 

Several types of neurons located within different brain nuclei are activated in response to stressors. 

In particular, parvocellular neurons within the hypothalamic PVN that co-express CRH and 

AVP/AVT play essential roles in the regulating the HPA axis. In addition to their long-established 

role of parvocellular neurons as the main regulators of the HPA axis, CRH and AVT expressing 

neurons were also identified in several brain structures (Deussing and Chen, 2018, De Souza et 

al., 1985), and they act as a neurotransmitter or neuromodulator at diverse ‘extra-hypothalamic’ 

sites within the central nervous system (CNS) to induce rapid autonomic and behavioral responses 

to a stressor (Dunn and Berridge, 1990; Reghunandanan et al., 1998; Van Bockstaele and 

Valentino, 2009). Similarly, in the avian species, CRH neurons have been observed in many brain 

structures (Richard et al., 2004). Interestingly, one of the brain structures containing CRH neurons 

was discovered in the septum of birds in a structure called the NHpC (Nagarajan et al., 2014). 

Studies thereafter suggested an interaction of the CRH neurons in the NHpC with CRH and AVT 

neurons in the PVN regarding their roles in the regulation of the avian stress response (Nagarajan 

et al., 2017a, b). Furthermore, CRH and AVP/AVT receptors within different levels of the HPA 

axis play a critical role in the stress response. For instance, receptors located at the level of APit 

connect between nervous and endocrine systems to regulate ACTH release. Therefore, the major 

drivers of neuroendocrine stress response, CRH and AVP/AVT neurons and their receptors as well 

as BDNF, will be in the focus of the current study within two brain structures, the NHpC and PVN. 

The former is a septal extra-hypothalamic nucleus, while the latter is the well-known, major 

hypothalamic nucleus regulating stress. The main focus of the research will address CRH neurons 

within the NHpC. Choosing the NHpC enables the structure to serve as a model for any other 
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extra-hypothalamic brain structure that contains CRH neurons. One reason is that the NHpC is 

located right above the hypothalamic PVN and separated from the PVN by the anterior 

commissure (AC). Another reason for the NHpC to be an excellent candidate is that an activation 

of the c-fos gene (an early activated neuron marker) in the NHpC was observed during a stress 

response (Fig .4).  

 

Fig. 4. At level A7.8, activation of c-fos gene (an immediate neuron marker) during stress response 
in the nucleus of hippocampal commissure (NHpC) previously known as the nucleus of pallial 
commissure (nCPa) in the chicken brain adopted from (Xie et al., 2010). 

 

Additionally, CRH neurons in the NHpC are larger and multipolar neurons implicating that 

these neurons may have different roles, sensitivity, and regulation during the stress response 

(Nagarajan et al., 2017b). All these interesting features of the NHpC make studying the role of 

stress neurohormones, CRH and AVT, and their receptors in the NHpC an excellent example of 

an extra-hypothalamic set of CRH neurons responding to stress. Furthermore, comparing findings 

in the NHpC with that in the traditional hypothalamic nucleus, PVN, utilizing two different 
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stressors, feed deprivation and immobilization stress, would be intriguing to establish and 

understand the importance of extra-hypothalamic CRH neurons in an avian species as a model for 

those who may be examining the stress pathway in the humans or other vertebrate species. 

Therefore, the dissertation will explore the role of CRH neurons in the NHpC to determine if 

these neurons are involved in the regulation of the stress response in birds as a model for the role 

of extra-hypothalamic CRH neurons. The research also will determine the sequence of structure 

activation involved in the neuroendocrine regulation of the avian stress response as well as provide 

further evidences whether the NHpC is a structure involved in the traditional HPA axis. 

Furthermore, the dissertation will investigate the relationship between CRH and its receptors in 

different brain structures, and it will help understanding the role of BNDF in the stress response 

within different brain structures during different stress trials, feed deprivation versus 

immobilization stress. The data from this dissertation will improve the understanding of the role 

of extra-hypothalamic structures, particularly, the NHpC in the stress response. 
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Chapter 2  

Corticotropin releasing hormone neurons in the nucleus of the hippocampal commissure 

initiate stress response. 

This chapter is adopted from “Kadhim, H.J., Kang, S.W., Kuenzel, W.J., 2019. Differential and 
temporal expression of corticotropin releasing hormone and its receptors in the nucleus of the 
hippocampal commissure and paraventricular nucleus during the stress response in chickens 
(Gallus gallus). Brain Res. 1714, 1–7.” 

(Reproduced with permission from reference (Kadhim et al., 2019), copyright (2019) Brain 
Research) 

 

Abstract  

Recently, in addition to the paraventricular nucleus (PVN), the nucleus of the hippocampal 

commissure (NHpC) has been proposed to regulate stress in birds due to the discovery of 

corticotropin releasing hormone (CRH) neurons in the NHpC. Expression of CRH, CRHR1, 

CRHR2 and glucocorticoid receptors (GRs) was determined within the NHpC compared to the 

PVN. Additionally, two levels of the hypothalamo-pituitary-adrenal (HPA) axis: 1) anterior 

pituitary (APit) and 2) adrenal gland were examined following food deprivation (FD) stress 

including proopiomelanocortin (POMC) expression and plasma corticosterone (CORT), 

respectively. CRH expression in the NHpC increased rapidly; however, it quickly returned to 

control levels, showing a negative feedback with CRHR1.  In contrast, CRH expression in the 

PVN and its receptor CRHR1, steadily increased throughout the sampling period showing a 

positive feedback with CRH.  Of interest, brain-derived neurotrophic factor (BDNF) mRNA was 

significantly elevated in the PVN while no significant change in BDNF mRNA was observed in 

the NHpC. The rapid increase in BDNF expression that matched the pattern shown by CRHR1 in 
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the PVN may play a role in the positive feedback of CRH and its receptor. GRs were 

downregulated in both the NHpC and PVN throughout the study. POMC hnRNA and mRNA were 

significantly elevated in the APit from 1-4h of FD compared to controls. A significant increase in 

plasma CORT levels occurred at 2h and persisted to the end of the experiment, suggesting that 

CRH neurons in the NHpC initiated, while PVN CRH neurons sustained the early response of the 

HPA axis to stress. 

Keywords: corticotropin releasing hormone receptor 1 and 2, septum, hypothalamus, food 

deprivation, BDNF, corticosterone. 

1. Introduction  

In birds as in mammals, a major regulator of the hypothalamo-pituitary-adrenal (HPA) axis is 

corticotropin-releasing factor or hormone (CRF or CRH) (Herman and Cullinan, 1997), which is 

a 41-amino-acid peptide (Vale et al., 1981). CRH synthesized in parvocellular neurons of the 

paraventricular nucleus (PVN) of the hypothalamus and released in the external zone of the median 

eminence is well-known to be involved in autonomic (Lehnert et al.,1998), and behavioral stress 

responses (Arborelius et al., 1999; Mattson, 2000). Once reaching the anterior pituitary (APit) via 

the portal vessels, neural secretions of CRH stimulate corticotropes in the APit to synthesize a 

preprohormone, proopiomelanocortin (POMC), that is further processed to adrenocorticotropic 

hormone (ACTH) and released into the general circulation (Bonfiglio et al., 2011; Blas, 2015). In 

the adrenal glands, ACTH initiates the production and release of glucocorticoids (GCs), i.e. 

http://onlinelibrary.wiley.com/doi/10.1002/cne.11023/full#bib94
http://onlinelibrary.wiley.com/doi/10.1002/cne.11023/full#bib49
http://onlinelibrary.wiley.com/doi/10.1002/cne.11023/full#bib2
http://onlinelibrary.wiley.com/doi/10.1002/cne.11023/full#bib55
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cortisol, in most mammals and fish, and corticosterone (CORT) in, rodents, birds, reptiles and 

amphibians (Romero, 2004; Carsia, 2015; Herman et al., 2016). The HPA axis is dependent upon 

a negative feedback system, in which the binding of GCs to glucocorticoid receptors (GRs) at 

several levels within the axis can inhibit its activity (De Kloet et al., 2005; Vandenborne et al., 

2005; Chrousos, 2009; Keller-Wood, 2011). Classically, the PVN is considered the primary 

structure containing CRH neurons for regulating the HPA axis. In mammals, these neurons within 

the PVN respond to a variety of stressors such as maternal deprivation (Chen et al., 2012), osmotic 

and metabolic stress (Yadawa and Chaturvedi, 2016), and restraint stress (Girotti et al., 2006). In 

the PVN, CRH acts via two types of receptors which are CRH type-1 and type-2 receptors (CRHR1 

and CRHR2) (Potter et al., 1994). In birds as in mammals, CRH neurons in the PVN respond to 

different stressors, such as hyperosmotic stress (Sharp et al., 1995; Jaccoby et al., 1997; Aman et 

al., 2016), heat stress (Cramer et al., 2015), and social stress (Xie et al., 2010) to initiate the stress 

response. In birds, CRH exerts its effect through two receptors, CRHR1 and CRHR2. Utilizing an 

acute and chronic psychogenic stressor; immobilization, revealed significant changes in the 

CRHR1 and CRHR2 within the avian anterior pituitary and significant increases in plasma CORT 

(Kuenzel et al., 2013; Kang and Kuenzel, 2014).  

Previous studies in our laboratory demonstrated that exposure of birds to various acute 

stressors showed significant elevation of FOS-ir neurons in the medial septal brain structure termed 

the nucleus of the hippocampal commissure (NHpC), previously known as the nucleus of pallial 
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commissure (Puelles et al., 2007; Xie et al., 2010; Nagarajan et al., 2014). Utilizing colchicine 

administration revealed that the NHpC contained a high density of CRH-ir neurons (Nagarajan et 

al., 2014; 2017a). To date, a structure homologous to the avian NHpC has not been identified in 

mammals or reptiles. Possible candidates, located in a similar position to the avian NHpC, at 

midline and directly above the anterior commissure (AC) would be the medial septal nucleus 

(Merchenthaler, 1984) or triangular septal nucleus in the rat brain (Sperlagh et al., 1998) and two 

septal structures (central part and dorsal part of the dorsal septal nucleus and nucleus of the anterior 

commissure) in the reptilian brain (Font et al., 1998). In reviewing the literature, one possibility is 

that the medial septal nucleus in the rat’s brain may be equivalent to the NHpC, since CRH-like 

immunoreactive cells have been identified in that structure (Merchenthaler, 1984). To the best of 

our knowledge, the expression pattern of CRH mRNA in the medial septal nucleus during a stress 

response has not been addressed. One study in rats involved lesion directed to the medial septal 

nucleus was conducted, thereafter, rats were exposure to ether, photic or acoustic stressors and 

plasma CORT levels were measured. However, no differences in plasma CORT were detected 

between intact controls and septal lesioned rats (Feldman and Conforti, 1980). 

Recently our laboratory has utilized another type of stressor, feed deprivation (FD) in our 

studies. It is different from past, previous stressors, used in that it is gradual and becomes more 

intense over time due to persistent nutrient deficits in the birds. Utilizing that stressor enabled us 

to show what appeared to be a specific sequence in gene activation beginning with CRH expression 

in the NHpC, CRH activation in the PVN and a third, delayed peak of arginine vasotocin (AVT) 

gene expression in the PVN (Nagarajan et al., 2017b). Since our previous study suggested that 

CRH neurons in the NHpC showed earlier gene expression than CRH neurons in the PVN and at 

the anterior pituitary level, heteronuclear (hn) POMC but not mRNA POMC was activated at 2h 
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and 4h following FD (Nagarajan et al., 2017b), we wished to examine those temporal changes in 

gene expression again by sampling more frequently. If we could demonstrate an earlier activation 

of CRH mRNA in the NHpC coupled with earlier activation of hn POMC and mRNA at the level 

of the anterior pituitary, this would further support our prior suggestion that the NHpC may be part 

of the traditional HPA axis in avian species (Nagarajan et al., 2017b). We therefore wished to 

follow up that work to determine if CRH neurons in the NHpC are truly the first responders to FD 

stress. Additionally, by determining gene expression of CRHR1 and CRHR2 in the NHpC and 

PVN may elucidate whether CRH neurons within the two structures are differentially regulated. 

Currently, the distribution of CRHR1 and CRHR2 in the avian brain is unknown. Careful 

dissection of NHpC and PVN followed by demonstrating gene expression of the two CRH 

receptors would be evidence that both receptor types occur within the two structures. Importantly, 

studies on rats demonstrated that brain derived neurotrophic factor (BDNF) activates CRH neurons 

(Givalois et al., 2004). Additionally, Manfredsson et al. (2009) showed that overexpression of a 

glial cell line-derived neurotrophic factor, GDNF, induced activation of phosphorylated 

extracellular signal-regulated kinase (p-ERK), an important signaling event in the activation of the 

CRH releasing neurons in the PVN and the subsequent enhancement of hypothalamo– pituitary–

adrenal axis. Previous work in our lab found that the avian NHpC contains a dense number of glial 

cells (Nagarajan et al., 2017a). Therefore, we hypothesize that CRH neurons in the NHpC are 

involved in the early activation of the neuroendocrine regulation of the stress response. Secondly, 

BDNF and/or GDNF may activate CRH neurons in the NHpC and/or PVN to initiate or sustain 

the avian stress response. To test our hypotheses, a study was designed to determine: 1) the timing 

of significant changes in plasma CORT levels, 2) gene expression patterns of CRH, CRHR1, 
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CRHR2, BDNF, GDNF, and GRs in the NHpC and PVN during the stress response, and, 3) gene 

expression of hnRNA and mRNA POMC within the anterior pituitary gland during stress.  

2. Materials and methods 

2.1.  Animals and sample collection 

Day old male Cobb 500 chicks (Gallus gallus) were obtained from a commercial hatchery and 

raised in brooder batteries starting with a temperature of 32 ℃. Temperature was reduced 2.5 ℃ 

weekly until reaching 27 ℃. Water and a standard broiler starter diet (22% protein and 

metabolizable energy of 3100 kcal/kg) were provided ad libitum. A constant photoperiod of 16 h 

light, 8 h dark with lights on at 6 AM was initiated when birds were 3 days of age. At 12 days of 

age, birds were weighed and randomly distributed to cages (3 birds/cage). A metabolic stressor, 

food deprivation (FD), was initiated when birds were 14 and 15 days of age (with unlimited access 

to water). Chicks were subjected to one of the following FD treatments, beginning at 8 AM: 0h 

(control), 1h, 2h, 3h, 4h, and 8h (n = 12 birds/group). Blood samples were first collected.  Each 

bird was cervically dislocated, and its brain and anterior pituitary were rapidly dissected. Brain 

samples were immediately frozen by immersion in two-methyl butane at −30 ℃ for 15 second 

followed by dry ice to maintain structural morphology of the brain for cryosectioning. All samples 

(brain and anterior pituitary) were stored at−80 ℃ until processed. Experimental procedures were 

approved by the University of Arkansas Institutional Animal Care and Use Committee. 

Plasma was separated from each blood sample by centrifugation at 3000 rpm for 20 min at 4 

℃ and stored at −20 ℃ until processed. Cross sections of brain samples were cut at 100 µm using 

a cryostat (Leica CM3050 S, Leica Microsystems, Frisco, TX) and regions targeted were punched 
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(brain punch, Palkovits, 1973) using a glass pipette including (1) the NHpC, 1.4 mm diameter 

including atlas plates A8.2–A7.6 and (2) the PVN, 1.4 mm diameter including atlas plates A8.0–

A6.4 (Kuenzel and Masson, 1988). All brain sections were dissected inside the cryostat chamber 

maintained at −15 ℃. The anterior commissure (AC) was used as a landmark and served as the 

ventral border for dissections of the NHpC (Kuenzel and Masson, 1988). To determine the 

accuracy of the boundaries of punched or dissected structures, immediately after each punch, the 

sections were examined under a dissecting microscope (Leica MZ 125).  Punches were collected 

in Trizol and stored at −20 ℃ until processed for RNA extraction. 

2. 2. RNA isolation and gene expression assay 

Total RNA was extracted from micro dissected brain tissue and anterior pituitaries (n=12 

birds/group) using Trizol-chloroform (Life Technologies) according to the protocol provided by 

the supplier. Total RNA was purified using a RNeasy mini kit (Qiagen), and RNA concentration 

was estimated using Synergy HT multi-mode micro plate reader (Biotek). Each experimental 

group ended up with 8-9 samples due to insufficient amount of RNA extracted from micro-

punches. First-strand cDNA was synthesized in 40 μl from total RNA (300ng of NHpC, 600ng of 

PVN and 800ng of anterior pituitary) for each sample treated with DNase I (Ambion, Austin, TX, 

USA) using Superscript® III reverse transcriptase (Invitrogen) according to the manufacturer’s 

protocol. In brief, RNA was incubated with 2 μl Oligo (DT) and 2 μl dNTPs at 65 ℃/ 5 min.  Then, 

the mixture was transferred to the ice for 2-3 min. After that, 20 μl cDNA synthesis mix (10X RT 

Buffer, 25 mM MgCl2, 0.1 M DTT, RNaseOUT, and superscript III RT) was added and incubated 

at 50 ℃/5min. Then, the reaction was terminated by 85 ℃/ 5min, and the RNA was removed by 

adding 2 μl RNase H and incubated at 37 ◦C/20 min. The best primer pair was chosen depending 
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on past studies in our lab or selected from several pairs based on PCR product quality and lengths 

after electrophoresis on a 3% agarose gel. Primer sets used in the assays were (name, accession #, 

primer set, product size): CRH mRNA, NM 001123031, forward 5′GCCCACAGCAA 

CAGGAAAC3′ and reverse 5′GTGATGGCTCTG GTGCTGA C3′, 98 bp; CRH-R1 mRNA, 

NM_20432, forward 5′CCCTGCCCCGAGTATT TCTA3′ and reverse 5′CTT GCTCCTCTTCTC 

CTCACTG3′; CRH-R2 mRNA, XM_015281046, forward  5′GCAGTCTTTTCAGGGTTTCTT 

TG3′ and reverse 5′CGGTGCCATCTTTTCCTG G3′, 87bp; BDNF mRNA, NM_001031616, 

forward 5′ GACATGGCAGCTTGGCTTAC3′ and reverse 5′GTTTTCCTCACTGGGCTGGA3′, 

167bp; GDNF mRNA, XM_015277532, forward 5′CACAGCCTTTGACG ATGACC3′ and 

reverse 5′CAGCGCACAAGAGTCAGACA3′, 107bp; GR mRNA, XM_015294033, forward 

5′GCCATCGTGAAAAGAGAAGG 3′ and reverse 5′TTTCAACCACATCGTGCAT3′, 94 

POMC hnRNA, NM_001031098, forward 5′ATTTTACGCTTCCATTTCGC3′ and reverse 

5′ATGGCTCATCACGTACTTGC3′, 141 bp; POMC mRNA, NM_001031098, forward 

5′GCCAGACCCCGCTGATG3′ and reverse 5′CTTGTAGGCGCTTTTGACGAT3′, 56 bp; 

GADPH mRNA, NM_204305, forward 5′CTTTGGCATTGTGGAGGGTC3′ and reverse 

5′ACGCTGGGATGATGTTCTGG3′, bp 128. Power SYBR green PCR Master Mix was mixed 

with sample products and primers and amplified using real-time quantitative PCR (Applied 

Biosystems 7500Real-Time PCR system). The assay was achieved in duplicate (30 μl) using the 

following conditions: 1 cycle at 95 ℃ for 10 m and amplified for 40 cycles at 95 ℃ for 30s, 60 ℃ 

for 1 m, and 72 ℃ for 30 s. The chicken glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

and beta actin (βA) were used as internal controls to normalize the data. We chose the internal 

control that was most consistent in showing no differences between control and treatment groups. 
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Relative gene expression levels of each specific gene were determined by the 2−ΔΔCt method 

(Schmittgen and Livak, 2008). 

2.3. Radioimmunoassay 

A radioimmunoassay procedure was used to measure plasma CORT concentration from each 

bird (Madison et al., 2008). A rabbit polyclonal primary antibody against CORT (Fitzgerald Inc., 

Concord, MA, USA) and secondary antibody (sheep anti-rabbit) were used in the assay. The 

CORT isotope, 125I, (MP Biomedicals Inc.) was used for the competitive binding assay. Of the 12 

birds sampled per group, 8-10 samples/group were assayed in duplicate due to insufficient plasma 

volume or excess hemolyzed red blood cells noted in plasma samples. Intra-assay coefficient of 

variation was 12.8%.  

2.4. Statistical analysis 

Statistical analyses of both gene expression data and hormone assay were performed using 

JMPR pro 13.0 (SAS Institute Inc., NC). A normal distribution was first tested, and thereafter one-

way analysis of variance (ANOVA) was used to evaluate significant treatment effects among six 

independent groups. Samples obtained from the structures, NHpC and PVN, were tested separately 

using ANOVA. An F value and degrees of freedom were provided for each structure (NHpC, PVN, 

and anterior pituitary) and plasma CORT. A mean separation test, Tukey’s Kramer HSD 

procedure, was used to find significant differences among all treatments (feed deprivation groups 

and control group and between each time-point with other time-points) in plasma CORT 

concentration and relative changes of gene expression for each gene within the NHpC, PVN, and 
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anterior pituitary. Data are presented as the mean ± SEM. A probability level of p < 0.05 was 

considered statistically significant. 

3. Results 

3.1. Food deprivation is stressful as indicated by increasing corticosterone concentrations 

Corticosterone (CORT) concentrations were measured from plasma samples of birds 

subjected to FD at 0h (control), 1h, 2h, 3h, 4h, and 8h. Food deprived birds showed an overall 

significant difference among treatment groups (F (5, 53) = 34.48, p < 0.0001). Although, a slight 

but non-significant increase in CORT following FD can be seen as early as 1h (p = 0.07), the first 

significant difference was observed at 2h (P=0.02) and remained significantly elevated at 3h (p < 

0.001), 4h (p < 0.0001), and 8h (p < 0.0001) (Fig. 1). Hence, FD is gradually stressful and takes 

2h for CORT to be significantly elevated. The major receptors of CRH were therefore examined 

along with neurotrophic factors and glucocorticoid receptors to determine possible differences in 

their expression patterns between the NHpC and PVN over the 8h period of the gradually 

increasing stressor, FD, due to continued utilization of past-consumed nutrients and/or body 

reserves. 

3.2. Gene expression patterns in the NHpC and PVN following Stress 

3.2.1. CRH, CRHR1, and CRHR2 

Gene expression levels of CRH, CRH-R1, and CRH-R2 were evaluated in the NHpC and PVN 

after FD for 1h, 2h, 3h, 4h, and 8h compared to controls (0h) (Fig.2). Both structures responded to 

the stressor with significant increases in relative CRH mRNA [F (5, 47) = 46.7, p < 0.0001 in the 

NHpC and F (5, 50) = 17.8, p < 0.0001 in the PVN]. Of interest, the patterns of CRH and CRHR1 
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in the NHpC were very different compared to the same two genes determined for the PVN. CRH 

expression in the NHpC was significantly upregulated after 1h of FD compared to its control (p < 

0.0001). Peak gene expression for the NHpC occurred at 2h and thereafter, expression levels 

declined being non-significant from controls at 8 h of FD (p = 0.98). In contrast, the PVN showed 

a different pattern with a gradual and significant increase in CRH gene expression that started at 

1h (p = 0.034) with a peak response at 8h (p < 0.0001) after FD. Similarly, expression levels of 

the CRHR1 in the NHpC and PVN were significantly expressed and completely different between 

two structures [F (5, 47) = 52.8, p < 0.001 in the NHpC; F (5, 50) = 44.8, p < 0.001 in the PVN]. 

In the NHpC, CRHR1 expression was significantly downregulated at 1h (p < 0.0001) and remained 

significantly lower than controls through 3h (p < 0.0001). At 4h there was no difference from 

controls (p = 0.99) while at 8h CRH-R1 was significantly upregulated compared to controls (p < 

0.0001). In marked contrast, CRHR1 expression in the PVN increased at 1h and 2h (p < 0.0001), 

peaked at 3h and remained significantly elevated through the remaining sampling periods (Fig. 

2B). CRHR2 expression in the NHpC and PVN showed a similar pattern of upregulation of gene 

expression [F (5, 47) = 63.02, p < 0.0001 in the NHpC; F (5, 50) = 62.7, p <0.0001 in the PVN] 

that increased from controls at 2h (p < 0.001) and remained significantly elevated in both structures 

through the remaining sampling periods (Fig. 2C). 

3.2.2. BDNF and GDNF 

Past studies in mammals showed that central administration of BDNF increased CRH 

expression in rats (Givalois et al., 2004) and GDNF overexpression induced activation of CRH 

neurons in the rodent PVN (Mannfredsson et al., 2009). We therefore examined the changes in 

neurotrophic factor mRNA over the 8h sampling period to determine if differential expression was 
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shown for BDNF or GDNF between the NHpC and the PVN. Indeed, striking differences were 

obtained in BDNF gene expression in the PVN throughout the entire 8h sampling period [F (5, 50) 

=33.6, p < 0.0001] following FD compared to controls (Fig. 3A). In contrast, no changes in gene 

expression for BDNF occurred in the NHpC during the same sampling periods [F (5, 47) = 2.6, p 

= 0.037]. Gene expression for GDNF was similar for both structures [F (5, 47) = 28.59, p<0.0001 

in the NHpC; F (5, 50) = 6.65, p = 0.0002 in the PVN]. Note, however, that no significant changes 

in gene expression occurred between controls (0h) through 4h of FD (p > 0.05). For both the NHpC 

and PVN, a significant increase in gene expression was only determined at the last sampling time 

of 8h (p < 0.0001) (Fig. 3B). 

3.2.3. Glucocorticoid receptors (GRs)  

Expression of glucocorticoid receptors (GRs) was determined in the NHpC and PVN, 

regarding their possible negative feedback role. Gene expression was significantly decreased in 

the NHpC for all time points up to the 4h sampling period [F (5, 47) = 39.35, p < 0.0001]. 

Thereafter at 8h, GR mRNA returned to control levels (p = 0.90), the same time point when CRH 

mRNA in the NHpC returned to basal, control levels. In contrast, expression for GRs was 

significantly downregulated throughout all sampling times for the PVN [F (5, 50) =26.28, p < 

0.0001] (Fig. 4). 

3.3. POMC expression in the anterior pituitary 

POMC expression was determined as an indirect measure for activation of corticotropes in the 

anterior pituitary gland and therefore whether an early rise in CRH mRNA from the NHpC may 

have influenced the initial gene expression of the HPA axis at the level of the pituitary gland. 
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Relative gene expression levels of hnRNA POMC and mRNA POMC in the anterior pituitary 

mirrored each other throughout the sampling periods with the hnRNA showing slightly more 

dynamic changes. Significant increases in both hnRNA and mRNA of food deprived birds 

compared with the control group occurred at 1h (p < 0.008 for hnRNA) and (p < 0.003 for mRNA) 

from 1- 4h sampling periods with a peak response occurring at 2h (p < 0.0001). Food deprived 

birds showed an overall significant effect among treatment groups [F (5, 53) = 25.62, p < 0.0001] 

for POMC mRNA and [F (5, 53) =31.65, p < 0.0001 for hnRNA] (Fig. 5). Both hnRNA and mRNA 

returned to control levels at 8h (p = 0.30 and p = 0.93, respectively).  

4. Discussion 

4.1. Early activation of CRH neurons in the NHpC  

The current study compared the expression of CRH and its main receptors, CRHR1 and 

CRHR2, which respond to stress located within two different structures, the NHpC and the PVN, 

in the chick brain. The former is an extra-hypothalamic structure located in the septum, while the 

latter is regarded as the major hypothalamic nucleus associated with stress. Our current data 

provide additional evidence suggesting participation of septal CRH neurons within the NHpC in 

the neuroendocrine regulation of stress in birds. Specifically, activation of NHpC CRH neurons 

appears to occur prior to CRH neurons in the hypothalamic PVN thereby initiating the stress 

response. Data show that activation of gene expression in the NHpC is more dynamic, evidenced 

by a 79% increase in CRH mRNA compared with a 44% increase in CRH mRNA in the PVN 

during the first 2h of FD (Table. 1; Fig. 2A). Similarly, POMC, A prepro-product that produces 

the pituitary stress hormone ACTH, showed significantly increased hn and mRNA POMC at 1h 

following FD with a peak increase at 2h FD (Fig.5) supporting previous evidence that the avian 
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NHpC appears to be the first responder following the onset of a stressor (Nagarajan et al., 2017b). 

Importantly, the pattern of hnPOMC and POMC mRNA in the anterior pituitary, regarding its peak 

gene expression and return to control levels at 8h (Fig. 5), matched the pattern of CRH mRNA in 

the NHpC (Fig. 2A). Significant increases in CRH mRNA by both the NHpC and PVN resulted in 

a significant increase in plasma CORT both at 1h and 2h after FD which was significantly different 

from controls at 2h (p < 0.05). Thereafter, continued increases in CORT appeared to be the result 

of sustained, enhanced levels of CRH mRNA produced mainly by the PVN (Fig. 1, Fig. 2A). 

4.2. CRHR1 in the hypothalamic PVN is positively upregulated while CRHR1 in the septal 

NHpC displays a negative feedback 

The distribution of the CRHR1 in the brain of avian species is currently unknown. In 

mammals, CRHR1 is regarded as the major receptor for the HPA axis in that it has been shown to 

occur in the anterior pituitary and present specifically in corticotropes (Bonfiglio et al., 2011). In 

the current study, we focused on examining expression of both the CRHR1 and CRHR2 in the 

septal structure, the NHpC, and compared the results to those obtained for the hypothalamic PVN 

following nutritional stress. Expression of CRHR1 was different between the two structures. 

CRHR1 mRNA levels in the NHpC were downregulated when CRH expression was high and 

upregulated (Fig. 2B) when CRH mRNA was low, suggesting that CRHR1 has a negative feedback 

relationship with CRH responsible for shutting down expression of CRH neurons within the 

NHpC. In contrast, CRHR1 expression in the PVN of the chick hypothalamus was upregulated or 

potentiated in response to feed deprivation stress over the 8h sampling period (Fig. 2B) showing a 

positive relationship between CRH and its receptor. This positive feedback was originally 

discovered in rodents (Imaki et al., 1996, 2001) suggesting that in mammals, CRH neurons in the 
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PVN play a role in sustaining the stress response due to continued increase in the expression of its 

major receptor. Our data also revealed another difference in gene expression between the NHpC 

and the PVN. Note that gene expression for the neurotrophic factor BDNF, determined throughout 

the 8h of sampling, showed no differences (p > 0.05) in samples taken from the NHpC (Fig. 3A). 

On the other hand, BDNF showed significantly elevated gene expression at 1h through 8h in 

samples containing the PVN (Fig. 3A). It is known that intraventricular administration of BDNF 

significantly increases CRH expression and activates the HPA axis in rats (Givalois et al., 2004). 

Utilizing targeted deletion of glucocorticoid receptors (GR) in the PVN of transgenic mice, 

resulted in an impairment of GR capability of reducing CRH expression followed by upregulation 

of hypothalamic levels of BDNF. The overall effect was a disinhibition of the HPA axis 

(Jeanneteau et al., 2012). Our gene expression data for PVN samples obtained from chicks 

subjected to stress showed similar gene expression responses including a sustained significant 

downregulation of GR from 1-8h (Fig. 4) coupled with a continuous, significant increase in CRH 

mRNA, BDNF mRNA and CRHR1 throughout the same time periods. Our data in chicks support 

the data in gene edited mice that specifically reduced the downregulation capability of their 

glucocorticoid receptors (Jeanneteau et al., 2012). Perhaps the molecular mechanism identified by 

Jeanneteau et al. (2012) involving compromising the ability of GR to inhibit expression of CRH 

by upregulation of hypothalamic levels of BDNF may be responsible for CRHR1 showing a 

positive feedback on CRH expression within the PVN in our results. Furthermore, we addressed 

the role of glial cell-derived neurotrophic factor (GDNF) in the chicken brain exposed to 

nutritional stress and found that expression of GDNF increased significantly only at the very last 

sampling time (8h) (Fig.3 B) in both brain structures. The role of GDNF in the NHpC and PVN is 

not clear based upon our current results. 
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4.3. CRHR2 in both the NHpC and PVN are upregulated following FD stress  

Data on the effects of stress- or glucocorticoids on the regulation of central (brain) expression 

of CRHR2 in avian species or mammals are limited. In this study, CRHR2 mRNA showed a 

significant upregulation in both neural structures, NHpC and PVN, beginning at 2h through the 

last sample taken at 8h of FD (Fig. 2C). Our observation that downregulation of CRHR1 and 

upregulation of CRHR2 in the NHpC and upregulation of CRHR1 and CRHR2 in the PVN after 

feed deprivation stress support the hypothesis that both CRHR1 and CRHR2 may be regulated 

differentially and structure specific by CRH (Brunson et al., 2002). Moreover, our data in the PVN 

suggest that upregulation of CRH mRNA is responsible for upregulation of CRHR2 mRNA in that 

structure. Other studies conducted in mammals support our observation in chicks. Korosi et al., 

(2006) reported in mice that elevation of CRH levels was associated with upregulation of CRHR2 

mRNA in the dorsal part of lateral septum. Also, Greetfeld et al. (2009) showed rapid and strong 

upregulation of CRHR2 mRNA in stress-relevant brain structures, one of them was paraventricular 

nucleus (PVN) in mice after restraint stress. Furthermore, not only an increased expression of 

CRHR2 mRNA may be caused by upregulation of CRH expression but also by other factors known 

to be involved in stress-related neuronal activities, such as glucocorticoids. It has been reported 

that corticosterone administration increases CRHR2 mRNA in rat brain (Makino et al., 1998). Past 

studies showed that targeted deletion of CRHR2 (CRHR2-/-) in mice resulted in early termination 

of ACTH release suggesting that CRHR2 is involved in maintaining HPA drive and shaping stress 

responses initiated by CRHR1 via sustaining ACTH elevation for extended time periods instead 

of rising and dropping quickly as shown by the mutant line of mice (Coste et al., 2000). 

Additionally, Coste et al. (2000) found that CORT levels at their last sampling period were 
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significantly higher in CRHR2-/- mice indicating that CRHR2 may be required for proper 

maintenance and recovery of the HPA after a stressor is imposed.  

In summary, food deprivation stress imposed on an avian species resulted in an early, rapid 

activation of CRH gene expression in the NHpC as well as a steady and sustained significant 

increase in CRH gene expression in the PVN. The rapid increase and decline in CRH mRNA 

within the NHpC suggest a role of the NHpC in initiating anterior pituitary POMC and production 

of the stress hormone, CORT. A sustained output of CORT appears to be due to the positive 

feedback of CRH mRNA and gene expression of its CRHR1 gene expression in the PVN. Data 

also showed that CRH and its receptors, CRHR1 and CRHR2, have a different and tissue specific 

relationship. In the NHpC, CRH has a negative feedback particularly with CRHR1. In marked 

contrast, the PVN displays a positive relationship with CRHR1, CRHR2, and BDNF. Upregulation 

of BDNF in the PVN over the sampling period could be a factor responsible for the upregulation 

of CRH and its receptors, CRHR1 and CRHR2. CRH neurons in the NHpC or PVN do not appear 

to be negatively impacted by GRs located within the two structures during the 8h FD stressor 

utilized in the study except at the last sampling point in the NHpC. 
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Fig. 1. Plasma corticosterone concentrations (ng/ml) in the control group (0h) and food deprivation 
(FD) groups (1h, 2h, 3h, 4h, and 8h) were measured by RIA (n=8-10 birds/group, duplicate). 
Significance level used in all analyses was p < 0.05 using ANOVA. Then, mean separation 
comparisons, Tukey-Kramer HSD test, was used to compare each time-point with control and with 
other time-points. Data are shown as mean ± SEM of CORT concentration. Different letters above 
each time point show significant differences compared to other treatment groups. 
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Fig. 2. Relative gene expression levels of A. corticotrophin releasing hormone (CRH) B. 
corticotrophin releasing hormone receptor 1 (CRHR1) and C. corticotrophin releasing hormone 
receptor 2 (CRHR2) in the nucleus of the hippocampal commissure (NHpC) and paraventricular 
nucleus (PVN) for control group (0h) and food deprivation groups (1h, 2h, 3h, 4h, and 8h) were 
measured using RT-qPCR. Relative mRNA levels were normalized with internal controls 
(GAPDH or β-actin) and set as fold changes. Data are expressed as mean ± SEM for each gene. 
Significant differences (p < 0.05) among treatment groups are shown by different lowercase letters 
above each white bar representing results of the NHpC. Different uppercase letters above each 
black bar show significantly different results among treatments determined for the PVN. 
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Fig. 3. Relative gene expression levels of A. Brain derived neurotropic factor (BDNF), and B. 
Glial cell-derived neurotropic factor (GDNF) in the nucleus of the hippocampal commissure 
(NHpC) and paraventricular nucleus (PVN) for the control group (0h) and food deprivation groups 
(1h, 2h, 3h, 4h, and 8h) were measured using RT-qPCR. Relative mRNA levels were quantified 
and normalized with internal controls (GAPDH or β-actin). Data were set as fold changes of 
relative expression levels using the 2-ΔΔCt method after normalization. Data were expressed as 
mean ± SEM for each gene. Significant differences (p < 0.05) among all groups are shown by 
different lowercase letters above the white bars representing the NHpC. Different uppercase letters 
above each black bar show significant differences among time points for the PVN. 
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Fig. 4.  Relative gene expression levels of the glucocorticoid receptor (GR) in the nucleus of the 
hippocampal commissure (NHpC) and paraventricular nucleus (PVN) for the control (0h) and food 
deprivation groups (1h, 2h, 3h, 4h, and 8h) were measured using RT-qPCR. Relative mRNA levels 
were quantified and normalized with internal controls (GAPDH or β-actin). Data were set as fold 
changes of relative expression levels using the 2-ΔΔCt method after normalization. Data were 
expressed as mean ± SEM for each gene. A level of significance difference (p < 0.05) among 
groups is shown by different lowercase letters above each white bar for the NHpC. Different 
uppercase letters above each black bar show differences among treatment groups for the PVN.  
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Fig. 5. Pro-opiomelanocortin (POMC) mRNA (black bars) and heteronuclear (hn) POMC (striped 
bars) expression levels in the anterior pituitary following food deprivation. Relative mRNA levels 
were quantified and normalized with internal controls (GAPDH or β-actin). Data were set as fold 
changes of relative expression levels using the 2-ΔΔCt method after normalization. Data for each 
gene was expressed as mean ± SEM. Different lowercase letters above striped bars represent 
hnRNA POMC while uppercase letters above black bars represent mRNA POMC (p < 0.05 among 
treatment groups). 
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Table 1. Fold changes, % increase/decrease of mRNA CRH, CRHR1 and CRHR2 in NHpC and 
PVN after feed deprivation for 1h and 2h. 

Gene NHpC1 PVN1 
Control 1h %2 2h %2 Control 1h %2 2h %2 

CRH 1.00 1.65 +65 1.79 +79 1.00 1.33 +33 1.44 +44 
CRHR1 1.00 0.35 -65 0.59 - 41 1.00 1.35 +35 1.54 +54 
CRHR2 1.00 0.90 -10 1.29 +29 1.00 1.17 +17 1.52 +52 

 
Abbreviations: 
1Nucleus of hippocampal commissure, Paraventricular nucleus 
2Percent increase (+) or decrease (-) from control.  
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Chapter 3 

Arginine vasotocin and its receptors in septo-hypothalamic brain structures and anterior 

pituitary sustain HPA axis functions during acute stress. 

This chapter is excerpted from “Kadhim, H.J., Kidd M. Jr., Kang, S. W., Kuenzel, W. J., 2020. 
Differential delayed responses of arginine vasotocin and its receptors in septo-hypothalamic brain 
structures and anterior pituitary that sustain hypothalamic–pituitary-adrenal (HPA) axis functions 
during acute stress”. Gen. Comp. Endocrinol. 286, 113302.” 

(Reproduced with permission from reference (Kadhim et al., 2020), copyright (2020) General and 
Comparative Endocrinology) 

 

Abstract  

Recently, we proposed that corticotropin releasing hormone (CRH) neurons in the nucleus of 

hippocampal commissure (NHpC), located in the septum, function as a part of the traditional 

hypothalamo-pituitary-adrenal (HPA) axis in avian species. CRH and its receptor, CRHR1, are 

regulated differently in the NHpC compared to the paraventricular nucleus (PVN) following feed 

deprivation (FD). Therefore, we followed up our work by examining arginine vasotocin (AVT), 

the other major ACTH secretagogue, and its receptors, V1aR and V1bR, gene expression during 

FD stress in the NHpC, PVN, and ventral mediobasal hypothalamus/median eminence 

(MBHv/ME). The objectives were to 1) identify AVT perikarya, fibers and its two major receptors, 

V1aR and V1bR, in the NHpC, PVN, and MBHv/ME using immunohistochemistry (IHC), 2) 

determine the effect of stress on AVT, V1aR and V1bR mRNA expression in the same three brain 

structures, NHpC, PVN, and MBHv/ME; and 3) ascertain the expression pattern of V1aR and 

V1bR mRNA in the anterior pituitary (APit) and measure plasma stress hormone, corticosterone 

(CORT), concentration following FD stress. Male chicks (Cobb 500), 14 days of age, were divided 
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into six groups (10 birds/treatment) and subjected to different times of FD stress: (Control, 1h, 2h, 

3h, 4h, and 8h). For each bird, blood, brain, and APit were sampled and frozen immediately. The 

NHpC, PVN, and MBHv/ME were micro-dissected for RT-PCR. Data were analyzed using one-

way ANOVA followed by Tukey Kramer HSD test with a significance level of p < 0.05.  Perikarya 

of AVT neurons were identified in the PVN but not in the NHpC nor MBHv/ME, and only V1aR-

immunoreactivity (ir) was observed in the three structures; however, gene expression data for AVT 

and its two receptors were obtained in all structures. Both AVT and V1aR mRNA are expressed 

and increased significantly in the PVN following FD stress (p < 0.01). For the first time, V1bR 

mRNA was documented in the avian brain and specifically upregulated in the NHpC and PVN (p 

< 0.01) following stress. Additionally, a delayed significant gene expression of AVT and its 

receptors in the PVN showed a positive feedback relationship responsible for maintaining CORT 

release. In contrast, a significant downregulation of AVT mRNA and upregulation of V1aR mRNA 

occurred in the NHpC (p < 0.01) during FD showing a negative feedback relationship between 

AVT and its receptors, V1aR and V1bR. Within the MBHv/ME and anterior pituitary, a gradual 

increase of AVT mRNA in PVN as well as MBHv/ME was associated with significant 

upregulation of V1bR (p < 0. 01) and downregulation of V1aR (p <0.01) in both MBHv/ME and 

anterior pituitary indicating that AVT regulates its receptors differentially to sustain CORT release 

and control overstimulation of the anterior pituitary during a stress response. 

Key words: nucleus of hippocampal commissure, paraventricular nucleus, V1aR, V1bR, feed 

deprivation, corticosterone. 
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1. Introduction 

The central neural components of the classical hypothalamic pituitary adrenal (HPA) axis 

regulating stress responses in avian species, similar to mammals, comprise two types of neurons, 

corticotropin releasing hormone (CRH) and arginine vasotocin (AVT), the latter regarded as a 

homolog of mammalian arginine vasopressin (AVP). Previous studies reported that AVT/AVP is 

considered a stress neural hormone because of its ability to induce CORT release when it is injected 

alone or in combination with CRH. Anterior pituitary adrenocorticotropic hormone (ACTH) and 

the ultimate stress hormone, corticosterone (birds, mice and rats) and cortisol (most mammalian 

species), increased significantly after central administration of CRH or AVT (Yayou et al., 2003, 

2007, 2008; Madison et al., 2008; Pryce et al., 2011). Studies in our laboratory also showed that 

immobilization stress in chickens caused a significant increase in plasma AVT concentration 

(Aman et al., 2016). Furthermore, utilizing immunohistochemistry, it was reported that AVT 

neurons in the avian PVN were activated in both acute and chronic restraint stress (Nagarajan et 

al., 2014). AVP/AVT regulation of the HPA axis is coordinated by two vasotocin receptors, V1aR 

and V1bR. Mapping studies of the avian V1aR in chicks showed a widespread distribution within 

corticotropes of the anterior pituitary and brain suggesting that the V1aR was involved in the stress 

response (Selvam et al., 2013, 2015). A second chicken vasotocin receptor, V1bR, was likewise 

shown to be associated with stress. The receptor plays an important role in mediating the 

stimulatory effects of AVT on ACTH secretion from corticotropes within anterior pituitary, where 

it regulates ACTH release, based upon the presence of the immunoreactive V1bR in corticotropes 

(Jurkevich et al., 2005, 2008) and heterodimerization with CRHR1 (Mikhailova et al., 2007) 

indicating a synergistic effect of AVT and CRH on plasma corticosterone release (Kuenzel et al., 

2010; Cornett et al., 2013). 
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Of the various stress models available for the study of the effects of stress, the feed deprivation 

(FD) model has been recently employed in our lab. Feed deprivation differs from other stressors 

in that it is gradual and becomes more intense over time as bodily demands for nutrients increase.  

This stressor was used to study the sequence of gene activation beginning with CRH expression in 

the nucleus of the hippocampal commissure (NHpC), a septal structure recently proposed as a 

functional part of the avian hypothalamic-pituitary-adrenal (HPA) axis (Nagarajan et al., 2017a, 

2017b), followed by CRH activation in the PVN, and a third delayed peak of arginine vasotocin 

(AVT) gene expression in the PVN (Nagarajan et al., 2017b). Our recent publication (Kadhim et 

al., 2019) utilized the same stressor, FD, and focused upon the relationship between CRH 

expression and its two receptors, corticotropin releasing hormone receptor 1 (CRHR1) and 

corticotropin releasing hormone receptor 2 (CRHR2), in the NHpC and PVN.  We showed that 

rapid activation of CRH neurons via increasing mRNA in the NHpC was associated with 

downregulation of its major receptor, CRHR1, demonstrating a negative feedback. Whereas 

increasing of CRH mRNA in the hypothalamic PVN resulted in upregulation of CRHR1, showing 

positive feedback. In other words, CRH regulation of its receptors in the brain appears to be 

structure specific.   

Hence, the study was designed to determine whether a similar relationship occurs with the 

other peptide system, AVT and its receptor, V1aR, known to be activated by stress in brain 

structures located within the avian neuroendocrine stress axis comprising the NHpC, PVN, and 

ventral mediobasal hypothalamus/median eminence (MBHv/ME). We hypothesize that the stress-

related secretagogue, AVT and its receptor, V1aR, within the PVN would likewise show a positive 

feedback. In contrast, we also hypothesized that gene expression of AVT within the NHpC would 

display a negative feedback with its major receptor, the V1aR. Additionally, by determining gene 
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expression of AVT’s major receptor, V1aR, in stress-related brain structures, NHpC and PVN, 

may help us understand the role of vasotocin in regulating the central HPA axis during stress. 

Curiously, a past, unpublished finding of ours was that V1bR mRNA was found in the avian brain 

(Kang, unpublished). However, the actual V1b receptor protein, utilizing immunohistochemistry 

was not detected in the chick brain (Jurkevich et al., 2005) nor the songbird brain (Leung et al., 

2011). Since the V1bR is the major neuroendocrine receptor involved with stress for the peptide, 

vasopressin, in the mammalian PVN, we hypothesized that the V1bR mRNA would also be found 

within the PVN and perhaps the NHpC of birds following FD stress. Three specific aims were 

designed to 1) identify AVT perikarya and its two major receptors, V1aR and V1bR, in the NHpC, 

PVN, and MBHv/ME using immunohistochemistry; 2) determine the effect of stress on AVT, 

V1aR and V1bR mRNA expression in the same three brain structures, NHpC, PVN, and 

MBHv/ME; and, 3) ascertain the effect of stress on V1aR and V1bR mRNA levels in the anterior 

pituitary. 

2. Material and methods 

2.1. Animals  

Male Cobb 500 chicks, one-day old, (Gallus gallus) were obtained from a commercial hatchery 

and provided with feed (a standard, broiler starter diet) and water ad libitum.  Birds were raised in 

brooder batteries for the first ten days. Chicks were exposed to continuous light for the first three 

days so that they could locate both the feed and water. Thereafter, birds were maintained under 

16h: 8h light/dark cycle (lights on at 6:00 AM) with controlled heat (32 ℃). Heat was reduced 

2.5oC weekly until reaching 27 ℃. On day 10, birds were weighted and distributed randomly to 

cages (3 birds/cage). At 14 days of age, experiments were initiated, and sampling occurred between 
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8:00 AM and 4:00 PM. All procedures utilized were approved by the University of Arkansas 

Institutional Animal Care and Use Committee. 

2.2. Sample collection for gene expression  

Food deprivation (FD), a stressor, was initiated on day 14, however, water was available ad 

libitium. Chicks were subjected to one of the following FD treatments, beginning at 8 AM: 0h 

(control), 1h, 2h, 3h, 4h, and 8h with each experimental group containing ten to twelve birds. Blood 

samples were first collected within 2 minutes for each bird from the brachial vein. Each bird was 

then cervically dislocated, and brain and anterior pituitary were rapidly dissected. Brain samples 

were immediately frozen by immersion in two-methyl butane at −30 ℃ for 15 seconds followed 

by dry ice to maintain structural morphology of the brain for cryosectioning. All samples (brain 

and anterior pituitary) were stored at−80 ℃ until processed.  Cross sections of brain samples were 

cut at 100 µm using a cryostat (Leica CM3050 S, Leica Microsystems, Frisco, TX) and the targeted 

regions were punched (brain punch, Palkovits, 1973) using a glass pipette including (1) the NHpC, 

1.4 mm diameter from atlas plates A8.2–A7.6 ; (2) the PVN, 1.4 mm diameter including atlas 

plates A8.0–A6.4; and (3) MBHv/ME, 1.4 mm diameter including atlas plates A5.8-A4.4  

(Kuenzel and Masson, 1988). All brain sections were dissected inside the cryostat chamber 

maintained at −15 oC. The anterior commissure (AC) was used as a landmark and served as the 

ventral border for dissections of the NHpC. Stereotaxic atlas plates were used to position the 

pipette for dissecting the NHpC, PVN and MBH/ME. Punches of the PVN and MBH/ME were 

initiated at atlas plate A8.0 and A5.8, respectively, using a chick stereotaxic atlas reference 

(Kuenzel and Masson, 1988). To determine the accuracy of the boundaries of punched or dissected 

structures, immediately after each punch, the sections were examined under a dissecting 
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microscope (Leica MZ 125). Punches were collected in Trizol and stored at −20 oC until processed 

for RNA extraction. 

2.3. Tissue preparation for immunohistochemistry 

Male chicks, 14 days old, were anesthetized with an intravenous (i.v.) injection of sodium 

pentobarbital (27 mg/kg). Each anesthetized bird was perfused through the left ventricle of the 

heart (100 ml) followed by 150 ml via the carotid arteries using ice cold heparinized 0.1M 

phosphate buffer (PB) containing 0.1% sodium nitrite, pH 7.4 and lithium heparin (71 mg/L PB, 

Sigma). Immediately, thereafter, birds were perfused via carotid arteries with 250 ml of freshly 

prepared and filtered ice-cold Zamboni’s fixative solution, containing 4% paraformaldehyde with 

15% picric acid in 0.1M PB at pH 7.4. Brains were blocked in a stereotaxic instrument (Kopf 

Instrument, Tujunga, CA) and post-fixed in the same fixative overnight at 4 °C.  Blocked brains 

were cryoprotected using 30% sucrose in 0.1M PB at 4 °C until they sank. Brains were wrapped 

in parafilm and aluminum foil and stored at -20 °C overnight, then they were transferred to the -

80 °C until sectioned. Blocked brains were taken out of -80 °C and equilibrated at -20 °C in a 

cryostat (LeicaCM3050S, Leica Microsystems, Austin, TX, USA) before embedded in Jung OTC 

medium (freezing media, Leica Microsystems, Wetzlar, Germany). Cross-sections were cut at 40 

μm using the cryostat.  NHpC, PVN, and MBHv/ME sections were collected in a 24-well plate 

containing 2 ml of 0.02M PBS (pH 7.4). Sections were free-floating in 0.02 M PBS (one per well 

in a 24-well plate) and treated with 0.6% of hydrogen peroxide to attenuate endogenous peroxide 

activity (for non-fluorescent sections) followed by 0.02M PBS containing 0.4% Triton X-100 for 

30 minutes for permeabilization. Sections were transferred to 5% normal goat serum (NGS) in 

0.02M PBS with 0.4% Triton-X-100 and 0.1 % sodium azide for 30 minutes to block nonspecific 
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binding sites, followed by incubation for at least 48h with polyclonal rabbit anti-AVT antibody, 

kindly provided by Dr. Gray (1:10000 dilution, Gray and Simon, 1983). Polyclonal antibodies 

made in rabbit, anti-V1aR antibody (RRID: AB_2336062, 1:2,000, Selvam et al., 2015) and anti-

V1bR antibody (1:2000 dilution, Custom made antibody, Jurkevich et al., 2005, 2008) in 0.02M 

PBS containing 1% NGS, 0.2% Triton X-100, and 0.1% sodium azide were also utilized.  Sections 

were incubated for 90 minutes with biotinylated goat anti-rabbit IgG (dilution 1:500 in 0.02M PBS 

with 0.2% Triton X-100; Vector Laboratories), followed by incubation with Vectastain Elite ABC 

peroxidase complex diluted 1:5 for 90m (Vector Laboratories). Sections of anterior pituitary were 

used as positive control as past data showed the avian V1bR is found on corticotropes of anterior 

pituitary (Jurkevich et al., 2005). The AVT, V1aR, and V1bR immunoreactive (-ir) cells were 

visualized with glucose oxidase-catalyzed diaminobenzidine–nickel complex. Sections were then 

rinsed in PBS, mounted onto clean glass slides, coverslipped with histomount (National Diagnostic 

Laboratories, Atlanta, GA), and visualized using a Zeiss Imager M2 microscope and digital camera 

(Axiocam 105 color). 

2.4. Hormone assay  

Blood samples were taken from the brachial vein of chicks in all treatment groups (n=10/ 

treatment). Plasma was obtained from the heparinized blood via centrifugation at 3000 rpm for 20 

min at 4 ℃. Hemolyzed samples (1-2 samples/ group) were excluded. Plasma was stored at - 20 

℃ until analysis of CORT concentrations by radioimmunoassay (Madison et al., 2008; Proudman 

and Opel, 1989). Each plasma sample was analyzed in duplicate. Briefly, plasma samples (200 μl) 

were first extracted by vortex for 30 min at room temperature with 2 ml of ethyl ether. Then, the 

water phase was separated in methanol/ dry ice bath. The liquid phase of each sample was 
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transferred to a new tube and dried at 38 ℃ water bath. Dried extracts were reconstituted with 400 

μl of assay buffer, vortexed for 5m, and equilibrated overnight at 4 ℃. Then, 100 μl of the primary 

antibody, polyclonal rabbit anti-CORT # 377, (kindly provided by Dr. Proudman, Schmeling and 

Nockels, 1978) and 100 μl of 125I corticosterone tracer purchased from MP Biomedicals Inc. 

(Orangeburg, NY, USA) were added to each sample and incubated for at least 24 h at 4 ℃. Sheep 

anti-rabbit antibody (200 μl) was used as secondary antibody (MP Biomedicals Inc., Orangeburg, 

NY, USA) and 6% of polyethylene glycol (500 μl) was used added and centrifuged to precipitate 

bound tracers. The supernatant of each sample and standard were discarded, the remaining liquid 

dried, and counts/tube were determined using a Perkin Elmer Wizard gamma-counter. Data were 

analyzed by one-way ANOVA followed by a Tukey’s Kramer HSD test and expressed as the mean 

± SEM of each group. In all studies, p < 0.05 was considered statistically significant. Intra 

experimental coefficient of variance was less than 13%.  

2.5. RNA extraction from brain structures and anterior pituitaries  

Total RNA was extracted from frozen micro-dissected brain tissue and anterior pituitaries 

(n=10 birds/group) using Trizol-chloroform (Life Technologies) according to the protocol 

provided by the supplier. Total RNA was purified using a RNeasy mini kit (Qiagen), and RNA 

concentration was estimated using Synergy HT multi-mode micro plate reader (BioTek). Samples 

(2-3 per each group) were excluded because of insufficient amount of RNA extracted from micro-

punches. Therefore, we finished with 7-8 birds per group. First-strand cDNA was synthesized in 

60 μl from total RNA (200ng of NHpC, 500ng of PVN, 300ng of ME and 600ng of anterior 

pituitary) for each sample treated with DNase I (Ambion, Austin, TX, USA) using Superscript® 

III reverse transcriptase (Invitrogen) according to the manufacturer’s protocol. In brief, RNA was 
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incubated with 3 μl Oligo (DT) and 3 μl dNTPs at 65 ℃/ 5m. After that, the mixture was incubated 

with 30 μl cDNA synthesis mix (10X RT Buffer, 25 mM MgCl2, 0.1 M DTT, RNaseOUT, and 

superscript III RT) at 50 ℃/ 60m, and the reaction was terminated by 85 ℃/ 5m. Finally, the RNA 

was removed by adding 3 μl RNase H and incubated at 37 ℃/20m. The best primer pair was 

chosen depending on past studies in our lab or selected from several pairs based on PCR product 

quality and lengths after electrophoresis on a 3% agarose gel. Primer sets used in the assays were 

(name, accession #, primer set, product size): AVT mRNA, NM_205185, forward 

5′CCTTCCCCGAACGCATAG 3′ and reverse 5′GGGCAGTTCTGG ATGTAGCAG3′, 117 bp; 

V1aR mRNA, NM_001110438, forward 5′GGTTGCAGTGTTTTCAGAGTCG3′ and reverse 

5′CAAGATCCGCACCGTCAA G3′; V1bR mRNA, NM_001110438, forward 5’GGTTGCAGT 

GTTTTCAGAGTCG3’ and reverse 5’CAAGATCCGCACCGTCAAG3’, 137bp, GAPDH 

mRNA, NM_204305, forward 5′CTTTGGCATTGTGGAGGGTC3′ and reverse 5′ACGCTGG 

GATGATGTTCTGG3′, bp 128; β- actin L_08165, forward, 5’CACAATGTACCCTGGCA 

TTG3’ and reverse 5’ACATCTGCT GGAAG GTGGAC3’ ,158 bp. Power SYBR green PCR 

Master Mix was mixed with cDNA and primers and amplified using real-time quantitative PCR 

(Applied Biosystems 7500 Real-Time PCR system). The assay was run in triplicate and achieved 

in 30 μl using the following conditions: 1 cycle at 95 ℃ for 10m and amplified for 40 cycles at 95 

℃ for 30s, 60 ℃ for 1m, and 72 ℃ for 30s. The chicken glyceraldehyde3-phosphate (GAPDH) 

or beta actin (βA) was used as internal controls to normalize the data. We chose the internal control 

that displayed the most consistent levels, less than one Ct value, across all treatments for a given 

structure. Relative gene expression levels of each specific gene were determined by the 2−ΔΔCt 

method (Schmittgen and Livak, 2008). Relative expression of control groups was set to 1.  

 



   
 

77 

2.6. Statistical analysis  

Statistical analyses were performed using JMPR pro 14.0 (SAS Institute Inc., NC).  A normal 

distribution was first tested and thereafter differences among six groups for the NHpC, PVN, 

MBHv/ME, anterior pituitary, and plasma CORT concentration were analyzed separately using 

one-way analysis of variance (ANOVA) to find the F- value and degrees of freedom for each 

structure. Comparison for all pairs using Tukey’s Kramer HSD test were used to evaluate plasma 

CORT concentration and relative changes of gene expression between control and FD groups.  

Data are presented as the mean ± SEM.  A probability level of p < 0.05 was considered statistically 

significant. 

3. Results  

3.1. AVT cell bodies and terminal fields in the NHpC, PVN, and MBHv/ME 

Immunohistochemical data revealed that no  AVT cell bodies were identified in the NHpC, but 

terminal fields of AVT fibers were confirmed ( Nagarajan et al., 2017a) innervating the core of the 

NHpC and appeared more dense in the dorsal region (Fig. 1A). The origin/s of the nerve terminal 

fields found in the NHpC is/are unknown. In contrast, the PVN showed a dense group of AVT cell 

bodies near midline with a stream of cell bodies that moved laterally from the third ventricle and 

a less dense thin group of AVT neurons occurred along the midline just parallel to the third 

ventricule (Fig.1B). Within the ventral MBHv/ME no AVT cell bodies were displayed, however, 

dense terminal fields of AVT fibers were seen in the external and internal zones of the ME  as 

shown in (Fig1.C) confirming past studies (Tennyson et al., 1986). In terms of V1aR and V1bR 

immunoreativity (ir) in brain structures located within the septohypothamic area, V1aR-ir was 
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identified in all three structures. Specifically, in the NHpC, a dense V1aR-ir was observed. and the 

majority of immunoreactivity was found in glial cells (Fig. 1D) confirming results from a previous 

study (Selvam et al. 2015). However, the V1aR-ir in the PVN was not as dense as in the NHpC. 

The PVN  V1aR-ir was associated with glia and denser along the edges of 3V and became less 

prominent on glial processes moving latterally (Fig. 1E). Similar to the NHpC, cells in the 

MBHv/ME, a circumventricular organ (CVO), showed V1aR-ir (Fig. 1F) on tanycytes as 

previously documented (Selvam et al., 2015). Regarding V1bR-ir in brain structures, similar to 

previous studies in our lab (Jurkevich et al., 2005), we were unable to detect any immunoreactive 

signal in neural tissue.  

3.2. Food deprivation induced elevated CORT concentrations in blood plasma 

The time course for plasma corticosterone (CORT) concentration of birds subjected to food 

deprivation at 0h (control), 1h, 2h, 3h, 4h, and 8h were measured by RIA (Fig. 2). Food deprived 

birds showed an overall significant difference among treatment groups (F (5, 53) = 34.48, p<0.01).  

A significant increase was first shown at 2h (p = 0.02) and steadily increased thereafter with a peak 

level at 4h (p < 0.01), which was maintained at 8h (p < 0.01), the last sampling time.  

3.3. Gene expression results within brain structures following stress  

3.3.1. AVT, V1aR, and V1bR mRNA expression in the NHpC and PVN 

The relative mRNA expression levels of AVT and its receptors, V1aR and V1bR, were 

assessed in the NHpC and PVN after feed deprivation for 1h, 2h, 3h, 4h, and 8h compared to 

unstressed controls (Fig. 3). AVT mRNA levels displayed different patterns of expression in the 

NHpC and PVN [F (5, 44) = 40.30, p < 0.01 in the NHpC and F (5, 44) = 20.10, p < 0.01 in the 
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PVN]. Specifically, the NHpC showed significant downregulation of AVT mRNA after 1h (p < 

0.01) which remained significantly lower throughout all sampling periods (p < 0.01) with the 

lowest AVT mRNA at 8h (Fig. 3A). In contrast, AVT mRNA expression in the PVN did not 

significantly increase until 3h, peaked at 4h, and persisted significantly higher at 8h of FD (p < 

0.01) (Fig. 3A).  

In terms of the two major receptors of AVT, V1aR and V1bR, in the NHpC, V1aR gene 

expression was significantly downregulated during 1h and 2h of FD. Thereafter, V1aR mRNA 

levels recovered at 3h and 4h; however, showed no significant differences compared with controls. 

Interestingly, a significant upregulation of V1aR mRNA in the NHpC was observed only at 8h of 

FD (Fig. 3B). In contrast to V1aR mRNA expression in the NHpC, V1bR mRNA expression in 

the NHpC was upregulated significantly at 2h through 4h with a peak response at 8h (Fig 3C). 

Overall V1aR mRNA and V1bR mRNA expression were significant in the NHpC [F (5, 44) = 

53.89, p < 0.01 and F (5, 44) = 31.30, p < 0.01), respectively]. The pattern of the V1aR and V1bR 

mRNA expression was striking in the PVN in that they matched gene expression of AVT. 

Specifically, no change in mRNA levels from controls occurred until after 2h of FD (Fig. 3B, 3C).  

Then, a significant increase in V1aR and V1bR mRNA was shown at 3h of FD and continued at 

4h and 8h (p< 0.01). Overall, V1aR mRNA and V1bR mRNA levels were significantly expressed 

in the PVN [F (5, 44) = 23.774, p<0.01 and F (5, 44) = 17.8, p < 0.01, respectively]. 

3.3.2. AVT, V1aR, and V1bR mRNA expression in the ventral mediobasal hypothalamus/ 

median eminence (MBHv/ME) 

Expression of AVT mRNA within neuronal terminal fields located in the MBHv/ME displayed 

a significant increase in gene expression after stress [F (5, 44) = 37.20, p< 0.01, Fig. 4A]. The 
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significant increase of AVT mRNA was observed at 2h (p < 0.01) of FD and continued to climb 

at 3h and 4h (p < 0.01) and peaked at 8h (p < 0.01). On the other hand, V1aR mRNA expression 

in the MBHv/ME was downregulated slightly but significantly among FD treatments compared to 

controls [F (5, 44) = 4.32, p < 0.01, Fig. 4B]. Specifically, the first significant downregulation of 

V1aR mRNA levels was demonstrated after 1h of FD and continued through 8h (p < 0.05). In 

contrast, the overall expression of V1bR mRNA was significant after FD [F (5, 44) = 30.64, p < 

0.01; Fig. 4B]. The significant upregulation of V1bR mRNA occurred at 1h (p < 0.05) of FD and 

gradually climbed to peak levels at 8h (p < 0.001) matching the expression pattern of AVT in the 

ME (Fig. 4A, 4B). 

3.4. Expression of V1aR and V1bR mRNA in the anterior pituitary 

The relative mRNA levels of V1aR and V1bR were examined in the anterior pituitary after FD 

at different time points (1h, 2h, 3h, 4h, and 8h) compared to unstressed (control) birds (Fig. 5). 

The two receptors, V1aR and V1bR, responded differently to the stressor, FD [ F (5, 54) = 37.94, 

p < 0.01 for V1aR and F (5, 54) = 46.94, p < 0.01 for the V1bR]. V1aR mRNA levels were 

downregulated significantly at 1h FD (p < 0.02) and remained lower than control groups through 

the last time point of sampling (p < 0.01). In contrast, the expression of V1bR mRNA exhibited a 

slight non-significant increase of mRNA transcripts at 1h of FD with the first significant 

upregulation at 2h FD (p < 0.05). Peak gene expression occurred at 3h (p < 0.01) and thereafter 

declined at 4h and 8h, however, remained significantly higher than controls (p < 0.01). 
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4. Discussion 

4.1. Anatomical localization of AVT perikarya, fibers, V1aR and V1bR in the NHpC, PVN, 

and MBHv/ME 

Similar to previous studies in our lab, the NHpC contained a terminal field of AVT fibers, 

mostly in its dorsal region and no evidence of AVT perikarya (Nagarajan et al., 2017a) while the 

PVN contained a large population of AVT perikarya (Fig. 1A, 1B). No AVT perikarya were 

observed in the MBHv, while dense neural fiber tracts were seen in the ME occupying the internal 

and external zones of that structure (Fig. 1C). With respect to the avian V1aR, the NHpC, PVN, 

and MBHv/ME displayed V1aR-ir. The receptor, V1aR, was shown to occur in glia (Fig. 1D, 1F), 

confirming the study of Selvam et al. (2015). Similarly, however in much less density, the PVN 

likewise showed glia originating from the third ventricle and their processes passed into the PVN 

(Fig. 1E). 

4.2. AVT gene expression in the PVN displays a delay in activation following FD stress and 

sustains the stress response initiated by CRH  

The study utilized a gradually increasing stress effect of food absence for 8h, as measured by 

the stress hormone CORT, mRNA expression of arginine vasotocin (AVT), and its two main 

receptors, V1aR and V1bR. Of Interest, gene expression data revealed that the neuroendocrine 

regulation of the stress response from FD in avian species comprises and activates not only CRH 

and its receptors but also AVT and its receptors. Both AVT mRNA expression and CORT data 

illustrate that AVT is involved in the late stage of this stressor (3h of FD and beyond) (Fig. 2, Fig. 

3A). Our previous work demonstrated that CRH neurons in the NHpC and PVN show a significant 
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gene expression increase within both structures, initially at 1h FD. CRH mRNA peaked at 2h FD 

in the NHpC and thereafter, CRH gene expression decreased significantly and returned to control 

levels at 8h FD (Kadhim et al., 2019). Interestingly, at the same time period when downregulation 

of CRH was documented in the NHpC (Kadhim et al., 2019), significant upregulation of AVT 

mRNA levels occurred in the PVN (Fig. 3). Data suggest that in response to FD stress, CRH 

mRNA is initially activated in the NHpC and PVN while no response from AVT neurons occurs.  

The markedly increased AVT mRNA in the PVN at 3h of FD suggests that the delayed AVT gene 

expression occurs to sustain the stress response to the persistent increasing FD stress to maintain 

the overall output of the HPA axis. Our findings support previous evidence obtained in both in 

vivo and in vitro studies showing that CRH gene expression precedes AVP/AVT gene expression 

in mammals and birds following stress (Herman et al., 1992; Kovacs and Sawchenko 1996, Ma, 

et al., 1997; Nagarajan et al., 2017a). Additionally, in the current study, a delayed but consistent 

rise in AVT mRNA expression pattern in the PVN is responsible for sustaining the elevated plateau 

of CORT suggesting that AVT is able to release CORT alone or potentiate CRH action during 

stress. Our AVT data obtained from gene expression in the PVN are supported by other studies in 

mammals and birds that found upregulation of AVT mRNA after stress (Yadawa and Chaturvedi, 

2016; Nagarajan et al., 2017a). 

4.3. Downregulation of AVT mRNA within vasotocin terminals located in the NHpC 

associated with delayed upregulation of V1aR and V1bR mRNA showing a negative 

feedback 

Immunohistochemical data provide further evidence that terminal fields of AVT fibers 

occurred in the NHpC and innervated the core of that structure (Fig.1A). However, the origin of 
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vasotocin treminls in that structure is unknown. Furthermore, mRNA expression in the NHpC 

revealed that AVT mRNA was expressed and responded to the stressor, FD. Unexpectedly, AVT 

gene expression in the NHpC was downregulated through all time points with lowest expression 

at the last sampling point (Fig.3A). The possible explanation for the downregulation of AVT 

mRNA levels within the NHpC is that the AVT mRNA might be transported from soma located 

in other brain areas projecting to the NHpC and translated locally. Our data in avian, in agreement 

with mammalian studies (Jung et al., 2013), showed that both growing and mature axons possess 

local mRNA. Specifically, vasopressin (VP) mRNA was detected in the VP terminal field of the 

neurohypophysis using RT-PCR, in situ hybridization and northern blot in mammals (Mohr et al., 

1991; Mohr and Richter, 1992; Trembleau et al., 1996). It would therefore be important to identify 

the sources of vasotocin inputs into the NHpC. In terms of receptors within the NHpC, similar to 

the PVN, V1aR-ir was observed in the glial cells (Fig.1E). The NHpC, at its posterier region, 

contains the subseptal organ, homologus to the mammalian subfornical organ, one of the 

recognized circumventricular organs (CVOs) (Selvam et al., 2015). It has been proposed that 

CVOs possess specialized glia that serve as chemosensors (Bolborea and Dale, 2013). Therefore, 

the NHpC possibly utilizes the V1aR to monitor AVT signals during the stress response. Gene 

expression data demonstrated that both receptors responded to the stressor and displayed an 

associated negative feedback with their ligand, AVT, in the NHpC (Fig.3B; 3C). Specifically, 

V1bR mRNA levels were upregulated significantly starting at 2h, peaked at the last sampling point 

(8h), while V1aR mRNA levels in the NHpC displayed a different pattern of expression initially 

showing a similar decreased expression over the first 2h of FD along with AVT mRNA, and 

thereafter displaying a negative feedback with AVT mRNA (Fig 3A, 3B). Indeed, it has been 

hypothesized in mammals that central V1aR expression via arginine vasopressin (AVP) signaling 
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contributes to the regulation or control of overstimulation of the HPA axis during stress responses 

(Gray et al, 2012). Therefore, the delayed upregulation of both receptors in that structure indicated 

that the NHpC is involved in regulating stress responses.  

4.4. AVT mRNA and its receptors, V1aR and V1bR mRNA, at the level of the PVN are 

regulated positively during stress responses  

Gene expression data in the PVN showed that AVT and its receptors are positively associated 

during FD stress (Fig. 3). Immunohistochemical data, however, revealed that only V1aR protein 

(Fig. 1D-1F), but not the V1bR protein was shown to be expressed in the chicken brain confirming 

a previous publication in our lab (Jurkevich et al., 2005). Specifically, V1aR-ir in the PVN 

occurred in glial cells located along the edges of third ventricle (3V) with extended processes 

identified in the PVN. Having an inconsistency between protein expression and gene expression 

is not unusual (Herkenham, 1987; Greenbaum et al., 2003; Vogel and Marcotte, 2012). It can be 

explained by the miss-match hypothesis (Herkenham, 1987), limitation of the antibody and its IHC 

sensitivity for quantification, abundance of the protein, and its stability in a particular tissue. Of 

interest, gene expression data showed that a significant upregulation of the V1aR and V1bR 

mRNA levels occurred within the hypothalamic PVN after 3h of FD showing a delay that matched 

the significant increase in AVT mRNA in that structure (Fig. 3B and 3C). Data strongly suggest a 

positive feedback regulation of AVT with its two receptors, the V1aR and V1bR in the PVN. 

Interestingly, our previous study examining CRH and its two receptors, the CRHR1 and CRHR2, 

in the PVN likewise showed increased gene expression of both receptors that matched increased 

CRH mRNA over a comparable FD period of 8h, documenting a positive feedback between CRH 

mRNA and its receptors, CRHR1 and CRHR2, in the PVN (Kadhim et al., 2019). Data suggest 
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that at the level of PVN, both sets of receptors are positively activated to enhance output of their 

neurosecretions due to the increasing intensity of the stressor FD. In fact, there is growing evidence 

that AVP/AVT dendritic or somatic release is increased into the extracellular fluid within brain 

structures and regulated its receptor in order to modulate stress behavior and response (Wotjak et 

al., 1994, 2002; Hurbin et al. 2002; Zelena et al., 2009; Gray et al., 2012). Therefore, in the current 

study, we believe that the role of vasotocin receptors in the PVN is to regulate activity of the HPA 

axis by preventing overstimulation, however, sustaining the stress response. 

4.5. Upregulation of relative AVT mRNA expression in the ventral mediobasal 

hypothalamus/ median eminence (MBHv/ME) during FD stress 

The ventral mediobasal hypothalamus/ median eminence (MBHv/ME) is a gateway between 

neural and peripheral endocrine systems. Hypothalamic neurosecretions are transported via the 

portal system to the adenohypophysis to regulate many physiological functions, such as stress. In 

the current experiments, similar to past studies, an absence of AVT perikarya was found in the 

MBHv/ME; however, extensive AVT terminals fields were detected in the ME (Fig.1C). In 

contrast, microdissecting of MBHv/ME for gene expression determination revealed that AVT 

mRNA was expressed and displayed changes in gene expression during stress compared to 

controls (Fig. 4A). Specifically, relative mRNA levels were significantly upregulated after 2h of 

FD and peaked at the last sampling period. Data suggest that some mRNA, synthesized in AVT 

neurons located in the PVN in response to stress, is transported to nerve terminals to be translated 

locally. Strong evidence demonstrated that proteins are synthesized on site by local mRNA 

translation is the presence of ribosomes identified in axon terminals using electron microscopy 

(Kim and Jung, 2015; Shigeoka, et al, 2016; Holt, et al., 2019). Studies addressing the role of local 
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protein synthesis indicated that local translation is required for functional and structural synaptic 

plasticity in vivo (Holt, et al., 2019).  

4.6. At the level of  the MBHv/ME and anterior pituitary, downregulation of V1aR mRNA 

and upregulation of V1bR mRNA appear to function to regulate the stress response and 

CORT release 

At the MBHv/ME, similar to the NHpC, V1aR-ir was found in glia. In the MBHv/ME 

specialized glial cells called tanycytes occur at the base of and adjacent to the third ventricle (3V, 

Fig.1F). Tanycytes in that location originate in the 3V and usually consist of a single process that 

passes laterally and ventrally through brain tissue toward the ME and portal blood vessels. Directly 

beneath the ME is the anterior pituitary, where both the V1aR and V1bR were identified on 

corticotropes and are involved in the avian stress response (Jurkevich et al., 2005, 2008; Selvam 

et al., 2013). Importantly, in both the MBHv/ME and anterior pituitary, V1aR mRNA expression 

decreased, while gene expression of V1bR increased during FD stress (Fig. 4B and 5). As shown 

in Fig. 4A, a gradual but steady increase in AVT mRNA occurred throughout the 8h FD period. 

The increase was associated with upregulation of V1bR mRNA in the MBHv/ME and anterior 

pituitary and concurrently downregulation of V1aR apparently to prevent enhanced CORT release. 

A suggested means by which increased AVT secretion effects during the avian stress response 

could be attenuated would be by endocytosis of V1a receptors on corticotrope membranes 

(Jurkevich et al., 2005, 2008; Selvam et al., 2013). Consistent with that, mammalian studies 

reported that upregulation of AVP mRNA in the PVN is responsible for upregulation of V1bR in 

the anterior pituitary showing a positive relationship between AVP and its receptor, V1bR, and a 

targeted deletion of V1bR was associated with attenuation of the stress response and production 
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of ACTH (Aguilera et al., 2008). Similarly, in birds, at the level of the anterior pituitary, not only 

was upregulation of V1bR mRNA and downregulation of the V1aR revealed after FD stress, 

previous data utilizing a different stressor resulted in the same response of the two receptors (Kang 

and Kuenzel, 2014; Selvam et al., 2013) suggesting a generalized response in mammals and birds 

to regulate the stress response. 

5. Conclusion  

An anatomical study of three brain areas showed that AVT cell bodies are found in the PVN, 

not in the NHpC nor MBHv/ME. A major receptor of AVT, the V1aR, was identified by 

immunohistochemistry in all three brain structures and located primarily in glia. Gene expression 

data revealed that AVT, V1aR and V1bR mRNA are expressed in all three brain structures and 

responded differentially to FD stress. Results showed that AVT, V1aR and V1bR are involved in 

the late phase of FD stress after 3h. A negative feedback in gene expression between AVT and its 

receptors, V1bR and V1aR, was found within the NHpC during FD stress. In contrast, AVT and 

its two receptors showed a positive feedback at the level of the PVN during FD stress. At central 

neuroendocrine level of the MBHv/ME and anterior pituitary response, upregulation of relative 

AVT mRNA expression with positive expression of V1bR and decreased V1aR mRNA occurred 

in both anatomical levels (MBHv/ME and APit). Overall, the response of AVT and its two major 

receptors in the current model of the avian neuroendocrine stress pathway suggest that the balance 

in function of the two receptors preserve and regulate ACTH secretion from the anterior pituitary 

and ultimately plasma CORT to prevent overstimulation of the HPA axis during FD stress 

responses. 
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Fig. 1. Chick brain sections show arginine vasotocin (AVT) and V1aR immunoreactive neurons 
or glia in the nucleus of the hippocampal commissure (NHpC), paraventricular nucleus (PVN), 
and ventral mediobasal hypothalamus/median eminence (MBHv/ME) (A) Neural terminal fields 
in the NHpC (B) AVT cell bodies in the PVN (C) AVT nerve terminal fields localized in the ME 
showing internal and external zones. D) V1aR-ir in the NHpC, E) V1aR-ir in the PVN, and, F) 
V1aR-ir in the MBHv/ME occurred in glia.  
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Fig.  2. Plasma corticosterone concentrations (ng/ml) following food deprivation (FD) for 1h, 2h, 
3h, 4h, and 8h compared to controls (0h) were measured by RIA (n= 8-10 birds/group). 
Significance level used in all analyses was p < 0.05 using ANOVA followed by comparisons made 
among all pairs using the Tukey-Kramer HSD test.  Data shown as mean ± SEM.  Different letters 
above each time point show significant differences among the treatment groups.  
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Fig. 3. Relative gene expression levels of A. arginine vasotocin (AVT) B. vasotocin 1a receptor 
(V1aR) and C. vasotocin 1b receptor (V1bR) in the nucleus of the hippocampal commissure 
(NHpC) and paraventricular nucleus (PVN) following food deprivation for 1h, 2h, 3h, 4h, and 8h 
using RT-qPCR. Controls were set to 1, and data were expressed as mean ± SEM for each gene. 
Significance level set in all analyses was p < 0.05 using ANOVA and treatment comparisons for 
all pairs using Tukey-Kramer HSD test between control and treatment groups. Different letters 
above each bar within a set representing an anatomical structure (capital and lower-case letters) 
show significant (p<0.05) differences among treatment groups within that set. 



   
 

91 

 

Fig. 4. Relative gene expression levels of, A. arginine vasotocin (AVT).  Time points connected 
with the same letter are not different (p > 0.05), B. Vasotocin 1a receptor (V1aR) and vasotocin 
1b receptor (V1bR) in the ventral mediobasal hypothalamus/median eminence (MBHv/ME) 
following food deprivation for 1h, 2h, 3h, 4h, 8h and control (0h) using RT-qPCR. Controls were 
set to 1, and data were expressed as mean ± SEM for each gene.  Significance level used in all 
analyses was p < 0.05 using ANOVA and comparisons for all pairs using Tukey-Kramer HSD test.  
Different letters above each bar within a set for an anatomical structure represent significant (p < 
0.05) differences among those treatment groups. 
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Fig. 5. V1aR and V1bR mRNA expression levels in the anterior pituitary following food 
deprivation (FD). Data were analyzed using one-way ANOVA and comparisons for all pairs used 
the Tukey-Kramer HSD test. Relative mRNA levels were quantified, and data were set as relative 
expression levels using the 2−ΔΔCt method with GAPDH and β-actin serving as internal controls.  
Controls were set to 1, and data were expressed as mean ± SEM for each gene.  Different letters 
above each bar for each receptor represent significant differences among treatment groups (p < 
0.05).  
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Chapter 4 

Activation of corticotropin releasing hormone system in the nucleus of hippocampal 

commissure during immobilization stress.  

This chapter is excerpted from “Kadhim, H. J., Kang S. W., Kuenzel, W. J., 2020. Brain derived 
neurotrophic factor and extra-hypothalamic corticotropin releasing hormone neurons in the 
nucleus of hippocampal commissure play functional roles in the avian neuroendocrine regulation 
of stress.” Submitted to stress Journal on 7/31/2020 

 

Abstract  

Corticotropin releasing hormone (CRH) neurons located in the nucleus of hippocampal 

commissure (NHpC) have been proposed to be involved in the avian neuroendocrine regulation of 

stress and appear to respond prior to CRH neurons in the hypothalamic paraventricular nucleus 

(PVN). The response, however, has been documented solely from applying one type of stressor, 

food deprivation (FD). We therefore wanted to test whether the response of CRH neurons in the 

NHpC was stressor specific. Additionally, since the response of the NHpC was rapid and short-

lived, was it regulated differentially from the PVN? We therefore applied a psychogenic stressor, 

immobilization, to determine gene expression of CRH and a panel of stress-related genes in the 

NHpC, PVN, and anterior pituitary (APit) and assayed the final stress product, plasma 

corticosterone (CORT). Furthermore, brain derived neurotrophic factor (BDNF) and 

glucocorticoid receptor (GR) were examined regarding their positive/negative roles in the 

regulation of CRH neurons. Data showed that rapid activation of CRH mRNA in the NHpC 

occurred and preceded a slower gene activation in the PVN resulting in subsequent upregulation 

of proopiomelanocortin (POMC) transcripts in the APit associated with significant increases in 
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plasma CORT concentrations. Results suggested BDNF’s role in negative feedback observed 

between CRH and CRHR1 in the NHpC and positive feedback between CRH and CRHR1 as well 

as AVT and V1aR in the PVN. The GR mRNA expression and protein levels revealed that the 

CRH neurons in the NHpC are regulated by CORT before those in the PVN. In the APit, V1bR 

activation appeared responsible for sustaining POMC gene expression for continued CORT release 

when stress persists. Overall, the data suggest that the NHpC functions as part of the traditional 

HPA axis of birds and perhaps a comparable extra-hypothalamic structure may also be present in 

mammals and other vertebrates.  

Keywords: - immobilization stress, corticotropin releasing hormone receptors, paraventricular 

nucleus, glucocorticoid receptors, V1b receptor.  

1. Introduction 

The hypothalamic- pituitary- adrenocortical (HPA) axis is the traditional regulator of the stress 

response in vertebrates. Parvocellular neurons located mainly within the hypothalamic 

paraventricular nucleus (PVN) produce corticotropin releasing hormone (CRH) and arginine 

vasopressin (AVP) in mammals and arginine vasotocin (AVT) in avian species (Whitnall et al., 

1985; Kuenzel and Jurkevich, 2010). Both neuropeptides have a set of two G-protein coupled 

receptors, CRHR1 and CRHR2 for CRH and V1aR and V1bR for AVP/AVT. Activation of 

parvocellular neurons by stress increases synthesis of CRH and AVT and release of each 

neuropeptide from the external zone of the median eminence. Once transported to the anterior 

pituitary (APit) via hypophyseal portal vessels, they bind to their receptors located on corticotropes 

and stimulate proopiomelanocortin (POMC) that is further processed to the adrenocorticotropic 

hormone (ACTH) (Bonfiglio et al., 2011; Blas, 2015). When ACTH reaches adrenal glands via 
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blood circulation, it activates the interrenal tissue to increase synthesis and release of the stress 

hormone, corticosterone (CORT) in birds (Romero, 2004, Carsia, 2015; Herman et al., 2016;). 

Stress hormone binds to glucocorticoid receptors (GRs) located on different tissues to provide 

energy for immediate use (McEwen, 2007) as well as induces a negative feedback that regulates 

HPA axis activity (Lovejoy and Balment, 1999; De Kloet et al., 2005; Vandenborne et al., 2005; 

Chrousos, 2009; Keller-Wood, 2015).  

Immunohistochemical studies have reported activation of c-fos gene (a neuronal activation 

marker) in the nucleus of the hippocampal commissure (NHpC), previously called the nucleus of 

the pallial commissure, located in the septum just above the anterior commissure (AC), following 

a variety of stressors suggesting that the NHpC could be involved in the regulation of the stress 

response ( Xie et al., 2010; Nagarajan et al., 2014). Furthermore, we identified CRH neurons were 

identified in the NHpC for the first time colchicine injection (Nagarajan et al., 2014). The CRH 

neurons in the NHpC are different from those in the PVN, they are larger and multipolar neurons 

compared to CRH cells in the PVN suggesting these neurons may have various roles (Nagarajan 

et al., 2017a). To date, a structure homologous to the avian NHpC has not been identified in 

mammals or other vertebrate species.   

Utilizing food deprivation (FD)  stress enabled us to study the sequence of gene expression of 

CRH in the NHpC and showed that CRH gene expression in the NHpC activated rapidly and 

appeared to precede those in the PVN indicating that CRH neurons in the NHpC are early 

responders that initiate the stress response to that specific stressor, FD ( Nagarajan et al., 2017b; 

Kadhim et al., 2019). Our recent publication utilizing FD showed that CRH gene expression peaks 

early in the NHpC and returned to control levels. In contrast, a steady increase in gene expression 
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of CRH and its major receptor, CRHR1, occurred in the PVN suggesting a positive feedback 

(Kadhim et al., 2019). A similar, positive relationship was found with the neuropeptide, AVT and 

its receptors in the PVN after FD stress, but not in the NHpC (Kadhim et al., 2020). It has been 

found that neurotrophic factors, specifically brain derived neurotrophic factor (BDNF), could be 

involved in the regulation of the stress response (Bath et al., 2013) and CRH neurons (Jeanneteau 

et al., 2012) because the BDNF gene promotor site has many binding sites for the cyclic adenosine 

monophosphate (cAMP) response element protein (CREB) (Blendy, 2006; Tardito et al., 2006).  

Research addressing the sequence of activation of CRH and AVT neurons and their receptors 

within the NHpC and PVN has to date only involved a single stressor, FD. We therefore utilized 

a totally different stressor, immobilization, to determine whether the neuroendocrine stress 

response sequence follows the same pattern and is initiated by activation of the NHpC. Our 

previous stressor, FD, affects the energetic state of an animal and intensifies with time. In contrast, 

immobilization, a neurogenic stressor, seems to have a more profound effect initially. However, 

an animal appears to adapt to it over time if water and/or food are available. Applying this stressor 

over a short time span should not impact significantly its energetic state and would be a valid test 

to determine whether a similar pattern of stress genes occurs providing further evidence that the 

NHpC functions within the avian HPA axis and is not stressor specific. Our hypothesis is that CRH 

neurons in the NHpC would be the first responder to immobilization stress followed by sequence 

of stress related genes and receptors that would match the pattern previously determined for FD 

stress in the same avian species. If the hypothesis is proven to occur, this would support the 

inclusion of the NHpC in the avian traditional HPA axis. Additionally, we focused on BDNF to 

determine its possible role in regulating expression within the NHpC and PVN. 
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2. Material and methods  

2.1. Animals  

Male Cobb 500 chicks (Gallus gallus) one day old, were raised in brooder batteries for their 

first ten days and provided food (a standard, broiler starter diet) and water ad libitum.  Continuous 

light was used for the first 3 days enabling birds to find both food and water. Thereafter, a light 

program of 16h of light (L): 8h of dark (D) was initiated with lights on at 6:00 AM. Heat provided 

to the chicks was initially 32 ℃ that was reduced 2.5 ℃ weekly until reaching 24 ℃.  On day 10, 

after weighing them, birds were distributed randomly to cages (3 birds/cage). At 5 weeks of age, 

experiments were initiated, and sampling occurred between 8:00 AM and 4:00 PM. All procedures 

utilized (i. e. immobilization, housing conditions, handling, and sampling) were approved by the 

University of Arkansas Institutional Animal Care and Use Committee. 

2.2. Antibody production against chicken CRH receptor 1 

Polyclonal antibodies to chicken CRHR1 were produced in guinea pigs by a commercial 

company (21st Century Biochemicals Inc., Marlboro, MA, USA). Briefly, a cohort of guinea pigs 

(n = 4) were injected with synthetic peptides comprising 13 or 14 amino acids from the 1st 

extracellular domain of chicken CRHR1 (residues 180-193; TMNPEVHESNVVWC). Two 

versions of the same peptide sequence were used, one had a cysteine added to the N-terminus, and 

the other peptide had the cysteine added to the C-terminus, enabling conjugation to KLH (keyhole 

limpet hemocyanin) via both the N- and C-termini. The amino acid sequence of the protein was 

probed against the nonredundant GenBank protein database using NCBI-BLAST software (NCBI 

reference sequence: NP_989652.1). The chosen sequence was specific to the chicken CRHR1 (See 
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Appendix A. Supplementary data). To enhance the immune system, the peptide was conjugated to 

a carrier protein, keyhole limpet hemocyanin. The peptides were mixed and injected with complete 

Freund’s adjuvant at days 0, with boosts at 14, 28, 42 and 63 using incomplete Freund’s adjuvant.  

Production bleeds were taken at days 49, 70 and 77. The final bleed from one of the guinea pigs 

was affinity purified. The peptide sequence was confirmed using tandem mass spectrophotometry 

(MS). 

2.3. Stress procedure and sample collection for gene expression  

A stressor, immobilization, was initiated on week 5, with food and water provided ad libitium.  

Chicks were randomly assigned to one of six treatment groups (n = 12/treatment): control (no 

stress), 15 minutes (m), 30m, 60m, 90m, and 120m. Birds were secured in a harness where they 

could not move their wings nor stand, however, did have access to water and food during the period 

of restraint. Directly following restraint, blood samples were taken from the brachial vein and 

collected in heparinized tubes for each bird. After cervical dislocation, brain and APit were rapidly 

dissected. To maintain structural morphology of the brain for cryosectioning, brain samples were 

immediately immersed in two-methyl butane at −30 ℃ for 15s, placed in dry ice and stored at −80 

℃ until processed. Coronal sections of brain samples were cut at 100 µm using a cryostat (Leica 

CM3050 S, Leica Microsystems, Frisco, TX) and the targeted structures were punched (brain 

punch, Palkovits, 1973) using a glass pipette including (1) the NHpC, (previously labeled nCPa), 

1.4 mm diameter from atlas plates A8.2–A7.6; (2) the PVN, 1.4 mm diameter including atlas plates 

A8.0–A6.4 (Kuenzel and Masson, 1988). For the NHpC dissection, the anterior commissure (AC) 

was used as a landmark immediately ventral to the NHpC. NHpC and PVN were punched, 
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transferred to separate vials containing Trizol, and stored at −20 ℃ until processed for RNA 

extraction. 

2.4. Radioimmunoassay (RIA) 

Blood samples were taken from the brachial vein of chicks in all treatment groups (n=12/ 

treatment). Plasma was obtained from heparinized blood via centrifugation at 3000 rpm for 20m 

at 4 ℃. Hemolyzed samples (1-2 samples/ group) were excluded.  Plasma was stored at - 20 ℃ 

until analysis of CORT concentrations by radioimmunoassay (Proudman and Opel, 1989; Madison 

et al., 2008; Kadhim et al., 2020). Briefly, 100 μl of the primary antibody, polyclonal rabbit anti-

CORT # 377, (kindly provided by from Dr. Proudman) and 100 μl of 125I corticosterone tracer 

purchased from MP Biomedicals Inc. (Orangeburg, NY, USA) were added to each sample and 

incubated for at least 24h at 4 ℃. Sheep anti-rabbit antibody (200 μl) was used as the secondary 

antibody (MP Biomedicals Inc., Orangeburg, NY, USA). Counts/tube were determined using a 

Perkin Elmer Wizard gamma-counter. Samples were assayed in duplicate. Data were analyzed by 

one-way ANOVA followed by a Tukey’s Kramer HSD test and expressed as the mean ± SEM of 

each group. In all studies, p < 0.05 was considered statistically significant. Intra experimental 

coefficient of variance was less than 11 %. 

2.5. RNA extraction from collected samples 

RNA extraction from frozen micro-dissected brain tissue and anterior pituitaries (n=12 

birds/group) were described previously (Kadhim et al., 2019; Kadhim et al., 2020). Briefly, Trizol-

chloroform (Life Technologies) according to the protocol provided by the supplier was used to 

extract total RNA followed by a treatment to eliminate contamination with genomic DNA using 
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RNase-free DNase I (Ambion, Austin, TX, USA). Purification was then conducted using a RNeasy 

mini kit (Qiagen), and Synergy HT multi-mode micro plate reader (BioTek) was used to estimate 

RNA concentration.  Samples with insufficient amount RNA (1-3 samples) were excluded. First-

strand cDNA was synthesized in 60 μl from total RNA (400 ng of NHpC, 700 ng of PVN, and 600 

ng of APit) using Superscript® III reverse transcriptase (Invitrogen) according to the 

manufacturer’s protocol. The best primer pair was chosen depending on past studies in our lab or 

selected from several pairs based on PCR product quality and lengths after electrophoresis on a 

3% agarose gel ( Kang and Kuenzel; 2014; Kadhim et al., 2019; Kadhim et al., 2020). The assay 

was run in triplicate and achieved in 30 μl using the following conditions: 1 cycle at 95 ℃ for 10m 

and amplified for 40 cycles at 95 ℃ for 30s, 60 ℃ for 1m, and 72 ℃ for 30s. The chicken 

glyceraldehyde-3-phosphate (GAPDH) or beta actin (βA) were used as internal controls to 

normalize the mRNA levels. Relative gene expression levels of each specific gene were 

determined by the 2−ΔΔCt method (Schmittgen and Livak 2008). Relative expression of control 

groups was set to 1. 

2.6. Western blot experiment  

Protein content analysis was conducted for APit glands and brains collected from birds after 

being immobilized for different time lengths. Brain samples were immediately frozen by 

immersion in two-methyl butane at −30 ℃ for 15s. Both organs were stored at −80 ℃ until 

processed. Brains were sectioned in a cryostat (−15 ℃). NHpC and PVN were collected in separate 

1.5 test tubes. Total proteins were extracted using RIPA Lysis and extraction Buffer (Thermo 

Fisher scientific) mixed with protease and phosphatase inhibitor cocktails (Thermo Fisher 

scientific) in accordance with the manufacturer’s instructions. Tissues were homogenized with the 
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buffer using glass beads and centrifuged at 14000 rpm/ 20m at 4 ℃. The supernatant was taken, 

and a Bradford protein assay (Bio-Rad protein assay kit, Hercules, CA, USA) was utilized to 

determine the concentration of the protein using Synergy HT multimode microplate reader 

(BioTek, Winooski, VT). Bovine serum albumin (BSA) was used as a standard (Bio-Rad, 

Hercules, CA, USA). Total protein from the NHpC (40 µg), PVN (60 µg) and anterior pituitaries 

(60 µg) were diluted in loading LDs (Lithium dodecyl sulfate) sample buffer containing a reducing 

agent (Thermo Fisher scientific). Samples were heated for 10m at 70 ℃ before loaded onto a 

NuPAGE™ 4-12% Bis-Tris Protein gel (Thermo Fisher scientific) and separated at 150 V until 

reaching the ends of the gel (Bio-Rad). Proteins were transferred to an Amersham hybond P 0.2 

PVDF membrane (GE healthcare life sciences) by applying a current of 30 V for 75m (Bio-Rad) 

in Tris-Glycine HCl buffer (pH 7.6). Nonspecific binding was blocked by incubating the 

membrane for 2h/ RT in 5% nonfat milk (Sigma, St Louis, MO, USA). The membrane was then 

incubated overnight with primary antibody guinea pig anti-chicken CRHR1 (polyclonal, dilution 

1: 5000) and mouse anti-GR (polyclonal, 1: 200 dilution, sc-393232, Santa Cruz Biotechnology, 

Inc.). After washing the membrane twice in Tris-buffered saline with 0.1% Tween-20 (TBS-T), 

the membrane was incubated with horseradish peroxidase-conjugated anti-mouse, or anti-guinea-

pig immunoglobulin IgG (1:5000) for 1h at room temperature (Cell signaling technology, USA).  

The membrane was rinsed twice with TBS-T. An Enhanced Chemiluminescence Kit (Immun-

star™ WesternC™ Kit, Bio-Rad, USA) was used to visualize the signal and captured by 

FluorChem M MultiFluor system (protein sample). Rabbit anti-GAPDH (dilution 1:5000, NB300-

327, Novus Biologicals) was used as the reference protein. Image acquisition and analysis were 

performed by alpha view software (Version 3.4.0, 1993-2011, Protein Simple, Santa Clara, CA).  
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2.7. Statistical analysis  

JMPR pro 14.0 (SAS Institute Inc., NC) was used to perform statistical analyses for gene 

expression and hormone assays. A normal distribution was first tested and thereafter differences 

among six independent groups for the NHpC, PVN, APit, and plasma CORT concentration were 

analyzed separately using one-way analysis of variance (ANOVA). An F- value and degrees of 

freedom were provided for each structure (NHpC, PVN, and APit) and CORT concentration. 

Comparison for all pairs using Tukey’s Kramer HSD test were used to evaluate plasma CORT 

concentration, changes in protein levels, and relative changes of genes expression between the 

control and each immobilized group. Data are presented as the mean ± SEM.  A probability level 

of p < 0.05 was considered statistically significant. 

3. Results  

3.1. Immobilization induced CORT concentration increase in blood plasma 

During immobilization, a robust and rapid increase of CORT plasma concentration occurred 

(Fig. 1). Specifically, plasma CORT concentration was increased after 15 min of immobilization 

with peak levels reached at 30 m (p < 0.001). Thereafter, CORT levels declined after 60m 

compared with 15m and 30m, although it remained significantly higher than the initial control 

values at time 0. The overall significance of CORT concentration changes between immobilized 

groups compared to the control group was [F (5, 47) = 14.48, p < 0.001].  
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3.2. Gene Expression in the NHpC and PVN during immobilization stress 

3.2.1. CRH, CRHR1, and CRHR2 

The overall gene expression data for CRH showed significant differences among treatment 

groups compared to controls [F (5, 48) = 34.18, p < 0.001 in the NHpC; F (5, 48) = 21.08, p < 

0.001 in the PVN]. In the NHpC, CRH mRNA levels increased rapidly and significantly at 15m 

of stress initiation by over 100% of the control value and remained significantly higher at 30m of 

restraint stress. Thereafter, at 60m, 90m, and 120m of immobilization, CRH gene expression 

returned to control levels (Fig. 2A). In contrast, gene expression of CRH in the PVN displayed a 

gradual upregulation by less than 30% at 15m. A peak level of mRNA occurred at 90m of 

immobilization stress followed by more than a 50% decline by 120m, although it remained 

significantly higher than controls (Fig. 2A). Gene expression of CRHR1 compared to CRHR2 

within the NHpC demonstrated different patterns across the 2 h study. Both receptors showed a 

significant treatment effect [F (5, 48) = 30.17, p < 0.001] for CRHR1 and [F (5, 48) = 28.88, p < 

0.001] for CRHR2. Specifically, the pattern of CRHR1 mRNA expression in the NHpC was 

downregulation at 15m of immobilization stress, followed by a rapid recovery to basal, control 

levels at 30m and 60m, and ending with significant increases at 90m and 120m of stress (Fig. 2B). 

In contrast, mRNA expression of CRHR2 in the NHpC did not change in the 15m period of stress. 

Thereafter, the first significant upregulation was seen at 30m and persisted at that level of 

expression through 90m with a second upregulation at 120m of treatments (Fig. 2C). In the PVN, 

the two receptors, CRHR1 and CRHR2, were upregulated significantly [F (5, 48) = 39.37, p < 

0.001] for CRHR1 and [ F (5, 48) = 48.10, p < 0.001] for CRHR2. Of particular interest, the p 

expression levels and response for CRHR1 and CRHR2 mRNA were nearly the same showing 
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their first significant increase at 30m of immobilization stress which continued to increase and 

peak at 90m, then decreased at 120m, however, remained significantly higher than controls (Fig. 

2B, 2C). Importantly, both receptors were upregulated in the PVN matching the upregulation of 

their ligand, CRH. 

3.2.2. AVT and V1aR  

Gene expression of arginine vasotocin (AVT) and its major receptor, V1aR, was measured in 

the NHpC and PVN during the stressor. Different patterns of AVT mRNA expression occurred 

over treatment times [F (5, 48) = 18.4, p < 0.001 in the NHpC; F (5, 48) = 32.4, p < 0.001 in the 

PVN]. Specifically, AVT mRNA levels in the NHpC decreased significantly and never increased 

above control levels throughout the 2h stress treatment (Fig. 3A). In contrast to the NHpC, AVT 

mRNA expression in the PVN displayed no significant change in gene expression until 60m of 

immobilization. At 60, 90, and 120m there occurred a consistent, step up in gene expression that 

peaked at the end of the stress treatments (Fig. 3A). Regarding the V1aR in the NHpC, it initially 

significantly decreased its gene expression similar to the response of AVT. Thereafter, however, 

its gene expression significantly increased from its low level at 15m to its peak gene expression at 

120m. In contrast, within the PVN, gene expression of the V1aR matched nearly perfectly the 

expression of AVT throughout the period of restraint stress (Fig. 3B). The V1aR gene expression 

in stressed birds displayed an overall significant effect among treatment groups [F (5, 48) = 13.72, 

p<0.01 in the NHpC and F (5, 48) =16.51, p < 0.01 in the PVN].  
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3.2.3. Brain derived neurotrophic factor (BDNF) and glucocorticoid receptor (GR) 

Gene expression of brain derived neurotrophic factor (BDNF) in the NHpC and PVN showed 

significant differences among groups [F (5, 48) = 11.38, p < 0.01 in the NHpC; F (5, 48) = 17.17, 

p < 0.01 in the PVN]. BDNF mRNA levels in the NHpC decreased at 15m, recovered to the basal 

level at 30m and remained around the basal levels through 90m, then increased significantly at 

120m of immobilization (Fig. 4A). In contrast to the NHpC, relative mRNA expression of BDNF 

in the PVN was upregulated significantly at 15m of stress initiation, remained at that elevated 

plateau until the end of the sampling period (120m). Interestingly, matching between CRHR1 

and BDNF mRNA expression was observed in both the NHpC and PVN structures (Fig. 2B and 

4A).   

In the NHpC, the relative mRNA expression of the glucocorticoid receptor (GR) decreased 

to a nearly significant level at 30m followed by the first significant upregulation demonstrated at 

90m with a peak occurring at 120m (Fig. 4B). In the PVN, GR mRNA levels showed a slight 

non-significant downregulation from 15 to 90m followed by its only a significant upregulation 

at the end (120m) of restraint stress (Fig. 4B). Nonetheless the overall gene expression of the GR 

in the NHpC and PVN showed significant differences among groups [F (5, 48) = 15.38, p < 0.01 

in the NHpC; F (5, 48) = 13.17, p < 0.01 in the PVN]. 

3.3. Gene expression in the anterior pituitary (APit) 

3.3.1. Heteronuclear POMC and mRNA POMC 

Heteronuclear proopiomelanocortin (hnPOMC) and mRNA expression were measured in the 

APit gland as an indicator of corticotrope activation during immobilization stress. Its timing and 
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rate of upregulation would help determine if the increase in CRH mRNA in the NHpC was 

responsible for or contributed to the initiation of the neuroendocrine stress response at the level of 

the APit. Immobilized birds showed an overall significant effect among treatment groups [F (5, 

55) = 19.62, p<0.001 for POMC mRNA; F (5, 55) =21.73, p < 0.001 for hnRNA]. In the APit, 

POMC transcripts (hn and mRNA) displayed a similar pattern over the sampling points (Fig. 5). 

In details, POMC (hn and mRNA) relative gene expression levels upregulated significantly at 15m 

of immobilization stress and matched the significant increase of CRH mRNA in the NHpC. The 

hnPOMC gene expression downregulated significantly at 60m of restraint until the last sampling 

point (120m). On other hand, the mRNA POMC expression upregulated at 15m followed by a 

significant downregulation at 60m and subsequent fluctuation that were not significantly different 

from pre-stress control levels. 

3.3.2. CRHR1, CRHR2, V1aR, V1bR, and GR in the Anterior pituitary 

Gene expression of the CRH receptors (CRHR1 and CRHR2), AVT receptors (V1aR and 

V1bR) and GR in the APit displayed different patterns during immobilization stress (Fig. 6). 

Specifically, the CRHR1 mRNA downregulated significantly at 60m of immobilization and 

remained lower than the initial, basal level until the end of restraint treatment (Fig. 6A). In contrast 

to the CRHR1, the expression of CRHR2 mRNA upregulated significantly at 15m and continued 

increasing throughout the entire sampling period. Additionally, stressed birds exhibited an overall 

significant effect among treatment groups [F (5, 55) = 23.22, p < 0.001 for CRHR1; F (5, 55) 

=18.13, p < 0.0001 for CRHR2]. Like the CRH receptors, AVT receptors, V1aR and V1bR, 

displayed an expression pattern similar to that of the CRH receptors (Fig. 6B). Expression of the 

V1aR decreased significantly at 30m (p < 0.01) and 60m (p < 0.001). Thereafter, the mRNA levels 
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recovered to basal levels at 90m and 120m. In contrast, the expression levels of the V1bR mRNA 

increased significantly at 15m and continued to rise and peaked at 90m. Additionally, stressed 

birds exhibited an overall significant effect among treatment groups [F (5, 55) = 27.12, p<0.01 for 

V1aR; F (5, 55) =20.33, p < 0. 01 for V1bR].  

To understand the possible negative regulation via glucocorticoid receptors at the level of the 

APit, a detailed time course of glucocorticoid receptor (GR) mRNA expression was documented 

(Fig. 6C). GR gene expression in stressed birds showed an overall significant affect among 

treatment groups compared with non-immobilized controls (F (5, 55) = 12.22, p < 0.001). 

Specifically, GR mRNA expression displayed a non-significant increase at 15m following stress 

initiation (p = 0.07), then downregulated rapidly and significantly at 30m and 60m. Thereafter, 

mRNA relative levels returned to basal levels comparable to controls. 

3.4. Western blot results 

3.4.1. CRHR1 and GR protein levels in the NHpC and PVN 

The proteins of corticotropin releasing hormone receptor1 (CRHR1) and glucocorticoid 

receptor (GR) were detected in the NHpC and PVN extracted from birds subjected to different 

lengths of immobilization stress and compared with non-immobilized birds (controls). Data 

showed clear bands of CRHR1 and GR located at 49 kDa and 83 kDa, respectively, in both the 

NHpC and PVN (Fig. 7). It is interesting to note that the CRHR1 bands were very dense in the 

NHpC compared with the CRHR1 bands in the PVN despite uploading less protein concentration 

(40 µg for the NHpC and 60 µg for the PVN) and showed different densities over the 

immobilization stress time periods (Fig. 7A and 7B). In the NHpC, the analysis of band densities 
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using the alpha view SA program showed that CRHR1 protein levels decreased significantly at 

15m of immobilization (p < 0.01), returned to the basal, control levels at 30 and 60m and increased 

at 90m and 120m (p < 0.001) (Fig. 7A). Remarkably, the protein levels of CRHR1 in the NHpC 

match the gene expression pattern of CRHR1 (Fig. 7A and 2B). In contrast to the NHpC, the 

protein levels of CRHR1 in the PVN never decreased through all treatments group compared with 

control groups. Specifically, the first significant increase of CRHR1 was observed at 60m (p < 

0.01) and continued to the last sample taken at 120m (Fig. 7B). Unlike the NHpC, the gene 

expression of CRHR1 in the PVN preceded the increased protein content (Fig. 2B and 7B). The 

overall significant difference for CRHR1 was calculated between stressed and control chicks for 

each structure [F (5, 30) = 11.26 p < 0. 01 in the NHpC; F (5, 30) = 9.13, p < 0.01 in the PVN]. 

Regarding glucocorticoid receptors (GRs), the GR protein levels remained at basal levels in the 

NHpC at 15m and 30, then increased significantly at 60m (p < 0.001) through 120m (Fig. 7A). 

Gene expression and protein levels of GRs in the NHpC followed the same pattern (Fig. 4B and 

7A). While in the PVN, the significant increase in GR protein levels occurred only at 120m (p < 

0.001), a time point matching its GR gene expression (Fig. 7B and 4B). The overall significance 

for the GR among all treated groups for each structure was [F (5, 30) = 8.76 p < 0. 01 in the NHpC; 

F (5, 30) = 12.43, p < 0.01 in the PVN]. 

3.4.2. CRHR1 and GR protein levels in the anterior pituitary (APit)    

The protein levels for the CRHR1 and GRs were detected and quantified in the APit during 

immobilization stress (Fig. 8). CRHR1 and GR proteins showed clear bands located at the 49 kDa 

and 83 kDa positions, respectively, on the gel, matching the molecular mass of both receptors in 

Gallus gallus. The CRHR1 protein levels decreased significantly at 60m and remained at that level 
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through 120m (Fig. 8). Similarly, the relative expression of CRHR1 mRNA in the same tissue 

downregulated at 60m compared to the control group indicating that the downregulation of 

CRHR1 gene expression matches the decreasing of protein levels (Fig 6A and 8). In contrast, 

glucocorticoids receptor (GRs) in the APit showed significantly increased protein levels at 15m of 

stress followed by a decrease to basal levels through to the last sampling period (Fig. 8). 

4. Discussion 

4.1. CRH neurons in the NHpC play a major role in initiating a neuroendocrine stress 

response involving the APit and CORT release 

The time course of CRH gene activation in the NHpC and PVN following immobilization 

stress showed that CRH mRNA expression in the NHpC was rapidly upregulated, peaked at 15m, 

remained significantly higher at 30m, and then returned to basal, control levels throughout the 

remaining sampling time periods. In contrast, CRH mRNA levels in the hypothalamic PVN 

increased gradually and peaked at 90m near the end of the stress treatment period (Fig. 2A). Data 

demonstrated that septal CRH neurons within the NHpC display a more rapid response to that 

stressor than those in the PVN. Specifically, CRH mRNA transcripts in the NHpC increased more 

than 100% at 15m of stress compared to less than a 30% increase in the PVN. Remarkably, the 

pattern of gene expression of APit hnPOMC matched that of CRH mRNA in the NHpC (Compare 

Fig. 2A with Fig. 5 and 1). Importantly, plasma CORT levels increased more than 8-fold from 

controls at the 15m sampling period suggesting strongly that a major contributor to CORT increase 

came from CRH neurons within the NHpC. A past study utilized a totally different stressor, food 

deprivation (FD), where a much longer time period is required before significant elevations in gene 

expression of CRH, hnPOMC and ultimately plasma CORT can be realized from activation of the 
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neuroendocrine stress axis. Interestingly, results from two independent studies showed a similar 

response at the neural, APit and blood response levels occurred showing a major input from CRH 

neurons within the NHpC (Compare Fig. 2A, with Fig. 5 and 1 in Kadhim et al., 2019 and Fig. 2 

and 3 in Nagarajan et al., 2017a). Overall, the major and early significant contribution of increased 

transcripts of mRNA from the NHpC that complemented the gradual rise in CRH gene expression 

in the PVN utilizing two very different stressors, in our judgment, provide sufficient data to 

validate our earlier suggestion that the NHpC should be included as one of the key neural structures 

activating the neuroendocrine regulation of stress in birds (Nagarajan et al., 2017a).  

4.2. The role of BDNF and GRs in effecting positive feedback and negative feedback of CRH 

and its receptor, CRHR1 in the PVN and NHpC, respectively 

The PVN displayed a positive feedback in gene expression of CRH and its major receptor, 

CRHR1, throughout the stress period. Both CRHR1 mRNA and its protein quantification were 

significantly elevated at 30m and 60m, respectively, and maintained that response to the end of 

treatments. Of interest, BDNF within the PVN showed a significant increase in gene expression 

from 15m to the end of immobilization. Most importantly, its significant increase preceded that of 

the significant increase in CRHR1 mRNA. Data of the study support a mammalian experiment in 

which intracerebroventricular injections of BDNF resulted in a gradual increase in CRH mRNA 

suggesting that BDNF is a stress-responsive intercellular messenger (Givalois et al., 2004). In 

contrast, the NHpC showed a negative feedback in gene expression between CRH and its receptor, 

CRHR1. CRH mRNA significantly increased at 15m while CRHR1 mRNA significantly 

decreased. Of particular interest, BDNF mRNA significantly declined at 15m, the same time 

period when CRH mRNA peaked in the NHpC.   
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Hence, the response of BDNF in the PVN was essentially opposite that observed within the 

NHpC. In contrast, when gene expression of BDNF and CRHR1 was compared throughout the 2h 

stress period in the NHpC, both genes showed a similar pattern. When the same two genes were 

compared in the PVN, their pattern matched as well. Therefore, the matching of CRHR1 and 

BDNF gene expression in two different populations of CRH neurons suggests an important, direct 

functional relationship between that receptor and a neurotrophic factor within each structure. 

BDNF appears to play a significant role in determining the relationship between CRH, and its 

major receptor, CRHR1. Mammalian studies reported that downregulation of BDNF occurred 

when CRHR1 was blocked centrally  (Bayatti et al., 2005; de la Tremblaye et al., 2016). Similarly, 

the natural downregulation of BDNF mRNA in the NHpC matched the decline of the CRHR1 at 

the 15min sampling point clearly displaying a negative feedback between CRH and CRHR1 in 

that structure. 

Additionally, a distinct interaction between BDNF and GR occurred in the PVN compared to 

the NHpC. The GR mRNA and its protein content in the PVN showed its expected no change from 

controls through its first four stress periods thereby exerting little, if any, negative control on the 

impressive rise in BDNF, CRH and CRHR1 mRNA. Gene expression of GR finally showed a 

significant increase at the last sampling period, the same time when CRH and CRHR1 mRNA 

showed clear declines from their previous peak responses at 90m. In contrast, BDNF mRNA was 

significantly reduced in the NHpC when its CRH peaked, while GR mRNA and its protein showed 

significant increased gene expression and protein content, thereafter from 60m to 120m of 

immobilization stress (Fig. 4B and 7A), resulting in a significant decline in CRH gene expression 

caused by high CORT levels via GRs. This occurred initially in CRH expressing neurons in the 

NHpC and later in the PVN supporting past data that glucocorticoids restrain the HPA axis activity 
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through GR (Ginsberg et al., 2006; Yao and Denver, 2007; Noguchi et al., 2010). In summary, it 

appears that BDNF has two effects on CRH and its major receptor. BDNF’s initial positive or 

negative gene expression can determine if a positive or negative feedback will occur. Secondly, 

the subsequent interaction of BDNF with GRs and CORT can influence the length of time CRH 

mRNA will display significant upregulation. 

4.3. Role of CRHR2 in the PVN and NHpC 

The positive feedback response of CRHR2 gene expression with CRH in the PVN matched 

almost perfectly the significant, increased CRHR1 mRNA response (Compare Fig. 2C with 2B). 

Although increased gene expression for CRHR2 occurred in the NHpC as well, it is clear that a 

more dynamic action occurred in the PVN compared to the NHpC (Fig. 2C). It is well known that 

the major site of CRHR2 occurs on thyrotropes, not corticotropes in the anterior pituitary (De 

Groef et al., 2003). Indeed, a recent study in our lab has shown that when broiler chicks are exposed 

to 2h of FD stress, not only is the HPA axis significantly activated, but the hypothalamic pituitary 

thyroid (HPT) axis as well (Kidd Jr. et al., 2020, submitted). Importantly, when the NHpC is 

surgically disrupted with electrolytic lesions, the HPT axis response to 2h of food deprivation is 

not significantly different compared to controls having an intact NHpC and PVN structures (Kidd 

Jr et al., 2020). Although thyroid stimulating hormone beta (TSHβ) mRNA was not measured in 

our current study, our recent study suggests that the PVN, not the NHpC contains the major 

population of neurons responsible for activating the HPT axis. Furthermore, mammalian studies 

demonstrated that the extracellular release of CRH upregulates CRHR2 within brain structures 

(Korosi et al., 2006; Greetfeld et al., 2009) resulting in, possibly, the activation of thyrotropin 

releasing neurons. Data herein suggest that stimulation of CRH neurons results in upregulation of 



   
 

117 

CRHR2 and the HPA and HPT axes thereby linking them in the avian neuroendocrine stress 

response.  

4.4. Activation of BDNF preceded an enhanced gene expression of AVT and V1aR in the 

PVN 

Gene expression of AVT and its major receptor, V1aR, in the PVN upregulated significantly 

at 60m that lasted to the end of immobilization stress at 120m with a peak response (Fig.3). The 

match between the increase in mRNA transcripts of AVT and its major receptor, V1aR, in the 

PVN, throughout the imposed immobilization stress indicated a positive feedback occurred, 

supporting our previous findings utilizing FD stress (Kadhim et al., 2020). Interestingly, 

upregulation of BDNF mRNA levels in the PVN preceded the increase of AVT and V1aR mRNA 

levels in that structure.  The pattern of upregulation displayed by BDNF, V1aR and AVT matched 

well the increased gene expression for BDNF, CRHR1 and CRH, discussed in a previous Sub-

heading (4.2). In contrast, BDNF mRNA level in the NHpC was downregulated initially at the 

15m sampling period which appeared to eliminate the possibility for positive feedback within that 

structure. Increased BDNF and AVT mRNA in the avian PVN support findings showing that 

BDNF transcripts were upregulated in mammals subjected to osmotic stress and documented prior 

to the increasing of AVP gene expression within the PVN and supraoptic nucleus. The results in 

mammals suggest that BDNF has an autocrine or paracrine action in the regulation of AVP (Aliaga 

et al., 2002). Hence, the continued increase in gene expression of CRH in the PVN followed by 

the significant increase in AVT mRNA strongly suggests that BDNF differentially regulates CRH 

and AVT within the PVN compared to the NHpC. 
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4.5. Differential regulation of CRH and AVT receptors in the APit downregulates POMC 

transcripts but sustains CORT release    

At the hypothalamic level, it was observed that CRH and AVT gene expression show a positive 

feedback with their receptors in the PVN (Fig. 2 and 3). Therefore, one would expect a continued 

increase in plasma CORT levels beyond its peak level at the 30m sampling time (Fig. 1). This, 

however, did not occur. Nonetheless, the decreased CORT levels in the stressed birds did remain 

significantly higher than controls throughout the study. Therefore, at the APit level, a required 

downregulation of POMC was needed to modulate that robust, increased gene expression from 

CRH and AVT neurons within the hypothalamic PVN. Five receptors in the chick APit related to 

stress were examined: CRHR1, CRHR2, V1aR, V1bR and GR. CRHR1, regarded as the major 

avian stress receptor, was significantly downregulated from 30 to 120m of immobilization stress 

(Fig. 6A) as well as its protein product (Fig. 8) supporting previous findings in birds (Løtvedt et 

al., 2017). A study of restraint stress in rats reported a similar significant downregulation of APit 

CRHR1 mRNA and its protein levels and a mechanism that perhaps accounts for our results. 

Specifically, Nemoto et al. (2013) identified short RNA molecules, microRNA (miRNA), regarded 

as post-transcriptional regulators, that played a role in glucocorticoid downregulation of CRHR1 

mRNA and CRHR1 protein in corticotropes following restraint stress. The second APit receptor 

showing continued downregulation was the V1aR (Fig. 6B). It is located on avian corticotropes 

(Selvam et al., 2013) and previously was found to be downregulated in both acute and chronic 

stress (Kang and Kuenzel, 2014). The consistent downregulation of the avian CRHR1 and V1aR 

throughout most of the time points of the current stress study clearly played a dominant role in 

repressing the overall CORT production. However, there were two receptors, CRHR2 and V1bR 

in the APit that displayed significantly increased gene expression (Fig. 6A and 6B). CRHR2 has 
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been reported solely on thyrotropes in birds (De Groef et al., 2003); hence, it functions as part of 

the hypothalamic-pituitary-thyroid (HPT) axis, and it does not directly activate POMC and 

glucocorticoid production in stress. The fourth receptor, the V1bR, appears to be a critical one as 

it is the only corticotrope receptor we examined that is significantly elevated throughout the entire 

period of immobilization (Fig. 6B) and therefore could function to maintain the elevated avian 

stress response. Thus, activation of the V1bR and its resistance to the negative feedback of CORT 

compensate for the downregulation of CRHR1 and V1aR enabling the stress response to persist as 

evidenced by the continued elevated CORT levels. Consistent with our data, mammalian data 

showed that V1b receptor mRNA levels are stimulated by glucocorticoids, which may contribute 

to the refractoriness of AVP-stimulated ACTH secretion to glucocorticoid feedback (Rabadan-

Diehl and Aguilera, 1998). Indeed, the last receptor examined in the APit was GR regarding its 

role in mediating the negative feedback of CORT (Fig. 6C and 8). The well-known mechanism 

involving GR binding to a negative glucocorticoid response element (nGRE) in the promoter 

region of the POMC gene mediates glucocorticoid-dependent repression of POMC gene 

transcription (Drouin et al., 1989; 1993). Note, however, the significant downregulation of GR 

gene expression at 30m and 60m and persistent decrease in its protein levels below controls from 

30m to 120m suggest that its reduction will complement the activation of the V1bR to maintain 

sufficient output of POMC expression.  Immobilization stress as well as  its initial high CORT 

concentration impacted GR mRNA levels and its protein contents similar to in vitro studies in 

which glucocorticoid agonists repressed GR mRNA levels and inhibited transcription initiation in 

a dose dependent manner (Shimojo et al., 1995; Ramamoorthy and  Cidlowski, 2013). Overall, at 

the level of the APit, a single receptor, the V1bR was upregulated while two receptors, CRHR1 

and V1aR were downregulated. Coupled with the downregulation of the negative effects of the 
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GR, enabled the V1bR to activate sufficient POMC production to maintain plasma glucocorticoids 

significantly higher than controls throughout the stress period. 

4.6. Sequence of the avian neuroendocrine regulation of stress 

Examining two different stressors, immobilization and food restriction revealed a sequence of 

gene activation responsible for the ultimate production of the stress hormone CORT. The sequence 

of gene activation for both stressors was the following: 1) early activation of CRH mRNA within 

the NHpC that displayed a rapid increase that peaked early, followed by a negative feedback with 

its CRHR1 resulting in a return to baseline levels; 2) early, but gradual increase in CRH mRNA 

within the PVN displaying a positive feedback with its CRHR1 over a sustained period; 3) a 

delayed activation AVT mRNA within the PVN just prior to the peak of CRH mRNA within that 

structure; 4) a delayed activation of the V1aR mRNA that matches the activation pattern of AVT 

thereby showing a positive feedback within the PVN; 5) a pattern of APit hnPOMC and POMC 

mRNA that resembles the initial temporal expression of NHpC CRH mRNA and its subsequent 

return to baseline; and, 6) a pattern of CORT release that initially matches the pattern of NHpC 

CRH mRNA, however, its return to baseline is variable due to the persistence of the stressor and 

its effect on subsequent gene expression of PVN CRH and AVT and their respective receptors 

thereafter. 

5. Conclusion  

Effects of immobilization stress on gene expression of two neuropeptides, CRH and AVT, and 

a neurotrophic factor, BDNF, within two structures, NHpC and PVN, showed an early, rapid and 

significant upregulation of CRH gene expression in the NHpC associated with a significant 
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increase in APit POMC transcripts and a robust increase in plasma CORT. Hence, evidence 

indicates that CRH neurons in the NHpC initiate the avian stress response not only in initial studies 

using food deprivation stress as the stressor, but also for the current study using a psychogenic 

stressor, immobilization. For sustaining the CORT release, both CRH and AVT expressing 

neurons in the PVN were primarily responsible. The rapid and significant increase of BDNF gene 

expression in the PVN preceded the significant upregulation in CRHR1 and V1aR and appeared 

responsible for the positive feedback between CRH and CRHR1 gene expression as well as AVT 

and V1aR mRNA in the PVN. BDNF, CRH, and AVT work in a cascade-like way during the avian 

stress response to maintain CORT release when stressors persist. At the level of the APit, increased 

neural secretion of CRH and AVT during immobilization stress resulted in two receptors, CRHR1 

and V1aR, being significantly downregulated while the V1bR was significantly upregulated. The 

latter plays a critical role for preserving corticotropes activation to produce the essential level of 

POMC gene expression to maintain the appropriate function of the HPA axis.  
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Fig. 1. Changes in plasma corticosterone concentration in response to different times, minutes (m), 
of immobilization stress: 15m, 30m, 60m, 90m, and 120m compared to controls (unstressed) 
(n=10-12 birds/group) were measured using a radioimmunoassay (RIA). One-way ANOVA 
followed by comparisons for all pairs using the Tukey-Kramer HSD test with a significance level 
p < 0.05 between control and stressed (immobilized) groups. The values are shown as mean ± 
SEM. Significant differences among the treatment groups were indicated by different letters above 
each group. 
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Fig. 2. Effect of immobilization stress on relative mRNA expression levels of CRH (A), CRHR1 
(B), and CRHR2 (C), in the NHpC and PVN at 15m, 30m, 60m, 90m, and 120m compared to 
controls (unstressed) (n=10 birds/group). Gene expression levels were normalized with internal 
controls (GAPDH or β-actin).  Mean ± SEM were displayed for each gene. Significant differences 
(p<0.05) among groups were specified by different letters (upper case verses lower case for 
different structures) above each bar or histogram. 
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Fig. 3. Changes in the relative gene expression of AVT (A) and its major receptor, V1aR (B), in 
the NHpC and PVN during immobilization stress at 15m, 30m, 60m, 90m, and 120m using RT-
qPCR compared to the controls (unstressed) (n = 10 birds/group). GAPDH and β-actin gene 
expression levels served as internal controls to normalize the RT-PCR data. Mean ± SEM were 
expressed for each gene. Significant differences (p < 0.05) among groups were specified by 
different letters above each bar. 
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Fig. 4. Effects of immobilization stress on the relative gene expression of A) brain derived 
neurotrophic factor (BDNF) and B) glucocorticoid receptor (GR) in the NHpC and PVN at 15m, 
30m, 60m, 90m, and 120m compared to controls (unstressed) (n=10 birds/group). Gene expression 
levels were normalized with GAPDH or β-actin. Mean ± SEM were expressed for each gene. 
Significant differences (p<0.05) among groups were specified by different letters above each bar. 
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Fig. 5. Effect of immobilization stress on the pro-opiomelanocortin (POMC) transcripts (hn and 
mRNA) in the APit at 15m, 30m, 60m, 90m, and 120m compared to the controls (unstressed) 
(n=10 birds/group). Levels of mRNA expression were normalized with internal controls (GAPDH 
and β-actin). Mean ± SEM were expressed for each gene. Significant differences (p < 0.05) among 
groups were specified by different letters above each bar. 
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Fig. 6. Immobilization stress effects on mRNA expression levels of CRHR1 and CRHR2 (A), 
V1aR and V1bR (B), and GR (C) in the APit following immobilization stress for 15m, 30m, 60m, 
90m, and 120m compared to the controls (unstressed) (n=10 birds/group). Levels of mRNA 
expression were normalized with internal controls (GAPDH or β-actin). Mean ± SEM were 
expressed for each gene. Significant differences (p < 0.05) among groups were specified by 
different letters above each bar. 
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Fig. 7. Total proteins were analyzed from the NHpC (A) and PVN (B) for CRHR1 and GR 
detection and quantification using Western blot throughout the period of immobilization stress 
(Control-120m). The density of bands was quantified using the alpha view SA program.  Mean ± 
SEM changes in protein quantity between stressed birds compared to non-stressed controls 
throughout 120m of immobilization stress. Significant differences (p < 0.05) among groups were 
specified by different letters above each bar. The number of samples in each group was six. The 
upper panels in each graph show representative Western blots for GR, CRHR1, and GAPDH in 
the NHpC (A) and the PVN (B) during the stress period. 



   
 

129 

 

Fig. 8. Total proteins extracted from the anterior pituitaries (APit) during immobilization stress 
(Control-120m) were electrophoresed and blotted on PVD membrane. CRHR1 and GR were 
detected, and the density of bands was analyzed using alpha view SA program. Mean ± SEM 
changes in protein quantity between stressed birds compared to non-stressed controls throughout 
120m of immobilization stress. Significant differences (p < 0.05) among groups were specified by 
different letters above each bar. The number of samples in each group was six. The upper panels 
in each graph show representative bands for GR, CRHR1, and GAPDH in the APit during the 
immobilization stress (control-120m). 
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Appendix  
 

 
Supplementary. (A) Amino acid sequence of the corticotropin releasing hormone receptor 1 
(CRHR1) with the peptide synthesized for antibody production shown in red (1st extracellular 
domain). (B) Amino acid sequence alignment of the 1st extracellular domain of the CEHR1 with 
the synthesized peptide. 
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Chapter 5 

Conclusion 

 The physiological and functional roles of corticotropin releasing hormone (CRH) neurons 

located in the nucleus of hippocampal commissure (NHpC) in the neuroendocrine regulation of 

stress were reported from several experiments for this dissertation. The first experiment utilized 

feed deprivation (FD) stress because it is a practical method utilized in broiler breeders to maintain 

birds on a growth curve known to maintain a functional reproductive system throughout their 

lifetime. From an animal welfare perspective, it is important to determine what neuroendocrine 

structures and receptors are involved following food withdrawal. This particular stressor becomes 

more intense overtime; therefore, it enabled us to study the sequences of gene expression within 

the NHpC and compared the findings with those obtained from the major structure involved in 

stress, the paraventricular nucleus (PVN). Interestingly, nutritional stress (FD) resulted in an early, 

rapid activation of CRH mRNA levels in the NHpC as well as a gradual increase in CRH mRNA 

in the PVN. The rapid increase in CRH mRNA within the NHpC was associated with higher 

POMC transcripts in the anterior pituitary and ultimately increased secretion of the stress hormone, 

CORT. A sustained output of CORT appears to due to the positive feedback of CRH mRNA and 

gene expression of its major receptor, CRHR1, in the PVN. Data, also, showed that CRH and its 

receptors, CRHR1 and CRHR2, have a different and tissue specific relationship. In the NHpC, 

CRH has a negative feedback particularly with CRHR1. In marked contrast, the PVN displays a 

positive relationship with CRHR1, CRHR2, and BDNF. Upregulation of BDNF in the PVN over 

the sampling period could be a factor responsible for the upregulation of CRH and its receptors, 

CRHR1 and CRHR2.  
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The second experiment showed that AVT cell bodies are found in the PVN, not in the NHpC 

nor MBHv/ME utilizing IHC. A major receptor of AVT, the V1aR, was identified in all three brain 

structures and located primarily in glia. Gene expression data revealed that AVT, V1aR and V1bR 

mRNA are expressed in all three brain structures and responded differentially to FD stress. Results 

showed that AVT, V1aR and V1bR are involved in the late phase, 3h or longer of FD stress. A 

negative feedback in gene expression between AVT and its receptors, V1bR and V1aR, was found 

within the NHpC during FD stress. In contrast, AVT and its two receptors showed a positive 

feedback at the level of the PVN during FD stress. At the final, central neuroendocrine level of the 

MBHv/ME and level of the anterior pituitary, upregulation of relative AVT mRNA expression 

with positive expression of V1bR and decreased V1aR mRNA occurred at both anatomical levels. 

Overall, the response of AVT and its two major receptors in the current model of the avian 

neuroendocrine stress pathway suggest that the balance in function of the two receptors preserve 

and regulate ACTH secretion from the anterior pituitary and ultimately plasma CORT to prevent 

overstimulation of the HPA axis during stress responses. 

The last experiment was conducted to identify whether CRH neurons in the NHpC are stress 

specific or involved following any type of stressor. Therefore, a very different stressor, 

immobilization, was imposed on birds and the neuroendocrine response was examined including 

the structural response of the NHpC and PVN. Data showed a rapid and significant upregulation 

of CRH gene expression in the NHpC associated with a significant increase of POMC transcripts 

and higher plasma CORT similar to what was determined following FD. Within the PVN, a gradual 

increase of CRH gene expression was documented. Thereafter, a delayed upregulation of AVT 

indicated that the two neuropeptides worked synergistically to sustain the CORT release from 

immobilization stress. An increase of BNDF in the PVN mRNA appeared to enhance CRH mRNA 
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upregulation and preceded AVT mRNA levels in the PVN, but not in the NHpC suggesting that 

BDNF has a positive effect on CRH and AVT expression in the PVN during the stress response. 

Importantly, upregulation of BDNF gene expression was associated with CRHR1 and V1aR 

mRNA increase showing a positive relationship between BDNF and CRHR1 as well as V1aR 

within the PVN. The relationship between CRH and its CRHR1in the NHpC was a negative one, 

both at the gene expression and protein levels. However, gene expression as well as protein levels 

of CRHR1 indicated that CRH and CRHR1 have a positive relationship within the PVN. The 

CRHR2 gene expression was upregulated significantly in both structures, NHpC and PVN, 

suggesting that CRHR2 has a role to activate hypothalamus-pituitary-thyroid (HPT) axis in 

respond to stress stimuli. Furthermore, in the NHpC, downregulation of AVT mRNA and 

upregulation of V1aR gene expression observed during immobilization stress indicated that the 

NHpC utilizes V1aR located in the glial cells to monitor the response to the stressor. However, the 

delayed increase of both AVT and V1aR in the PVN was to enhance CRH activities during stress 

response and maintain higher CORT levels when stressors persisted for long time. Differential 

gene expression of CRH receptors and AVT receptors in the APit revealed that the two sets of 

receptors are working together to maintain activity of the HPA axis and prevent corticotrope 

overactivation. Increasing CORT concentration that occurred during the stress response induced a 

negative feedback through GRs to inhibit POMC transcripts at the level of the APit first, followed 

by downregulation of CRH mRNA in the NHpC and PVN, respectively. 

Hence, data within the dissertation provide additional support showing that CRH neurons in 

the NHpC function within the traditional HPA axis to initiate the neuroendocrine stress response. 

Other vertebrate species therefore may have a similar extra-hypothalamic structure containing 

CRH neurons that likewise functions to initiate the stress response. 
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