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ABSTRACT 

Hybrid rice (Oryza sativa L.) breeding offers a significant opportunity to enhance rice 

production, and the cultivation of a male sterile line is the most important factor in the success of 

cross-breeding. One of the key elements of hybrid rice production is to develop a restorer line 

that is assigned as the male parent. The restorer lines provide viable pollen for fertilization of the 

male sterile plant due to the presence of a restorer gene (Rf) in their genomes. Any superior 

restorer line applied to hybrid rice production must contain genes/quantitative trait loci (QTL) 

associated with the desirable agronomic traits in its genome. The objectives in this study were to 

1) identify the genetic source of restorability in two Arkansas-developed restorer lines, 367R and 

396R, and 2) identify QTLs associated with seed dimensions in two restorer lines. The study was 

performed at the University of Arkansas System Division of Agriculture, Rice Research and 

Extension Center, Stuttgart, Arkansas. Three populations resulting from crosses between 367R 

and Arkansas advanced lines RU1501139, and 396R crossed with Tropical  Japonica cultivar 

“Newbonnet (PI474580) or Arkansas advanced line RU1501047 were developed. Five F3 plants 

from each F2:3 line were selected for testcross with an Arkansas developed cytoplasmic male 

sterile (CMS) line 873A. Five testcross F1 plants resulting from each selected pollen donor plant 

were grown in the greenhouse. Pollen fertility was tested via a pollen stain procedure (Virmani et 

al, 1997). The results showed that 367R contains one restorer gene and 396R possesses two 

restorer genes within their genomes. The genotypic analysis showed that there are two major 

QTLs, in chromosome (“chr” hereafter) 10, which is co-localized with two previously reported 

QTLs where Rf4 and Rf5 genes were mapped. For the second part of this study, the parental lines 

were evaluated for grain length, width, thickness, 100-seed weight, and heading date. The 

population 367R × RU1501139 (“Population-A”, hereafter)  was selected for evaluation of grain 



 

 
 

length, thickness, and length/width ratio. A total of 300 F3 seeds from F2 plants grown in 

greenhouse conditions were harvested, cleaned and evaluated using the WinSEEDLE TM image 

analyzer (Regent Instruments Inc., Canada). A total of 17 QTLs for grain dimensions were 

identified. Two QTLs in chr. 3 and one each QTL in chr. 7 and 11 were associated with grain 

length, while two QTLs located in chrs. 3 and 7 were associated with grain length/width ratio. 

Three QTLs located in chrs. 5, 6, and 8 were associated with grain thickness, while nine grain 

weight QTLs were identified that included four QTLs in chr. 12, two QTLs in chrs. 1 and 10, and 

one QTL in chr. 3. These results can be used for developing superior restorer lines and applied to 

hybrid rice production via marker-assisted selection.  
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Chapter 1 

INTRODUCTION AND LITERATURE REVIEW 

Rice (Oryza sativa L.) is the principal staple food around the world, supplying almost 

25% of the global nutrition source for humans. Around 50% of the world’s population relies on 

rice for food and income (Feng et al., 2014). In Oryza genus, there were two major common 

cultivated species and twenty-one wild species. Today’s rice varieties originated from the 

perennial wild rice Oryza rufipogon (Londo et al., 2006). The common cultivated rice species O. 

sativa is originally from Asia and was important in agriculture during ancient times, while O. 

glaberrima derives from western Africa (Ansari et al., 2015). 

An increase in the world’s human population will require more rice production to feed 

people in the near future. Additionally, environmental degradation and urban expansion will 

cause a decrease in arable lands. To meet the growing need for rice, world rice production should 

be increased 40% by 2030; therefore, rice varieties with much improved yield potential need to 

be developed (Zhou et al., 2016). In 2018, approximately 782 million metric tons of rice were 

harvested from 167 million ha around the world (FAO, 2018).  

 

Rice Production in Arkansas 

 In 1902, Lonoke County had the first commercial rice production field in Arkansas, 

U.S.A. (Hardke, 2018). In the following years, Arkansas continued expanding rice acreage and 

currently is the largest rice producing state in the U.S. Arkansas produces around 48% of the  

total U.S. rice production, followed by California, Louisiana, Texas, Mississippi, and Missouri. 

The Eastern side of Arkansas is the main rice production area; additionally, the Arkansas River 

Valley and the Red River Valley, located between northern Texas and southwest Arkansas, are 
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two other important rice growing regions in the state (Hardke, 2018). Arkansas rice production 

had a peak of 0.722 million ha (1.785 million acres) of harvested area in 2010. Nine years later, 

Arkansas harvested almost 4.2 million tons (84.0 million hundredweight) of rice from 0.577 

million ha (1.427million acres) (USDA, 2019). 

 Rice cultivation utilizes three tillage methods. The main method is the conventional 

tillage method, which includes fall and spring tillage followed by the preparation of the seedbed 

prior to plant. This method was used for just over 50% of the rice field in 2018. The second most 

popular method was stale seedbed planting at around 43% of the rice acreage. No-till rice 

production was used in some limited areas (Hardke, 2018). 

Fertilization practices relative to soil types and crop rotations are the most important and 

costly practices in rice production. Approximately 50% of Arkansas’ rice fields are classified as 

silt loams soils, 24% as clay, and 23% as clay loam soil (Roberts et al., 2018). 

Generally, rice varieties in US are classified based on their kernel size in combination of 

their physicochemical characteristics into three groups, long-grain, medium-grain, and short-

grain. In the long-grain rice varieties, the ratio of kernel length to its width is more than 3.0. In 

Arkansas, long-grain varieties have cooking qualities defined as typical Southern US long-grain 

rice: the cooked rice appears fluffy, non-aromatic, non-sticky with intermediate amylose content 

(20-24%), and a medium gelatinization temperature between 70 ºC and 74 ºC (Juliano, 1992; 

Suwannaporn et al., 2007). Long-grain cultivars are generally used in the parboiled, canned, 

frozen or similar fabricated products (Webb et al., 1985).  

For medium-grain, the ratio of kernel length to width is between 2 to 3. The medium-

grain varieties consist of a sticky and moist structure due to their low amylose content (10 to 

20%) as well as low gelatinization temperatures (Juliano 1992; Suwannaporn et al., 2007; Biselli 
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et al., 2014). Medium-grain and short grain rice varieties are mainly used in the production of 

ready-to-eat dry foods such as cereals, baby foods and beverages (Webb et al., 1985; Hardke et 

al., 2018). 

Long-grain rice and medium-grain rice have the biggest share at around 75% and 25%, 

respectively, followed by around 1.5 % for short-grain rice in United States’ rice production. 

Ninety percent of Arkansas rice production is from long grain cultivars (Mcbride et al., 2018). 

  

Hybrid Rice Production  

Hybrid rice is defined as commercially grown filial 1 (F1) seeds resulting from a cross 

between two genetically diverse parents. Hybrid rice demonstrates greater yield potential (10-

15%) as well as durable resistance/tolerance to biotic and abiotic stresses compared to 

conventional cultivars (FAO, 2004). Such superb performance by hybrid rice is due to a 

phenomenon known as heterosis. Heterosis can have positive effects such as increasing yield, or 

negative effects, such as reducing maturity days (Virmani et al, 1997). 

Greater seed yield is the foremost goal of hybrid rice production. Several studies showed 

that heterosis effectively influences several yield components such as the panicle and spikelet 

numbers (Anandakumar and Sreehangasamy, 1984; Chang et al., 1971, 1973; 

Amrithadevarathinam, 1984). A study conducted in China showed that hybrid rice cultivars 

produced 18 - 41% higher grain yield than conventional cultivars, and the yield advantage was 

due to the higher number of panicles per m2  produced in the hybrid rice cultivars  (Huang et al., 

2013). Production of hybrid rice in Arkansas has been growing rapidly in the last decade due to 

hybrid rice’s net revenue advantage over inbred lines (Lyman and Nalley, 2013). Currently, over 

40% of Arkansas’ rice acreage are planted to hybrid rice (Hardke, 2018). Since 2010, the 
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University of Arkansas at Fayetteville, as one of the major crop variety developers in the state, 

has aimed to release hybrid rice cultivars with increased yields and enhanced grain quality. 

 Before hybrid rice technology, semi-dwarf rice varieties increased rice yield around 1.5 

tonnes per hectare (ha) between the 1960s and 1975. Rice is a self-pollinated plant; thus, to 

improve hybrid seed production, developing a male sterile line assigned as a female parent is 

required.  Shinjyo and Tamura (1966) identified cytoplasmic male sterility in a B1F1 generation 

of a population originated from Chinsurah Boro II and Taichung 65(Shinjyo, 1969). In 1964, Dr. 

Yuan Longping observed some male sterile rice plants on Indica rice genotypes. In 1970, natural 

male sterility called a wild abortive system (WA) was discovered in wild rice plants and called a 

wild abortive system (WA). This discovery enabled the use of hybrid systems for large-scale 

production by developing commercial rice hybrids (Zebing and Yingguo, 1988; Li et al., 2009).  

 

Hybrid Rice Systems 

There are three main systems for hybrid rice production: Sterility induced by chemical, 

two-line hybrid rice system, and three-line hybrid system. Sterility in the chemically-induced 

male sterility method is achieved with chemical hybridizing agents (CHAs) such as Ethrel®, 

monosodium methyl arsenate and sodium methyl arsenate. This method can shift those lines to 

become partially sterile to completely sterile, if proper chemical application is used. 

Disadvantages of using such a method include: 1) the CHAs may not be completely effective to 

convert a fertile plant to complete sterility, 2) some chemical agents such as methyl arsenate or 

sodium methyl arsenate can cause health problems like cancer, and 3) it can be a costly method 

for hybrid rice production (Virmani et al., 2003).   
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The two-line hybrid rice production system requires a rice genotype as a pollen donor and 

an environment-sensitive genetic male sterile line (EGMS) as the female parent. In EGMS 

several genes lead to sterility, but the expression of these genes is regulated by specific 

environmental conditions, such as temperature (TGMS), day length (PGMS), or both (PTGMS). 

Sterility can be induced by temperature in TGMS (Temperature-sensitive genic male sterile) 

lines. For example, sterility can be conferred, when the temperature is over 30°C at the daytime 

and a minimum of 24°C at the night. Daylight can induce sterility in PGMS (Photoperiod-

sensitive genetic male sterility) lines. For example, daylight of 13.75 hours or greater is required 

for sterility of some PGMS lines. Photo-thermosensitive genic male sterility (PTGMS) respond 

to both day length and temperature: a 14-hour day length and approximately 12 hours of 300C 

temperature keeps the lines sterile. Since the system requires one sterile line and one pollen 

donor, it is easier and more profitable than the three-line system. Also, cultivated varieties can be 

used as the pollen donor. However, the challenge is that any changes in environmental conditions 

can turn the lines fertile (Virmani at al., 2003). 

The three-line system is another method for hybrid rice production. It involves the use of 

three different lines: cytoplasmic male sterility (CMS), maintainer, and restorer (R) lines. A 

CMS line contains a sterile cytoplasm and recessive restorer (rf) gene in its nucleus. A 

maintainer line is an isogenic line of the CMS line, but it has a normal cytoplasm. Maintainer 

lines are utilized for propagation of the CMS line. Restorer lines are used as a pollen donor for 

hybrid rice production (Virmani et al., 1997). To produce fertile F1 seeds in the three-line 

system, the CMS line must be crossed with a restorer plant, which carries a dominant restorer Rf 

gene in its genome (Xu, 2003).  
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The sterility in the CMS lines result from specific nuclear and mitochondrial interactions. 

Several sources of cytosterility have been identified including Wild-abortive (WA), Chinsurah 

boro II (BT), Honglian (HL), Dissi type (DI), Dwarf wild rice abortive pollen (DA), Indonesian 

paddy (IP), and Chinese wild rice (CW). Wild-abortive and BT are the most common types of 

cytosterility in hybrid rice production. The three-line cytoplasmic male sterility system is not 

affected by external factors; thus, the CMS method is considered the most reliable method (Li 

and Zhu 1988; Lin and Yuan 1980; Virmani et al., 1997; Shinjyo, C., 1969; Shinjyo, 1975; 

Huang., 2000).    

Seventeen Rf genes have been identified so far including Rf1 in the chr. 10 of the BT-type 

maintainer line Taichung-65B. Rf2 was identified in chr. 2 in the LD-type in a japonica cultivar 

called Fukuyama (Shinjyo, 1975). Rf3 was identified in chr. 1 in the WA-type in an indica 

cultivar IR24. Rf4 is located in chr. 10 in the WA-type in the IR24 (Zhang et al., 1997). Rf5 was 

detected in chr. 10 in the HL-type in indica line Miyang-23. Rf6 was identified in chr. 8 in the 

HL-type in indica line 93-11 (Huang., 2000 & Liu et al., 2004). Rf7 was found in chr. 12 in a 

japonica variety (Akebono) (Yabuno T., 1977). Rf9 was identified in chr. 10 in the BT-type in an 

indica line (H-103). Rf10, Rf11, Rf12, Rf13, Rf14, and Rf15 were detected in chr. 10 in the BT-

type in indica lines H-103, H-406 and I-130 (Maekawa M., 1982 & Kato et al., 2007). Rf17 was 

identified in chr. 4 in CW-type in a japonica cultivar Taichung-65 (Fuji, S., & Toriyama, K., 

2005). RFWA2 (Rf8) was identified in chr. 10 in the WA-type in an indica IR24 (Tan et al., 

1998). However, four restorer genes of Rf1, Rf2, Rf3, and Rf4 have been widely used for 

developing hybrid rice (Zhang et al., 2017). 

The induction of fertility of the restoration Rf1 gene was identified on chr. 10 in the BT-

type maintainer line Taichung-65B (Shinjyo, 1975).  The initial cross of Taichung-65B with a 
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CMS line resulted in ~8% partial fertility and increased the fertility ratio in further generations 

(Sano et al. 1990). Further studies revealed that Ifr1 gene restores fertility by reducing the level 

of B-atp6-orf79 RNA in the mitochondria, which then restores fertility to ~8-12% (Ohta et al., 

2010). The Rf1 gene is commonly used to restore pollen fertility in the BT type CMS line. The 

gene is located on chr. 10 and has been cloned (Komori et al., 2004). Six Rf1 alleles (Rf1A to 

Rf1F) have been identified (Kato et al., 2007). Additionally, the gene was identified in Sunflower 

(Heliantus annuus L.) as an important pollen restorer gene and was cloned via a simple sequence 

repeat (SSR) marker ORS511 (Yue et al., 2009). The Rf2 gene is located on chr. 2 and is only 

effective for the LD type of CMS. The fertility restoration is gametophytically-determined 

(Itabashi et al., 2011). The Rf2 gene is also located on chr. 2 in Sorghum. Two SSR makers were 

introduced for marker-assisted selection, which works in sorghum (Madugula et al., 2018). Rf3 is 

positioned on chr. 1 and restores pollen fertility in the WA CMS type. A study by Pranathi et al. 

(2016), validated a candidate gene SF2 as the restorer RF3 and developed the marker RMS-

SF21-5 for identification of the presence of the gene in the genome. Rf4, located on chr. 10, is 

widely used for hybrid rice production due to the Rf gene’s large restorability compared to that of 

other R genes and is used in the WA CMS type. Moreover, one of the latest investigations of 

over 300 rice cultivars showed that 90 lines have Rf3, 65 lines have Rf4 and 45 lines have both 

the Rf3 and Rf4 genes with about 97% restorability (Namaky et al., 2016). By developing the 

SSR marker RMS-PPR9-1 it was determined that PPR9-782-(M, I) is indeed the candidate gene 

for Rf4 (Pranathi et al., 2011). The Rf5 gene was identified on chr. 10 for honglian (HL) CMS 

type (Huang et al., 2000; Liu et al., 2004). The Rf5 is a major restorer gene with around 50-94% 

restorability (Hu et al., 2012; Huang et al., 2015). Interestingly, two major QTLs for BT-type 

CMS lines, qSF8-1 and qSF10-1 (Rf1a allele) are located on chr. 10 at the same region as the Rf5 
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gene. These results indicated that Rf1a allele was the same with Rf5 gene (Zhang et al., 2017). 

The Rf6 gene was identified on chr. 8 for Honglian (HL) CMS type (Huang et al., 2000; Liu et 

al., 2004; Zhang et al., 2017). The Rf6 is a major restorer gene with around 50-94% restorability 

(Hu et al., 2012; Huang et al., 2015). The Rf5 and Rf6 genes were also mapped and cloned on 

chrs. 10 and 8, respectively (Hu et al., 2012; Huang et al., 2015). The Rf7 gene was detected in a 

study that utilized the cross from a Japonica variety ‘Akebono’, also called pollen fertility 

restoration-ak (Yabuno T., 1977).  Subsequent studies indicated that the Rf7 gene was located on 

chr. 12 and identified as a restorer gene for WA CMS line (Bazrkar et al., 2008: Yarahmadi et 

al., 2017). The Rf7 gene restores fertility to as much as 80% (Nematzadeh A. and Kiani G., 

2010). Small GTP-Binding Protein-1 (RfWA2, Rf8 and Rf(u)) acts as a restorer gene for WA 

CMS type (www.gramene.org). Bharaj et al (1995) found two restorer genes RfWA-1 and RfWA-

2 located on chr. 7 and 10, respectively. The genes restored the fertility in CMS lines between 

40-80%. RfWA-2 was a weaker restorer gene, which restores around 10% fertility in a recessive 

(rf) genotype and almost 72% fertility in a dominant (Rf) genotype (Tan et al., 1998). The pollen 

fertility restoration-9 gene (Rf9) was identified in the Rf-1 locus in chr. 10, which primarily 

restores BT-type CMS lines. The Rf-a gene was reported as a synonym of Rf9 gene that restores 

fertility to ~70 percent (Maekawa M., 1982; Wang et al., 2006). The Rf-1 locus also included 

two adjacent restorer genes (Rf-1a and Rf-1b), where the Rf-1b gene had lower restorability than 

the Rf-1a gene (Komori et al., 2004; Kato et al., 2007).  Several pollen fertility restorer genes 

were identified on crosses involving BT-type CMS lines and a Japonica line Taichung-65. Six 

crosses were developed which constituted a combination of either normal or sterile cytoplasm 

having three restorer genotypes RfRf, Rfrf, and recessive rfrf genes. 

http://www.gramene.org/
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In 1982, M. Maekawa, conducted a study involving a BT-type CMS line crossed with Indica or 

Japonica lines that carried a Rf-1 locus. The lines that successfully restored pollen fertility were 

classified into four subgroups: Rf-a, Rf1-b, Rf1-c, and Rf1-d.  Another study regarding the 

fertility restoration of the Rf-1 locus in the BT-type CMS line revealed six distinct Rf genes: Rf-

a, Rf1-b, Rf1-c, Rf-d, Rf1-e, and Rf1-f , which were also known as Rf10, Rf-11, Rf12, Rf13, Rf14, 

and Rf15 (Kato et al., 2007; www.gramene.org). The pollen fertility restoration-17 gene (Rfcw) 

was derived from a Japonica cultivar Taichung-65 as a restorer gene on chr. 4, which restores 

the CW-type CMS line (Fuji, S., & Toriyama, K., 2005). The Rf17 gene was identified as a 

synonym of the Rfcw gene that restores fertility to ~75% (Fuji, S., & Toriyama, K., 2009; 

Toriyama et al., 2019).     

                        

Seed Dimension  

Since rice is one of the most important food crops, plant scientists have always aimed to 

increase the productivity of rice (Xue et al., 2008). Both genetic and environmental factors are 

effective in increasing rice yield potential (Weng et al., 2008). The number of panicles, grains 

and weight per panicle can increase grain yield. Grain size such as grain length, width and 

thickness are components of grain weight, which is one of the traits of interest when breeding 

(Fan et al., 2006). Grain shape measured by its length, width and the length/width ratio is 

becoming valuable factors for grain quality and consumer preference. The USA and the majority 

of Asia prefer long and slender grains while South Korea, Japan and Sri Lanka prefer short and 

thick grain varieties (Shao et al., 2010). Rice preferences vary by countries and are affected by 

culture, traditions, and industrial usage. In the US and most Asian countries, the preference is 

mainly for long grain rice because of its color, price, chalkiness, non-sticky texture, and better 

http://www.gramene.org/
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cooking quality criteria for the ready to eat food production industry. In the Philippines, people 

prefer rice varieties with low amylose content, while Indonesians consider higher amylose 

content for non-sticky structure and better milling quality (Webb et al., 1985; Shao et al., 2010). 

Medium-grain and short-grain varieties are favored in Australia, USA, Japan, South Korea, 

Taiwan and about 40 % of China and in the cooler parts of these countries. These two types are 

primarily used in the production of ready-to-eat dry foods such as cereals, baby foods and 

beverages because of the lower amylose content but in some Asian countries the preference is 

due to the longer storability without electricity (Webb et al., 1985; Hardke et al., 2018). 

 

Current Research in QTL Mapping 

Seed dimensions such as length and width are quantitative traits controlled by several 

genes. All 12 rice chrs. have grain shape related QTLs; however, there are limited studies on 

seed size QTL. Several QTLs associated with grain length have been identified. Fan (et al., 

2006) detected GS3 located near the centromere on chr. 3 in a population obtained from the cross 

between two indica lines Minnhui-63 and Chuan-7, and it explains over 55% of the phenotypic 

variation. Wan et al. (2006) identified QTL, gl-3, with an 87.5 kb size close to the centromere on 

chr. 3 in a population from the cross between a japonica line ‘Asominori’ and an indica ‘IR24’ 

that explained about 33 % of the phenotypic variation.  A QTL qGL7-2 was detected on chr. 7 in 

a population resulting from the cross between a javanica line ‘D50’ and an indica ‘HB277’ that 

explained about 20 % of the phenotypic variation (Shao et al., 2010). Quantitative trait loci for 

grain width were identified in several chrs. GW2 is located on chr. 2, qSW5 (equal to GW5) is 

located on chr. 5 in a population resulting from the cross between a japonica line ‘Asominori’ 

and an indica ‘IR24’ that explained around 39 % of the phenotypic variation (Shomura et al., 
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2008., Weng et al., 2008). Another QTL Qss7, which is related to increased grain length and 

decreased grain width, was detected with 23 kb on the long arm of chr. 7 from the population 

resulting from the cross between an indica ‘Zhenshan97’ and a japonica ‘Cypress’ and explained 

around 16% of the phenotypic variation (Qiu et al., 2012).    

The University of Arkansas can play a pivotal role in hybrid rice production by 

developing novel hybrid rice varieties that would contribute to Arkansas keeping its status as the 

major rice producer in the country with almost 50% of USA total rice production. Since large 

scale hybrid production and yield are desired, introducing new restorer lines is critical to the 

success of the hybrid system. While there are limited restorer lines, QTL studies have been 

conducted to find new restorer genes. Grain weight is associated with grain size such as grain 

length, width, and thickness. Genetic background is highly connected with grain dimensions; 

however, studies over grain dimensions are still scarce. Identifying new QTLs on restorer lines 

can promote higher grain yield expectations. Restorer lines 367R and 396R are being used for 

several traits associated with agronomic traits. Detected QTLs associated with grain sizes could 

be used for developing superior restorer lines and marker-assisted selection can play a significant 

role in the production of high-quality hybrid rice cultivars. 
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Chapter 2 

INHERITANCE AND ALLELIC RELATIONSHIP OF RESTORABILITY IN 

ARKANSAS RESTORER LINES 

ABSTRACT 

Rice (Oryza sativa L.) production has increased considerably after the introduction of 

hybrid rice technology. The process of hybrid breeding relies on developing hybrid parental lines 

that include male sterile lines as the female parent and fertility restorer lines that are assigned as 

the male parent. A restorer line that carries restorer (Rf) genes in its nucleus is an essential part of 

hybrid rice breeding. The University of Arkansas (UA, hereafter) hybrid rice program has 

developed two restorer lines (367R and 396R). However, there is no information about the 

genetic sources of restorability in these two lines. The objectives in this study were to identify 

the inheritance and allelic  relationships of restorability in these two lines. An experiment was 

conducted at the University of Arkansas, System, Division of Agriculture, Rice Research and 

Extension Center, Stuttgart (RREC). Three bi-parental populations were developed: one resulting 

from a cross between “367R” and a UA advanced line of “RU1501139” and two crosses between 

“396R” as the female parent and a UA advanced line “RU1501047” and cultivar “Newbonnet” 

as the male parent. F2 leaves from the population of 367R x RU1501139 and 396R x RU1501047 

were collected and used for genotypic analysis. The F2:3 lines from each population were test-

crossed using a UA developed CMS line 873A to determine the restorability status in each line 

via test cross procedure. The results showed that 367R and 396R restorer lines each contain two 

restorer genes in their genomes. Genotypic analysis on the population of 367R x RU1501139 

detected two major QTLs on the chromosome (chr. hereafter) 10 that were co-localized with 

formerly reported QTLs of the Rf4 and Rf5 genes. The results of this study can be used for 
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developing markers for identification of restorer lines/plants within populations via marker 

assisted selection. 
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INTRODUCTION 

Hybrid rice definition 

Hybrid rice (Oryza sativa) is a commercially grown filial 1 (F1) seed resulting from a 

cross between two genetically distinct parents. Hybrid varieties yield more seeds (10% to 15%) 

and demonstrate greater tolerance to biotic and abiotic stresses compared to the conventional rice 

varieties (Virmani et al., 1997). Rice is a strictly self-pollinated plant, which makes hybrid rice 

production difficult; therefore, developing a male sterile line designated as a female parent is 

essential for hybrid rice production. Male sterile florets not only have a functional stigma, but 

also sterile pollen that prevent any seed production via self-pollination (Li, 1977; Virmani et al., 

2003). However, cytoplasmic male sterility can be restored via one or more dominant restorer 

genes (Rf) from a restorer male line (Li et al., 2009). 

Generally, male sterility can be produced via three ways: environment-sensitive genetic 

male sterility that is used for two-line hybrid rice production, cytoplasm male sterility (CMS) 

system that is used for three-line hybrid rice production, and chemically induced male sterility 

method based on chemical usage (Yuan, 1994; Virmani et al.., 1997). In this study we focus on 

the three-line hybrid rice production. 

The first hybrid rice cultivar was developed in China in 1964 via the three-line system 

(Yuan, 1966). The resulting wild-abortive (WA) CMS line was introduced in 1970 (Li, 1977). 

The three-line system includes a cytoplasmic male sterile (CMS, A) line, a maintainer (B) line 

and restorer (R) line. Sterility of CMS is a result of the interaction between the nucleus and 

genetic factors in the cytoplasm (Virmani et al., 2003). The advantages of the three-line system 

include but are not limited to: sterility not influenced by environmental conditions and Rf is a 

single dominant gene controlling restorability that can be transferred from one generation to the 
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next more easily (Virmani et al., 1997). The disadvantages of the three-line system include, but 

are not limited to: 1) this system requires developing three-lines of CMS, B, and R lines, 

therefore it is more challenging compared to the two-line system, 2) since male parents have to 

carry a dominant Rf gene, more male parent varieties should be developed, 3) the sterility 

condition can be broken by some diseases such as blast, 4) CMS lines rarely bring reverse 

outcomes to the yield and quality traits in the hybrid seeds (Virmani et al., 1997) and 5) a 

number of pollen donor cultivars carry restorer genes. Sterility in a CMS line results from the 

incompatibility between the sterile mitochondrial cytoplasm in a plant cell and a homozygous 

recessive nuclear gene (rf). In such conditions, a protein from a mitochondrial gene causes 

dysfunction in the process of pollen development in the florets. The process of this protein can 

be regulated by a specific restorer gene in the cell’s nucleus and, as a result, the plant turns 

fertile. There are several types of CMS lines including wild-abortive (WA), Chinsurah boro II 

(BT), Hong-Lian (HL), Dissi type (DI), Dwarf wild rice abortive pollen (DA), Indonesian paddy 

(IP), and Chinese wild rice (CW). Hybrid rice production in China is primarily based upon WA, 

BT and, to some extent, HL systems. The WA system is primarily used outside of China (Guo 

and Liu, 2009; Sattari et al., 2008). 

A maintainer is an isogenic line to its correspondent CMS line, but, due to its normal 

cytoplasm, maintains its fertility. The B lines are used for propagation of the CMS line by 

crossing the CMS line (female parent) with the B line as a pollen donor (Virmani et al., 1997).  

A restorer line is required as a male parent in hybrid rice seed production. In hybrid rice 

production, the female parent is a CMS line; thus, in order to produce seeds, the CMS line should 

be crossed with a restorer male parent. Restorer lines carry at least one restorer gene (Rf) with a 

normal or sterile cytoplasm (Virmani et al., 2003). The interaction of a specific gene (Rf) with 
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the mitochondria makes a CMS line fertile. In this interaction, the majority of the Rf genes code 

for pentatricopeptide repeat (PPR) proteins. The PPRs play a role in mRNA synthesis by editing, 

splicing, cleaving, and stabilizing the RNA strain by binding the 3’ ends of RNA (Barkan and 

Small., 2014; Tang et al., 2017). So far, 17 Rf genes have been reported to restore CMS lines. Of 

these 17 Rf genes, six genes (Rf1, Rf2, Rf3, Rf4, Rf5 and Rf6) are commonly used for hybrid rice 

production. The three most common CMS types are WA, BT, and HL (Tang et al., 2017).  

The Rf3 and Rf4 genes that  restore the WA-type CMS line were detected on chr.s 1 and 

10, respectively (Zhang et al., 1997; Tang et al., 2014). In the WA-type CMS line, sterility 

comes from the accumulation of the WA352 gene that interacts with a mitochondrial protein, 

COX11, and causes early death of pollen cells in the anther tapetum (Luo et al., 2013). The role 

of the Rf4 gene is to regulate the quantity of WA352 PPR repeats to ~25%; thus, preventing the 

death of pollen cells (Luo et al., 2013; Tang et al., 2014; Barkan and Small, 2014). The Rf3 gene 

has a different mechanism and a weaker effect than the Rf4 gene for fertility restoration (Suresh 

et al., 2012). The amount of WA352 PPR repeats does not change the presence of the Rf3 gene. 

Thus, the Rf3 gene’s function is not clear, but the Rf3 gene could have an effect after the 

translational process (Luo et al., 2013; Katara et al., 2017).  

The Rf1a and Rf1b genes were identified as restorers of the BT-type CMS line identified 

between 7.5 cM to XNpb291 and 3.7cM to OSRRf markers on chr. 10 (Wang et al., 2006; 

Komori et al., 2004). BT-type CMS lines are restored by preventing the accumulation of a 

cytotoxic B-atp6 protein coded by the open reading frame (orf79) gene fragment. The Rf1a gene 

is responsible for the cutting of the B-atp6-orf79 mRNA fragment, thus preventing the synthesis 

of cytotoxic orf79 mRNA, while the Rf1b gene mediates the degradation of B-atp6-orf79 mRNA 

(Komori et al., 2004; Wang et al., 2006). 
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 The Rf5 and Rf6 genes, which were identified as restorers of HL-type CMS lines, are 

located on chrs. 10 and 8, respectively (Huang et al., 2000; Hu et al., 2012). The restorability was 

a result of energy deficiency (ATP/ADP; energy-carrying molecules) in the mitochondria. The 

B-atp6-orfH79 gene fragment corresponded to mitochondrial activity and reduced the energy 

that caused the sterility of pollen (Hu et al., 2012). The Rf5 gene cleaves the B-atp6-orfH79 gene 

fragment by interconnecting with gene fragments that help with the separation of the B-atp6-

orfH79 gene fragment (Hu et al., 2012; Huang et al., 2012). The Rf6 gene restorer effect is 

similar to Rf5. The Rf6 gene breaks the B-atp6-orfH79 gene fragment by interacting with a 

different protein (OsHXK6) fragment and prevents the synthesis of B-atp6-orfH79 that finally 

results in fertility restoration (Hu et al., 2012; Huang et al., 2012; Tang et al., 2017).  

Yan et al. (2012) developed 13 restorer lines for production of hybrid rice at the 

University of Arkansas, System, Division of Agriculture, Rice Research and Extension Center 

(RREC), Stuttgart. Two R lines, 367R and 396R, showed good potential for developing hybrid 

rice cultivars. WA-CMS is the most common hybrid rice production system for three-line 

systems (Huang et al., 2014). However, the number of WA-CMS lines is limited. The majority of 

indica lines have been determined to be restorer lines, including IR24 and IR64, which are two 

popular cultivated indica varieties (Toriyama and Kazama, 2016). The development of WA CMS 

lines as both CMS and maintainer lines will broaden the development for indica hybrids. In order 

to do this, Toriyama and Kazama (2016) successively backcrossed IR24 and IR64 with both 

Taichung 65 CMS and CMR lines.  As a result, CMS and restorer lines were identified for IR24 

and IR64 elite restorer lines. 

 In a subsequent study with CW-type CMS lines, several elite Indica varieties were used 

to develop restorer and CMS lines by applying Rf17 fertility restoration. Two elite Indica 
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varieties, IR 24 and IR 64, were the restorers of fertility to CW-types (Toriyama and Kazama, 

2016). The IR 64 had the CW-type cytoplasm and Rf17 nuclear gene resulting from crosses using 

CWR-IR 64 lines. The CWR-IR 64 lines were crossed with several elite Indica varieties and F1 

seeds were harvested. Then, the F1 generation was backcrossed with elite Indica varieties. After 

two backcrossing, the seeds with dominant Rf gene(s) were selected as candidates for R-lines by 

using single nucleotide polymorphism (SNP) markers. After two generations of self-pollination, 

several restorer lines were developed with around 80% fertility restoration. The seeds with 

recessive rf genes were selected for the CMS lines. These CMS lines were then backcrossed with 

elite Indica varieties and, after four backcrosses, CMS lines were developed (Toriyama et al., 

2019). 

In another research project, 148 exotic rice resources were screened to identify CMS, 

maintainer, and restorer (Rf) lines. All 148 lines were evaluated by checking their pollen fertility.  

Of the 148 lines, 16 were completely sterile and 16 were completely fertile.  To identify 

maintainers for the completely sterile lines, the 16 sterile lines were crossed with stable 

maintainer lines: GAN 46B, BRRI 1B, IR 58025B, IR 62820B, and IR 68888B.  This facilitated 

the identification of the corresponding maintainer line for each sterile line. On the other hand, the 

16 fertile lines, which showed > 80% pollen fertility, were classified as restorer lines. To confirm 

their restorer capability, the 16 fertile lines were crossed with five standard CMS lines. The 

resulting F1s were evaluated for pollen and spikelet fertility and those F1s that showed 80% or 

more of fertile offspring were considered as new restorer lines (Islam et al., 2015).  

In 2016, another study showed that about 97% restorability was observed on 65 lines that 

carried the Rf4 gene (Namaky et al., 2016). By developing the simple sequence repeat (SSR) 

markers for the candidate genes PPR9-782-(M, I) (Tang et al., 2014) and PPR762 (Suresh et al., 
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2012), the Rf4 gene was identified as a major restorer gene located between 1.92x107 and 

1.94x107 base pairs (bp) (Pranathi et al., 2011). Several studies identified that the Rf4 gene was 

located on the long arm of chr. 10 (Zhang et al., 1997; Tan et al., 1998; Ahmadikhah and Karlov, 

2006; Tang et al., 2014).  

The restorer Rf5 gene originated from the BT-type CMS line with a 94% restorability (Hu 

et al., 2012). Previous studies identified two major candidate QTLs: qSF8-1 and qSF10-1 (Rf1a 

allele) on chr. 10 (Akagi et al., 1996; Komori et al., 2004; Wang et al., 2006). A study by Zhang 

et al. showed that QTLs qSF8-1 and qSF10-1 (Rf1a allele) were the same with the Rf5 gene. 

Additionally, the Rf5 gene was mapped as a major restorer gene between SNP locations 1.69x107 

and 1.84x107 bp (Zhang et al., 2017).  

Another conducted study detected a QTL associated with fertility between 1.45x107 and 

2.0x107 bp in chr. 10 with a ~3.2 logarithm of the odds (LOD – a statistical evaluation of gene 

location on chr.) score (Zhang et al., 2019). Previous studies reported that the restorer gene Rf5 

was in the same location as the Honglian type CMS line (Huang et al., 2000; Liu et al., 2004). 

Hu et al. (2012) mapped and cloned the Rf5 gene and found that the Rf5 gene restored the 

sterility to ~94%. The BT-type CMS lines have two major QTLs, qSF8-1, and qSF10-1 (Rf1a 

allele) on chr. 10. Research identified that one of BT-type restorer QTLs qSF8-1 and qSF10-1 

(Rf1a allele) was the same with the Rf5 gene.  

 

Objectives 

The University of Arkansas hybrid rice program developed several restorer lines. Among 

these lines, 367R and 396R showed the largest yield potential for hybrid rice cultivation. 

However, genetic resources (Rf genes) and their positions on the chromosomes were unknown. 
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Therefore, the objectives of this study were to identify the inheritance (number of Rf genes in the 

genomes) and allelic relationship (identification of the position of Rf genes in the genome) of 

these restorer lines. 

 

MATERIALS AND METHODS 

Plant Materials 

The experiments were conducted at the University of Arkansas System, Division of 

Agriculture, Rice Research and Extension Center (RREC) in Stuttgart, Arkansas from 2016 to 

2019. Six rice genotypes were used for this study, including two restorer lines (367R and 396R), 

and three non-restorer lines (RU1501139, RU1501047 and Newbonnet) and a CMS line (873A) 

developed at the UA hybrid program. The restorer line 367R [Katy/IR30//IR140(PI 

458443)/Jasmine 85(PI 595927)] is a medium-grain variety and has high yield potential for 

hybrid rice production. Other restorer line 396R [Francis/4/ IR 1586-2(PI-

400793)/3/Bengal//L202/Lemont] is a long-grain variety and has greater yield potential than 

other developed restorer lines for hybrid rice production. Both restorer lines were developed by 

the hybrid rice program at RREC in 2012. Non-restorer genotypes RU1501139 

(LBNT/9902/3/DAWN/9695//STBN/4/ 

LGRU/5/WLLS/6/RU9201179/7/IRGA409/RXMT/5/LGRU//LMNT/RA73/3/LGRU/4/LGRU) 

and RU1501047 (IR-TGRT 30 RADS) are two long-grain, advanced lines developed by the 

RREC long-grain program. Newbonnet is a mid-season, long-grain, dwarf cultivar developed by 

crossing “Dawn” and “Bonnet 73” in 1983. The WA CMS line, 873A (Iaca Claro(PI 

392687,Guinea-Bissau)//II-32/Jin-23) had a non-aromatic background. The restorer lines, CMS 

line 873A, and Newbonnet were obtained from RREC hybrid rice breeding lines seed collection 
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and RU1501139 and RU1501047 were provided by Dr. Karen Moldenhauer of the University of 

Arkansas, RREC long-grain rice breeding program.  

 

Phenotypic Studies 

A- Developing Bi-parental Populations 

In Summer 2016, three bi-parental populations were developed, which resulted from 

crosses of 367R with RU1501139; 396R with RU1501047 and Newbonnet, respectively. In 

2017, the F1 plants were grown in greenhouse and tested by means of genotypic markers to make 

sure the resulting plants were true hybrids. The F2 seeds were collected from each single F1 plant. 

The F2 seeds were planted in 3.78-L plastic pots filled with 3.78-L Baccto® premium potting 

soil in greenhouse during fall 2017. Twelve pots were placed in a plastic tub immersed in 10-15 

cm of water (Fig. 1). Fertilizer, Osmocode® (15N-9P-12K), was applied to the top of pots by 

adding 1/2 scoopful per 3.78-L pot, and pesticides were applied according to the standard 

recommendations in Arkansas. The greenhouse lighting system was set to 12 hours of day light, 

which was ideal for rice growth (Harrington, 2010). The F2:3 seeds from each F2 plant were 

harvested for the field study. 

Six separate soil samples were collected from 0 to 15cm depth in RREC field and sent for 

testing at the Soil Testing and Research Laboratory in Marianna, AR, during Summer 2018. The 

results of soil testing showed that the soil texture was silt loam and silty clay loam with a 5.5-5.8 

pH level and soil organic matter was 2% in Summer 2018. The F2:3 lines were planted in the 

field. 30 seeds from each line were planted in a row of 2.1 m long spaced 0.4 m apart on three 

planting dates: May 22nd, May 30th, June 6th of 2018. Germination started on the 5th, 12th and 19th 

of June, respectively (Fig. 2). After each planting, the bays were flushed to improve germination. 
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Meanwhile, the UA CMS line 873A was planted for test crossing in six planting dates of 10th, 

22nd, and 29th of May and 12th, 18th, and 27th of June 2018 into 3.78-L plastic pots containing 

potting soil under greenhouse conditions. The greenhouse was programmed for 30ºC during the 

day and 23ºC at night with 75% humidity. Seed germination occurred 5-6 days after planting. 

Urea was applied as a source of nitrogen at a rate of 56 kg/ha before flooding the bays on the 5th 

and 12th of July at the V5 stage. The bays were flooded on the same day of fertilization. Weeds 

were controlled by pulling them manually from the field, no diseases were observed, and no 

chemicals were used for disease control.  

 

B- Test Cross Procedure 

At the heading stage, five panicles from five randomly selected plants from each row 

were carefully collected and used for test crossing with the 873A CMS line in the sterile room of 

the greenhouse (Fig. 3). 

The F1 (test cross) seeds were harvested, and 10 seeds for each F1 plant were planted into 

3.78-L plastic pots (3 seeds/each) containing Baccto® premium potting soil in a greenhouse. 

Twelve pots were placed in a plastic tub to keep the water around 15 cm deep. Maintenance for 

watering and fertilization of urea (46-0-0) in the greenhouse followed the standard rice growth 

recommendations for Arkansas (Roberts et al., 2019). At panicle exertion (R3-R4 growth stages), 

when one or more florets reached anthesis, 15-20 spikelet were collected between 7-10:00 am for 

pollen staining from five randomly selected plants. A total of 25 crosses were tested for pollen 

staining from each line. The pollen staining procedure is described in Table 1. In 1997, Virmani 

et al., 1997 classified pollen viability based on appearance and a pollen sterility/fertility ratio. 

Sterile pollen can appear to be translucent either in an unstained, withered or spherical shape, 
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while fertile pollen is stained and round (completely dark) (Fig. 4). There are six classifications 

based on the sterility/fertility ratio: completely sterile (100% pollen sterility), sterile (91-99%), 

partially sterile (71-79%), partial fertile (31-70%), fertile (21-30%), and fully fertile (0-20% 

sterility). Since the purpose of this study was to identify R lines for the hybrid rice breeding 

program, the pollen variability from the samples were classified into two classes of sterile (>91% 

sterility) and fertile (<91% sterility)(Table 2). 

 

DNA Extraction and Genotyping: 

 The tissue samples from each F2 plant from the populations of  367R x RU1501139 were 

collected at the V5 growth stage, labeled, and freeze-dried for genotyping via Single Nucleotide 

Polymorphism (SNP) markers. The samples were sent to an Illumina sequencing company, 

located in River Falls, Wisconsin, to be genotyped using an Infinium Rice 7K Chip (Morales et 

al., 2020).  The Infinium SNP chip is a silicon-based bead chip that has microscopic beads on the 

surface and is attached to a specific oligonucleotide fragment. Each oligo fragment represents a 

specific region within the plant genome. The DNA samples run over the beads and, as a result, 

the DNA fragments complimentary to the oligo fragments bond to each other and are then 

extended. The hybridized fragments were stained with different color dyes and detected with a 

laser (Illumina SNP Genotyping, 2017). In this study, the F2 plants were genotyped using 7,000 

SNP Infinium markers. Then, the F2:3 seeds from each single plant were harvested. 

 

Statistical Analyses:  

Determination of how many restorer gene(s) were in the restorer lines 367R and 396R 

was evaluated by using a Chi-square test. Chi-square tests were used to evaluate the goodness-
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of-fit of the observed data (the results of the test crossed according to S, all F and segregating 

from the F2:3 lines from each population) to expected ratio by using Excel®. The Chi-square was 

calculated via the formula below: 

𝜒2 =  ∑
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)²

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
 

For example, the phenotypic ratio of fertility restoring of 3R:1S was expected for one 

restorer gene and 15R:1S was expected for two restorer genes in the restorer line. JMP Pro was 

used to observe association between detected QTL and Rf genes. 

 

QTL Mapping:  

The linkage map was constructed with inclusive composite interval mapping (ICI) 

software with the genotypic and phenotypic data collected from the F2 and F2:3 populations to 

identify QTL associated with the restorability (Meng et al., 2015). The Kosambi function was 

used for the linkage map and the markers were ordered into the linkage map based on SNP 

markers. For identification of any QTL and its power, an Inclusive Composite Interval Mapping 

was performed using the additive and dominant QTL function with a 2.5 LOD for threshold. 

Only QTL with a P-value ≤ 10-3 (LOD score of  ≥ 3.0) was declared as a major QTL. The 

detected QTL associated with fertility were compared to the previously reported QTLs regions 

using the Gramene database (https://www.gramene.org/).  

 

RESULTS 

Inheritance Analysis 

 As shown in Table 1, the majority of F2:3 lines from both populations of 367R x 

RU1501139 and 396R x RU1501047 were segregating for fertility. The Chi-square test for 367R 
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population (x2=0.7504, p-value=0.3863) and 396R  (x2=0.3604, p-value=0.5483) fit into the 

15F:1S ratio (Fig.5). Therefore, 367R and 396R each possesses two restorer genes in its genome.  

 

QTL Analysis for Allelic Relationship 

 To detect the position of the R genes in the 367R and 396R genomes, the populations 

derived by 367R and 396R were genotyped using 7K SNP genotypic markers. Among 300 F2 

plants from populations derived from 396R, only 723 polymorphic SNP markers were identified, 

thus the detection of major QTLs in this population was not possible because of low LOD 

values. However, among 295 F2 plants from 367R x RU1501139 population, 2595 polymorphic 

markers were identified. The QTL analysis on the population using QTL ICIMapping software 

detected one region with a LOD>3.0 on chr. 10. Two adjacent QTLs associated with fertility 

were detected on chr. 10.  The first QTL was positioned between 1.45x107 and 1.46x107 bp, 

which was co-localized with the previously reported restorer gene Rf5. Several SNP markers, 

such as SNP-10557866 and SNP-10562661, with 17-18 % phenotypic variations 

explained (PVE) were located at the same places. The second QTL, was located in 1.93x107 and 

1.98x107 bp that was co-localized with the previously reported gene Rf4. Several markers with 

significant p-value (p-value<0.01). markers including SNP-10.18986400, SNP-10.18995837, 

SNP-10735601 and SNP-10.20184542 were located at the same region with around 2-3% PVE 

values (Table 3). 

The results showed there is a strong association between Rf5, detected QTL, and two 

SNP markers SNP10557866 located in (14,503,250 bp) and SNP10562661 located in 

(14,664,0458 bp) positioned on left and right side of the gene. There was a minor linkage 

association between detected QTL and Rf4, and the SNP marker to this gene was SNP-
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10.19278971, located in (19,350,417 bp) and 10734306 located in (19,860,755 bp) positioned in 

right side of the gene (Fig.6). 

One of the two common restorer genes Rf4 was located on chr. 10 (Gramene database, 

2020). The Rf4 gene was identified as a restorer gene via several studies on the long arm of chr. 

10 (Zhang et al., 1997; Tan et al., 1998; Ahmadikhah and Karlov, 2006; Tang et al., 2014).  

 

DISCUSSION 

Hybrid rice breeding enables a significant increase (10-15%) in rice production (FAO, 

2004). Crosses between genetically distinct parents can increase yield by taking advantage of the 

heterosis effect. In this project, our aim was to identify the number and the position of Rf genes 

in the genomes of two restorer lines developed in Arkansas (367R and 396R).  

In this study, a chi-square test confirmed that restorer lines 367R and 396R have two 

restorer (Rf) genes. Quantitative trait loci analysis detected one major QTL for the restorer line 

367R located between SNP: 10557866 and SNP: 10760864 (1.45x107….2.0x 107) in chr. 10 with 

a ~3.2 LOD score and this QTL was co-localized with previously reported restorer Rf4 and Rf5 

genes. 

The genetic mapping analysis on 367R detected a QTL associated with fertility in chr. 10 

that colocalized with Rf4 (Zhang et al., 1997; Tan et al., 1998; Ahmadikhah and Karlov, 2006; 

Tang et al., 2014). Other studies published the position of the Rf4 gene by using candidate genes 

PPR9-782-(M, I) (Tang et al., 2014) and PPR762 (Suresh et al., 2012) as a major restorer gene 

between 1.92x107 and 1.94x107 base pairs (Pranathi et al., 2011).  

The 7K SNP platform did not have enough resolution. Of the 7000 SNP markers, only 

735, and 2345 polymorphic SNP markers were detected. Moreover, the polymorphic SNP 
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markers were not evenly distributed throughout the genomes. This assumption was supported by 

Rice et al. (2019).  

Although Rf4 is a major fertility gene, there is a low linkage associated with the detected 

QTL. Pranathi et al. (2016) reported that when the two major genes of Rf3 and Rf4 presents in a 

genome, one displays as a major, while the other exhibits as a minor gene. Therefore, it can be 

assumed that, in 367R, Rf5 has a major gene influence, while Rf4 is minor.  

We inferred the origin of the gene of interest by analyzing the history of the crosses that 

led to the creation of the 367R and 396R restorer lines. The 367R was the result of crosses 

between the lines [Katy/IR30//IR140(PI458443)/Jasmine-85(PI595927)]. A previous study 

showed that IR262, one of the parental lines of cultivar Jasmine-85, possesses Rf4 in its genome 

(Bharaj et al., 1995). It has been reported that Tetep and IR262 which are the parental lines of 

Katy and Jasmine-85, respectively, possess Rf5 in their genomes (Bharaj et al., 1995; Seshu and 

Zang, 1989). Therefore, it can be assumed that Rf4 and Rf5 originated from Katy and/or Jasmine-

85 and Jasmine-85, respectively. 

Likewise, searching of the 396R parental lines [Francis//// IR 1586-

2(PI400793)///Bengal//L202/Lemont] showed that Black Gora, which is the ancestral line of 

L202, has a restorer gene (Ntanos and Koutroubas, 2002), so it can be assumed that one of the 

restorer genes is derived from L202.  

 

CONCLUSION 

 Restorer genes are a crucial part of hybrid rice production. However, lack of the restorer 

lines limits the genotypic diversity and causes biotic vulnerability (Virmani et al., 1997). To 

improve genetic diversity and efficiency of the three-line system, novel restorer lines are 
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introduced (Virmani et al., 1997; Kazama and Toriyama, 2014). Several restorer lines were 

developed at the RREC in Stuttgart, Arkansas (Yan et al., 2012). These lines were restorer, but 

the resource and number of Rf genes were unknown. In this study, we detected a major QTL, 

which included several SNP markers: SNP-10.18986400, SNP-10.18995837 and 10735601 that 

were adjacent with the Rf4 gene and 10557866 and 10562661 that were adjacent with the Rf5 

gene. These markers can be used in marker-assisted selection and can improve the test cross 

process.           
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TABLES AND FIGURES 

Figure 1: Plants grown in the greenhouse. Photographed by Ozgur Azapoglu. 
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Figure 2: 22 May planting in the field. Photo by Ozgur Azapoglu. 

 

 

 

 

 

 

 

 



 

37 

 
Figure 3: Test crossing at the sterile room in the greenhouse. Photo by Ozgur Azapoglu.  
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 Figure 4: Pollen staining scale (Virmani et al., 1997).  
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F*                      Seg.                   S F*                      Seg.                   S 

*Classification of F2:3 lines F, all fertile; Seg., partial fertile; S, all sterile 

Figure 5: Fertility frequency of 367R and 396 (a) 

   

 

367R 396R 

Figure 6: Linkage Map and QTL position for Restorer Gene 
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   Table 1: Pollen-stain protocol (Guzman et al., 2011) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STEP PROCESS 

1 Stock solution prepared with 100 ml distilled water, 1 gr iodine crystals and 3 gr potassium iodide.      

2 Dilute the stock solution in a rate, one-unit stock solution and four-units distilled water.  

3 Collect several young spiclets at the flowering phase.  

4 Anthers are removed manually by separating palea and lemma.  

5 Place the anthers onto a proper slide and treat with I2K solution for 5 minutes.  

6 Check the anthers with a microscope using 10x or 20x lens.  

7 Fertile pollens have a dark-black color, sterile pollens will have translucent color (Fig. 4).  

8 Visually estimate the pollens to determine the sterility level.  
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    Table 2: Chi-square test from the phenotypic ratio. 

Restorer Line Chi-square (χ2) P-value P<0.01 P<0.05 

367R 0.7504 0.3863 0.5636 0.5483 

396R 0.3604 0.5483 0.7640 0.5636 

 

 

    

 

 

 

 

    Table 3: List of parental detected quantitative trait loci. 
QTL Parental 

origin of 

positive 

allele 

Chromosome LeftMarker RightMarker Base Pair 

Position (bp) 

Logarithm 

of the 

odds         

( LOD) 

qTL-1 367R 10 10557866 10760864 14503250 3.5476 

qTL-2 367R 10 10735601 SNP-10.20184542 20743450 0.6819 
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Chapter 3 

EVALUATION OF TRAITS ASSOCIATED WITH SEED CHARACTERISTICS IN 

ARKANSAS RESTORER LINES 

ABSTRACT 

The primary objective of most rice (Oryza sativa L.) breeding programs is to enhance 

grain yield. Grain shape is one of several important factors to increase yield capacity (Huang et 

al., 2013). Grain shape is measured by its length, width, thickness, and the ratio of length-width. 

Since the importance of these agronomic traits were realized, researchers have taken further 

interest in grain shapes. In this context, an experiment was conducted during fall 2017 to 2020 

identify seed dimension quantitative trait loci (QTL) on both 367R and 396R bi-parental 

populations in Stuttgart, Arkansas. Five seed dimension traits including seed length, seed width, 

seed thickness, seed length-width ratio and 100-seeds weight were obtained for QTL detection. 

The study detected a total of 17 QTL. Four QTL were associated with seed length. Of these 

QTL, two were identified in chr. 3, one in chr. 7 and one in chr. 11. Two QTL related to seed 

length-width ratio were identified in chrs 3 and 7. Whereas a total of three QTL were identified 

for seed thickness, one each in chrs. 5, 6 and 8. Eight QTL were associated with seed weight, 

four in chr. 12, two each in chrs. 1 and 10, and one in chr. 3 for the population of 

367RxRU1501139. Since the yield and seed dimensions could be controlled by multiple genes, 

the detected QTL can play a role in introducing superior parental lines for hybrid rice production.      
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INTRODUCTION 

Rice (Oryza sativa L.) is one of the major crops for food and income resources for almost 

half of the world’s population. With the rapid increase in the world’s population, rice production 

must continuously increase as well. To satisfy the demand in rice, an increase of 30% rice 

production by 2050 is necessary (World Bank, 2013; Feng et al., 2014). In order to speed-up the 

improvement of rice yields, yield components must be improved.  In particular, the number of 

grains per panicle, panicle number and seed weight (SW hereafter) should be further studied 

(Weng et al., 2008 & Wang et al., 2015). Of these aforementioned components, SWT, which is 

controlled by multiple genes and several identified quantitative trait loci (QTLs), has the greatest 

chance in improving yield (Weng et al., 2008; Huang et al., 2013 & Wang et al., 2015). 

Additionally, increasing grain dimensions are key breeding factors for more yield. Seed 

dimensions that affect the yield potential are seed length (SL hereafter), seed width (SWT 

hereafter), seed thickness (ST hereafter) and seed length width ratio(SLWR hereafter) (Huang et 

al., 2013; Qiu et al., 2012 & Wang et al., 2015). While rice is classified according to grain forms 

as rough, brown, and milled rice, SL is the primary factor in rice classification. Based on SLWR, 

rice is classified into three subgroups: long-grain, medium-grain and short-grain (Hardke et al., 

2018 & Qiu et al., 2017). Seed length and SWT, and their ratio determine the kernel size where 

the ratio is between 3.0 to 1 or greater in long-grain rice and 2.0 to 1 in medium-grain and short-

grain rice). 

In regard to the classification of rice, cooking characteristics are affected by the chemical 

structure such as fluffy, aroma, sticky and amylose content (Hardke et al., 2018). In the United 

States, long- (~75%) and medium-grain (~25%) varieties are primarily cultivated (Mcbride et al., 

2018). In the long-grain varieties, moderate amylose (20-24%) content brings fluffy and non-
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sticky structure when cooked. The non-sticky structure, quicker cooking times and partial boiling 

are advantages that makes long-grain rice a favorite for ready food production, such as quick 

cooking rice, canned rice, canned-dry soups, and frozen foods. On the other hand, medium- and 

short-grain varieties are sticky and have a moist structure when cooked because of low amylose 

content (10-20%). Ready dry foods, such as cereals, baby foods and beverages, are produced 

from the medium-grain varieties (Webb et al., 1985; Hardke et al., 2018; Hardke, 2018). 

Researchers have reported several QTLs related to yield and grain sizes, but the 

knowledge of other seed dimension traits QTLs are limited. Thus, studies focusing on QTLs that 

could be related to grain dimensions are essential (Fan et al., 2006 & Wang et al., 2015). Che et 

al (2015) conducted a QTL study on an F2 population created by crossing two indica rice lines 

(RW11 x BobaiB) that were significantly distinct (about 37 %) from each other in terms of their 

SLs. Che et al (2015) developed two backcross populations between an F2 population and 

RW11- BobaiB, separately. The QTL was identified on chr. 2 and identified as GL2 from the 

backcross with RW11. Then, RW11 crossed with Nipponbare (Japonica variety). The GL2 

improved the grain dimensions around 24% for SL, 16% for SWT, and about 27% more in 1000 

grain weight. 

Qiu et al (2020) conducted a two-year (2015-2016) genetic mapping study to clarify the 

QTLs associated with grain dimensions. Qiu et al (2020) used 1016 accessions in five 

populations: indica, japonica, aus, basmati, and admixture from the 3K Rice Genome Project 

(accessions collected from China, India, Philippines, Bangladesh, Japan, and other Asian 

countries). Seventy QTL were identified for seed dimensions (SL, SWT, SLWR) on all 12 

chromosomes. Twenty-four QTLs were identified on chrs. 1-7, 9-11 for SLR, and the phenotypic 

effect was between 1-30%. Twenty-one QTLs were identified on all chromosomes excluding 
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chrs. 10 and 12 for SWT and the phenotypic variation changed between 1 and 42%. They 

detected 25 QTLs for SLWR on chrs. 1-8, 11, and 12 with between about 1 and 28% phenotypic 

variation (Qiu et al., 2020).  

Eizenga et al., (2018) identified a total of 27 QTLs for yield-related traits. A RIL 

population developed by using two tropical japonica lines ‘Estrela’ and ‘NSFTV199.’ F1 seeds 

were advanced to F7, producing a final population size of 256 RILs. Grain’ dimension traits 

studied include SL, SWT, SLWR, and 100-Seed weight (SW hereafter). The research detected 

seven QTLs including a major QTL ‘qHULGRLG3’ explaining around 40 % of the phenotypic 

variation on chr.3. Six QTL for SW were identified with the major QTL ‘qHULGRWD5’ 

explaining 38% of the phenotypic variation. Eight QTL were identified for SLWR, which were 

at the same locations as QTL ‘qHULGRLG3 and qHULGRWD5’ with 32.6% and 38.9% 

phenotypic variations. Six QTL were identified for SW. The objective of this study was to 

identify QTL associated with seed characteristics including SL, SWT, ST,SLWR, and SW. 

Results of this study could contribute to the improvement of the genetic background of yield-

related QTLs through introduction of each QTL themselves for the improvement of rice’s yield 

potential. 

 

MATERIALS AND METHODS 

Plant Materials 

A bi-parental population resulting from a cross between the restorer line ‘367R’ and a 

non-restorer line ‘RU1501139’ were developed for this study. Restorer line 367R is a medium-

grain rice and was developed at the University of Arkansas’s Rice Research and Extension 

Center (RREC), Stuttgart by Yan et al. (2012). Restorer line 367R is derived from 



 

50 

Katy/IR30//IR140(PI-458443)/Jasmine-85(PI-595927) crosses. Non-restorer line RU1501139 is 

a long-grain, advanced line developed by the RREC long-grain program. The population 

development and the methods of plant management from the start to the F2 plants production 

were discussed in Chapter 2. A total of 300 F2 plants from this population were grown in three 

replications in a greenhouse using a completely randomized design (CRD) to evaluate traits 

associated with seed characteristics. The F2:3 seeds were harvested and used for phenotypic 

evaluation. 

 

Preliminary Study 

Two genotypes of 367R and RU1501139 were grown in three replications in the 

greenhouse using a randomized complete block (RCB) to evaluate traits associated with seed 

characteristics (seed SLR, thickness, width, SLR and SW). Each replication consisted of three 

plants. The panicles for each parent were randomly collected in the greenhouse. The panicles 

were dried (15% moisture) and threshed in Stuttgart, Arkansas. In order to analyze the seed 

dimensions, 30 seeds from each line were randomly selected, cleaned and evaluated via Mettler 

Toledo® balance and Winseedle® Pro (Fig. A) to measure the grain dimensions’ significance 

level. According to the JMP Pro 14 software (SAS Institute Inc., Cary, NC), an ANOVA analysis 

followed by Student’s T-test had significant results regarding SL, SWT, SLWR, ST and SW. The 

results indicated that SL and SLR had a significant effect, but seed thickness, SW and SLWR 

had no effect.   
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Phenotyping 

 Based on the preliminary study of parental lines, the population 367R x RU1501139 was 

used in this study. The F2:3 seeds harvested in the greenhouse were measured for SLR, SWT, ST, 

SLWR, and SW in the Spring of 2018 at RREC in Stuttgart, Arkansas. To evaluate seed 

dimensions and SW, 100 seeds from each F2:3 lines were measured via Winseedle® Pro and the 

Mettler Toledo® balance, respectively. Then, the three replications of all 100-seeds had an 

average value for every 300 lines that were calculated in an Excel® file. One-way ANOVA 

analysis followed by Student’s T-test significance results of the seed dimensions (SL, SWT, 

SLR, ST, and SW) (Table 1). Multivariate analysis was run to understand the correlations 

between traits by using JMP Pro 14 software (Fig. 1). 

 

Genotyping 

 The tissue samples were collected from both parental lines; 367R, 396R, Newbonnet, 

RU1501139, RU1501047 and each F2 plant from the populations of 367R x RU1501139 at the 

V5 growth stage for genotyping via single nucleotide polymorphism (SNP) markers. The 

parental line samples and the F2 plant population samples were sent to an Illumina sequencing 

company, located in River Falls, Wisconsin, to be genotyped with an Infinium Rice 7K Chip 

(Morales et al., 2020). In this study, the F1 plants for parental lines and F2 plants for the 

population 367R x RU1501139 were genotyped using 7,000 SNP Infinium markers. Then, the 

F2:3 seeds from each single plant were harvested in three separate replications. The linkage map 

was created via inclusive composite interval mapping (ICI) software by using genotypic data 

from F2 and phenotypic data from F2:3 seeds while creating QTLs related to seed dimensions. The 

ICI Mapping was used with the Kosambi function for linkage mapping and SNP markers were 
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ordered for linkage mapping. The identification and detection of the QTLs, 2.5 LOD score was 

considered as a threshold level for a major QTL. The Oryzabase database was used to detect any 

co-localized QTLs. The distribution of the seed dimensions and detected QTLs were analyzed 

using JMP Pro 14 software (Fig. 2). Oryzabase a comprehensive rice data source, was used to 

identify candidate genes.  

 

RESULTS  

Preliminary Study 

The ANOVA study showed that there are significant differences between 367R and 

RU1501139 on SL, SLWR (p-value< 0.001), and SW, SWT(p-value< 0.05). There was no 

difference for ST between these two lines (Table 1).  

 

Parental Significance Analysis of F2:3 Population   

The ANOVA analysis for the Population-A was used to find significance levels of seed 

dimensions between parents within a linkage map. The results indicated that seed length and 

length-width ratios had a significant effect, but seed thickness, 100-seed weight and seed-width 

had no effect.  

 

Seed Length: The distribution of F2:3 for SL followed a normal distribution (Fig. 2). SL 

had a mean of 9.7 mm with a range from 8.2 to 11 mm. The trait had a standard deviation (SD) 

of 0.48 and a standard error (SE) of 0.03. These two values explained the significance of seed 

length with a p-value < 0.001 for the population (Table 1).  
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Seed Width: The distribution of F2:3  for SWT followed a normal distribution (Fig. 2). 

There was no difference in seed width with a mean of 2.5mm and range from 2.3 to 2.7mm. Seed 

width had a 0.15 SD and SE of 0.06. While the trait was not significant at p-value of 0.001, it 

had significance with a p-value < 0.05 (Table 1).  

 

Seed Length-Width Ratio: The distribution of F2:3 for SLWR followed a normal 

distribution (Fig. 2). There was no difference for seed width; however, the seed length-width 

ratio had a significant difference with a mean of 3.74 mm and a range from 3 to 4.5 mm and a 

SD of 0.29 and SE of 0.018. Significant difference between parents 367R and RU1501139 

expressed with a p-value < 0.001 for the population (Table 1).  

  

Seed Thickness: The distribution of F2:3 for ST followed a normal distribution (Fig.2). 

For ST, the mean number of thickness in the population was 2.11 mm and range from 1.7 to 2.11 

mm. The SD for thickness was 0.09 and SE was 0.012. The difference between parents 367R and 

RU1501139 was not significant with a value p-value > 0.05 (Table 1).   

 

100-seed weight: The distribution showed majority of the F2:3 lines ranged between 1.25 

to 1.5gr (Fig. 2). For SW, the mean was 2.5gr, ranging from 2.3 to 2.7gr. The trait had a 0.15 SD 

and SE of 0.06 in the population. The difference between parents in the population expressed a 

p-value < 0.05(Table 1).     

Multivariate analysis showed that a positive significant correlation (p-value>0.001) 

between SL and SLWR (r=0.44) and ST (r=0.23), and SWT (r= 0.166, p-value>0.01). The 

results revealed that SLWR has a strong negative correlation with SWT(r=0.622, p-value>0.001) 
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but positive with SW(0.213, p-value>0.01). The analysis showed that ST has a positive 

correlation with SW (0.48, p-value>0.001) (Table. 1). 

 

Genotypic study 

 A total of 17 major QTL were identified in the bi-parental population of 367R x 

RU1501139. For SL, four QTL were identified including two QTL, qSL3-1 and qSL3-2 on chr. 

3, and one QTL qSL7-1 qSL11-1 each on chrs. 7 and 11, respectively (Fig. 3). The detected QTL 

were linked to RU1501139 and infer increasing seed yield and explained 5.1 to 8.4% of 

phenotypic variation (PVE) on the population (Table 2).   

 No major QTL for SWT were detected; however, 12 minor QTL were identified 

including 8 minor QTL with (2<LOD<3): two QTL on chr. 2, and three QTL each on chrs. 7 and 

10, respectively. 

Two major QTL, qSLWR3-1, qSLWR7-1  were detected on chrs. 3 and 7 for SLWR. 

These two QTL were co-localized with the QTL, qSL-2 and qSL7-1, which identified SLs. The 

detected QTLs were linked to RU1501139 and explained 5.5 to 11.1% of phenotypic variation 

(PVE) on the population. The qSLWR3-1 and qSLWR7-1 were co-localized with other detected 

QTL, qSL3-2 and qSl7-1, respectively (Table 3) .  

 Eight QTL were identified for SW including two QTL on each chr. of 1, 2, 10 and 12. 

Seven of these QTLs were co-localized with previously reported QTLs, AQEI043, AQBA011, 

AQAP004, AQCI003, AQCS003, AQAE008 and AQF014, respectively (Table 3). Furthermore, 

all eight QTL originated from 367R . 
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 Three QTLs were identified on chrs. 5, 6 and 8 associated with ST. The QTL qST5-1 on 

chr. 5 co-localized with a previously reported QTL AQFU013 (Table 3) for seed thickness. The 

detected QTLs linked to the 367R had a range of 4.6 to 7.5% phenotypic variation.  

 

Detection of Candidate Genes for Major QTL 

 A total of five candidate genes were identified via rice genomic annotation using the 

online rice database of Oryzabase (https://shigen.nig.ac.jp/rice/oryzabase/), including four for SL 

and two candidate genes for SW (Table 3).  

Two candidate genes of the GL-7 and OsGASR9 are identified within a detected QTL 

qSL7-1 (2.3x106..2.3x106) associated with SL. GL-7 is a previously reported gene that regulates 

seed length by increasing the length and starch structure in endosperm (Wang et al., 2015). 

OsGASR9 is a transcript gene for plant growth and development. The OsGASR9 increases grain 

length and weight by increasing the efficiency of gibberellic acid (Li et al., 2019). It is worth 

noting that qSL7-1 is co-localized with another detected QTL qSLWR7-1 associated with SLWR. 

Two candidate genes were identified on the detected QTL qSL11-1 (16.28 x106.. 17.69 

x106) associated with SL on chr. 11 including Rice Big Grain-1 (RBG1) and Flower and Leaf 

Color Aberrant (FLA). The RBG1 gene is responsible for grain development, abiotic stress 

tolerance and the gene improves root development by enhancing the plant’s auxin level (Lo et 

al., 2020). The RBG1 is 948 bp and its four allelic genes are located near the RBG1gene, 5 kb to 

M37341, ~27 kb to M37342 and M82594l, 46 kb to M44256 (Lo et al., 2020). The FLA gene is a 

ubiquitously expressed gene and a key factor for flower and chloroplast development. The FLA 

improves grain length and rice yield. The FLA is located between the marker M11-3 and S6 with 

56 kb on the long arm of chr. 11 (Ma et al., 2019). 



 

56 

One gene (HAP5L) is located within a detected QTL, qSW10-1(6.64 x 106 ..9.26 x 106) 

associated with SW. The HAP5L is an endosperm-specific gene that regulates starch 

accumulation and protein concentration (Xiong et al., 2019). The accumulation of starch 

increases the width, but any decrease in HAP5L causes sharp decreases to grain weight (Xiong et 

al., 2019). 

 

DISCUSSION 

In this study, we aimed to identify the genetic sources associated with seed characteristics 

in rice. The preliminary study on two genotypes (367R and RU1501139) determined significant 

differences between the two genotypes for four seed characteristics of SL, SWT, SLWR, and 

SW. restorer line 367R is a medium-grain rice that is shorter (< 3mm) than typical long-grain 

rice. Seed length-width ratio is an important measurement for classification of rice cultivars. The 

results showed a positive correlation between SLWR and SL, but a negative correlation with 

SWT. The data showed a positive correlation between SW with SL. Although there was no 

significant correlation between SW and SWT, the data showed a weak negative correlation 

between these two trait. Furthermore, results revealed that there was a positive correlation 

between SWT and ST. Therefore, it can be assumed that longer and thicker seeds are heavier 

than shorter and wider seeds.  

Enhancing grain yield, milling, and eating quality of rice can be achieved through 

development of superior cultivars by incorporating a number of agronomic traits, such seed 

dimension and seed weight. The majority of these traits are classified as quantitative traits and 

are controlled by several QTL located in different parts of the rice genome. Each QTL has 

different impact on the phenotypic variation. In a breeding program, a breeder considers only 
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those QTL that have the greater impact on the phenotypic variations. In this study, we identified 

17 major QTL and several minor QTL associated with seed characteristics. Annotation analysis 

revealed that five detected QTL contain genes associated with seed characteristics and 11 were 

co-localized with previously reported QTLs (Huang et al., 1997; Redona et al., 1998; Xing et al., 

2001; Jiang 2004; Alam et al., 1998; Zhu et al., 2000; Xu et al., 2002; Mei et al., 2003; Wissuwa 

et al., 1998; Sato et al., 2003; Cui et al., 2002; Zuang et al., 2001; Aluka et al., 2004). It can be 

concluded that 1) the annotation analysis of the QTL validates our finding via previously 

reported genes/QTLs associated with traits, and 2) these QTLs can be incorporated into the 

genomes of new superior genotypes. 

For example, one important detected QTL is qSL7-1 on chr. 7 associated with SL. The 

QTL is co-localized with qSLWR7-1 associated with SLWR. Further investigation identified two 

candidate genes, GL7 and OsGASR9, in this genomic region. One important detected QTL qSL3-

2 on chr. 3 associated with SL is co-localized with qSLWR3-1 and is associated with SLWR. 

On chr. 11, one QTL qSL11-1 was detected for SL. Two candidate genes, RBG1 and FLA 

were identified on chr. 11 for SL. The RBG1 gene is associated with grain, root development and 

stress tolerance by enhancing cell division and auxin levels; thus, it helps to improve root 

development and stress tolerance, which are important factors for having a greater yield. (Lo et 

al., 2020). The second candidate gene, FLA, is a cell membrane protein that belongs to the 

Ubiquitin-specific proteases. The FLA is a common amino acid for eukaryotic cells. The FLA 

improves grain length and yield by regulating chloroplast and flower development (Ma et al., 

2019). We can summarize that the QTLs qSL7-1 and qSL11-1 contain several candidate genes 

associated with seed length and have major impact on the phenotypic variations, thus these two 

QTL can be integrated in a new generation of long-grain rice cultivars. 
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Although the ANOVA analysis showed significance of SWT in this population, no major 

QTL were identified on chrs. However, a total of 12 minor QTL were detected with an LOD of 8 

QTL range from 2 to 3 LOD score. It can be assumed that SWT is controlled by several minor 

QTLs that, overall, significantly enhance SWT.  

The ANOVA analysis showed there was no difference between 367R and RU1501139 

for the ST trait, but the genotypic analysis identified three major QTLs associated with the ST 

trait. Genotypic analysis showed that the two QTL of qST5-1 and qST6-1 originated from 367R, 

while qST8-1 originated from RU1501139. Therefore, despite no statistical significance, there is 

a biological significance between these two genotypes due to these detected QTLs. 

 

CONCLUSIONS 

In rice breeding, the ultimate goal is to increase grain yield. Grain yield is affected by 

several components such as SL, SWT, SLWR, ST and SW. In this research, 17 QTL associated 

with seed characteristics were identified. Further studies are needed to identify major genes 

associated with these characteristics and developing molecular markers that can be used for 

marker assisted selection in breeding programs. 
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TABLES AND FIGURES 

 
  Figure A: Winseedle® Pro Grain dimension measurement. 
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Figure 1: Multivariate correlation analysis of Seed Dimensions in F2 
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Figure 2: Distribution of Seed Dimensions 

                      

A: Distribution of Seed Length                                   B: Distribution of Seed Width  

 

 

                         

C: Distribution of Seed Length/Width  D: Distribution of Seed Thickness 

 

 

E: Distribution of 100-Seed Weight 
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Figure 3: Linkage Map and QTL position for Seed Dimensions 
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Figure 3: Cont. 
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Table 1 : ANOVA analysis of Seed Dimensions in F2:3 population 

Effects with P-values < 0.01 given * 

Effects with P-values < 0.001 given ** 

 

       

 

 

 

 

 

 

 

 

 

 

 

  

        

 

 

 

 

 

 

 

Trait µ367R µRU1501139 µPopulation-A Range Standard 

Deviation 

Standard 

Error 

Mean 

F 

SL 10.24 9.06 9.73 8.2-11.03 0.48 0.03 118.0720**  

SWT 2.56 2.5 2.61 2.1-3.23 0.185 0.01 3.1865* 

SLWR 4 3.62 3.75 3.0-4.45 2.89 0.018 42.0621** 

ST 1.96 1.93 2.12 1.91-2.3 0.07 0.004 0.8935 

SW  2.5 2.36 1.03 0.1-1.8 0.478 0.02 32.000* 
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Table 2: List of QTL detected and parental origin of positive allele for major QTL 

QTL Parental 

origin of 

positive 

allele 

LeftMarker RightMarker BP 

Position 

LOD PVE(%) Add. Dom. 

qSL3-1 

 

367R 

 

2624847 

 

2641058 6.22x106-

6.99x106 

3.4262 5.2782 0.0334 0.2151 

qSL3-2 

 

367R id3014217 

 

3417192 30.12 x106-

30.45 x106 

3.8808 5.9111 0.1625 0.0063 

qSL7-1 

 

RU1501139 

 

7818489 

  

7869914 23.68 x106- 

25.52 x106 

4.8256 8.3937 -0.1989 0.0649 

qSL11-1 

 

RU1501139 

 

11465340 

  

c11p17119245 17.23 x106-

17.11 x106 

3.4371 5.1480 0.1511 0.0813 

qSLWR3-1 

 

367R 

  

id3014217 

 

3417192 30.12 x106- 

30.45 x106 

3.8508 5.4423 0.0958 0.0525 

qSLWR7-1 

 

RU1501139 

  

id7004041 

  

SNP-

7.23491886. 

23.08 x106- 

23.49 x106 

7.4073 11.0463 -0.1451 0.0299 

qSW1-1 

 

367R 255699 

  

312212 8.29 x106- 

10.34 x106 

14.2588 2.4703 0.0571 0.8289 

qSW1-2 

 

367R 312212 id1007778 10.34 x106-

10.80 x106 

19.0820 2.5001 0.4698 0.3372 

qSW3-1 

 

367R 2650075 

  

3399945 7.3 x106- 

29.75 x106 

18.4045 2.4567 -0.4345 0.4044 

qSW3-2 

 

367R id3014217 

  

3417192 30.12 x106- 

30.45 x106 

4.0224 0.2401 0.1734 -0.0022 

qSW10-1 

 

367R SNP-

10.8934622. 

10348161 9.00 x106- 

9.2 x106 

14.5954 2.4698 -0.0112 -0.8350 

qSW10-2 

 

367R 10348161 

  

SNP-

10.9220148. 

9.2 x106- 

9.3 x106 

14.6125 2.4710 -0.0148 -0.8353 

qSW12-1 

 

367R 12661368 

  

SNP-

12.20165789. 

15.9 x106- 

20.19 x106- 

13.8334 2.4302 0.0080 -0.8212 

qSW12-2 

 

367R SNP-

12.20165789. 

SNP-

12.21730645. 

20.19 x106-

21.76 x106 

21.5835 2.5226 -0.4770 0.3241 

qST5-1 

 

367R 5604007 

  

5612073 22.29 x106- 

22.59 x106 

4.3585 7.5423 0.0254 -0.0093 

qST6-1 

 

367R 6642523 

  

6684382 21.53 x106-

22.48 x106 

2.7006 4.6149 0.0220 -0.0011 

qST8-1 

 

RU1501139 

  

8757429 

  

8764880 18.74 x106-

18.91 x106 

3.4779 5.8963 -0.0203 -0.0155 
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Table 3: List of Previously reported co-localized QTL 

 

 

 

 

 

 

 

 

 

 

 

QTL Candidate Genes Synonyms Previously Reported 

QTL  

Reference 

qSL3-2 

 

 GL11 AQDH002 (Huang et al., 1997) 

qSL7-1 

 

GL7 - OsGASR9 - AQEO012 (Redona et al., 1998) 

qSL11-1 

 

RBG1 - FLA 

 

GL11 AQCA006 (Xing et al., 2001) 

qSW1-1 

 

 - AQEI043 (Jiang 2004) 

qSW3-1 

 

 Pdw3-1 AQBA011, 

AQBX006 

(Alam et al., 1998; 

Zhu et al., 2000) 

qSW3-2 

 

 QBphr3 AQAP004, 

AQCU183 

(Xu et al., 2002; Mei 

et al., 2003) 

qSW10-1 

 

HAP5L - AQCI003  

 

(Wissuwa et al., 

1998) 

qSW10-2 

 

 - AQCS003  

 

(Sato et al., 2003) 

qSW12-1 

 

 qLS12-1 AQAE008  

 

(Cui et al., 2002) 

qSW12-2 

 

  - AQCF014  (Zuang et al., 2001) 

qST5-1 

 

 MR5 AQFU013  

 

(Aluka et al., 2004) 
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GENERAL CONCLUSION 

Rice (Oryza sativa L.) is one of the most crucial crops around the world. Hybrid rice 

breeding promises to increase rice yield by using male sterile lines in cross-breeding. The hybrid 

rice system requires restorer lines that provide viable pollen for fertilization of the male sterile 

plant as a result of the presence of a restorer gene (Rf) in their genomes. All restorer lines should 

contain genes/QTL associated with restorability in its genome. Two of the developed several 

restorer lines, 367R and 396R in Stuttgart, Arkansas showed higher yield capacity. In this study, 

the number of Rf genes and resources of the Rf genes were identified. A chi-square test on 

phenotypic data proved the presence of two Rf genes for both restorer lines. Then, a major QTL 

was identified between SNP: 10557866 and SNP: 10760864 (1.45x107….2.0x 107) in chr. 10 

with a ~3.2 LOD score for the 367R. This QTL included SNP markers: SNP-10.18986400, SNP-

10.18995837 and 10735601 that were adjacent with the Rf4 gene and 10557866 and 10562661 

that were adjacent with Rf5 gene. These markers can be used in marker assisted selection and can 

improve the test-cross process. 

Since the main objective of breeding is to increase grain yield, the second study involved, 

parental lines that were evaluated for several traits associated with agronomic traits, such as seed 

length, seed width, seed thickness and 100-seed weight for the 367R × RU1501139 population. 

Seventeen QTL were identified for seed dimensions. Four QTL were associated with seed length 

in chrs. 3, 7 and 11. Eight QTL were associated with seed weight in chrs. 1, 3, 10 and 12. Two 

QTL located in chrs. 3 and 7 were associated with seed length-width ratio. Three QTLs located 

in chrs. 5, 6 and 8 were associated with seed thickness. 
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