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Abstract  
         3D seismic and well log data in Western Osage County, Oklahoma, are utilized to 

evaluate possible intracratonic tectonic signals present in the subsurface stratigraphy of the 

Cherokee Platform as a result of the regional tectonic events of Pennsylvanian age. These events 

include: the Wichita, Ouachita, and Arbuckle orogenies, the Nemaha and Ozark Uplifts, and the 

Southeast Oklahoma Aulacogen. Horizon flattening within 3D seismic volumes allows for 

identification of paleotectonic structures and syntectonic depositional features, which may be 

related to the collateral effects of these orogenies on the Cherokee Platform. Identified structures 

were assigned geologic ages using precision synthetic seismograms tuned to the Pennsylvanian 

interval in a 45 square mile 3D seismic data volume. Paleostructure maps and isochron, or time-

thickness, maps created in conjunction with the flattened horizons highlight contemporaneous 

structural features that may be related to regional orogenic events. Paleostructure maps also help 

determine the sedimentological processes occurring at the time of deposition. This investigation 

will add knowledge to the tectonic and depositional evolution of the Cherokee Platform and the 

surrounding basins, which have been prolific hydrocarbon-producing regions for over a century. 
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1. Introduction 

 1.1 Osage County History  

Osage County, Oklahoma is located in the northeastern portion of the state of Oklahoma, 

Osage County (Figure 1). It is the largest county in the state (1.47 million acres) and has been 

owned by the Osage Indian Tribe since 1872 (Bass, 1942). Bordering Kansas to the north and 

five other Oklahoma counties to the west, south, and east. Osage County is also the key 

geographic area that defines the Cherokee Platform geologic province of Oklahoma as part of the 

Mid-Continent geologic region of the United States. Since the late 19th Century, Osage County, 

Oklahoma (Figure 1) has been one of the most prolific oil and gas producing counties in the 

United States. When oil was first discovered in Osage County in 1897 (after earlier drilling 

efforts in 1896), production of petroleum products became the dominant economic activity in the 

county, garnering upwards of $279 million of income for the Osage Tribe by June 30, 1940 

(Bass, 1942). Because of the success of the hydrocarbon fields in Osage County, there have been 

many exploration efforts in the time since the Bass (1942) reports were published. These efforts 

have produced many datasets to draw from, most notably the 3D seismic surveys and the well 

logs that were used in this thesis project. 

The oil and gas producing zones of the Osage County subsurface are in Ordovician, 

Mississippian, and Pennsylvanian intervals with the main producers coming from Pennsylvanian 

aged rocks. New efforts to develop plays in the Mississippian interval, specifically the 

Mississippi Chat, are currently underway, but this project focuses on the Pennsylvanian units in 

the subsurface of Osage County. 

         Osage County is surrounded by geologic regions (Figure 1) that resulted from large-scale 

tectonic activity, particularly during the Pennsylvanian period. It is well established that the 
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geology of Osage County is a part of the tectonically stable Cherokee Platform. The question is, 

are there subtle structural effects within the Cherokee Platform that are related to the larger, 

flanking events? It is hypothesized that there have been small tectonic influences on the 

Cherokee Platform, and it is the goal of this investigation to identify and characterize those 

signals. 

 1.2 Study Area and Data 

         The western portion of Osage County is characterized by Pennsylvanian-aged outcrops as 

well as Mississippian and Pennsylvanian-aged subsurface strata. Three 3D seismic surveys that 

encompass a cumulative 139 square miles are used in this investigation, labeled as WC, GH and 

AN on Figure 3. The seismic survey data were acquired in 1995-1996 and are used courtesy of 

the Osage Nation Minerals council. Acquisition parameters for each of the surveys are outlined 

in Table 1. One well in survey WC, which is referred to as “Well A” due to its proprietary 

nature, was also used in this investigation. Well A has a modern log suite including gamma ray, 

sonic, and electric logs, which allow for generation of a synthetic seismogram in order to 

accurately tie geologic well tops to seismic reflection events at the well location. Figure 4 

exhibits a synthetic seismogram generated using OpendTect (dGB Earth Sciences, 2020) for 

Well A in WC (C. Liner, personal comm.). A time-depth conversion curve was also derived from 

Well A (Figure 5). The time-depth curve is used to convert two-way travel time to measured 

depth within the confines of the survey.       

2. Geologic Setting 

Osage County, Oklahoma lies within the Cherokee Platform geologic province that is 

bounded by the Nemaha Ridge to the west, the Ozark Uplift to the east, the Anadarko basin to 

the south, and farther south the Ouachita, Arbuckle, and Wichita Uplifts (Figures 1 and 6). Sea 
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level variations and tectonic uplift/subsidence caused periods of seaway extension from 

southeast to northwest across modern day Osage County, allowing deposition of a mixture of 

marine and river delta sandstones, limestones, and shales in the Arkoma Basin to the southeast of 

Osage County and on the Cherokee Platform (Thorman et al., 1979).  

           The stratigraphic framework of the Pennsylvanian interval (Figure 2), as mentioned 

previously, is chiefly comprised of sandstones, limestones, and shales. Of the Desmoinesian 

groups—the Cherokee and Marmaton groups—the Cherokee Group is larger and is comprised of 

six sandstone units (three of which are prolific petroleum producers) and three limestone units 

(Liner et al., 2013). The Marmaton Group is comprised of two limestone units, one shale unit, 

and a sandstone unit (Liner et al., 2013). The Missourian series is comprised of two main groups, 

the Skiatook and Ochelata Groups, and the upper portion of the Marmaton Group (Liner et al., 

2013). These groups are made of mainly sandstones with limestone units interbedded within the 

sandstones (Liner et al., 2013). Finally, the Virgillian-aged groups, the Douglas, Shawnee, and 

Wabaunsee Groups are also comprised of mainly sandstones with limestones emplaced within 

the sandstone units. It is important to note that the Cherokee Platform of Osage County is 

missing two key series: Morrowan and Atokan. This can present some difficulty when 

attempting to designate a hard timeline of structural deformation. 

3. Tectonic History 

The tectonic history of the Cherokee Platform is relatively uneventful when compared to 

the surrounding geologic provinces as seen in Figures 1 and 6. However, the impacts upon the 

Cherokee Platform from the surrounding tectonic provinces are important to consider when 

evaluating the depositional history of sediments on the Cherokee Platform. The tectonic 

boundaries of the Cherokee Platform geological province are the Nemaha Ridge to the west, the 
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Ozark Uplift (a product of the Ouachita Orogeny) to the east, the Ouachita and Arbuckle Uplifts, 

and the Anadarko Basin to the southeast, south, and southwest, respectively. The timing of these 

events is not precisely agreed upon but influenced the timing and style of deposition on the 

Cherokee Platform and the surrounding basins. It is therefore important to ascribe proper ages 

for these tectonic events as accurately as possible. A brief history of each of the previously 

mentioned tectonic events will be provided. 

3.1 The Ouachita Orogeny 

         The Ouachita Orogeny extends in a general E-W trend from the southern portion of 

Arkansas, through southern Oklahoma, and into the Marathon region of Texas (Figure 6). Many 

contend that this orogenic belt is a composite of the Appalachian system and is a precursor for 

the Ancestral Rockies. The Ouachita Orogeny has been the source of contention between 

researchers with regards to the timing of its genesis. Houseknecht and Kacena (1983), 

Houseknecht (1986), and others postulate that the subduction zone was not initiated until the 

latest Devonian or earliest Mississippian time. Houseknecht’s 1986 model is used here to orient 

the reader (Figure 7).  

         The first tectonic phase of the Ouachita orogeny began during the late Precambrian to 

early Paleozoic with the rifting of the supercontinent Rodinia into Laurasia and Gondwana. This 

rifting phase initiated the development of an oceanic basin between Laurasia and Gondwana and 

an accompanying Atlantic-style continental margin on the southern edge of Laurasia (Figure 8) 

(Houseknecht, 1986). 

         The southern margin of Laurasia remained passive from the Cambrian until the late 

Devonian. Sedimentation into the adjacent Ouachita Trough would later become the Ouachita 

accretionary prism. A transition from a passive to active tectonic margin began during the late 
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Devonian and into the earliest Mississippian as the southward subduction of Laurasia beneath 

Llanoria initiated the closure of the deep oceanic basin and formed the Ouachita trough (Figure 

7). The sediments deposited in the former deep basin were incorporated in the Ouachita 

accretionary prism associated with the activated subduction zone. This accretionary prism 

continued to develop throughout the Mississippian into the early Atokan (Figures 8 and 9) and 

was the primitive structural character of what would become the Ouachita Mountains. 

Houseknecht (1986) suggests that the precise timing of the activation of the subduction event is 

difficult to determine, but it is apparent that subduction was in progress during the earliest 

Mississippian based on orogenic and volcanic detritus present in the Stanley Formation in the 

Ouachita Mountains. 

         The combination of subduction slab-pull and vertical loading caused flexural bending in 

the southern margin of Laurasia, which culminated in widespread normal faulting in the foreland 

of the system during the Atokan (Figure 7). The dominant faulting style shifted from normal to 

foreland-style thrusting from late Atokan to Desmoinesian. The resultant uplift along the frontal 

thrust created an “orogenic welt” that would further develop into the Ouachita Mountains (Figure 

7 and 9) (Houseknecht, 1986). Later, in the middle Pennsylvanian the core of the accretionary 

prism was breached, and the Ouachita Mountains moved into their adolescence as the subduction 

rate began to subside (Keller and Cebull, 1973). From the late Pennsylvanian into the Permian 

subduction and tectonism ceased. It is important to note that during this process, the Ozark 

Platform was deformed and slightly uplifted (almost like an intracratonic bulge) into the 

structure seen today, the Ozark Dome (McGilvery et al., 2016). The Ozark Dome is the 

easternmost boundary of the Cherokee Platform.  
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3.2 The Wichita and Arbuckle Uplifts 

          To the south of the Cherokee Platform sit the Wichita and Arbuckle Mountains (Figures 

1 and 6). The Anadarko Basin, which is west-southwest of the Cherokee Platform, is also a 

product of the Wichita and Arbuckle tectonism. Prior to the onset of the Wichita Uplift, the 

Southern Oklahoma Aulacogen developed to the northeast of the uplift (Perry, 1988). The 

development of the Wichita Uplift began in the Chesterian (late Mississippian) and continued 

through the early Atokan (Algeo, 1992). During this interval, existing normal faults from the 

previous failed rifting were reactivated as moderately to steeply dipping reverse faults under 

compressional forces exerted by the Ouachita-Marathon Orogeny. These faults generally dip to 

the southwest, indicating NE-SW compression (Algeo, 1992; Perry, 1988). The foreland 

thrusting resulted in intense folding and faulting along the frontal belt and deposition of 

synorogenic arkosic sandstones into the Anadarko Basin (Algeo, 1992).   

         The culmination of the tectonic events of southern Oklahoma began in the middle-late 

Pennsylvanian (Virgilian) with the evolution of the Arbuckle Orogeny (Figures 1 and 6), which 

is a peripheral tectonic event of the Wichita Uplift. It is assumed that deformation of the 

Arbuckle Uplift was completed by the late Virgilian to the earliest Permian (Algeo, 1992; Perry, 

1988). The Arbuckle Fault forms a northern structural domain boundary of a regional 

transpressional system. Wrench-fault tectonism is thought to have had an impact on the Arbuckle 

Uplift as well—an example of the type of continental wrenching seen in the Arbuckle Anticline 

is presented in a deformational model of the Western Arbuckles as described by Perry, 1988 as it 

is a complex sequence within a relatively short time interval: 

(1) Compression trending N. 35o-60o E., associated with the 
Arbuckle thrust of Brown (1984), produced mesoscopic folds and 
contraction faults on the northeast limb of the Arbuckle anticline in 
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the Lake Classen area. (2) These mesoscopic structures were then 
rotated to or past the vertical within enveloping Ordovician to 
Mississippian strata. (3) Several kilometers of erosion occurred 
such that the inferred Ada-equivalent (middle Virgilian) Collings 
Ranch Conglomerate rests on steeply dipping Ordovician rocks. 
Phases 1, 2, and 3 may have closely overlapped in time. Left-
reverse slip on the Arbuckle thrust north of the Arbuckle anticline 
is indicated by en echelon anticlines and synclines on the hanging 
wall of this thrust… (4) About 4.3 km (2.7 mi) of left slip 
developed on the Washita Valley fault… The array of very Late 
Pennsylvanian strike-slip faults in this area indicates that the 
compression direction had rotated to about N. 70o-75o E. during 
final phases of deformation. 
 

The tectonic history of the Arbuckle Uplift lends credence to the transpressional system 

hypothesis of the Ouachita system. The Wichita and Arbuckle Uplifts are hypothesized to have 

impacted the geologic structure of the Cherokee Platform in the Missourian due to their 

proximity and magnitude of deformation (Barker, 2018).  

3.3 The Nemaha Ridge 

         The Nemaha uplift (Figures 1 and 6) developed perpendicular to the general strike of the 

Ouachita system via E-W compressional thrusting and strike-slip deformation, displaying a 

general southern structural plunge (Dolton and Finn, 1989; Gay, 2003; Snyder, 1968). This 

occurred during the early Pennsylvanian into the early Permian (Dolton and Finn, 1989). The 

Nemaha Ridge trends from its northern limit in Kansas and Nebraska to its southern limit in 

northern Oklahoma and is the westernmost geographical limit of the Cherokee Platform. The 

Nemaha displays v-shaped pop-up blocks in the subsurface in Oklahoma, and it was first 

recognized as a hydrocarbon exploration target in Oklahoma in the early 20th century (Gay, 

2003). Since the time of its discovery, there have been many hypotheses describing the origin of 

the Nemaha Uplift, but most contemporary models such as Gay (2003) posit that compressional 
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and strike-slip processes shaped its current structure, explaining the thrusting, folding, and lateral 

displacement observed. 

4. Previous Investigations 

No previous publications describe the use of 3D seismic horizon flattening techniques in 

conjunction with isochron mapping to highlight tectonic signals in a stable cratonic setting. . 

Horizon flattening, however, is a widely used method of seismic interpretation to estimate 

paleodepositional settings by restoring original horizontality to the horizon that is flattened. This 

allows investigators to interpret depositional trends and systems seen above and below the 

flattened horizon.  

There have been previous investigations in this study area by many researchers with a 

wide variety of goals using the same or very similar data sets to be used in this investigation. 

Benson (2014) and Falzone (pers. Comm) deal directly with the mapping of Mississippian 

tripolitic chert bodies and the Mississippi Chat lithofacies in western Osage County. 

Investigation of deep basement seismic features in Osage County has been conducted by Liner 

(2015), and subsurface mapping and characterization of clinoforms in the Pennsylvanian interval 

can be found in Barker (2018). There have also been publications on the subsurface sequence 

stratigraphy of the Pennsylvanian interval by West (2015), the mechanical stratigraphy of the 

Mississippian intervals by Jennings (2014), and the stratigraphy and reservoir implications of the 

Arbuckle Group done by Keeling (2016)—all of which were done in western Osage County. 

West (2015) and Barker (2018) are of particular importance as the clinoforms that they 

investigated play a major role in this investigation. Other research conducted in this geologic 

region include Chenoweth (1968), Suriamin and Pranter (2018), Wittman (2013), Roy et al. 

(2012), Elebiju et al. (2011), and Clinton (1957).  
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Many theses and research articles have been completed regarding the structural 

development of the Arkoma Basin, Anadarko Basin, the Ouachita Orogeny (most of which 

include the development of the Ozark Dome as a product of the Ouachita Orogeny), Wichita and 

Arbuckle Uplifts, the Nemaha Ridge, some of which have been detailed in the previous section.  

5. Methods 

5.1 Data Analysis  

         The bulk of this investigation was conducted within the confines of the WC 3D seismic 

survey.  This is the survey with the most previous work, and it provides a higher resolution 

dataset than surveys GH and AN. High resolution seismic horizons within the Pennsylvanian 

interval in the 3D seismic surveys were tracked, named, and catalogued. Horizon naming was 

determined by the well tops that are tied into WC using a synthetic seismogram based on well A 

sonic and density logs and an extracted wavelet tuned to the Pennsylvanian interval. For horizons 

that do not correlate with a known formation top in Well A, a name was given based on its time-

depth in milliseconds on that synthetic; for example, horizon “264” was picked on a reflector that 

represents a two-way travel time of 264 ms. Once these horizons were tracked and catalogued, 

the flattening process began. First, the horizons were gridded and flattened. The flattened 

horizons were subsequently examined for any tectonic signals that might be present above or 

below the flattened horizon. This process gave insight into intracratonic activity within the 

Cherokee Platform as well as depositional constraints that may have been introduced as a result 

of this activity. These features are highlighted and catalogued as part of this study. 

         After cataloging probable tectonic signals, tracked horizons were used to create interval 

time maps. If regional tectonic forces warped the paleo-depositional surface up or down, it would 

result in thinning or thickening as the interval filled the new accommodation space. There are 
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circumstances in which erosional surfaces can play a role in the outcome of the character of the 

isochron maps. This can be seen in this investigation on maps that are affected by the 

Mississippian-Pennsylvanian Unconformity. Interval analysis allows a more accurate timing 

estimate of the tectonic signal, connection to surrounding tectonic systems, determination of 

orientation and sense of the signal (compressional or tensional), association with orogenic 

province, and serves as a proxy for paleo-geomorphology in a narrow band of geologic time. 

Isochron (time-thickness) maps were also constructed in selected intervals to evaluate sediment 

dispersal. These time-thickness maps were constructed using the composite tectonostratigraphic 

intervals. These intervals are TSI-1, TSI-2, TSI-3, and TSI-4. Isolation of the individual horizon 

pairs within each tectonostratigraphic sequence was used to illustrate large-scale time-thickness 

and small-scale time-thickness, respectively. The naming convention for the isochron maps is 

derived from the process of constructing the isochron maps themselves. For each of the internal 

horizon pair maps, the name is a combination—in stratigraphic sequence—of the two horizons 

that comprise the interval of the map, e.g. the map that illustrates the time-thickness of the 

interval between the Osage/Layton horizon and the Avant horizon is called “Osage/Layton-

Avant”. Each horizon was gridded on a surface with a 3x3 smoothing filter to accurately 

interpolate time-structure between manually picked lines and to smooth tracking noise in the 

time-structure grid of the 3D autotracked horizons. Each interval is bounded by a basal and upper 

tracked horizon and isochron maps were constructed by subtracting the time-structure of the 

basal surface from the upper surface. This, in turn, gives the interval time-thickness—this is 

similar to the concept on an isopach map, but instead of using true stratigraphic thickness, the 

thicknesses being represented are derived from vertical two-way travel times present in the 3D 

seismic surveys. 
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The tectonic impact on depositional processes can be inferred from paleostructure and 

isochron maps. Based on the vectors associated with the features seen on the isochron maps, it 

can be determined from which tectonic event each signal is originating.  

 It is important for the reader to have a basic understanding of what kind of features were 

of interest in the interval time isopachs. Some of these are the long wavelength features that are 

being interpreted as tectonic signals for this investigation. The signals include, but are not limited 

to, clinoforms, stratigraphic thickening, stratigraphic thinning, stratigraphic truncations and 

pinchouts. The term ‘long wavelength’ is always relative to some reference length. In this study, 

features with length scales up to about half of the maximum survey dimension of 10 miles would 

be mappable and longer wavelength features would not. For example, a thickening ridge-like 

feature two miles wide would be mappable, but a tectonic event that moved the entire survey 

area up/down would not be detectible from the seismic data alone (but a wider, well-based 

interval mapping could reveal such a feature). 

 5.2 Tectonostratigraphic Intervals 

 Tectonostratigraphic intervals were established using significant reflections that were 

selected based on high continuity and robust amplitude. Figure 2 depicts these intervals relative 

to stratigraphy and the seismic data. The tectonostratigraphic intervals were initially designated 

in survey WC, and they are referred to as “TSI-1,” “TSI-2,” “TSI-3,” and “TSI-4.” The 

tectonostratigraphic interval breakdowns are as follows: TSI-1 is the oldest (and therefore the 

deepest interval) and its basal surface is at the Mississippian-Pennsylvanian Unconformity, or 

“MPU” while its upper surface is at the Oswego limestone horizon.  TSI-2 is bounded by the 

basal Oswego limestone horizon and bounded above by the Osage Layton sandstone horizon. 

TSI-3 has the Osage Layton sandstone as a basal surface and upper surface of the Endicott-Oread 
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horizon. TSI-4 is bounded below by the Endicott-Oread horizon and above by the Pawhuska 

limestone reflection event.   

5.3 Isochron Maps and Horizon Flattening 

The tectonostratigraphic sequences seen in survey WC also exhibit time-thickness 

variation. Isochron maps displaying the time-thickness of each TSI were constructed in order to 

quantify the time-thickness variations within the TSIs. Individual horizon-horizon isochron maps 

were also created to quantify the time-thicknesses between each horizon pair. It is important to 

note that while the contour interval on each isochron map is the same (5ms), the color bar scale 

is different for each map. This difference is attributed to the variation in the range of time-

thickness between each interval that is being evaluated. For example, the color bar scale for the 

TSI-1 isochron map (Figure 10A) has a minimum value of 28 ms and a maximum value of 81 ms 

whereas the color bar scale for TSI-2 isochron map (Figure 13A) has a minimum value of 99 ms 

and a maximum value of 128 ms.  

Basic interpretation of isochron maps like the one in Figure 12 follows from the 

assumption that the top horizon defining the interval represents a geologic marker at depositional 

slope. The general dip of the study area is, and has been, down to the SW into the Anadarko 

Basin except for paleokarst topography on the Mississippian-Pennsylvanian unconformity during 

the period of geological time studied. The tectonic alterations to this regional dip are the subject 

of this study. As the deepest interval studied, Figure 12A is influenced by the MPU topography 

which dominates the isochron variations observed. Even so, a general statement can be made that 

isopach thins represent paleotopographic high areas and isopach thicks are associated with 

paleotopographic low areas during the time interval of deposition of this tectonostratigraphic 

interval. Shallower intervals not influenced by the MPU will be interpreted in the same way—an 
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isochron thin implies paleotopographic high and an isochron thick implies paleotopographic 

low—and considered in relation to the regional tectonic features discussed above.  

Each isochron map has been paired with two seismic lines displaying the horizons of the 

tectonostratigraphic interval that is being focused upon. The interval represented in each map is 

highlighted on a seismic line taken from an angle that is orthogonal to the trend of the main 

feature(s). Some of these lines were taken using an arbitrary line function in Petrel, and some 

were taken from the original inlines and crosslines. In each case, the seismic line is shown 

unflattened (representing the tectonostratigraphic interval), flattened on the basal horizon, and 

also flattened on the top horizon. This is done to show the potential interpretation of two 

different possible settings. These flattened and unflattened seismic lines help highlight important 

tectonic and sedimentological features that are present within each interval. 

5.4 Time-Thickness to Measured Depth-Thickness Conversion 

Because isochron maps are made by measuring time-thickness of a specific interval in 

two-way travel time, a conversion must be made in order to estimate a measured depth-thickness 

similar to an isopach map. The first step in this conversion is to use the following equation: 

z = v ( t /2 ) 

to estimate interval thickness (z, feet) given the interval velocity (v, feet/sec) and interval two-

way travel time (t, seconds). In principle, the interval velocity will vary laterally and vertically 

across the survey area, but here we use 15,000 ft/sec (estimated from well A) for all 

Pennsylvanian interval thickness conversions. 

 The next step in the conversion process is to take the individual time-thickness values 

from discreet points on the isochron maps (t) and known velocity (v), to estimate thickness (z). 
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In practice, only maximum and minimum interval thicknesses will be calculated and reported. 

The conversion will allow for more accurate interpretations to be made with regards to the scale 

of the structures in question.  

 5.5 Finding the Trend of Regional Features 

 In order to find the trend of regional features in the isochron maps, a 360-degree 

protractor was overlain on top of the maps where a generalized line of trend was ascribed and 

measured using the azimuthal convention (0o-360o, North=0). All trend measurements given in 

this study are approximate trends relative to due north.  

6. Observations  

6.1 WC 3D Seismic Survey 

 6.1.1 Tectonostratigraphic Interval 1 (TSI-1) MPU to Oswego Limestone 

 Figure 10A is the time-thickness map of TSI-1 across the WC survey. This interval 

consists of one internal horizon, the Pink Lime. The maximum time-thickness value in this 

isochron is 81 ms (608 ft), and the minimum time-thickness value is 28 ms (210 ft). The thickest 

regions in this interval are in the southwest corner of the WC long with a similarly thick region 

in the north-central portion of the survey. There is apparent thinning in the northeastern and the 

northwestern corners of the survey, while the more central regions exhibit a relatively moderate 

thickness.  

 As can be seen on the seismic lines displayed for TSI-1 (Figure 10B,C), three horizons 

are grouped in the interval. The lowest of which is the Mississippian-Pennsylvanian 

Unconformity (MPU) (lower purple horizon), which is under the Pink Lime (green horizon) and 

overlain by the Oswego Limestone (upper purple horizon). The unflattened line (Figure 10B) 
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shows a slight inclination dipping from north to south.  When looking at the seismic data, 

thickness variation can be seen on both of the flattened versions of the line (Figure 10C,D). 

There is, however, a significant amount of reflection discontinuity that can be attributed to 

irregularity seen in the MPU, which is a paleokarst environment subject to carbonate dissolution 

in the subsurface. 

 6.1.2 MPU-Pink Lime within TS-1 

 The first horizon pair isochron map in TSI-1 is taken from the MPU up to the Pink Lime 

horizon (Figure 11A). The maximum time-thickness value in this isochron is 54 ms (405 ft), and 

the minimum time-thickness value is 2 ms (15 ft). In this time-thickness map, similar thickening 

patterns can be observed as those seen in the composite TSI-1 isochron map (Figure 11A). 

Significant thickening can be seen in the southwest corner of WC as well as in the north-central 

region. The thinnest portions of the map are again in the northeast and northwest corners, but in 

this specific horizon-horizon pair, the thinning is considerably more than in the TSI-1 composite. 

The southern portion of the map also depicts a thinner, more uniform interval than the TSI-1 

composite.  

 The seismic line of Figure 11B is of the same orientation (N-S) as the seismic lines in 

Figure 10 and shows very similar features. There is a north to south inclination that appears to 

thicken in the same direction. This thickening is highlighted nicely in the flattened seismic lines 

(Figure 11C,D). Just as the TSI-1 composite interval showed discontinuous reflection in the 

flattened seismic line due to the presence of the MPU (lower purple horizon), the flattened line 

for the Pink Lime-MPU interval also shows these same electrocardiogram-like variations in 

reflection continuity.  
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6.1.3 Pink Lime-Oswego within TS-1 

 The Pink Lime to Oswego isochron interval shows a much more uniform time-thickness 

trend than the MPU to Pink Lime interval (Figure 12A). The maximum time-thickness value in 

this isochron is 36 ms (270 ft), and the minimum time-thickness value is 13 ms (98 ft). There is a 

slight discontinuous pattern associated with the thickest intervals. The most elongate of the 

thicks are located on the flanks of the thinnest interval in the northeast. When moving from east 

to west on the map, the thicks become more isolated and less elongate than in the east. The 

largest single thick entity is again in the southwest, but it is significantly smaller and more 

isolated than the previous horizon-pair isochron. Nevertheless, the thickness variations seen in 

this interval are very subtle, and this could be attributed to the overall thin interval.  

 This interval is the first that is not affected by the irregularities presented by the MPU 

during the flattening process. From west to east, there is little variation in thickness on this 

seismic line (Figure 12B). The slightly dipping character seen on the west to east profiles in the 

study area are also seen here. When this line is flattened on the Pink Lime (middle green 

horizon), a mounded, thickened feature can be seen (Figure 12C). When flattened on the Oswego 

(upper purple horizon), this same thickening region in the west can be seen, but it is instead 

represented by a wedge-like trough (Figure 12D). This bump can also be seen in the map of 

Figure 12A as the southwestern thicker zone in the map.  

 6.1.4 Tectonostratigraphic Interval 2 (TSI-2) Oswego Limestone to Osage/Layton 

The time-thickness of TSI-2 displayed in Figure 13A is a composite isochron of the 

interval from the Oswego limestone up to the Osage/Layton sandstone. It consists of three 

internal horizons, the Big Lime (yellow), horizon 500 (green), and horizon 439 (cyan). The 

maximum time-thickness value in the tectonostratigraphic interval 2 (TSI-2) isochron is 128 ms 
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(960 ft), and the minimum time-thickness value is 99 ms (743 ft). This interval shows a general 

thickening trend from northwest to southeast, with the thickest region in the southeast. This trend 

can be broken into three distinct thickness zones beginning with the thickest zone in the 

southeast, then a moderately thick zone across the southwestern-most corner to the northeastern-

most corner of the survey, and then finally the thinnest of the three zones in the northwestern 

corner. The thickening to the southeast has a uniform linear trend that extends on its long axis 

from northeast to southwest, perpendicular to the general thickening trend (Figure 13A).  The 

thickest interval in the southeastern corner of the survey shows a relatively continuous, uniform 

thickness (on the order of ~900 ft to ~960 ft). The intermediate interval also displays a linear 

trend from southwest to northeast, however it is not quite as uniform with its thickness—the 

northeastern potion of this zone has a more uniform thickness with some relatively thinner zones 

in isolated areas, but to the southwest, the uniformity breaks down into a more splotchy pattern 

of semi-isolated patches of similar thickness. The semi-isolated patches of intermediate thickness 

in this zone still exhibit an elongate, linear trend from northeast to southwest. The third, thinnest 

unit in this composite isochron is in the northwestern-most corner of the survey, ranging from 

~740 ft to ~760 ft in thickness. This thin portion of the map is isolated, and it borders the edges 

of the survey. It shows a dramatic thinning trend from the previous unit.  

Figure 13B exhibits an unflattened seismic line from NW to SE. The overall structure is 

that of a slightly inclined interval of reflectors dipping from east to west at an approximate 

maximum angle of 1.6o. This inclination could potentially be attributed to the uppermost 

boundary of TSI-2, the Layton/Osage sandstone, which also serves as the basal horizon of TSI-3 

or Clinoform Zone. The flattened seismic lines (Figure 13C,D) illustrate the thickening trend 

seen on the isochron map for the TSI-2 composite. The seismic line that is flattened on the basal 
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Oswego horizon (purple) shows the thickening in the SE as a subtle mounded feature (Figure 

13C). The line flattened on the uppermost horizon of the interval, Osage/Layton (red), shows a 

wedge-like trough thickening pattern to the SE (Figure 13D). Both of these lines are 

representative of the southeasterly thickening trend shown on the isochron. 

6.1.5 Oswego-Big Lime within TSI-2 

The first horizon-pair isochron map for TSI-2 features the Oswego (lower purple) up to 

the Big Lime (yellow) interval. The maximum time-thickness value in this isochron is 26 ms 

(195 ft), and the minimum time-thickness value is 5 ms (38 ft). This isochron interval exhibits an 

almost entirely uniform time-thickness as can be seen in Figure 14A. This map is at, or near 

vertical resolution. As a result, there are a number of E-W “thickness artifacts”. There are, 

however, a few anomalous regions of the map showing distinct thickening and thinning trends. 

The most notable region of this map is the western-most portion; there are two large dome-

shaped areas that exhibit a thickening trend in the south and a thinning trend directly adjacent to 

the north. The thicker unit shows a semi-continuous, semi-uniform unit that is abruptly truncated 

and bordered by the thinner, more continuous unit to the north. In the eastern portions of this 

isochron map there can be seen some isolated thick splotches that are seemingly randomly 

spaced within the most uniform regions of the survey.  

Figure 14B is an unflattened seismic line that runs from north to south along the western 

margin of the map, highlighting the main features described above. There are multiple small 

undulations in the Big Lime horizon, which could potentially be caused by the nature of the 3D 

autotrack method for this particular horizon. The interval thickness seen on the seismic line is, 

however, relatively uniform aside from the thin to thick transition seen in the westernmost region 

of the map (Figure 14A). The seismic line flattened on the basal Oswego horizon (purple) shows 
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a steady thinning gradient from north to south that is consistent with the isochron map (Figure 

14A,C).  Once the thinnest region of the line is reached, however, the transition into the thickest 

portion of the interval occurs. Here, a mounded geometry can be seen in Figure 14C. Figure 14D 

is the line flattened on the upper horizon 500 (yellow), and at the transition point from thinnest to 

thickest there is a wedge-like geometry that is seen.  

6.1.6 Big Lime-Horizon 500 within TSI-2 

The time-thickness map of the Big Lime (yellow) to horizon 500 (green) is shown on 

Figure 15A. The maximum time-thickness value in this isochron is 26 ms (195 ft), and the 

minimum time-thickness value is 3 ms (23 ft).  It is immediately apparent that there is far less 

uniformity in this interval relative to some of the previous intervals. There are still some trends 

that can be observed, the first of which is the overall thinning to the south and southwest of WC. 

The southwest corner of WC is significantly thinner than in any other region of the map. There 

are some isolated thicks in the northern and western portions of the survey, but they are far less 

abundant than any of the other thinner intervals that are not part of the massive, globular thinning 

trend in the southern-most portion of the map. 

This interval is also relatively thin, but it does show some thickness variation when 

looking at the seismic lines in Figure 15B,C,D. Horizon 500 (green) was also picked using 3D 

autotrack, so there are some picking discrepancies that can be seen in both flattened and 

unflattened seismic lines. These seismic lines run north to south in the western region of the 

mapped area. When moving from north to south, the interval transitions from relatively thin to 

quite thick, and then very thin in the southern region of the line. This thin region appears in an 

inverse of the trend seen in the previous horizon pair, where there was a relatively thin region 
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was present in the middle of the line, and a thick region is immediately adjacent to the south 

(Figure 14).  

6.1.7 Horizon 500-Horizon 439 within TSI-2 

Figure 16A depicts the isochron map for the interval of horizon 500 up to horizon 439. 

The maximum time-thickness value in this isochron is 77 ms (578 ft), and the minimum time-

thickness value is 19 ms (143 ft). This interval shows a trend just the opposite of the 500-Big 

Lime isochron map. The thinnest portions of the map are found in the northern half of the WC 

where the thickest regions are in the south half of the survey. The northern, thin half of the 

interval sees a generally continuous, uniform trend of thinning to the north where the thinnest 

areas are in the northwestern-most corner and the very far east of the map.  

The 500-439 horizon pair also features two 3D autotracked horizons, so there are obvious 

discontinuities representing the aforementioned “electrocardiogram-like” responses in the 

horizons moving from north to south in the seismic lines (Figure 16B,C,D). Horizon 500 in 

particular has quite a few significant busts that are observable in the northern-central region of 

the unflattened seismic line, and these translate into busts on the flattened seismic lines. Aside 

from these minute sources of potential error in the horizon picking procedure, there is a relatively 

uniform thickness with little variation from north to south seen on the line. There are few 

changes in overall thickness that are not attributed to seismic character and horizon picking, as 

can be seen on the map in Figure 16A. 

6.1.8 Horizon 439-Osage/Layton within TSI-2 

This time-thickness interval shows a linear trend that is oriented northeast to southwest 

on its long axis (Figure 17A). This trend is similar to the TSI-2 isochron shown on Figure 13A. 
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The maximum time-thickness value in this isochron is 56 ms (420 ft), and the minimum time-

thickness value is 4 ms (30 ft). The thickest zone is in the southeastern portion of the map. 

Moving northwest on the map (perpendicular to the overall linear trend), the thick zone 

transitions to a significantly thinner zone that expresses the same linear trend as the thickest 

zone. Continuing to the northwest, there is another transition into a smaller thick region. This 

thick region is not as widespread, and the thickest parts of the zone are to the northeast. There is 

a final transition to the northwest from thick to thin that is similar in nature to the middle thin 

zone. There is also an isolated thick zone in the farthest northwest corner of the map, which takes 

on the shape of a thickening band.  

The final horizon pair of horizon 439 up to the Osage/Layton is shown on the seismic 

lines of Figure 17B,C,D. The busts in 439 that were discussed in the previous section also play a 

role in the character of the isochron map generated in Figure 17A, but they are not as significant 

due to the quality of picking on the Osage/Layton horizon. The lines shown in Figure 17 are of a 

northwest to southeast orientation, which is orthogonal to the trend of the lineated features seen 

in the isochron map. These lines illustrate the subtle oscillation of thick to thin that is seen in the 

isochron map. The unflattened line shows short wavelength structural undulations from 

northwest to southeast (Figure 17B). The variations in thickness are more readily observed when 

viewing the flattened lines (Figure 17C,D). Figure 17C is flattened on the basal horizon 500 

(cyan), and Figure 17D is flattened on the Osage/Layton horizon (red).  

6.1.9 Tectonostratigraphic Interval 3/Clinoform Zone (TSI-3 or CZ) Osage/Layton to 

Horizon 352 

The composite isochron map for TSI-3 or “Clinoform Zone” is shown in Figure 18A. The 

base of this interval is the Layton/Osage sandstone (lower red), and the top is horizon 352 
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(orange). The maximum time-thickness value in this isochron is 96 ms (720 ft), and the 

minimum time-thickness value is 48 ms (360 ft). There is a strong NE-SW grain to this map that 

divides it into adjacent thick and thin regions. The thickest zone in this interval is in the 

southeastern-most portion of the study area and exhibits a semi-linear trend in the orientation of 

northeast to southwest. This trend is fairly apparent across the entirety of the map, and it defines 

the different zones that are present. Moving northwest, the study area shows a transition to 

thinner intervals, the thinnest of which is in the northern-most central region of the map. The 

thinnest zone shows a similarly elongate trend in the same orientation as the thickest zone to the 

southeast.   

The Clinoform Zone is so named for its succession of clinoforms, the most pronounced 

of which in WC is the Avant Clinoform that was thoroughly investigated by Barker 2018. Figure 

18B is the unflattened version of the seismic line with an orientation of northwest to southeast, 

highlighting the CZ, which consists of two horizons, the lowest of which is the Layton/Osage 

sandstone (lower red) and horizon 352 (orange).   

6.1.10 Osage/Layton-Avant within TSI-3/CZ 

The Layton/Osage up to the Avant is the first horizon pair interval of the Clinoform Zone 

is shown in Figure 19A. The maximum time-thickness value in this isochron is 79 ms (593 ft), 

and the minimum time-thickness value is 9 ms (68 ft).  The first thing that can be seen is the 

extremely pronounced linear trend that is oriented from northeast to southwest on its long axis. 

Zones across the study area exhibit a trend of thinning from southeast to northwest, which is 

perpendicular to the linear trend that was just described. The thickest zone is in the southeastern 

region of the map. Three more distinct zones that are progressively thinner are apparent to the 

northwest. All exhibit the same elongate linear trend from northeast to southwest. To the 
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northern end of the thickest zone, there is a hook-like feature that resembles a reentrant to the 

northeast. Continuing to the northwest the isochron map shows a trend of progressive thinning, 

with the thinnest zone of the study area in the northwestern corner of the map. 

The Osage/Layton-Avant horizon pair represents the depositional packages below the 

structural top of the Avant Clinoform. In the unflattened seismic line (Figure 19B), the true 

Avant Clinoform structure can be seen, but in the flattened lines (Figure 19C,D), the time-

thickness variations are very apparent—to the west-northwest (basinward), the interval is 

significantly thinner, moving up the slope (to the east-southeast), the interval gets progressively 

thicker, and finally once on the shelf (far eastern region), the thickest region of the seismic line is 

represented.  

6.1.11 Avant-Horizon 352 within TSI-3/CZ 

The second horizon pair interval in the Clinoform Zone is from the Avant horizon up to 

Horizon 352 (Figure 20A). The maximum time-thickness value in this isochron is 59 ms (443 ft), 

and the minimum time-thickness value is 8 ms (60 ft). This time-thickness map depicts a similar 

thickening pattern as the Osage/Layton-Avant interval, but it is inverted. From southeast to 

northwest there is a thickening trend, with a similar linear trend seen along the long axis of the 

zones with an orientation of northeast to southwest. For the Avant-352 interval specifically, it 

must be noted that the thinnest zone is in the entirety of the eastern portion of the map. Moving 

west-northwest, the study area thickens progressively. The thickest portion of the study area is in 

the northwest, and it is a relatively uniform thickening except for a bullseye that represents a 

relatively thinner area within the thickest region of the map.  

352-Avant represents the interval of deposition post-clinoform development (Figure 

20B,C). The most prominent feature in the CZ is the clinoform of Avant age (highlighted by the 
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red horizon in the middle of the CZ interval in Figure 20B,C,D). The shelf slope break of this 

clinoform has a strike that extends north-northeast to the south-southwest (024o) in WC with the 

distal, basin-ward bottomset complex to the west and the proximal, top set complex to the east 

(Figure 20B). Above the distal bottomsets of the Avant clinoform reflectors representing 

younger sediment packages can be seen onlapping as they are truncated by the foresets of the 

clinoform (Figure 20B). The sediment packages associated with this clinoform exhibit thickening 

to the west and thinning to the east—patterns that are typically associated with the formation of a 

clinoform. The unflattened seismic line once again shows the true structure of the Avant 

Clinoform and its succeeding depositional units up to Horizon 352 (Figure 20B). Moving from 

west to east of Figure 20B, one can see the aforementioned onlapping sediment packages that are 

being truncated by the slope/foreset complex of the Avant Clinoform. Figure 20C highlights this 

interval from a flattened perspective, allowing for time-thickness variations to be observed and 

catalogued—moving from west to east, the interval exhibits a thinning trend. The westernmost 

(basinward) region of the line is the thickest part of the interval, and moving east, the interval 

progressively thins up the slope and onto the shelf, where the thinnest region of the interval is 

observed (Figure 20C). 

6.1.12 Tectonostratigraphic Interval 4 (TSI-4) Horizon 352 to Pawhuska 

The isochron for the final composite interval is TSI-4. This interval consists of five 

mapped horizons, in stratigraphic order, 352 (orange), 306 (lower red), 264 (lower green), 213 

(upper red), and the Pawhuska limestone (upper green) (Figures 21-25). The maximum time-

thickness value in this isochron is 179 ms (1343 ft), and the minimum time-thickness value is 

142 ms (1065 ft). This composite interval exhibits an overall thickening gradient from southwest 

to northeast, which also exhibits a linear trend from northwest to southeast. In the southwestern-
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most region of the isochron, where the thinnest zones occur, there are two dome-shaped thin 

zones, the larger of which is in the far western portion of the map. The larger bulb to the west 

spans almost the entire western border of the map but begins to show a thickening trend to the 

north and the east of the bulb. The smaller of the two thin bulbs is in the south-central region of 

the survey. There is a small transition zone between the thin and thick zones. The thickest zones 

exhibit a similar dome-shaped, localized pattern. The larger of the two thicks is in the north-

central region of the map and is mostly isolated. There is another localized thick zone in the 

southeastern corner of WC that is not as continuous as the northern thick zone, but still robust.  

Figure 21B,C,D depicts the unflattened and flattened versions of the seismic line with the 

TSI-4 interval highlighted. This interval continues to exhibit a similar east-west thinning trend 

with reflectors dipping at an approximate angle of 1.5o at the shelf-slope break (Figure 21C). 

This is similar to that observed in the underlying CZ. There is a minor difference overlaying the 

onlapping depositional packages in the Clinoform Zone in the western region of the unflattened 

seismic line (Figure 21B).  It is developed as a minor hump that is not present below the TSI-4 

interval. This hump is diminished to nonexistent on the flattened profiles (Figure 21C,D).  The 

flattened lines lend some insight into the composite time-thickness variations present in this final 

interval (Figure 21C,D), the first of which is a general thickening trend from west to east. There 

is a noticeable high that exists in what would be considered the shelf-slope break region of the 

line, indicative of a thick zone, which is also present on the map in Figure 21A. Moving 

eastward, the relative high is followed by a slight thinning point that then gives way to a 

progressive, gentle thickening trend to the edge of the survey (Figure 21C,D).  
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6.1.13 Horizon 352-Horizon 306 within TSI-4 

Figure 22A exhibits the first individual horizon pair isochron of TSI-4 is from horizon 

352 up to horizon 306. The maximum time-thickness value in this isochron is 63 ms (473 ft), and 

the minimum time-thickness value is 26 ms (195 ft). From south to north, this map displays a 

thickening trend with the thinnest portion of the map on the southern-most border of the survey. 

Moving north, there is a thickening gradient with the thickest zone in the far northwestern corner 

of the map. Overall, this map shows a relatively thinner interval, and the thinnest areas are the 

most widespread throughout the southern portion of the study area. There is also a generally 

continuous, less localized trend in this map as well—there are not many significant, isolated 

zones of thick or thin intervals. 

The seismic lines featured in this interval run from north to south in at an angle that is 

orthogonal to the general east-west grain that is seen in the map of Figure 22A. The changes in 

interval thickness are apparent in even the unflattened seismic line—there is an obvious thinning 

trend to the south (Figure 22B). The flattened seismic lines (Figure 22C,D) for the 352-306 

horizon pair interval also confirm the northerly thickening trend seen in the isochron map (Figure 

22).  

6.1.14 Horizon 306-Horizon 264 within TSI-4 

The horizon pair isochron for horizon 306 up to horizon 264 is shown in Figure 23A. The 

maximum time-thickness value in this isochron is 60 ms (450 ft), and the minimum time-

thickness value is 25 ms (188 ft). The thickening gradient seen here is different from that of the 

352-306 isochron map in Figure 22A. In the 306-264 interval, a general thickening trend is 

exhibited from northwest to southeast, where the thinnest zones are in the northwest and the 

thickest zones are in the southeast. The gradient is relatively uniform with a few dome-shaped 
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zones in the intermediate areas along the long axis of the trend, which runs from northeast to 

southwest. The largest thick zone is in the far southwest, and the largest thin zone spans the 

majority of the western and northwestern margins of the map.  

When observing the seismic line flattened on horizon 306, a subtle but uniform 

thickening trend can generally be seen when moving from northwest to southeast across the lines 

(Figure 23C,D). The far northwestern region of the seismic lines represent the thinnest zone of 

the interval, and to the east there is a subtle thickening trend that seems to maintain a thickness in 

the realm of 39 ms (293 ft) to 42 ms (315 ft) of time-thickness until the very far southeastern 

region of the lines is reached, where the time-thickness increases significantly (Figure 23C,D).  

6.1.15 Horizon 264-Horizon 213 within TSI-4 

On the time-thickness map for the 264 to 213 interval, there is a significant amount of 

uniformity not seen in the other horizon pair maps for TSI-4 (Figure 24A). The maximum time-

thickness value in this isochron is 62 ms (465 ft), and the minimum time-thickness value is 38 

ms (285 ft). The majority of the map displays time-thickness values in the 42 ms (315 ft) to 50 

ms (375 ft) range with some dome-shaped outliers in seemingly random regions of the map. The 

thickest of these outliers is a localized area in the southwestern region of the map. The thinnest 

of these outliers resides on the western and southern edges of the map, and there is also a 

localized thin zone on the northeastern edge of the map. A localized thick zone also exists in the 

northern-central region of the map.  

264-213 shows a gradual thickening trend from northwest to southeast on the unflattened 

seismic section (Figure 24B). The southeasterly thickening trend seen in the seismic profiles is 

quite subtle, and does not show a large amount of variation except on the southeastern end of the 

seismic profiles where the interval is at its thickest (Figure 24C,D). The map in Figure 24A tends 
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to follow this generalized trend seen in the seismic data—generally thin in the west, and 

generally thick in the east, a couple of isolated thicks and thins notwithstanding.    

6.1.16 Horizon 213-Pawhuska within TSI-4 

The 213 up to Pawhuska isochron map is the final horizon pair isochron map that is 

discussed (Figure 25A). The maximum time-thickness value in this isochron is 41 ms (308 ft), 

and the minimum time-thickness value is 14 ms (105 ft). Much like the 264-213 isochron map, 

213-Pawhuska presents a uniform thickness distribution relative to the previous horizon pair 

isochron maps. The vast majority of the map exhibits a time-thickness distribution in the 20 ms 

(150 ft) to 28 ms (210 ft) range. There are some localized thick zones in the far eastern regions of 

the map that are situated on the edge of the study area. There are also some very localized thin 

zones concentrated in the far southeastern and northeastern corners of the study area, however 

they are extremely small and are moderately distanced from one another.  

The seismic profiles of the final horizon pair interval of 213-Pawhuska exhibit a similar 

nonuniform time-thickness trend seen in the 352-306 flattened seismic line (Figure 22C and 

Figure 25C). There is much undulation moving from north to south in the unflattened seismic 

line (Figure 25B), and this high frequency variation is mirrored by the isochron map seen in 

Figure 25A. The location and orientation of this seismic line exhibits the subtle oscillation of 

thicks and thins in the eastern region of the map, but in the remainder of the mapping area to the 

west, there very little thickness variation (Figure 25).  

7. Interpretations  

The seismic lines and isochron maps that were discussed at length in the observations 

section of this investigation reveal clues regarding the presence of tectonic signals. This includes 
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the identification of potential tectonic sources, the frequency of the tectonic pulses, the 

directionality of the pulses, and the effects of the pulses upon the sedimentation based on 

accommodation space seen on the Cherokee Platform during the Pennsylvanian interval. Some 

of these signals can be attributed to burial and compaction. These types of sedimentary signals 

will be of an even smaller scale than the already small-scale tectonic signals. When discussing 

accommodation space, the idea of a “see-saw” is invoked as a function of both sedimentological 

and tectonic influences on the study area and how they are related to the surrounding tectonic 

provinces. When interpreting the isochron maps, the thicker regions of the maps were considered 

to indicate potential structural lows, allowing for more accommodation space, and the thinner 

regions of the maps were considered to indicate potential structural highs with less 

accommodation space. It is important to note that the effects of erosion and internal 

unconformities are not immediately apparent when interpreting the isochron maps. These 

surfaces can be hidden below the resolution of the seismic data in some cases, and in other cases 

they can be seen and accounted for.   

It is also important to keep in mind that the methodology for horizon picking varies from 

horizon to horizon—some horizons are continuous reflectors that allow for the use of an accurate 

3D autotrack tool while others required a fully manual horizon picking method in order to 

accurately pick the correct reflector when partially buried in the noise of the seismic survey. The 

manually tracked horizons were picked on every ten crosslines and inlines to give an accurate 

horizon that could be interpolated during the gridding process and construction of time-structure 

and isochron maps.   
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7.1 WC 3D Seismic Survey   

7.1.1 Tectonostratigraphic Interval 1 (TSI-1) MPU to Oswego Limestone 

The composite TSI-1 interval, which is the base of the Pennsylvanian period, presents a 

special case in this investigation when interpreting time-structure and time-thickness maps along 

with the flattening of seismic lines because of the presence of the Mississippian-Pennsylvanian 

Unconformity. The MPU can complicate seismic interpretation because of its complex and 

highly variable nature as a paleokarst surface that has been subjected to multiple stages of 

weathering that can influence overlying seismic reflection events. In Figure 10, the paleokarst 

environment can be seen in the unflattened and flattened versions of the seismic line along with 

the isochron map that was constructed for the interval. The paleokarst structures still do not 

completely hide the structures that initially existed at the time of deposition of the younger units.  

 The map in Figure 10A shows thins in the northeastern and northwestern regions of the 

study area, indicating a contemporaneous structural high that featured little accommodation 

space in the context of the composite interval. The thickest region of the map in the southwest 

indicates a low that provided for a greater accommodation space. The high frequency 

irregularities in the thickness map are a product of the paleokarst environment, which results in 

local highs and lows in close proximity. A principle example of this is seen in the southwestern 

region of the map adjacent to the thickest (608 ft) region of the map, where a relative thin (~398 

ft) exists directly to the north, and also to the immediate east, where another, thinner (~338 ft) 

region exists. One other occurrence of this phenomenon can be seen in the northernmost central 

region of the map, where the two thinnest (210 ft) regions of the map are punctuated by a 

relatively thicker (~465 ft) zone (when moving from west to east across the northernmost region 

of the map).  
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7.1.2 MPU-Pink Lime within TSI-1  

The map of the Pink Lime down to the MPU seen in Figure 11A is strikingly similar to 

the map for the composite TSI-1 interval (Figure 10). This is a thinner interval that highlights 

structures caused by the paleokarst environment of the MPU. The discontinuous, pock-marked 

visualization of the thick and thin zones within the interval (upwards of 405 ft and 15 ft, 

respectively) is again interpreted to be a product of the paleokarst surface. Many of these features 

represent the discontinuous nature of the MPU’s seismic character. As a result, there are many 

tracking errors in the MPU horizon. Because of these discontinuities in the seismic character 

there is little to be revealed from this map from a tectonic standpoint. Aside from the effect the 

MPU has on this interval, the thinnest regions of the map could most likely be attributed to 

compaction as they are on the scale of tens of feet, while the thickest zones could be a 

combination of edge effect and sea level fluctuation at the time of deposition.  

7.1.3 Pink Lime-Oswego within TSI-1 

This interval is the first horizon pair that is not in direct contact with the MPU (Figure 

12). While the isochron map is still influenced by the MPU, there are also clues as to whether a 

structural or depositional control is in effect. There is a slight linear alignment with regards to the 

boundaries of the thin and thick regions in the eastern portion of the map. In the far eastern 

region, where the thinnest regions of the map exist, there is a northeast to southwest (037o) trend 

of thin zones (~165 ft) followed by less continuous pockets of thick zones (~248 ft) along the 

same orientation. Further to the northwest the map begins to thin (~180 ft) again, depicting 

another relative high. The thins have been interpreted to be structural highs with less 

accommodation space, and the thicks are considered structural lows caused by peripheral 

tectonic activity. Although they are not as pronounced as on some of the later maps, the 
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orientation of the strike of these lineaments is perpendicular to the azimuth of the compressive 

stresses of the Ouachita orogeny, which is southeast to northwest, relative to the study area. The 

crinkle effects become more prevalent as the Pennsylvanian interval proceeds, and the 

subsequent depositional troughs and lofts become more apparent. With that being said, it is far 

more reasonable to interpret this interval as the healing phase of the paleokarst environment 

represented by the MPU. This can be seen by the more uniform infill seen across the map, and 

also in the flattened seismic lines (Figure 12C,D). The erratic, discontinuous seismic character 

exhibited by the previous intervals is not present in the Pink Lime-Oswego interval. This 

evidence is consistent with a healing phase interpretation. 

7.1.4 Tectonostratigraphic Interval 2 (TSI-2) Oswego Limestone to Osage/Layton 

The composite TSI-2 isochron map in Figure 13 depicts a feature with a well developed 

thinning trend to the northwest that has an azimuthal trend on the long axis of the feature bearing 

northeast to southwest (052o). The southeast is characterized by a trough as the thickest zone on 

the map (~900 ft), and there is a relative high in the thinnest zone in the northwest (~758 ft). The 

long axis of these features is also perpendicular to the compressive stresses of the Ouachita 

orogeny, and has been interpreted as a longer wavelength feature that exhibits a more gradual 

thinning in the northwestern direction. The trough in the southeast is consistent with a down-

warping product of the compressive stresses of the Ouachita orogeny, and it gives way to the 

thinned, structurally higher region of the study area in the northwest. So instead of seeing 

multiple cycles of thick to thin, there is just one steady low to high moving from southeast to 

northwest in this composite TSI-2 isochron. The flattened seismic lines in Figure 13C,D both 

show the thickening trend to the southeast, but the wedge-like geometry of the flattened line in 

Figure 13D points to a better representation of depositional history. Infill of the trough-like 
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features seen on the profile flattened on the Osage/Layton (Figure 13D) are more likely because 

the mounded geometry shown in Figure 13C would be more consistent with a deepwater fan 

complex, which is not present in this system. 

7.1.5 Oswego-Big Lime within TSI-2 

Thickness trends in the Oswego to Big Lime isochron seen in Figure 14 are quite subtle 

relative to the composite TSI-2 interval, but there are two key regions of note. The first of which 

is in the far western region of the map where the thinnest area of the map (~40 ft) sits directly 

adjacent to the thickest region located to its south (~195 ft). The difference in these thicknesses 

is interpreted to be caused solely by burial and compaction of sediments. This determination was 

made on the basis of scale of sediment packages—where the tectonically controlled features are 

dominated by thicknesses and structural relief of 100s of feet, some of the features prominent in 

this map are on the scale of 10s of feet, which could be attributed to compaction. However, the 

data available for this project do not support compaction estimates and some of the features 

reported here could have compaction as well as tectonic origins.  

7.1.6 Big Lime-Horizon 500 within TSI-2  

This interval is similar to the Big Lime-Oswego interval in the regard that it is thin 

relative to most of the other intervals. The first thing to keep in mind for this interval is the 

discontinuous seismic character of Horizon 500 (Figure 15B,C,D). 3D autotracking this horizon 

has moderate to high uncertainty resulting in tracking errors that can mislead interpretation when 

viewing the isochron map (Figure 15A). The southern two-thirds of the isochron map show a 

broad thin interval with an isolated extreme thin of ~25 ft thickness in the far southwestern 

corner and a thicker interval ~195 ft to the north and east of the thinned zone. It is difficult to 

ascribe a definite tectonic origin to the features in this map due to the tracking errors and the 
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interval thickness, so there will not be a suggestion as to whether or not there may be tectonic 

signals present. 

7.1.7 Horizon 500-Horizon 439 within TSI-2  

The 500-439 interval consists of two horizons that were picked using 3D autotracking 

methods, so it is important to note that there are some discontinuities within the seismic section, 

most notably in the 439 horizon (Figure 16). The thinning gradient that can be seen moving from 

south (where the thickest zones reach up to 580 ft in thickness) to north (where the thinnest of 

zones reach about 145 ft in thickness) does, however, present enough uniformity to ascribe a 

potential tectonic origin. The main gradient features a trend of 090o, which is also perpendicular 

to the Ouachita front compressional regime.  

7.1.8 Horizon 439-Osage/Layton 

This interval facilitates the return of certain tectonic overprinting in the Pennsylvanian 

interval as a prominent crinkle effect can be seen again (Figure 17). A general northeast to 

southwest trend along the azimuth 063o is visible throughout the isochron map with a relative 

thin (~158 ft) in the southeast moving northwest into what has been interpreted as a trough 

(thick) (~240 ft), back into a relative thin (high) (~175 ft), another less continuous trough (~235 

ft), and finally back into another relative thin (~165 ft) in the far northwestern corner of the map. 

The thick zone in the extreme far northwestern corner of the map is interpreted as edge effect 

and has been excluded from this interpretation even though it fits the crinkle effect pattern. 

Flattening on the Osage/Layton horizon (red) in Figure 17D allows the interpreters to better view 

the trough structures that were filled in prior to the increased rate of sedimentation brought on by 

the development of the CZ. The 063o strike of the regional lineations that dissect the troughs and 

highs is perpendicular to the general directionality of the compressive stress regime of the 
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Ouachita orogeny, and it has thus been interpreted to be consistent with the potential of being a 

peripheral effect of said orogeny.  

7.1.9 Tectonostratigraphic Interval 3/Clinoform Zone (TSI-3 or CZ) Osage/Layton to 

Horizon 352 

TSI-3, or CZ, is an interval that is interpreted as exclusively having a tectonic overprint 

from Ouachita and Ouachita-related tectonism. Figure 18 depicts the composite isochron for the 

interval as well as the associated seismic sections. In the composite isochron map (Figure 18A), 

the semi-linear trend that was previously described has a trend of 067o in the northeast to 

southwest direction—perpendicular to the compressive stress regime introduced by the Ouachita 

orogeny. The thickest zone seen in the southeasternmost region of the map (~685 ft) is not 

necessarily a product of downwarping or subsidence due to tectonic stresses so much as it has 

been interpreted as a proximal buildup of sediment in a larger, clinoform-dominated system. The 

CZ was subjected to large amounts of sedimentation from the Ouachita orogeny and also the 

development of the Ozark Dome, which is a by-product of the Ouachita orogeny itself. There is 

also ample evidence, although not shown in this composite isochron, that peripheral tectonism is 

coincident with the development of this interval.  

The following internal horizon pairs helped determine which event (Ozark Dome or 

Ouachita orogeny) provided sediment supply and uplift/subsidence on the Cherokee Platform 

that facilitated the development of this Clinoform Zone. The CZ is the first of the composite 

Tectonostratigraphic Intervals that shows a “composite signal,” where the composite TSI 

isochron shows tectonic control—in this case, from the Ouachita front—over the entire interval 

that is different than the tectonic control in the individual horizon pair isochron maps. This will 
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be seen in the following interpretive sections as the Avant/Layton-Osage interval is affected by 

the Ouachita front, and the 352-Avant interval is affected by the Ozark Dome.  

7.1.10 Osage/Layton-Avant within TSI-3/CZ 

The first, and lowest, of the horizon pairings in the CZ is the Osage/Layton-Avant shown 

in Figure 19. The steady thinning trend moving from southeast to northwest features a strike that 

is 051o from northeast to southwest, and it is perpendicular to the compression of the Ouachita 

orogeny, which is ramping up to full throttle at this point in geologic time. The trough (~535 ft) 

in the southeastern region has been interpreted to be an analogue for a platform-based (distal) 

“foreland” basin caused by subsidence and downwarping from the incoming Gondwana/Llanoria 

plate. The antithesis of this subsidence is present to the northwest in the form of the relative thin 

(~90 ft) uplifted zone. Figure 19D shows a seismic line of the interval that is flattened on the 

Avant (upper red). Here, the down-warped or subsided trough to the southeast is readily visible.  

This structurally controlled depocenter allowed for the thicker zone to the southeast to infill and 

then be subsequently uplifted by the Ozark Dome (as will be discussed further in the next 

horizon pairing) to form the structural high necessary for the evolution of the prominent Avant 

clinoform.  

7.1.11 Avant-Horizon 352 within TSI-3/CZ 

 The Avant clinoform described in the observations section is ripe with clues as to its 

origin and the presence of tectonism within the stable cratonic setting of the Cherokee Platform. 

First, it is immediately apparent that there must have been some kind of relative subsidence (in 

this case to the west), uplift (in this case to the east), or a combination of the two in order for a 

clinoform to manifest. The direction of the propagation of the Avant clinoform (generally east to 
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west) details the direction from which the sediment supply was initiated, and therefore tells 

which regionally local tectonic event is the culprit behind the development of the clinoform.  

As noted previously, the Ozark Dome is due east of the Cherokee Platform, and it forms 

one of the many (contemporaneous) tectonically active boundaries of the stable cratonic interior. 

It can be interpreted that the development of the Ozark Dome directly influenced the 

development of the Avant clinoform seen in the Wild Creek survey. The uplift of the Ozark 

Dome created an active sediment supply for the clinoform as well as structural relief on which 

the clinoform could build basinward to the west (Figure 20B,D), which is the site of the relative 

subsidence in this system. The total relief of the clinoform ranges from ~375 ft in other regions 

of the WC survey to ~570 ft in the seismic section in Figure 20B, allowing it to be classified as a 

shelf-prism clinoform, following the convention established by Patruno, et al., 2015. High 

frequency sea-level changes also influenced the production of the Avant clinoform. When 

looking basinward (to the west), there are multiple reflectors in the seismic data that show on-

lapping sediment packages with a thickness of ~85 ft, indicating a lowstand to transgressive 

systems tract (Figure 20B,D). The more proximal erosional surfaces in the foresets and topsets 

that are typically associated with the lowstand to transgressive systems tract (and thereby 

associated with the onlapping sediment packages at the toe-of-slope region of the clinoform) are 

below the seismic resolution of the WC survey and are therefore assumed to be present at a 

higher resolution. Sediment bypass to the deep basin indicates that there was abundant 

accommodation space supplied by the subsidence to the west and the uplift to the east. Figure 

20A is an isochron map that shows the time-thickness of the interval from the top of the Avant 

clinoform to the top of the Clinoform Zone (Horizon 352). It is apparent that the thickening seen 

in the northwestern region of the map is from the sediment dispersal caused by the Ozark Dome 



 

 38 

to the east—sediment supply created by relative uplift, sediment transportation basinward due to 

structural relief and relative subsidence to the west. When examining the flattened seismic line in 

Figure 20D, it is apparent that the composite interval time-thickness for CZ is consistent with a 

clinoform succession with a maximum relief of ~570 ft and sediment influx from the east-

southeast to the west-northwest. 

One last key interpretation from this interval is that of the reentrant in the western region 

of the thinnest zone. Looking along the southwestern edge of the reentrant, if a line is propagated 

in the northwest to southeast direction along this edge, it can be interpreted that there is some 

type of semi-listric shaped boundary with a general strike of 125o, that is consistent with the 

morphology of normal fault traces. This boundary is parallel to the orientation of the 

Southeastern Oklahoma Aulacogen, which was the cause of significant normal faulting in deep 

basement events. The boundary that has just been described has been interpreted as a reactivated 

fault that has a trace along the azimuthal bearing 125o.  

7.1.12 Tectonostratigraphic Interval 4 (TSI-4) Horizon 352 to Pawhuska 

The composite isochron map of the final tectonostratigraphic interval, TSI-4, is shown in 

Figure 21A. The thickening trend from southwest to northeast—the thinnest of the trend being in 

the southwest (~1095 ft) and the thickest of the trend being in the northeast (~1275 ft)—features 

a linear trend from northwest to southeast with an overall trend of 122o. This strike is 

perpendicular to the generalized direction of the compressive stress regime caused by the 

Wichita/Arbuckle uplift to the southwest of the Cherokee Platform, which was the last of the 

active orogenic events in the Pennsylvanian interval and was beginning to conclude its 

development at this juncture. It has been interpreted that the Wichita/Arbuckle complex had an 

overall impact but was somewhat limited in the intermediate sequences of TSI-4. This brings 
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about another example of the invocation of the composite signaling idea. The TSI-4 composite 

isochron indicates tectonic control derived from the Wichita/Arbuckle complex, but the internal 

horizon pair intervals are affected by Ouachita and Nemaha tectonism. This composite 

overprinting is only possible if the tectonism ascribed to the composite feature is active during or 

after the time(s) of the tectonic events that affected the intermediate horizon pair intervals, which 

is the case in this particular example as the Wichita/Arbuckle Complex was active into the 

earliest Permian.  

7.1.13 Horizon 352-Horizon 306 within TSI-4 

The composite isochron for 352-306, shown in Figure 22A, is interesting because while 

there is a general thickening gradient from south to north, there is a direct gradient from 

southeast to northwest that features a longitudinal trend of 078o(NE-SW), which is perpendicular 

to the compression field of the Ouachita orogeny. This observation allows for the interpretation 

that this thin (~220 ft) to thick (~445 ft) transition from south to north is likely a product of the 

Ouachita Orogeny. The longitudinal trend of this thickening gradient is approximately west to 

east 088operpendicular to the compressive regime of the Ouachita orogeny. These maps are 

indicative of a relic effect of the Ouachita orogeny because the map shows a ~031º azimuth 

compression trend, a ~089º azimuth compressional trend, and a 078º-trending 

thickening/thinning feature. 

7.1.14 Horizon 306-Horizon 264 within TSI-4 

The isochron map of the interval 264-306 in Figure 23A shows northwest to southeast 

trending gradient that transitions from thick (~400 ft) in the southeastern corner of the study area 

to thin (~235 ft) in the northwest. The trend of the lineated feature is 057o, which is also 
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perpendicular to the compressive stresses of the Ouachita orogenic belt. This is most likely the 

origin of the subsidence to uplift transition seen in this interval. This trend is consistent with the 

other Ouachita-related signals seen in previous intervals, and it presents another long wavelength 

signal that reinforces connection the Ouachita Orogeny. The thin on the western edge of the 

isochron map can be seen along the entirety of the western edge (Figure 23A). This seemingly 

relative uplifting of the western edge of the map could potentially be attributed to the Nemaha 

Uplift. The trend seen along the western edge is consistent with the proximity of the Nemaha. 

Looking at the flattened seismic line in Figure 23D, one can see the gradual thinning sequence to 

the northwest. The wedge-like structure seen here is consistent with the previous intervals in the 

Pennsylvanian interval and is considered to be the more accurate representation of the two 

flattened horizon lines.  

7.1.15 Horizon 264-Horizon 213 within TSI-4 

Figure 24 focuses on the penultimate horizon pair in the Pennsylvanian interval of the 

study area, 264-213. In this late Pennsylvanian interval, tectonic activity seems diminished in the 

surrounding regions. A thin area (~310 ft) to the west may represent a paleotopographic high that 

could relate to the Nemaha Ridge which was active into the Permian. If this is the case, the 

trough-like features to the east, which show an overall thickening of ~435 ft, would be evidence 

of subsidence in conjunction with the uplifting of the western zones of the study area.  

7.1.16 Horizon 213-Pawhuska within TSI-4 

The final interval of the study area is the 213-Pawhuska horizon pair shown in Figure 25. 

This interval is relatively thin, ranging from 105-310 ft at its extremes and 150-210 ft over the 

bulk of the interval. While it does show some thickening trends in the southeastern region of the 

map (~188 ft), which may indicate depositional compaction rather than tectonic movement. This 
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interpretation is based on the relatively consistent thickness seen across the study area for this 

interval. 

8. Conclusions 

 The first, and most important result from this investigation is that 3D seismic surveys can 

be used in the interior of stable cratonic platforms to identify and characterize tectonic signals 

from peripheral tectonic events, and then use said tectonic signals to infer which tectonic event is 

associated with the signal. These interpretations allow for better understanding the influence of 

peripheral tectonic events on cratonic sedimentary processes and accommodation space in the 

interval(s) that are being investigated. 

 The current project reveals the Pennsylvanian interval in western Osage County has been 

chiefly affected by the Ouachita orogeny, which has been interpreted to have impacted nearly 

every interval in this investigation. The Ozark Dome is also a key contributor to the signaling 

seen in the Cherokee Platform province, and it has been interpreted to be the main contributor to 

the structural relief that allowed the Avant clinoform to develop in the aforementioned CZ. The 

Wichita/Arbuckle Complex is a key player late in the Pennsylvanian interval, specifically the 

TSI-4 composite interval leading to the idea of “composite signaling” as it affects the whole of 

the TSI-4 interval while not erasing the tectonic signals present in the intermittent horizon pair 

intervals.  The Nemaha Uplift may have also had a tectonic influence in the later Pennsylvanian 

intervals. One of the more surprising elements uncovered was the interpretation of the 

reactivated normal faulting related to the Southeast Oklahoma Aulacogen seen in the CZ 

interval. The reactivated faulting is interpreted to have structural control on the accommodation 

space provided in the CZ interval—the zones situated on the downthrown hanging wall are 

thicker than the zones on the upthrown foot wall.  
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9. Future Work 

 This investigation suggests a new method of detecting subtle tectonic influence on 

cratonic stratigraphic intervals. Future work would be to more accurately and consistently map 

the 3D seismic surveys in the immediate vicinity of WC, namely the AN and GH surveys in 

order to see if interpreted tectonic signals persist away from the WC survey, and if so, are they in 

any way different? There has already been some low resolution isochron mapping in these 

surveys, but more careful analysis in light of this study is needed in AN and GH. For this study 

area, the results would benefit from estimating an interval velocity for each individual interval to 

more accurately convert time-thickness to actual thickness. This investigation was completed 

using a constant velocity for the entirety of the Pennsylvanian interval.   
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11. Tables and Figures 
 

Table 1: Survey parameters for the WC, GH, and AN 3D seismic surveys 

 
 

 

 

 
Figure 1: Map containing the geological provinces of Oklahoma including structural boundaries; 
red outline indicates the boundaries of Osage County and the 3D seismic surveys that are used in 
the investigation (Modified from Johnson, 2008). 
 

 
 

WC Survey GH Survey AN Survey
Area 45 sq. mi. 48 sq. mi. 46 sq. mi.
Bin Size 66 ft 110 ft 110 ft
Inlines 3632-4031 (399) 160-528 (368) 5272-5671 (399)
Crosslines 10876-11596 (720) 1-200 (200) 1-713 (713)
Dominant Frequency 58 Hz 65 Hz 55 Hz
Time Sample Rate 2 ms 2 ms 2 ms
Record Time 2.0 s 2.0 s 2.0 s
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Figure 2: A) Stratigraphic column of late Mississippian and Pennsylvanian strata of western 
Osage County, OK. This stratigraphic column has been divided into tectonostratigraphic 
intervals by the investigators based on the seismic character of reflectors seen in B; B) Inline 
3840 from WC with mapped horizons. This seismic line has been divided into 
tectonostratigraphic intervals that are based on seismic character and styles of interpreted 
tectonic activity.  
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Figure 3: Enlarged map of the area within Osage County, Oklahoma. The 3D seismic surveys 
that are used in this investigation are indicated by the shaded boxes on the map; 3D seismic 
surveys are labelled WC, GH and AN. Well A is shown within the confines of WC (Python 
script courtesy of Lanre Aboaba). 
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Figure 4: Synthetic seismogram tuned to the Pennsylvanian interval of WC (IL 3675). This 
synthetic is derived from sonic and density logs collected from the borehole of Well A.  
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Figure 5: Time-Depth conversion curve for Well A used throughout 3D survey WC. 
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Figure 6: Map of the regional tectonics of the Ouachita Orogenic System including the 
peripheral tectonic elements of northwest Arkansas and Oklahoma. Arrows indicating the 
orientation of tectonic stresses applied to the study area are shown with red block arrows for 
compressional events, and thin red arrows indicating shearing events. A line of section for the 
tectonostratigraphic model in Figure 7 runs north to south in western Arkansas (modified from 
Sparks, 2018 via Ewing, 2005; Thomas, 2006). 
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Figure 7: Working model of the tectonic evolution of the Ouachita mountains as it has been 
described by McGilvery, 2016 and Houseknecht, 1986. A to A’ refers to the line of section in 
Figure 6. 
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Figure 8: Blakey Map illustrating the convergent southern margin of Gondwana and Laurasia 
during late the Mississippian, ~325 ma. The red outline indicates the boundaries of Osage 
County, Oklahoma and the 3D seismic surveys that define the study area of this investigation 
(modified from Blakey, 2007) 
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Figure 9: Blakey Map illustrating the convergent southern margin of Gondwana and Laurasia 
during the early Pennsylvanian, ~315 ma. The Ouachita accretionary prism, the Wichita uplift, 
and the proto-Anadarko and proto-Arkoma basins are superimposed on the map. The red outline 
indicates the boundaries of Osage County, Oklahoma and the 3D seismic surveys that define the 
study area of this investigation (modified from Blakey, 2007) 
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Figure 10: A) TSI-1 isochron map; B) Seismic profile from WC showing the unflattened 
horizons of TSI-1 with the isochron interval exhibited on the map in “A” highlighted; C) Seismic 
profile from WC showing the flattened basal horizon of TSI-1 with the isochron interval (MPU-
Oswego) exhibited on the map in “A” highlighted; D) Seismic profile from WC showing the 
flattened upper horizon of TSI-1 with the isochron interval (MPU-Oswego) exhibited on the map 
in “A” highlighted. 
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Figure 11: A) MPU-Pink Lime isochron map; B) Seismic profile from WC showing the 
unflattened horizons of TSI-1 with the isochron interval exhibited on the map in “A” highlighted; 
C) Seismic profile from WC showing the flattened basal horizon (MPU) with the isochron 
interval (MPU-Pink Lime) exhibited on the map in “A” highlighted; D) Seismic profile from WC 
showing the flattened upper horizon (Pink Lime) with the isochron interval (MPU-Pink Lime) 
exhibited on the map in “A” highlighted. 
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Figure 12: A) Pink Lime-Oswego isochron map; B) Seismic profile from WC showing the 
unflattened horizons of TSI-1 with the isochron interval exhibited on the map in “A” highlighted; 
C) Seisomic profile from WC showing the flattened basal horizon (Pink Lime) with the isochron 
interval (Pink Lime-Oswego) exhibited on the map in “A” highlighted; D) Seismic profile from 
WC showing the flattened upper horizon (Oswego) with the isochron interval (Pink Lime-
Oswego) exhibited on the map in “A” highlighted. 
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Figure 13: A) TSI2 isochron map; B) Seismic profile from WC showing the unflattened 
horizons of TSI-2 with the isochron interval exhibited on the map in “A” highlighted; C) Seismic 
profile from WC showing the flattened basal horizon (Oswego) with the isochron interval 
(Oswego-Osage/Layton) exhibited on the map in “A” highlighted; D) Seismic profile from WC 
showing the flattened upper horizon of TSI-2 (Osage/Layton) with the isochron interval 
(Oswego-Osage/Layton) exhibited on the map in “A” highlighted. 
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Figure 14: A) Oswego-Big Lime isochron map; B) Seismic profile from WC showing the 
unflattened horizons of the Oswego-Big Lime interval with the isochron interval exhibited on the 
map in “A” highlighted; C) Seismic profile from WC showing the flattened basal horizon 
(Oswego) with the isochron interval (Oswego-Big Lime) exhibited on the map in “A” 
highlighted; D) Seismic profile from WC showing the flattened upper horizon (Big Lime) with 
the isochron interval (Oswego-Big Lime) exhibited on the map in “A” highlighted. 
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Figure 15: A) Big Lime-500 isochron map; B) Seismic profile from WC showing the unflattened 
horizons of the Big Lime-500 interval with the isochron interval exhibited on the map in “A” 
highlighted; C) Seismic profile from WC showing the flattened basal horizon (Big Lime) with 
the isochron interval (Big Lime-500) exhibited on the map in “A” highlighted; D) Seismic 
profile from WC showing the flattened upper horizon (500) with the isochron interval (Big 
Lime-500) exhibited on the map in “A” highlighted. 
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Figure 16: A) 500-439 isochron map; B) Seismic profile from WC showing the unflattened 
horizons of the 500-439 interval with the isochron interval exhibited on the map in “A” 
highlighted; C) Seismic profile from WC showing the flattened basal horizon (500) with the 
isochron interval (500-439) exhibited on the map in “A” highlighted; D) Seismic profile from 
WC showing the flattened upper horizon (439) with the isochron interval (500-439) exhibited on 
the map in “A” highlighted. 
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Figure 17: A) 439-Osage/Layton isochron map; B) Seismic profile from WC showing the 
unflattened horizons of 439-Osage/Layton with the isochron interval exhibited on the map in 
“A” highlighted; C) Seismic profile from WC showing the flattened basal horizon (439) with the 
isochron interval (439-Osage/Layton) exhibited on the map in “A” highlighted; D) Seismic 
profile from WC showing the flattened upper horizon (Osage/Layton) with the isochron interval 
(439-Osage/Layton) exhibited on the map in “A” highlighted. 
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Figure 18: A) TSI-3 isochron map; B) Seismic profile from WC showing the unflattened 
horizons of TSI-3 with the isochron interval exhibited on the map in “A” highlighted; C) Seismic 
profile from WC showing the flattened basal horizon (Osage/Layton) with the isochron interval 
(Osage/Layton-352) exhibited on the map in “A” highlighted; D) Seismic profile from WC 
showing the flattened upper horizon (352) with the isochron interval (TSI-3) exhibited on the 
map in “A” highlighted. 
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Figure 19: A) Osage/Layton-Avant isochron map with interpreted generalized normal fault trace 
overlain; B) Seismic profile from WC showing the unflattened horizons of Osage/Layton-Avant 
with the isochron interval exhibited on the map in “A” highlighted; C) Seismic profile from WC 
showing the flattened basal horizon (Layton/Osage) with the isochron interval (Avant-
Layton/Osage) exhibited on the map in “A” highlighted; D) Seismic profile from WC showing 
the flattened upper horizon (Avant) with the isochron interval (Osage/Layton-Avant) exhibited 
on the map in “A” highlighted. 
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Figure 20: A) Avant-352 isochron with interpreted normal fault trace overlain; B) Seismic 
profile from WC showing the unflattened horizons of the Avant-352 interval with the isochron 
interval exhibited on the map in “A” highlighted; C) Seismic profile from WC showing the 
flattened basal horizon (Avant) with the isochron interval (Avant-352) exhibited on the map in 
“A” highlighted; D) Seismic profile from WC showing the flattened upper horizon (352) with the 
isochron interval (Avant-352) exhibited on the map in “A” highlighted. 
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Figure 21: A) TSI-4 (352-Pawhuska) isochron map; B) Seismic profile from WC showing the 
unflattened horizons of TSI-4 with the isochron interval exhibited on the map in “A” highlighted; 
C) Seismic profile from WC showing the flattened basal horizon (352) with the isochron interval 
(352-Pawhuska) exhibited on the map in “A” highlighted; D) Seismic profile from WC showing 
the flattened upper horizon (Pawhuska) with the isochron interval (352-Pawhuska) exhibited on 
the map in “A” highlighted. 
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Figure 22: A) 352-306 isochron map; B) Seismic profile from WC showing the unflattened 
horizons of the 352-306 interval with the isochron interval exhibited on the map in “A” 
highlighted; C) Seismic profile from WC showing the flattened basal horizon (352) with the 
isochron interval (306-352) exhibited on the map in “A” highlighted; D) Seismic profile from 
WC showing the flattened upper horizon (306) with the isochron interval (352-306) exhibited on 
the map in “A” highlighted. 
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Figure 23: A) 306-264 isochron map; B) Seismic profile from WC showing the unflattened 
horizons of the 306-264 interval with the isochron interval exhibited on the map in “A” 
highlighted; C) Seismic profile from WC showing the flattened basal horizon (306) with the 
isochron interval (306-264) exhibited on the map in “A” highlighted; D) Seismic profile from 
WC showing the flattened upper horizon (264) with the isochron interval (306-264) exhibited on 
the map in “A” highlighted. 
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Figure 24: A) 264-213 isochron map; B) Seismic profile from WC showing the unflattened 
horizons of the 264-213 interval with the isochron interval exhibited on the map in “A” 
highlighted; C) Seismic profile from WC showing the flattened basal horizon (264) with the 
isochron interval (264-213) exhibited on the map in “A” highlighted; D) Seismic profile from 
WC showing the flattened upper horizon (213) with the isochron interval (264-213) exhibited on 
the map in “A” highlighted. 
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Figure 25: A) 213-Pawhuska isochron map; B) Seismic profile from WC showing the 
unflattened horizons of the 213-Pawhuska interval with the isochron interval exhibited on the 
map in “A” highlighted; C) Seismic profile from WC showing the flattened basal horizon (213) 
with the isochron interval (Pawhuska-213) exhibited on the map in “A” highlighted; D) Seismic 
profile from WC showing the flattened upper horizon (Pawhuska) with the isochron interval 
(213-Pawhuska) exhibited on the map in “A” highlighted. 
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