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Abstract

More-electric aircraft (MEA) is an attractive concept as it can reduce carbon dioxide emis-

sion, relieve fossil-fuel consumption, improve the overall efficiency of aircraft, and reduce the

operational costs. However, it poses substantial challenges in designing a high-performance motor

drive system for such applications. In the report of Aircraft Technology Roadmap to 2050, the

propulsion converter is required to be ultra-high efficiency, high power density, and high reliabil-

ity. Though the wide band-gap devices, such as the Silicon-carbide based Metal Oxide Silicon

Field Effect (SiC-MOSFET), shows better switching performance and improved high-temperature

performance compared to the silicon counterparts, applying it to the MEA-related application is

still challenging. The high switching speed of SiC-MOSFET reduces switching loss and enables

the design of high-density converters. However, it poses intense challenges in limiting the stray

inductance in the power stage. The fast switching behavior of SiC-MOSFET also challenges the

design scalability by multi-chip parallel, which is essential in high-power-rating converters. More-

over, the partial discharge can happen at the lower voltage when the converter is operated at high

altitude, low air-pressure conditions, which threatens the converter lifetime by the accelerated ag-

ing of the insulation system. This dissertation addresses these issues at the paper-design level,

power-module level, and converter level, respectively. At the paper-design level, the proposed

model-based design and optimization enables shoulder-by-shoulder performance comparison be-

tween different candidate topology and then generates optimal semiconductor design space for

the selected topology. At the power-module level, this dissertation focuses on the development of

an ultra-low inductance module by using a novel packaging structure that integrates the printed

circuit board (PCB) with direct-bounding copper (DBC). The detailed power-loop optimization,

thermal analysis, and fabrication guidance are discussed to demonstrate its performance and man-



ufacturability. At the converter level, this dissertation provides a comprehensive design strategy to

improve the performance of the laminated busbar. In the design of the busbar conduction layer,

this work analyzed the impacts of each stray inductance item and then proposed a novel double-

side decoupled conduction-layer structure with minimized stray inductance and improved dynamic

current sharing. In the design of the insulation system of the busbar, this dissertation investigates

the design strategy to ensure the busbar is free of partial discharge without sacrificing the parasitic

control. Through the dissertation, a single-phase 150 kVA converter, a three-phase 450 kVA con-

verter, and a 1.2 kV, 300 A power module are designed, fabricated, and tested to demonstrate the

proposed design strategies.
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1 Introduction

1.1 Research Background

More-electric aircraft concepts can improve the efficiency of airplanes, reduce their carbon

emissions and operating costs. While the high-performance power electronics converter is re-

garded as one of the critical enabling technologies for such concepts. The converters are designed

to replace the conventional components powered by pneumatic or hydraulic power sources in the

airplane. A recent announced Boeing 787 Dreamliner utilized an electrified no-bleed system for

powering the control system of cabin environments, starting the engine and hydraulic pumps, and

enabling deicing protection [1]. The updates result in the overall efficiency of Boeing 787 Dream-

liner improved by about 3% [2]. Airbus A380 also significantly improved the usage of electric

power, according to [3].

The development of a high-performance power electronics converter emphasizing high

gravimetric power density, high efficiency, high reliability, and high-power rating is becoming es-

sential. Under such an environment, the National Aeronautics and Space Administration (NASA)

starts the investment in research of motor drive for electrified aircraft, with the goal of enabling the

full-scaled electrified propulsion system on narrow-body aircraft by 2035 [4].

Motivated by such trends, the University of Arkansas has designed the first version of a

more-electric motor drive, as reported in [5,6]. It utilizes the hybrid switch concept, which takes

both advantages of low switching loss of silicon carbide (SiC) Metal Oxide Silicon Field Effect

Transistor (MOSFET) and low conduction loss of silicon (Si) Insulated-gate Bipolar Transistor

(IGBT). It is reported to achieve the 100 kVA power rating, an efficiency of over 99.0%, and a
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power density of 27.7 kW/kg.

This dissertation is to provide the design of the second-generation motor drive, which is a

higher power rating, higher efficiency, and higher power density. It is designed based on three-level

t-type neutral-point clamped (3L-TNPC) topology. Design strategies such as model-based design

for topology and power-switch selection, power loop optimization, insulation system optimization,

signal sensing stage design are explained in detail in this dissertation.

1.2 Review of Motor Drive Prototypes for MEA Applications

Various prototypes for the more-electric motor drive are present during the past years. In

2018, Dr. Di Zhang, Dr. Jiangbiao He, and Dr. Di Pan from General Electric Global Research

Center designed a one mega-watt motor drive for more-electric aircraft propulsion purposes [7,8].

The DC-link voltage is pushed to 2400 V to reduce the root-mean-square (RMS) current and reduce

the weight of the cable. The three-level active neutral-point clamped converter is used as the

topology to reduce the voltage stress of power semiconductors. The converter also utilizes the

hybrid combination of Si IGBT and SiC MOSFET, ensuring good efficiency and reduced costs.

The prototype has reached an efficiency of 99.0% and a power density of 12 kVA/kg.

The version II motor drive designed by Dr. Di Zhang, Dr. Jiangbiao He and Dr. Di Pan

from General Electric Global Research Center was announced in 2019 [9,10]. Compared to the

first version, version II further improves the performance of the converter by using better power

semiconductors. Moreover, the layout of the converter is optimized to reduce the dimension and

total weight of the converter. The passives are optimized as well, such as the dimensions and

weights of output dv/dt filter as well as the EMI filters. Consequently, the efficiency is improved

to 99.1%, and the power density is increased by1 kVA/kg.
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Additionally, the University of Illinois at Urbana-Champaign Urban and the University of

California Berkeley announced a gallium-nitride (GaN) high-electron-mobility transistor (HEMT)

based nine-level flying capacitor converter for electric applications [11]. By utilizing the superior

switching performance of GaN HEMT and increased output voltage levels, the better output total

harmonic distortion (THD) can be achieved. It is claimed that a 200 kVA inverter can be built

based on interleaving multiple of 6 kVA units [1].

Recently, the motor drive converter design under cryogenic condition is getting attention

because the design further enables power rating and remarkably eliminates the weight of the cable.

Accordingly, Dr. Ren Ren, Dr. Handong Gui, and Dr. Fred Wang from the Center for Ultra-

wide-area Resilient Electric Energy Transmission Networks delivered a 1 MW converter design

that operated at the cryogenic condition, as [12, 13]. It also utilizes a three-level active neutral-

point-clamped topology, achieving an efficiency of 99.0%

1.3 Challenge and Research Objective

Though many works are done on design, prototyping, and evaluating the motor drive for

more-electric aircraft, the challenges are still waiting to be solved.

1. Three-level converters have been demonstrated with higher efficiency and power density

in the applications of more-electric aircraft. Nevertheless, the circuits suffer from high values

of stray inductance in each current commutation loop, which overstresses the power switch and

insulation system due to high switching-transient voltage.

2. Parallel power switches are necessary to achieve higher power ratings with reduced

semiconductor loss. However, unequaled dynamic current sharing between parallel devices may

result in diversified switching loss amount them, which increases the peak junction temperature of
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the power switches.

3. During the operation of aircraft, the converter is working under low air-pressure condi-

tions because of high altitude. Based on Paschen’s law, the partial discharge could happen inside

the converter, which significantly accelerates the aging of the insulation system, potentially causing

insulation breakdown and reducing system reliability.

4. The overall performance of converters, such as efficiency and power density, is required

to be further improved to meet NASA’s 2025 roadmap. Breakthrough technologies should be

discovered, such as novel packaging technologies and thermal management technologies.

This paper focuses on the hardware development of a 450 kVA motor drive. The disserta-

tion comprehensively explained the design method and procedures. The objective of the design is

to achieve even higher system efficiency and power density through an optimized power stage and

an improved thermal management system. The design of the laminated busbar with enabling stray

inductance minimization and partial-discharge free insulation are highlighted and will be explained

in detail. A novel packaging method for three-level t-type neutral-point clamped converters will

be introduced to improve system performance further.

1.4 Dissertation Outlines

In chapter 2, the converter design procedures are introduced in detail. The chapter starts

with introducing the method of paper design by using the model-based optimization method. Fur-

thermore, the procedures of practically building the converter from the paper design are present

as well, such as the selection of optimal power switches and power modules, power stage design

and optimization, and the design of signal sensing, conditioning circuits. In the end, the overall

structure of 450 kVA motor drive is provided in chapter 2.
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The design guidance of the conduction layer in the laminated busbar for a three-level t-

type neutral-point-clamped converter is present in chapter 3. The step-by-step design guidance

is proposed and explained in this chapter, with the targets of reducing busbar stray inductance,

improving dynamic current sharing between parallel switches, and limiting the temperature rising

on the busbar. Detailed experiments and simulations are carried out in this chapter to demonstrate

the proposed design guidelines and evaluate the overall performance of the designed laminated

busbar.

Chapter 4 provides the insulation design method for the laminated busbar in more aircraft

applications. As mentioned previously, the partial discharge can happen at lower voltage during the

high-altitude operation where air pressure is low. This phenomenon endangers converter lifetime

and reliability. As the trend of higher voltage application, the partial discharge is becoming one of

the primary challenges in aircraft propulsion converters. This chapter provides a comprehensive

insulation design method to make sure the busbar is partial discharge free. This chapter also reveals

the trade-off between busbar insulation margin and busbar stray inductance. Through quantitative

modeling of the trade-off, the optimal insulation thickness can be chosen in this chapter to balance

the insulation margin and busbar stray inductance.

Chapter 5 presents another aspect to improve motor drive performance: improve the per-

formance of the power module. It is seen that power-module level redesign, modification, and

improvements can significantly improve the overall performance of the motor drive. Because of

additional design flexibility, the lower stray inductance can be achieved through the module layout.

A novel power module structure is used in the packaging, which combines a printed circuit board

(PCB) and a direct bounding copper (DBC). The new structure can help the converter reaching

stray inductance as low as 2.47 nH. At the same time, the thermal performance can be improved as
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well by enabling the direct solderability of coldplate. Such a method can eliminate the thermal in-

terfacing material (TIM), remarkably reducing thermal resistance. A 1200 V, 300A power module

for three-level t-type neutral-point-clamped topology is present in this part. The conclusion will be

present at the end of the dissertation.
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2 Overview of Motor Drive Design for MEA Applications

Some content of this chapter comes from an accepted paper of IEEE ECCE 2019.

List of author’s name, Yuan, Z., Deshpande, A., Narayanasamy, B., Peng, H., Emon, A.I.,

Whitt, R., Nafis, B.M., Luo, F. and Huitink,

2.1 Abstract

This chapter is to explain the procedures of designing motor drives for more-electric air-

craft. The chapter stands from the system-level aspects and explicitly explains specifications of

power motor and their design trade-offs. The design procedures are introduced to achieve the

optimal-performance converter. It will start with the paper design, which compares different topol-

ogy, switch combinations to choose the optimal design space. Then hardware design is carried out,

including module selection and comparison, power stage design, and the design of signal sensing,

conditioning, and control circuits. Accordingly, a high-performance three-phase 450-kVA mo-

tor drive for more electric aircraft application is designed as an example. It has been thoroughly

evaluated through tests.

2.2 Model-based Design and Optimization

2.2.1 Overview of model-based design algorithm

To achieve high power density and high efficiency, the optimal paper design of the converter

is necessary. Fig. 2.1 shows the components in the power stage of a motor drive, including power

semiconductors, heatsink/coldplate, and the passives such as DC-link capacitors, output filters
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Fig. 2.1: Components in the power stage of motor drive.

and EMI filters. The weight, volume and loss of each the component will contribute to system

efficiency and power density.

In such a system, the trade-off can be observed between power density and efficiency. For

example, increasing the switching frequency can reduce the size and weight of output filter induc-

tor, but it generates additional switching loss and makes the converter less efficient. Therefore,

model-based optimization is required to optimize the converter from a system level.

The overview of model-based comparison can be summarized by Fig.2.2. The target of the
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Fig. 2.2: Diagram of the model-based optimization.

model-based design is to obtain the Pareto curve between converter output efficiency and power

density at various switching frequency, as shown in Fig.2.3 [1]. Thus, the model-based optimiza-

tion allows designer to choose the optimal design space with satisfactory performance of both

efficiency and power density.

As seen in Fig.2.2, there are five steps to perform model-based optimization. Step I is

to define the parameters and requirements of the converter, such as topology, input voltage and

output voltage, range of switching frequency, maximum allowed voltage ripple on the DC bus, and

maximum allowed total-harmonic distortion (THD) at the output terminal.

11



Given the design parameters and requirements, step II is to perform the component-level

optimization at given switching frequency. For example, perform the inductor optimization at

given THD requirements [2], and perform switching-position level optimization to achieve the

optimal number of parallel bare dies in each position [3]. The optimized loss-and-volume design

space of each component is summarized in step III, and then combined to form the system-level

design space in step IV. Step V is to perform the same procedure from step I to step IV by using

the increased switching frequency. The output of the optimization is the Pareto curve, as shown in

Fig.2.3.

2.2.2 Comparison of popular topology in motor drive systems

Model-based design and optimization is a powerful mathematical tool which can generate

the optimized design space and enables design space selection based on converter performance.

Nevertheless, understanding the physics behind the Pareto curve is necessary. This part is to discuss

the advantages and disadvantages of three commonly used motor drive topologies, including two-

level (2L) converters, three-level neutral-point-clamped converters (3L-NPC) and three-level t-type

neutral-point-clamped converters (3L-TNPC), as shown in Fig. 2.4

For a fair comparison between topologies, the power semiconductors with the same pack-

aging, and the same current ratings are used in the three topologies, which is summarized in Table

2.1. The efficiency of three topologies are calculated as Fig. 2.5. This loss calculation is based on

the model for conduction loss and switching loss based on [4] and assuming converter is working

at 1 kV DC-link voltage, and 150 kVA with a power factor of 0.95.

Based on the efficiency curve, it can be observed that,

1. At the lower switching frequency, the two-level converter has higher efficiency.
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TABLE 2.1: The power semiconductors for topology comparison

Topology Switch Model Packaging Type
Voltage Rating and

On-state Reisistance

2L

Converter

Wolfspeed

HT-3231

Two in parallel

Wolfspeed

High-performance

62 mm Module

1.7 kV, 7.5 mΩ /2

3L-ANPC

Converter

Wolfspeed

HT-3231

Two in parallel

Wolfspeed

High-performance

62 mm Module

1.2 kV, 2.5 mΩ

3L-TNPC

Converter

Wolfspeed

HT-3231

Two in parallel

Wolfspeed

High-performance

62 mm Module

1.2 kV 2.5 mΩ

and

1.7 kV 7.5 mΩ /2
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Fig. 2.3: The Pareto curve of designed 450 kVA motor drive [1].

2. As switching frequency is increasing, the efficiency of two-level converter drops faster

than the three-level converter, which is the result of higher switching loss.

3. At high switching frequency, both three-level t-type neutral-point-clamped converter

and three-level active neutral-point-clamped converter have the similar efficiency. However, the

three-level t-type neutral-point-clamped converter has less switching count, which reduces semi-

conductor costs and improve power density.

Therefore, this dissertation utilizes the three-level t-type neutral-point-clamped converter

as the topology for the hardware design.

2.2.3 Number of power module in parallel

Paralleling power modules is necessary for high power inverters in order to reduce the

conduction loss and limit the junction temperature of each die. But the number of parallel modules

at each switching position should be carefully decided to limit the system costs and complexity.
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Fig. 2.4: The topology of two-level converter, 3L-ANPC converter and 3L-TNPC converter.

Fig. 2.5: Converter efficiency versus switching frequency for 2L converter, 3L-ANPC converter
and 3L-TNPC converter by using the power semiconductors in Table 2.1.

Paralleling more switches at conduction-loss-concentrated switching positions can magnify the

benefits.

To give an example, for 3-level t-type neutral-point-clamped converter, the semiconductor

loss distribution is largely affected by power factor and modulation index. For motor driving

applications with high power factor and high modulation index, the external half-bridge leg shown

in Fig. 2.4 generates the majority of conduction loss, compared to the internal clamping leg. Thus

more conduction loss can be reduced by paralleling modules at the external bridge.

To quantify the conclusion, the analysis of two scenarios are carried out and compared.

Scenario (1) utilizes single Wolfspeed half-bridge (HB) module, HT-3231 as external leg and one
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(a)

(b)

Fig. 2.6: The loss distribution of 3L-TNPC, under scenario (1) and (2), at Pout = 150kW and
PF = 0.9. (a)Loss breakdown based on one half-bridge module as external leg, and one common-
source moulde as clamping leg, (b) loss breakdown based on two paralleled half-bridge module as
the external leg, and one common-source module as clamping leg.

common-source (CS) module, HT-3220 as the internal clamping leg. While scenario (2) has two

HB modules in parallel and keep the CS module the same.

For consistency, SPWM modulation is adopted in this paper for three-level t-type neutral-

point-clamped converter. root-mean squared (RMS) current of T1 and T2 can be obtained through

(2.1) and (2.2). Because of the symmetry of SPWM modulation, conduction loss on T3, T4 will

be the same as that of T2 and T1 respectively. Then total conduction loss is given by (2.3). In the

equations, rDS HB and rDS CS represent the on-state resistances of SiC MOSFETs in half-bridge
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Fig. 2.7: The output efficiency at different load power

module and common-source module respectively.

Irms T 1(Ipk,ϕ) =

√
M · I2

pk

3 ·π
(1+ cos(ϕ)2) (2.1)

Irms T 2(Ipk,ϕ) =

√
I2
pk

2
−

2 ·M · I2
pk

3 ·π
(1+ cos(ϕ)2) (2.2)

Pcond total(Ipk,ϕ) = (Irms T 1(Ipk,ϕ)
2 · rDS HB + Irms T 2(Ipk,ϕ)

2 · rDS CS) ·2 (2.3)

Switching loss of T1 and T2 in one fundamental cycle are given by (2.4) and (2.4). Due to

the symmetry, switching loss on T3, T4 will be the same as that of T2, T1 respectively. Total power

of switching loss on semiconductor devices is given by (2.6).

ESW T 2(Ipk,ϕ, fsw) =

k= (ϕ)· fsw
2π· f1

∑
k= 0· fsw

2π· f1

−(ET OFF CS+ ET ON CS) · sin(
k · f1

fsw
2π−ϕ) ·

Ipk · VDC
2

Itest CS ·Vtest CS

(2.4)

ESW T 1(Ipk,ϕ, fsw) =

k= (π)· fsw
2π· f1

∑
k=ϕ· fsw

2π· f1

(ET OFF HB+ ET ON HB) · sin(
k · f1

fsw
2π−ϕ) ·

Ipk · VDC
2

Itest HB ·Vtest HB

(2.5)
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Fig. 5.22: Thermal map captured by IR camera during 800V/230A continuous tests.

provides additional flexibility of power-loop optimization inside the power module. (D) Direct

solderable coldplate is used to enhance thermal conductivity by eliminating thermal grease. (E)

The module is comprehensively tested and evaluated through double pulse tests up to 800 V/ 450 A

with voltage overshoot less than 10% of DC-link voltage, continuous tests up to 800 V/ 230 A with

thermal images captured.
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6 Conclusion and Future Work

6.1 Conclusion

This dissertation discussed the hardware design and optimization of the motor drive for

more-electric aircraft applications. To improve the converter performance, the dissertation utilized

a model-based design method for an optimal paper design of the power converters. Based on the

paper design, this dissertation investigates the method to choose optimal power semiconductors

by discussing the impacts of such parameters at the converter level. The dissertation explicitly

explains the method of busbar design. Because of the complicated structure of the busbar, the

dissertation splits the busbar design into two chapters, focusing on conduction layer design and

insulation structure design, respectively.

Spending many efforts on busbar optimization gains a lot, such as lower stray inductance

than the published paper for busbar in three-level converters. The lower stray inductance enabled

faster-switching speed, resulting in much lower switching loss. Besides, careful design of the

busbar insulation structure helps the system avoid partial discharge during high-altitude and low

air-pressure conditions.

The dissertation is also expressing one of the design philosophies: optimize the converter at

the power-module level. The author of this dissertation has noticed the significant performance im-

provement through design the converter at the power-module level. For example, five-fold reduced

stray inductance, much higher power density, and notably improved thermal conductivity.

Chapter 2 of this dissertation introduced the design procedure of power converter for more-

electric aircraft applications. The chapter explained the method of model-based converter design in

136



order to deliver the optimal paper design of the converter. Such paper design is the fundamental and

basis of the hardware design. The remaining design steps are illustrated to provide a comprehensive

and high-level understanding of converter design. The overall structure of the 450 kVA motor drive

is introduced in this chapter as well.

Chapter 3 provided the design guidance for the conduction layer of the laminated busbar.

This is step-by-step design guidance, which targets on minimizing the stray inductance of busbar,

limiting the temperature difference between parallel power switch through improving the dynamic

current sharing among them. The guidance utilizes a three-level t-type neutral-point-clamped con-

verter as a design instance. Furthermore, the guidance is comprehensively examined and evaluated

through electromagnetic simulations, circuit-level simulations, double-pulse tests, and continuous

tests with thermal imaging.

Chapter 4 focused on the insulation structure design of the laminated busbar. It is known

that partial discharge can shorten the converter lifetime, reduce converter reliability, and cause

converter malfunction through insulation break down. This paper provided a comprehensive struc-

tural analysis of the busbar and found the most-stress insulation condition by considering the non-

defects busbar and the busbar with defects such as voids and delamination. The insulation design

is based on the most-stress condition to guarantee partial-discharge free under such circumstances.

Meanwhile, the inductance-and-insulation trade-off is modeled quantitatively to help the designer

choose the proper insulation thickness

Finally, chapter 5 introduced a design of a 1200 V, 300A power module for three-level

t-type neutral-point-clamped topology. The power module utilizes a printed-circuit-board plus

direct-bounding copper structure, which achieves the low stray inductance through magnetic can-

cellation. The directly soldered coldplate also helps improve thermal conductivity by reducing
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thermal interface material and mitigates thermal coupling.

6.2 Future Work

This dissertation has investigated converter design from several aspects and revealed the

trade-off between the insulation and stray inductance, between stray inductance and thermal resis-

tance. However, there are additional design trade-offs that should be considered and modeled. For

example,

1. The trade-off between common-mode noise and thermal conductivity;

2. The trade-off between stray inductance and parasitic capacitance;

3. The trade-off between the insulation and parasitic capacitance.

The optimal hardware design can be achieved by understanding all the design trade-offs

and purposely choose a design space with a proper balance of such trade-offs.

In chapter 5, the dissertation focuses on the electrical performance of the designed module.

The reliability of the power module should be further investigated before moving the design to the

market.

In the end, all the researches are motivated by pursuing the optimal performance of con-

verters. The research has not included the consideration such as costs, marketing factors such as

marketing demands. The proposed method may eventually increase the product cost by increasing

product development time and introducing additional components, such as a printed circuit board

in the power module. Nevertheless, those costs can be mitigated and averaged through massive

production. In comparison, the overall saving can be predicted because of improved efficiency and

power density.
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7 Appendix

This appendix shows the testing equipment’s used to measuring the waveform and perfor-

mance characterization

1. Oscilloscope: Tektronix, MSO58 series and MSO 56 series

2. Probes used in the tests:

a. High-voltage differential probe: THDP0100.

b. Rogowski coil: CWT MiniHF 3, CWT Ultra-mini 1, and CWT 3.

c. Current transformer: Pearson 4100.

d. High-voltage single-ended probe: TPP0850.

3. Impedance characterization:

a. Impedance analyzer: KEYSIGHT E4990A.

b. Vector network analyzer: KEYSIGHT E5061B.
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