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ABSTRACT 

Induction heating causes the release of enormous amounts of heat from dispersed magnetic 

nanoparticles. While the rate of heat transfer can be easily quantified calorimetrically, measuring 

the temperature of the nanoparticles on the nanoscale presents experimental challenges. Fully 

characterizing the temperature and thermal output of these magnetic particles is necessary to gauge 

overall heating efficiency and to provide a more holistic understanding of heat transfer on the 

nanoscale. Herein, this dissertation seeks to develop a novel nanoparticle thermometry technique, 

which correlates diffusion behavior in core-shell nanoparticles to local temperature. Initial 

measurements suggested that heating silica capped ferrous nanoparticles (SCNPs) via induction in 

a saline environment encouraged the diffusion of dissolved sodium ions into the silica shell. The 

concentration gradient of sodium ions within the shell underwent an observable transition after 

only a few seconds of heating, thus implying that the increased core temperature was the driving 

force behind the diffusion event. Calculating nanoscale temperature required a three-prong 

approach, which combined experimental and theoretical analyses. First, a computational model of 

the core-shell system was developed to accurately depict diffusion into the core-shell structure. 

Experimental X-ray methods then analyzed the relationship between diffusivity and temperature 

for the material system and also measured nanoscale concentration gradients within physical 

SCNPs. By comparing the experimental diffusion data to the theoretical model, the estimated 

nanoscale temperature was able to be extracted. Understanding nanoscale temperature provides 

insight into more encompassing thermal models for nanoparticle induction heating, which will 

ultimately lead to advancements in numerous applications.  
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1. INTRODUCTION 

Induction heating represents a novel and efficient way to generate enormous amounts of heat 

in both macro and nanoscale conductive materials. Specifically, on the nanoscale, much of the 

research over the past few decades has focused on both characterizing the thermal output of the 

heated nanoparticles, as well as improving overall heating efficiency; essentially, modifying 

nanoparticle structural properties to release more heat at lower magnetic fields. However, 

nanoscale heat transfer, particularly the determination of nanoscale temperature, represents a point 

of contention in this field of study. A key principle of heat transfer involves the transfer of energy 

as a direct result of a difference in temperature, in this case, the temperature difference between 

the heated nanoparticles and the surrounding media. The contention exists in the quantification of 

this temperature difference, i.e., the temperature of the nanoparticles with respect to their 

surroundings. The presented research in this dissertation investigates the quantification of 

nanoparticle temperature through analyzing transient diffusion. As an introduction, this chapter 

gives a brief analysis of induction heating on the nanoscale, a review of the existing methods of 

quantifying nanoscale temperature, and an overview of the preliminary research.  

1.1. Brief Overview of Nanoparticle Induction Heating 

 Simply put, induction heating is the generation of thermal energy in conductive materials 

in response to an alternating magnetic field (AMF). When a macroscale conductive material 

interacts with an AMF, induced electric currents, called eddy currents heat the material through 

Joule heating, as a function of the material’s resistivity [1]. The efficiency of the heating also varies 

with respect to the position within the RF coil from which the AMF is generated, with the most 

efficient heating occurring at the geometric center of the coil. Magnetic materials 

(ferro/ferrimagnetic) receive an added heating bonus as a direct result of hysteresis heating. 
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Essentially, the orientation of the magnetic domains within the magnetic material will align with 

the orientation of the AMF. As the AMF oscillates, the domains will reorganize in response to the 

changing field direction; this process requires the input of work, which manifests as heat [2]. The 

combination of both Joule and hysteresis heating makes ferromagnetic materials, such as iron, 

steel, nickel, and cobalt, ideal candidates for induction heating. In the modern-day, macroscale 

induction heating is utilized in material processing, such as case hardening [3], as well as induction 

stovetops for food preparation [4]. 

Nanoscale induction heating requires the usage of different material types than traditional 

induction heating processes. Ferromagnetic materials offer the highest thermal output due to their 

high saturation magnetization; however, creating nanoparticles comprised of pure metals proves 

to be difficult. Pure ferromagnetic metal nanoparticles (iron, nickel, cobalt) lack stability on the 

nanoscale, are prone to oxidation, and exhibit low biocompatibility [5]. In terms of biomedical 

applications, pure metal nanoparticles were less than ideal candidates. Most efforts in recent days 

utilize ferrimagnetic metal oxide nanoparticles, which still possess relatively high magnetic 

saturation but maintain stability on the nanoscale [6, 7].  

As the heated material reduces in size to the nanometer size scale, the method of induction 

heating via an AMF remains the same, but the physics of heat generation changes. An 

encompassing review by Dennis et al. describes in detail the mechanisms which drive nanoparticle 

induction heating, as well as some of the challenges faced by researchers [8]. To start, reducing 

the size of a magnetic material (from here on called a “particle”) intrinsically reduces the number 

of magnetic domains. Once the size of the particle crosses a certain threshold (depending on the 

material type) the energy cost to maintain multiple domains becomes too great, and the particle 

transitions to a single domain structure with a uniform magnetic moment, rather than a multi-
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domain structure [9]. The magnetic moment in single-domain particles tends to orient parallel or 

anti-parallel to an axis known colloquially as the “easy axis”, thus giving the particle magnetic 

anisotropy. In this case, the anisotropic energy is the energy required to reverse the magnetic 

moment along the easy axis (rotating 180°), which also implies the existence of a minimum 

magnetic field necessary for moment reversal [8]. Several properties impact particle anisotropy 

including particle crystal structure, shape, and surface [10, 11]. In terms of nanoscale induction 

heating, the anisotropic energy can greatly influence the effect of hysteresis heating. In macroscale 

induction heating, the reorientation of the magnetic moments in response to the AMF drives the 

thermal output; however, in single domain structures, overcoming the anisotropic energy barrier 

determines hysteresis losses (release of heat), such as in the study by Noh et al., where the size of 

the hysteresis curves was changed by modifying the geometry of various spherical and cubic 

nanoparticles (Figure 1) [12]. 

 

 

Figure 1: (a) The researchers tested numerous types of particle geometries in two different size 

regimes including sphere, cube, and core/shell structure; (b) By changing particle geometry, the 

hysteresis loop is also modified. In this case, the largest cube size with the core-shell structure 

resulted in the largest hysteresis loop area, thus providing the highest thermal output. (Reprinted 

with permission from [12]. Copyright 2012 American Chemical Society). 
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At a sufficiently small size, single-domain particles can become superparamagnetic, where 

the thermal energy of a system can overcome the anisotropic energy barrier and cause the magnetic 

moment to fluctuate. Superparamagnetic particles lack coercivity or remanence (inability to 

remain magnetized after an external field is removed) like paramagnets; however, they possess the 

high saturation magnetization, characteristic of a ferri/ferromagnetic material, which gives them 

the name superparamagnetic [13]. Because of their lack of remanent magnetization, losses due to 

hysteresis are minimized. The heat produced by hysteresis depends highly on the area within the 

hysteresis loop (Figure 1b), and for a particle system with no remanence, the hysteresis loop area 

is zero. Particles in this size regime experience losses due to thermal relaxation, whereas the two 

main types are Brownian and Néel. Brownian relaxation occurs when the moment rotates the entire 

particle within the fluid suspension [14]; a recent effort made attempts to quantify the Brownian 

contribution to the total thermal output within various nanoparticle suspensions [15]. Néel 

relaxation corresponds to the internal moment rotation within the crystal structure [16, 17]. 

Mechanisms such as thermal relaxation provide insight into the driving force of thermal output in 

particles within the superparamagnetic regime. 

Several aspects of nanoparticle colloids have significant influence over thermal output, 

including their geometry, chemical composition, capping agents, and the properties of the fluid 

medium; a notable review highlighting the specific influence of nanoparticle structure can be found 

by Abenojar et al. [18]. Prior to this dissertation, some early work by the candidate focused on the 

effects of the surrounding environment on particle heating, as well as inter-particle interactions. 

Particles capped with a nonionic surfactant were found to be heavily influenced by the presence 

of dissolved ions within an aqueous solution, inducing heavy aggregation and altering heating 

performance [19]. In situ characterization using neutron scattering techniques allowed for the inter-
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particle interactions during heating to be observed by quantifying nanoparticle cluster size [20]. 

Additional work was also performed to correlate nanoparticle thermal output with mean inter-

particle distance for monodisperse iron oxide nanoparticles [21]. While an in-depth review of how 

each parameter affects heat transfer is outside the scope, an illustration of these properties with 

their associated references can be seen in Figure 2. 

 

Property Reference(s) 

Size and Shape [22-24] 

Surface Chemistry [25-27] 

Fluid Rheology  [15, 28, 29] 

Particle Chemistry  [30, 31] 

Fluid Chemistry [19, 32] 

Inter-Particle Interactions [21, 33-35] 

 

Figure 2: Diagram highlighting nanoparticle suspension properties that influence thermal output 

with associated references. 
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 One of the most researched applications for nanoparticle induction heating continues to be 

magnetic nanoparticle hyperthermia (MNH). Hyperthermia involves the treatment of cancer cells 

through increased local temperature; thermal shock induces cancer cell death (apoptosis), due to 

the cancer cells being more susceptible to changes in temperature than healthy cells. The usage of 

magnetic nanoparticle induction heating as the heat source for hyperthermia treatments provides a 

more targeted approach. Ideally, by injecting nanoparticles directly into tumor sites, the small size 

of the nanoparticles allows them to pass through biological membranes to heat the cancer cells 

directly using an AMF and limit damage to healthy tissue [36, 37]. Research into MNH as an 

alternative cancer treatment has also revealed its success when used in conjunction with other 

treatments. A recent study highlighted the potential of using MNH with a combination of 

radiotherapy and immunotherapy for increased effectiveness [38]. The same group also observed 

the triggering of immune responses within the body after nanoparticle exposure [39]. Obviously, 

MNH represents a novel alternative cancer treatment method, but additional research is necessary 

to understand the full breadth of nanoparticle interactions within the human body.  

 As indicated, the optimization of nanoparticle induction heating continues to be a multi-

faceted issue. Everything from the particle structure to the properties of the suspended fluid 

impacts the magnitude of the thermal energy produced. While several references in literature 

thoroughly quantify the impacts of each of these aspects, much is still unknown regarding this 

novel heat transfer phenomenon. A full understanding of nanoparticle induction heating requires 

knowledge of the nanoscale thermal transport occurring between the nanoparticle and surrounding 

fluid during induction heating, which is a newly developing area.  
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1.2. Current Methods for Estimating Nanoparticle Temperature  

 A fundamental difference in temperature is the driving force behind all forms of heat 

transfer. Calorimetric data indicates that heated nanoparticles release enormous amounts of heat 

with respect to the amount of material present. While the energy released is easily quantified by 

measuring the temperature of the fluid over time, the temperature difference between the particle 

and the fluid is largely unknown and represents a newly evolving area of study in nanoparticle 

science. Some researchers claim the temperature difference between the nanoparticle and 

surrounding fluid is negligible; however, novel experimental efforts within the past decade have 

been successful in measuring the temperature in the immediate vicinity. In addition to thermometry 

with magnetic nanoparticle heating, efforts in gold nanoparticle thermometry during plasmonic 

heating will also be addressed.  

In terms of theoretical analyses, the existence of a nanoscale temperature difference is met 

with some skepticism. Specific to magnetic nanoparticle induction heating, a recent review 

provided an insightful introduction into the work of various researchers and their attempts to define 

nanoscale temperature and heat transfer [40]; the paper describes both sides of the argument: those 

who think the temperature difference is significant and those who do not. An early work analyzed 

the problem and concluded that the temperature difference on the nanoscale between the 

nanoparticle and surrounding fluid (water in this case) would not exceed 10-5°C at steady state 

[41]. A few years later, a similar work corroborated these results and added that a nanoscale 

temperature difference between the surrounding fluid and nanoparticle surface would only be 

possible for extremely dilute suspensions at an exorbitantly high heating power [42]. Outside of 

the dissenting opinion, molecular dynamics simulations of heated gold nanoparticles indicate the 

presence of a nanoscale thermal gradient during heating. One study revealed that the fluid in the 



8 

 

immediate area around the nanoparticles can experience large temperature gradients and heat 

fluxes, which can cause particle degradation [43]. A more recent simulation effort specifically 

observed the heat conduction at the particle/fluid interface and the associated thermal gradient; 

their results indicated the dominant mechanism of heat transfer, within the tested timescale, was 

conduction rather than convection [44]. At this solid/liquid boundary, other researchers have 

suggested the existence of nanobubbles created by the vaporization of water at this interface during 

heating [45-48]. With magnetic nanoparticles, simulation evidence indicates that inter-particle 

interactions influence nanoscale heat generation as well [49]. As can be seen, increased 

computational power over the past decade has allowed for these nanoscale interactions to be 

modeled effectively, which results in improved quantification of nanoscale thermal phenomena.  

Recent experimental works have also demonstrated novel methods of measuring 

temperature in the immediate vicinity of the nanoparticles. As indicated in the article by Piñol et 

al., two distinct groups arise when discussing nanoscale temperature measurement with magnetic 

nanoparticles, dual-particle and single-particle methods, however, some examples in the literature 

indicate a hybrid between the two, as shown in Figure 3 [50]. Dual-particle heating modes arose 

first through the usage of quantum dots to act as nanoscale thermometers, where the temperature-

sensitive fluorescent emissions of the quantum dots provided insight into their temperature [51]. 

Essentially, the quantum dots were mixed into the nanoparticle suspension, and during heating, 

their emissions were monitored and correlated with temperature. However, the authors did not 

observe a difference between particle temperature and the temperature of the bulk fluid. Similarly, 

quantum dots were also used to measure the efficiency of gold nanorod heating [52]. In addition 

to quantum dots, nanoscale diamond particles have been utilized as nanoscale thermometers with 

high accuracy [53]. One group attached gold structures to an Al0.94Ga0.06N thin film with 
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incorporated Er+3 atoms, which acted as a temperature sensor; this sensor measured the thermal 

gradient around a single nanoparticle during heating [54]. The same group later proposed a 

different method using Er2O3 nanoparticles rather than the thin film; the nanoparticles measured 

the temperature in the vicinity of several gold nanorods during optical heating [55].  

 

 

Figure 3: (left) Dual-particle approaches use a system of separate nanoparticles to act as 

thermometers within the direct vicinity of the heated nanoparticle; (middle) Hybrid dual-core 

nanoparticle where thermometer and heated particle are contained within the same shell; (right) 

Single-particle methods implement a thermometer coating which provides a more direct way to 

measure temperature  

 

While dual-particle methods provide the means for researchers to quantify nanoparticle 

temperature, they are primarily limited by their proximity to the heated particle, i.e., are the 

temperature-sensing particles close enough to the heated particles to ensure an accurate 

temperature measurement? A hybrid dual-particle method attempted to increase accuracy by 

encapsulating the heated nanoparticle with the temperature-sensing nanoparticle in a single silica 

shell (dual-core nanoparticle) in order to ensure they were in close proximity to one another [56]. 

The heating of the dual-core particle provided evidence of a nanoscale thermal gradient that 

increased with respect to magnetic field and exposure time. The issue of proximity to the heated 
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particle led to the development of the single-particle measurements, where the coating of the 

heated nanoparticles or the nanoparticle itself acts as the nanoscale thermometer. Using the coating 

rather than a separate particle ensured that the location of temperature measurement occurred at 

the surface of the particle rather than in the adjacent space. One of the first examples of this 

methodology used particles capped with a temperature-sensitive fluorescent dye; a second dye was 

also dispersed in the surrounding fluid [57]. The comparison between the two dye locations 

showed that a 5°C temperature difference between the surface of the nanoparticles and the 

surrounding fluid. Rather than two dyes, a similar study synthesized core-shell particles with two 

emission peaks, one from the core and one from the shell [58]. Another study utilized Eu and Tb 

complexes as nanoparticle coatings and observed a notable difference between the surface of the 

particle and the surrounding fluid [50]. A few other thermo-sensitive nanoparticle coatings have 

been used in literature to estimate the temperature of both magnetic and gold nanoparticles [59, 

60]. Apart from using a temperature-sensitive coating or dye, unique single-particle methods have 

utilized anti-Stokes emissions [61], as well as local ionic conductivity [62] to determine local 

temperature. A particularly interesting study attempted to quantify nanoparticle temperature as a 

function of distance from the core [63]. In this case, polyethylene glycol (PEG) served as a spacer 

between the heated particle and the thermo-sensitive dye; by using PEG molecules with varying 

molecular weight, the dye could be placed at a set distance away from the core during heating, 

allowing for temperature measurements with improved spatial resolution. All the single-particle 

methods verified the presence of nanoscale temperature gradients between the nanoparticle and 

the surrounding fluid, but a possible concern would be the resistive effects of thermo-sensitive 

coatings. To frame it as a question, does adding additional temperature-sensing molecules to the 

surface of the heated nanoparticles impact the convective heat transfer between the nanoparticles 



11 

 

and the fluid? Further, would the same temperature gradient be present in the absence of the 

organic molecules introduced to measure nanoscale temperature? 

1.3. Thermometry via Diffusion: Preliminary Research  

 In a previous study by the Huitink and Greenlee labs, the interactions between silica capped 

iron nanoparticles (SCNPs) and the surrounding saline suspension during induction heating were 

analyzed in terms of how the dissolved ions affected nanoparticle structure over time. Silica 

capping provided the particle with a chemically inert, biocompatible shell; however, elemental 

analysis of the silica shell after induction heating indicated the diffusion of ions into the core-shell 

structure (Figure 4). While the project sought to analyze how dissolved ions may degrade the silica 

shell after prolonged heating, the time-dependent ionic diffusion into the silica shell piqued 

additional interest regarding the temperature-dependency of the diffusion events. Diffusivity for a 

material system follows an Arrhenius relationship (𝐷 = 𝐷0𝑒
−𝐸

𝑅𝑇), where “D0” is the diffusivity at 

infinite temperature, and “E” is the activation energy for a diffusion event. With knowledge of the 

diffusivity vs. temperature function, temperature could theoretically be extrapolated by measuring 

the relative concentration of Na with respect to particle radius before and after heating. Measuring 

temperature in this way would differ from previous single-particle thermometry techniques 

because additional capping agents would not be necessary. The temperature would be calculated 

by observing how a single nanoparticle interacted with the dissolved ions in suspension without 

changing its structure or composition. The conjecture of diffusion-based nanoscale temperature 

calculation serves as the underlying hypothesis of this work. 
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Figure 4: (left column) Nanoparticle EDX line scan before induction heating. A high 

concentration of sodium ions (orange dotted line) is observed towards the surface of the 

nanoparticle with decreasing concentration towards the iron core; (right column) After 30 minutes 

of induction heating, the concentration of sodium appears much more linear with respect to the 

“Before Induction Heating” measurement, which implies the occurrence of diffusion phenomena 

within the nanoparticle.  

 

1.4. Rationale 

 This dissertation attempts to demonstrate an alternative methodology for estimating local 

nanoparticle temperature during induction heating using core/shell nanoparticles comprised of iron 

and silica. By correlating the temperature-dependent diffusion of sodium ions into the silica shell 
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with simulation values, the temperature of the area immediately around the ferrous cores can be 

estimated. An understanding of the nanoscale temperature can provide information regarding 

nanoscale convection between the particle and surrounding fluid. Quantifying convection between 

the particle and fluid relates to how efficient heat is transferred across the particle/fluid boundary, 

which proves useful to several applications. In order to accomplish this, several aspects are 

addressed:  

• A numerical model is presented in order to simulate nanoscale diffusion within core-shell 

geometries. This simulation provides the backbone for estimating temperature by 

correlating simulated and experimental concentration gradients. (Chapter 2) 

• Since the temperature-dependent properties of sodium diffusing into sol-gel silica are 

unknown, they are be determined empirically. X-Ray Photoelectron Spectroscopy Depth 

Profiling is utilized to measure the concentration profile of sodium in silica at a variety of 

process times and temperatures to determine the dependence of diffusivity on temperature. 

(Chapter 3) 

• Using the diffusivity data and a working numerical model, nanoparticle temperature is 

estimated using Energy Dispersive X-ray (EDX) data from a High-Resolution 

Transmission Electron Microscope (HRTEM). After heating the particles via induction in 

a saline solution, the distribution of sodium within the silica shell is analyzed, compared 

to the numerical model, and used to estimate the core temperature. (Chapter 4) 

Through the collective analysis of these various research approaches, parallels can be 

drawn between thermal and mass diffusivity in core-shell nanoparticles, which ultimately provides 

the context for the introduction and facilitation of estimating local nanoparticle temperature during 

induction heating.  



14 

 

2. NUMERICAL MODELLING OF CORE-SHELL GEOMETRY 

 While experimental methodologies greatly enhance the understanding of how a system 

performs in the real world, the most encompassing studies need to illustrate similitude between 

both empirical data and numerical models. For this geometry (spherical core-shell), analytical 

solutions are often quite complex and only account for a few ideal cases. Because of this difficulty 

associated with analytical solutions in non-ideal geometries, researchers widely utilize numerical, 

specifically finite element, methods to calculate a variety of spatially and/or temporally variant 

systems. Since this work largely depends on a detailed understanding of ion movement within 

spherical nanoparticles to extrapolate local temperature, utilizing numerical methods is necessary 

to equate the theoretical understanding of diffusion with the above experimental observations. 

Within this chapter, the development of a numerical diffusion model to analyze the temperature-

dependent mass transfer of sodium ions within core-shell nanoparticles is discussed, which will 

serve as the first step towards nanoparticle temperature estimation.  

2.1. Solving Partial Differential Equations with Core-Shell Geometry  

 As with any model, the first step is to create a diagram of the system in question: a spherical 

core-shell nanoparticle (Figure 5). The diagram illustrates not only where the system is spatially 

located, but also the locations of the respective boundary conditions. In this case, the system is 

comprised of a spherical iron core surrounded by a silica shell; the inside radius of the shell is 

denoted as Ri while the outside radius is Ro. For simplicity, a 1-D radial assumption is used for the 

simulations, or in this case, a quarter-circle arc with an inside and outside radius.  
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Figure 5: Illustrative model of the core-shell nanoparticle structure with an iron core and silica 

outer shell. This serves as the primary illustration for the 1-D radial model.  

 

When diffusion is concerned, the standard model used for the transient state is Fick’s 

second law, which relates how concentration (c) at a point in space, in this case, radius (r), changes 

with respect to time (t). In its general form, Fick’s second law is shown in Equation 1.  

 

𝝏𝒄

𝝏𝒕
= −𝑫𝛁𝟐𝒄  (1) 

 

 The Laplacian term (𝛁𝟐𝒄) provides a general representation for a variety of geometries; 

among the more common are rectilinear, cylindrical, and spherical geometries. Luckily, the system 

of interest (spherical) can be represented easily, as seen in Equation 2, where θ and φ represent the 

concentration gradient in the angular dimensions.  

 

𝛁𝟐𝒄 = [
𝟏

𝒓𝟐

𝝏

𝝏𝒓
(𝒓𝟐 𝝏𝒄

𝝏𝒓
)]

𝒓
+ [

𝟏

𝒓𝟐 𝐬𝐢𝐧𝜽

𝝏

𝝏𝜽
(𝐬𝐢𝐧 𝜽

𝝏𝒄

𝝏𝜽
)]

𝜽
+ [

𝟏

𝒓𝟐 𝐬𝐢𝐧𝟐 𝜽

𝝏𝟐𝒄

𝝏𝝋𝟐
]
𝝋

  (2) 
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 While the above equation may have multiple components, some assumptions must be taken 

into consideration. It is assumed that the ionic concentration on the exterior surface of the shell 

(Ro) is constant, which implies that the ions should diffuse uniformly in the radial dimension (r). 

Ideally, this also means that the concentration should not vary in the angular dimensions (θ and 

φ), such that the angular components of Equation 2 would be zero throughout the simulation. Real 

nanoparticles often detract from the assumption of a perfect sphere; however, the nanoparticle 

geometry in the preliminary data tended towards spherical. This assumption greatly simplifies the 

simulation by only considering the radial term. Removing the unnecessary terms, Fick’s second 

law becomes Equation 3.  

 

𝝏𝒄

𝝏𝒕
= −𝑫

𝟏

𝒓𝟐

𝝏

𝝏𝒓
(𝒓𝟐 𝝏𝒄

𝝏𝒓
)  (3) 

 

 Still, the PDE can be simplified even further. If a simple substitution is made, u = cr 

(concentration x radius), the equation mimics that of a rectilinear geometry [64], shown in 

Equations 4-7. By making the simple substitution, the potentially difficult spherical PDE becomes 

a rather simple 1-D rectilinear PDE (Equation 7). 

 

𝟏

𝒓

𝝏𝒖

𝝏𝒕
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𝟏

𝒓𝟐

𝝏

𝝏𝒓
(𝒓𝟐

𝒓
𝝏𝒖

𝝏𝒓
−𝒖

𝒓𝟐 )  (4) 

𝝏𝒖

𝝏𝒕
= −𝑫

𝟏

𝒓

𝝏

𝝏𝒓
(𝒓

𝝏𝒖

𝝏𝒓
− 𝒖)  (5) 

𝝏𝒖

𝝏𝒕
= −𝑫

𝟏

𝒓
(𝒓

𝝏𝟐𝒖

𝝏𝒓𝟐
+

𝝏𝒖

𝝏𝒓
−

𝝏𝒖

𝝏𝒓
)  (6) 

𝝏𝒖

𝝏𝒕
= −𝑫

𝝏𝟐𝒖

𝝏𝒓𝟐
    (7) 
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2.2. Numerical Formulation of Interior Nodes 

With a general analytic model established, the next step was to discretize the system model 

to develop a numerical algorithm. With both spatial and temporal variance, the numerical solver 

can be visualized in Figure 6, where 𝑢𝑖
𝑗
, refers to the solution to Equation 7 at radius index i (0 ≤ 

i ≤ R) and time index j (0 ≤ j ≤ T). In this case, R refers to the length of the radius vector r and T 

refers to the length of the time vector t. The vector r is comprised of radius values separated by Δr 

within the range Ri ≤ r ≤ Ro (within the silica shell); similarly, the vector t consists of time values 

separated by Δt within the range 0 ≤ t ≤ max(t).  

For this type of PDE (parabolic), which primarily models heat transfer or diffusion 

phenomena, the Crank-Nicolson (CN) algorithm is widely implemented, due to its unconditional 

stability [65]. In this case, Equation 7 can be discretized to the general CN form, as shown in 

Equation 8.  

 

𝒖𝒊
𝒋+𝟏

−𝒖𝒊
𝒋

∆𝒕
=

𝑫

𝟐
[
𝒖𝒊−𝟏

𝒋+𝟏
−𝟐𝒖𝒊

𝒋+𝟏
+𝒖𝒊+𝟏

𝒋+𝟏

∆𝒓𝟐 +
𝒖𝒊−𝟏

𝒋
−𝟐𝒖𝒊

𝒋
+𝒖𝒊+𝟏

𝒋

∆𝒓𝟐 ]   (8) 

 

The CN algorithm represents an implicit numerical algorithm. i.e., the values for the current 

time step (uj+1) must be solved through analyzing a system of equations using the previous time 

step (uj). Because of this, a common and efficient method for solving the CN algorithm is through 

matrix methods, where all the interior radius nodes for the current time step are solved 

simultaneously. After rearranging the terms in Equation 8 and compiling all the constants into a 

single term (𝐶 =
𝐷∆𝑡

∆𝑟2
), the setup for the matrix solver can be seen in Equations 9 and 10. 
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Figure 6: Visualization of the system discretization in both time and space dimensions. In this 

case, the radius is divided into sections of Δr and the time is divided into sections of Δt. 
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In the case of Equation 10, if this same format is applied at each radius step, the following 

matrix equation can be used to solve the systems of equations A x u = d (Equation 11), where 𝐵 =

2(
1

𝐶
+ 1), and 𝑑𝑖 = 𝑢𝑖−1

𝒋
+ 2(

1

𝐶
− 1) 𝑢𝑖

𝑗
+ 𝑢𝑖+1

𝑗
 , or the right half of Equation 10.  
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 For every time step after the initial condition (0 < t), the inverse of the A (R-2 x R-2) matrix 

is calculated and multiplied with the d (R-2 x 1) matrix for the current step (j+1). The resulting (R-

2 x 1) solution matrix contains the “u” values for the interior radius nodes (1 ≤ i ≤ R-1) at the j+1 

time step.  

2.3. Boundary Conditions 

 Among the most important part of any numerical simulation is the selection of the proper 

boundary conditions. For the current model, three boundary conditions are necessary: 1 initial time 

condition and 2 spatial conditions.  

2.3.1. Initial Condition  

The easiest condition to implement into the algorithm is the initial condition. Presumably, 

the concentration of sodium within the silica layer is zero before diffusion occurs; however, this 

assumption will need to be verified with experimental data. In terms of the CN model, a zero-

concentration initial condition can be represented by 𝑐𝑖
0 = 0 𝑜𝑟 𝑢𝑖

0 = 0 . 

2.3.2. Dirichlet B.C.  

Next, the spatial boundary conditions were determined. As stated earlier in this section, an 

easy starting assumption for the exterior of the silica shell is that the concentration of sodium atoms 

remains constant throughout induction heating, which would mean, on a normalized scale, the 

concentration would simply be 1 at r = Ro for the entirety of the simulation, or a Dirichlet boundary 

condition: 𝑐𝑅
𝑗

= 1 𝑜𝑟 𝑢𝑅
𝑗

= 𝑅𝑜. This condition is trivial to implement into the numerical algorithm, 

as shown in Equation 12.  

 

−𝒖𝑹−𝟐
𝒋+𝟏

+ 𝟐(
𝟏

𝑪
+ 𝟏)𝒖𝑹−𝟏

𝒋+𝟏
= 𝒖𝑹−𝟐

𝒋
+ 𝟐(

𝟏

𝑪
− 𝟏)𝒖𝑹−𝟏

𝒋
+ 𝒖𝑹

𝒋
+ 𝒖𝑹

𝒋+𝟏
    (12) 
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 With all the values at 𝑢𝑅set to a constant value (Ro), the term 𝑢𝑅
𝑗+1

can simply be added to 

the right side of the equation, which contains the known values from the previous step. By doing 

this the last term in the d matrix changes: 𝑑𝑅−1 = 𝑢𝑅−2
𝒋

+ 2(
1

𝐶
− 1)𝑢𝑅−1

𝑗
+ 2 ∗ 𝑅𝑜. 

2.3.3. Neumann B.C.  

The next spatial condition must pertain to the other side of the silica shell (Ri), the barrier 

between the silica shell and the ferrous core. The boundary condition at this location was chosen 

to be a Neumann boundary condition or insulated surface. i.e., no material diffuses through the 

silica/iron interface. An insulated boundary condition was chosen namely for simplicity. Adding 

an interface between two unlike materials would have greatly increased the complexity of the 

model. Also, due to the pure interest in transient diffusion, the investigated diffusion length will 

be designed to not exceed the thickness of the shell. Mathematically, this boundary condition is 

represented 
𝑑𝑐0

𝑗+1

𝑑𝑟
= 0, where there is no concentration gradient across the inside boundary. In 

terms of the numerical model, this slope needs to be determined through a second-order forward 

finite difference equation originating at the first concentration value (c0) (Equation 13).  

  

𝒅𝒄𝟎
𝒋+𝟏

𝒅𝒓
≈

−𝟑𝒄𝟎
𝒋+𝟏

+𝟒𝒄𝟏
𝒋+𝟏

−𝒄𝟐
𝒋+𝟏

𝟐∆𝒓
= 𝟎   (13) 

 

 If we solve this equation in terms of the concentration value at the boundary (𝑐0
𝑗+1

), then 

the boundary condition is defined by the equations below, both in terms of concentration (Equation 

14) and the u term (Equation 15).  

 

𝒄𝟎
𝒋+𝟏
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𝟒

𝟑
𝒄𝟏

𝒋+𝟏
−

𝟏

𝟑
𝒄𝟐

𝒋+𝟏
  (14) 
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𝒖𝟎
𝒋+𝟏

=
𝟒𝒓𝟎

𝟑𝒓𝟏
𝒖𝟏

𝒋+𝟏
−

𝒓𝟎

𝟑𝒓𝟐
𝒖𝟐

𝒋+𝟏
  (15) 

 

 Unlike the Dirichlet condition, the Neumann condition is a bit more difficult to implement 

into the algorithm. The difficulty lies in the CN equation at Ri (u0) shown in Equation 16.  

 

−𝒖𝟎
𝒋+𝟏

+ 𝟐(
𝟏

𝑪
+ 𝟏)𝒖𝟏

𝒋+𝟏
− 𝒖𝟐

𝒋+𝟏
= 𝒖𝟎

𝒋
+ 𝟐(

𝟏

𝑪
− 𝟏)𝒖𝟏

𝒋
+ 𝒖𝟐

𝒋
  (16) 

 

 In order to calculate this equation through the CN matrix method, the term 𝑢0
𝑗+1

 must be 

known. This seems counterintuitive since 𝑢0
𝑗+1

 depends on the two neighboring terms in the 

current time step, which have yet to be calculated. However, the equation simplifies by substituting 

in Equation 15 to 16 (Equation 17).  
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𝟏

𝑪
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𝟒𝒓𝟎
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𝟑𝒓𝟐
− 𝟏)𝒖𝟐

𝒋+𝟏
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𝒋
+ 𝟐(

𝟏

𝑪
− 𝟏)𝒖𝟏

𝒋
+ 𝒖𝟐

𝒋
  (17) 

 

 With respect to matrix A, this modification changes the top left corner respectively: 

𝐀(𝟏, 𝟏) = 𝟐(
𝟏

𝐂
+ 𝟏) −

𝟒𝐫𝟎

𝟑𝐫𝟏
 and 𝐀(𝟏, 𝟐) =

𝒓𝟎

𝟑𝒓𝟐
− 𝟏. The modified A matrix allows for all the 

interior nodes to be calculated, while still keeping the Neumann condition into consideration. After 

calculating the interior nodes for the j+1 step, the value of 𝑢0
𝑗+1

 can be calculated using Equation 

15. 

2.4. From Math to MATLAB 

 Several coding languages could effectively model this system with similar degrees of 

accuracy; however, due to familiarity with the language, MATLAB was chosen as the primary 
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IDE to implement the core-shell diffusion model. While MATLAB excels at matrix-centric 

programming, the primary difficulty was that the indices for MATLAB start at “1” rather than “0”. 

From this point forward, 𝑢𝑖
𝑗
 represents the simplified solution value at radius index “i” and time 

index “j”, where i, j ≥ 1. Other than this change, the implementation of this numerical system into 

MATLAB code was straightforward.  

2.4.1. CN Algorithm: MATLAB Pseudocode 

The pseudocode for the CN Implicit solver can be seen below, and the full script file can be found 

in the Appendix: 

>> D = 1  % Define diffusivity in nm^2/s 

>> t = 0:delt:totalTime %Define time discretization  

>> r = ri:delr:ro %Define radius discretization  

>> c = zeros(length(r), length(t)) %Create solution matrix 

>> u = zeros(length(r), length(t)) %Create simplified “u” matrix (u=cr) 

>> u(: ,1) = 0  %Initial condition of zero concentration at t = 1 

>> u(length(r), :) = ro  %Dirichlet B.C. at shell boundary  

>> C = D*delt/(delr)^2 %Calculate the non-dimensional constant  

>> A=tridiagonal matrix %Create the tridiagonal matrix “A” 

>>A(1,1) = 2*(1/C+1)-(4*r(1))/(3*r(2)); A(1,2) = r(1)/(3*r(3))-1; %Account for Neumann B.C  

>> d = zeros(length(R)-2,1)  %Create matrix “d” containing previous step solutions 

>> for j =2:length(t)  %Iterate over all time steps 

 >> for i=length(r)-2:-1:1 %Iterate over interior nodes and build “d” vector 

  >> if i == length(R)-2 %Accounting for Dirichlet B.C.  

   >> d(i) = u(i,j-1)+2*(1/C-1)*u(i+1,j-1)+2*u(i+2,j-1;  
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  >> else  %All other interior points 

   >> d(i) = u(i,j-1)+2*(1/C-1)*u(i+1,j-1)+u(i+2,j-1); 

  >> end 

 >> end 

 >> u(2:R-1,j) = A\d; %Multiply inverse of A matrix by newly formed d vector 

 >> u(1,j) = (4*r(1))/(3*r(2))*u(2,j)-r(1)/(3*r(3))*u(3,j); %Account for Neumann B.C.  

>> end  

>> c(:,:) = u./repmat(r',1,T); %Divide simplified u matrix by radius vector and store as conc. 

While the pseudocode goes into more depth, the base algorithm is simple:  

1. Determine initial condition and matrix “A”.  

2. Create “d” vector (Equation 11) by using values at the previous time step (j).  

3. Multiply the inverse of tridiagonal “A” matrix by new “d” vector to determine solution at 

current time step (j+1). 

4. Repeat 2 and 3 for each time step.  

5. Divide each column of the final solution matrix by radius vector to return to concentration  

2.4.2. Plotting Functions 

The algorithm comprised the bulk of the mathematical calculations, yet additional functions 

would be needed to properly plot and visualize the results. MATLAB’s built-in “plot” function 

provided a simple 1-D representation of the data; however, for a 2-D view of the diffusion within 

the shell, the popular user function “3D Polar Plot” [66] was utilized to create still images as well 

as progression videos. An example of both the “plot” and “3D Polar Plot” graphs can be seen in 

Figure 7. 
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Figure 7: Example plots using two separate plotting functions: plot and 3D Polar Plot. In this case, 

the plots illustrate the concentration gradient across a silica shell, with an inner radius of 45 nm 

and an outer radius of 60 nm. (left) The standard “plot” function shows a simple 1-D gradient at 

progressing time steps (each color represents a new time step). (right) The “3D Polar Plot” function 

shows the same data, but only at a single time step. However, the data is more visually appealing 

and illustrates the core-shell geometry better. 

 

2.5. Error Considerations 

 With the CN already proven to be unconditionally stable, this work will not delve further 

into its stability; however, due to the nature of numerical analysis, the presence of error is 

guaranteed. A main source of error in numerical calculations originates through discretization of 

a continuous function; in this case, the function of concentration with respect to both time and 

radius. Greater accuracy is achieved through finer discretization (smaller Δr and Δt); however, at 

the expense of greater computational time. In terms of this simulation, the dimensionless C 

parameter represents the primary term that combines both time and space discretization. To 

determine how this term impacts error propagation within the simulation, the value of C was 

increased gradually (Figure 8). After each increase, the results of the simulation were observed 

qualitatively.  
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Figure 8: Modifying the dimensionless C parameter can greatly impact the presence of error 

within the simulation. As Δt is increased, perturbations begin to occur within the earliest time steps. 

 

 The values of D and Δr remained constant, but Δt was increased from 1 to 5 seconds. 

Initially, with C = 1, the simulation appeared to work fine; the boundary conditions were met, and 

there was no evidence of significant error propagation. However, as the value of C increased over 

2, perturbations within the early time steps became apparent. With Δt = 5, there were some 

instances of the simulation exceeding the normalized scale (right panel of Figure 8). After these 

initial perturbations, the algorithm corrects itself to a solution similar to the previous simulations. 

 The goal of developing a numerical simulation is to reduce instances of the solution 

becoming unbounded or “blowing up”. While the simulation did not blow up in these examples, 

the error still must be reduced as much as possible. An additional line of code prevents this same 

perturbation from occurring by adjusting Δt to keep C = 1.5 < 2: >> delt = (1.5*delr^2)/D; 

2.6. Correlating with STEM-EDX Measurements 

 One of primary goals of this work is to be able to correlate between numerical simulation 

and experimental data. For the case of this study, diffusion within the nanoparticles is measured 

with an HRTEM in scanning-mode (STEM); essentially, the HRTEM scans the nanoparticle and 
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displays the distribution of elements within the core-shell structure with respect to atomic 

percentage. However, rather than show the distribution at the center of the nanoparticle, similar to 

the simulation results in Figure 7, the HRTEM actually measures a projection of the 3D elemental 

composition onto a 2D plane, similar to the data shown in Figure 9.  

2.6.1. Implementing EDX Projection 

 Ideally, there should be a stark contrast between the core and shell on the EDX scan; 

however, the scan results in a diffuse boundary between the core and shell. With the EDX scan 

being a projection, this creates difficulty when trying to compare experimental and simulated 

results. In order to simulate this projection, the concentration was averaged with respect to the “z” 

direction, i.e., the direction of the electron beam. To accomplish this, the quarter-circle model used 

before was discretized on a rectilinear plane, as shown in Figure 10.  

 

 

Figure 9: Schematic of STEM-EDX Map of core-shell nanoparticle. In an ideal case, there should 

be a sharp elemental transition between the shell and the core; however, this is not likely due to a 

finite probe size and a diffuse core/shell interface (Reprinted with permission from [67]. Copyright 

2018 American Chemical Society) 
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As Figure 10 indicates, the projected concentration at each radius increment is determined 

by averaging the concentration values directly “above” with respect to the z-axis. Numerically, 

this can be represented through Equation 18, where 𝑐𝑟𝑞is the projected sodium concentration at 

radius index q and Z is the total number of indices on the z-axis within the particle dimensions. 

 

𝒄𝒓𝒒
=

∑ 𝒄𝒓𝒒
𝒔𝒁

𝒔=𝟏

𝒁
=

𝒄𝒓𝒒
𝟏 +𝒄𝒓𝒒

𝟐 +⋯+𝒄𝒓𝒒
𝒁

𝒁
  (18) 

 

 

Figure 10: Diagram of the method used to emulate the projection created by EDX measurements. 

At each radius, the concentration values are averaged in the z-direction at each radius value. By 

doing so, the projected concentration value at each radius value can be estimated. 
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 For the simulation at the center cross-section, the concentration of sodium at the core (r = 

0) should be zero (left panel of Figure 11); however, the projection differs from the center-cross 

section in that there appears to be a noticeable concentration of sodium within the nanoparticle 

core, due to the electron beam interacting with the portion of the shell directly above the core (right 

panel of Figure 11).  

 

 

Figure 11: (left) Simulation results at the particle center over the entire radius. The sodium diffuses 

into the shell and stops when it reaches the core (45 nm); (right) The projected concentration 

gradient considers the average concentration with respect to the vertical z-axis, giving the 

impression of sodium ions present in the particle core. Simulating the projection provides greater 

similarity to the EDX measurements. 

 

2.6.2. EDX Projection: MATLAB Pseudocode 

 The below pseudocode indicates how the projected concentration gradient is determined 

from the existing CN algorithm. Completed code can be found in the Appendix.   

>> delz = delr; z = 0:delz:ro; Z = length(z); %Set z-discretization size  

>> c_z = zeros(rplotl,Z,T);  %Create matrix to store z values 

>> c_avg = zeros(rplotl,T);  %Create matrix to store projected (averaged) concentrations 

>> rplot = [0:delr:r(1),r(2:R)]; rplotl = length(rplot); %Entire radius range (core and shell) 

>> cplot = zeros(rplotl,thetaplotl,T);%Create plotting matrix with core concentration values 
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>> for p = 1:T     

    cplot(rplotl-R+1:rplotl,:,p) = repmat(c(:,p),1,thetaplotl); %Fill plotting matrix with shell conc 

values 

>> end 

>> for p = 1:T     

    >> for q = 1:rplotl 

        >> count = 0; 

        >> add = 0;  

        >> for s = 1:Z             

            >> r_p = sqrt((q*delr)^2+(s*delz)^2); %Calculate radius for selected z value  

            >> if r_p <= ro %Filter radii that exceed the particle size  

                >> r_pcorr = interp1(rplot,rplot,r_p,'nearest'); %Interpolate to nearest radii within r 

                >> index = find(rplot==r_pcorr);  %Find index for nearest radii 

                >> c_z(q,s,p)=cplot(index,1,p);  %Using index, find associated concentration value 

                >> add = add+c_z(q,s,p); count = count+1; %Sum the z values and count once 

            >> else  

                >>c_z(q,s,p)=0;  %If z exceeds particle dimensions, don’t count it and set conc to zero 

            >> end 

        >> end 

        >> if count == 0   

            >> c_avg(q,p) = c(R,p);  %Prevent division by zero if count is low 

        >> else 

            >> c_avg(q,p) = add/count;   %Average all the z concentrations at each radius 
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        >> end  

    >> end 

>> end;  

 In a sense, the code performs simple operations to calculate the projected concentration 

profile:  

1. Particle is partitioned into square sections where the side length is equivalent to Δr.  

2. The length between each node (𝑐𝑟𝑞
𝑍 ) and the particle is center is calculated and mapped to 

the closest value within the entire particle radius range (core and shell). If the length 

exceeds the particle size, the measurement is not counted.  

3. Using the indexed radius value, the concentration at a node is determined from the 

simulation results.  

4. All the values at a particular radius are averaged in the z-direction. The averaged value is 

then stored as a projected concentration.  

2.7. Summary  

 A key element in facilitating nanoparticle temperature estimation offered in this 

dissertation is being able to effectively model the diffusion of sodium ions into a silica shell 

structure and compare the results of the model with experimental data. With the transient diffusion 

PDE possessing a parabolic structure, the Crank-Nicolson algorithm proved to be a stable and 

reliable algorithm to model the diffusion of ions within the silica shell, and MATLAB provided a 

simple, yet effective IDE. Since the diffusion within the nanoparticle will be measured with EDX 

functionality in an HRTEM, a significant part of the model accounted for the projected elemental 

map produced by the EDX measurement. This allowed for a better comparison between theoretical 

and empirical datasets.  
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 While simulation development represents an important step in the understanding of 

nanoparticle diffusion behavior, the model is useless without empirical diffusion data (i.e., 

activation energy of diffusion and diffusivity at infinite temperature). Simulation results vary 

wildly depending on the diffusivity value “D” the user inputs. Diffusivity for a particular material 

system largely depends on the local temperature, which is the main idea for this work. If the 

diffusion of sodium into sol-gel silica is well characterized, then local temperature could be 

predicted based solely on the concentration gradient within the nanoparticle structure. The next 

section addresses the determination of these diffusion constants necessary to accurately predict 

diffusivity so that this model can be used to extract temperature.  
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3. DIFFUSION CONSTANT DETERMINATION 

 This work centers around estimating temperature by observing diffusion phenomena within 

nanoparticles. Diffusion possesses temperature dependency through an Arrhenius relation, similar 

to chemical reaction rates. Even with the simplicity of the equation, the activation energy (E) and 

diffusivity at infinite temperature (D0) represent material constants unique to a particular system, 

which need to be determined empirically or through simulation. In the case of the SCNPs, the 

system of interest is sodium ions diffusing into a sol-gel silica layer. An early study exists in the 

literature that analyzes a similar system of sodium diffusing into silica glass and relates diffusivity 

with temperature experimentally [68]; however, the silica glass in this study, while similar in 

chemical composition, most likely possesses structural differences from sol-gel silica layer present 

on the surface of the SCNPs. Due to this assumption, the first aspect of this work aims to 

experimentally determine the diffusion constants associated with sodium ions diffusing into sol-

gel silica to provide a better understanding of ion mobility into the shell of the SCNPs. 

Determining the diffusion constants empirically is the most straightforward option for 

measuring temperature-dependent diffusion behavior. Rather than use theoretical analysis or 

computational material science, the diffusivity at various temperatures is determined by measuring 

the diffusion length of a material (sodium) into the bulk (silica). Ideally, the temperature is known 

and maintained at a set value throughout the experiment; however, in the case of this study, with 

diffusion into a nanoparticle shell, the temperature of interest (local nanoparticle temperature) is 

unknown. Without knowledge of the exact temperature of the system throughout the experiment, 

no meaningful conclusions can be drawn about the diffusivity. Because of this, a separate, micro-

scale system must be studied, which both accurately mimics the material properties of the 
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nanoparticle silica shell as well as enables precise temperature control. For simplicity, this system 

would also need to possess a rectilinear geometry to accurately measure the diffusion depth. 

3.1. Sol-Gel Silica Thin Film Creation and Characterization 

 In the case of this study, rather than coat a set of nanoparticles, a sol-gel silica coating will 

be formed on a polished silicon substrate. This will create a flat, rectilinear coating, which will be 

easier for empirical analysis, as well as enable environmental temperature control by heating the 

sample in an oven. The methodology used in this study utilizes sol-gel silica to create a uniform 

coating on the silicon substrate, similar to that on the SCNPs. Basically, sol-gel synthesis consists 

of first creating a colloidal suspension of particles (sol) and then encouraging the formation of an 

integrated particle network (gel), which comprises the coating. Sol-gel coatings are utilized 

ubiquitously in industry and academia and are quite easy to create in a variety of geometries.  

3.1.1. Creating the Film 

 The chemicals utilized in this section were ACS grade and all acquired from commercial 

sources. This sol-gel coating procedure (Figure 12) was adapted from Reference [69] to both utilize 

a well-referenced source and to ensure simplicity. To create the colloidal silica suspension, a 

solution of tetraethyl orthosilicate (TEOS), methanol, water, and hydrochloric acid (HCl) at a 

respective molar ratio of 1:3:8:5E-5 needed to be prepared. To keep the batch small, the volume 

was scaled down to approximately 20 mL. First, 5.9 mL of deionized water, 4.98 mL of methanol, 

and 0.13 µL of HCl were added to a flask. While actively stirring the mixture with a stir bar at 

room temperature, 9.1 mL of TEOS was added dropwise to the solution; after introducing the 

TEOS, the mixture was covered with plastic wrap, heated to 60°C, and stirred vigorously for 90 

minutes. Afterward, the addition of approximately 9.3 µL of HCl increased the concentration to 

7.34 mM. Upon allowing the solution to cool, the mixture underwent additional stirring at room 
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temperature for 15 minutes. The solution was then aged at 50°C for 15 minutes. After aging, 60 

mL of methanol diluted the solution by a factor of 3, which resulted in the completed sol-gel 

mixture. 

 

 

Figure 12: Sol-gel coating process used to create the silicon wafer samples for the diffusivity 

study. First, TEOS was introduced to the aqueous suspension to start the hydrolysis reaction. After 

heating and vigorous stirring, the final gel solution is diluted with methanol; the substrates are then 

dipped at a controlled speed into the solution to form the sol-gel silica coating. 

 

 The primary reaction occurs between TEOS (an alkoxysilane) and water, and it is 

comprised of two stages: hydrolysis and condensation. Hydrolysis first begins to replace the 

alkoxide groups with hydroxyl groups, and then condensation occurs, where the partially 

hydrolyzed molecules react to produce the network of Si-O-Si bonds [70, 71]. Due to the 

immiscibility of water and TEOS, methanol acted as a homogenizing solvent, while the addition 
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of HCl helped to keep the pH of the mixture low to encourage condensation. Early references 

described hydrolysis and condensation with three separate chemical reactions, where R represents 

the alkyl group, CxH2x+1 [70, 72]:  

 

≡ 𝑆𝑖 − 𝑂𝑅 + 𝐻2𝑂 = ≡ 𝑆𝑖 − 𝑂𝐻 + 𝑅𝑂𝐻   (1) 

≡ 𝑆𝑖 − 𝑂𝑅 + 𝐻𝑂 − 𝑆𝑖 ≡ = ≡ 𝑆𝑖 − 𝑂 − 𝑆𝑖 ≡ + 𝑅𝑂𝐻 (2) 

≡ 𝑆𝑖 − 𝑂𝐻 + 𝐻𝑂 − 𝑆𝑖 ≡ = ≡ 𝑆𝑖 − 𝑂 − 𝑆𝑖 ≡ + 𝐻2𝑂 (3) 

 

The silicon substrates used in this study were created from a 100 mm diameter, single-side 

polished silicon wafer in the <100> orientation. Silicon substrates were used due to their low 

surface roughness, low cost, and possessing chemically favorable bonding conditions for silica. A 

low-speed saw diced the original wafer into several 10 x 10 mm pieces. After a thorough cleaning 

with acetone and water, each piece of the silicon wafer was then attached to a linear actuator (PI 

M-235.2DD), which lowered them into the sol-gel solution at a rate of 1.3 mm/s, kept still in the 

solution for 30 minutes, and then removed the piece at the same rate of speed. The speed of the 

substrate removal represents an important parameter, which both governs the thickness of the 

coating as well as the uniformity [71]. After removing the sample, the solution began to dry, and 

the coating became visible via the discoloration of the polished side of the silicon piece. Each 

coated piece was then cured in an oven at 90°C for 1 hour. Last, the cured silica-coated samples 

were then further cut with the low-speed saw to 2 x 2 mm squares. 

3.1.2. EDX Characterization 

 An FEI Nova Nanolab 200 Scanning Electron Microscope (SEM) was one of the primary 

instruments used to characterize the sol-gel silica layers. In addition to the visual characterization, 



36 

 

EDX spectroscopy was utilized to provide an elemental breakdown of the films. Figure 13 shows 

a top-view micrograph in an area along the edge of the film where cracking was observed. To 

clarify, the sol-gel coating was purposefully cracked in order to generate the image; the majority 

of the film exhibited a uniform structure with minimal cracking. In the bottom panel, the EDX 

map of the same micrograph is also shown, which illustrates the predominant elements present 

within the view. Figure 13 provides a stark qualitative contrast between the sol-gel silica layer and 

the silicon substrate. Due to the oxidized structure of silica, oxygen atoms primarily dominate the 

signal from the sol-gel coating (yellow), as opposed to the silicon wafer substrate (purple); 

however, the oxygen-rich regions also contain silicon atoms as well, which provides further 

evidence for the presence of silica.  

 

 

Figure 13: EDX scan of an SEM micrograph taken on the surface of a silica-coated sample. This 

particular area, with several micro-cracks, showcased the oxidized structure of the film. (top) 

Original micrograph; (bottom) EDX map of the region, where the yellow regions indicate oxidized 

silicon and the predominately purple regions illustrate the silicon substrate peeking through the 

cracks. 

 

 In addition to the top view images, the cross-section of the samples was also examined to 

characterize the film thickness. In this case, two of the samples were glued together using an epoxy 
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resin with the coated sides facing each other. The sandwiched sample was then cut in half and 

polished using polishing pads ranging from 0.5-90 µm in roughness. SEM and EDX analysis were 

then performed on the cross-section. Due to the small scale and lack of visible contrast, only the 

EDX image is shown in Figure 14.  

 

 

Figure 14: EDX profile of a cross-section of the silica layer. The image distinctly shows the 

predominately silicon substrate (bottom green) and the oxidized silica layer (middle red). 

 

 From Figure 14, the oxidized film (red) is clearly seen directly on top of the silicon 

substrate (green). Based on the scale and the measurements performed, the film is estimated to be 

400 nm in thickness, but the cross-section is only a small portion of the film, which may not be a 

good representative sample of the thickness variance across the entire 2 x 2 mm square. However, 

these measurements do provide a good thickness estimation for the diffusion calculations.  

3.1.3. Characterization with XPS Depth Profiling  

 While the EDX measurements distinctly show an oxidized thin film structure on top of the 

silicon substrate, these qualitative images do not distinctly prove whether the structure is 
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comprised of silica or some other oxidized material. In order to do provide quantitative 

characterization, X-Ray Photoelectron Spectroscopy (XPS) Depth Profiling was used to determine 

the binding energy of the silicon atoms present in the thin film. If the film is comprised of silica, 

there should be a distinct difference in binding energy between the oxidized film and the elemental 

silicon substrate. A PHI 5000 VersaProbe Scanning ESCA Microprobe was used to gather the 

depth profiling measurements. An initial scan was gathered on the surface of the coated 2 x 2 mm 

sample. Afterward, a 1 kV Argon sputtering beam etched into the sample for 30 seconds at a rate 

of approximately 8-15 nm/min, followed by an additional XPS scan, as shown in Figure 15.  

 

 

Figure 15: Illustration of XPS Argon Sputtering. (left) A 1 kV sputtering beam gradually removes 

material from the silica layer. (right) Following material removal, an XPS spectrum is gathered in 

the crater at a known depth. 

 

The alternating cycle of sputtering and scanning was repeated 60 times. Figure 16 

showcases a portion of the XPS spectra pertaining to the Si2p orbital; the scans after each 

sputtering cycle are overlaid to illustrate how the peak position changes with respect to sputtering 

time.  



39 

 

 

Figure 16: XPS depth profile of the sol-gel silica film focused on the Si2p peak. The initial scans 

indicated a strong peak at 103.75 eV, which corresponds to oxidized silicon; however, once the 

sputtering beam etched through the layer, the peak shifted to 99.5 eV, which corresponds to 

elemental silicon 

 

 For the first several scans, the predominant peak occurred at 103.75 eV; the high binding 

energy of this orbital correlates to an oxidized structure, which is characteristic of silica. As the 

beam gradually etches away the thin film, the intensity of the oxide peak diminishes, and a new 

peak appears at a lower binding energy (99.5 eV). The transition occurs when the sputtering beam 

has etched completely through the silica layer and is starting to etch into the silicon substrate, 

where no oxidized Si atoms are present. Similar to the EDX, the peak transition shows high 

contrast between the silicon substrate and the silica thin film. Because of the presence of the peak 

at 103.75 eV for the Si2p orbital, it can be definitively determined that the material present within 

the layer is in fact silica, rather than some other form of oxidation.  

3.2. Measuring Diffusion Empirically 

 The purpose of the silica samples created in this chapter is to mimic the sol-gel silica shell 

that surrounds the nanoparticles. Unlike the silica present in glassware, which is formed through 
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high-temperature processes, silica films created through sol-gel procedures tend to be quite porous 

[73]. The presence of structural differences between sol-gel and traditional silica begs the question 

of how they impact diffusion behavior. As covered in previous sections, the commonly used model 

to describe the temperature dependence of diffusivity (Arrhenius model) uses a simple “activation 

energy” term (Eo) to describe the energy required to initiate a diffusion event. The general 

hypothesis is that this activation energy should be much lower in a porous sol-gel silica film than 

a solid silica film, such as with the study by Frischat et al. referenced earlier [68]. Micro/nano-size 

pores provide lower-energy routes for sodium atoms diffusing into the silica shell rather than 

vacancy or interstitial diffusion. The rest of this chapter will focus on the empirical determination 

of the diffusion of sodium ions into a sol-gel silica film through the use of XPS depth profiling. 

3.2.1. Sample Creation 

 The 2x2 mm square samples created in the previous section were utilized as the primary 

means to measure diffusion. Characterization of the films indicated that a ~400 nm layer of silica 

was present on the surface of the silicon wafers after dip coating. However, the most challenging 

aspect of this study was to maintain a high concentration of sodium atoms at the surface of the 

silica layer, while also maintaining good surface contact. Dispersing the sodium atoms into an 

epoxy resin proved to be an effective method, which satisfied both conditions. To effectively 

introduce sodium into the epoxy, 2 g of non-iodized sodium chloride was dissolved in 20 mL of a 

50/50 volume mixture of methanol and water. Afterward, 100 µL of the solution was added to a 1 

mL of epoxy at a 1:1 resin to hardener ratio. The methanol served as a thinning agent for the epoxy, 

allowing it to be easily spread on the small sample surface, the water allowed for greater solubility 

of sodium chloride into the mixture, and the epoxy ensured good surface contact without 

compromising the integrity of the silica layer. The diagram in Figure 17 illustrates the process of 
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creating the samples for diffusion testing. After the epoxy dried onto the surface, each sample 

underwent heat treatment in a high-temperature oven at a set temperature for a given amount of 

time. After completing the heat treatment, each sample cooled to room temperature and soaked in 

an acetone bath for 1 hour to remove the epoxy. While the acetone works effectively at removing 

the epoxy from the surface, visual observation indicates that it does not impact the silica layer.  

 

 

Figure 17: Process to create the samples for the diffusion study. The 2x2 silica samples are first 

coated with saline epoxy, allowed to dry, and then placed in an oven at a pre-determined 

temperature. After heat treatment, the wafer is soaked in acetone to remove the epoxy, but it does 

not dissolve the silica layer. 

 

3.2.2. Heat Treatment 

 After coating each sample with the saline epoxy and allowing them to dry, the samples 

were then placed in an oven at a set temperature for a pre-determined amount of time. Heating in 

the oven promoted the diffusion of sodium from the epoxy layer into the silica layer. The diffusion 

creates a concentration gradient within the film, with the highest concentration being between the 

silica and epoxy layer and the lowest concentration being at the surface of the silicon wafer. The 

selection of the oven time and temperature required some forethought because multiple variables 

can influence the gathered results. The goal is to achieve a large concentration gradient between 

the top and bottom of the film that can be measurable with the XPS. If the sample temperature is 

too high or the diffusion time is too long, then the sodium atoms will reach a linear steady-state 
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concentration within the film, and the gradient with respect to the length will be difficult to discern. 

Also, according to the manufacturer, the stability of the epoxy significantly reduces when 

exceeding 200°C. Conversely, if the temperature or time is too low, then the sodium atoms will 

not diffuse far enough into the silica layer to measure with the XPS. An array of temperatures and 

times were chosen by calculating the estimated diffusion length (𝐷𝑙 = √𝐷𝑡) using the results of 

the study by Frischat et al. [68], where “D” is temperature-dependent diffusivity and “t” is time. 

While the diffusion lengths most likely will not be exact, the estimations from an existing model 

provide a good starting point. Ideally, the diffusion length for the samples should not exceed the 

thickness of the silica film (~400 nm). Table 1 illustrates the testing matrix used for the diffusion 

constant determination as well as the estimated diffusion lengths.  

 

Table 1: Testing matrix for the diffusivity study including estimated diffusion lengths. A sample 

will be prepared for each combination, heated for the given temperature and time, and tested with 

XPS. 

 150°C/423 K 175°C/448 K 200°C/473 K 250°C/523 K 

30 min 30.5 nm 78.1 nm 180.9 nm 762.8 nm 

60 min 43.2 nm 110.4 nm 255.8 nm 1078.8 nm 

90 min - 135.2 nm 313.3 nm 1322.2 nm 

120 min 61 nm - - - 

 

As can be seen, the selected testing matrix includes estimated diffusion lengths from 30 

nm to over a micron; however, these are values estimated from sodium diffusing into solid silica 

rather than sol-gel. It is likely that the diffusion lengths will be much longer in the sol-gel samples; 

however, this is merely a hypothesis. To prepare for the eventuality that the diffusion is inhibited 

in the sol-gel, the 250°C case was explored. 
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3.2.3. Measuring Concentration Gradients  

 Similar to the characterization discussed in Section 3.1.3., XPS depth profiling (Figure 15) 

was the primary technique used in characterizing the diffusion of sodium into the silica layer after 

heat treatment. Each sample underwent an initial XPS scan to establish a surface concentration of 

sodium. Afterward, the alternating cycle of sputtering/measurement occurred 60 times, or until the 

beam had completely etched through the silica layer, which was determined by waiting for the 

peak shift observed in Figure 16. During each measurement cycle, the peak occurring in the region 

associated with the Na1s orbital (1066-1076 eV) was analyzed in terms of its area (Figure 18). As 

the sputtering beam etched through the silica, the peak intensity would be monitored and 

normalized with respect to the initial surface concentration. Since all the samples were made from 

the same dip-coated wafer, with a characterized silica thickness of approximately 400 nm, the 

sputtering speed was estimated to be 10 nm/min, with slight variations between samples. 

After recording the intensity after each sputtering cycle, the resulting plots appeared similar 

to the left panel of Figure 19, which illustrates the 150°C/60 min heat treatment sample. The 

highest concentration is observed at the surface of the silica layer (0 nm), which on a normalized 

scale is set to “1”. Further measurements illustrate an exponential decline in concentration as the 

sputtering beam etches further into the layer. When the concentration achieves a zero slope near 

200 nm, this is assumed to be the baseline, or where the concentration is zero. When this occurred 

in the samples, the curve underwent correction to ensure the model could achieve a good fit, which 

made the concentration zero within this asymptotic region. The presence of the baseline noise most 

likely originates from the detection of photoelectrons outside the sample area; the peak, while 

rather small, still registers within the detectable area, resulting in an intensity measurement. Each 

sample shown in Table 1 underwent XPS depth profiling and a similar curve was generated. 
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Figure 18: Example of sodium peak analysis during XPS depth profiling. After each sputtering 

time, the Na1s peak was analyzed and its area recorded. 

 

 

Figure 19: Intensity vs thickness plots for the 150°C/60 min heat treatment. For these 

measurements, the surface of the silica layer corresponds to 0 nm, while the silicon wafer 

corresponds to 400 nm. (left) Uncorrected raw data from the XPS. The highest concentration is 

observed near the surface with an exponential decay. However, the data approaches zero 

concentration and appears noisy as the peak intensity decreases. (right) Corrected data for use in 

the model, where data points in the asymptotic region are represented as zero. The main focus of 

this study is the initial region of concentration decay (for this example between 0 and 200 nm). 
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3.2.4. Qualitative Analysis of Edge Cases  

 As stated in the previous section, it was unknown how well diffusion would occur at the 

edge cases, i.e., highest temperatures and times. If the epoxy degraded at higher temperatures, then 

this most likely would result in poor sodium dispersal within the silica layer. Also, if the samples 

are heated for too long, then a steady-state condition might be reached with no discernable gradient 

present. The concern proved valid when observing the high temperature/time cases. As a case 

study, the qualitative differences between the 30-minute tests at 150°C, 200°C, and 250°C were 

taken into consideration (Figure 20). 

 

 

Figure 20: Comparison between 30-minute tests at 150°C, 200°C and 250°C. The curve for the 

150°C and 200°C test results in a nice decreasing concentration curve; however, the 250°C test 

observed a sharp decline at the beginning of the layer and a gradual (and noisy) increase 

throughout the film. 

 

 The 150°C and 200°C tests resulted in a gradual and predictable exponential decay in 

concentration, consistent with transient diffusion. An increase in temperature to 200°C encourages 

further diffusion, which results in a higher sodium concentration deeper into the layer; however, 
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the trend stops once the temperature exceeds 250°C. Not only is the data much less intense, 

resulting in increased noise, but the concentration towards the surface, where it should be the 

highest, takes a steep decline before gradually increasing. After consideration, the culprit seemed 

to be the breakdown of the sodium delivery system: the epoxy. The original experimental design 

harnessed the properties of the epoxy to not only maintain a constant-concentration boundary 

condition but also allow for high surface contact. When the tests exceeded the temperature stability 

region of the epoxy, the delivery system collapsed. Thermal breakdown of the epoxy compound 

resulted in polymer degradation, which most likely significantly reduced the surface concentration 

of sodium atoms. Because this was a gradual process over the course of the entire test, some 

sodium atoms did diffuse into the silica layer but not a similar magnitude as the lower temperature 

testing.  

While high temperature also alters the epoxy compound, the breakdown also possesses a 

time dependency. Even samples tested at longer testing times observed similar concentration 

curves, such as with the tests at 175°C (Figure 21). At 175°C/30 minutes, the concentration curve 

appeared normal with a very rapid decay and asymptotic behavior around 100 nm into the sample, 

and the 60-minute sample possessed a curve that indicated a little more diffusion into the sample. 

However, for the 90-minute sample, the curve possessed a structure similar to the 250°C tests, 

where a strong drop on the surface is followed by a gradual increase in concentration deeper into 

the silica layer. With the concentrations being higher into the silica layer, it is possible to conclude 

that the samples are reaching a linear steady-state condition before the epoxy eventually breaks 

down; however, the polymeric degradation observed in these tests puts into question the quality of 

the results for the edge cases. While the easy argument would be to omit the trials from the dataset, 
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some conclusions could still be derived during the quantitative analysis to determine diffusion 

constants.  

 

 

Figure 21: Comparison between the 175°C tests. Initially, the tests look normal at 30 and 60 

minutes; however, at the 90 min test, the breakdown of the concentration curve is apparent, similar 

to the high-temperature testing. 

 

3.3. Estimating Diffusion Constants 

 With the concentration curves gathered for each of the test cases using XPS analysis, the 

next step was to extract the relationship between diffusivity and temperature. Theoretically, the 

diffusivity for each temperature case (no matter the diffusion time) should be unique, e.g., the 

diffusivity values for 175°C at 30, 60, and 90 minutes should all be the same. After finding the 

average diffusivity at each temperature, the values were fit to the Arrhenius model to extract 

diffusion parameters. 
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3.3.1. Concentration Curve Fitting Algorithm 

By using the numerical model in Chapter 2 to extract these values through an iterative 

process, the activation energy (E) as well as diffusivity at infinite temperature (Do) can be 

estimated, which is essential for extrapolating nanoparticle temperature with this methodology. 

Before developing the code, a simple block diagram was used to illustrate the algorithm (Figure 

22).  

 

 

Figure 22: Block diagram for diffusivity determination algorithm. After importing a concentration 

curve, the theoretical concentration curve is solved for each diffusivity and compared against the 

experimental data. The diffusivity resulting in the highest R2 is selected. 

 

 Essentially, a range of diffusivity values is guessed by the user. The simulation then solves 

the theoretical CN model for a rectilinear geometry and compares the output concentration curve 

to the experimental curve through a simple R2 analysis. After testing all diffusivity values within 

the selected range, the value with the highest R2 is chosen. Given the output, the user can then 

focus the diffusivity range to a finer scale. The below pseudocode outlines the algorithm 

implemented in MATLAB, where the complete source code can be found in the Appendix.  

>> import(‘Experimental data’);  %Import in single concentration curve 

>> thickness = Imported array containing layer thickness; 

>> intensity = Imported array containing concentration curve; 
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>> D = 1:1:50;  %Cycle over multiple diffusivities  

>> for k = 1:length(D) 

 >> Solve CN algorithm for Rectilinear Geometry with 400 nm thickness;  

 >> for i = 1:length(thickness) %Map experimental concentration gradient to model 

  >> rnew(l) = interpl(r,r,thickness(l),’nearest’);  %Find nearest model value 

  >> index = find(r==rnew(l));  %Find index for that value 

  >> unew(l,k) = u(index,T);  %Create of matrix of mapped values 

 >> end 

 >> data_mean = mean(intensity);  

 >> sum_res = 0;  

 >> sum_sq = 0;  

 >> j = 1:length(thickness) 

  >> sum_res = sum_res + (intensity(m) - unew(m,k))^2;  %Sum of residuals 

  >> sum_sq = sum_sq + (intensity(m) - data_mean)^2; %Sum of squares 

 >> end 

 >> R_squared(k) = 1- sum_res/sum_sq; %Calculate R Squared 

>> maxRSquared = find(R_squared==max(R_squared));  %Find max R Squared Value 

>> D_opt = D(maxRSquared) %Store diffusivity value with highest R Squared Value 

>> R_2 = max(R_squared)  %Store R Squared value of optimal Diffusivity Value. 

3.3.2. Quantitative Analysis of Edge Cases  

 The model used for this analysis assumed a constant concentration of sodium ions at the 

surface throughout the simulation. For most of the samples, loading epoxy with saline provided a 

simple, yet effective method to ensure this boundary condition during heat treatment; however, at 
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higher temperatures/times, it proved to be ineffective due to epoxy degradation, as shown in Figure 

23. The left panel of Figure 23 illustrates experimental data which conforms well to the numerical 

model, resulting in an excellent fit; however, the right panel shows an edge case, where the model 

fit is quite poor. While typically R2 values tend to be positive (on a scale from 0 to 1), a negative 

value indicates a particularly poor fit, where the model fits worse than a horizontal line drawn at 

the mean concentration. 

 

 

Figure 23: (left) Example of a good model fit to the 200°C/60 min trial; (right) Example of a bad 

model fit at one of the edge cases, 200°C/90 min. 

 

It can be implied that the edge case fits are not valuable to the study since they deviate 

from the boundary conditions set by the model. However, rather than simply remove them from 

the data set, each concentration curve with a poor fit to the model was further analyzed by 

excluding the data points just below the surface, which from here on will be called the “trough 

region” (Figure 24). The hypothesis was that even though these cases exhibited transient diffusion 

behavior which deviated from the model, the data could still provide information regarding steady-

state diffusion (when concentration gradient approaches linearity). Before excluding the points, 
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the algorithm fit the data shown in Figure 24 poorly; the R2 value indicated a severely negative 

value. It did well in fitting the sharp decline right at the surface; however, it failed to capture the 

concentration gradient deeper into the silica layer. If the trough region was excluded, the algorithm 

focused on fitting the data points further into the film, which results in a significantly better fit 

(R2=0.164). After performing this same exclusion for all the edge cases, the quality of their fits 

improved and the estimated diffusivity values increased, as shown in Table 2.  

 

 

Figure 24: (left) The fit for the 175°C/90 min trial before data exclusion; (right) the same trial but 

after excluding data points collected near the surface of the silica layer. 

 

Table 2: Analysis of the edge cases before and after excluding data points within the trough region. 

Every case not only noticed an improvement in the overall fit, but also an increase in the estimated 

diffusivity. 

 Before Exclusion After Exclusion 

Edge Case Diffusivity 

(nm2/s) 

R2  Diffusivity 

(nm2/s) 

R2  

175°C/90 min 0.13 -2.01 7.00 0.164 

200°C/90 min 0.07 -3.25 7.34 -1.39 

250°C/30 min 0.30 -2.09 28.2 0.04 

250°C/60 min 8.43 -1.15 15.04 -0.19 

250°C/90 min 11.91 -1.50 17.00 -0.01 
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 In every case, excluding the data within the trough region resulted in an improved fit. 

Granted, the fits were still poor overall, but exclusion did help to improve the model. Such a result 

begs the question as to the cause of the trough region shown in nearly every edge case. A possible 

explanation could be a reversal in the diffusion direction caused by the breakdown of the epoxy. 

The experiment was designed to encourage diffusion into the silica layer, towards the silicon 

wafer, and it appears that nearly every edge case observed this to some degree. However, the 

surface of the silica layer could have become more sodium-deprived over time as the epoxy 

decomposed in the thermal environment, resulting in a reversal in the direction of mass transfer. 

Such an occurrence would theoretically cause a region of lower concentration near the surface. 

Regardless, the diffusivity values of the edge cases will not be used in estimating diffusion 

constants, due to their poor fits; however, they will be compared with respect to the final diffusivity 

vs temperature curve. 

3.3.3. Calculating the Diffusivity Curve 

Following the analysis of the edge cases, each concentration curve within the testing matrix 

was analyzed in terms of both calculated diffusivity and R2 value, as shown in Table 3. As shown 

in the previous section, the edge case presented a more difficult challenge to fit than the lower 

temperature/shorter time cases. Table 3 highlights these values in yellow to indicate that the fitting 

process produced a fit of poor quality, while the green values indicated curves that with good 

overall fits. In some cases, the R2 values went into the negative, indicating an extremely poor fit. 

For each of the green values within the same temperature set (e.g., 200°C at 30 and 60 min), an 

average and standard deviation were calculated, which represented the average diffusivity value 

for that particular temperature. The values in yellow were not used to calculate the average and 

standard deviation.  
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Table 3: Fitted values using the diffusivity determination algorithm. The green shaded values 

indicate a good fit, while yellow shaded values are those which fit poorly and were not included 

in the average/standard deviation calculations. *For 250°C, the values were averaged for 

investigative purposes only and were not included in the diffusivity analysis. + Denotes fits where 

data were excluded. 

 Optimal Diffusivity Values (nm2/s) 

 150°C 175°C 200°C 250°C 

30 min 0.49 0.165 4.9 28.2+ 

60 min 0.66 0.3 2.08 15.04+ 

90 min - 7.0+ 7.34+ 17+ 

120 min 1.21 - - - 

Average 0.786 0.23 3.49 20.1* 

Stand. Dev.  0.37 0.095 2.0 7.1* 

 Optimal R2 Values 

 150°C 175°C 200°C 250°C 

30 min 0.93 0.921 0.981 0.04+ 

60 min 0.934 0.927 0.969 -0.19+ 

90 min - 0.164+ -1.39+ -0.01+ 

120 min 0.95 - - - 

 

 Following the calculation of the diffusivity at each temperature/time combination, the 

values were then fit to the Arrhenius diffusivity equation (Equation 19) using MATLAB’s Curve 

Fitting app. In this case, “R” represents the ideal gas constant (1.987E-3 kcal/K-mol), “E” 

corresponds to the activation energy for a diffusion event (kcal/mol), and “Do” is the diffusivity at 

infinite temperature.  

 

𝑫(𝑻) = 𝑫𝒐𝒆
(
−𝑬

𝑹𝑻
)
  (19) 

 

 The average diffusivities at 150°C, 175°C, and 200°C were the data points used during the 

fitting process, with the diffusivity value at 250°C being excluded due to poor fits. The estimated 

diffusivity curve based on the data is shown in Figure 25, along with the estimated diffusion 

parameters and R2 value. Based on the fitted equation, the “E” and “Do” terms were determined to 
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be 20.84 kcal/mol and 1.406E10 nm2/s, respectively with R2 = 0.86. In terms of eV, the activation 

energy correlates with approximately 0.90 eV/atom.  

 

 

Figure 25: Fitting the diffusion data with an Arrhenius-type curve. The primary purpose is to 

illustrate the dependence of the diffusivity on temperature for this system. Data at 250°C was 

excluded from the fit, but the values were placed on the graph to observe any correlation with the 

fit. 

 

 As can be seen in the above figure, the averaged diffusivity values from the excluded 250°C 

trials were also plotted on the graph alongside the diffusivity curve. According to the fitted curve, 

the diffusivity of sodium into silica at 250°C should be approximately 27.46 nm2/s, and the 

estimated value from the excluded data approximated the value to be 20.1 nm2/s, a 27% relative 

difference. This comparison reinforced the efficacy of data exclusion in the edge cases, which 

provided a better approximation of the diffusivity at 250°C than the unmodified data (6.88 nm2/s, 

75% relative difference). By excluding the “trough region” of the concentration curves for these 

edge cases, the transition between transient and steady-state diffusion was better characterized and 

more representative of the material system.  
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 At the beginning of the diffusivity analysis, the study by Frischat et al. provided the starting 

point for the model [68]. As stated earlier, the researchers studied a chemically similar system but 

varied structurally from the sol-gel silica indicated in this study. Within the range of 170°C to 

250°C, similar to the range tested in this study, they suggested the diffusivity curve could be 

described by the following equation: 𝐷(𝑇) = 2.13 
𝑛𝑚2

𝑠
𝑒(

−28.3 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙

𝑅𝑇
)
 . The activation energy 

(28.3 kcal/mol) corresponds to the energy requirement for a diffusion event to occur, which is 

probably either interstitial diffusion (smaller Na+ ion diffuses in the space between silicon/oxygen 

atoms) or vacancy diffusion (Na+ diffuses between vacancies in the atomic structure). In the case 

of sol-gel silica, another factor must be considered: porosity. Similar to diffusion along a grain 

boundary, sol-gel silica’s intrinsic porosity provides the sodium atoms lower energy “shortcuts” 

to diffuse into the silica structure. Given the presence of porosity, it can be inferred that the 

diffusion of sodium into sol-gel silica would have a lower activation energy, i.e., the sodium atoms 

would diffuse easier. The fit from Figure 25 verifies this assumption by indicating the activation 

energy to be 20.84 kcal/mol, which is a 26% relative decrease from solid silica glass.  

3.4. Summary  

 The numerical model introduced in the last chapter provided a good foundation for 

modeling sodium diffusion into sol-gel silica; however, it could not provide accurate results 

without knowledge of how diffusivity changes with respect to temperature. By recreating the sol-

gel silica shell on a rectilinear geometry with accurate temperature control, the diffusion of sodium 

ions into a sol-gel silica thin film provided the basis for estimating the temperature dependence of 

diffusivity for this material system. XPS depth profiling accurately measured sodium 

concentration gradients at a variety of temperatures and times, where an estimated diffusivity was 

determined for each condition. By fitting the diffusivity values to the Arrhenius diffusion model, 
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the diffusion constants (Do and E) were empirically determined to be, 1.406E10 nm2/s and 20.84 

kcal/mol, respectively. Knowledge of these parameters will aid in harnessing the power of 

diffusion to estimate nanoscale temperature during induction heating. 
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4. NANOPARTICLE TEMPERATURE ESTIMATION 

The central thesis of this work focuses on diffusion occurring within a single core-shell 

nanoparticle for the purpose of estimating nanoscale temperature. Prior chapters have explained 

the steps required to achieve this goal. Developing a numerical model comprised the first step, 

which allowed for the simulation of diffusion in spherical coordinates; however, the model was 

incomplete without empirical diffusivity data. The next chapter concentrated on determining this 

empirical data by estimating the diffusivity vs temperature curve for Na diffusing into sol-gel 

silica. Herein, this chapter seeks to utilize all the tools and data developed thus far to provide an 

estimation of nanoparticle temperature using diffusion phenomena within a single core-shell 

nanoparticle.  

4.1. Nanoparticle Fabrication and Characterization  

 Throughout this study, the nanoparticles in question consisted of a crystalline iron core and 

an amorphous sol-gel silica shell. In order to perform the diffusion analysis, it is necessary to 

ensure the existence of a conformal silica shell surrounding the nanoparticle core. The silica shell 

needs to be completely coating the core, while also maintaining a constant thickness to ensure 

uniform diffusion into the nanoparticle. The crystalline phase of the ferrous core will also be 

determined to provide a complete characterization of the particle. 

4.1.1. SCNP Synthesis 

The synthesis methodology used to create the silica capped nanoparticles, or SCNPs, was 

derived from a combination of two separate works: one for the fabrication of the iron cores [74] 

and the other for the silica shells [75]. All synthesis was performed in the Huitink Lab, while the 

SCNP characterization took place in the Arkansas Nano-Bio Materials Characterization Facility. 

The chemicals used were ACS grade and acquired from commercial sources. An illustration of the 
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synthesis process can be seen in Figure 26, which shows the creation of both the iron core and 

silica shell.  

 

 

Figure 26: Diagram of the synthesis method used to make the SCNPs. First, the iron salt is 

added with solvent and ATMP. Under vacuum conditions, the iron ions are reduced with sodium 

borohydride to form iron core/ATMP stabilized nanoparticles. Silica precursors are then bubbled 

in the solution with argon to induce a hydrolysis reaction, which creates the silica shells. 

 

Fabrication of the iron cores consisted of a methodology created by Greenlee et al. [74], 

which utilizes aminotris(methylenephosphonic acid), or ATMP to stabilize the nanoparticles. First, 

23 µL of ATMP was added to a 3-neck flask containing 90 mL of deionized water and 40 mL of 

methanol. To ensure the removal of dissolved oxygen, the mixture was bubbled with argon gas 

and mixed using an orbital shaker table at 100 rpm for 10 minutes. In a separate flask, 17 mg of 

FeSO4∙7H2O was added to 10 mL of deionized water and stirred to ensure it completely dissolves. 

While still maintaining the argon bubbling, the iron solution was immediately added to the 3-neck 

flask. The argon bubbling prevented unwanted oxidation of the iron within the aqueous suspension. 
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If the color of the solution turned a faint yellow, this indicated the solution had oxidized, and the 

synthesis must start over. The iron solution continued to bubble with argon for 30 additional 

minutes while stirring at 100 rpm. A few minutes before stopping the bubbling, 120 mg of NaBH4 

was dissolved in 10 mL of deionized water in a separate flask and then promptly added dropwise 

to the 3-neck flask. Assuming the lack of oxidation, the solution in the 3-neck flask should begin 

to turn black due to the NaBH4 reducing the iron ions in the solution and creating iron cores. After 

turning off the argon gas and adding the reducing agent, the 3-neck flask was put under vacuum 

for 30 minutes to remove the subsequent hydrogen gas from the solution, while the solution 

continued to stir. Next, the iron cores underwent silica capping similar to the method by Yang et 

al. [75]. Under argon bubbling, 28 µL of (3-Aminopropyl) trimethoxysilane (APS) and 338 µL of 

tetraethyloxysilane (TEOS) were added incrementally every 30 minutes for the next 3 hours. The 

final products were centrifuged, washed several times, and suspended in deionized water.  

4.1.2. Particle Characterization: STEM/EDX 

 After synthesizing the particles, a diluted sample of the final product solution was placed 

on a lacey carbon electron microscopy grid for imaging with a High-Resolution Transmission 

Electron Microscope (HRTEM). The HRTEM used was an FEI Titan 80-300, which enabled 

adequate resolution to observe the nanoparticle structure as well as any crystalline structures. To 

start, the nanoparticles were analyzed in terms of their relative size, as shown in Figure 27. As 

shown, the nanoparticles appear to have a wide range of sizes between approximately 70-115 nm. 

The less-dense silica layer contrasted against the iron core well enough to discern a noticeable 

core-shell structure with an average shell thickness of 13 nm; this visual characterization bolsters 

the conclusion that the synthesis was a success.  
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Figure 27: A grouping of SCNPs of various sizes at low magnification. The picture shows a wide 

variation in core sizes; however, even at low magnification, the conformal silica shell is easily 

distinguishable from the denser iron core. 

 

 Once a single particle was isolated, the HRTEM transitioned to Scanning TEM (STEM) 

mode, where the electron beam functioned more like a scanning electron microscope (SEM) rather 

than a TEM. In this mode, energy dispersive analysis (EDX) could be leveraged to not only discern 

physical characteristics, but also an elemental spectrum of the sample. Figure 28 illustrates a 

STEM scan of a grouping of particles and the results of a single line scan across the diameter of 

one particle. STEM mode portrays the sample with respect to the proton density (Z). In the left 

panel of Figure 28, the dense core appears much brighter than the surrounding shell, indicating the 

presence of heavier atoms. Subsequently, the shell appears dimmer, or in some cases invisible 

when compared against the bright cores, indicating a shell comprised of lighter atoms. When 

scanning across the diameter of a single particle, the atomic percentage of iron increases when the 

electron beam reaches the core, indicating a core rich in iron, and along the edges, the atomic 

percentage of silicon increases, which provides evidence of a silica shell. While EDX does well in 
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showing the elements that are present, it does not show the phase of the materials within the 

SCNPs. Specifically, the iron core could be any number of iron or iron oxide phases, which 

indicates that crystal analysis is necessary. 

 

 

Figure 28: (left) STEM image of several SCNPS as well as the scanning direction; (right) An 

EDX plot of iron, silicon, and oxygen along the indicated scanning direction. As shown, the core 

of the sample appears to be rich in iron, indicating a ferrous core, while silicon has a higher 

intensity along the edges of the scan, indicating a silicon-rich shell. 

 

4.1.3. Particle Characterization: Electron Diffraction  

 While EDX could not show crystalline phase, electron diffraction patterns can provide a 

glimpse into the crystal structure of a single particle. Essentially, similar to X-Ray diffraction, the 

diffraction of the electrons off the sample can be analyzed and used to predict interatomic distances 

and planar orientations. In this case, the HRTEM was focused at high magnification at the center 

of the core, and an image of the sample in Fourier space was generated, as shown in Figure 29.  
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Figure 29: (left) A HRTEM image of the particle used for the electron diffraction analysis; 

(middle) A diffraction pattern at higher magnification from multiple particles indicating a similar 

hexagonal pattern; (right) The diffraction pattern of the particle in the left panel indicating a 

monocrystalline structure. 

 

 The presence of single bright points on the electron diffraction pattern indicates the 

presence of crystalline material within the nanoparticle(s). Further observation of the particle 

indicated that the repeating units came from the core rather than the shell, indicating that the shell 

was amorphous. The diffraction pattern seen in the middle image of Figure 29 was taken at a lower 

magnification over an area comprised of several individual particles; the pattern corroborates this 

by showing several discrete points, which form a ring around the central beam, indicating a multi-

crystalline structure. As the magnification focuses on a single particle (right image of Figure 29) 

the diffraction pattern simplifies to a single pattern of six discrete points in a hexagonal shape, 

indicating a single crystalline structure. The distance between the center and each of the points 

correlates to an interplanar spacing within the crystalline structure. Using the scale provided with 

the Fourier image, several radial measurements were averaged and converted back to real space; 

the interplanar distance (d) corresponding to these points was approximately 0.201 nm. If this 

interplanar distance is converted to an x-ray diffraction peak, assuming an X-Ray wavelength of 

0.154 nm, this measurement would correspond to a 2θ value of approximately 45.0°. When 
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comparing this interplanar distance to known phases of iron, it corresponds almost exactly with 

the principle peak at the (110) plane of the body-centered cubic (BCC) ferrite (Fe-α) phase, or 

elemental iron. Thus, this diffraction pattern provides definitive proof that the core present in the 

SCNPs is majority elemental iron and not iron oxide.  

 The hexagonal shape of the diffraction pattern originates from the orientation of the BCC 

crystal with the electron beam. There exist several permutations of the densely packed {110} 

family of planes within a single BCC unit cell; however, if the crystal is viewed along the {111} 

vector (isometric view of the unit cell), 3 planes can be seen within the lattice: (-101), (1-10), and 

(0-11), as shown in Figure 30. In a more general sense, the crystal can be viewed from any direction 

within the <111> family of vectors and still observe 3 different permutations of the {110} planar 

family, but this is merely for demonstration. The discrete points on the electron diffraction pattern 

are orthogonal to their respective planes, which are color-coded within the figure. Measuring these 

planes with the electron beam at this orientation produces the hexagonal electron diffraction 

pattern shown in the above image.  

 

 

Figure 30: (left) A unit cell illustrating the 3 planes from the {110} family of planes visible 

along the [111] vector; (right) Diagram of these planes superimposed over each other. The stars 

represent the discrete points on the electron diffraction pattern, which are each orthogonal to the 

respective planes, thus creating the hexagonal pattern. 
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4.2. Thermal Output via Induction Heating 

 After synthesizing the nanoparticles and characterizing their structure, the final suspension 

of SCNPs underwent induction heating to characterize the macro-scale heat transfer occurring 

within the suspension. Essentially, by heating the suspension with an induction heater, the thermal 

output of the SCNPs can be characterized and calculated on a per unit mass basis. The total power 

output per unit mass is known commonly as the specific loss power (SLP) or the specific 

absorption rate (SAR). From this value, an estimate internal heat general per particle can be 

determined, using an averaged particle volume. 

4.2.1. Induction Heating Setup 

 The thermal testing utilized an Ambrell LI 8310 10 kW induction heater with variable 

frequency between 150-400 kHz. Induction heating coil geometry consisted of a 7-turn coil with 

an inside and outside diameter of 25 mm and 44 mm, respectively. Two 1 µF capacitors in series 

coupled with the induction coil to produce a resonant frequency of 216 kHz. The power supply 

provided a current of 500 A to the coil, which, according to the datasheet provided by the 

manufacturer resulted in a magnetic field strength of approximately 100 kA/m (1256 Oe). The 

arrangement of the induction heating coil and the sample is shown in Figure 31.  

In the setup, alternating current from the power supply is run through the coil to produce 

the intense alternating magnetic field necessary to heat nanoparticle suspensions. As a result, the 

coil itself undergoes significant resistive losses due to the high current being passed through the 

copper tubing. To combat this, filtered water from a nearby chiller is circulated through the center 

of the coil, throughout the transformer, and within the power supply. Regardless, the temperature 

of the coil is still heightened during the heating process, which in turn slightly heats the sample 

via radiation. To limit the amount of this background heat, circulating air lines act as an insulating 
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barrier between the coil and the sample. The alternating magnetic field also prohibits the usage of 

metallic or conductive materials within the confines of the coil; because of this, a polymeric sample 

holder is used, which will not interact with the magnetic field. In addition, a fiber optic 

thermocouple acts as the primary temperature measurement device rather than a metallic probe, so 

that the results are not skewed. 

 

 

Figure 31: Cross-section of the induction heating setup. The heating coil provides the magnetic 

field; the sample is shielded from in radiated heat transfer via the sample holder and circulating 

air lines. 

 

4.2.2. Sample Concentration  

 Minimal effort is required to prepare the samples for measurement; however, in order to 

calculate the heat produced (SAR) by the sample per unit mass, a precise measurement of sample 

concentration is necessary. A rough estimation could be attempted based on the synthesis 

methodology, but this method would not be able to account for sample loss during washing and 

centrifugation. As a more precise methodology, inductively coupled plasma mass spectrometry 
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(ICP-MS) provided the means to accurately determine the quantity of iron atoms within the 

solution. To start, a 2% nitric acid solution digested the particles present within a small sample of 

the suspension to create a solution comprised of iron atoms. The ICP-MS instrument then 

determined the concentration of iron atoms on a ppb basis, which can be equated back to mg/mL. 

Based on the ICP-MS analysis, the concentration of iron within the solution was approximately 

0.32 mg/mL; however, this concentration was just the concentration of iron cores, not the silica 

shells. While the SCNPs contain both silica and iron, the iron comprises the majority of the particle 

size and weight, in addition to being the only aspect of the particle that interacts with the magnetic 

field. Thus, the value provided by the ICP-MS analysis was accepted as being a valid estimate of 

the total particle concentration for SAR analysis.  

With the goal of the work being to differentiate between the temperature of the liquid and 

the temperature of the nanoparticle, testing a dilute colloidal suspension was necessary. Ideally, 

the nanoparticle suspension should be dilute enough to where the temperature gradients between 

neighboring nanoparticles do not intersect, i.e., single nanoparticles floating ins suspension, where 

the thermal energy release from one nanoparticle does not impact the particle next to it. A simple 

equation calculates the interparticle separation using the Wigner-Seitz radius, 𝑑 = 2 (
3

4𝜋𝑛
)
1/3

, 

where “n” is the particle density, and the equation is doubled since the original equation calculates 

only half of the average inter-particle separation. Assuming uniform iron nanoparticles at a 

concentration of 0.32 mg/mL, the estimated inter-particle separation was calculated to be 2.7 µm. 

Since several references in the introduction indicated the temperature gradient to extend only a 

few nanometers from the nanoparticle surface, the concentration was considered low enough to be 

used for these experiments. 
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4.2.3. SAR Measurement 

 Using the described setup, the particle suspension underwent induction heating, while 

monitoring the temperature simultaneously. Each measurement consisted of heating the 

suspension for 1 minute while recording the sample temperature every 2 seconds. This method 

was repeated 3 times to ensure statistical significance, and the first 30 seconds were fit linearly to 

determine the initial slope of the temperature vs time plot (Figure 32). 

 

 

Figure 32: Heating curve of SCNP suspension. After averaging three separate measurements, the 

data was fit linearly to determine the temperature change with respect to time for SAR calculation. 

 

 As implied by the measurement, the SAR was calculated via the initial slope method used 

commonly in practice and represented in Equation 20, where “m” is the weight fraction of SCNPs 

(related to concentration), “cp” is the specific heat of the suspended liquid (4.182 J/g°C) for water 

in this case), and dT/dt correlates to the initial slope measured with the thermocouple (0.0506 °C/s) 

[76].  
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𝑺𝑨𝑹 (
𝑾

𝒈
) =

𝟏

𝒎
𝒄𝒑

𝒅𝑻

𝒅𝒕
  (20) 

 

After inputting the initial slop corresponding to the SCNPS, the resulting SAR can be seen below 

in Equation 21.  

 

𝑺𝑨𝑹𝑺𝑪𝑵𝑷𝒔  (
𝑾

𝒈
) = (

𝟏

𝟎.𝟎𝟎𝟎𝟑𝟐
) (𝟒. 𝟏𝟖𝟐

𝑱

𝒈°𝑪
) (𝟎. 𝟎𝟓𝟎𝟔

℃

𝒔
) = 𝟔𝟔𝟏. 𝟑

𝑾

𝒈
  (21) 

 

 Due to its simplicity, the initial slope method operates under a few key assumptions. The 

first being that the sample is perfectly insulated from exterior heat sources or sinks, and the second 

is that the suspension behaves like a lumped mass with a uniform temperature. Essentially, the 

ideal measurement environment would be a uniformly dispersed nanoparticle system that is 

perfectly insulated from the surroundings. Within the short time frame, losses to the room 

surroundings are unlikely, and with the presence of the circulating air barrier, external heating 

from the coil is minimized to drastically affect the result. Regarding nanoparticle dispersal, the 

nanoparticle sample underwent sonication for 15 minutes followed by 1 minute of vortex mixing 

immediately before each measurement. Because of the experimental setup, the initial slope method 

provides a valid estimation of the nanoparticle SAR, which was used to directly compare to the 

nanoparticle temperature measurement.  

4.3. Nanoparticle Temperature Estimation via Diffusion 

 With the macroscale rate of heat transfer for the SCNP suspension determined, the next 

step involves leveraging the numerical model and knowledge regarding Na diffusion into sol-gel 

silica to estimate the temperature of the nanoparticles during the heating trial. By comparing the 
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concentration gradient across the nanoparticle before and after heating, the numerical model can 

be used to estimate the temperature required to cause the gradient to change.  

4.3.1. STEM/EDX Measurements 

 For determining nanoscale temperature, two different nanoparticle samples were created 

from the synthesized batch: control and heated sample (Table 4). The control sample served as the 

means to illustrate the initial distribution of Na within the SCNPs shell without any heating. 

Knowledge of this initial distribution was used as an initial condition for the model for temperature 

estimation. Creating the control consisted of dispersing the nanoparticles in a 0.15 M NaCl 

aqueous solution, sonicating the sample, and then thoroughly mixing the sample. Immediately 

after mixing, a small sample of the suspension was used to make a TEM sample. The second 

sample underwent the same preparation as the control sample; however, the suspension was 

immediately heated with the induction heater at 100 kA/m for 10 seconds. Afterward, a TEM 

sample was created from the heated sample.  

 

Table 4: Outlining the two samples analyzed with EDX 

 Control Heated 

SCNP Conc. (mg/mL) 0.32 0.32 

Saline Conc. (M) 0.15 0.15 

Mag Field Strength (kA/m) 0 100 

Time Heated (s) 0 10 

ri (shell inner radius, nm) 40 44 

ro (shell outer radius, nm) 62 70 

 

For measuring the Na concentration gradient within the SCNPs, the STEM/EDX 

methodology discussed earlier in the chapter was utilized. Each TEM sample was analyzed with 

the HRTEM to find a single core-shell particle. After finding one, the mode switched to STEM, 
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which measured the elemental cross-section of the selected nanoparticle from each sample (Figure 

33). 

 

 

Figure 33: Raw STEM/EDX data from the control (top) and heated (bottom) sample. The data 

measures the atomic percentage of Na across the entire particle radius. 

 

 While the size range of the SCNPs varies by ~20 nm either way, the chosen particles were 

intended to be similar in size, so that they could be more easily compared. By visual observation 

of the data sets, the control sample Na concentration curve declines steeply the further the beam 

measures into the core, while the heated sample concentration curve appears to be a more gradual 

decline, with a heightened concentration near the center, indicating that some mass transfer may 

have occurred within the particles. The control measurement provides evidence that the Na atoms 

adsorb onto the silica shell easily, and that the initial concentration gradient is quite high. The 

heated sample possessed some possible outliers around 60 nm, which may be due to areas with a 
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non-uniform distribution of Na atoms on the particle surface. Outliers will be discussed in 

subsequent sections.   

4.3.2. Temperature Estimation: MATLAB Pseudocode 

 The algorithm to estimate temperature possesses similar qualities to the previously 

discussed algorithm to estimate diffusivity (Figure 22). Basically, the algorithm selects a 

temperature range and solves the numerical model at each temperature until R2 between the 

experimental data and model is maximized (Figure 34). 

 

 

Figure 34: Algorithm to estimate nanoparticle temperature using both theoretical and 

experimental data. The theoretical model is solved at each temperature within the range until the 

best fit of the experimental data is determined. 

 The below abbreviated MATLAB pseudocode outlines the important aspects of the 

algorithm to estimate nanoparticle temperature; the complete body of code can be found in the 

Appendix. 

>> import(‘Experimental data’);  %Import in single concentration curve 

>> radius = Imported array containing particle radii; 

>> intensity = Imported array containing concentration curve; 

>> temp = 400:1:500;  %Define array of temperatures (K)  

>> R_squared = zeros(length(temp),1); %Create matrix to store R_squared values 

>> rnew = zeros(length(radius),1); %Nearest diffusion sim radius values 
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>> cnew = zeros(length(radius),length(temp)); %Nearest diffusion sim conc values 

>> for k = 1:length(temp) %Cycle over temperatures (K) 

 >> D = 1.406E10*exp(-20.84/(1.987E-3*temp(k))); %Calculate diffusivity from exp data 

 >> totalTime = 10;  %Total simulation time, equal to 10 second heating time 

 >> u = zeros(R,T); %Create simplified “u” matrix 

 >> u(:,1) = input initial condition;  %Define initial condition (control test) 

 >> Solve CN algorithm for spherical geometry with same radius as measured particle;  

 >> Simulate effects of EDX projection and store in matrix called “c_avg” 

 >> for i = 1:length(radius) %Map experimental concentration gradient to model 

  >> rnew(l) = interpl(r,r,radius(l),’nearest’);  %Find nearest model value 

  >> index = find(r==rnew(l));  %Find index for that value 

  >> cnew(l,k) = c_avg(index,T);  %Create of matrix of mapped values 

 >> end 

 >> data_mean = mean(intensity);  

 >> sum_res = 0;  

 >> sum_sq = 0;  

 >> j = 1:length(radius) 

  >> sum_res = sum_res + (intensity(m) - cnew(m,k))^2;  %Sum of residuals 

  >> sum_sq = sum_sq + (intensity(m) - data_mean)^2; %Sum of squares 

 >> end 

 >> R_squared(k) = 1- sum_res/sum_sq; %Calculate R Squared 

>> maxRSquared = find(R_squared==max(R_squared));  %Find max R Squared Value 

>> temp_opt = temp(maxRSquared) %Store temperature value with highest R Squared Value 
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>> R_2 = max(R_squared)  %Store R Squared value of optimal temperature value. 

4.3.3. Initial Condition Approximation 

 As shown in the pseudocode, the initial condition must be defined within the model in 

order to get an accurate result. In this case, the initial condition represents the distribution of Na 

within the silica shell before induction heating (the Control sample). In order for the model to work 

properly, the experimental data from the Control (or representative fit) would need to be input into 

the first column of the “u” solution matrix, similar to how the spatial boundary conditions are 

defined. This proved difficult, due to how the model is solved. Specifically, after setting the initial 

condition at the particle center, the model outputs a solution, and that solution undergoes correction 

to account for EDX projection (Chapter 2). The “initial condition” data from the Control sample 

measured by the EDX is already projected data, which must be converted back to non-projected 

data to be utilized by the model. In order to accomplish this, the un-projected initial condition 

function needs to be extracted from the EDX data gathered from the Control sample.  

 The base function for the initial condition was decided to model a power function, where 

the “scale” and “shift” terms were varied (Equation 22). Within the silica shell, the concentration 

gradient will be represented by the top function, but within the core, the initial concentration is 

assumed zero.  

 

{
𝒄 = 𝒔𝒄𝒂𝒍𝒆(𝒓−𝒓𝒎𝒂𝒙) + 𝒔𝒉𝒊𝒇𝒕       𝒓 ≥ 𝒓𝒊

𝒄 = 𝟎                                            𝒓 < 𝒓𝒊
  (22) 

 

 An algorithm was developed to determine which shift and scale parameters resulted in an 

initial condition (after projection) that fit the Control data best (see Appendix). After cycling 



74 

 

through several scale and shift combinations, the function 𝑐 = 1.26(𝑟−𝑟𝑚𝑎𝑥) + 0.034 for the 

concentration within the silica layer resulted in the best fit with an R2 = 0.87 (Figure 35).  

 

 

Figure 35: Proposed initial condition after projection fit to the control data. 

 

 The initial condition function determined by the algorithm served as the starting point for 

the model; essentially what the concentration gradient is at room temperature. One of the key 

assumptions in using this initial condition is that all future changes to the concentration curve are 

assumed to be a direct result of the input of thermal energy (induction heating). In the case of the 

temperature estimation algorithm, inputting the initial condition function can be seen below. As 

the line of code indicates, the function must be multiplied by the array of radii in order to be input 

into the simplified “u” matrix. 

>> u(:,1) = (1.26.^(r-max(r))+0.034).*r; 
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4.3.4. Estimating Nanoparticle Temperature 

 Using the algorithm discussed earlier in the section to calculate nanoparticle temperature, 

the experimental data for the Heated sample was uploaded to MATLAB and analyzed. After 

setting the simulation time to 10 seconds and ensuring the selected radii values matched those 

measured with the HRTEM, the algorithm worked to find the temperature which best fit the Na 

concentration curve present in the Heated sample. As shown in the top panel of Figure 36, the 

algorithm estimated the local nanoparticle temperature to be approximately 459 K or 186°C during 

the 10-second heating trial; however, the fit seemed to be skewed namely by two outlier points, 

highlighted in red in Figure 36. Given the small size range of the EDX measurements, these outliers 

could originate from an unseen, non-uniform aggregate of Na ions on the surface of the silica layer, 

resulting in a localized spike, or it could simply be a measurement artefact. For investigative 

purposes, the same sample was analyzed without the two outlier points and re-normalized with 

respect to the Na concentration at the edge of the shell (~68 nm), as shown in the bottom panel of 

Figure 36. Removing the outlier data points resulted in a higher temperature (215°C) and a better 

fit (R2 = 0.78).  

The temperature estimation derived from the diffusion model suggests that the nanoscale 

temperature exceeds that of the surrounding fluid by well over 150°C, at a field intensity of 100 

kA/m over a time of 10 seconds. Given the nature of the measurements, this estimation likely 

comes with a certain amount of error, originating from inhomogeneities within the sample on the 

nanoscale, as well as STEM/EDX measurement error. However, the fits indicate a noticeable 

difference between the Na concentration curves of the Control and Heated samples. With such a 

high-temperature difference between a single particle and the surrounding fluid, it begs the 
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question as to whether traditional macro-scale thermal modeling can properly characterize the heat 

transfer occurring within the particle suspension.  

 

 

Figure 36: Sodium concentration curves of the Heated sample (10 seconds at 100 kA/m intensity) 

with fit from the algorithm. (top) The temperature which resulted in the best fit to the raw data was 

459 K or 186°C (R2 = 0.1). The poor fit likely originated from the presence of the two denoted 

points that measured extremely high/low concentration values; (bottom) The same sample fit 

without the outlier points, resulting in an improved fit (R2 = 0.78) and a heightened temperature 

estimation (218°C). 
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4.4. Heat Transfer Modelling 

 When deriving the diffusion model in Chapter 2, the primary assumption was that the 

concentration of sodium within an individual particle varied spatially as well as temporally. EDX 

data corroborates this assumption. The highest concentrations of sodium tended to be towards the 

surface of the particle, which created a concentration gradient within the core-shell structure, and 

when comparing the Control and Heated sample, this gradient also varied with respect to heating 

time. Conversely, the particle temperature assumes a model which only possesses temporal 

variance (no spatial terms), known colloquially as the lumped-capacitance temperature model. 

Essentially, in order to calculate diffusivity, the user must model the particle as a uniform 

temperature with no thermal gradients within the particle.  

Typically, a simple calculation of the Biot number would verify the validity of the lumped-

capacitance assumption, where if the Biot number is less than 0.1, the lumped-capacitance model 

proves valid. Equation 23 estimates the Biot number for a single SCNP, where “h” is the heat 

transfer coefficient, “r” is the particle radius, and “k” is the thermal conductivity (assumed to be 

solid ferrite (iron). The heat transfer coefficient is assumed to be 1 W/m2°C for simplicity. 

 

𝑩𝒊𝒔𝒑𝒉𝒆𝒓𝒆 =
𝒉𝒓

𝟑𝒌
=

(𝟏
𝑾

𝒎𝟐𝑪
)(𝟔𝟎𝑬−𝟗 𝒎)

(𝟑)(𝟖𝟎
𝑾

𝒎𝑪
)

= 𝟐. 𝟓𝑬 − 𝟏𝟎 ≪ 𝟎. 𝟏    (23) 

 

 The Biot number calculation indicates that the lumped-capacitance assumption is valid for 

a model of a single nanoparticle. Due to the incredibly small size range, the radius term of the Biot 

number equation completely washes out the effects of the heat transfer coefficient and material 

thermal conductivity. Basically, even with an extremely efficient convective boundary at the 

particle surface and an extremely un-conductive particle material, the particle is so small that any 
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thermal gradient within the particle would be too small to disseminate. Yet, the heat transfer 

coefficient is the one aspect of Equation 23 which remains unknown. Heat transfer coefficients are 

traditionally estimated empirically or determined through advanced CFD simulations; however, in 

this case, the physical properties of the nanoparticles, particle temperature, fluid temperature, and 

internal heat generation are all known parameters, which allows for the heat transfer coefficient to 

be estimated using the lumped-capacitance model. 

 As illustrated in Figure 37, the entire particle was modeled as a homogenous temperature 

(Tp) with internal heat generation (Egen, from the induction heating coil) and a convective boundary 

condition (suspended in water at temperature Ts). With regards to material properties, the entire 

particle was assumed to be comprised of iron, and the radius was set at 60 nm.  

 

 

Figure 37: Illustration of the lumped-capacitance model for a single SCNP. The core and shell 

exist at a constant temperature which varies depending on the internal heat generation (Egen), 

material properties, and convective heat removal. 

 

 Early in this chapter, the SAR for the solution was determined calorimetrically via the 

initial slope method. Measuring the change in water temperature over time aided in quantifying 
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the total thermal power produced by the nanoparticles, which, by knowing the particle size, was 

used to extrapolate the internal heat generation, as shown in Equation 24.  

 

𝑬𝒈𝒆𝒏 =
𝑺𝑨𝑹∗𝒎

𝑽
=

(𝟔𝟔𝟏.𝟑
𝑾

𝒈
)∗(𝟕.𝟎𝟔𝑬−𝟏𝟓 𝒈)

(𝟗.𝟗𝟓𝑬−𝟐𝟐 𝒎𝟑)
= 𝟒. 𝟔𝟗𝑬𝟗

𝑾

𝒎𝟑
  (24) 

 

The lumped capacitance model starts with the conservation of energy (Equations 25-27), 

which was modified to include aspects of the nanoparticle system, where θ = (Tp – Ts).  

 

𝑸𝒊𝒏 = 𝑸𝒐𝒖𝒕 + 𝑸𝒔𝒕𝒐𝒓𝒆𝒅   (25) 

𝑬𝒈𝒆𝒏𝑽 = 𝒉𝑨𝒔𝜽 + 𝒎𝒄𝒑
𝒅𝜽

𝒅𝒕
  (26) 

𝒅𝜽

𝒅𝒕
+

𝒉𝑨𝒔

𝒎𝒄𝒑
𝜽 =

𝑬𝒈𝒆𝒏𝑽

𝒎𝒄𝒑
  (27) 

 

 The conservation of energy quickly evolves into a simple linear ordinary differential 

(Equation 27), which can be solved easily (Equation 28), assuming a zero initial condition 

(θ(0)=0), i.e., the particle and fluid are the same temperature at the start.  

 

𝜽(𝒕) =
𝑬𝒈𝒆𝒏𝑽

𝒉𝑨𝒔
(𝟏 − 𝒆

−(
𝒉𝑨𝒔
𝒎𝒄𝒑

𝒕)
)   (28) 

 

After inputting material parameters, the function becomes Equation 29, which varies with 

respect to heat transfer coefficient and time.  

 

𝜽(𝒕) =
𝟏𝟎𝟑.𝟐𝟒𝟐

𝒉
(𝟏 − 𝒆−(

𝒉𝒕

𝟎.𝟎𝟕𝟎𝟑
))  (29) 
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In the SAR tests, the suspensions always started near room temperature (22°C), and given 

that the diffusion model estimated the particle temperature to be approximately 186°C, θ(10s) = 

164°C, resulting in the following heat transfer coefficient (Equation 30).  

 

𝟏𝟔𝟒℃ =
𝟏𝟎𝟑.𝟐𝟒𝟐

𝒉
(𝟏 − 𝒆−(

𝒉(𝟏𝟎𝒔)

𝟎.𝟎𝟕𝟎𝟑
)) ∴ 𝒉 = 𝟎. 𝟔𝟑 

𝑾

𝒎𝟐℃
  (30) 

 

After incorporating the calculated heat transfer coefficient into the lumped-capacitance 

model, a temperature plot with respect to time was generated to show the theoretical temperature 

response of the particle (Figure 38). As the temperature plot indicates, the particle approaches 

steady state quickly (< 500 ms), due to its overall small thermal mass.  

 

 

Figure 38: Estimated temperature over time of a single SCNP using the lumped capacitance model 
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4.5. Convection on the Nanoscale: Brief Discussion  

The existence of such a large temperature gradient between the particle core and the 

surrounding fluid suggests largely inefficient convective heat removal. Using the lumped-

capacitance assumption, a 164°C temperature difference indicates that the heat transfer coefficient 

between the particle and the surrounding fluid was approximately 0.63 W/m2°C during induction 

heating, which is certainly not a very high value considering forced liquid convection solutions 

can attain values on the order of kW/m2°C. Originally, the heat transfer coefficient derives from 

Newton’s law of cooling, which functions as a “catch-all” term for convection effectiveness. 

Several different aspects influence the heat transfer coefficient of a given system, such as geometry 

and fluid velocity, and much of the properties depend on the continuum assumption (fluid is treated 

as continuous rather than comprised of discrete molecules). Typically, the criteria for the 

continuum assumption stems from the Knudsen number, which relates the size of the object in 

question to the mean free path within the fluid/gas (𝐾𝑛 = 
𝜆

𝐿
), where “λ” represents the mean free 

path and “L” is some characteristic length of the system. As long as Kn remains below 0.01, the 

continuum assumption remains valid. Given that liquids consist of loosely bound molecules, the 

distance between molecules will serve as the mean free path for liquid water (~0.3 nm) [77]. After 

choosing the diameter of an SCNP (120 nm) as “L”, Kn = 0.0025, which implies that the continuum 

assumption still holds true, even for such a small system. Verifying the continuum assumption 

further bolsters the usage of the lumped-capacitance model with a convective boundary condition; 

however, it does not provide much evidence regarding the inefficiency of the convection at the 

particle surface.  

When considering the surface of a nanoparticle in an ionic solution, such as the human 

body, several works indicate the existence of an electric double layer (EDL) in the immediate area 
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around a nanoparticle. Basically, the surface of a single nanoparticle becomes charged while in 

suspension, resulting in electrostatic attraction of oppositely charged ions within the vicinity; these 

ions congregate at the nanoparticle surface, creating a compact layer of ions. After the first layer 

formation, a diffuse second layer is ultimately formed, which possesses a much looser attraction 

to the nanoparticle in question [78, 79]. The Gouy-Chapman-Stern model of the EDL is among 

the more widely cited models in this field of study, which works to define the size of each of these 

layers [80]. Consider applying this model of the EDL to the suspension of SCNPs (Figure 39); 

given that EDX data shows a high concentration of Na+ ions near the surface, let’s infer that the 

surface charge of the silica shell is largely negative. Assuming a negative charge and the presence 

of dissolved Na+ ions in the solution, the compact first layer should be comprised of hydrated Na+ 

ions followed by a diffuse second layer of both hydrated Na+ and Cl- ions.  

By visual observation of the layered structure, one could surmise that the EDL acts as a 

nanoscale insulating layer. The thermal conductivity of water compared to that of iron or silica is 

relatively low, and the static nature of the hydrated compact layer could dampen the benefit of 

natural convection in the direct vicinity of the silica shell. Basically, it is suggested that the EDL 

prevents the bulk fluid from coming in direct contact with the actual nanoparticle surface, so the 

thermal energy must first pass through the first layer via conduction before convection can take 

over. A few references in the literature corroborate this assumption when analyzing the effect of 

the EDL on microchannel cooling applications [81, 82]; the references highlight that the EDL 

constrains the flow and results in a decrease in the Nusselt number, which describes the 

effectiveness of convection. Also, there exists the concern of nanoscale vapor bubbles surrounding 

the nanoparticles during heating, which could further dampen convection by creating a layer of 

resistive vapor around the particle. A complete convection analysis at the SCNP/liquid boundary 
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exceeds the scope of this dissertation; however, further investigation pertaining to nanoscale 

convection would result in a more holistic understanding of nanoparticle induction heating.  

 

 

Figure 39: Illustration of the electric double layer at the liquid boundary of the SCNPs, according 

to the Gouy-Chapman-Stern model. Close to the silica shell exists the compact layer consisting of 

immobile Na ions which have adsorbed onto the surface of the silica shell, followed by a diffuse 

outer layer. (Image derived from [78]) 
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5. CONCLUSION 

5.1. Summary of Results 

 The work started by creating a robust model of a spherical core-shell nanoparticle, which 

served as the basis of the diffusion study. Utilizing the Crank-Nicolson algorithm and MATLAB 

IDE, a numerical model of radial diffusion in a single particle was implemented. The model, while 

unconditionally stable, proved to be sensitive to both time and space discretization. Using a 

dimensionless parameter, an established range for spatial and temporal discretization limited 

perturbations in the data. A plotting function was also developed to visualize diffusion in both 1 

and 2D. In order to correlate the numerical simulation results with the experimental diffusion data, 

an additional function was developed to project the diffusion of a 3D particle onto a 2D plane. 

(Chapter 2) 

 The next aspect of the study established the diffusivity vs temperature relation for Na 

diffusing into sol-gel silica. Polished silicon wafers underwent sol-gel silica coating in order to 

mimic the coating on the SCNPs. After characterizing the film, a temperature-controlled oven 

heated various coated samples with a Na-rich layer located at the surface to encourage diffusion 

into the layer. Using XPS depth profiling, the concentration gradient with respect to layer depth 

was extracted in order to determine the diffusivity values at various temperatures. An Arrhenius 

relation fit the diffusivity data with respect to temperature in order to be used in the numerical 

simulation; the fit resulted in an estimated activation energy and diffusivity at infinite temperature 

of 20.84 kcal/mol (0.90 eV/atom) and 1.406E10 nm2/s, respectively. (Chapter 3) 

The next chapter served as the culmination of this study, which combined both theory and 

experiment covered in the previous two chapters to estimate nanoparticle temperature. Using a 

room-temperature synthesis method, iron/silica core/shell nanoparticles were fabricated for use in 
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this study. EDX and diffraction characterization techniques verified the existence of an iron-dense 

ferrite core with a silica shell, which matched the developed theoretical model introduced in 

Chapter 2. After analyzing their internal heat generation calorimetrically, the change in sodium 

concentration within the silica shell was used to extract an estimated nanoscale temperature using 

the diffusivity and temperature relations determined in Chapter 3. At a magnetic field strength of 

100 kA/m over a period of 10 s, the change in concentration gradient correlated with a nanoscale 

temperature of approximately 186°C. Afterward, a lumped-capacitance transient temperature 

model estimated the heat transfer coefficient at the convective boundary condition to be 

approximately 0.63 W/m2°C, which is much lower than typical values for water. (Chapter 4) 

5.2. Literature Comparison and Future Outlook 

 Nanoscale heat transfer during nanoparticle heating (induction, plasmonic, etc.) is a new 

area of study, which assumes that the local nanoparticle temperature differs from the observed 

temperature on the macro scale. The work presented herein introduces a novel method of analyzing 

local nanoparticle temperature during induction heating from the perspective of nanoscale 

interactions with the surrounding fluid suspension. Based on the literature review in Chapter 1, 

this method describes a single-particle method of thermometry. Single-particle methods offer the 

greatest accuracy in temperature determination due to their proximity to the particle; however, 

when comparing the results gathered in this work to those published in the literature, the 

temperature gradient observed in the SCNPs appeared to be much higher than the other studied 

particle systems, as shown in Table 5.  
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Table 5: Comparison of the results of this study to various single-particle induction heating 

thermometry results from the literature  

Particle 

Core 

Method of 

Thermometry 

Core Size 

(nm) 

Field Strength/Frequency  Measured 

Temperature 

Gradient 

Ref 

α-Fe Diffusion 

Gradient 

100 100 kA/m @ 216 kHz 164°C - 

γ-Fe2O3 Optical 23 18.3 kA/m @ 97 kHz 3°C [50] 

MnFe2O4 Optical 6 0.66 kA/m @ 40 MHz 5°C [57] 

FexOy Optical 15 13 kA/m @ 335 kHz 45°C [63] 

 

 The above table provides 3 separate examples from the literature with both large and small 

temperature gradients. Primarily, the differences between this work and the previous efforts are 

the nanoparticle structure and magnetic field properties. Elemental iron (ferrite) comprises the 

cores of the SCNPs, which tends to have a much higher saturation magnetization than iron oxide. 

Also, the SCNPs are the largest in the de at 100 nm. As stated in the introduction, particle thermal 

output tends to increase with both saturation magnetization and particle size. That combined with 

a high magnetic field intensity (100 kA/m), compared to the next highest of 18.3 kA/m, explains 

why this diffusion study measured such a high thermal gradient; yet the selection of these 

parameters had a purpose. Using nanoparticles with heightened magnetic properties and large 

inter-particle distances (low concentrations) helped to induce as large of a thermal gradient as 

possible between the particle core and surrounding fluid, and an exorbitantly large magnetic field 

strength further enhanced the transient thermal response. For actual applications, like magnetic 

nanoparticle hyperthermia, the magnetic field strength will most likely be much lower; however, 

for the purpose of this study, a high magnetic field strength proved to be beneficial to showcase 

the potentially large thermal gradients occurring on the nanoscale.  

 The aspiration for this work is to encourage future studies involving nanoscale thermal 

transport and to search for creative applications for this novel heat transfer phenomenon. Several 
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aspects of the particles, surrounding fluid, and AMF all impact thermal output, yet the literature is 

scarce. Understanding temperature gradients between nanoparticles and surrounding medium 

would provide enhanced insight into the mechanisms which drive conduction and convection on 

the nanoscale. Such knowledge would allow for the improvement of heat transfer models to 

include nanoscale effects and allow for nanomaterials to be engineered to maximize heat transfer 

to the fluid medium, which would prove invaluable to several biomedical applications.  
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APPENDIX 

Source Code: CN Algorithm, Plotting, and Animation for Core-Shell Particles 

%% Fick's second law of diffusion numerically for core-shell nanoparticle 
%% Diffusivity %% 

  
%Define particle temperature (K) 
 T = 500;  

  
%Determine diffusivity (nm^2/s) based on experiments 
D = 1.406E10*exp(-20.84/(1.987E-3*T)); 

  
%% Discretize the problem %% 

  
%Radius (nm) 
ri = 45; %core radius (nm) 
ro = 60; %core+shell radius (nm) 
delr = 1; %radius discretization 
r = ri:delr:ro; %matrix of radius steps 
R = length(r); %total number of radius steps 

  
%Time (s) 
totalTime = 100; %total simulation time 
delt = (1.5*delr^2)/D; %time discretization 
t = 0:delt:totalTime; %matrix of time steps 
T = length(t); %total number of time steps 

  
%% Create Solution Matrices %% 

  
%Create solution matrix (at%) 
c = zeros(R,T);  

  
%Create simplified "u" matrix (u=c*r)   
u = zeros(R,T);  

  
%% Initial Condition %% 

  
%Define initial condition 
u(:,1) = 0;   

  
%% BC at outer shell (r = ro) %% 

  
%Diriclet B.C.  
u(R,:) = ro;  

  
%% Solve Crank Nicolson Implicitly (A x u = d) %%  

  
%Define nondimensional constant "C" 
C = D*delt/(delr)^2;  

  
%Create tridiagonal matrix "A" 
A = diag((2*(1/C+1))*ones(R-2,1)) + diag(-1*ones(R-3,1),1) + ... 
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    diag(-1*ones(R-3,1),-1);  

  
%Account for insulated boundary condition at r=ri 
A(1,1) = 2*(1/C+1)-(4*r(1))/(3*r(2));  
A(1,2) = r(1)/(3*r(3))-1;  

  
%Create solution matrix "d" 
d = zeros(R-2,1);  

  
for j = 2:T %Perform solution iteration for given number of time steps 
    for i = R-2:-1:1 %Build d vector for current time step 
        if i == R-2  
            %Dirichlet BC at outer shell 
            d(i) = u(i,j-1)+2*(1/C-1)*u(i+1,j-1)+2*u(i+2,j-1);  
        else  
            d(i) = u(i,j-1)+2*(1/C-1)*u(i+1,j-1)+u(i+2,j-1); 
        end 
    end 
    u(2:R-1,j) = A\d; %Solve for intermediate points 
    u(1,j) = (4*r(1))/(3*r(2))*u(2,j)-r(1)/(3*r(3))*u(3,j); %Neumann B.C. 
end 
c(:,:) = u./repmat(r',1,T);  

  
%% Plot your results at each time step %% 
h1 = figure();     
for n = 1:T 
    if n == T 
        plot(r,c(:,n));  
        hold off 
    elseif n == 1 
        plot(r,c(:,n));  
        hold on 
    else 
        plot(r,c(:,n));  
    end  
end 

  
%% Create video of diffusion at center cross section %% 
%Include entire radius of particle, including the core 
rplot = [0:delr:r(1),r(2:R)];  
rplotl = length(rplot);  

  
%Assume rotational symmetry, plot with respect to theta for quarter sphere  
thetaplot = 0:(pi/2)/(length(rplot)-1):pi/2; 
thetaplotl = length(thetaplot);  

  
%Create plotting matrix: a giant matrix which includes all  
%(theta,r,c) values for each time step 
cplot = zeros(rplotl,thetaplotl,T);  

  
%Make the figure and make it invisible 
h2 = figure(); 
h2.Visible = 'off';  

  
%Initialize video 
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centerCross = VideoWriter('Diffusion at Particle Center');  
centerCross.FrameRate = 10;  
open(centerCross);  

  
h3 = figure();  
hold on; 
for p = 1:T     
    %Store diffusion values for single time iteration 
    cplot(rplotl-R+1:rplotl,:,p) = repmat(c(:,p),1,thetaplotl); 

     
    %Create 1D plot 
    if p == T 
       plot(rplot,cplot(:,1,p));  
       hold off 
    else  
       plot(rplot,cplot(:,1,p));  
    end  

     
    %Create 2D plot for that time step 
    polarplot3d(cplot(:,:,p),'PlotType','contour',... 
        'AngularRange',thetaplot,'RadialRange',rplot, 'RadLabels', 5); 
    drawnow 

     
    %Save the frame 
    frame_cross = getframe(gcf);  
    writeVideo(centerCross,frame_cross);  
end 

  
%Close the video file 
close(centerCross);  

  
%% Create video showing diffusion of EDX projection %% 

  
%Create storage matries for concentration with respect to r and z at each 
%time step 
delz = delr;  
z = 0:delz:ro;  
Z = length(z);  
c_z = zeros(rplotl,Z,T);  
c_avg = zeros(rplotl,T);  

  
%Fill c_z with values and average the values at each radii  
for p = 1:T     
    for q = 1:rplotl 
        count = 0; 
        add = 0;  
        for s = 1:Z 
            %Hypoteneuse length 
            r_p = sqrt((q*delr)^2+(s*delz)^2);  

             
            %Filter radii that exceed the particle size 
            if r_p <= ro 

             
                %Interpolate to nearest radii within r 
                r_pcorr = interp1(rplot,rplot,r_p,'nearest');  
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                %Find index for nearest radii 
                index = find(rplot==r_pcorr); 

                 
                %Using index, find associated concentration value 
                c_z(q,s,p)=cplot(index,1,p);  

                 
                %Sum the values together and count once 
                add = add+c_z(q,s,p); 
                count = count+1;  
            else  
                c_z(q,s,p)=0;  
            end 
        end 
        %Average all the concentrations at each radius 
        if count == 0 %Prevent division by zero 
            c_avg(q,p) = c(R,p);  
        else 
            c_avg(q,p) = add/count;  
        end  
    end 
end 

  
%Make the figure and make it invisible 
h4 = figure(); 
h4.Visible = 'off';  

  
%Initialize video 
projection = VideoWriter('Diffusion of EDX Projection');  
projection.FrameRate = 10;  
open(projection);  

  
%Create plotting matrix: a giant matrix which includes all  
%(theta,r,c) values for each time step 
c_avgplot = zeros(rplotl,thetaplotl,T); 

  
for p = 1:T     
    %Store diffusion values for single time iteration 
    c_avgplot(:,:,p) = repmat(c_avg(:,p),1,thetaplotl);     

     
    %Create plot for that time step 
    polarplot3d(c_avgplot(:,:,p),'PlotType','contour',... 
        'AngularRange',thetaplot,'RadialRange',rplot, 'RadLabels', 5); 
    drawnow 

         

    %Save the frame 
    frame_projection = getframe(gcf);  
    writeVideo(projection,frame_projection);  
end 

  
%Close the video file 
close(projection);  

  
%% Plot your results at each time step %% 
h5 = figure();  
hold on;  
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for n = 1:T 
    if n == T 
       plot(rplot,c_avg(:,n));  
       hold off 
    else  
       plot(rplot,c_avg(:,n));  
    end  
end 

 

Source Code: Diffusivity Estimator for Rectilinear Geometry  

%% Fick's second law of diffusion numerically for rectilinear geometry 

  
%% Select exp data 

  

thickness = t20090_corr;  
intensity = i20090_corr;  
L = length(thickness);  
%% Cycle over multiple diffusivities %% 

  
D = 1:1:50; %nm^2/s 
D_l = length(D);  
R_squared = zeros(D_l,1);  
rnew = zeros(L,1); %nearest diffusion sim radius values 
unew = zeros(L,D_l); %nearest diffusion sim conc values 
for k = 1:D_l    
    %% Discretize the problem %% 

     
    %Radius (nm) 
    ri = 0; %inside length (nm) 
    ro = 450; %outside length (nm) 
    delr = 7.5; %radius discretization 
    r = ri:delr:ro; %matrix of radius steps 
    R = length(r); %total number of radius steps 

     
    %Time (s) 
    totalTime = 5400; %total simulation time 
    delt = (1.5*delr^2)/D(k); %time discretization 
    t = 0:delt:totalTime; %matrix of time steps 
    T = length(t); %total number of time steps     
    %% Create Solution Matrices %% 

     
    %Create simplified "u" matrix (u=c*r)   
    u = zeros(R,T);  
    %% Initial Condition %% 

     
    %Zero initial condition 
    u(:,1) = 0;  
    %% BC at outer shell (L = 0) %% 

     
    %Diriclet B.C.  
    u(1,:) = 1;  
    %% Solve Crank Nicolson Implicitly (A x u = d) %%  
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    %Define nondimensional constant "C" 
    C = D(k)*delt/(delr)^2;  

  
    %Create tridiagonal matrix "A" 
    A = diag((2*(1/C+1))*ones(R-2,1)) + diag(-1*ones(R-3,1),1) + ... 
        diag(-1*ones(R-3,1),-1);  

     
    %Account for insulated boundary condition at r=ro 
    A(R-2,R-2) = 2*(1/C+1)-(4/3);  
    A(R-2,R-3) = -(2/3);  

  
    %Create solution matrix "d" 
    d = zeros(R-2,1);  

  
    for j = 2:T %Perform solution iteration for given number of time steps 
        for i = 1:1:R-2 %Build d vector for current time step 
            if i == 1  
                %Dirichlet BC at outer shell 
                d(i) = 2*u(i,j-1)+2*(1/C-1)*u(i+1,j-1)+u(i+2,j-1);   
            else  
                d(i) = u(i,j-1)+2*(1/C-1)*u(i+1,j-1)+u(i+2,j-1); 
            end 
        end 
        u(2:R-1,j) = A\d; %Solve for intermediate points 
        u(R,j) = (4/3)*u(R-1,j)-(1/3)*u(R-2,j);  
    end 

     
    %% Calculate R^2 %% 

     
    %Create comparison plot between exp and theoretical data     
    for l=1:L 
          %Interpolate to nearest common radii 
          rnew(l) = interp1(r,r,thickness(l),'nearest'); 
          index = find(r==rnew(l));  

                 
          %Find concentration value for the common radii 
          unew(l,k) = u(index, T);           
    end  

     
    %Calculate sum of squares of residuals and sum of squares 
    data_mean = mean(intensity);  
    sum_res = 0;  
    sum_sq = 0;  
    for m=1:L    
          sum_res = sum_res + (intensity(m) - unew(m,k))^2;  
          sum_sq = sum_sq + (intensity(m) - data_mean)^2;  
    end 
    %Calculate R^2 
    R_squared(k) = 1- sum_res/sum_sq;     
end  

  
%% Find optimum diffusivity %% 

  
%locate D that gives best R^2 value 
maxRSquared = find(R_squared==max(R_squared));  
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D_opt = D(maxRSquared) 
R_2 = max(R_squared) 
%% Plot exp and optimal sim solution 

  
plot(thickness,intensity);  
hold on;  
plot(rnew,unew(:,maxRSquared));  
hold off;  

 

Source Code: Nanoparticle Temperature Estimator for Spherical Geometry 

%% Algorithm to estimate NP temperature from diffusion data 
%% Select exp data 

  
radius = r_500;  
intensity = normi_500;  
L = length(radius);  
%% Cycle over multiple temperatures %% 

  
temp = 400:1:500; %Kelvin 
temp_l = length(temp);  
R_squared = zeros(temp_l,1);  
rnew = zeros(L,1); %nearest diffusion sim radius values 
cnew = zeros(L,temp_l); %nearest diffusion sim conc values 

  
for k = 1:temp_l 
    %% Discretize the problem %%     
    %Radius with just shell(nm) 
    ri = 44; %core radius (nm) 
    ro = 70; %core+shell radius (nm) 
    delr = 2; %radius discretization 
    r = ri:delr:ro; %matrix of radius steps 
    R = length(r); %total number of radius steps 

     
    %Include entire radius of particle, including the core 
    rplot = [0:delr:r(1),r(2:R)];  
    rplotl = length(rplot);  

  
    %Assume rotational symmetry, plot with respect to theta for quarter 

sphere  
    thetaplot = 0:(pi/2)/(length(rplot)-1):pi/2; 
    thetaplotl = length(thetaplot);  

     
    %Diffusivity  
    D = 1.406e+10*exp(-20.84/(1.987E-3*temp(k))); 

  
    %Time (s) 
    totalTime = 10; %total simulation time 
    delt = 0.1; %time discretization 
    t = 0:delt:totalTime; %matrix of time steps 
    T = length(t); %total number of time steps    

     
    %% Create Solution Matrices %% 
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    %Create solution matrix (at%) 
    c = zeros(R,T);  

  
    %Create simplified "u" matrix (u=c*r)   
    u = zeros(R,T);  

  
    %% Initial Condition %% 

  
    %Define initial condition 
    u(:,1) = (1.26.^(r-max(r))+0.034).*r; %Determined experimentally  

  
    %% BC at outer shell (r = ro) %% 

  
    %Diriclet B.C.  
    u(R,:) = ro;  

  
    %% Solve Crank Nicolson Implicitly (A x u = d) %%  

  
    %Define nondimensional constant "C" 
    C = D*delt/(delr)^2;  

  
    %Create tridiagonal matrix "A" 
    A = diag((2*(1/C+1))*ones(R-2,1)) + diag(-1*ones(R-3,1),1) + ... 
        diag(-1*ones(R-3,1),-1);  

  
    %Account for insulated boundary condition at r=ri 
    A(1,1) = 2*(1/C+1)-(4*r(1))/(3*r(2));  
    A(1,2) = r(1)/(3*r(3))-1;  

  
    %Create solution matrix "d" 
    d = zeros(R-2,1);  

  
    for j = 2:T %Perform solution iteration for given number of time steps 
        for i = R-2:-1:1 %Build d vector for current time step 
            if i == R-2  
                %Dirichlet BC at outer shell 
                d(i) = u(i,j-1)+2*(1/C-1)*u(i+1,j-1)+2*u(i+2,j-1);  
            else  
                d(i) = u(i,j-1)+2*(1/C-1)*u(i+1,j-1)+u(i+2,j-1); 
            end 
        end 
        u(2:R-1,j) = A\d; %Solve for intermediate points 
        u(1,j) = (4*r(1))/(3*r(2))*u(2,j)-r(1)/(3*r(3))*u(3,j); %Neumann B.C. 
    end 
    c(:,:) = u./repmat(r',1,T);  

  
    %% Calculate EDX Projection %% 

     
    %Create plotting matrix: a giant matrix which includes all  
    %(theta,r,c) values for each time step 
    cplot = zeros(rplotl,thetaplotl,T);  

  
    %Create storage matries for concentration with respect to r and z at each 
    %time step 
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    delz = delr;  
    z = 0:delz:ro;  
    Z = length(z);  
    c_z = zeros(rplotl,Z,T);  
    c_avg = zeros(rplotl,T);  

  
    %Fill c_z with values and average the values at each radii  
    for p = 1:T     
        %Store diffusion values for single time iteration 
        cplot(rplotl-R+1:rplotl,:,p) = repmat(c(:,p),1,thetaplotl); 
        for q = 1:rplotl 
            count = 0; 
            add = 0;  
            for s = 1:Z 
                %Hypoteneuse length 
                r_p = sqrt((q*delr)^2+(s*delz)^2);  

  
                %Filter radii that exceed the particle size 
                if r_p <= ro 

  
                    %Interpolate to nearest radii within r 
                    r_pcorr = interp1(rplot,rplot,r_p,'nearest');  

  
                    %Find index for nearest radii 
                    index = find(rplot==r_pcorr); 

  
                    %Using index, find associated concentration value 
                    c_z(q,s,p)=cplot(index,1,p);  

  
                    %Sum the values together and count once 
                    add = add+c_z(q,s,p); 
                    count = count+1;  
                else  
                    c_z(q,s,p)=0;  
                end 
            end 
            %Average all the concentrations at each radius 
            if count == 0 %Prevent division by zero 
                c_avg(q,p) = c(R,p);  
            else 
                c_avg(q,p) = add/count;  
            end  
        end 
    end 

  
    %% Calculate R^2 for given temperature %% 

  
    %Create comparison plot between exp and theoretical data     
    for l=1:L 
          %Interpolate to nearest common radii 
          rnew(l) = interp1(rplot,rplot,radius(l),'nearest'); 
          index = find(rplot==rnew(l));  

  
          %Find concentration value for the common radii 
          cnew(l,k) = c_avg(index, T);            



104 

 

    end  

  
    %Calculate sum of squares of residuals and sum of squares 
    data_mean = mean(intensity);  
    sum_res = 0;  
    sum_sq = 0;  
    for m=1:L    
          sum_res = sum_res + (intensity(m) - cnew(m,k))^2;  
          sum_sq = sum_sq + (intensity(m) - data_mean)^2;  
    end 
    %Calculate R^2 
    R_squared(k) = 1- sum_res/sum_sq; 

  
end 
%% Find optimum temp %% 

  
%locate D that gives best R^2 value 
maxRSquared = find(R_squared==max(R_squared));  
temp_opt = temp(maxRSquared) 
R_2 = max(R_squared) 
%% Plot exp and optimal sim solution 

  
plot(radius,intensity);  
hold on;  
plot(rnew,cnew(:,maxRSquared));  
hold off;  

 

Source Code: Initial Condition Estimator for Core-Shell Nanoparticles 

%% Algorithm to extract initial condition for model 
%% Select exp data 

  
radius = r_control; 
intensity = normi_control; 
L = length(radius);  
data_mean = mean(intensity); 
%% Define parameters %% 

  
%Range of initial condition parameters 
scale = 1.0:0.01:1.3;  
scale_l = length(scale); 
shift = 0:0.01:0.1;  
shift_l = length(shift);  
R_squared = zeros(scale_l,shift_l); %matrix to store R^2 values  
rnew = zeros(L,1); %nearest diffusion sim radius values 
cnew = zeros(L,scale_l,shift_l); %nearest diffusion sim conc values 

  
%Discretization 
ri = 40; %core radius (nm) 
ro = 62; %core+shell radius (nm) 
delr = 2; %radius discretization 
r = ri:delr:ro; %matrix of radius steps 
R = length(r); %total number of radius steps 
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rplot = [0:delr:r(1),r(2:R)]; %radius of whole particle 
rplotl = length(rplot);  
delz = delr; %Discretizing with respect to electron beam direction 
z = 0:delz:ro;  
Z = length(z);  

  
%% Create Solution Matrices %% 

  
%Create solution matrix (at%) 
cplot = zeros(rplotl,1);  
c_z = zeros(rplotl,Z);  
c_avg = zeros(rplotl,1); 
%% Cycle Over all Initial Conditions %% 

  
for a=1:scale_l 
    for b=1:shift_l 
        %% Calculate initial condition %% 
        for e = 1:rplotl 
            if e >= rplotl-R+1 %Initial distribution in shell 
                cplot(e) = scale(a)^(rplot(e)-max(rplot))+shift(b); 
            else %Zero concentration in core 
                cplot(e) = 0;  
            end  
        end            

  
        %% Calculate EDX Projection %% 

  
        %Fill c_z with values and average the values at each radii  
        for q = 1:rplotl 
            count = 0; 
            add = 0;  
            for s = 1:Z 
                %Hypoteneuse length 
                r_p = sqrt((q*delr)^2+(s*delz)^2);  

  
                %Filter radii that exceed the particle size 
                if r_p <= ro 

  
                    %Interpolate to nearest radii within r 
                    r_pcorr = interp1(rplot,rplot,r_p,'nearest');  

  
                    %Find index for nearest radii 
                    index = find(rplot==r_pcorr); 

  
                    %Using index, find associated concentration value 
                    c_z(q,s)=cplot(index);  

  
                    %Sum the values together and count once 
                    add = add+c_z(q,s); 
                    count = count+1;  
                else  
                    c_z(q,s)=0;  
                end 
            end 
            %Average all the concentrations at each radius 
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            if count == 0 %Prevent division by zero 
                c_avg(q) = cplot(rplotl);  
            else 
                c_avg(q) = add/count;  
            end  
        end 
        %% Calculate R^2 for given temperature %% 

  
        %Create comparison plot between exp and theoretical data     
        for l=1:L 
              %Interpolate to nearest common radii 
              rnew(l) = interp1(rplot,rplot,radius(l),'nearest'); 
              index = find(rplot==rnew(l));  

  
              %Find concentration value for the common radii 
              cnew(l,a,b) = c_avg(index);            
        end  

  
        %Calculate sum of squares of residuals and sum of squares 
        sum_res = 0;  
        sum_sq = 0;  
        for m=1:L    
              sum_res = sum_res + (intensity(m) - cnew(m,a,b))^2;  
              sum_sq = sum_sq + (intensity(m) - data_mean)^2;  
        end 
        %Calculate R^2 
        R_squared(a,b) = 1- sum_res/sum_sq; 
    end  
end 
%% Find optimum temp %% 

  
%locate D that gives best R^2 value 
[maxrow,maxcol,value]= find(R_squared==max(R_squared(:)));  
scale_opt = scale(maxrow)  
shift_opt = shift(maxcol)  
R_2 = R_squared(maxrow,maxcol)  
%% Plot exp and optimal sim solution 

  
plot(radius,intensity);  
hold on;  
plot(rnew,cnew(:,maxrow,maxcol));  
hold off;  
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