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ABSTRACT 
 

 The increasing concentration of anthropogenic greenhouse gases in the atmosphere is 

altering the climate, posing a serious threat to global agriculture and food security. Agriculture 

and food production contribute a quarter of all GHG emissions produced, so there is a critical 

need to limit emissions in this area while increasing food production to feed the anticipated 10 

billion people by 2050. To address the needs of the future, data-driven solutions are needed to 

guide decision-making and provide support for actionable climate mitigation and survival 

strategies. Research efforts must be focused on analyzing problems on multiple scales, 

identifying new ways to answer relevant questions, and translating available data into useful 

solutions.  

This dissertation examines three diverse areas of research with an overarching goal of 

supporting sustainable food and agriculture future through developing data analytics tools. The 

first chapter evaluated the public GHG emission disclosure practices and climate goals of the top 

100 global food and beverage companies, the second chapter developed a novel mechanistic 

model in a probabilistic framework to quantify and predict photosynthesis response to drought to 

support crop phenotyping, and the third chapter parameterized a common phenotyping model in 

a probabilistic framework to understand phenotypic plasticity of a major cereal crop of the 

world.     

 The first chapter highlights the gap in current GHG reporting practices of the largest food 

and beverage companies in the world. Roughly a third of companies assessed had some sort of 

climate goal, though the ability of those goals to significantly reduce global climate emissions is 

negligible in the majority of cases. Many companies lack any sort of public disclosure as well, 

and companies that fail to measure emissions are unable to set reduction goals. There is a 



significant disconnect between what is needed to keep global warming under 1.5 °C and the 

action currently being taken to do so.  

 The second chapter describes a novel multilevel Bayesian drought response curve model 

based on Michaelis-Menten equation for phenotyping drought sensitivity in rice genotypes. The 

model was successfully implemented in eight rice genotypes and drought sensitivity ranking was 

validated using yield data from the field.  

The third chapter highlights the need to understand the plastic nature of plants and tested 

a fast non-sequential photosynthesis light response curve model in field condition. The growing 

environment of the rice plants in this research significantly altered their maximum 

photosynthesis rate, and the method of generating such curves was less important than the 

environment. 
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INTRODUCTION 

World food security is a pressing concern as the population grows and the warming 

climate threatens food production (Kissoudis et al., 2016; Searchinger et al., 2019). Feeding 10 

billion people by 2050 will require closing a food gap of 56% while emitting less greenhouse 

gases (GHGs) and using 593 million-fewer hectares of land to do so (Searchinger et al., 2019). 

There is a critical need to increase the resource efficiency of agriculture — producing more food 

per hectare, per kilogram of fertilizer, and per liter of water — to create a sustainable food future 

(Khush, 2005; Searchinger et al., 2019).  

Food production accounts for 25% of the global GHG emissions (GRAIN, 2018; Ritchie, 

2019; Searchinger et al., 2019). Land use change for cropland and pastureland, methane from 

livestock, and inefficient on-farm practices contribute millions of tons of CO2 to the atmosphere 

every year (IPCC, 2014). Increasing global temperature and decreasing water availability are 

putting agriculture and food production systems at risk around the world, and these patterns will 

likely get worse if anthropogenic emissions are not significantly reduced.  

Over the past 10,000 years, atmospheric CO2 concentrations have remained fairly 

constant around 300-310 ppm, yet since the Industrial Revolution, anthropogenically-produced 

GHGs have been steadily rising  (IPCC, 2014). The last three decades have each been 

successively warmer than any previous decade since 1950. Atmospheric CO2 concentrations are 

currently 415 ppm (NOAA, 2021), more than 100 ppm greater than they have been for millennia 

(NASA, 2021). The increased concentration of GHGs in the atmosphere is universally accepted 

as the driving cause of climate warming (Forster et al., 2007; IPCC, 2018). The increase and 

severity of extreme weather events due to the changing climate will have greater consequences 

for agriculture than the changing climate alone (Easterling et al., 2007). 
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The following chapters in this dissertation focus on developing data analytics tools to 

support sustainable food and agriculture systems. The first chapter evaluates GHG emissions 

reporting from the top 100 global food and beverage companies. Continued increase in global 

GHG emissions for food production poses a serious risk to the current climate and future 

capacities for food production as well. Large food and beverage companies are responsible for 

massive emissions (GRAIN 2018), and, being such a significant source, have the grand 

opportunity to drastically cut emissions to keep climate warming to no more than 1.5 °C. We 

developed a data analytic tool to evaluate GHG emissions and climate goals of the top 100 global 

food and beverage companies using publicly available data. This chapter has been accepted in 

the journal Frontiers in Sustainable Food Systems to be published in 2022.  

The second chapter describes a novel multilevel Bayesian drought response curve model 

based on Michaelis-Menten equation for phenotyping drought sensitivity in rice genotypes. The 

model was successfully implemented in eight rice genotypes and drought sensitivity ranking was 

validated using yield data from the field.  

The third chapter highlights the need to understand the degree of phenotypic plasticity of 

plants and tested a fast non-sequential photosynthesis light response curve model in field 

condition. The growing environment of the rice plants in this research significantly altered their 

maximum photosynthesis rate, and the method of generating such curves was less important than 

the environment.  

Across all chapters, the main focus is on developing data analytics tools for supporting 

sustainable food and agriculture production systems. The challenge over the next 30 years will 

be to understand the gaps in our knowledge and begin to rapidly develop solutions. GHG 

emissions from the food and agriculture sector are a significant portion of the anthropogenic 
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emissions globally, and there is an urgent need to develop solutions for increasing productivity 

while reducing GHG emissions to ensure global food security.  

 

REFERENCES 

Easterling, W., Aggarwal, P., Batima, P., Brander, K., Erda, L., Howden, M., et al. (2007). Food, 
fibre and forest products. Cambridge, UK: Cambridge University Press. 

 
Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., et al. (2007). 

Changes in Atmospheric Constituents and in Radiative Forcing. 106. 
 
GRAIN (2018). Emissions impossible: How big meat and dairy are heating up the planet. 

Available at: https://grain.org/article/entries/5976-emissions-impossible-how-big-meat-
and-dairy-are-heating-up-the-planet [Accessed April 21, 2021]. 

 
IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and 

III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 
[Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 
151 pp. 

 
IPCC (2018). Global warming of 1.5°C. An IPCC Special Report on the impacts of global 

warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission 
pathways, in the context of strengthening the global response to the threat of climate 
change. Available at: 
https://www.ipcc.ch/site/assets/uploads/sites/2/2019/05/SR15_SPM_version_report_LR.p
df [Accessed June 4, 2021]. 

 
Khush, G. S. (2005). What it will take to Feed 5.0 Billion Rice consumers in 2030. Plant Mol 

Biol 59, 1–6. doi:10.1007/s11103-005-2159-5. 
 
Kissoudis, C., van de Wiel, C., Visser, R. G., and van der Linden, G. (2016). Future-proof crops: 

challenges and strategies for climate resilience improvement. Current Opinion in Plant 

Biology 30, 47–56. doi:10.1016/j.pbi.2016.01.005. 
 
NASA (2021). Graphic: The relentless rise of carbon dioxide. Climate Change: Vital Signs of the 

Planet. Available at: https://climate.nasa.gov/climate_resources/24/graphic-the-
relentless-rise-of-carbon-dioxide [Accessed November 12, 2021]. 

 
NOAA (2021). Global Monitoring Laboratory - Carbon Cycle Greenhouse Gases. Available at: 

https://gml.noaa.gov/ccgg/trends/monthly.html [Accessed November 12, 2021]. 
Ritchie, H. (2019). Food production is responsible for one-quarter of the world’s greenhouse gas 

emissions. Our World in Data. Available at: https://ourworldindata.org/food-ghg-
emissions [Accessed February 12, 2021]. 



4 

Searchinger, T., Waite, R., Hanson, C., and Ranganathan, J. (2019). Creating a sustainable food 
future: a menu of solutions to feed nearly 10 billion people by 2050. World Resources 
Institute Available at: https://research.wri.org/sites/default/files/2019-
07/WRR_Food_Full_Report_0.pdf [Accessed February 12, 2021]. 

 

 
 
 
  



5 

CHAPTER 1: Evaluation of greenhouse gas emissions and climate mitigation goals of the 

global food and beverage sector 

Co-authors: Kusum Naithani, Jenny Ahlen, Joe Rudek 

 

ABSTRACT 

The dramatic increase of emitted greenhouse gases (GHGs) by humans over the past 

century and a half has created an urgency for monitoring, reporting, and verifying GHG 

emissions as a first step towards mitigating the effects of climate change. Fifteen percent of 

global GHG emissions come from agriculture, and companies in the food and beverage industry 

are starting to set climate goals. We examined the GHG emissions reporting practices and 

climate goals of the top 100 global food and beverage companies and determined whether their 

goals are aligned with the science of keeping climate warming well below a 2 °C increase. Using 

publicly disclosed data in CDP Climate reports and company sustainability reports, we found 

that over two thirds of the top 100 (as ranked by Food Engineering) global food and beverage 

companies disclose at least part of their total company emissions and set some sort of climate 

goal that includes scope 1 and 2 emissions. However, only about half have measured, disclosed, 

and set targets for scope 3 emissions, which often encompass more than 87% of a company’s 

emissions across the entire value chain. We also determined that companies, despite setting 

scope 1, 2, and 3 targets, may be missing the mark on whether their targets are significantly 

reducing global emissions. Our results present the current disclosure and emission goals of the 

largest food and beverage companies and highlight an urgent need to begin and continue to set 

truly ambitious, science-aligned climate goals. 
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1. INTRODUCTION 

Since the start of the first Industrial Revolution around 1760, human activities have 

emitted greenhouse gases (GHGs) in excess of those emitted by natural sources. The rise in GHG 

concentration in the atmosphere over the years has steadily warmed the planet, leading to a rise 

in the global surface temperature (IPCC 2021). One such shift in the global climate in the 1980s 

drew the concern of scientists and the public to the increasing atmospheric GHGs (Reid et al. 

2016). In 1990, a report by the Stockholm Environmental Institute declared an increase of 2 °C 

above pre-industrial times to be the global temperature limit, and going beyond that limit may 

result in “grave damage to ecosystems” (Rijsberman and Swart 1990). Twenty-five years later, 

196 countries signed the Paris Climate Agreement, agreeing to limit global warming to well 

below 2 °C, preferably below 1.5 °C. This is a difficult task, however, as it calls for a massive 

shift in the way we currently do things and will require aggressive climate action from large 

emitters.  

The global food and beverage sector is one significant source of GHG emissions. Food 

production accounts for roughly a quarter of the anthropogenic GHGs emitted annually across 

the globe, (Ritchie 2019) and the sector as a whole accounts for roughly a third of global 

emissions (Crippa et al. 2021). Significant reductions in global GHG emissions are not possible 

without reductions from the food and beverage industry (Kobayashi and Richards 2021). The 

majority of emissions come from the supply chains of food and beverage companies, so setting 

climate goals to reduce the emissions within a company’s value chain is of the utmost 

importance (Kobayashi and Richards 2021). 

Climate targets that align with the goals of the Paris Climate Agreement and a net-zero 

future are considered science-based (SBTi 2021b). The Science Based Targets initiative 
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(https://sciencebasedtargets.org/) is a framework that helps companies set targets grounded, first 

and foremost, in science. As scientists (Ripple et al. 2019), consumers (Lai and Schiano 2021), 

and employees (Sax 2020) are increasingly calling for more direct and aggressive climate action 

from large corporations, more companies are getting on board (Winston 2017, NewClimate 

Institute and Data-Driven EnvironLab 2020).  In 2016, 119 companies had set targets with the 

Science Based Targets initiative (SBTi) (Faria 2016), and currently, over 1700 companies have 

committed or set climate goals with SBTi (SBTi 2021a). However, previous studies have shown 

that while climate policy has improved over the years, and more countries and individual 

companies have set emission reduction goals, there has been no significant decrease in global 

emissions (Haffar and Searcy 2018, Christensen and Olhoff 2019).  

So, a third of the global anthropogenic GHG emissions come from food and beverage 

company activities, and as the population grows, demand for food will only increase (Gerber et 

al. 2013), resulting in greater GHG emissions (Searchinger et al. 2019). As large emitters 

(GRAIN 2018), setting climate targets is important for food and beverage companies and 

requires them to inventory their emissions. However, emissions across the entire value chain 

must be accounted for and included in emission targets. It is unclear how many large food and 

beverage companies are setting climate goals to reduce their total value chain emissions and how 

significant their current and potential reductions may be on global atmospheric GHG 

concentrations. In this research, we evaluate the GHG emissions reporting practices of the top 

100 (ranked by Food Engineering) global food and beverage companies with the specific goals 

of (1) demonstrating the extent of publicly disclosed GHG emissions and climate goals, and (2) 

identifying areas for improvement in publicly disclosed GHG emissions and climate goals in 



8 

order to continue making significant progress towards reducing global GHG emission and 

warming. 

 

2. METHODS 

2.1 Food and Beverage Company Selection  

To study the GHG emissions and goals across the food and beverage industry, we 

selected the top 100 global food and beverage companies as ranked by Food Engineering (Food 

Engineering 2020). The food sales of these 100 companies make up roughly 15% of the food and 

agriculture industry worldwide (Plunkett Research, Ltd. 2021). Company size was based on 

revenue generated from food sales only, not overall revenue. For example, Cargill (ranked 9th on 

the list) has a greater overall yearly revenue than Nestle (ranked 1st on the list), but Cargill’s 

revenue from food sales alone was less than Nestle’s because Cargill sells other agricultural 

products besides food, thus their lower ranking. The selected companies operate all over the 

world and consist of both food and beverage (alcoholic and nonalcoholic) processors and 

manufacturers. The companies, their industry, and headquarters are summarized in 

Supplementary Table 1.  

 

2.2 Data Collection  

We primarily use resources from the Science Based Target Initiative (SBTi) and CDP 

(formerly Carbon Disclosure Project), two organizations that guide companies toward greater 

climate action. The SBTi is a collaboration between CDP, the United Nations Global Compact, 

the World Resources Institute, and WWF (World Wildlife Fund). They aim to fight climate 

change by providing companies with technical assistance and resources to set climate goals 
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aligned with science. Science-based targets are goals aligned with keeping global temperature 

rise to well below 2 °C above pre-industrial levels. Companies set climate targets, and approval 

is based on rigorous SBTi criteria. We recorded the goals of the companies that had SBTi-

approved climate goals.  

CDP (https://www.cdp.net/en) is a global non-profit organization that works to make 

environmental reporting the norm by helping companies, cities, and states measure, report, and 

manage risk in areas of climate, water security, and deforestation. CDP provides scores for 

companies and cities based on their level of disclosure and their environmental leadership. We 

only reviewed the Climate reports that were submitted for 2020, which means data are from 

2019. We recorded the scores each company received and from each report pulled out specific 

pieces of information about each company, including active climate goals from 2019 (both 

absolute and intensity goals), baseline emissions data for those goals, and emissions for all three 

scopes from 2019. When SBTi and CDP data were not available, we used company corporate 

sustainability reports (CSRs). When no information was publicly available about company GHG 

emissions or goals, we were unable to evaluate them further.  

 

2.3 Understanding Emissions and Targets  

Emissions can be categorized as scope 1, scope 2, and scope 3 (Figure 1A). Scope 1 

emissions are those that a company is directly responsible for, such as those released from their 

owned and operated plants and factories. Scope 2 emissions are indirectly produced by the 

company, such as the emissions generated by the purchased electricity, heating, and cooling 

required by the company’s own plants and factories. These types of emissions are most easily 

accounted for and managed. Scope 3 emissions are all other emissions, most often associated 
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with the company’s value chain, such as the upstream emissions from growing crops for the 

product and downstream emissions produced when customers use the product. For food and 

beverage companies with upstream value chains in agriculture, scope 3 emissions make up the 

majority of their total emissions (Tidy et al. 2016) (Figure 1B). However, companies have 

historically had less visibility and influence over the operations producing their scope 3 

emissions, so measuring and managing them can be challenging. Here, we evaluate the top 100 

global food and beverage companies’ GHG reporting practices for these three scopes.   

Figure 1. Distribution of scope 1, 2, and 3 emissions.  
The breakdown of total emissions into scope 1, 2 and 3 emissions of the top 100 global food and 
beverage companies (a) and the average proportion of scope 1, 2 and 3 greenhouse gas emissions 
(b). 
 

For this research, we compared company goals to two standards that are aligned with 

what science says is necessary to keep global temperatures from warming more than 2 °C: the 

3% Solution and the SBTi. The 3% Solution is a report, produced by WWF and CDP in 2013, 

that calculated how U.S. businesses could reach 25% of the IPCC’s 2 °C goal by reducing GHG 
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emissions 3% each year between 2010 and 2020 (Tcholak-Antitch et al. 2013). After reaching 

that target in 2020, a 4.3% annual reduction in emissions would be required each year until 2050 

to meet 100% of that goal. To align with this standard, companies must set targets that reduce 

emissions at least 4.3% each year over the life of the target. The SBTi has two emission 

scenarios by which companies can set targets: well below 2 °C where emissions must decrease at 

least 2.5% each year, and 1.5 °C where emissions must decrease at least 4.2% per year (setting a 

target aligned with the 2 °C emission scenario, which called for at least 1.23% annual decrease, 

is no longer allowed for scope 1 and 2 emissions, but is allowed for scope 3 emission targets) 

(SBTi 2021b). While the 3% Solution requires a reduction of all emissions produced by the 

company, the SBTi standards focus on scope 1 and 2 emissions. Companies following the well 

below 2 °C scenario are also setting targets far less stringent than those of the 1.5 °C scenario or 

the 3% Solution standards. To evaluate company targets, we calculated the linear emission 

reductions over the lifespan of the target for total reported emissions and for reported scope 1 

and 2 emissions only and compared them to the 3% Solution and SBTi emission scenarios.  

 

2.4 Target Evaluation 

We collected data on climate goals and scope 1, 2, and 3 emissions from the SBTi 

targets, CDP climate reports, and annual corporate responsibility reports for each company. We 

used the latest available data (2019 data from 2020 reports) from each company to identify 

presence, type, and extent of its climate goals. Companies could have two types of targets: 

absolute and intensity. Absolute targets aim to reduce overall emissions over a period of time 

(e.g., reduce absolute scope 1 and 2 emissions 20% by 2030 from a 2015 baseline). Intensity 

targets reduce the emissions required to produce some unit of measurement (e.g., reduce scope 3 
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GHG emissions 20% per ton of product by 2030 from a 2015 baseline). Some companies may be 

hesitant to set absolute goals, seeing them as potentially limiting future business growth, 

gravitating instead towards only intensity goals.  However, both absolute and intensity targets are 

useful in different ways (SBTi 2021b). Absolute goals are often ambitious and aim to reduce the 

total GHGs entering the atmosphere. Intensity goals can reflect efficiency improvements and 

allow for comparison among peers. Having and meeting both types of goals ensure that overall 

emissions go down and production efficiency goes up. Some companies had climate targets that 

ended in 2020, we only include 2020 targets when any other (intensity or absolute) future target 

is not available. For example, when evaluating a company with an absolute target with a 2030 

end date and an intensity target with a 2020 end date, we only evaluate the company on its 2030 

goal, not 2020 goal. 

We compared a company’s baseline emission data to its current emissions to understand 

whether the company is on track towards reaching the proposed goals or, at the minimum, has 

reduced its current emissions compared to the baseline. (In CDP reports, companies are asked to 

disclose both market- and location-based scope 2 emissions. If the company specifies which 

scope 2 emissions they are tracking for their emissions targets, we used the specified scope 2 

emissions for calculations. For companies that did not specify market or location, we used 

location-based scope 2 emissions. When calculating average scope 1, 2, and 3 emissions across 

all companies, we did not include companies that did not have full emission disclosure across all 

3 scopes.) Over time, companies more accurately calculate and measure their emissions, which 

changes the scope of the emissions included under the baseline emissions. This makes comparing 

current total emissions to the baseline difficult if the company has measured additional aspects of 

their total emissions. Actual current emissions data was often much greater than the current 
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emissions reported if not all emission categories were included in the goal or if new areas of 

emission have since emerged and been measured that were not part of the original goal’s range. 

For this research, we compared only the emission categories included in both the baseline and 

current emissions, since that is how the companies are measuring their progress on the goal. We 

note that this standard is imperfect and may not portray an entirely true picture of the state of 

things. Companies need to be clear about what targets they are claiming to meet and what 

portion of their total emissions they are addressing and reducing.   

As mentioned previously, we compared company goals to the metrics of the 3% Solution, 

but this is only possible for companies with absolute targets. We could not evaluate intensity 

targets because production numbers to go along with the intensity are not provided with emission 

data, another limitation of the data. Only 17 companies had absolute targets and baseline data for 

all scopes, while 27 others had absolute targets and baseline data for scope 1 and 2 only. 

 

3. RESULTS AND DISCUSSION 

3.1 Extent of Publicly Disclosed GHG Emissions and Climate Goals 

3.1.1 Emissions Disclosure 

Of the 100 companies evaluated, 71 disclosed current scope 1 and 2 emissions data while 

29 did not publicly disclose any of their emissions (Figure 2). Sixty-one companies disclosed at 

least partial scope 3 emissions, where they had measured some aspects of their value chain but 

had not mapped it entirely. Only 51 out of 100 companies measured and reported their scope 3 

emissions across their entire value chain. While only half of the large food and beverage 

companies have disclosed their total emissions, this number also indicates a growing trend 

towards transparency in GHG emissions disclosure. A 2018 study of the top 50 food and 
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beverage companies found that only 32% (17) of companies were disclosing their emissions 

fully across all three scopes (Ceres 2019). This number more than doubled in our 2020 report 

data to 72% (36 of the top 50 companies). The fact that, in just two years, we see a 112% 

increase in the number of top 50 food and beverage companies reporting their entire scope 1, 2, 

and 3 emissions demonstrates a growing awareness and change in the industry.  

Companies disclosed their GHG emissions primarily through CDP reports. Sixty-seven 

companies submitted Climate reports to CDP in 2020, and only 61 companies had publicly 

accessible Climate reports (Figure 2). The six other unavailable reports were submitted to CDP 

but not accessible because the companies had chosen not to disclose their report publicly (CDP 

staff, personal communication, April 14, 2021). Six companies with submitted reports were not 

scored by CDP for unknown reasons. CDP scores companies as a way to measure their “progress 

towards environmental stewardship” (CDP 2020). Companies earn points for their level of detail 

on disclosed information related to company climate policy, targets, and emissions and their 

display of understanding of climate change issues and progress made and planned towards 

climate change action. A summary of the breakdown of CDP scores can be found in Table 1.  
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Figure 2. Heat map of company emission and goal disclosure. 
Heat map showing the distribution of where all 100 companies have set goals and disclosed their 
emissions as of January 2021. Each box contains an abbreviation for one company. Company 
abbreviations can be found in Supplementary Information Table S1. 
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Table 1 Breakdown of CDP scores of those 61 companies with 

available scores.  

Score % of Companies 

Number of 

Companies 

A or A- 41 25 

B or B- 41 25 

C 15 9 

D 3 2 

Note: 61 companies had available CDPs, and 61 had available scores, but these are not 

necessarily the same 61 companies. Some companies with available reports were not scored, and 

some companies with scores did not have available reports. 
 

Companies that participate in CDP reporting do so for various reasons including 

corporate stewardship or pressure from customers, retailers, and/or investors. Of the companies 

without submitted CDP reports, 16 were either not asked by investors or customers to participate 

in CDP reporting or did not volunteer to do so themselves (CDP staff, personal communication, 

April 4, 2021). Seventeen others were asked to submit reports by stakeholders, but they either 

declined or did not respond to the request. Eleven companies without CDP reports instead listed 

climate goals on their websites or corporate sustainability reports, and four of those companies’ 

goals were approved by the SBTi. Only two companies disclosed all emission scopes without a 

CDP report (Figure 2). A CDP report is therefore not a required part of disclosing emissions or 

setting climate goals, but few large companies appear to do so otherwise. 
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3.1.2 Climate Goals 

We found that 68 companies had some sort of climate goal in one or more scopes that 

extended beyond a 2020 end date (Figure 3). Forty of these had scope 1 and 2 absolute targets, 

18 had scope 1 intensity targets, 17 had scope 2 intensity targets, and 10 had both absolute and 

intensity targets for scopes 1 and 2. Forty-one companies had targets that included all three 

emission scopes. (As noted previously, 51 companies fully disclosed emissions for all three 

scopes. However, not all companies with scope 3 goals disclosed all of their scope 3 emissions, 

and some companies that did fully disclose their emissions did not have scope 3 goals.) Twenty-

two of the 37 science-based goals (which all include scope 3 emissions) were set by companies 

in 2019 or later. The rise in scope 3 targets, as with the rise in scope 3 emission disclosure, is a 

harbinger of an acceleration in the rate of companies taking aggressive climate action.  

 

Figure 3. Distribution of absolute and intensity climate goals across scopes. 

Number of food and beverage companies out of 100 that set absolute or intensity climate targets 
or both for scopes 1, 2, and 3. Numbers in the bars are how many companies fall into each 
category. Data show the number of goals active in 2019, reported in 2020 reports.  
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3.2 Areas for Improvement in Publicly Disclosed GHG Emissions and Climate Goals 

After reviewing the publicly available climate data of these companies, we identified 

three areas with room for improvement in the way companies are currently disclosing their 

emissions and setting and monitoring climate goals: (1) the shortcomings in disclosure, (2) the 

difficulty in tracking progress towards goals, and (3) the lack of science-aligned goals.  

 

3.2.1 Shortcomings in disclosure 

As noted previously, we found that 49 companies are not disclosing their scope 3 

emissions. Lack of disclosure from almost half of the largest food and beverage companies in the 

world shows the grim state of current monitoring and reporting practices in this industry, 

particularly since scope 3 emissions often make up the majority of a company’s GHG emissions. 

Our analysis of the reported GHG emissions shows that scope 3 emissions contribute over 87% 

of the total emissions on average and can be as high as 99% (e.g., Nisshin Seifun Group, 

Constellation Brands, and Saputo). Scope 1 emissions made up an average of 7% and scope 2 

emissions were about 5% of a company’s total emissions. We believe an increase in scope 3 

measurement and disclosure is necessary to understand the climate impact of this industry and to 

be able to effectively reduce overall emissions.  

 

3.2.2 Difficulty in tracking progress toward goals 

Three things were necessary in order to calculate whether or not a company is making 

progress towards its target: base year emissions, current (2019 in this study) emissions, and 

absolute targets for all scopes. Seventeen companies out of 100 had available data to match these 

criteria (Figure 4). Fifteen of these 17 companies have lower current emissions than their base 
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emissions, according to their reported emissions (companies noted in bold on the x-axis of 

Figure 4). The two other companies (companies not bolded on the x-axis of Figure 4) have 

increased their emissions from their baseline, making no progress on their targets. No mention of 

increasing their emissions was made in the reports of those two companies.  

 

 

Figure 4 Base, current, and target year scope 1, 2, and 3 emissions for 17 companies.  

Distribution of base year emissions, current (2020 report) emissions, and target year emissions 
for seventeen companies with absolute targets and emissions data for scopes 1, 2, and 3. Red line 
and y-axis correspond to 2020 food sales revenue for each company in billions of USD. 
Acronyms left to right with base and target dates: Coca-Cola Bottlers Japan (CCJ: 2015-2030), 
Coca-Cola European Partners (CCE:2019-2030), McCormick Corporation (MCC; 2015-2025), 
Nissin Foods Group (NFG: 2018-2060), Coca-Cola Femsa (CCF: 2015-2030), Kirin Holdings 
(KRH: 2015-2030), Diageo (DIA: 2007-2020), Kellogg Company (KEL: 2015-2050), Molson 
Coors Brewing Co. (MCB: 2016-2025), Barry Callebaut (BRY: 2018-2025), General Mills 
(GNM: 2010-2050), Smithfield (SMF: 2010-2025), Mondelez International (MON), Mars 
(MAR: 2015-2025), PepsiCo (PEP: 2015-2030), The Coca-Cola Company (CCC: 2015-2030), 
Nestle (NES: 2014-2020). Company names in bold have reduced their emissions compared to 
baseline. Emissions data are acquired from 2020 CDP Climate reports submitted by each 
company, and revenue data are taken from Food Engineering’s 2020 list of top 100 food and 
beverage companies. 
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Such promising progress towards meeting climate goals may shroud the true state of 

things, though. As mentioned previously, actual company emissions are often greater than those 

reported towards their targets, since actual company emissions may include emission categories 

that are not included in the original target. In this set of 17 companies, eight companies had 

increased their emissions compared with their baselines when looking at their actual current 

emissions rather than reported ones, though in fact only two companies reported an increase. 

Since only 17 companies had absolute targets and baseline and current emission data for all three 

scopes, we expanded our criteria to include those without scope 3 targets or emission data.  

 

There are 27 companies with scope 1 and 2 data and absolute scope 1 and 2 targets 

(Figure 5). Of these, 19 companies have reduced their emissions from their baselines (companies 

noted in bold on the x-axis of Figure 5) while eight companies have increased their emissions 

(non-bolded companies on the x-axis of Figure 5). As with the companies in Figure 4, reported 

emissions are often smaller than their actual emissions, meaning that while a company may be 

appearing to move towards their targets, actual emissions from the company are increasing. The 

discrepancies between actual and reported emissions make it difficult to accurately track 

reductions in overall company emissions. Tracking progress is made additionally arduous by the 

inability to always fully capture a company’s goal and progress.  
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Figure 5. Base, current, and target year scope 1 and 2 emissions for 27 companies. 

Distribution of base year emissions, current (2020 report) emissions, and target year emissions 
for twenty-seven companies with absolute targets and emissions data for scopes 1 and 2. Red line 
and y-axis correspond to 2020 revenue for each company in billions of USD. Smaller graph 
within is zoomed in on the smallest 10 companies. Acronyms left to right with base and target 
years: Ito En (ITO: 2018-2030), Bacardi (BAC: 2015-2025), LVMH (2013:2020), Sapporo 
Holdings (SAH: 2013-2030), Nisshin Seifun Group (NSG: 2013-2030), Pernod Ricard (PDR: 
2018-2025), The Hershey Company (HER: 2015-2025), Schreiber Foods (SCH: 2017-2030), 
Barilla (BAR: 2017-2030), Keurig Dr. Pepper (KDP: 2018-2030), Asahi (ASA: 2015-2030), 
Suntory (SUN: 2015-2030), Meiji Holdings (MEI: 2015-2030), Marfrig Group (MAF: 2019-
2035), Carlsberg Group (CLB: 2015-2030), Campbell Soup Company (CAM: 2017-2025), 
Ferrero (FER: 2018-2030), Hormel Foods Corporation (HOR: 2011-2020), Unilever (UNI: 2015-
2030), Danone (DAN: 2015-2030), Ajinomoto (AJI: 2018-2030), Olam (OLM: 2017-2030), 
Fonterra (FON: 2018-2030), Anheuser-Busch (AHB: 2017-2025), Tyson (TYS: 2016-2030), 
Cargill (CAR: 2017-2025), Archer Daniel Midland (ADM: 2019-2035). Company names in bold 
have reduced their emissions from their baseline. Emissions data are acquired from 2020 CDP 
Climate reports submitted by each company, and revenue data are taken from Food 
Engineering’s 2020 list of top 100 food and beverage companies. 

 

As mentioned previously, we can only evaluate companies’ absolute targets, as intensity 

targets are currently difficult to track because they require knowing the amount of product used 

in the metric, which is not often publicly available. Regardless of the metric of the target, the 

amount of units produced is required to measure progress toward the goal. In the CDP reports, 
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baseline, current, and target intensity numbers are provided, so it is possible to see whether 

progress is occurring, and estimated absolute reduction from the intensity targets is reported. 

However, we discovered a substantial number of errors and unverifiable numbers in the reports 

leading to questions about the reported numbers.  Currently, CDP reports do not ask companies 

to submit data about production, so we cannot verify whether intensity goals are being met, but 

this may be a helpful aspect to include moving forward so that progress to reduce total emissions 

is accurately monitored.  

Many of these companies with absolute scope 1 and 2 targets also have intensity targets 

covering these scopes or have additional scope 3 intensity targets. Three of the companies with 

increased emissions (SUN, MAF, OLM; Figure 5) also claimed increased business growth in the 

CDP reports. As businesses grow, emissions often grow as well, making absolute targets more 

difficult to meet. All three of these companies, though, had met or were making progress towards 

meeting their intensity targets. Strong intensity targets can contribute to overall absolute 

emission reductions (SBTi 2021b), so being unable to account for a company’s progress on its 

intensity goals is a significant shortcoming to tracking company progress towards overall 

emission reduction. 

 

3.2.3 Lack of science-aligned goals 

In addition to examining how companies are progressing on their goals, we also 

evaluated their goals in comparison with a 3% Solution target estimation. Both The 3% Solution 

and the SBTi have standards for this annual emission reduction and multiple scenarios for 

reduction. We compared the company goals to five different scenarios: are they in line with a) a 

4.3% annual reduction of total company emissions, b) a 3% annual reduction of total company 
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emissions, c) a 4.2% annual reduction of scope 1 and 2 emissions, d) a 2.5% annual reduction of 

scope 1 and 2 emissions, and e) a 1.23% annual reduction of scope 1 and 2 emissions? Scenarios 

a) and b) are based on the 3% Solutions, where prior to 2020, annual reduction needed to be at 

least 3%, but after 2020, reduction must be at least 4.3%. Scenarios c), d), and e) follow the SBTi 

guidelines, which only include rules for scopes 1 and 2.  

Only the 17 companies included in Figure 4 were evaluated on the 3% Solution scenarios 

since the rest did not have full baseline scopes to compare with. Of those 17, four companies 

(CCE, BRY, GNM, MAR) have targets that are equally or more than aligned with the 3% 

Solution. We included all companies from Figures 4 and 5 when comparing with SBTi 

guidelines. Under the 4.2% annual scope 1 and 2 reduction scenario, 13 companies out of 44 are 

aligned. Twenty-six companies have targets aligned with a 2.5% annual scope 1 and 2 reduction 

scenario, and 37 are aligned with a 1.23% annual scope 1 and 2 reduction. Thirty-three of these 

companies have official science-based targets approved by the SBTi, meaning they must be 

aligned with at least one of these scenarios, though the 1.23% reduction scenario is no longer 

allowed. We found that two companies (MON, CAR) did not have targets that align with the 

SBTi guidelines, though it could have been that we were not able to make accurate calculations. 

MON target included all three emission scopes and did not provide separate scope 1 and 2 

baseline emissions, so we were not able to accurately measure. CAR had an intensity goal as 

well which we are not able to measure.  

For companies with large scope 3 emissions, it is hard to imagine that targets are truly 

science-based if they do not include scope 3. The IPCC estimates that global emissions must fall 

by at least 45% by 2030 from a 2010 baseline in order to limit warming to 1.5 °C (IPCC 2018). 

Scope 1 and 2 emissions from food and beverage companies often make up less than 45% of 
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their total emissions, so even targets that aim for zero emissions from scopes 1 and 2 fall short of 

this global goal if they do not include scope 3. Due to the difficulty of controlling some aspects 

of scope 3 emissions, including suppliers and other actors in the value chain in measuring and 

reducing their emissions will be critical in reaching global climate goals (NewClimate Institute 

and Data-Driven EnvironLab 2020). Transparent communication around scope 3 emissions and 

targets is important for facilitating constructive dialogue around challenges and moving towards 

closing the gaps in action (NewClimate Institute and Data-Driven EnvironLab 2020).  

 

4. CONCLUSIONS 

Our results present the current disclosure and emission goals of the largest food and 

beverage companies and highlight an urgent need to begin and continue to set truly ambitious, 

science-aligned climate goals. On the whole, the number of companies setting goals and 

disclosing emissions is increasing, but we found that 31 of the largest companies in this sector 

still do not have any climate goals. Of the ones that do have goals, half are not measuring, 

reporting on, or including scope 3 emissions. Since scope 3 emissions make up about 87% of 

these companies’ total emissions on average, not monitoring or setting targets to reduce these 

emissions does little to reach the goal of keeping global warming to well below 2 °C. Reaching 

this goal is only possible if companies are setting climate targets that support and are aligned 

with the goal. As a first step towards achieving this goal, the global food and beverage sector 

needs to publicly disclose scope 1, 2 and 3 emissions for transparency and verification, monitor 

and report absolute and intensity targets, and set climate goals aligned with science-based 

targets.  
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SUPPLEMENTARY INFORMATION 

 
Supplementary Table S1. Information on all companies used in this study. 

Companies listed alphabetically that were used in this study, along with where data for each 
company was obtained, the company headquarters, and the ranking of each company on Food 
Engineering’s top 100 list [#]. Data was primarily obtained from CDP reports (which can be 
found by searching the company on CDP’s website: https://www.cdp.net/en/scores), the Science 
Based Targets Initiative (SBTi, which can be found on their website: 
https://sciencebasedtargets.org/companies-taking-action), or company websites (given in table).  

Company Abbreviation Where data were obtained Headquarters Food 

Engineering 

Placement 

Agropur 

Cooperative 

AGR https://www.savencia-
fromagedairy.com/rapportan
nuel_EN_2019/pdf/savencia
_RA.pdf 

St. Hubert, 
Longueuil, 
Canada 

81 

Ajinomoto AJI CDP report Tokyo, Japan 59 
Anadolu Efes ANA 

 
CDP report Istanbul, 

Turkey 
96 

Anheuser-Busch 

InBev 

AHB CDP report St. Louis, MO, 
USA 

3 

Archer Daniels 

Midland Company 

ADM CDP report Chicago IL, 
USA 

8 

Arla Foods ARL SBTi Viby, Denmark 34 
Asahi ASA CDP report Tokyo, Japan 19 
Associated British 

Foods 

ABF CDP report London, UK 42 

Bacardi BAC https://d3bbd6es2y3ctk.cloud
front.net/wp-
content/uploads/2020/02/121
84711/CR_Report_2019.pdf 

Hamilton, 
Bermuda 

71 

Barilla BAR 2 CDP reports (2020, 2018) Parma, Italy 99 
Barry Callebaut BRY CDP report Zurich, 

Switzerland 
65 

Brf Brasil Foods BRF https://www.brf-
global.com/wp-
content/uploads/2020/05/BR
F-RI-2019-EN.pdf 

Santa Catarina, 
Brazil 

50 

Bunge BUN CDP report on website:  
https://www.bunge.com/sites
/default/files/2020_global_su
stainability_report.pdf 

Chesterfield, 
MO, USA 

33 

Campbell Soup 

Company 

CAM CDP report Camden, NJ, 
USA 

56 

Cargill CAR CDP report Wayzata, MN, 
USA 

9 

Carlsberg 

Breweries 

CLB CDP report Copenhagen, 
Denmark 

44 
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Table 1 Continued     
Company Abbreviation Where data were obtained Headquarters Food 

Engineering 

Placement 
China Mengniu 

Dairy Co. 

CMD http://iis.quamnet.com/media
/IRAnnouncement/2319/EN_
US/9353818-0.PDF 

Causeway Bay, 
Hong Kong 

35 

CHS CHS https://www.chsinc.com/abo
ut-
chs/sustainability#:~:text=At
%20CHS%2C%20we%20ar
e%20passionate,to%20learn
%20and%20thrive%20togeth
er. 

Inver Grove 
Heights, MN, 
USA 

20 

Coca Cola 

European Partners 

CCE CDP report United 
Kingdom 

27 

Cocacola Bottlers 

Japan 

CCJ CDP report Tokyo, Japan 52 

Cocacola Femsa CCF CDP report Mexico City, 
Mexico 

43 

Cocacola HBC HBC CDP report Zug, 
Switzerland 

60 

ConAgra Brands CAB CDP report Chicago IL, 
USA 

46 

Constellation 

Brands 

CON CDP report Victor, NY, 
USA 

53 

Dairy Farmers of 

America 

DFA https://issuu.com/dairyfarmer
sofamerica/docs/sustbk1901
_ssr_pages_fnl?fr=sOWNkN
zEwNzA5MDM 

Kansas City, 
KS, USA 

23 

Danish Crown DAC https://www.danishcrown.co
m/media/6892/2019-
2020_sustainabilitity-
report.pdf?63741373305000
0000 

Randers, 
Denmark 

51 

Danone DAN CDP report Paris, France 10 
 

Dean Foods 

Company 

DFC https://www.deanfoods.com/
our-story/corporate-
responsibility/environmental
-sustainability/ 

Dallas, TX, 
USA 

64 

Diageo DIA CDP report London, UK 22 
DMK Deutsches 

Milchkontor 

DMK https://www.dmk.de/wer-
wir-sind/geschaeftsbericht-
2019/nachhaltigkeit-
verantwortung/ 

Waren, 
Germany 

67 

E&J Gallo Winery EJG https://www.gallo.com/files/
Corporate_Social_Responsib
ility_Brochure_2020.pdf 

Modesto, CA, 
USA 

85 
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Table 1 Continued     
Company Abbreviation Where data were obtained Headquarters Food 

Engineering 

Placement 
Ferrero FER https://www.ferrerosustainab

ility.com/int/sites/ferrerosust
ainability_int/files/2020-
12/ferrero_sr19_final.pdf 

Alba, Italy 30 

Flowers Foods FLF CDP report Thomasvill, 
GA, USA 

95 

Fonterra FON CDP report Aukland, New 
Zealand 

28 

General Mills GNM CDP report Minneapolis, 
MN, USA 

21 

Grupo Bimbo 

(Mexico) 

GRB CDP report Mexico City, 
Mexico 

24 

Hangzhou Wahaha 

Group 

HWG no information Hanzhou, China 58 

Heineken HEI CDP report Amsterdam, 
Netherlands 

11 

Hormel Foods 

Corporation 

HOR CDP Report 
https://www.hormelfoods.co
m/responsibility/our-
approach-to-issues-that-
matter/environment/ 

Austin, MN, 
USA 

47 

Ingredion Inc. ING CDP report Westchester, 
IL, USA 

75 

Inner Mongolia Yili 

Industrial Group 

YIG https://tinyurl.com/2hwa95v
k 

Hohhot, Inner 
Mongolia 

29 

Ito En ITO CDP report Tokyo, Japan 89 
Itoham Yonekyu ITY https://www.itoham-

yonekyu-
holdings.com/english/ 

Tokyo, Japan 61 

J R Simplot JRS https://www.simplot.com/sus
tainability 

Boise, ID, USA 94 

Jacobs Douwe 

Egberts 

JDE https://www.jacobsdouweeg
berts.com/siteassets/sustaina
bility/jde-cr-report-2019---
v011---final---web.pdf 

Amsterdam, 
Netherlands 

70 

JBS  JBS CDP report Greeley, CO, 
USA 

4 

Kellogg Company KEL CDP report Battle Creek, 
MI, USA 

26 

Kerry Group KER SBTi Tralee, Ireland 55 
Keurig Dr Pepper KDP CDP report Plano, TX, 

USA 
37 

Kirin Holdings KRH CDP report Nakano City, 
Tokyo, Japan 

25 

Kraft-Heinz 

Company 

KHC CDP report Chicago IL, 
USA 

13 
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Table 1 Continued     
Company Abbreviation Where data were obtained Headquarters Food 

Engineering 

Placement 
Lactalis LAC https://www.lactalisingredien

ts.com/wp-
content/uploads/2020/06/Lac
talis-Ingredients-CSR-report-
2019.pdf 

Laval, France 18 

Lamb Weston LBW CDP report Eagle, ID, USA 100 
Land O- Lakes Inc LOL CDP report Arden Hills, 

MN, USA 
98 

Lindt & Sprungli LDT CDP report Zurich, 
Switzerland 

88 

LVMH LVMH CDP report Paris, France 74 
Marfrig Group MAF CDP report State of Sao 

Paulo, Brazil 
31 

Mars MAR CDP report McLean, VA, 
USA 

6 

Maruha Nichiro 

Corp 

MNC https://www.maruha-
nichiro.com/sustainability/pd
f/report2020_en.pdf 

Tokyo, Japan 54 

McCain Foods Ltd MFL https://www.mccain.com/me
dia/3377/mccainfoods_sustai
nabilityreport2019.pdf 

Toronto, 
Canada 

41 

McCormick 

Corporation 

MCC CDP report Baltimore, MD, 
USA 

82 

Meiji Holdings MEI CDP report 
https://www.meiji.com/globa
l/sustainability/esg/pdf/esg.p
df#page=3 

Tokyo, Japan 45 

Molson Coors 

Brewing Co. 

MCB CDP report CHicago IL, 
USA 

39 

Mondelez 

International 

MON CDP report Chicago IL, 
USA 

12 

Monster Beverage 

Corp 

MBC https://www.monsterbevcorp
.com/sr-environmental.php 

Corona, CA, 
USA 

93 

Morinaga Milk 

Industry 

MOR CDP report Tokyo, Japan 83 

Muller Group MLG https://www.mueller-
group.com/en/group/sustaina
bility.html 

Fischach, 
Germany 

72 

Nestle NES CDP report Vevey, 
Switzerland 

1 

NH Foods NHF https://www.nipponham.co.j
p/eng/csr/report/res/pdf/envir
onmental_report.pdf 

Osaka, Japan 38 

Nisshin Seifun 

Group 

NSG CDP report Tokyo, Japan 87 

Nissin Foods Group NFG CDP report Tokyo, Japan 90 
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Company Abbreviation Where data were obtained Headquarters Food 

Engineering 

Placement 
Nissui NIS https://s3-ap-northeast-

1.amazonaws.com/sustainabi
lity-cms-nissui-
s3/pdf/en/2020_sustainabilit
y_digest_en.pdf 

Tokyo, Japan 77 

Oetker Group OET https://www.oetker-
group.com/en/profile/sustain
ability 

Bielefeld, 
Germany 

66 

Olam OLM CDP report Singapore 17 
OSI Group OSI https://www.osigroup.com/w

p-content/uploads/OSI-2018-
2019-Global-Sustainability-
Report-web.pdf 

Aurora, IL, 
USA 

73 

Pepsico PEP CDP report Harrison, NY, 
USA 

2 

Perdue Farms PER https://corporate.perduefarms
.com/company-stewardship-
report-
flipbook/index.html?page=2
2 

Salisbury, MD, 
USA 

86 

Pernod Ricard PDR CDP report Paris, France 40 
Post Holdings PTH https://www.postholdings.co

m/wp-
content/uploads/2020/12/PHI
-2020-Environmental-Social-
and-Governance-Report-12-
3.pdf 

St. Louis, MO, 
USA 

78 

Red Bull RDB https://www.redbull.com/int-
en/energydrink/red-bull-can-
lifecycle 

Fuschl, Austria 69 

Royal Friesland 

Campina 

RFC https://www.frieslandcampin
a.com/sustainability/ 

Amersfoort, 
Netherlands 

32 

Sapporo Holdings SAH CDP report Tokyo, Japan 92 
Saputo SAP CDP report on website (year 

2020)  
Montreal 
Canada 

36 

Savencia Fromage 

and Dairy 

SAV https://view.publitas.com/cfr
eport/vion-corporate-social-
responsibility-report-
2019/page/38 

Viroflay, 
France 

80 

Schrieber Foods SCH CDP report Green Bay, WI, 
USA 

84 

Smithfield 

Foods/WH Group 

SMF https://www.smithfieldfoods.
com/pdf/sustainability/SMIT
HFIELD_CSR_Report.pdf 

Smithfield, VA, 
USA 

14 

Sodiaal SOD https://translate.googleuserco
ntent.com/translate_f 

Paris, France 76 
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Company Abbreviation Where data were obtained Headquarters Food 

Engineering 

Placement 
Sudzucker SUD https://www.suedzucker.de/e

n/company/sustainability/pla
net/energy-emissions 

Mannheim, 
Germany 

63 

Suntory SUN CDP report Tokyo, Japan 16 
 

ThaiBev THB http://sustainability.thaibev.c
om/2019/en/climate_change.
php 

Bangkok, 
Thailand 

49 

The Coca-Cola 

Company 

CCC CDP report Atlanta, GA, 
USA 

7 

The Hershey 

Company 

HER CDP report Hershey, PA, 
USA 

57 

The JM Smuckers 

Company 

JMS CDP report Orrville, OH, 
USA 

62 

Total Produce TTP https://www.totalproduce.co
m/content/uploads/2020/06/t
otal-produce-sustainability-
report-2020-web.pdf 

Dundalk, 
Ireland 

68 

Treehouse Foods THF https://s23.q4cdn.com/88425
1494/files/doc_downloads/es
g/2020/2020_esg_report/Tre
eHouse_2020_ESG_Report_
Final_Reduced_Size.pdf 

Oak Brook, IL, 
USA 

91 

Tsingtao Brewery TSB no information Qingdao, China 97 
Tyson TYS CDP report Springdale, AR, 

USA 
5 

Unilever UNI CDP report London, UK 15 
Vion VIO https://view.publitas.com/cfr

eport/vion-corporate-social-
responsibility-report-
2019/page/92 

Boxtel, The 
Netherlands 

79 

Yamazaki Baking YAM https://www.yamazakipan.co
.jp/english/e_initiatives/inde
x.html 

Tokyo, Japan 48 
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CHAPTER 2: Drought Response Curve: A Novel Mechanistic Method for Quantifying 

Phenotypic Expression of Drought Sensitivity in Crops 

 

ABSTRACT 

 To ensure global food security, phenotyping crops for survival in future climates, 

including drought resistance, is urgently needed.  Growing rice (Oryza sativa), a globally 

important cereal crop with high water requirement, in a drought prone future will need 

identification of genotypes that are resistant to drought. Popular modern methods of high 

throughput phenotyping screen a large number of plants for specific traits, but these methods 

lack the ability to directly measure photosynthesis, an important indicator of yield, and to predict 

plant response under stress. Here, we developed and tested a mechanistic model to predict the 

photosynthesis response to drought stress in eight rice genotypes (310588, 310723, 311620, 

311677, 311795, 311792, Nagina 22, and Zhe 733). The model is a two-parameter Michaelis-

Menten equation, with an Amax parameter, predicting maximum photosynthesis rate, and a PLA50 

parameter, which describes the percent soil moisture at 50% loss of maximum assimilation. We 

tested the model on plants in manipulative field and growth chamber experiments, and validated 

model predictions of drought sensitivity with field generated yield data. Based on the PLA50 

parameter values, we ranked these genotypes along a gradient of drought sensitivity. 311677 and 

311795 were found to be most sensitive to drought, while 311792 and 311620 had a low 

sensitivity to drought. The parameter PLA50 provides a way to rank drought sensitivity of 

different genotypes and can be used to predict yield under stress in crop models.  
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1. INTRODUCTION 

Rice is one of the largest food crops in the world and provides between 50-80% of the 

daily calories for many people in Asian countries (Mohanty et al., 2013). In 2018, nearly 500 

million metric tons of milled rice were produced worldwide (Shahbandeh, 2019), however, 

highly water intensive, rice is expected to be one of the crops most affected by rising 

temperatures and droughts, which will occur with increasing frequency as the climate changes 

(Mohanty et al., 2013; Kissoudis et al., 2016). One of the grand challenges of the 21st century is 

to feed the growing human population without using more land while reducing greenhouse gas 

emissions and water use (Searchinger et al., 2019). We need novel methods to improve our 

understanding and capability to phenotype and predict crop response to changing climate.  

Developing crops that can resist more frequent and intense droughts of future climates is 

one of the proposed solutions for future food security (Tuberosa, 2012; Kissoudis et al., 2016; 

Bailey-Serres et al., 2019; Searchinger et al., 2019). Past research reports have been focused on 

identifying genes for plant traits, including altered root architecture (Kitomi et al., 2020), 

cytokinin regulation (Hai et al., 2020), stomatal regulation (Caine et al., 2018), stay-green traits 

(Ba Hoang and Kobata, 2009), pathogen resistance (Zuluaga et al., 2020), and nutrient 

assimilation (Han et al., 2021), which may increase yields under drought (Tuberosa, 2012). Plant 

genomes are quite plastic and the interaction between genes and the environment can result in a 

great variety of phenotypes within a narrow range of genetic variation (Varshney et al., 2005). 

Understanding phenotypic plasticity requires linking the phenotypic performance of plants 

grown in both controlled and field environments (Sinclair et al., 2004; Fiorani and Schurr, 2013). 

Phenotypic screening for transferable traits under a gradient of environmental conditions is 
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necessary for predictive understanding of genotype response to external stressors and crop 

selection (Tuberosa, 2012; Araus and Cairns, 2014; Kissoudis et al., 2016; Costa et al., 2019).  

High throughput phenotyping platforms are gaining popularity as they can screen 

hundreds to thousands of genotypes (Araus and Cairns, 2014; Ghanem et al., 2015). These 

platforms are image-based, use non-invasive technologies to measure variables like canopy and 

plant temperature (Babar et al., 2006; Deery et al., 2016), chlorophyll content (Babar et al., 2006; 

Sass et al., 2012), plant water status (Jones et al., 2009; Beverly et al., 2020) and leaf growth 

rates (Tackenberg, 2007; Tessmer et al., 2013), and are useful as an initial screening method to 

detect broad differences among genotypes (Ghanem et al., 2015). However, the rate of net 

photosynthesis is an important phenotypic trait that cannot be measured in a high throughput 

system. Several indirect methods have been developed to estimate photosynthesis in a high 

throughput platform, such as using chlorophyll fluorescence, thermal imagery, and normalized 

difference vegetation index (NDVI) (Furbank and Tester, 2011; Cruz et al., 2016; Silva-Perez et 

al., 2018). However, these methods are often difficult to transfer from controlled environments to 

field conditions (Tuberosa, 2012; Costa et al., 2019), and plant response under controlled 

conditions will likely differ from their response in field environments (Sultan, 2000). While 

modern high-throughput approaches are becoming increasingly common, there is growing need 

for quantification of phenotypic expression of plant traits under a gradient of environmental 

conditions and methods that are transferable from controlled experiments to field conditions for 

accurate plant selection and breeding (Varshney et al., 2005). 

Photosynthesis response curves are commonly used to evaluate how the net rate of 

photosynthesis changes with changing environmental conditions, including light, CO2, and 

temperature (Farquhar et al., 1980; Thornley and Johnson, 1990; Medlyn et al., 2002; Sharkey et 
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al., 2007). These response curves are useful in understanding the ecophysiology of plants, by 

estimating biochemical model parameters that can be used in crop models to predict 

photosynthetic response under a variety of environmental conditions (Herrmann et al., 2019). 

Previous studies have made significant progress in our understanding of how drought affects 

photosynthesis (Pinheiro and Chaves, 2011; Zargar et al., 2017; Wang et al., 2018; Yang et al., 

2019), but we still lack quantitative models to phenotype drought sensitivity of plant genotypes 

under a gradient of soil moisture. With an overarching goal of quantifying the phenotypic 

expression of drought sensitivity in different rice genotypes, we asked the following 4 questions: 

(1) Does photosynthesis follow a predictable pattern to progressive drought? We selected three 

genotypes (310588, 310723, and 311795) on which to evaluate our model and test the hypothesis 

that photosynthesis response to progressive drought is quantifiable and predictable. We 

hypothesized that photosynthesis would increase with increasing soil water content with a 

saturating response in more sensitive genotypes, while there will be weak or no predictable 

pattern in less sensitive genotypes.  (2) Are these models transferable from a controlled 

environment to field conditions? We subjected eight different genotypes to progressive drought 

in growth chambers and field plots to understand whether genotype model parameters differ 

between environments. (3) Do model parameters from both environments correlate with yield? 

Previous studies have highlighted the relationship between photosynthesis rates and crop yield 

(Amthor, 2007; Simkin et al., 2019; Wu et al., 2019). To test the hypothesis that models based on 

photosynthesis response to drought are useful in quantifying phenotypic expression of drought 

sensitivity of yield, we compared the model predictions of drought sensitivity with yield data 

collected under drought conditions.   
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2. MATERIALS AND METHOD 

 

Figure 1. Experimental setup for (a) field and (b) growth chamber. The timelines display 
significant events throughout the two experiments in days after planting seeds. The growth 
chamber experiment was completed in 3 rounds, so R1, R2, and R3 refer to rounds 1, 2, and 3, 
respectively.  
 

2.1 Plant Material 

Seeds from six genotypes from the USDA rice mini-core collection and two additional 

genotypes were selected for this study: 310588, 310723, 311620, 311677, 311792, and 311795, 

and N22 and ZHE. N22 is known to have low sensitivity to drought (Kamoshita et al., 2008; 

Kumar, 2017; Poli et al., 2018), while 311795 has shown more sensitivity to drought (Kato et al., 

2006; Degenkolbe et al., 2009; Kumar, 2017). The rest of the genotypes are not well studied, and 

we hope to further understand their relationship with drought by using a new method developed 
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in this study. The specific characteristics of each genotype as they are known are listed in Table 

1.  

 

Table 1. Description of selected rice genotype and their drought sensitivity. 

Accession 

number 

Genotype 

name Taxon Subgroup 

Country 

of origin 

Sensitivity 

to drought Reference 

310588 Onu B 
Oryza 

sativa TRJ Zaire unknown --- 

310723 WIR 3039 
Oryza 

sativa  AUS Tajikistan unknown --- 

311620 Romeno 
Oryza 

sativa TEF Portugal unknown --- 

311677 Karabaschak 
Oryza 

sativa TEJ Bulgaria unknown --- 

311792 Cypress 
Oryza 

sativa TRJ 
United 
States unknown --- 

311795 Nipponbare 
Oryza 

sativa TEJ Japan 
High 
sensitivity 

Degenkolbe et al 
2009, Henry et al 2011 

--- Nagina 22 
Oryza 

sativa  AUS  India 
Low 
sensitivity 

Kamoshito et al 2008, 
Poli et al 2013 

---  Zhe733 
 Oryza 

sativa  IND  China 
High 
sensitivity Lafitte et al 2006 

 

2.2 Growing Conditions 

2.2.1 Pot Experiments 

Plants were grown in a 5:1 potting soil and field soil (Pembroke silt loam (fine-silty, 

mixed, active, mesic Mollic Paleudalfs) and Pickwick wilt loam (fine-silty, mixed, semi-active, 

thermic Typic Paleudults), (USDA)) mixture in 3.8 L pots. Field soil had been dried and 

autoclaved to kill weed seeds. Many seeds were germinated in each pot but, after sprouting, were 

thinned to three plants per pot, with two pots for each genotype. All pots were kept well-watered 
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for 4 weeks in a greenhouse and then were transferred to a growth chamber. Lights in the growth 

chamber were set to 600 �mol m-2 s-1 on a 16:8 hour light:dark cycle. One pot per plant was 

randomly designated as the well-watered treatment and the other was assigned the drought 

treatment. Pots were labeled with a random number and placed in that random order on scales 

within the growth chamber. 60 g of perlite were added to each pot at the start of the experiment 

to prevent evaporation and ensure the only water loss from the pot was through transpiration 

from the leaves. Pots were weighed at field capacity and water was added each day to maintain 

that weight for the well-watered plants. Drought treatment pots were allowed to lose 80 g of 

water each day and water was added to pots after measurements if more was lost.  Gas exchange 

and chlorophyll fluorescence were measured on each plant daily using an LI-6400XT-40 leaf 

chamber fluorometer (LI-COR Biosciences, Lincoln, NE, USA). Soil moisture was measured in 

each pot at the time of gas exchange measurements with a Dynamax SM150 Portable Soil 

Moisture Probe (Dynamax, Fresno, CA, USA). Drought was maintained for 14 days or until 

plant leaves were too rolled to measure or until photosynthesis was zero μmol m-2 s-1. The whole 

experiment was repeated for three rounds.  

 

2.2.2 Field Experiments 

The same six genotypes, in addition to two more (311620 and 311792), were selected for 

the field experiment. Ten seeds of each genotype were germinated on 15 May 2019 in 0.95 L 

black pots with 1:1 mixture of potting soil and field soil. After 3 weeks, the plants were 

transplanted from the pots to the two 6.1 x 6.1 m levee-bound field plots at the University of 

Arkansas Division of Agriculture’s Agriculture Experiment Station in Fayetteville, AR 

(36.096051°, -94.167418°). Plants were transplanted 0.3 m apart from each other in rows by 
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genotype. Fertilizer was scattered into the water of both plots at the beginning of the season (1.1 

kg N, 0.45 kg P, 0.45 kg K each per plot). Water was added to the well-watered plot when 

necessary to maintain a flood throughout the whole season.  

Both plots were kept flooded with several cm of water for 3 weeks, and then the drought 

plot was drained and a part of the levee removed to ensure that water would drain out. The 

drought plot was not covered to keep out rain but rather remained uncovered to best simulate 

real-life conditions. The plot was on a very slight slope, so the open levee on the downslope side 

of the plot ensured that water would drain from the plot if it rained.  

Gas exchange and chlorophyll fluorescence were measured using the LI-6400XT-40. 

Conditions in the measuring chamber were set to mimic ambient temperature, light, and vapor 

pressure deficit. Reference CO2 levels were set to 400 ppm. Plants were measured both before 

the drought started to establish baseline photosynthesis and fluorescence and at periodic intervals 

of soil moisture to capture symptoms of progressive drought and create the drought response 

curve. Measurements were made between 8:00 AM and 1:00 PM, and we alternated the order the 

plants were measured to prevent time of measurement from severely affecting the data.  

Soil moisture was first measured when the fields were saturated to set a baseline soil 

moisture level. Saturated volumetric soil moisture read at 50% with the soil moisture probe 

(Dynamax SM150 Portable Soil Moisture Probe, Dynamax, Fresno, CA, USA).  The soil 

moisture probe was rods were 5.1 cm in length, meaning that the probe is not reading soil 

moisture throughout the entire depth of the rooting zone. The probe “reads” the soil moisture up 

to 2.5 cm in each direction from the center of the probe. We measured soil moisture daily once 

drought was induced, and gas exchange measurements began when the soil moisture was roughly 
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half of the saturated soil.  For each LI-6400XT-40 measurement, we measured soil moisture at 

the base of each plant throughout the experiment. 

2.3 Harvesting and Yield Evaluation 

Rice plants were harvested when they were physiologically mature. Each plant was cut 

where it met the soil, and the entire plant was folded into a labeled paper bag and dried in an 

oven for one week. To determine yield, total panicles were counted on each plant and five 

representative panicles were selected from each plant. Panicle length was recorded, and total 

unfilled and filled grains were counted for each of the five selected panicles. We took an average 

of the five panicles to determine mean filled and unfilled grains per panicle for each plant.  

 

2.4 Statistical Analysis  

We used a Michaelis-Menten enzyme kinetic equation (Michaelis and Menten, 1913) in a 

multilevel Bayesian (MB) framework to estimate model parameters and associated uncertainties 

in different genotypes under a drought environment. The multilevel Bayesian Drought Response 

Curve (MBDRC) model has three primary components: (1) the likelihood model, which 

describes the likelihood of observed net photosynthesis (AN), (2) the process model, which 

describes the photosynthesis response to soil moisture based on the Michaelis-Menten equation 

and process uncertainty associated with random effects, and (3) the prior distributions for model 

parameters and variance terms. The posterior distribution of all model parameters was obtained 

by combining these three parts (Wikle, 2003).  

The likelihood model: We assume that the observations of photosynthesis are normally 

distributed for each observation i (i=1, 2, . . . n): 

��[�]~
��
��(�[�],�)     Eq. 1 
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The process model: The process model describes the mean photosynthesis (µ) based on 

the Michaelis-Menten model as follows:  

�[�] = ����[�����[�]]�[�] 
 !�"#[�����[�]]$�[�]

     Eq. 2 

where [Plant[i]] indicates plant-level parameters. The Michaelis-Menten equation is a asymptotic 

model describing the relationship between mean photosynthesis (�[i]) and volumetric soil 

moisture (�, %), where the horizontal asymptote (X → ∞) is represented by Amax (maximum 

photosynthesis rate, �mol m-2 s-1) and PLA50 is the � level at which photosynthesis is 50% of 

Amax. 

The parameter model: Two unknown plant level parameters of interest (Amax and 

PLA50) are allowed to vary by each of the genotypes (�.Parameter[s]) (s=1, 2, . . . n), where s 

indicates the number of genotypes. For example, genotype-level parameters are described as:  

%���
&'&�[(]~
��
��(�. %���
&'&�, �. %���
&'&�)         Eq. 3 

where �.Parameter is the precision (1/variance) term associated with the genotype-level mean 

(�.Parameter) of the parameter of interest. Parameters * and PLA50 were given informative prior 

distributions with posterior means normally distributed around a mean of zero and large standard 

deviation associated with them.  

 The observed likelihood, process, and parameter models were combined to generate the 

posterior distributions of the unknown parameters (Wikle, 2003). The joint posterior was 

sampled by implementing the Markov Chain Monte Carlo (MCMC) algorithms (Robert and 

Casella, 2009) in the Bayesian statistical software package WinBUGS (Lunn et al., 2000) by 

running three parallel MCMC chains. Each MCMC chain was run for 100,000 iterations after 

convergence and the BGR diagnostic tool was used to evaluate convergence of the chains to the 

posterior distribution (Brooks and Gelman, 1998). The chains were thinned every 10th iteration to 
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obtain an independent sample of 10,000 values per chain (total of 30,000 values) for each 

parameter from the joint posterior distribution. Model goodness-of-fit was evaluated by using 

Eq. 1 to generate modeled data for each observed photosynthesis value (Gelman et al., 2021) 

yielding posterior predictive distributions for each observation. The predicted means of 

photosynthesis with 95% credible intervals were compared with observed photosynthesis for 

evaluating the goodness-of-fit of the MBLRC model (see Appendix 1 for parameter estimates) 

 

 

Figure 2. Relationship between observed and modeled values of the net photosynthesis rate (AN, �mol m-2 s-1) showing the model goodness-of-fit across growing environments. Error bars 
represent 2.5% (bottom) and 97.5% (top) credible intervals. The dotted line represents 1:1 line 
and the solid black line represents the linear fit to the data.  
 

 

3. RESULTS  

3.1 Model Goodness-of-Fit 

The MBDRC model showed good (R2 = 0.50) agreement between observed and modeled 

net photosynthesis rates (AN), but consistently overestimated mean AN at low values and 

underestimated mean AN at higher values in both environments. (Figure 2). However, the 

observed data was within the range of the 95% credible interval (Figure 2). Across different 
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growing conditions, the model performed better in the growth chamber (R2 = 0.52) than the field 

(R2 = 0.38).   

 

3.2 Developing a mechanistic model for photosynthesis response to drought 

 We developed a mechanistic model to describe the photosynthesis response of rice to 

progressive drought. The two parameters have biological meaning, where Amax represents 

maximum gross photosynthesis (�mol m-2 s-1), and PLA50 is the volumetric soil water content 

(%) when photosynthesis is 50% of Amax. We hypothesized that the PLA50 parameter can be used 

to phenotype drought sensitivity of different genotypes and also used in crop models to improve 

prediction of photosynthesis under different environments. Genotypes with a higher sensitivity to 

drought will have a higher PLA50 value, indicating that photosynthesis declined to 50% of its 

maximum value at a greater soil moisture. 

To determine whether photosynthesis response to drought can be predicted by a model, 

we subjected three rice genotypes (310723, 310588, and 311795) to progressive drought under 

controlled conditions in a growth chamber and monitored the photosynthesis response. The 

results are shown in Figure 3. Volumetric water content (�) ranged from ~3% up to ~40% for 

each genotype, and there was a linear decline in net photosynthesis rate (AN) when � was around 

10%. 

 
Figure 3. Photosynthesis  (AN, �mol m-2 s-1) response to changing volumetric soil water content 
(�) in (a) 310588, (b) 310723, and (c) 311795. Purple line is the model fit (AN = Amax�/(PLA50 + 
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�), where Amax is maximum photosynthesis rate (�mol m-2 s-1), and PLA50 is the � value when 
Amax is 50% indicating percent loss of assimilation (PLA). 
 
 
3.3 Effect of growing conditions on photosynthesis response to drought  

Our second objective was to understand whether the Amax and PLA50 parameters differed 

between a field environment and growth chamber pots. Amax was not significantly different 

between environments except in 310588 and 311795 (Figure 4). PLA50 in the field was 

significantly different from PLA50 in the growth chamber in 310588, 311677, N22, and ZHE, 

suggesting that this parameter may be more greatly influenced by environment than Amax, under 

drought conditions. Only in 310723 were neither parameter significantly different between 

environments. 
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Figure 4. Photosynthetic drought response curves (a,d,g,j,m,p) and posterior density distribution 
of photosynthesis model parameters Amax (�mol m-2 s-1) and PLA50 (%) for  six rice (Oryza 

sativa) genotypes under field (green) and growth chamber (pink) conditions. Green and pink 
lines are the fit of a Michaelis-Menten model (AN=Amax*�/(PLA50 + �), where Amax is maximum 
photosynthesis rate (�mol m-2 s-1), � is volumetric soil water content (%), and PLA50 is � at 50% 
of Amax for field and growth chamber plants, respectively. 
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3.4 Genotypic differences in photosynthesis response to drought  

 The model prediction showed good agreement with observed data when growth chamber 

and field data were combined in a hierarchical model (Figure 2c). Using this combined data, we 

evaluated the photosynthesis response across eight genotypes (Figure 5). 311677 had the highest 

PLA50 parameter value and was significantly different from all genotypes except 311795 and 

N22. 311792 was the least sensitive genotype and was significantly different from all genotypes 

except ZHE and 311620. Amax parameters were mostly similar across genotypes, except 311792 

was significantly different from 310588, 310723, 311795, and ZHE. ZHE was significantly 

different from 311677, N22, and 311620, and 310588 was significantly different from 311620. 

 

Figure 5. Posterior probability distributions for PLA50 (%) and Amax (�mol m-2 s-1) of each 
genotype.  
 

Our results show a negative correlation between PLA50 and plant yield (Figure 6); yield 

was smaller in plants that had a larger PLA50 parameter (higher sensitivity to drought), and was 

larger in genotypes with a smaller PLA50 parameter (lower sensitivity to drought). A weak 

positive relationship existed between yield and the Amax model parameter, however, there is a 

stronger positive relationship when 310588 and 311792 were removed from the relationship. 
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These two genotypes have a lower sensitivity to drought, and thus, even when photosynthesis has 

decreased due to drought, they are still capable of maintaining yield. 

 

 

Figure 6. Relationship between the PLA50 (%) and Amax (�mol m-2 s-1) model parameters of field 
and growth chamber plants and mean number of filled grains per panicle of field plants. Error 
bars on PLA50 are 95% credible intervals and error bars around mean number of filled grains are 
standard error about the mean. Data in the circle are less sensitive to drought and were not 
included in the regression.  
 

4. DISCUSSION 

We developed and tested a new model to phenotype drought sensitivity of crops and to 

predict yield under drought stress in eight different rice genotypes. We first tested the MBDRC 

model in controlled conditions before expanding the tests to the field (Figure 2, Figure 4). The 

dynamic nature of the field environment makes evaluation of instantaneous point measurements 

of photosynthesis difficult in the field (Gu et al., 2012; Mishra et al., 2012; Tian-gen et al., 

2017). However, phenotypic data from field trials may be more representative of real-life 

scenarios, and plant responses in controlled environments like greenhouses and growth chambers 

cannot always be transferred to the field (Langstroff et al., 2021). Plants do not grow in isolation 
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from their environment and the plasticity of plants under changing environmental conditions can 

produce a range of phenotypes (Pieruschka and Schurr, 2019). The phenotype of a plant is not 

only the expression of genes but the complex interactions with the internal and external 

environment as well (Trewavas and Malho, 1997; Sultan, 2000). It is not advisable to grossly 

extrapolate the results of either field or lab studies to environments outside of those in the 

experiment without careful consideration of both the study environment and the future 

environment (Tian-gen et al., 2017; Langstroff et al., 2021). However, the overlap of both the 

field and controlled environments presented here provides insights into the dynamic and intrinsic 

characteristics of these genotypes and contribute to models of future climate scenarios.  

We quantified sensitivity to drought with the PLA50 parameter, soil moisture level at 

which plant photosynthesis decreased to half of its maximum photosynthesis. Figure 7 depicts 

the order of sensitivity to drought of the eight genotypes assessed in this study. 311677 and 

311795 were found to be the most sensitive, while 311792 and 311620 were the least sensitive. 

Little is known in the literature about 311677, but 311795 has been studied and found to be 

generally sensitive to drought (Degenkolbe et al., 2009; Henry et al., 2011; Kumar, 2017). This 

is good confirmation that our model is operating well and identifying drought sensitivity 

accurately. N22 is another more well-studied genotype. It has been found to be drought tolerant 

(Degenkolbe et al., 2009; Kumar, 2017; Poli et al., 2018), though our model ranked it as 

moderately sensitive. However, PLA50 of N22 was significantly different between environments; 

N22 was significantly less sensitive in the field compared with the growth chamber. This 

emphasizes the necessity of evaluating stress response in a range of environments. ZHE tends to 

be a sensitive genotype to other kinds of stress (Moldenhauer et al., 2020) but was found to be 

only moderately sensitive to drought in this study. One reason for this could be this genotype’s 
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exceptionally quick time to flowering. All of the plants were grown, planted, and subjected to 

drought at the same time. It is likely that ZHE was able to grow quickly and begin setting seed 

before it was severely affected by drought, presenting an appearance of resistance (high yield 

and low PLA50) to drought through drought avoidance.  

 

Figure 7. Drought sensitivity ranking of the eight genotypes selected for this work based on the 
multilevel Bayesian drought response curve model.  
 

PLA50 in several genotypes was significantly different in growth chamber pots compared 

with the field environment (Figure 4). To cope with drought stress, many plants grow longer 

roots to reach water at deeper soil depths (Kato et al., 2006; Farooq et al., 2009). Plants in pots 

do not have the option to find deeper water. Across all genotypes, PLA50 was greater (though not 

always significantly) in the field plants compared with the growth chamber plants. It is possible 

that the genotypes that were able to continue photosynthesizing longer in the field (310588, N22, 

ZHE, 311677) coped with drought by growing longer roots to reach deeper soil water, while 

their counterparts in the growth chamber were unable to do so. Future research could examine 

the rooting depth and root architecture of these genotypes under drought stress in the field to 

determine which plants cope with drought stress by searching for water at greater depths. This 

emphasizes the importance of phenotyping for stress responses in field environments to 

accurately quantify phenotypic response to that stress.  
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The mean PLA50 for these genotypes ranged from 6-14%. This threshold is consistent 

with soil moisture of the permanent wilting point, where plant roots are unable to extract enough 

water to meet their demand, and plant processes, such as transpiration, cease (Cornell, 2010; 

Datta et al., 2018). Permanent wilting point ranges from 8% to 24% soil moisture in sand and 

clay soils, respectively (Cornell, 2010; Datta et al., 2018), and with our loamy soil type, we see 

that threshold generally falling within that range. Permanent wilting point is the point at which 

the plant does not recover turgor upon rewetting (Cornell, 2010), yet all of our plants recovered 

and grew to maturity. It is likely, then, that the soil moisture at a greater depth had not yet 

reached the permanent wilting point, allowing the plants to recover. Nevertheless, this genotype-

specific threshold can be used as an indicator of plant photosynthetic status and correlation with 

yield 

 

5. CONCLUSIONS 

We developed and tested a novel mechanistic model in a probabilistic framework to 

phenotype and predict photosynthesis and yield response to drought under controlled and field 

conditions.  This two-parameter (Amax and PLA50) Michaelis-Menten model showed a good fit for 

predicting photosynthesis and yield response to drought in all genotypes across controlled and 

field conditions. The PLA50 parameter is an indicator of sensitivity, where a larger PLA50 value 

correlated with higher sensitivity to drought, and a smaller PLA50 value indicated low sensitivity 

to drought. Our results demonstrate the validity of this method to phenotype drought sensitivity 

using field generated yield data and good agreement with prior studies of genotype with known 

sensitivity to drought.  
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CHAPTER 3: Effects of Growing Conditions and Measurement Methods on Phenotypic 

Expression of Photosynthesis 

 

ABSTRACT 

Photosynthesis light response curves are widely used to quantify phenotypic expression 

of photosynthesis including the maximum photosynthetic capacity (Amax), apparent quantum 

yield (*), and mitochondrial respiration (Rd) in response to changing environmental conditions. 

Two common methods of generating these curves involve measuring photosynthesis (1) on a 

single sample by sequentially altering the intensity of light within a chamber (sequential 

method), or (2) on samples that are each equilibrated to a different light level (non-sequential 

method), eliminating the dosage effects of sequential light response curves. Both methods are 

often conducted in controlled environments to achieve steady-state results and neither method 

involves equilibrating the entire plant to the specific light level. Here, we compare sequential and 

non-sequential methods for generating light response curves in controlled (greenhouse), semi-

controlled (plant grown in growth chamber and acclimated to field conditions 2-3 day before 

measurements), and field conditions. We selected seven different rice genotypes for this 

experiment with overarching goals to understand (1) phenotypic plasticity of rice grown under 

different environments, and (2) the limitations of different methods of generating light response 

curves. We used the non-rectangular hyperbola model in a hierarchical Bayesian framework to 

estimate model parameters and associated uncertainties for comparison across methods and 

growing conditions. Our results show that Amax is significantly lower across all genotypes under 

greenhouse conditions compared to the growth chamber and field conditions, while *, � (shape 
parameter), and Rd were generally not significantly different among environments. The non-
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sequential method generated light response curves that were similar to the sequential method, but 

took less time and accurately captured the variability of the field environment. The non-

sequential method would be particularly useful to conduct curves on a large number of plants in 

less time under field conditions.  

 

1. INTRODUCTION 

Expected global temperature rise and water scarcity (IPCC 2019) present serious threats 

to crop production and global food security. To feed the growing human population without 

using more land while reducing water use and greenhouse gas emissions, we need to investigate 

the limitation of commonly used measurement and modeling techniques used for quantifying 

gene and environment interactions. Photosynthesis response (light, CO2, and temperature) curves 

are commonly used to estimate species-specific parameters, including maximum photosynthetic 

capacity, maximum electron transport rate, mitochondrial respiration, maximum light use 

efficiency, maximum gross and net photosynthesis, and optimal temperature (Berry and 

Bjorkman, 1980; Farquhar et al., 1980; Battaglia et al., 1996; Medlyn et al., 2002; Ralph and 

Gademann, 2005; Lobo et al., 2013). These parameters provide insight into the intrinsic 

characteristics of the plants based on biological mechanisms. Understanding crop response to 

variable environmental conditions is critical to improve our predictions of crop yield that is often 

correlated with the plant biomass and photosynthesis (Zelitch, 1982; Bouman and Tuong, 2001). 

To meet the increasing demand of food (the global human population is expected to reach 9 

billion by 2050) and adapt to a warming planet (global temperatures are expected to rise more 

than 2 °C by 2050 without deep emission reductions), predictive crop models based on 
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mechanistic understanding of photosynthesis response to changing environmental conditions are 

needed for selecting and breeding plants for desirable attributes.  

Conventionally, photosynthesis light response curves are generated by clamping one or 

more leaves into a chamber and altering the level of the light intensity within the chamber of a 

gas exchange measurement system (e.g., LI-6400XT, Li-COR Biosciences, Lincoln, NE, USA 

and CIRAS-3, PP Systems, Amesbury, MA, USA) (McDermitt et al., 1989; Ögren, 1993; Dreyer 

et al., 2001; Medlyn et al., 2002; Sharkey et al., 2007). This method requires significant time for 

each curve, as plants need to acclimate for several minutes at each light level (Battaglia et al., 

1996; Serôdio et al., 2013). Steady-state light response curves require 10-20 minutes at each light 

level to allow the plant to acclimatize to the current light level; this allows for characterization of 

the plasticity and inherent steady-state photosynthesis properties at different light intensities 

(Coe and Lin, 2018). Rapid light response curves can be generated more quickly, with only 1-3 

minutes needed at each light level (Coe and Lin, 2018; LI-COR, 2021) and can be used to 

characterize the plant’s dynamic photosynthetic response under rapidly fluctuating light 

conditions (Ralph and Gademann, 2005; Coe and Lin, 2018). Non-sequential (or survey) light 

response curves are similar to rapid sequential light response curves, but rather than subjecting 

the same sample to a sequence of light intensities, different samples, equilibrated at different 

light intensities, are used to build a similar curve (Perkins et al., 2006; Houliez et al., 2017; Coe 

and Lin, 2018; LI-COR, 2021). Non-sequential light response curves are often conducted on 

microalgae (Perkins et al., 2006), phytoplankton (Houliez et al., 2017), or other marine plants 

(Ralph and Gademann, 2005) using chlorophyll fluorescence parameter response to light rather 

than net photosynthesis.  
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In each of these methods for generating light response curves in land plants, a portion of 

a leaf is enclosed in an artificial environment, different from what the rest of the plant is 

experiencing. This difference between whole plant and measuring environment may limit the 

reliability of the conventional response curves to estimate the full photosynthetic capacity of the 

whole plant (Wagner and Reicosky, 1992; Sims et al., 1998). Additionally, most plants are 

measured in controlled environments, but recent studies demonstrating phenotypic plasticity of 

plants (Sultan, 2000; Pieruschka and Schurr, 2019) suggest that plant response under controlled 

environment conditions will likely differ from their response under field environments (Sultan, 

2000). However, if the non-sequential light response curves are conducted in a field 

environment, sampling different leaves on plants that acclimate to light levels throughout the 

day, we ensure that the whole plant is equilibrated to the current light level and that the 

measurements reflect the real environment. This type of curve eliminates the effect of the 

previous light intensities on the current measurement (Coe and Lin, 2018) and has values that are 

equilibrated to the current light level (Coe and Lin, 2018; LI-COR, 2021).  

Rice (Oryza sativa) is grown worldwide and supports more than half of the world's 

population as a primary food source (Mohanty et al., 2013). Here, we use different rice 

genotypes to understand the phenotypic plasticity of crops under different environments and the 

limitations of different methods. We asked: (1) do model (non-rectangular hyperbola model 

fitted to the photosynthesis light response curve) parameters under controlled conditions differ 

from the model parameters under field conditions? and (2) do model parameters vary between 

sequential and non-sequential methods of generating light response curves?  
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2. METHODS 

2.1 Plant Material 

 Rice genotypes for all experiments in this research were selected from the USDA rice 

mini-core collection, which is a collection of 217 genotypes with diverse origins, subgroups, and 

phenotypic and genotypic expressions (Agrama et al., 2009; Kumar, 2017). We selected seven of 

these genotypes to include in this research: 310588, 310723, 311677, 311795, Nagina 22 (N22), 

and Zhe733 (ZHE). Details of each of these genotypes are provided in Table 1. 

 

Table 1. Information about rice genotypes used across different growing environments: F = 
field, GC = growth chamber, GH = greenhouse. Sequential and non-sequential light response 
curves were conducted on all genotypes.  
USDA 

Accession 

Number 

Genotype 

Name Taxon Subgroup 

Country of 

Origin 

Growing 

Environment  

310588 Onu B Oryza sativa TRJ Zaire F, GC, GH 

310723 WIR 3039 Oryza sativa AUS Tajikistan F, GC 

311620 Romeno Oryza sativa TEF Portugal F, GC 

311677 Karabaschak Oryza sativa TEJ Bulgaria F, GC 

311792 Cypress Oryza sativa TRJ United States F, GC 

311795 Nipponbare Oryza sativa TEJ Japan F, GC, GH 

 Nagina 22 Oryza sativa  AUS  India F, GC, GH 

  Zhe733 Oryza sativa  IND  China F, GC 

 

2.2 Photosynthesis Light Response Curve Measurements  

2.2.1 Field Experiment 

Five replicates of each genotype were germinated in pots and transplanted (21 day after 

germination) to a 6 x 6 m, levee-bound plot at the University of Arkansas Division of 

Agriculture’s Agriculture Experiment Station in Fayetteville, AR (36.096051°, -94.167418°). 
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Plants were transplanted 0.3 m apart from each other in rows according to genotype with five 

replicates per genotype, a total of 35 plants. A flood of 2-10 cm was maintained on the field for 

the entire growing season of 2019. The field soils were a combination of Pembroke silt loam 

(fine-silty, mixed, active, mesic Mollic Paleudalfs) and Pickwick wilt loam (fine-silty, mixed, 

semiactive, thermic Typic Paleudults) (USDA). 

Light response curves were generated in situ for plants grown in the field (Figure 1a) 

using the non-sequential survey method (Perkins et al., 2006; Houliez et al., 2017; Coe and Lin, 

2018; LI-COR, 2021) where diurnal light intensities and multiple plant replicates were used to 

fully capture the variability and photosynthetic range within each genotype. These curves take 

advantage of the natural diurnal light pattern of the day and the photosynthetic response of the 

whole plant to those changing light levels to create the curve rather than altering the environment 

of a small portion of a leaf. For these curves, instantaneous measurements with the LI-6400XT 

began around 7 AM and were collected throughout the day on all replicates until 4-5 PM, or until 

three measurements on each plant were taken. A complete curve for a genotype has 15 data 

points (three measurements on five plants). Photosynthetically active radiation (PAR) and air 

temperature within the leaf chamber were set to reflect ambient PAR (1-2400 �mol m-2 s-1), 

temperature (24-36 °C), and vapor pressure deficit (VPD, 0.79-3.5 kPa). Proper care was taken 

to ensure the sensor was not shaded by leaves or the researchers’ bodies.  

 

2.2.2 Growth Chamber Experiment 

Growth chamber plants were germinated, three seeds to a 3.8 L pot, in a greenhouse, then 

moved to a growth chamber after 4 weeks. Soil medium was 5:1 potting soil to field soil. Lights 
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in the growth chamber were set to 600 �mol m-2 s-1 on a 14-10 light-dark cycle and temperature 

was set to around 28 ℃. Pots were watered daily to ensure adequate soil moisture.  

These response curves combined the sequential response curve methodology of the 

greenhouse plants with the environment of the field plants. After growing for 3 weeks in the 

growth chamber, pots were moved outside into water-filled trays in the sunlight where they were 

allowed to acclimate for 2-3 days (Figure 1b). An auto-program (reference CO2 set to 410 ppm, 

block temperature and VDP set to ambient (26-40 °C and 1-4 kPa)) with 11 light levels (2000, 

1600, 1400, 1200, 1000, 800, 600, 400, 200, 50 �mol m-2 s-1) was then run on three plants of 

each genotype. The experiment was repeated for a total of three rounds, however, seeds for N22 

only germinated for one round, so there are fewer replicates. Air temperature during 

measurements ranged from 24-38 ℃, with an average temperature of 33 ℃. Relative humidity 

was around 47%, and PAR often ranged between 1300-2300 �mol m-2 s-1 during measurements, 

taken between 11 AM -2 PM CST.  

 

 

Figure 1. Images showing measurements of rice plants with the LI-6400XT across different 
growing environments including (a) field, (b) growth chamber-grown pots acclimated to field 
conditions, and (c) greenhouse conditions.  
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2.2.3. Greenhouse Experiment 

Greenhouse studies were conducted in University of Arkansas’s greenhouses in 

Fayetteville, AR (Figure 1c). Plants were grown in 0.95 L pots in trays of water to simulate 

flooded conditions. Pots were filled with mixed soil (five parts potting soil and one part 

autoclaved field soil). Field soils were collected from the same location as the field experiment 

was conducted. We used the sequential, rapid method of measuring photosynthesis response to 

light with an LI-6400XT (LI-COR Biosciences, Lincoln, NE, USA) on a healthy, mature leaf. 

An auto-program was created to collect data at 10 light levels (1400, 1200, 1000, 800, 600, 400, 

200, 100, 50, 0 �mol m-2 s-1) beginning at the highest light and allowing up to 3-minute of 

acclimation at each level.  

 

2.3 Statistical Analysis 

 We used a non-rectangular hyperbola model (Thornley and Johnson, 1990; Thornley, 

1998) in a multilevel Bayesian (MB) framework (Clark and Gelfand, 2006) to estimate model 

parameters and associated uncertainties in different genotypes and environments. The MBLRC 

(Multilevel Bayesian Light Response Curve) model has three primary components: (1) the 

likelihood model which describes the likelihood of the observed net photosynthesis rate (AN), (2) 

the process model which describes the photosynthesis response to light (photosynthetically 

active radiation, PAR) based on the non-rectangular hyperbola model and process uncertainty 

associated with random effects, and (3) the prior distributions for model parameters and 

precision terms. The posterior distribution of all model parameters was obtained by combining 

these three parts (Wikle, 2003). 
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The likelihood model: We assume that the observations of photosynthesis are normally 

distributed for each observation i (i = 1, 2, . . . n): 

��[�]~
��
��(�[�]�)                             Eq. 1 

The process model: The process model describes the mean photosynthesis (�) based on 

the non-rectangular hyperbola model as follows: 
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 Eq. 2 

where [Plant[i]] indicates plant-level parameters, Amax is maximum gross photosynthesis (�mol 

m-2 s-1), * is the apparent quantum efficiency (�mol m-2 s-1), Rd is mitochondrial respiration 

(�mol m-2 s-1), and θ (unitless) is the shape parameter for the curve.  

The parameter model: Four unknown parameters of interest (Amax, *, Rd, and θ) are 

allowed to vary by each of the seven genotypes (�.Parameter[s]) (s=1, . . . n), where s indicates 

the number of genotypes. For example, genotype-level parameters are described as:  

%���
&'&�[(]~
��
��(�. %���
&'&�, �. %���
&'&�)                        Eq. 3 

where �.parameter is the precision (1/variance) term associated with the genotype-level mean 

(�.Parameter) of the parameter of interest. Amax, *, Rd, and θ were given informative prior 

distributions with posterior means normally distributed around a mean reported in published 

literature and large (±200%) variances associated with them. 

The observed likelihood, process, and parameter models were combined to generate the 

posterior distributions of the unknown parameters (Wikle, 2003). The joint posterior was 

sampled by implementing the Markov Chain Monte Carlo (MCMC) algorithms (Robert and 

Casella) in the Bayesian statistical software package WinBUGS (Lunn et al., 2000) by running 

three parallel MCMC chains. Each MCMC chain was run for 10,000 iterations after convergence 
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and the BGR diagnostic tool was used to evaluate convergence of the chains to the posterior 

distribution (Brooks and Gelman, 1998). The chains were thinned every 10th iteration to obtain 

an independent sample of 10,000 values per chain (total of 30,000 values) for each parameter 

from the joint posterior distribution. Model goodness-of-fit was evaluated by using Eq. 1 to 

generate modeled data for the observed photosynthesis values (Gelman et al., 2021) yielding 

posterior predictive distributions for each observation. The predicted means of photosynthesis 

with 95% credible intervals were compared with observed photosynthesis for evaluating the 

model goodness-of-fit (see Appendix 1 for parameter estimates). 

 

Figure 2. Relationship between observed and modeled values of the net photosynthesis rate (AN, �mol m-2 s-1) showing the model goodness-of-fit across different growing environments. Error 
bars represent 2.5% (bottom) and 97.5% (top) credible intervals. The dotted line represents 1:1 
line and the solid black line represents the linear fit to the data.  
 
 

For hypothesis testing (�1 - �2 = 0) differences in means were calculated by using 

diffdist function in WinBUGS that subtracts the values of a MCMC vector for a parameter from 

another vector from different genotype/growing condition for comparison and generates a mean 

and probability distribution for significance testing.     
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3. RESULTS 

3.1 Model Goodness-of-Fit 

 The MBLRC model performed well in predicting observed AN across all growing 

environments including field (R2 = 0.87, Figure 2a), growth chamber (R2 =0.98, Figure 2b), and 

greenhouse (R2 = 0.99, Figure 2c) environments.  

 

3.2 Effect of Growing Conditions on Phenotypic Expression of Photosynthesis 

 The probability distributions of the light response curve parameters for each genotype 

under different growing conditions (greenhouse (blue), field (green), and growth chamber (pink)) 

are shown in Figure 3. Across all three environmental conditions, ⍺ remains largely conserved. 

Across all three genotypes, * parameter for each environment shared parameter means and 

parameter space (overlapping posterior distributions), except one genotype (311795) where 

parameter (⍺) means are significantly different between greenhouse and growth chamber. 

Maximum photosynthesis rate (Amax, �mol m-2 s-1) was consistently smallest in the highly 

controlled conditions (greenhouse), and greatest in the least controlled conditions (field) (Figure 

3). None of the environments share parameter space for Amax and the parameter means are 

significantly different across growing conditions (Figure 3). Mitochondrial respiration (Rd, �mol 

m-2 s-1) parameter estimates are not significantly different across environments in any genotype. 

While their parameter space partly overlapped, the lack of significant difference was likely due 

to the larger variability in parameter estimates of this parameter. Mean estimates of the shape 

parameter (θ) are greater in the growth chamber compared to the field but are only significantly 

different between growth chamber and field in 311795 (Figure 3j).  
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Figure 3. Photosynthesis light response curves (a, f, k) and posterior density distribution of 
photosynthesis model parameters ⍺ (�mol m-2 s-1), Amax (�mol m-2 s-1), Rd (�mol m-2 s-1), and θ 
for three rice (Oryza sativa) genotypes under field (green), growth chamber (pink), and 
greenhouse (blue) conditions. Green, pink, and blue lines are the fit of a non-rectangular 
hyperbola model for field, growth chamber, and greenhouse plants, respectively. 
 
 
 
3.3 Effect of Measurement Methods on Phenotypic Expression of Photosynthesis 

Similar to growing conditions, *, Rd, and θ parameters were mostly similar across 

measurement methods, but Amax was significantly different across measurement methods (Figure 

4). For example, * was significantly greater in the non-sequential method only in 310723 and 

ZHE, and Rd was significantly lower in the non-sequential method only in 310723. θ was not 

significantly different between methods across any genotype. Only Amax was significantly 

different between the sequential and non-sequential methods in all genotypes, except 311677 

(Figure 4r).  
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Figure 4. Photosynthetic light response curves (a, f, k, p) and photosynthetic model parameters ⍺ 
(b, g, l, q), Amax (c, h, m, r), Rd (d, i, n, s), and θ (e, j, o, t) for four rice (Oryza sativa) genotypes 
under field (green) and growth chamber (pink) conditions. Green and pink lines are the fit of a 
non-rectangular hyperbola model for field and growth chamber plants, respectively. 
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4. DISCUSSION 

4.1 Effect of Growing Conditions on Phenotypic Expression of Photosynthesis 

Light response curves play a vital role in understanding plant characteristics and 

quantifying photosynthetic acclimation under different conditions (Herrmann et al., 2019). Our 

results show that maximum photosynthesis rate (Amax) was greatest in the field plants across all 

genotypes (Figure 2, column 3). Plants acclimate to the environment they are in (Walters, 2005; 

Dyson et al., 2015; Herrmann et al., 2019), and it has been well documented that plants grown at 

higher light intensities, such as those outside in the field, have greater Amax than those at grown 

under lower light intensities, such as in a greenhouse (Ögren, 1993; Bailey et al., 2001; Walters, 

2005; Perkins et al., 2006; Athanasiou et al., 2010; Du et al., 2020).  

Research has also shown that plants that are grown at low light and are moved to high 

light will increase their photosynthetic capacity (Walters, 2005; Athanasiou et al., 2010). Our 

growth chamber plants, which were grown at lower light intensities (600 �mol m-2 s-1), often had 

Amax values similar to field plants. The high variability seen in the light response curves of 

growth chamber plants, though, may indicate that some leaves may have been shaded and not 

fully acclimated to the new light intensity, and thus had lower maximum photosynthesis.  

We expected a smaller shape parameter (θ) in field plants as θ is generally smaller in 

plants acclimated to high light (Ögren, 1993). Typically, θ ranges from 0.7 to 0.99 ( θ = 1 is a 

Blackman curve and θ = 0 is a rectangular hyperbola (Evans et al., 1993; Ögren and Evans, 

1993)). Ögren (1993) found that when grown under lower light, algal cells and willow (Salix) 

leaves had lower Amax and higher θ, a finding that was only partially consistent with our results. 

While our greenhouse plants had lower Amax compared with field and growth chamber plants, θ 

was only significantly different between the field and growth chamber for 311795. 
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 While growth chamber plants had much greater variability in the light response curves, 

those at the top of their range were quite similar to the field curves. If allowed to acclimate 

outside for several days before measurements, photosynthesis measured in plants grown formerly 

in pots in controlled environments may be very similar to photosynthesis measured in field 

plants. Field curves were quite different from those conducted on greenhouse plants, but the 

smallest curves of the growth chamber plants were similar to those of the greenhouse plants. Our 

results captured a gradient of growing conditions and plasticity of rice genotypes acclimated to 

those conditions (Figure 4).   

Photosynthesis model parameters are a critical piece of understanding the gene and 

environment interactions of different plant genotypes (Rascher et al., 2000). Photosynthetic 

parameters have been shown to differ between the field and lab experiments (Mishra et al., 2012; 

Tian-gen et al., 2017) and our results supported the previous studies showing these differences. 

Field plants experience a variety of light, temperature, and humidity that cannot be easily 

replicated in a greenhouse. Additionally, greenhouse-grown plants may not have the nutrition, 

soil depth, etc. to meet their own growth demands. Thus, the photosynthetic parameters and 

physiological characteristics obtained from greenhouse plants should not be taken as 

representative of field-grown plants (Tian-gen et al., 2017), but the growth chamber or 

greenhouse grown plants acclimated to field conditions before measurements may be used for 

pot experiments. 

4.2 Effect of Measurement Methods on Phenotypic Expression of Photosynthesis 

 Our results show that the non-sequential survey method captured greater variability 

compared to sequential method. The non-sequential method resulted in a greater Amax across 

nearly every genotype surveyed (Figure 4), indicating that light response curves conducted 
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sequentially may underestimate maximum photosynthesis capacity of some genotypes. However, 

the two methods were very similar in their estimations of ⍺, Rd, and �, suggesting that the non-

sequential method is a valid tool to use when phenotyping.  

 

5. CONCLUSIONS 

 The light response curve is a useful tool for quantifying the phenotypic plasticity of plant 

photosynthesis. Our results highlight that the growing conditions have a significant effect on 

phenotypic expression of photosynthesis in rice genotypes, but different measurement methods 

produce similar results. We show that light response curve parameters generated for plants 

grown in lower light environments must not be assumed as characteristic of plants grown in field 

or high-light environments. Furthermore, different methods for generating response curves 

provide different information about the plant. There is a critical need to better understand the 

phenotypic plasticity of different genotypes, but care should be taken to ensure that the 

phenotyping environment and methodology are appropriate for the conclusions drawn.  
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APPENDIX 1 

 
Table A1. Summary statistics for genotype-level parameters in field including Amax (maximum 
rate of photosynthesis), Rd (mitochondrial respiration), ⍺ (apparent quantum efficiency of 
photosynthesis), and θ (curvature shape parameter). [1] = 310588, [2] = 310723, [3] = 311644, 
[4] = 311677, [5] = 311795, [6] = Nagina 22, [7] = Zhe733. D is the sum of the squared 
deviation and SD is the standard deviation of modeled observations.  

 Node  Mean  SD 2.50% Median 97.50% Sample 

D 2669.0000 411.9000 1957.0000 2638.0000 3565.0000 29985 

sig.obs 3.6880 0.2864 3.1790 3.6710 4.2980 29985 

Genotype-level parameters     

sig.Amax 7.2740 1.5640 4.2090 7.3350 9.8330 29985 

sig.Rd 0.7548 0.7046 0.0230 0.5540 2.6620 29985 

sig.alpha 0.0072 0.0065 0.0003 0.0056 0.0235 29985 

sig.theta 0.0587 0.0560 0.0019 0.0438 0.1965 29985 

Amax[1] 40.8200 3.4720 34.7900 40.5800 48.3900 29985 

Amax[2] 37.5700 2.9750 31.9800 37.4900 43.6500 29985 

Amax[3] 37.0400 3.0660 31.3200 36.9300 43.3800 29985 

Amax[4] 29.3000 2.6870 24.4400 29.1500 35.0100 29985 

Amax[5] 32.3900 2.7980 27.2700 32.2700 38.2500 29985 

Amax[6] 41.1300 3.0860 35.5000 40.9700 47.6200 29985 

Amax[7] 49.9900 3.5000 43.2400 49.9400 56.9500 29985 

Rd[1] 2.2520 1.4790 0.2169 1.9810 5.7990 29985 

Rd[2] 2.0250 1.3650 0.1673 1.7720 5.2870 29985 

Rd[3] 2.0850 1.4070 0.1869 1.8120 5.4700 29985 
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Table A1 Continued      

Node  Mean  SD 2.50% Median 97.50% Sample 

Rd[5] 2.1420 1.4820 0.1814 1.8480 5.7540 29985 

Rd[6] 2.2050 1.5040 0.1927 1.9060 5.8110 29985 

Rd[7] 1.9290 1.3620 0.1393 1.6540 5.2220 29985 

alpha[1] 0.0524 0.0095 0.0357 0.0518 0.0733 29985 

alpha[2] 0.0600 0.0102 0.0445 0.0584 0.0842 29985 

alpha[3] 0.0580 0.0095 0.0431 0.0567 0.0801 29985 

alpha[4] 0.0578 0.0106 0.0409 0.0564 0.0826 29985 

alpha[5] 0.0592 0.0107 0.0430 0.0576 0.0845 29985 

alpha[6] 0.0549 0.0091 0.0393 0.0540 0.0755 29985 

alpha[7] 0.0587 0.0086 0.0451 0.0576 0.0786 29985 

theta[1] 0.6255 0.0803 0.5101 0.6135 0.8093 29985 

theta[2] 0.6519 0.0965 0.5137 0.6357 0.8751 29985 

theta[3] 0.6352 0.0853 0.5119 0.6226 0.8280 29985 

theta[4] 0.6339 0.0862 0.5107 0.6206 0.8319 29985 

theta[5] 0.6408 0.0905 0.5118 0.6265 0.8494 29985 

theta[6] 0.6267 0.0801 0.5099 0.6151 0.8086 29985 

theta[7] 0.6526 0.0946 0.5150 0.6383 0.8676 29985 
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Table A2. Summary statistics for plant-level and genotype-level parameters in growth chamber 
including Amax (maximum rate of photosynthesis), Rd (mitochondrial respiration), ⍺ (apparent 
quantum efficiency of photosynthesis), and θ (curvature shape parameter). [1] = 310588, [2] = 
310723, [3] = 311644, [4] = 311677, [5] = 311795, [6] = Nagina 22, [7] = Zhe733. D is the sum 
of the squared deviation and SD is the standard deviation of modeled observations.  
 

 Node  Mean SD 2.50% Median 97.50% Sample 

D 1298.0000 139.9000 1043.0000 1291.0000 1589.0000 29991 

sig.obs 1.3320 0.0720 1.1960 1.3300 1.4770 29991 

Genotype level parameters     

sig.Amax 6.8850 0.9791 5.1710 6.8030 9.0210 29991 

sig.Rd 1.9010 0.5556 0.9148 1.8680 3.0850 29991 

sig.alpha 0.0124 0.0029 0.0073 0.0122 0.0186 29991 

sig.theta 0.0975 0.0560 0.0060 0.0980 0.2092 29991 

mu.Amax[1] 27.1600 2.4650 22.2700 27.1200 32.1100 29991 

mu.Amax[2] 27.7500 2.8380 22.3600 27.6500 33.6200 29991 

mu.Amax[3] 25.6600 2.5000 20.5300 25.7300 30.4100 29991 

mu.Amax[4] 30.3600 3.1100 24.7600 30.2000 36.7100 29991 

mu.Amax[5] 24.0400 2.6220 18.7700 24.0800 28.9900 29991 

mu.Amax[6] 23.9100 3.3590 16.8200 24.1600 29.8700 29991 

mu.Amax[7] 30.5400 2.9870 25.1200 30.4500 36.6100 29991 

mu.Rd[1] 2.7090 0.8454 1.1170 2.6800 4.4420 29991 

mu.Rd[2] 4.0500 1.3930 1.9920 3.8040 7.3360 29991 

mu.Rd[3] 2.5850 0.8913 0.8731 2.5750 4.3860 29991 

mu.Rd[4] 2.9850 0.9799 1.2090 2.9240 5.1120 29991 

mu.Rd[5] 3.2890 0.8972 1.7430 3.2110 5.2550 29991 

mu.Rd[6] 2.6350 0.9423 0.7572 2.6340 4.5180 29991 
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Table A2 Continued      

Node  Mean  SD 2.50% Median 97.50% Sample 

mu.Rd[7] 2.5520 0.8608 0.9190 2.5360 4.2840 29991 

mu.alpha[1] 0.0487 0.0060 0.0372 0.0485 0.0609 29991 

mu.alpha[2] 0.0467 0.0073 0.0327 0.0466 0.0620 29991 

mu.alpha[3] 0.0582 0.0096 0.0428 0.0571 0.0792 29991 

mu.alpha[4] 0.0508 0.0065 0.0389 0.0504 0.0648 29991 

mu.alpha[5] 0.0485 0.0066 0.0363 0.0482 0.0624 29991 

mu.alpha[6] 0.0503 0.0076 0.0365 0.0497 0.0668 29991 

mu.alpha[7] 0.0456 0.0057 0.0342 0.0457 0.0569 29991 

mu.theta[1] 0.7058 0.0763 0.5481 0.7094 0.8465 29991 

mu.theta[2] 0.7927 0.0916 0.6081 0.7938 0.9533 29991 

mu.theta[3] 0.6675 0.0782 0.5181 0.6709 0.8111 29991 

mu.theta[4] 0.6961 0.0782 0.5338 0.7006 0.8372 29991 

mu.theta[5] 0.7249 0.0801 0.5567 0.7283 0.8748 29991 

mu.theta[6] 0.7033 0.0848 0.5318 0.7064 0.8645 29991 

mu.theta[7] 0.7073 0.0771 0.5462 0.7119 0.8460 29991 

Plant level parameters      

Amax[1] 27.9900 2.4760 23.1900 27.9800 32.8600 29991 

Amax[2] 29.7900 1.8870 26.1700 29.7700 33.6400 29991 

Amax[3] 20.1800 1.3640 17.7000 20.1200 23.0200 29991 

Amax[4] 34.7300 2.3830 30.2300 34.6500 39.6100 29991 

Amax[5] 31.5600 1.6380 28.5200 31.4700 34.9800 29991 
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Table A2 Continued      

Node  Mean  SD 2.50% Median 97.50% Sample 

Amax[8] 20.4700 2.3840 15.9900 20.4200 25.3200 29991 

Amax[9] 33.2400 2.6680 28.2700 33.1800 38.6500 29991 

Amax[10] 29.7400 2.7110 25.1100 29.5100 35.5000 29991 

Amax[11] 26.8600 2.5670 22.0700 26.7800 32.1000 29991 

Amax[12] 30.2400 2.2090 26.0800 30.1700 34.7000 29991 

Amax[13] 18.2200 1.4460 15.5500 18.1600 21.1600 29991 

Amax[14] 26.7400 1.3520 24.2500 26.6800 29.5700 29991 

Amax[15] 26.8400 1.6630 23.7200 26.7900 30.2300 29991 

Amax[16] 33.2800 1.2430 30.9700 33.2300 35.8800 29991 

Amax[17] 13.6300 2.2130 9.5430 13.5500 18.1500 29991 

Amax[18] 24.0800 2.2030 19.9400 24.0300 28.5300 29991 

Amax[19] 29.6800 1.6880 26.5300 29.6300 33.1400 29991 

Amax[20] 37.2600 2.8250 31.9100 37.1900 42.9300 29991 

Amax[21] 44.2800 2.0430 40.6300 44.1700 48.6000 29991 

Amax[22] 28.0400 3.3600 21.8600 27.9600 34.7600 29991 

Amax[23] 25.4300 1.9280 21.8000 25.3700 29.3700 29991 

Amax[24] 26.5900 1.8170 23.1700 26.5200 30.3000 29991 

Amax[25] 20.3400 1.4330 17.7000 20.2800 23.2900 29991 

Amax[26] 20.0500 2.1090 16.1400 20.0000 24.3700 29991 

Amax[27] 29.9500 1.9340 26.3300 29.8900 33.9200 29991 

Amax[28] 16.0300 1.4530 13.3000 15.9800 18.9600 29991 

Amax[29] 18.4100 2.6670 13.5600 18.2800 23.9600 29991 
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Table A2 Continued      

Node  Mean  SD 2.50% Median 97.50% Sample 

Amax[30] 22.4600 1.5470 19.5600 22.4200 25.5800 29991 

Amax[31] 20.9400 1.3990 18.4300 20.8600 23.8700 29991 

Amax[32] 18.5700 1.5650 15.5900 18.5400 21.7100 29991 

Amax[33] 29.1800 2.6930 24.3700 29.0100 34.9800 29991 

Amax[34] 29.9400 2.3730 25.4700 29.9000 34.6900 29991 

Amax[35] 30.9900 2.1550 27.1800 30.8600 35.6000 29991 

Amax[36] 40.1600 2.8290 34.8600 40.0800 45.9600 29991 

Amax[37] 41.7600 2.0880 38.0000 41.6200 46.2300 29991 

Amax[38] 24.0000 2.4220 20.0300 23.8400 28.8200 29991 

Rd[1] 4.7520 1.7730 1.5440 4.6810 8.4030 29991 

Rd[2] 2.6280 1.0980 0.5787 2.5950 4.8540 29991 

Rd[3] 1.5910 0.9373 0.1241 1.5040 3.6500 29991 

Rd[4] 2.7870 1.4340 0.3551 2.6760 5.8660 29991 

Rd[5] 0.7884 0.5749 0.0322 0.6795 2.1330 29991 

Rd[6] 2.5440 1.2010 0.4029 2.4710 5.0530 29991 

Rd[7] 4.3180 1.7510 1.1460 4.2170 7.9920 29991 

Rd[8] 5.2730 1.9910 1.7320 5.1510 9.4590 29991 

Rd[9] 4.1070 1.7330 0.9729 4.0040 7.7430 29991 

Rd[10] 4.8970 1.7840 1.7220 4.7830 8.6470 29991 

Rd[11] 5.6060 1.8920 2.2110 5.5070 9.5770 29991 

Rd[12] 3.2980 1.6420 0.4796 3.1720 6.8030 29991 

Rd[13] 2.4090 1.1340 0.3592 2.3550 4.7580 29991 
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Table A2 Continued      

Node  Mean  SD 2.50% Median 97.50% Sample 

Rd[14] 0.9011 0.6199 0.0454 0.8000 2.3240 29991 

Rd[15] 2.1840 1.1190 0.2663 2.1110 4.5540 29991 

Rd[16] 0.1807 0.1740 0.0044 0.1294 0.6400 29991 

Rd[17] 4.9470 1.9410 1.3650 4.8820 8.8910 29991 

Rd[18] 4.2590 1.8060 1.0230 4.1700 8.0120 29991 

Rd[19] 1.9400 1.0340 0.2035 1.8660 4.1330 29991 

Rd[20] 3.1930 1.5390 0.5173 3.0930 6.4810 29991 

Rd[21] 0.2622 0.2469 0.0067 0.1890 0.9040 29991 

Rd[22] 5.7280 2.3690 1.6060 5.5420 10.8300 29991 

Rd[23] 3.4110 1.5200 0.6510 3.3300 6.6240 29991 

Rd[24] 2.4620 1.0980 0.4371 2.4290 4.6890 29991 

Rd[25] 2.1710 1.0670 0.2889 2.1290 4.4050 29991 

Rd[26] 5.2060 1.7920 2.0020 5.1180 8.9980 29991 

Rd[27] 2.6290 1.1100 0.5602 2.5900 4.8990 29991 

Rd[28] 2.9010 1.1260 0.7601 2.8770 5.1790 29991 

Rd[29] 5.8830 2.3450 1.8520 5.6860 10.9000 29991 

Rd[30] 2.3540 1.1030 0.3640 2.3020 4.6580 29991 

Rd[31] 1.3400 0.8810 0.0718 1.2160 3.3200 29991 

Rd[32] 2.7640 1.1450 0.6268 2.7320 5.1030 29991 

Rd[33] 2.1610 1.0660 0.3167 2.1000 4.4190 29991 

Rd[34] 3.7720 1.6310 0.8632 3.6810 7.1850 29991 

Rd[35] 1.5870 0.9447 0.1267 1.4910 3.6700 29991 
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Table A2 Continued      

Node  Mean  SD 2.50% Median 97.50% Sample 

Rd[36] 2.8200 1.4450 0.3831 2.7060 5.9140 29991 

Rd[37] 0.2415 0.2293 0.0063 0.1738 0.8449 29991 

Rd[38] 2.7900 1.1860 0.6481 2.7260 5.2620 29991 

alpha[1] 0.0436 0.0088 0.0289 0.0429 0.0629 29991 

alpha[2] 0.0512 0.0079 0.0376 0.0505 0.0684 29991 

alpha[3] 0.0553 0.0098 0.0385 0.0544 0.0767 29991 

alpha[4] 0.0483 0.0076 0.0357 0.0476 0.0650 29991 

alpha[5] 0.0554 0.0069 0.0436 0.0548 0.0707 29991 

alpha[6] 0.0347 0.0096 0.0198 0.0334 0.0569 29991 

alpha[7] 0.0519 0.0094 0.0368 0.0508 0.0729 29991 

alpha[8] 0.0377 0.0115 0.0197 0.0363 0.0636 29991 

alpha[9] 0.0478 0.0088 0.0337 0.0468 0.0676 29991 

alpha[10] 0.0433 0.0090 0.0301 0.0418 0.0644 29991 

alpha[11] 0.0437 0.0095 0.0285 0.0424 0.0653 29991 

alpha[12] 0.0559 0.0107 0.0382 0.0549 0.0796 29991 

alpha[13] 0.0596 0.0126 0.0376 0.0586 0.0867 29991 

alpha[14] 0.0632 0.0092 0.0474 0.0624 0.0834 29991 

alpha[15] 0.0589 0.0105 0.0415 0.0579 0.0823 29991 

alpha[16] 0.0869 0.0104 0.0688 0.0860 0.1099 29991 

alpha[17] 0.0523 0.0153 0.0244 0.0519 0.0833 29991 

alpha[18] 0.0451 0.0106 0.0275 0.0442 0.0681 29991 

alpha[19] 0.0550 0.0083 0.0411 0.0542 0.0733 29991 
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Table A2 Continued      

Node  Mean  SD 2.50% Median 97.50% Sample 

alpha[20] 0.0514 0.0079 0.0380 0.0506 0.0689 29991 

alpha[21] 0.0677 0.0066 0.0563 0.0672 0.0818 29991 

alpha[22] 0.0378 0.0096 0.0233 0.0365 0.0595 29991 

alpha[23] 0.0495 0.0094 0.0335 0.0486 0.0700 29991 

alpha[24] 0.0548 0.0090 0.0394 0.0541 0.0745 29991 

alpha[25] 0.0576 0.0103 0.0399 0.0566 0.0805 29991 

alpha[26] 0.0461 0.0103 0.0286 0.0453 0.0684 29991 

alpha[27] 0.0502 0.0080 0.0365 0.0495 0.0679 29991 

alpha[28] 0.0457 0.0109 0.0273 0.0448 0.0695 29991 

alpha[29] 0.0320 0.0113 0.0149 0.0304 0.0578 29991 

alpha[30] 0.0544 0.0100 0.0375 0.0536 0.0763 29991 

alpha[31] 0.0520 0.0097 0.0358 0.0511 0.0736 29991 

alpha[32] 0.0459 0.0108 0.0274 0.0451 0.0693 29991 

alpha[33] 0.0300 0.0055 0.0216 0.0293 0.0427 29991 

alpha[34] 0.0441 0.0081 0.0305 0.0433 0.0618 29991 

alpha[35] 0.0447 0.0070 0.0333 0.0439 0.0602 29991 

alpha[36] 0.0454 0.0065 0.0348 0.0447 0.0601 29991 

alpha[37] 0.0600 0.0058 0.0500 0.0596 0.0724 29991 

alpha[38] 0.0343 0.0092 0.0216 0.0329 0.0541 29991 

theta[1] 0.7563 0.1173 0.5125 0.7607 0.9608 29991 

theta[2] 0.7207 0.1105 0.4761 0.7296 0.9125 29991 

theta[3] 0.6891 0.1169 0.4274 0.6996 0.8847 29991 
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Table A2 Continued      

Node  Mean  SD 2.50% Median 97.50% Sample 

theta[4] 0.6941 0.1110 0.4441 0.7051 0.8798 29991 

theta[5] 0.7057 0.1095 0.4628 0.7154 0.8926 29991 

theta[6] 0.6422 0.1362 0.3177 0.6611 0.8580 29991 

theta[7] 0.8545 0.0913 0.6373 0.8725 0.9789 29991 

theta[8] 0.7466 0.1389 0.4264 0.7648 0.9559 29991 

theta[9] 0.8087 0.1031 0.5672 0.8244 0.9583 29991 

theta[10] 0.8978 0.0895 0.6667 0.9239 0.9960 29991 

theta[11] 0.8165 0.1115 0.5514 0.8341 0.9748 29991 

theta[12] 0.6806 0.1183 0.4358 0.6846 0.8980 29991 

theta[13] 0.6611 0.1209 0.4023 0.6670 0.8806 29991 

theta[14] 0.6348 0.1181 0.3744 0.6445 0.8369 29991 

theta[15] 0.6397 0.1196 0.3715 0.6486 0.8483 29991 

theta[16] 0.6279 0.1111 0.3796 0.6376 0.8152 29991 

theta[17] 0.6441 0.1284 0.3618 0.6521 0.8722 29991 

theta[18] 0.6582 0.1229 0.3840 0.6693 0.8669 29991 

theta[19] 0.6531 0.1158 0.3945 0.6643 0.8461 29991 

theta[20] 0.7030 0.1115 0.4684 0.7098 0.9003 29991 

theta[21] 0.6416 0.1115 0.3857 0.6534 0.8216 29991 

theta[22] 0.8019 0.1469 0.5181 0.8074 0.9961 29991 

theta[23] 0.7189 0.1155 0.4568 0.7312 0.9082 29991 

theta[24] 0.7502 0.1113 0.5042 0.7599 0.9345 29991 

theta[25] 0.7440 0.1120 0.4963 0.7538 0.9326 29991 
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Table A2 Continued      

Node  Mean  SD 2.50% Median 97.50% Sample 

theta[26] 0.7623 0.1221 0.4971 0.7713 0.9686 29991 

theta[27] 0.7194 0.1125 0.4654 0.7318 0.9016 29991 

theta[28] 0.7006 0.1276 0.4097 0.7150 0.9086 29991 

theta[29] 0.6843 0.1374 0.3665 0.7009 0.9065 29991 

theta[30] 0.6935 0.1181 0.4363 0.7035 0.8948 29991 

theta[31] 0.6720 0.1255 0.3918 0.6832 0.8816 29991 

theta[32] 0.7186 0.1303 0.4456 0.7239 0.9559 29991 

theta[33] 0.6733 0.1272 0.3821 0.6857 0.8891 29991 

theta[34] 0.7040 0.1139 0.4574 0.7124 0.8999 29991 

theta[35] 0.6265 0.1280 0.3256 0.6443 0.8284 29991 

theta[36] 0.7087 0.1056 0.4804 0.7172 0.8891 29991 

theta[37] 0.6764 0.1088 0.4309 0.6872 0.8563 29991 

theta[38] 0.8446 0.1425 0.5496 0.8843 0.9986 29991 

 

 

Table A3. Summary statistics for plant-level and genotype-level parameters in greenhouse 
including Amax (maximum rate of photosynthesis), Rd (mitochondrial respiration), ⍺ (apparent 
quantum efficiency of photosynthesis), and θ (curvature shape parameter). [1] = 310588, [2] = 
310723, [3] = 311644, [4] = 311677, [5] = 311795, [6] = Nagina 22, [7] = Zhe733. D is the sum 
of the squared deviation and SD is the standard deviation of modeled observations.  
 

Node Mean SD 2.50% Median 97.50% Sample 

D 41.75 9.596 26.83 40.49 64.21 29991 

sig.obs 0.49 0.056 0.40 0.49 0.62 29991 

Genotype-level parameters    
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Table A3 Continued      

Node  Mean  SD 2.50% Median 97.50% Sample 

sig.Amax 4.07 1.257 2.32 3.83 7.28 29991 

sig.Rd 0.51 0.396 0.02 0.43 1.48 29991 

sig.alpha 0.01 0.007 0.00 0.01 0.03 29991 

sig.theta 0.24 0.106 0.07 0.22 0.49 29991 

mu.Amax[1] 14.83 1.825 11.20 14.80 18.57 29991 

mu.Amax[2] 15.00 1.976 11.08 14.96 19.05 29991 

mu.Amax[3] 14.62 1.986 10.61 14.63 18.60 29991 

mu.Rd[1] 1.91 0.522 0.92 1.90 2.97 29991 

mu.Rd[2] 2.23 0.668 1.03 2.19 3.71 29991 

mu.Rd[3] 2.58 0.658 1.48 2.52 4.06 29991 

mu.alpha[1] 0.05 0.010 0.03 0.05 0.07 29991 

mu.alpha[2] 0.07 0.016 0.04 0.06 0.11 29991 

mu.alpha[3] 0.05 0.012 0.04 0.05 0.08 29991 

mu.theta[1] 0.61 0.143 0.30 0.62 0.86 29991 

mu.theta[2] 0.56 0.174 0.18 0.57 0.86 29991 

mu.theta[3] 0.73 0.147 0.40 0.74 0.97 29991 

Plant-level parameters     

node mean sd error 0.03 median start 

Amax[1] 12.59 0.827 10.92 12.61 14.15 29991 
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Table A3 Continued      

Node  Mean  SD 2.50% Median 97.50% Sample 

Amax[4] 13.03 0.778 11.55 13.02 14.60 29991 

Amax[5] 17.19 1.045 15.25 17.15 19.32 29991 

Amax[6] 15.00 0.905 13.30 14.98 16.82 29991 

Amax[7] 13.54 0.863 11.89 13.52 15.28 29991 

Amax[8] 18.55 1.001 16.69 18.51 20.60 29991 

Amax[9] 12.67 0.869 11.23 12.58 14.66 29991 

Amax[10] 11.85 1.266 9.91 11.67 14.75 29991 

Rd[1] 1.66 0.611 0.40 1.67 2.84 29991 

Rd[2] 1.80 0.590 0.65 1.79 2.99 29991 

Rd[3] 2.05 0.536 1.07 2.03 3.19 29991 

Rd[4] 1.93 0.574 0.86 1.90 3.14 29991 

Rd[5] 2.34 0.708 1.11 2.28 3.91 29991 

Rd[6] 2.25 0.699 0.99 2.20 3.78 29991 

Rd[7] 2.10 0.702 0.79 2.07 3.61 29991 

Rd[8] 2.29 0.653 1.08 2.27 3.67 29991 

Rd[9] 2.61 0.647 1.51 2.55 4.06 29991 

Rd[10] 3.05 0.886 1.68 2.92 5.12 29991 

alpha[1] 0.04 0.010 0.02 0.04 0.06 29991 

alpha[2] 0.06 0.012 0.04 0.06 0.09 29991 
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Table A3 Continued      

Node  Mean  SD 2.50% Median 97.50% Sample 

alpha[5] 0.07 0.015 0.04 0.06 0.10 29991 

alpha[6] 0.07 0.016 0.05 0.07 0.11 29991 

alpha[7] 0.07 0.017 0.05 0.07 0.11 29991 

alpha[8] 0.06 0.011 0.05 0.06 0.09 29991 

alpha[9] 0.05 0.012 0.04 0.05 0.08 29991 

alpha[10] 0.04 0.011 0.03 0.04 0.07 29991 

theta[1] 0.35 0.197 0.02 0.35 0.73 29991 

theta[2] 0.86 0.112 0.56 0.89 0.99 29991 

theta[3] 0.58 0.170 0.19 0.61 0.85 29991 

theta[4] 0.58 0.172 0.18 0.60 0.85 29991 

theta[5] 0.55 0.181 0.14 0.58 0.84 29991 

theta[6] 0.50 0.184 0.10 0.52 0.80 29991 

theta[7] 0.51 0.185 0.11 0.53 0.82 29991 

theta[8] 0.62 0.146 0.27 0.64 0.84 29991 

theta[9] 0.88 0.105 0.60 0.91 0.99 29991 

theta[10] 0.89 0.140 0.48 0.94 1.00 29991 
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CONCLUSION 

 Anthropogenic greenhouse gas emissions are increasing in concentration in the 

atmosphere, warming the climate and resulting in altered weather patterns across the globe. 

Data-driven solutions are needed to address the climatic threats to agriculture and global food 

security. In this research, we investigate current and develop new data analytics tools to support 

sustainable agriculture.  

 The focus of Chapter 1 was focused on developing a data analytics method to evaluate 

greenhouse gas emission disclosure and goal-setting from food and beverage companies. 

Agriculture and food production accounts for roughly a quarter of global emissions, and large 

companies have the influence and responsibility to reduce their overall emissions. We assessed 

the emission disclosure and climate goals of 100 companies and found that there has been an 

increase in recent years in companies disclosing their emissions and setting climate goals, but 

many of the goals lack the boldness required to significantly reduce global emissions enough to 

keep climate warming well below 2 °C. Our results highlight an urgent need to begin and 

continue to set truly ambitious, science-aligned climate goals.  

 The changing climate will increase drought concerns in agricultural production regions 

around the world, so in Chapter 2, we developed and tested a novel two-parameter mechanistic 

model to phenotype rice genotypes for drought sensitivity. Our results showed that there was a 

good agreement between the model predictions and the observed data. We used the PLA50 

parameter to classify eight rice genotypes along a gradient of drought sensitivity, and our results 

were supported by the findings by others as well. This model, and the PLA50 parameter in 

particular, may provide a valuable tool to improve prediction of yield under environments of 

increased stress in future crop models.  
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 In the final chapter, we dove deeper into plant phenotyping, and the current data analytics 

method for phenotyping, and compared two methods of generating light response curves on rice 

plants. The photosynthesis light response curve is a useful tool to phenotype plant photosynthesis 

capacity under a range of light conditions, and it can be used to understand plant plasticity and 

gene x environment interactions within a plant. We found that growing conditions significantly 

affect maximum photosynthesis, and that field environments, or pots in full-sun, would provide 

the most accurate interpretation of the plant’s characteristics in real-life situations. Plants grown 

in controlled, lower-light environments should not be used to inform ideas about plants grown 

under full-sun environments. Plant plasticity means that phenotyping needs to occur in a range of 

environmental conditions, and care should be taken to ensure that the environment and 

phenotyping methodology are appropriate for the conclusions drawn about the plant. 

 The world’s climate is rapidly changing, and there must be solutions to address the rising 

concerns that are innovative and based in science. This research aimed to provide science-based 

and data-derived tools to drive solutions towards slowing climate change and adapting to an 

uncertain future.  
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APPENDIX 2 

                                           
 J. William Fulbright College of Arts and Sciences 

                                                    Department of Biological Sciences 

  

  

  

Chapter 1, “Evaluating greenhouse gas emissions and climate mitigation goals of the global food 
and beverage sector” of Megan Reavis’s dissertation is accepted for publication in the journal 
Frontiers in Sustainable Food Systems in 2021 with co-authors, Jenny Ahlen, Joe Rudek, and 
Kusum Naithani. 
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