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Abstract 

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death in the 

world. Radiofrequency ablation (RFA) is an effective method for treating tumors less than 5 cm. 

However, manually placing the RFA needle at the site of the tumor is challenging due to the 

complicated respiratory induced motion of the liver. This paper presents the design, fabrication, 

and benchtop characterization of a patient mounted, respiratory compensated robotic needle 

insertion platform to perform percutaneous needle interventions. The robotic platform consists of 

a 4-DoF dual-stage cartesian platform used to control the pose of a 1-DoF needle insertion module. 

The active needle insertion module consists of a 3D printed flexible fluidic actuator capable of 

providing a step-like, grasp-insert-release actuation that mimics the manual insertion procedure. 

Force characterization of the needle insertion module indicates that the device is capable of 

producing 22.6 ± 0.40 N before the needle slips between the grippers. Static phantom targeting 

experiments indicate a positional error of 1.14 ± 0.30 mm and orientational error of 0.99° ± 0.36°. 

Static ex-vivo porcine liver targeting experiments indicate a positional error of 1.22 ± 0.31 mm 

and orientational error of 1.16° ± 0.44°. Dynamic targeting experiments with the proposed active 

motion compensation in dynamic phantom and ex-vivo porcine liver show 66.3% and 69.6% 

positional accuracy improvement, respectively. Future work will continue to develop this platform 

with the long-term goal of applying the system to RFA for HCC. 

  



Acknowledgements 

Firstly, I would like to thank my graduate supervisor, Dr. Yue Chen, for his invaluable 

advice, continuous support, and patience during my graduate study. His dedication and plentiful 

experience have encouraged me in all aspects of my academic research and daily life. I would also 

like to thank Dr. Uche Wejinya and Dr. Han Hu for serving as members of my thesis committee 

and for their mentorship.  

In addition to my advisory committee, I would like to thank all the members, past and 

present, of the Medical Robotics Lab for their kind help and support that have made my graduate 

study and life here at the UofA a wonderful time. It has been a pleasure getting to know and 

working with each and every one of you. 

 To all my friends here in the US and back home in Belize, thank you for always being a 

major source of support and motivation. The necessary distractions you provided from my research 

have made the past few years memorable. I am grateful to you for always being there for me. 

Finally, I would like to express my deepest gratitude to my family for their continuous and 

unparalleled love and support. To my sister Mya, thank you for always being there for me. To my 

parents, Pamela and Yasser, without your tremendous understanding and encouragement, it would 

be impossible for me to complete my studies. 

  



Table of Contents 

 

1. Introduction .........................................................................................................................1 

2. Methods ...............................................................................................................................4 

2.1. Mechanical Design Overview .......................................................................................4 

2.2. 4-DoF Cartesian Stages .................................................................................................5 

2.3. Forward and inverse Kinematics ...................................................................................6 

2.4. Active Needle Insertion Module ....................................................................................9 

2.5. Active Motion Compensation Protocol ........................................................................ 11 

2.6. Robotic RFA Clinical Workflow ................................................................................. 12 

2.7. Force Modeling of the Needle Insertion Module ......................................................... 14 

3. Experiments and Results .................................................................................................... 16 

3.1. Accuracy analysis of the dual cartesian stages ............................................................. 16 

3.2. Accuracy and Repeatability of needle insertion module ............................................... 18 

3.3. Force characterization of needle insertion module ....................................................... 19 

3.4. Robot Targeting Test: Static phantom and ex-vivo porcine liver trial .......................... 21 

3.5. Robot targeting: Dynamic phantom trial ...................................................................... 24 

3.6. Robot targeting: Dynamic ex-vivo porcine liver trial ................................................... 26 

4. Discussion and Conclusion................................................................................................. 28 

5. References ......................................................................................................................... 31 

 

 



1 

1. Introduction 

 

Primary liver cancer, also known as hepatocellular carcinoma (HCC), is the third most 

common cause of cancer-related death in the world with over 700,000 deaths reported annually 

[1]. In the United States, an estimated 42,000 adults are diagnosed with liver cancer each year, and 

the number of cases is expected to continue to rise due to the increasing number of chronic liver 

diseases caused by alcohol, nonalcoholic fatty liver disease, hepatitis B, and hepatitis C infection. 

The five-year survival rate for patients is as low as 4% [2]. As a result, there is a considerable 

economic loss of upwards of $1 billion per year in the United States [3].  

HCC can be treated with a variety of methods. Medical therapy sorafenib provides no 

reduction to the mortality rate as it only prolongs survival for a few months [4]. Chemotherapy 

fails to provide effective treatment to control tumor growth, primarily due to HCC’s resistance to 

radiation [5]. Liver transplantation and partial surgical resection have both been shown to be 

effective methods of treatment, however, they both require strict criteria for candidate selection, 

thus preventing the majority of diagnosed patients from receiving treatment [6, 7]. Stereotactic 

radiosurgery (SRS) is a feasible approach for patients who are not eligible for liver transplantation 

or surgical resection [8]; however, randomized clinical trials are still needed to justify its 

effectiveness. Thermal therapy, such as radiofrequency ablation (RFA), has been regarded as an 

effective method to control tumor growth with an acceptable morbidity rate [9]. The main 

advantages of thermal therapy include: 1) minimally invasive with a high safety profile, 2) 

capability to enable the focal tumor control, 3) favorable long-term survival rate, and 4) it can be 

combined with other treatment approaches [9]. 

Despite the promising benefits provided by RFA, it does present some clinical limitations, 

namely, the precise placement of the RFA needle at the tumor site within the dynamically moving 
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liver. This has been a long-standing challenge, even with intra-procedural image guidance. Needle 

targeting error is mainly caused by the respiration-induced movement of the liver, which can be as 

large as 5.5 cm in the superior-inferior direction [10, 11]. In the manual clinical procedure, errors 

as much as 7.4 mm in the longitudinal needle-axis direction and 3.6 mm in the lateral direction 

have been reported [12]. To address this issue, breath-holding is typically required during the 

placement of the needle to mitigate the motion. However, it can be difficult for patients to hold 

their breath due to compromised lung capacity and the significant pain associated with the 

radiofrequency ablation procedure [13]. Even with the advent of modern ventilators to induce 

active breath control, it is still often more suitable to use free breathing techniques so as to reduce 

cost and psychological burden to the patient [14, 15]. Many research groups have proposed robotic 

platforms to assist in needle insertion during percutaneous interventions [16, 17]. These designs 

can be classified into two categories: 1) the robot only provides needle guidance and 2) the robot 

has active needle insertion capability. Examples of the first group include the commercially 

available CT-guided robotic positioning system (ROBIO™ EX, Perfint Healthcare Pvt. Ltd, 

Florence, OR, USA [18]). Song et al. proposed an MRI compatible double-ring mechanism for 

MRI-guided liver interventions [19]. A similar platform was reported by Song and Hata for image 

guided cryotherapy of renal cancer [20]. Hata et al. developed a remote-center-of-motion (RCM) 

mechanism for MRI-guided microwave therapy [21]. Franco et al. created a 4-DoF robot for MRI-

guided laser ablation [22]. A serial robot arm (DLR/KUKA Light Weight Robot III) was used by 

Tovar-Arriaga et al. to create an FD-CT-guided navigation system for needle placement [23]. 

Several MRI compatible robotic prototypes have been created by Cleary et al. for percutaneous 

shoulder arthrography [24, 25] and for treatment of lower back pain [26]. The second group with 

active needle insertion capabilities is made up of the following. Duan et al. designed a robotic 
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RCM mechanism on top of a 2-DoF linear slide for RFA of large liver tumors [27]. A robot 

developed by Stoianovici known as the AcuBot was also used for percutaneous interventions [28]. 

In addition to these two robots, several autonomous 1-DoF needle insertion robots were developed 

that focus on the tissue-needle mechanics modeling [29-34]. These robots have shown promise; 

however, none address the issue of respiration-induced organ motion as most of the accuracy tests 

were performed in a static phantom or cadaver. Several groups have developed motion prediction 

algorithms or robot-tissue interaction models to compensate for liver motion, such as the weighted-

frequency Fourier linear combiner algorithm [35], iterative learning control method [36], and 

impedance and admittance control approaches [37, 38]. However, these methods rely on 

complicated modeling or oversimplified assumptions, thus none have been used in clinical trials 

to the best of our knowledge.  

In this work, we propose the design and evaluation of a novel patient-mounted 

percutaneous needle insertion robot that mimics the current clinical practice by inserting the RFA 

needle in accordance with the patient’s respiratory motion. This robot is intended to enable 

accurate ablation needle placement under CT-guidance. Our work is innovative in terms of the 1) 

active motion compensation protocol, 2) stepwise needle insertion to ensure safety, 3) precise 

needle position and orientation deployment. These innovations should make our robot safer and 

more convenient to perform CT-guided RFA for HCC treatment. Our contributions include: (1) 

the design and modeling of a minimally invasive needle guidance and insertion robot, (2) force 

modeling of the needle insertion module, and (3) extensive robot validations in static and dynamic 

phantom and ex-vivo tissue.  
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2. Methods 

 

2.1. Mechanical Design Overview 

 

The robot consists of three major subsystems: (1) a lower stage with a motorized cartesian 

carriage, (2) an identical upper stage, and (3) an active needle insertion module that connects both 

stages together. The upper and lower stages have carriages that are capable of being translated in 

both x- and y-directions to provide 2-DoF translation. The carriages both have spherical bearings 

set into them that support the needle insertion module. By changing the relative location between 

these bearings, 2-DoF orientation of the needle insertion module can be controlled. The needle 

insertion module provides 1-DoF bidirectional translation of the ablation needle using a custom 

3D-printed flexible fluidic actuator. The entire robot is then housed within a 3D-printed Z-frame 

for the purposes of coordinate frame registration within the CT-scanner [39]. The robot is designed 

to be mounted directly to the patient to passively compensate for respiratory motion by allowing 

the robot to move up and down with the patient during periods of respiration. The Z-frame is 

designed with slots for the placement of adjustable straps to fix the robot according to patient 

comfort, as seen in the model of the robot in Fig. 1. The adjustable straps allow the robot to be 

positioned in virtually any position the clinicians deem necessary to reach the target based on 

preoperative planning.  The overall dimensions of the robot are 216 mm × 210 mm × 130 mm with 

a total weight of 2.17 kg, ensuring a compact design such that the patient can comfortably fit within 

the CT bore with the robot. Table 1 presents the main robot properties. Note that while this 

prototype is sufficiently lightweight (less than 3 kg) to ensure patient comfort [40], it is only a 

proof-of-concept to evaluate the proposed motion compensation protocol. The weight can be 

further reduced by using lightweight 3D printed pneumatic motors [41] and replacing the metal 

components with carbon fiber materials. 
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Fig. 1. CAD model of the liver ablation robot mounted on the patient within CT scanner. 

 

Table 1 Robot Properties Based on Design and Workspace Analysis 

Robot Dimensions 216 mm × 210 mm x 130 mm 

Active DoF 5 

x-y Displacement 75 mm x 70 mm 

Insertion Depth Limited by Needle Length 

Orientation about x and y axes ± 15◦  

Weight 2.17 kg 

 

2.2. 4-DoF Cartesian Stages 

 

The upper and lower motorized cartesian stages are based on a custom-designed CoreXY 

system [42-44], shown in Fig. 2. The system design takes advantage of two statically positioned 

stepper motors and provides a means of translating both axes independently or simultaneously. 

The stationary motors have the added benefit of reducing the number of moving parts, increasing 

the acceleration capabilities of the robot, maintaining a constant center of gravity, and allowing 

for a more compact design to be implemented. 
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The carriages are driven by a timing belt attached to the output shafts of four bipolar NEMA 

11 stepper motors and the acrylic base frame using friction-reducing pulleys. The motor speeds 

are limited to 10 mm/s to avoid high accelerations and loss of steps. While these stepper motors 

are not back drivable under their holding torque, the motion compensation protocol was primarily 

achieved by the 3D-printed needle insertion module to allow for needle movement in the event of 

liver motion. Limit switches are used to set the home position of the carriages. Bearing housings, 

shaft couplers and the carriages themselves are 3D printed using acrylonitrile butadiene styrene 

(ABS). The low-level control of the cartesian stages is done on a microcontroller (ATmega 2560) 

with its supporting circuit. The two stages are fixed parallel to each other and held in place by 

support tabs attached to the fiducial registration Z-frame. 

 

 

Fig. 2. (Left) CoreXY mechanism of one of the cartesian stages, (Right) CAD model showing 

the stages connected in parallel via the Z-frame. 

 

2.3. Forward and inverse Kinematics 

 

Inspired by the similarities in dual cartesian platforms as demonstrated by Li et al. in [26], 

a similar approach to solving the kinematics problems was taken. The coordinate frames, 𝐹𝑢𝑝𝑝𝑒𝑟  

and 𝐹𝑙𝑜𝑤𝑒𝑟, for the upper and lower stages are defined identically as being at the center of the 

spherical bearings in the carriages when both stages are in the homed position as seen in Fig. 3. 
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The positions of the center of the upper and lower carriages are denoted by 𝑂𝑢𝑝𝑝𝑒𝑟 = (𝑥𝑢, 𝑦𝑢 , 𝑧𝑢), 

and 𝑂𝑙𝑜𝑤𝑒𝑟 = (𝑥𝑙, 𝑦𝑙 , 𝑧𝑙) respectively. The x and y positions of the carriages can be written in terms 

of the equations of motion governing the CoreXY mechanism that relate motor rotation ∆𝐴 and 

∆𝐵 to translation, given by 

∆𝑥 = 1/2 (∆𝐴 +  ∆𝐵) (1) 

∆𝑦 = 1/2 (∆𝐴 −  ∆𝐵) (2) 

The forward kinematics of the robot takes the joint space positions [𝑥𝑢, 𝑦𝑢], [ 𝑥𝑙, 𝑦𝑙] along 

with the desired needle insertion depth, 𝑙, and solves for the position of the tip of the needle, in 

addition to the needle axis vector.  The positions of the center of the carriages would then be 

defined as 𝑂𝑢𝑝𝑝𝑒𝑟 = (𝑥𝑢, 𝑦𝑢 , 0) and 𝑂𝑙𝑜𝑤𝑒𝑟 = (𝑥𝑙, 𝑦𝑙 , −𝐻), where 𝐻 is the constant distance 

maintained between the two parallel stages of the cartesian platform. The unit vector,  �̂�, defining 

the axis of the needle could then be given by the normalized vector of the difference between the 

positions of the center of the upper and lower carriages. Using this needle axis vector, we can then 

solve for the position of the of the tip of the needle, 𝑇𝑑𝑒𝑠𝑖𝑟𝑒𝑑 , using the insertion depth. The 

equations defining �̂� and 𝑇𝑑𝑒𝑠𝑖𝑟𝑒𝑑  are   

�̂� =  
𝑂𝑙𝑜𝑤𝑒𝑟 −  𝑂𝑢𝑝𝑝𝑒𝑟

‖𝑂𝑙𝑜𝑤𝑒𝑟 −  𝑂𝑢𝑝𝑝𝑒𝑟‖
 (3) 

𝑇𝑑𝑒𝑠𝑖𝑟𝑒𝑑 =  𝑂𝑙𝑜𝑤𝑒𝑟 − 𝑙�̂� (4) 

The robot workspace was simulated in Matlab across the achievable translations in the x- and y-

directions of the cartesian stages described previously in Table 1. The blue dots in Fig. 3. show the 

workspace of the robot and it is overlaid with an average adult human liver. Comparing the volume 

of the workspace to that of an average adult human liver, the robot can reach 70% of the volume 
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of an average adult human liver when placed directly above it. Note that the 70% value is just a 

comparison of the robot workspace to the total size of the average liver.  

The inverse kinematics of the robot is used to solve for the joint space positions 𝑥𝑢, 𝑦𝑢 , 𝑥𝑙 

and 𝑦𝑙 along with the required needle insertion depth, 𝑙, given the desired needle tip position, 

𝑇𝑑𝑒𝑠𝑖𝑟𝑒𝑑 = (𝑇𝑥 , 𝑇𝑦, 𝑇𝑧), and the needle entry point, 𝑃𝑒𝑛𝑡𝑟𝑦 = (𝑃𝑥 , 𝑃𝑦 , 𝑃𝑧), within the global 

coordinate frame. The needle vector axis can be defined by  

𝑁 =  𝑇𝑑𝑒𝑠𝑖𝑟𝑒𝑑 −  𝑃𝑒𝑛𝑡𝑟𝑦 (5) 

Using 𝑁 =  (𝑁𝑥 , 𝑁𝑦, 𝑁𝑧),  we can then solve for the positions of the center of the carriages needed 

to generate this needle axis vector given by, 

𝑥𝑢 =  𝑇𝑥 −  
𝑇𝑧 + 𝐻

𝑁𝑧
𝑁𝑥  (6) 

𝑦𝑢 =  𝑇𝑦 −  
𝑇𝑧 + 𝐻

𝑁𝑧
𝑁𝑦 (7) 

𝑥𝑙 =  𝑇𝑥 −  
𝑇𝑧

𝑁𝑧
𝑁𝑥  (8) 

𝑦𝑙 =  𝑇𝑦 − 
𝑇𝑧

𝑁𝑧
𝑁𝑦 (9) 

The insertion depth of the needle, 𝑙, is solved for by finding the Euclidean distance between the 

desired entry point and the location of the desired target,  

𝑙 = ‖𝑇𝑑𝑒𝑠𝑖𝑟𝑒𝑑 −  𝑃𝑒𝑛𝑡𝑟𝑦‖ (10) 

In the clinical workflow the point 𝑃𝑒𝑛𝑡𝑟𝑦  will be defined by the clinician based on pre-operative 

imaging. The robot forward and inverse kinematics were implemented in a custom Matlab GUI, 
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whereby  𝑇𝑑𝑒𝑠𝑖𝑟𝑒𝑑  and 𝑃𝑒𝑛𝑡𝑟𝑦  could be input and the coordinates of the upper and lower carriages 

are solved for to generate the appropriate needle vector axis. These joint space positions in addition 

to the needle insertion depth are then communicated to the robot over a serial bus to the low-level 

microcontroller such that the robot can be aligned to the desired location. 

 

 

Fig. 3. Coordinate frame assignment of the patient mounted robot. Forward kinematics indicates 

that the robot workspace (blue point cloud) is able to cover 70% of the liver. 

 

2.4. Active Needle Insertion Module 

 

The active needle insertion module utilizes a modified, more compact design based on an 

MR-compatible needle driver developed by Comber et al. [45]. The modifications made include: 

1) The needle insertion module dimension has been significantly reduced from Φ 8.9 𝑐𝑚 × 33 𝑐𝑚 

to Φ 5.8 𝑐𝑚 × 7 𝑐𝑚 such that the robot can be operated within the CT scanner. This is achieved 

by using only 2 linear bellows, using a single gripper, and eliminating the rotation bellow, and 2) 
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The insertion force was theoretically modeled and experimentally validated in order to guarantee 

that the design could generate the forces necessary to penetrate tissue. The design consists of two 

key components that allow for 1-DoF needle translation: (1) the linear bellow actuator and (2) the 

gripper. The mechanism is also referred to as a flexible fluidic actuator (FFA) since both 

components are actuated using pressurized air. The linear bellow actuator consists of a toroidal 

bellow geometry such that the hollow center can be used to translate the needle through the 

device’s central axis. Under operation, the needle can be grasped using the gripper mechanism, 

which consists of two flat diaphragms that when inflated, expand to grasp the needle. The FFA, 

seen in Fig. 4a, was 3D printed in the material nylon-12 using selective laser sintering (SLS). 

Safety tabs (see Fig. 4b) were added to the design to restrict the linear translation of the mechanism 

to < 2mm. The concept of safety tabs is crucial to ensure safe operation of the device to within 

only one full step of the FFA in the event of a system failure. The FFA is housed within a 3D 

printed housing, as seen in Fig. 4b, that consists of mechanical stop brackets to restrict the linear 

displacement of the FFA to a step size of 1.5 mm. Attached to the housing is an optical encoder 

(US-Digital part no. EM1-1-500-N), and a linear transmissive strip (500 lines per inch) is mounted 

to the safety tab on the FFA. This is done so that the relative displacement between the housing 

and FFA could be measured to determine the insertion or retraction depth of the needle. The FFA 

was controlled using two proportional directional control valves (Festo MPYE-5-M5-010-B) with 

the control signal supplied via a microcontroller (ATmega 2560) and amplifier circuit. 
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Fig. 4. (a) SLS 3D printed flexible fluidic actuator with attached linear transmissive strip, (b) 

CAD model of the flexible fluidic actuator, its housing with mounted linear optical encoder 

 

2.5. Active Motion Compensation Protocol 

 

An active motion compensation protocol is proposed for operating the patient mounted 

robot. In this protocol, the ablation needle will be automatically deployed towards the liver tumor 

during the stationary phase of the respiration cycle. The stepwise “move-pause” insertion protocol 

is inspired by the manual insertion procedure, whereby the clinician typically inserts the needle 

when the liver has the least motion and releases the needle when respiration induced motion is 

significant. The respiratory cycle of the patient will be gated using the GE D690 PET/CT scanner 

which uses the Varian CT Real-Time Position Management system (Varian Medical Systems, Palo 

Alto, CA). The Real-Time Position Management system consists of reflectors attached to an 

external marker placed on the patient’s abdomen [46]. The marker motion reflects the breathing 

pattern of the patient and can be captured by an external camera at a frequency of 30 Hz [47] to 

obtain a surrogate respiratory signal. The system is able to track the real-time position data even 

when the respiratory rate changes suddenly. The needle insertion module must complete a full-

step insertion when the liver has negligible movement in its static phase and release the needle 
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when the liver undergoes significant movement during its dynamic phase. In order to achieve this 

protocol, the insertion sequence is divided into four sequential steps: grasp, insert, release, and 

home.  Fig. 5a shows the finite element method (FEM) simulation of the FFA motion subject to 

the pressure input. Retracting the needle can be achieved by alternating the sequence to power the 

FFA. Note that the operation process must be completed within about 2s to cover just the static 

phase as seen in Fig. 5b. The current prototype of the needle insertion module is capable of 

inserting the needle at a maximum speed of 1.5 mm/s. 

 

 

Fig. 5. (a) Illustration of the sequential step-like grasp-insert-release method of actuation of the 

needle insertion module. The linear bellow will be depressurized to the home position after the 

release step.  (b) static and dynamic phases of an in-vivo porcine liver 

 

2.6. Robotic RFA Clinical Workflow 

 

In the proposed clinical workflow, the patient will be positioned in the GE D690 PET/CT 

scanner and the robot will be fixed to the patient’s abdomen using adjustable straps. An initial CT 

scan will be performed to register the robot to the CT scanner using the point-based registration 

method [44]. A second CT scan will be used to identify the desired target location, which will be 
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used by the radiologist to determine an appropriate needle entry point. The robot will automatically 

align the needle insertion module to the desired target and the needle can then be progressed 

towards the ablation target. During the needle insertion process, the Varian CT Real-Time Position 

Management system will continuously track the patient’s respiratory cycle. According to the 

proposed motion compensation protocol, the needle is only advanced when the liver has the least 

amount of motion (static phase, see Fig. 5b). Once the needle is placed at the target location, a 

confirmation scan will be conducted to verify the needle location, and ablation therapy will then 

be performed. The detailed workflow is shown in Fig. 6. 

 

Fig. 6. The proposed clinical workflow of the robot 
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2.7. Force Modeling of the Needle Insertion Module 

 

In this section, we focus on the force modeling of the FFA to estimate the force the FFA is 

capable of inserting a needle with. According to [48], the axial force of the linear bellows, 𝐹𝐴 , is 

given by, 

𝐹𝐴 = 𝜋(𝑅 + ℎ)2𝑥𝑃 (11) 

 

𝑥 =  
(1 − 𝜌2)(1 − 𝜌4 + 4𝜌2 ln 𝜌)

4(1 − 𝜌2 + 2𝜌 ln 𝜌)(1 − 𝜌2 − 2𝜌 ln 𝜌)
 (12) 

 

𝜌 =  
𝑅 − ℎ

𝑅 + ℎ
 (13) 

 

The parameter 𝑅 defines the mean radius of the bellow, and ℎ is half the wave height of a 

corrugation, as depicted in Fig. 7. In addition to this axial force caused by the linear bellows, the 

force of friction that the gripper is holding the needle with plays a key role in determining the 

needle insertion force and should be considered. From a review of the principles from mechanics 

of materials [49], the deflection of a thin circular plate with clamped outer edges and a free inner 

edge is given by 

𝑦𝑚𝑎𝑥 =  
𝑃𝑎4

64𝐷
 (14) 

 

where 𝑃 is a uniformly distributed pressure over the surface area of the diaphragm, 𝑎 is the radius 

of the diaphragm, and 𝐷 is the flexural rigidity defined in (15) as 

𝐷 =  
𝐸𝑡3

12(1 − 𝜈2)
 (15) 
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where 𝐸 and ν are the material properties Young’s modulus and Poisson’s ratio, respectively, and 

t is the thickness of the diaphragm. Again, from mechanics of materials, we can derive the normal 

force, 𝐹𝑁, acting on the needle due to the deflection of the diaphragms. The relationship between 

the normal force and the displacement at the center of the diaphragm is given by, 

𝑦𝑚𝑎𝑥 =
𝐹𝑁𝑎2

16𝜋𝐷
(16) 

Substituting (14) and (15) into (16) we then have a relationship between the input internal pressure 

of the diaphragm chamber and the normal force generated between the diaphragms and the needle. 

A scaling factor of 2 is included since the normal force is being applied to both sides of the needle. 

This relationship is given by, 

𝐹𝑁 =
𝜋

2
𝑃𝑎2 (17) 

Using this normal force to pressure relationship, we can then estimate the force of friction holding 

the needle in place by multiplying the normal force by the coefficient of friction, 0.35, of the 

material. For an input pressure of 345 kPa, an estimated 24.6 N of friction force will be used to 

clamp onto the needle. This force is considered as more than sufficient for percutaneous needle 

interventions [50-52]. 
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Fig. 7. Parameters used in force estimation and analysis 

3. Experiments and Results 

 

Several experiments were conducted to characterize the performance of the robot: a) free-

space accuracy evaluation of the 4-DoF dual cartesian stages, b) free-space accuracy and 

repeatability of the needle insertion module, c) force characterization of the needle insertion 

module, d) static phantom and static ex-vivo porcine liver tissue targeting, e) dynamic phantom 

targeting, and f) dynamic ex-vivo porcine liver tissue targeting. 

3.1. Accuracy analysis of the dual cartesian stages 

 

To characterize the accuracy of the dual cartesian stages, a free-space analysis was 

conducted. This was done using the Aurora electromagnetic (EM) tracking system (NDI Medical, 

Ontario, Canada) with resolution of 0.5 mm. The two carriages were linked together, allowing the 

central axis between the two carriages to be more easily identified. A 5-DoF EM sensor was used 

to track the position of the central axis between the carriages. Coordinate registration was done to 

be able to track the sensor within the robot reference frame using the point-based registration 

method [53]. The reference frame registration was taken after initially homing both stages of the 
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robot. From there, a desired path was sent to the robot via the Matlab GUI and the real time position 

was tracked. The desired paths consisted of four squares of length 10 mm, 20 mm, 30 mm, and 40 

mm, all created by streamlining the coordinates of the corners of the square to the GUI as seen in 

Fig. 8. The mean error across three experiments for each desired path was measured at the corners 

of the squares in both the x- and y-directions. The mean error in the x-direction is 0.18 ± 0.18 mm 

and the mean error in the y-direction is 0.32 ± 0.23 mm. These free-space experimental results 

were taken as validation for sufficient accuracy of the dual cartesian system to potentially be used 

for precise needle placement operations. 

 

 

Fig. 8. Desired path versus the actual tracked path of the Cartesian stages. The dashed lines 

represent the desired path while the dots show the data collected from the EM tracker 
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3.2. Accuracy and Repeatability of needle insertion module 

 

To characterize the accuracy of the needle insertion module, the EM tracker was again used 

to perform insertion in free space. An EM sensor was attached to the tip of a needle and a custom 

3D printed bracket was used for coordinate registration. The needle used was an 18-gauge needle 

with diamond shaped tip. Eight insertion depths of 15 mm, 30 mm, 45 mm, 60 mm, 75 mm, 90 

mm, 105 mm and 120 mm were sent to the needle insertion module from the GUI for a total of 

three iterations for each depth. The error was considered to be the difference between the measured 

insertion depth and the desired depth. The mean error across all 24 experiments was found to be 

0.64 ± 0.38 mm (see Table 2 for the error results at each insertion depth). Note that the error does 

not accumulate as the needle insertion depth is increased due to the step-wise operation of the 

needle insertion module. This step-wise insertion ensures that the needle insertion error is within 

one full step-size of the FFA (1.5 mm). The repeatability of the needle insertion module was 

quantified by evaluating the Coefficient of Variation (CV) [41, 54]. The CV is expressed as a 

percentage, and the lower the percentage, the better the repeatability is. The results of the needle 

insertion experiment are presented in Table 2. 

Table 2 Needle Insertion Accuracy and Repeatability 

Desired Insertion 

Depth (mm) 

Mean Measured 

Depth (mm) 

|Mean Error| 

(mm) 

STD of the  

Measured Depth 

(mm) 

CV % 

15 15.94 0.94 0.10 0.62 

30 30.49 0.49 0.19 0.61 

45 44.97 0.23 0.25 0.55 

60 60.26 0.84 0.80 1.33 

75 76.12 1.12 0.51 0.67 

90 90.40 0.56 0.49 0.54 

105 105.17 0.56 0.54 0.51 

120 120.16 0.36 0.43 0.36 

Mean  0.64 0.38 0.65 
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3.3. Force characterization of needle insertion module 

 

In addition to the insertion testing accuracy in free-space, the forces generated by the FFA 

were also characterized. The insertion force due to pressurizing the linear bellows was found by 

placing a force sensor (Vernier Go Direct® Force and Acceleration Sensor) with a flat plate adapter 

directly against the FFA as seen in Fig. 9(a). The pressure inside the linear bellows was slowly 

increased from 0 kPa to 110 kPa, corresponding to the maximum force measurable by the force 

sensor. As the pressure was increased, the insertion force was recorded at intervals of 17.5 kPa 

(2.5 psi). A custom 3D printed bracket was designed to attach the safety tabs on the FFA to the 

force sensor. It was configured such that the linear bellows could be pressurized and allow the 

pulling, retraction force of the bellows to be measured as they were depressurized, as seen in Fig. 

9(b). As the pressure was decreased, the corresponding retraction force was recorded for the same 

intervals as previously mentioned. The results of the linear bellows force characterization were 

compared to the predicted forces calculated using (11) - (13) in Section II-C as seen in Fig. 10(a) 

and (b). A mean error of 2.57 ± 0.6 N was found for the insertion force experiment and a mean 

error of 4.04 ± 1.39 N was found for the retraction force experiment. . These errors can be largely 

attributed to manufacturing imperfections in the FFA. 

The linear bellows are capable of producing significantly more force than the gripping 

diaphragms at the same pressure input, therefore we expect the needle to slip between the 

diaphragms at a certain point. To characterize this frictional force, the FFA was set up as seen in 

Fig. 9(a), but rather than having the force sensor pressed up against the FFA, a needle was placed 

between the grippers at 345 kPa and the force sensor then positioned at the tip of the needle. The 

pressure inside the linear bellows was then increased and the force at the tip of the needle was 

monitored. A noticeable peak force was achieved which corresponded to the needle beginning to 
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slip due to the change from static friction to dynamic friction, as seen in Fig. 10(c). Based on the 

calculations in Section II-C a peak force of 24.6 N was expected, while the experimental results 

indicate a mean peak force of 22.6 ± 0.40 N across three trials. This difference of 8.4% may be as 

a result of manufacturing imperfections and environmental conditions affecting the coefficient of 

friction between the two materials. The linear bellows force characterization and the friction force 

analysis both indicate more than sufficient force is achievable to perform percutaneous liver 

interventions, where a peak force of about 6 N was recorded for the percutaneous interventions 

based on previously mentioned research. 

 

Fig. 9. Experimental setup for the linear bellows characterization, (a) characterization of the FFA 

insertion force, (b) characterization of the FFA retraction force 
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Fig. 10. Results of the FFA characterization: (a) insertion force characterization results, (b) 

retraction force characterization results, (c) experimental friction force between the gripper and 

the needle as the pressure input to the linear bellows is increased compared to the theoretical 

peak friction force with the pressure input of 345 kPa to the gripper mechanism. 

 

3.4. Robot Targeting Test: Static phantom and ex-vivo porcine liver trial 

 

A 5% by volume agar gelatin phantom was created to mimic soft liver tissue. The 

experiment was conducted by selecting 24 arbitrary points, grouped into four groups of 6 points, 

within the robot’s workspace and using their xy-location as the desired target. For the first group 

of six points, the desired insertion depth was increased from 15 to 90 mm in 15 mm increments 

across the points and the needle orientation was set to 0°. This was then repeated for the remaining 

three groups however the needle orientation about the x-axis was increased in 5° increments across 

the groups. Using these values as the desired input to the robot GUI, the needle was placed and 

automatically deployed to the phantom via the needle insertion module. The final location of the 

needle was recorded by the EM tracker. Each targeting experiment was conducted three times and 



22 

the mean values were used in quantifying the accuracy of the robot. The positional error was 

defined to be the Euclidean distance between the desired target and the measured location. 

Additionally, the orientational error is defined by the difference between the desired input angle 

and the measured angle. The results for the static phantom experiment show that there is a mean 

positional error of 1.14 ± 0.30 mm and an orientational error of 0.99° ± 0.36°.  

The same points and grouping scheme were used to repeat the experiment in a static ex-

vivo porcine liver except the insertion depth increased from 10 to 60 mm in increments of 10 mm, 

where 60mm was the maximum thickness of the porcine liver sample used. Porcine liver has often 

been used to mimic an environment for testing needle insertion devices in place of human tissue. 

The porcine liver was acquired fresh from a local meat supplier, and prior to testing the liver was 

allowed to come to room temperature. The results show that there is a mean positional error of 

1.22 ± 0.31 mm and an orientational error of 1.16° ± 0.44°. A top view of the static targeting 

experiments can be seen in Fig. 11. There is a slight increase in positional targeting error of the 

needle with respect to the insertion depth in both the static phantom and ex-vivo liver trials. This 

can be seen in Fig. 12 where there is a general increasing trend in the positional error as the 

insertion depth is increased. The targeting error, however, does not show any significant statistical 

relation to the increasing inclination of the needle. 



23 

 

Fig. 11. Top view of the static targeting experiments. The blue circles represent the desired target 

location, the red stars show the measured needle position in the static phantom, and the green 

stars show the measured needle position in the static ex-vivo porcine liver. 

 

 

 

Fig. 12. (a) Static phantom needle targeting error vs. insertion depth (b) Static ex-vivo porcine 

liver needle targeting error vs. insertion depth. In both tests, the needle insertion angle was 

increased from 0° to 15° in increments of 5°. 
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3.5. Robot targeting: Dynamic phantom trial 

 

To validate the robot’s targeting performance under the dynamic conditions of the liver, a 

dynamic motion platform was developed to create a relative displacement between the robot and 

the phantom. The motion platform consists of two stepper motor driven linear rails fixed to one 

another perpendicularly in the horizontal plane as seen in Fig. 13. A two-dimensional dynamic 

phantom was chosen rather than considering three-dimensional motion for two primary reasons. 

Based on our previous research [55], liver motion in the inferior-superior (I-S) and left-right (L-

R) is dominant in comparison to the motion generated in the posterior-anterior (P-A) direction (~ 

1.2 mm). A two-dimensional dynamic motion platform also greatly simplified the robotic motion 

platform, especially during the prototype characterization period. Between every two steps of the  

needle insertion process, the motion platform moves the phantom 10mm in the x-direction and 

5mm in the y-direction to simulate the respiratory induced motion of the liver in the I-S direction 

and L-R direction, respectively. While the phantom is in motion, the needle insertion module 

releases the needle to allow it to move with the phantom freely. Once the platform has returned to 

its original position, the needle insertion module takes another two full insertion steps and the 

process is repeated until the needle has reached its final target. The stepwise “move-pause” 

insertion protocol is inspired by the manual insertion procedure, where the clinician typically 

inserts the needle when the liver has the least motion and releases the needle when respiration 

motion is significant. Twenty-four targets were selected by arbitrarily inserting the 6-DoF EM 

tracking probe (NDI Medical, Ontario, Canada) into the phantom. The location of the target, the 

tip of the EM tracking probe, was then converted into the robot frame and used as an input for the 

GUI. Similar to the static phantom trial, the 24 points were grouped into 4 groups of 6 and the 

desired insertion depth of the needle was user controlled from 15 to 90 mm in 15 mm increments 



25 

while the needle orientation across each group was increased from 0° to 15° in increments of 5°. 

Three insertion trials were conducted for each target and the error for these dynamic targeting 

experiments is defined to be the same as in the static experiments. The results of the dynamic 

targeting experiments in phantom indicate a mean positional error of 1.69 ± 0.66 mm and a mean 

orientational error of 1.66 ± 0.50°. 

 

Fig. 13. Experimental setup of the dynamic phantom experiments. The green arrows indicate the 

directions of motion of the platform that creates the 2-DoF translation of the phantom. The CAD 

model of the robot is overlaid on the image for clarity. 

 

The dynamic targeting experiments were repeated, however, this time no motion 

compensation was considered. The synchronicity between the needle insertion module and the 

motion platform was disabled so that there was no consideration of the location of the moving 

target with respect to the insertion of the needle. The needle was inserted with constant speed until 

it reached its final target, the motion platform was simultaneously stopped, and the final needle 

position was recorded. The results of this dynamic targeting experiment with no motion 
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compensation indicates a mean positional error of 5.02 ± 2.35 mm and a mean orientational error 

of 4.54 ± 1.40°. A comparison between the dynamic phantom targeting experiments with active 

motion compensation and without motion compensation is shown in Fig. 14. 

 

Fig. 14.  Comparison of dynamic phantom targeting experiments with and without active motion 

compensation 

 

3.6. Robot targeting: Dynamic ex-vivo porcine liver trial 

 

To simulate targeting in biological tissue, an ex-vivo porcine liver sample was used in place 

of the agar phantom. The same workflow used in the dynamic phantom targeting experiments was 

employed here for a total of 24 targets. With the motion compensation protocol implemented, the 

results indicate a mean positional error of 1.54 ± 0.55 mm and a mean orientational error of 1.68 

± 0.47°. The experiments were repeated without the motion compensation protocol implemented 

and the results show a mean positional error of 5.07 ± 2.44 mm and a mean orientational error of 

4.06 ± 1.45°. A comparison of these results is presented in Fig. 15. Similar to the static 
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experiments, a slight increase in positional targeting error was observed in both the phantom and 

ex-vivo liver trials, more noticeably in the ex-vivo liver as seen in Fig. 16. Again, no noticeable 

statistical correlation could be made between targeting error and increasing inclination of the 

needle. 

 

 

Fig. 15. Comparison of ex-vivo porcine liver dynamic targeting experiments with and without 

active motion compensation 
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Fig. 16. (a) Dynamic phantom needle targeting error vs. insertion depth (b) Dynamic ex-vivo 

porcine liver needle targeting error vs. insertion depth. In both experiments, the needle insertion 

angle was increased from 0° to 15° in increments of 5°. 

 

4. Discussion and Conclusion 

 

This paper presents the design, fabrication, and preliminary benchtop characterization of a 

5 DoF, patient mounted robot to perform percutaneous needle interventions for the treatment of 

hepatocellular carcinoma. The robot includes a dual cartesian platform with a custom 3D printed 

active needle insertion module and is designed to be directly mounted onto the patient’s abdomen. 

With the step-wise needle insertion module, an active motion compensation protocol is proposed 

to further reduce any targeting errors that may be caused by the respiratory induced motion of the 

liver.  

The system was first analyzed on an individual subsystem level to validate the accuracy of 

that specific component before moving on to complete system testing. In free-space testing, the 

accuracy of the dual cartesian platform was shown to have a mean error of 0.18 ± 0.18 mm in the 

x-direction, and a mean error of 0.32 ± 0.23 mm in the y-direction. Additionally, in free-space 
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testing, the needle insertion module demonstrated needle insertion accuracy of 0.64 ± 0.38 mm 

mm along the axis of the needle, with good repeatability indicated by an average CV of 0.65%. 

Force characterization experiments showed sufficient force generation from the needle insertion 

module to perform percutaneous needle interventions. The submillimeter accuracy of these two 

metrics and the force requirement being met was taken as validation of the main subsystems and 

warranted further analysis of the robot. 

In the static phantom targeting experiments, the mean positional error was demonstrated to 

be 1.14 ± 0.30 mm, and the mean orientational error was found to be 0.99 ± 0.36°. Additionally, 

in the static ex-vivo liver targeting experiments, the mean positional error was demonstrated to be 

1.22 ± 0.31 mm, and the mean orientational error was found to be 1.16 ± 0.44°. This served as a 

benchmark for the dynamic targeting experiments. In the next stages of testing, the dynamic 

motion of the liver was simulated by a phantom mounted to a dynamic platform. Using the protocol 

of only inserting the needle during the stationary period of the phantom’s trajectory gave similar 

results to the static phantom experimentation with mean positional error of 1.69 ± 0.66 mm and 

mean orientational error of 1.66 ± 0.50°. This was then compared to experiments that did not 

consider the motion compensation strategy where there is noticeably large variance in the results 

and high positional error and orientational error. We see a 66.3% improvement in positional 

accuracy when the active motion compensation protocol is implemented versus when it is not. The 

dynamic experiments were once again repeated, however in an ex-vivo porcine liver to recreate 

insertion into biological tissue. The results of this experiment show a mean positional error of 1.54 

± 0.55 mm and a mean orientational error of 1.68 ± 0.47°. Similar to the dynamic phantom 

experiments, with the motion compensation protocol implemented the results showed a 69.6% 

improvement in positional accuracy over those trials that did not implement the motion 
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compensation protocol. The lack of active motion compensation gave way to high variance, high 

positional and high orientational errors.  

The errors seen in these experiments can be attributed to fabrication deviations and 

registration errors. Manufacturing errors lead to misalignment of the upper and lower Cartesian 

stages, and while calibration measures were taken to account for this, other sources of errors may 

have arisen from backlash in the timing belts, and flexion in the acrylic and 3D printed 

components. Additional fabrication errors can be attributed to the deviations seen between the 

force characterization experiments and the predicted values. Improvements could be made to 

minimize errors in fabrication such as using high precision machined components rather than 3D 

printed parts and leadscrews with anti-backlash systems in place. Closed-loop motors could also 

be used to account for losses in steps.  

The implementation of a robotic platform as proposed in this study could potentially lead 

to the safer and more efficient treatment of HCC. This first characterization study serves as a 

critical first step to providing precise needle placement within the dynamic environment of the 

abdominal region. In future work, radiolucent and more lightweight materials such as carbon fiber 

rods and 3D printed pneumatic motors will be used in place of the metallic components used in 

this current prototype. To increase the workspace of the robot by allowing for greater inclination 

of the needle insertion module, custom spherical bearings will be used in future iterations of this 

robotic platform. Additionally, a haptic feedback master device will be developed to allow the 

clinician to sense the needle insertion forces throughout the procedure. Further work will be done 

to analyze the robot’s performance within the CT Scanner, to implement closed-loop control with 

CT Real-Time Position Management feedback and to evaluate the robot’s performance in animal 

trials. 
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