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Abstract

If Λ∗1 and Λ∗2 are two oriented singular Legendrian links that are Legendrian isotopic, we

first construct isomorphic front diagram representations of Λ∗1 and Λ∗2 that have a natural

allowable singular grid diagram associated to them. These allowable singular grid diagrams

will always correspond to singular Legendrian links. The grid Legendrian invariants, λ±, in

the nonsingular grid homology theory have a natural extension to the singular grid theory,

and are natural under the newly defined singular grid moves. This gives an invariant of

singular Legendrian links, and in fact, a broader class of singular links.
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1 Introduction

Heegaard Floer homology is defined using Heegaard diagrams and applying Lagrangian

Floer homology in a specific way ([22], [21]). If set up appropriately, a Heegaard diagram

can represent a link in a 3-manifold, and the associated Heegaard Floer homology gives rise

to an invariant of the link, called link Floer homology ([20], [23], [25]).

In [27], Sarkar and Wang showed that, for a certain class of Heegaard diagrams, the

Heegaard Floer homology can be computed in a combinatorial way, and that, for any link

L, there is an associated Heegaard diagram for which the link Floer homology of L can be

computed combinatorially. After developing this idea further, in [11], Manolescu, Ozsváth,

and Sarkar constructed a specific class of Heegaard diagrams which make computing link

Floer homology fully a combinatorial task, using grid diagrams. In [12], Manolescu,

Ozsváth, Szabó, and Thurston developed this grid homology theory to be a stand-alone

theory, independent of the holomorphic construction. Though isomorphic to the link Floer

homology, we will refer to the homology invariant coming from grid diagrams as grid

homology.

Grid homology has connections to other link invariants, and can be used to provide a

combinatorial proof of many relationships in knot theory. In particular, grid homology is

useful in determining the Alexander polynomial, Seifert genus, slice genus, the unknotting

number, among other knot or link invariants ([16], [17]).

In addition to having connections to various topological link invariants, there is a natural

association of grid diagrams to front diagrams of Legendrian links in R3 with the standard

contact structure ξ0 = ker(dz − ydx). There are two generators of the grid chain complex

whose homology classes are invariants of the underlying Legendrian link. Moreover, these

invariants can be used to compute the classical Legendrian invariants and can even

distinguish certain Legendrian non-simple knots ([10], [15], [24]).

As the invariants coming from the grid diagrams prove to be both computable and
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powerful in distinguishing links in various settings, it is natural to try to extend these ideas

to different settings. Variations of grid diagrams for singular objects have been explored in

[29], [3], [1], [2], [8], and [18]. In particular, the construction due to Harvey-O’Donnol in [8]

gives a grid diagram theory for transverse spatial graphs. They define graph grid diagrams,

give a collection of graph grid moves, and define and prove invariance for the graph grid

homology. Using this construction as the foundation, we define a grid diagram theory for

oriented singular Legendrian links, from which two invariants λ± can be defined in a way as

to generalize the grid invariants for Legendrian links, as first defined by Ozsváth, Szabó,

and Thurston in [24].

Our construction is similar to the construction in [8], in that we utilize their proof of

invariance of the graph grid homology for transverse spatial graphs, as we use a

subcollection of the moves they prove invariance for. Our construction differs from their

work in that we focus on the singular Legendrian setting, and describe the singular version

of the grid invariants for Legendrian links.

In Section 5.1, we prove the following theorem to obtain a singular grid diagram

representative for any singular Legendrian link and describe grid moves to relate isotopic

singular Legendrian links.

Theorem 5.2. If G∗1 and G∗2 are two singular grid diagrams representing Legendrian

isotopic oriented singular Legendrian links, then G∗1 and G∗2 are related by a sequence of

Legendrian grid moves (C and S:XNW, S:XSE) and singular Legendrian grid moves (C1∗,

C2∗, CS:X∗NW, CS:X∗SE, RS:X∗NW, RS:X∗SE) in the torus.

Applying Theorem 5.2, we then need to show that any move in the list of singular grid

moves utilized in the theorem induces an isomorphism of graph grid homology, SGH−, and

which maps λ±(G∗1) to λ±(G∗2). To this end, we prove the following after some preliminary

work,

Theorem 5.5. Let G∗1 and G∗2 be singular grid diagrams representing isotopic oriented
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singular Legendrian links. Then there is an isomorphism φ : SGH−(G∗1)→ SGH−(G∗2)

where φ(λ+(G∗1)) = λ+(G∗2) and φ(λ−(G∗1)) = λ−(G∗2).

In particular, we construct maps for the following diagram,

Λ∗1 Λ̃∗1 GΛ̃∗1

Λ∗2 Λ̃∗2 GΛ̃∗2

Leg RM Move

∼

Leg RM Moves Sing Grid Moves

∼

where ∼ changes Λ∗ into a Legendrian isotopic singular link with an allowable singular grid

diagram. Then we show that the associated singular grid moves are natural with respect to

the singular grid invariant.

While λ± are invariants of singular Legendrian links, the allowed singular grid moves do

not always correspond to singular Legendrian isotopy, as will be discussed in more detail in

Section 5.3. Due to this, λ± is an invariant of some larger unknown class of singular links,

which is somewhere in between singular oriented Legendrian links and transverse spatial

oriented Legendrian graphs.

Some further work could be done to discover what this larger class of links is, and see how

the singular Legendrian invariant behaves in this class. Moreover, it would be interesting to

develop the (relative) bigrading for SGH− in this setting, determine how this can be useful

for λ±, and see if λ± can distinguish Legendrian simple oriented singular Legendrian links.
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Figure 1: Generic Projection of a Knot Onto a Plane

2 Links and Grid Diagrams

For a given 3-manifold, M , an oriented n-component link, L, in M is a smooth embedding
n∐
S1 ↪→M , where an orientation on each copy of S1 is specified. Links are considered up

to ambient isotopy, that is, if L1 and L2 are two oriented links in M , an ambient isotopy

from L1 to L2 is a function H : M × I →M so that

1. Ht(x) = H(x, t) is a diffeomorphism for each t ∈ I,

2. H0 is the identity map on M ,

3. H1(L1) = L2 with correct orientation.

Ambient isotopy forms an equivalence relation on oriented links, and so the equivalence

class of a link L under ambient isotopy is referred to as the link class of L. It is a classical

question to determine all link classes in R3 (or S3), and various 3-manifolds. To this end, a

large number of invariants have been created that are useful in distinguishing link classes,

which include grid homology, as we will discuss in detail.
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Figure 2: Three Different Reidemeister Moves

Two operations on links that will be particularly useful for the grid homology construction

are that of mirroring and reversing. For an oriented link L, the mirror of L, denoted m(L),

is obtained by reflecting L through a plane in R3. The reversal of L, denoted −L is

obtained by switching the orientation on all components of L. In particular, mirrioring is

used in the definition of grid homology for oriented Legendrian links and reversing

orientation gives isomorphic grid homology invariants.

In order to simplify the study of links in R3, it is helpful to exchange ambient isotopies of

links for a set of combinatorial moves on diagrams. To obtain a diagram representing an

oriented link L, first take a generic orthogonal projection of L onto a plane in R3, which is

an embedding except at finitely many transverse double points. To record the crossing

information in the projection, a break is created in the strand involved in the formation of a

double point which is the undercrossing strand in the 3-manifold. An arrow can be included

on each component of the link in this diagram to keep track of the orientation of the link.

5



Pictured in Figure 2 are three generating moves of link diagrams, referred to as

Reidemeister moves. For the purposes of labeling, we will refer to these moves and

Reidemeister 1 (RM1), Reidemeister 2 (RM2), and Reidemeister 3 (RM3) moves,

respectively. The complete list of Reidemeister moves for links includes any rotation of the

three moves, and any crossing configuration of RM3. Though no orientation is specified in

the figure, any consistent choice of orientation can be used with these moves. Notice that

while considering the projection of a link L onto a plane, if a different plane is chosen, the

diagram representing L can vary greatly. These local Reidemesiter moves resolve this

well-definedness issue of diagrams according to the following fundamental theorem,

Theorem 2.1. (Reidemeister, [26]) Two link diagrams represent ambient isotopic oriented

links if and only if the diagrams are related by a finite sequence of planar isotopies and

Reidemeister moves.

When creating a link invariant, this theorem allows for invariance to be checked on the few

local Reidemeister moves on diagrams instead of an ambient isotopy. In certain cases, this

provides a drastic simplification of the proof of invariance.

2.1 Grid Diagrams and Grid Moves

A grid diagram G with grid size n is an (n× n) grid in R2 along with a set of X markings,

X, and a set of O markings, O, so that

• each row contains exactly one X marking and each column contains exactly one X

marking,

• each row contains exactly one O marking and each column contains exactly one O

marking,

• any square in the grid contains at most one marking.

6



Figure 3: Grid Diagram representing 31

Figure 4: Local Modification for a Crossing in a Grid

Any grid diagram specifies a diagram for an oriented link. To construct the link diagram

associated to a grid diagram, begin by drawing an oriented segment in each column from

the X marking to the O marking. In each row, draw an oriented segment from the O

marking to the X marking, creating breaks in the strand as necessary so that the horizontal

segments are always the undercrossing segments. This specifies a piecewise-linear diagram,

so if a smooth diagram is desired, smooth out the corner formed at each X and O marking.

Moreover, every oriented link, L, has an associated grid diagram representing it. To

construct such a grid diagram, approximate L with a piecewise-linear diagram admitting

only vertical and horizontal segments. Any time a horizontal segment is an overcrossing,

modify the diagram according to Figure 4. Move the link into a position where no

segments are colinear, and then mark the turns with either an X or an O so that the

vertical segments are oriented from the X marking to the O marking, and is consistent
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Figure 5: Valid and Invalid Column Commutations

with the orientation of L.

Just as there are Reidemeister moves to transition between diagrams of equivalent links,

there is a set of moves that, when applied to a grid diagram, results in a new grid diagram

where the underlying links are ambient isotopic.

Let Ci and Ci+1 denote the ith and (i+ 1)st columns of a grid diagram G1. Let Ij ⊆ R

denote the closed interval whose endpoints are the vertical positions of the X and O

markings in Cj. A column commutation of G1 occurs by obtaining a new grid diagram G2

by swapping consecutive columns Ci and Ci+1 of G1, provided one of the following

conditions holds,

• Ii ⊂ Int(Ii+1),

• Ii+1 ⊂ Int(Ii),

• Ii ∩ Ii+1 = ∅.

In a similar way, one can define row commutations for consecutive rows Ri and Ri+1 by

considering intervals Ij whose endpoints are the horizontal position of the X and O

markings in Rj. Either a column commutation or a row commutation will be referred to as

a commutation and will be labeled as (C).

Let G1 be a grid diagram of size n. For a distinguished X marking in the (i, j)th square of

G1, an X-stabilization of G1 is a grid diagram G2 of size (n+ 1) obtained from G1 in the

following way:

8



Figure 6: Stabilization options at an X marking

1. Remove the X marking in the (i, j)-th square, along with the O markings in the i-th

row and in the j-th column.

2. Split the empty row and column into two rows and two columns by adding a vertical

and horizontal line.

3. Replace the markings according to one of the four configurations pictured in Figure 6.

As seen in Figure 6, the different options for a stabilization at X are given a label

according to the location of the empty square in the (2× 2) box after stabilizing, as either

(S : XNW ), (S : XNE), (S : XSW ) or (S : XSE). In an analogous way, one can define

an O-stabilization, and will be labeled as either (S : ONW ), (S : ONE), (S : OSW ), or

(S : OSE). Applying either an X- or an O-stabilization to a grid diagram G will be called

a stabilization of G, and applying the inverse of a stabilization to a grid diagram G will be

called a destabilization of G.

Collectively, column commutations, row commutations, stabilizations, and destabilizations

9



Figure 7: Cyclic Permutation from Top to Bottom

will be called grid moves, and the following theorem relates them to the standard

Reidemesiter moves for links,

Theorem 2.2. (Cromwell, [6]) Two planar grid diagrams represent equivalent links if and

only if there is a finite sequence of grid moves that transforms one into the other.

In addition to the standard grid moves, we will utilize one additional move, called cyclic

permutation. Let G1 be a grid diagram of size n and let G2 be a new grid diagram obtained

rearranging the columns of G1 in one of the following two ways,

• C1 of G2 has the same configuration as Cn of G1 and Cj of G2 has the same

configuration as Cj−1 of G1, for 2 ≤ j ≤ n.

• Cn of G2 has the same configuration as C1 of G1 and Cj of G2 has the same

configuration as Cj+1 of G1, for 1 ≤ j ≤ n− 1.

In a similar way, one can define this move for rows, and when applied, G2 is said to be

obtained from G1 by a cyclic permutation.

Proposition 2.3. ([24], Lemma 4.3) A cyclic permutation of planar grid diagrams can be

realized by a sequence of commutation moves and stabilizations/destabilizations of types

(S : XNW ), (S : XSE), (S : ONW ), and (S : OSE).

10



Due to the above proposition, one can view a planar grid diagram as a diagram on the

torus, where the top and bottom grid lines are identified and the left and right grid lines

are identified. Doing so makes the horizontal and vertical grid lines horizontal and vertical

circles. Viewing grid diagrams this way is beneficial, as the grid is now closely related to a

Heegaard splitting.

The previous theorem also shows that cyclic permutations are redundant moves on the

grid. That is, cyclic permutations can be realized by a sequence of other grid moves. In

fact, there are more redundancies in the set of grid moves.

Proposition 2.4. ([24], Lemma 4.2) A stabilization of type (S : ONE), (S : ONW ),

(S : OSE), and (S : OSW ), can be realized by a stabilization of type (S : XSW ),

(S : XSE), (S : XNW ), and (S : XNE), respectively, with a sequence of commutations

and cyclic permutations.

Thus, based off of the theorems in this section, to prove invariance of the various homology

theories, which will be defined in Sections 2.3 and 2.4, one needs to only prove invariance

locally for commutations and stabilizations at X markings.

2.2 Grid States and Gradings

Let G be a grid diagram on the torus with grid size n. On the torus, the grid lines

correspond to circles, and so, let α = {αi}ni=1 be the n horizontal circles and β = {βi}ni=1

be the n vertical circles which make up the grid for G. A grid state for G is a n-tuple of

points x = {x1, ..., xn} where the n points of x correspond to n of the n2 intersections of α

and β, so that each circle in α and each circle in β contain exactly one of the points in x.

The set of all grid states for a grid diagram G will be denoted S(G).

The chain complexes, which define the various grid homology theories associated to G, are

generated by grid states. The differentials vary depending on the chosen theory, and will

each be a count of certain rectangles between grid states.
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Figure 8: Grid Diagram with Two Grid States and Two Rectangles

For two grid states x,y ∈ S(G) a rectangle r from x to y is an embedded rectangle in the

torus where

• ∂r ⊆
n⋃

i=1

αi ∪ βi,

• #(x ∩ y) = n− 2 and the corners of r are the four points not shared by x and y,

• ∂(∂αr) = y − x and ∂(∂βr) = x− y, where ∂α and ∂β denote the boundary of r

intersected with the α and β curves, respectively.

The set of all rectangles from x to y will be denoted Rect(x,y). Notice that either

Rect(x,y) = ∅ or #Rect(x,y) = 2. A rectangle r ∈ Rect(x,y) is an empty rectangle if

x ∩ Int(r) = y ∩ Int(r) = ∅. The set of empty rectangles from x to y will be denoted

Rect◦(x,y).

2.3 Fully Blocked Grid Homology for Knots

If G is a grid diagram, the fully blocked grid chain complex is the chain complex (G̃C(G), ∂̃)

where G̃C(G) is the Z2-vector space generated by S(G) and ∂̃ is defined on generators by

∂̃(x) =
∑

y∈S(G)

#{r ∈ Rect◦(x,y) |r ∩ X = r ∩O = ∅} · y.

12



In other words, ∂̃ is the mod-2 count of empty rectangles which also do not contain any X

or O markings. In this version of grid homology, the homology of the fully blocked chain

complex is not an invariant of the link. Under stabilizations, the vector space changes

dimensions. However, the following theorem extracts an invariant from this homology

theory,

Theorem 2.5. ([12], Theorem 1.2, Proposition 2.14) If G is a grid diagram with grid size

n that represents a knot, then the dimension dimZ2

(
G̃H(G)

)
/2n−1 is integer valued and an

invariant of the underlying knot.

This invariant stems from a deeper relationship between the fully blocked and simply

blocked theories.

2.4 Unblocked Grid Homology and Simply Blocked Grid Homology for

Knots

For a grid diagram G with grid size n, let R = Z2[V1, ..., Vn] be the polynomial ring with

variables {Vi}ni=1, which are in one-to-one correspondence with the O markings

O = {Oi}ni=1. Let Oi : Rect(x,y)→ {0, 1} be defined as

Oi(r) =


0 if Oi 6∈ r

1 if Oi ∈ r
.

For a grid diagram G,the unblocked grid chain complex is the chain complex (GC−(G), ∂−)

where GC−(G) is the R-module generated by S(G), and ∂− is defined on generators by

∂−(x) =
∑

y∈S(G)

∑
{r∈Rect◦(x,y) | r∩X=∅}

V
O1(r)

1 · · ·V On
n (r) · y,

In this version notice that the empty rectangles are allowed to contain O markings, but

anytime they intersect an O marking, the appropriate variable is included. Moreover,

13



notice that the following relationship holds,

GC−(G)

V1 = · · · = Vn = 0
= G̃C(G).

Lemma 2.6. ([12], Lemma 2.11) If G represents a knot, for any pair of integers

i, j ∈ {1, ..., n} multiplication by Vi is chain homotopic to multiplication by Vj.

For a fixed i ∈ {1, ..., n}, the unblocked grid homology of G is the homology of

(GC−(G), ∂−), as a module over Z2[U ] where the action of U is induced by multiplication

by Vi.

The simply blocked grid chain complex is the quotient complex ĜC(G) = GC−(G)/Vi for

any i ∈ {1, ..., n} and the simply blocked grid homology of G is the Z2-vector space

obtained as the homology of (ĜC(G), ∂−). Notice that the definition of ĜC(G) is

independent of choice of i, as multiplication by Vi is chain homotopic to multiplication by

Vj, as stated in Lemma 2.6.

2.5 Invariance of Grid Homology for Knots

To see that these various grid homology theories result in invaraints of the underlying

knots, we must show that, after applying either a commutation or an X-stabilization, the

grid homology of the resulting grid diagram is the same. This section will lay out the road

map for proof of invariance, but most of the detail will be deferred to [19].

Let G1 and G2 be two grid diagrams which are related by a column commutation that

swaps columns Ci and Ci+1. To set up a homotopy equivalence between the grid homology

of G1 and the grid homology of G2, we first view the two grid diagrams at the same time on

a modified grid. Let α = {α1, ..., αn} be the horizontal circles for G1 and β = {β1, ..., βn}

be the vertical circles for G1. Since the commutation occurs across the βi circle, suppose

that G2 has the same horizontal circles, α, and has vertical circles given by

γ = {β1, ..., βi−1, γi, βi+1, ..., βn}. In the modified grid diagram, draw the vertical circles so

14



Figure 9: Commutation Diagram

that βi and γi meet perpendicularly at two points that are not along horizontal circles.

One of the two intersection points will be at the bottom of the bigon whose leftmost

boundary is βi and rightmost boundary is γi, label this intersection point as a and the

other as b. This construction can be seen in Figure 9.

For grid states x ∈ S(G1) and y′ ∈ S(G2), a pentagon p from x to y′ is an embedded disk in

the torus where

• ∂p ⊆ γi ∪
n⋃

i=1

αi ∪ βi and consists of five arcs.

• Four of the corners of p are in x ∪ y′.

• At each corner point x, a small disk centered at x is divided into four pieces by the

circles forming the circles which are intersecting at the corner point. p contains

exactly one of these pieces.

• ∂(∂αp) = y′ − x.

The set of all pentagons from x to y′ will be denoted Pent(x,y′). A pentagon

p ∈ Pent(x,y′) is an empty pentagon if p ∩ x = p ∩ y′ = ∅, and the set of all empty

pentagons will be denoted Pent◦(x,y′).
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Figure 10: A Pentagon in a Commutation Diagram

Theorem 2.7. ([12], Proposition 3.2) The chain map P : GC−(G1)→ GC−(G2) defined on

grid states by

P (x) =
∑

y∈S(G2)

∑
{p∈Pent◦(x,y′) | p∩X=∅}

V
O1(p)

1 · · ·V On(p)
n · y′,

and extended linearly to all of GC−(G1), is a quasi-isomorphism.

By combining this theorem with the relationship between GC−(G) and ĜC(G), the

homology in either version of grid homology is unchanged under commutation moves.

To show that the homology associated to these chain complexes is a knot invariant, it

remains to show that they are invariant under stabilizations as well. Here, we give a brief

outline of the argument for stabilizations of types S : XNW and S : XSE, as these will be

the necessary stabilizations in the Legendrian setting. The other stabilizations can be

shown to produce isomorphic grid homology theories by making a slight modification in the

argument we outline here, and the full version of the argument can be seen in either [19] or

[12].

Let G2 be a grid diagram obtained from G1 by a stabilization. Since stabilizing not only

changes the grid size, but also the number of O-markings, and thus the base ring, we need

to decompose both GC−(G2) and ∂− into pieces which will be either trivial in homology or
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Figure 11: Labelings in an S : XNW Stabilization (left) and an S : XSE Stabilization
(right)

equivalent to GC−(G1).

For a stabilization of type S : XNW , number the X and O markings so that O1 is the

newly introduced O marking, X1 is to the left of O1, and X2 is above O1. For a stabilization

of type S : XSE, number the X and O markings so that O1 is the newly introduced O

marking, X1 is to the right of O1 and X2 is below O1 (both S : XNW and S : XSE are

pictured in Figure 11). Let c denote the intersection point of the newly added circles in the

grid. Moreover, S(G2) can be decomposed into I(G2) ∪N(G2) where I(G2) consists of the

grid states that contains c as one of their points, and N(G2) is the grid states that do not

contain c. In fact, this decomposition gives a splitting of GC−(G2) = I⊕N, where I is a

subcomplex, as any rectangle r ∈ Rect(x,y) with x ∈ I(G2) and y ∈ N(G2) must contain

an X marking. This decomposition of GC−(G2) gives a decomposition of ∂− as

∂− =

 ∂II ∂IN

0 ∂NN

 .

Let I be the free R-module generated by I(G2). The one-to-one correspondence between

S(G1) and I(G2) gives an isomorphism, e : I→ GC−(G1)[V1].

Proposition 2.8. ([12], Proposition 3.8) Suppose G2 is obtained from G1 by a stabilization

of type S : XNW or S : XSE. Then there is an isomorphism from GH−(G2) ∼= GH−(G1)

whose restriction to I is the map on homology induced by e followed by a projection π.

The main idea of the proof is to use e, its inverse e−1, and a chain homotopy equivalence
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H : I→ N defined by

H(x) =
∑

y∈N(G2)

∑
{r∈Rect◦(x,y) | Int(r)∩X=X2}

V
O1(r)

1 · · ·V On(r)
n · y.

to set up the square

N I

GC−(G1)[V1] GC−(G1)[V1]

∂IN

H ◦ e−1

V1 − V2

e−1

which commutes as is shown in [12].

From homological algebra, such a square induces a quasi-isomorphsim

Φ : Cone(V1 − V2)→ GC−(G2), where Cone(V1 − V2) is the homological mapping cone of

the chain map V1 − V2 : GC−(G1)[V1]→ GC−(G1)[V1]. The induced maps on homology give

a commutative square

H(I) GH−(G2)

GH−(G)[V1] H(Cone(V1 − V2))

H(e−1)

π

H(Φ) ,

since H(Cone(V1 − V2)) ∼= GH−(G1). H(Φ) is an isomorphism, so the proposition holds.

The above theorem shows invariance for stabilizations of types S : XNW and S : XSE.

As mentioned earlier, slight modification of the argument can be used to show invariance

for S : XNE and S : XSW , or one can adapt the commutation moves to a specialized

move called a switch, which can be used to change a stabilization of type S : XNW into

any X stabilization.

2.6 Collapsed and Uncollapsed Grid Homology for Links

Let L be a link with l components, and let Oj1 , ..., Ojl be O markings which are on the l

different components of L. The collapsed grid chain complex associated to G is the chain
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complex cGC−(G) =
GC−(G)

Vj1 = · · · = Vjl
. The homology of this chain complex is the collapsed

grid homology associated to G. The fact that this homology is an invariant of the

underlying link follows from straightforward adaptations of the ideas from the 2.5 along

with an adaptation of Lemma 2.6.

The uncollapsed grid homology for links is also defined in an analogous way to the grid

homology for knots, but instead of identifying variables coming from different components

of the link, extra structure is given to the underlying polynomial ring. For a grid G

representing a link L with l components, the uncollapsed grid homology is the homology of

the chain complex GC−(G) thought of as a module over Z2[U1, ..., Ul] where the action of Ui

is multiplication by Vji , where Oji corresponds to an O marking on the ith component of L.
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Figure 12: Front and Lagrangian Projections of a Legendrian Unknot

3 Legendrian Links

This section gives a brief discourse on the contact geometry necessary for understanding

Legendrian links in our setting. For a more thorough exposition on symplectic and contact

geometry, see [13], or if just interested in more information regarding Legendrian links, see

[7]. Let M be a 3-manifold and ξ a non-integrable plane field in TM . Locally ξ can be

described as the kernel of α ∈ Ω1(M). ξ is a contact structure on M if α ∧ dα 6= 0. For R3,

the standard contact structure is given by ker(α0) = ker(dz − ydx). The following theorem

shows that this standard contact manifold is the only local model for contact manifolds.

Theorem 3.1. (Darboux, Moser, [14]) If (M, ξ) is a contact 3-manifold, and near a point

a ∈M , ξ = ker(α), then there is a local coordinate system near a, (x1, x2, x3), so that

α = dx3 − x2dx1. That is, (M, ξ) locally looks like the standard contact manifold (R3, ξ0).

A Legendrian link Λ in a contact manifold (M, ξ) is a link in M where TxΛ ⊆ ξx. We will

restrict to the case of Legendrian links the standard contact (R3, ξ0).
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Figure 13: Front Projection Reidemeister Moves LRM1 (top), LRM2 (middle), and LRM3
(bottom)

3.1 Diagrams of Legendrian Links

There are two projections which are commonly used when creating link diagrams for

Legendrian links - the front projection and the Lagrangian projection.

The front projection is the projection πy : R3 → R2 defined by πy(x, y, z) = (x, z), and the

image πy(Λ) is the front projection of Λ. Notice that since ξ0 = ker(dz − ydx), if

s : [0, 1]→ R3 is a parametrization of Λ, then z′(s)− y(s)x′(s) = 0, and so y(s) =
z′(s)

x′(s)
.

Thus, at a point a ∈ πy(Λ), the y-coordinate of Λ can be recovered from πy(Λ) by

considering the slope of Λ at a.

The contact structure gives the front projection a three defining features, which are based

on the fact that the y-coordinate can be recovered by the slope,

1. πy(Λ) will have no vertical tangencies.

2. The only places where πy fails to be an immersion are at cusps.
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Figure 14: Lagrangian Projection Reidemeister Moves

3. At double points of πy(Λ), the slope of the overcrossing is smaller than the slope of

the undercrossing.

The following theorem gives a correspondence between Legendrian isotopy and moves on

front diagrams,

Theorem 3.2. ([28]) Two front diagrams represent Legendrian isotopic Legendrian links if

and only if they are related by a sequence of planar isotopies that do not introduce vertical

tangenices and Legendrian front Reidemeister moves.

The Lagrangian projection is the projection πz : R3 → R2 defined by πz(x, y, z) = (x, y),

and the image πz(Λ) is the Lagrangian projection of Λ. When using the Lagrangian

projection, the original Legendrian can be recovered from πz(Λ) up to a vertical

translation, as z(s) = z0 +

∫ s

0

x′(t)y(t)dt.

Unlike the front projection, this projection has only a weak version of the Reidemeister

theorem, where Legendrian links may be related by additional moves than just those in

Figure 14,

Proposition 3.3. ([7], Theorem 2.8) If two Lagrangian link diagrams are related by a
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sequence of Lagrangian Reidemeister moves then they represent Legendrian isotopic

Legendrian links.

3.2 Classical Legendrian Invariants

Given a Legendrian link Λ, there are three classical invariants which are used to distinguish

their Legendrian isotopy classes. The first of these classical invariants is the underlying

topological link type. Any Legendrian link is also a topological link, and any Legendrian

isotopy between links is also a smooth isotopy. Thus, if two Legendrians have different

topological link types then they have different Legendrian link types.

The second of the classical invariants is the Thurston-Bennequin number. While this

invariant has many equivalent definitions, we will primarily use the definition which is

based off of a front diagram of Λ. Given the front projection πy(Λ) of Λ, let U(Λ) denote

the number of upwards oriented cusps and let D(Λ) denote the number of downwards

oriented cusps. The Thurston-Bennequin number is defined to be

tb(Λ) = wr(Λ)− 1

2
(U(Λ) +D(Λ)) where wr(Λ) denotes the writhe of the diagram.

The final classical invariant is the rotation number. Again, using the front diagram, this

can be defined as r(Λ) =
1

2
(D(Λ)− U(Λ)).

While it is now known that these three invariants alone do not distinguish all Legendrian

isotopy classes of Legendrian links, they are able to differentiate many classes. A

topological link L where all Legendrian links representing L are determined by their

Thurston-Bennequin number and rotation number are called Legendrian simple. In fact,

the first Legendrian non-simple knot is m(52), of which, the two different Legendrian can

be distinguished using the Legendrian grid invariants, ruling invariants, and linearized

contact homology.
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Figure 15: Association of a Grid Diagram and a Legendrian Link

3.3 Grid Diagrams and Legendrian Links

Grid diagrams represent Legendrian links in a natural way. To obtain the front diagram for

a Legendrian link from a grid diagram G,

1. let L be the piecewise-linear link specified by G,

2. smooth out any NW or SE corners of the diagram,

3. turn any NE or SW corners of the diagram into cusps,

4. rotate the diagram 45◦ clockwise,

5. reverse all crossings so that they match the front diagram requirements on the slope.

Just as in the case of oriented links, every Legendrian link can be represented by a grid

diagram. The crossing information is already correct, as the slope condition on the strands
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guarantees this. Stretch the front diagram horizontally until no part of the link forms an

angle of more than 45◦ to the horizon. Reversing the procedure in Figure 15 gives a grid

diagram associated to Λ.

In fact, not only do grid diagrams relate to Legendrian links via the front diagram in a

natural way, a subcollection of grid moves is able to give a Reidemesiter-type theorem for

grids representing Legendrians.

Theorem 3.4. ([24], Proposition 4.4) Two grid diagrams represent Legendrian isotopic

Legendrian links if and only if the grid diagrams are related by a sequence of commutation

moves or stabilizations and destabilizations of type (S : XNW ), (S : XSE), (S : ONW ),

and (S : OSE).

With the relationship between X and O stabilizations presented in Proposition 2.4., the

above theorem can in fact be reduced to only considering the two types of X stabilizations.

Moreover, the proof of the equivalence of cyclic permutations only uses the allowed grid

moves for Legendrian links. Thus, cyclic permutations correspond to diagrams of

Legendrian isotopic links.

3.4 Legendrian Grid Invariants from Grid Homology

For a grid diagram G, let x+ and x− be the two grid states whose components are the

northeast and southwest corners, respectively, of squares with X markings of G. Notice

that any rectangle from x± will necessarily contain an X marking, and so in any of the

three discussed homology theories these grid states represent cycles, as none of the

differentials count rectangles which contain an X marking. Let λ±(G) be the homology

classes of x± in G, respectively.

Theorem 3.5. ([24], Theorem 1.1) Let G1 and G2 be two grid diagrams that represent

Legendrian isotopic knots. There is an isomorphism φ : GH−(G1)→ GH−(G2) where

φ(λ±(G1)) = λ±(G2).
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Figure 16: Legendrian Non-simple m(52) Knots with x+

While computing λ±(G1) directly can be difficult and require computer assistance, it is

possible to distinguish Legendrian links by determining if λ±(G1) are zero or nonzero, or by

determining if λ+(G1) = λ−(G1) or if λ+(G1) 6= λ−(G1). Chekanov in [5] used linearized

contact homology to show that m(52) with tb = 1 and r = 0 are Legendrian non-simple

knots, but these can also be distinguished using λ±. Grid diagram representations of the

two Legendrian knots, with x+, are pictured in Figure 16.

Corollary 3.6. If G1 and G2 are two grid diagrams that represent Legendrian isotopic

knots, then there is an isomorphism φ̂ : ĜH(G1)→ ĜH(G2) where φ(λ̂±(G1)) = λ̂±(G2),

where λ̂± is the homology class of x± in ĜH.

The above corollary follows, by comparing the differentials from GH− and ĜH. Notice

here that the differential in ĜH is a restriction of the differential in GH−.

While in general ĜH has less algebraic structure than GH−, more often it is easier to

compute λ̂± instead of λ±. In fact, the connection between ĜH and G̃H provides

information about λ̂±. Notice that λ̂± = 0 if and only if x± represents the trivial homology

class in G̃H.
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4 Singular Links and Allowable Singular Grid Diagrams

Singular knots and links arise not only as a direct generalization of knot theory, but are

crucial components of understanding Vassiliev invaraints. In particular, singular links

appear in the Vassiliev Skein relation, where the singularity is resolved to be either a

positive or negative crossing. Due to this relation, many Vassiliev link invariants extend to

singular links via this Skein relation. Moreover, Skein relations involving singular knots

and links are the focus of the singular grid diagram construction presented in [29].

In the Legendrian setting, singular Legendrian links can be used to further understand

Giroux open books. The classical Legendrian invariants (the Thurston-Bennequin and

rotation numbers) also have generalizations to the singular Legendrian setting, as explored

in [1]. To this end, it would be interesting to use the singular grid invariants defined here

to discover isotopic singular non-simple Legendrian links.

4.1 Singular Links

A regular double point of an immersion f : S1 → R3 is a point p ∈ R3 where two points

x1 6= x2 in S1 with f(x1) = f(x2) = p satisfy codim
(
Tx1

(
f(S1)

)
+ Tx2

(
f(S1)

))
= 1. A

singular link S is an immersion
n∐

i=1

S1 → R3, with finitely many regular double points,

which are often referred to as the singular points of S. Just as with nonsingular links, we

consider singular links up to ambient isotopy.

We can construct a diagram representing S by taking a generic orthogonal projection onto

a plane in R3. This projection, since generic, is assumed to be an immersion everywhere

except at points which are projected from the singular points. As singular points are

regular double points, it is generic to require that, in the projection, the strands forming a

singular point intersect transversely at the singular point.

To relate singular links to singular link diagrams, we have the following theorem which

translates ambient isotopy of singular links to a set of moves on singular diagrams,
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Figure 17: Oriented Singular Link Diagram

Figure 18: Singular Reidemeister Moves

Theorem 4.1. (Kauffman, [9]) Two singular links diagrams represent ambient isotopic

singular links if and only the diagrams are related by a finite sequence of planar isotopies,

Reidemeister moves, or singular Reidemeister moves.

For labeling purposes, the first move depicted in Figure 18 will be called a singular flype

move (SF ), and the second will be called a singular Reidemesiter 3 move (SRM3). As

before, these two moves generate the full collection of singular Reidemeister moves by

allowing rotations, mirroring, and a consistent change in crossings in the local models.
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Figure 19: Orientations Near a Singularity for a Singular Legendrian

Figure 20: Invalid Strand Configurations Near a Singularity

4.2 Singular Legendrian Links

A singular Legendrian link Λ∗ is a singular link that is Legendrian with respect to the

standard contact (R3, ξ0). We can obtain the front diagram and Lagrangian diagram as

before, by taking the projections onto the xz- and xy-planes, respectively.

Notice that in the front diagram of Λ∗, the projection does not satisfy the generic condition

on projections, as any singularity must be a nontransverse intersection in the diagram.

This is the case because the slope of the strands near the singularity must be the same,

otherwise it would not correspond to an intersection in R3.

There are many possible local models for singular points in link diagrams which are

non-transverse intersections. By considering the Lagrangian projection as well, in order to

have an intersection in the front diagram which comes from a singular point of Λ∗, there

are only four possible local models, as seen in Figure 19, that can occur near a singular

point. Notice that in these models, the strands are colored differently, to keep track of how

the singularity is formed. Some invalid strand configurations can be seen in Figure 20.

Just as before, in order define invariants of singular Legendrian links, we need to

implement a Reidemeister-type theorem for front diagrams of singular Legendrian links. As
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Figure 21: Singular Legendrian Reidemeister Moves SLRM1 (top) and SLRM2 (bottom)

was done in [1], an adaptation of a Reidemeister theorem for graphs, as presented in [4],

gives the following theorem,

Theorem 4.2. ([4], [1]) Two singular Legendrian front diagrams represent Legendrian

isotopic singular Legendrian links if and only if the singular front diagrams are related by a

sequence of planar isotopies which do not introduce vertical tangencies, Legendrian

Reidemeister moves (LRM1, LRM2, or LRM3), or singular Reidemeister moves

(SLRM1 and SLRM2).

The two generating singular Legendrian Reidemeister moves are pictured in Figure 21.

4.3 Singular Grid Diagrams

In this section, we first recall the construction given in [8] with slight modifications that

will be useful in our setting. Notice that in the setting of [8], the singular grid diagrams

have a natural association to a class of graphs, and thus is more general that what we need

for our purposes.

A singular grid diagram G∗ is an (n× n) grid in the plane along with a set of n X markings

X and a set of m O markings O, where m ≥ n, so that the rules below hold.

• Each row and column contains exactly one X marking.
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Figure 22: A Singular Grid Diagram and its Corresponding Graph

• Each row and column may have either one or two O markings. Any X marking in

the same row or column as two O markings will be decorated with an ∗.

• If there is an X∗ marking in the (i, j)th square, both Ri and Cj have two O markings.

• A square in the grid contains at most one marking.

To each singular grid diagram, there is a naturally associated quadrivalent graph, as shown

in Figure 22. We use the convention that, in columns which correspond to a singularity, if

the O markings are entirely above or below the X∗ marking, that the strand connecting

the O marking furthest from the X∗ marking curves to the right. Similarly, for rows, we

use the convention that the strand connecting the O marking furthest from the X∗

marking curves downwards.

These rules, however, are not enough to ensure that a singular grid diagram directly

specifies a singular Legendrian front diagram. Also as seen in Figure 22, the natural

description of a graph coming from a singular grid diagram does not necessarily fit any of

the four local models for singularities in a front diagram of Figure 19. To resolve this issue

we take the following steps, which will be described in more detail over the next few

sections,

1. restrict to a subcollection of singular grid diagrams, which we will call allowable

singular grid diagrams,
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Figure 23: Allowable Grid Configurations Near Singularities

2. show that an allowable singular grid diagram specifies a singular Legendrian front

diagram,

3. describe grid moves which allow us to transition between singular Legendrian front

diagrams.

4.4 Allowable Singular Grid Diagrams

For a given singular grid diagram G∗, to describe the singular Legendrian front diagram

associated to it, we follow the same steps as in Figure 15, where we modify the graph

described by G∗ by rotating the diagram, switch the crossings, and changing the corners

into cusps or smoothing them out. As seen in the last section, in this more general graph

setting, this process does not always describe a singular Legendrian front diagram. To

remedy this, we restrict the possible configurations for a singular grid diagram in the rows

and columns corresponding to a singularity.

To discover the proper restriction of the class of singular grid diagrams, consider the
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Figure 24: Allowable Singular Grid Diagram and its Corresponding Singular Legendrian
Front Diagram

possible local models for the singular grid diagram. Notice that if we desire to transition

the associated graph into a singular Legendrian front diagram, the only local models which

follow the orientation models near a singularity in a singular Legendrian front diagram, as

in Figure 19, are the grid models pictured in Figure 23.

An allowable singular grid diagram is a singular grid diagram where the only

configurations of singular rows and columns are the ones in Figure 23, with possibly extra

rows/columns inserted between the markings. As described previously, every allowable

singular grid diagram has an associated singular Legendrian front diagram. The

correspondence in this setting is pictured in Figure 24.

In fact, every singular Legendrian front diagram Λ∗ has a singular grid diagram G∗ for

which the singular Legendrian front diagram associated to G∗ can be related to Λ∗ by

applying a necessary amount of SLRM2 moves. To construct such a diagram, notice that

the local models in consideration in Figure 23 have an orientation that is forced by the

grid. It, therefore, remains to show that there is an allowable singular grid model for any

orientation near the singularity. All cases are shown in Figure 25.
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Figure 25: Local Singular Grid Diagram for a Singular Legendrian Fronts Near a Singularity
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5 Singular Grid Moves

To develop a singular grid homology theory that is an invariant for singular Legendrian

links, we need to adapt the grid moves for nonsingular grid diagrams so that the grid moves

can be applied near a singular point. Before defining these singular grid moves, we assume

that all nonsingular grid moves can still be applied, as long as they are not interacting with

a X∗ marking or any O markings which are in the same row or column as an X∗ marking.

In this section, we will define the moves used in [8] for our modification, and so they will be

moves for singular grid diagrams which represent graphs. After defining the full collection

of moves, we then restrict this class of moves to the ones necessary for singular Legendrian

Reidemeister moves. A comparison between the moves used for allowable singular grid

diagrams and graph grid diagrams in [8] will be discussed in section 6.

5.1 Singular Commutations

Let G∗1 be a singular grid diagram and let Ci and Ci+1 be two consecutive columns in G∗,

one of which contains an X∗ marking and the other of which does not contain an X∗

marking. Suppose Ci contains the X∗ marking. Let I1, I2 ⊆ R denote the two closed

intervals whose endpoints correspond to the vertical positions of the two O markings and

X∗ marking in Ci, and let Ii = I1 ∪ I2. Let Ii+1 ⊆ R denote the closed interval whose

endpoints correspond to the vertical positions of the X and O markings in Ci+1. A type 1

singular column commutation of G∗1 into a new singular grid diagram G∗2 is obtained by

swapping the consecutive columns Ci and Ci+1 provided one of the following holds,

• Ii ∩ Ii+1 = ∅

• Ii ⊆ Int(Ii+1)

• I1 ⊆ I2 or I2 ⊆ I1, and Ii+1 ⊆ Int(I1 ∩ I2)

• Int(I1) ∩ Int(I2) = ∅ and either Ii+1 ⊆ Int(I1) or Ii+1 ⊆ Int(I2)
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Figure 26: Various Initial Configurations for C1∗

The different situations where a type 1 singular column commutation could be applied are

pictured in Figure 26. This can be defined analogously for rows, and applying either a type

1 singular column commutation or type 1 singular row commutation will be referred to as a

type 1 singular commutation and will be labeled as (C1∗).

For the second type of singular commutation, let G∗1 be a singular grid diagram and let Ci

and Ci+1 be two consecutive columns in G∗1 which both contain no X∗ markings and where

the O marking of Ci is in the same row as an X∗ marking. As before, let Ii, Ii+1 ⊆ R be

the closed intervals whose endpoints correspond to the vertical positions of the X and O

markings in the columns Ci and Ci+1, respectively. A type 2 singular column commutation

of G∗1 into a new allowable singular grid diagram G∗2 is obtained by swapping the

consecutive columns Ci and Ci+1, provided Ii ∩ Ii+1 = ∅. Notice that this move does not

allow for columns which both contain an O marking in the same row to be swapped. This

move can also be defined for rows, and applying either a type 2 singular column

commutation or a type 2 singular row commutation will be referred to as a type 2 singular

commutation and will be labeled as (C2∗). Two situations where a C2∗ move can be

applied are pictured in Figure 27, in which the leftmost two columns can be swapped.

For the last type of singular commutation move, let G∗1 be a singular grid diagram and let

Ci and Ci+1 be two consecutive columns in G∗1 which both contain no X∗ markings and

where the O markings of Ci and Ci+1 occur in the same row. This implies that these two O
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Figure 27: Various Initial Configurations for C2∗

Figure 28: Initial Configuration for C3∗

markings are in the same row as an X∗ marking. A type 3 singular column commutation of

G∗1 into a new singular grid diagram G∗2 is obtained by swapping the consecutive columns Ci

and Ci+1. Notice that no other conditions are applied to Ci and Ci+1 other than that their

O markings are in the same row. This move can also be defined for rows, and applying

either a type 3 singular column commutation or a type 3 singular row commutation will be

referred to as a type 3 singular commutation and will be labeled as (C3∗). Two grid

configurations where this move can be applied are pictured in Figure 28.

5.2 Singular Stabilizations

In addition to singular commutation moves, there are also singular stabilization moves.

Unlike in [8], where the stabilizations occur at the markings in the same row/column as a

X∗ marking, we will allow stabilizations at the X∗ marking itself. In conjunction with C3∗,

these are conventions equivalent, but when in the Legendrian setting later, the distinction

between the two will be important, as C3∗ moves preserve the graph type, but do not
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preserve the singular Legendrian link type.

Let G∗1 be a allowable singular grid diagram of grid size n and consider a local model near a

X∗ marking, which occurs in the ith column and jth row. We present here the case when

the O markings occur on opposite sites of the X∗ marking. The other allowable grid

configurations can be defined analogously, or can be put into this position by sufficiently

many cyclic permutations.

A new singular grid diagram G∗2 of grid size (n+ 1)× (n+ 1) is said to be an X∗ column

stabilization or an X∗ row stabilization of G∗ if it is obtained from G∗1 in the following way

1. Remove the X∗ marking in the (i, j) square, along with the two O markings in the

ith column and the two O markings in the jth row.

2. Split the empty row and column into two rows and two columns by adding a vertical

and horizontal line.

3. Replace the markings according to one of the four options in Figure 29 for a column

stabilization or replace the markings according to one of the four options in Figure 30

for a row stabilization.

For a labeling convention on the type of stabilization used, we following a similar

convention as the nonsingular stabilization. The options are (RS : X∗NW ),

(RS : X∗NE),(RS : X∗SW ), (RS : X∗SE) for row stabilizations and (CS : X∗NW ),

(CS : X∗NE),(CS : X∗SW ), (CS : X∗SE) for column stabilizations, where the location of

the empty square in the 2× 2 box obtained after stabilizing determines if the stabilization

is northwest (NW), southwest (SW), northeast (NE), or southeast (SE).

5.3 Singular Legendrian Front Diagrams and Singular Grid Moves

In order to construct a well-defined grid homology theory for singular Legendrian links, we

need to give local allowable singular grid models for the additional singular Legendrian
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Figure 29: Singular Column Stabilization Configurations

Figure 30: Singular Row Stabilization Configurations
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Reidemeister moves, and show that there is a sequence of singular grid moves connecting

the two allowable singular grids which have been altered by a singular Legendrian

Riedemeister move.

Theorem 5.1. If two allowable singular grid diagrams on the torus represent isotopic

singular Legendrian links, then the two grid diagrams can be related by a sequence of

Legendrian grid moves (C and S:XNW, S:XSE) and the singular grid moves (C1∗, C2∗,

CS:X∗NW, CS:X∗SE, RS:X∗NW, RS:X∗SE).

Proof. If Λ∗1 and Λ∗2 are two singular Legendrian links which are Legendrian isotopic, then

by Theorem 4.2 they are related by a sequence of planar isotopies, Legendrian

Reidemeister moves, and singular Legendrian Reidemeister moves. Theorem 3.4 gives local

grid models for planar isotopies and Legendrian grid moves away from singularities. Planar

isotopies near singularities can be reduced to the nonsingular case by stabilizing near the

singularity. It thus suffices to provide singular grid diagram representatives of the singular

Legendrian Reidemeister moves.

For SLRM1, we show only the case where the orientation near the singularity matches the

grid configuration where the O markings are on opposite sides of the X∗ marking. To see

that this is a valid restriction, notice that in Figure 19, each of the local models for the

orientation near X∗ corresponds to this restriction, as can be seen in Figure 31. If a there

is a different allowable configuration near the singularity, we can put the allowable grid

diagram in this position by applying a sufficient number of cyclic permutations.

For convenience, label the O markings connected to the singular X∗ as O1, O2, O3, O4,

starting on the topmost O marking and labeling counterclockwise. Let X21 be the X

marking in the same column as O2 and let O21 be the O marking in the same row as X21.

Let X5 and O5 be the markings in the straight segment that is to be commuted past the

singularity. By stabilizing, and up to orientation on the segment between X5 and O5,

assume that the diagram starts by looking like the first diagram in Figure 31. The
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following grid moves models a SLRM1 move (for visualization, see Figure 31),

1. Apply a RS : X∗NW move.

2. Commute the row connecting X5 and O5 upwards by applying a C1∗ move.

3. Destabilize with a RS : X∗SE move.

For SLRM2, we also show only the case where the orientation near the singularity matches

the grid configuration where the O markings are on opposite sides of the X∗ marking, for

the same reason as before. For convenience, label the O markings connected to the singular

X∗ as O1, O2, O3, O4, starting on the topmost O marking and labeling counterclockwise.

For the O1 marking, keep track of the corresponding X marking in the same row (labeled

X11), and for the O2 marking, keep track of the corresponding X marking in the same

column (labeled X21). The following grid moves models a SLRM2 move (for a

visualization, see Figure 32),

1. Apply CS : X∗NW and RS : X∗NW .

2. At X11 and X21 perform S : XNW stabilizations.

3. For the column in the X11 stabilization which contains the adjacent X and O

markings, commute and cyclically permute to the right until the column is adjacent

to the column containing O1. Similarly, with the row in the X21 stabilization that

contains the adjacent X and O markings, commute and cyclically permute down

until the row is adjacent to the row containing O2. Notice here that if the X11 and

X21 configuration is opposite that of Figure 32, then cyclic permutation will not be

necessary.

4. In the row containing O1, apply C2∗ as necessary until O1 and O3 are adjacent.

Similarly, in the column containing O2, apply C2∗ as necessary until O2 and O4 are

adjacent. �
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Figure 31: Grid Representation of SLRM1

42



Figure 32: Grid Representation of SLRM2
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6 Graph Grid Homology and Singular Grid Invariants

Now that all of the moves necessary four our setting are described, and we have determined

how allowable singular grid diagrams of isotopic singular Legendrian links are related, we

proceed to discussing singular grid homology and the singular grid invariants.

First, we present the graph grid construction given by Harvey-O’Donnol in [8] and discuss

how it compares to our allowable singular grid diagrams using a natural generalization of

grid homology for links. In their construction, they produce a homology invariant for

transverse spatial graphs. Transverse spatial graphs differ from singular links in that there

is an additional Reidemeister move near singularities. This additional move exists for

graphs because the strand information, i.e. which entering strand corresponds with which

exiting strand, near the singularity does not affect the graph type, while it does affect the

singular link type.

We then will recount their graph grid homology definition, and apply it directly to our

setting to get a grid homology theory for allowable singular grid diagrams. Last, we will

define the singular Legendrian invariant from the graph grid homology, which is defined in

a similar manner to the non-singular Legendrian grid invariants of Ozsváth, Szabó, and

Thurston defined in [24].

Notice that in [8], the role of the X and O markings are opposite our construction. This

change is to allow for a straightforward definition of the singular grid invariant. When

recalling any definition or construction due to [8], we will swap the roles of the X and O

markings to make the definitions more parallel to the definitions we have used.

6.1 Graph Grid Diagrams and Graph Moves

A graph grid diagram is an (n× n) grid in the plane, along with a set of n X markings and

a set of m O markings, where m ≥ n, so that the following rules hold,

• Each row and column contains exactly one X marking.
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• Each row and column may have one or more O markings. Any X marking in the

same row or column as more than one O marking will be decorated with an ∗.

• A square in the grid contains at most one marking.

Comparing this definition with the singular grid diagram definition, notice that an X∗

marking can have a different number of O markings in its corresponding row and column,

it need not have exactly two. Just as with the case of a singular grid diagram, a graph grid

diagram uniquely describes a graph, using the same conventions as the singular grid

diagram uses to describe a singular link.

Notice here that any graph described by a graph grid diagram must be sourceless and

sinkless, as there must always be at least one incoming and at least one outgoing strand

associated to each singularity.

In [8], they describe graph grid moves, which correspond to graph Reidemeister moves. In

the graph setting, the collection of moves is more general than what is needed for allowable

singular grid diagrams, and in fact, some of the moves for graphs do not give grid diagrams

which represent isotopic singular links.

In addition to the non-singular grid moves, the first graph move described in [8] is the

commutation′ move. In fact, the commutation′ move describes the C1∗, C2∗, and C3∗

moves we have defined in Section 5.1. According to Theorem 5.1, only C1∗ and C2∗ are

needed to obtain isotopic singular Legendrian links. In fact, C3∗ does not preserve the

underlying link type.

Moreover, the stabilization′ move described in [8] is also a generalization of our singular

row and column stabilizations. Figure 33 shows an example of a stabilization′ move that is

not one of the singular row or column stabilizations. In fact, performing such a

stabilization′ move affects the singular link type, but not the underlying graph.

45



Figure 33: A Stabilization′ Move Which is Not a Singular Grid Move

6.2 Graph Grid Homology

The homology theory we will utilize in our configuration is a reworking of the graph grid

homology described in [8], adapted to singular Legendrian links instead of graphs. We

recall the definition here.

Let G∗ be a graph grid diagram of size n and let O = {Oi}mi=1 be an ordering on the O

markings of G∗. Just as the unblocked grid homology, the graph grid homology for G∗,

SGH−(G∗), is defined to be the homology of the chain complex (SGC−, ∂−), where SGC−

is the free Z2[V1, ..., Vm]-module generated by S(G∗) and where ∂− is defined on S(G∗) by

∂−(x) =
∑

y∈S(G∗)

∑
{r∈Rect◦(x,y) | r∩X=∅}

V
O1(r)

1 · · ·V Om(r)
m · y,

and then extended linearly to all of Z2[V1, ..., Vm].

The fact that this actually forms a chain complex and is invariant under these grid moves

is largely due to Harvey-O’Donnol in [8].

Using the graph grid homology theory, one can define the singular collapsed chain complex

or the singular uncollapsed chain complex for singular links in an analogous way to the

non-singular setting. In fact, if G∗ represents a knot, we can also define the singular fully

blocked grid homology or the singular simply blocked grid homology.

The Harvey-O’Donnol construction of the more general graph grid homology requires that

singularities be sourceless and sinkless, which is satisfied in our situation, as we are looking

specifically at singular link diagrams that must have two incoming and outgoing strands.
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The proof of invaraiance of the graph grid homology under Harvey-O’Donnol’s

commutation′ and stabilization′ moves is almost a direct translation of the proof given in

[12]. The proof given in [8] provides a proof of invariance of graph grid homology under our

necessary moves (C1∗, C2∗, CS : X∗NW , CS : X∗SE, RS : X∗NW , RS : X∗SE), as they

each are specific cases of the commutation′ and stabilization′ moves and exchanging the

role of the O∗ and X∗ markings does not affect the proof they provide.

6.3 Singular Legendrian Grid Invariants

Let G∗ be an allowable singular grid diagram, and x+ be the grid state whose components

are the NE corners of squares in G∗ that contain either an X marking or an X∗ marking,

and x− be the grid state whose components are in the SW corners of squares in G∗ that

contain either an X marking or an X∗ marking. The homology classes of these grid states

in SGH−(G∗) will be denoted λ±, and, if G∗ represents a knot, in ŜGH(G∗), will be

denoted λ̂±.

Theorem 6.1. Let G∗1 and G∗2 be two allowable singular grid diagrams that differ by a

singular commutation move of type C1∗ or C2∗. Then the quasi-isomorphism

P ∗ : SGC−(G∗1)→ SGC−(G∗2) defined by

P ∗(x) =
∑

y′∈S(G∗1 )

∑
{p∈Pent◦(x,y) | p∩X=∅}

V
O1(p)

1 · · ·V Om(p)
m · y′

is natural with respect to x±. That is, P ∗(x+(G∗1)) = x+(G∗2) and P ∗(x−(G∗1)) = x−(G∗2).

Proof. Let G∗1 and G∗2 be two singular grid diagrams which differ by a C1∗ move. The proof

that P ∗ is a quasi-isomorphism is the same as the proof that P is a quasi-isomorphism in

the nonsingular case, as explained in [8]. It remains to show that P ∗ is natural with respect

to x±. To see this, we first set up a commutation diagram in a way analogous to that

described in Figure 10. The only difference is that one of the X markings in Figure 10 has
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Figure 34: Pentagons Showing P ∗(x±(G∗)) = x±(G∗′)
for C1∗ and C2∗

become an X∗ marking, according to its location in G∗1 and G∗2 .

As P ∗ counts pentagons in the grid, let p ∈ Pent◦(x−,y′) be a pentagon from x− to any y′.

Notice that if y′ is any other marking than x−(G∗2), then p will contain an X marking in its

lower left corner, because any other pentagon leaving the marking in the SW corner of the

X∗ marking will contain X∗, as can be seen in Figure 34. As P ∗ only counts pentagons

that do not intersect any X markings, the only possible p ∈ Pent◦(x−,y′) is the one shown

on the left in Figure 34. Notice that the shaded region pictured is a pentagon according to

the definition given in Section 2.5. The argument for x+ and C2∗ is similar, and their

respective pentagons can be seen in Figure 34.

Theorem 6.2. Let G∗1 be a singular grid diagram and G∗2 be obtained from G∗1 by a

stabilization of type CS : X∗NW , CS : X∗SE, RS : X∗NW or RS : X∗SE. Then there is

an isomorphism Φ : SGH−(G∗1)→ SGH−(G∗2) so that Φ(λ+(G∗1)) = λ+(G∗2) and

Φ(λ−(G∗1)) = λ−(G∗2).

Proof. Let G∗1 and G∗2 be two singular grid diagrams which differ by a stabilization of one of

the listed types. Adapting Proposition 2.8, as is done in [8], gives an isomorphism of

SGH−(G∗2) ∼= SGH−(G∗1). It suffices to show that the image of x±(G∗2) under the map e is

x±(G∗1), where e is as used in Proposition 2.8. Since e is an isomorphism of chain
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complexes, e : I→ SGC−(G∗1)[V1] induced by the one-to-one correspondence between I(G∗2)

and S(G∗1), the grid states x±(G∗1) are mapped to x±(G∗2) under the inverse e′, since the

addition of point c is in both the northeast and southwest corners of X marked squares.

Theorem 6.3. Suppose Λ∗1 and Λ∗2 are singular Legendrian links that are Legendrian

isotopic with allowable singular grid representatives G∗1 and G∗2 , respectively. Then there is

an isomorphism φ : SGH−(G∗1)→ SGH−(G∗2) where φ(λ+(G∗1)) = λ+(G∗2) and

φ(λ−(G∗1)) = λ−(G∗2).

Proof. Theorem 5.1 shows that G∗1 and G∗2 must be related by a sequence of C, S : XNW ,

S : XSE, C1∗, C2∗, CS : X∗NW , CS : X∗SE, RS : X∗NW , or RS : X∗SE moves. Thus,

it suffices to show that each of these moves individually give isomophisms that are natural

with respect to λ±.

C, S : XNW , and S : XSE were shown to induce an isomorphsim in Theorem 3.5. The

pentagon map was used to show that C1∗ and C2∗ are natural with respect to x±, and it

induces a quasi-isomorphism, in Theorem 6.1. For the stabilizations of types CS : X∗NW ,

CS : X∗SE, RS : X∗NW , and RS : X∗SE, it was shown in Theorem 6.2 that these induce

such an isomorphism. Since G∗1 and G∗2 are related by a finite sequence of these moves, each

of which induce an isomorphism on homology, composing these isomorphisms results in the

desired Φ.

Corollary 6.4. Suppose Λ∗1 and Λ∗2 are singular Legendrian links that are Legendrian

isotopic with singular grid representatives G∗1 and G∗2 , respectively. Then there is an

isomorphism φ : ŜGH(G∗1)→ ŜGH(G∗2) where φ(λ̂+(G∗1)) = λ̂+(G∗2) and

φ(λ̂−(G∗1)) = λ̂−(G∗2), where λ̂± is the homology class in ŜGH represented by x±.

Proof. The sequence of isomorphisms from Theorem 5.5 are induced by a sequence of

quasi-isomorphisms of the chain complex SGC−. Adapting these quasi-isomophisms to

ŜGC in the case where G∗1 and G∗2 represent knots, then gives an isomorphism as

desired.
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[5] Y. Chekanov. Differential algebras of legendrian links. Inventiones Mathematicae,
150(3):441–482, Dec 2002.

[6] P. Cromwell. Embedding knots and links in an open book i: Basic properties.
Topology and its Applications, 64(1):37–58, 1995.

[7] John B. Etnyre. Legendrian and transversal knots. Handbook of Knot Theory, page
105–185, 2005.

[8] S. Harvey and D. O’Donnol. Heegaard floer homology of spatial graphs. Algebraic &
Geometric Topology, 17(3):1445–1525, Jul 2017.

[9] L. Kauffman. Invariants of graphs in three-space. Transactions of The American
Mathematical Society, 311(2):697–710, Feb 1989.
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[11] C. Manolescu, P. Ozsváth, and S. Sarkar. A combinatorial description of knot Floer
homology. Annals of Mathematics, 169(2):633–660, Mar 2009.
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[19] P. Ozsváth, A. Stipsicz, and Z. Szabó. Grid Homology for Knots and Links, volume
208 of Mathematical Surveys and Monographs. American Mathematical Society, 2015.
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[21] P. Ozsváth and Z. Szabó. Holomorphic disks and three-manifolds invariants:
properties and applications. Annals of Mathematics, 159(3):1159–1245, May 2004.
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