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Abstract 

Petrography has long been used as a tool to decipher the sedimentary provenance of sand 

and sandstone from the relative proportions of framework grain types. Petrographers have also 

related the proportions of quartz (Q), feldspar (F), and lithic (L) grains to the processes that form 

and modify sediments within sediment routing systems. This past work has shown that factors 

including source lithology, climate, transport history, and tectonism work in concert to modify 

the framework mineralogy of sand. However, there is a lack of a quantitative understanding of 

the interactions and feedbacks between these factors and how they modify sand mineralogy. This 

research aims to establish a predictive framework that constrains the relationship between sand 

framework grain mineralogy and the factors that influence it, including bedrock lithology, 

topography, and climate. Specifically, this study asks, “to what degree can the final modal 

composition of sand be predicted if the boundary conditions that generate sediments are 

known?”. 

This question is investigated by analyzing a globally extensive modal point count dataset 

of 3,522 Pleistocene to modern sand samples from 51 published sources. A petrographic data 

model was created to standardize 287 reported petrographic labels to a final list of 54 labels. An 

inline series of random forest (RF) machine learning algorithms were trained on a subset of 

3,208 fluvial and marine samples whose boundary conditions are known with a high degree of 

confidence. Data for precipitation, temperature, elevation, slope, basin area, and seven 

generalized source lithologies were extracted from sample catchments and used to train 100 RF 

meta-estimators that predict the logarithms F:Q and L:Q ratios as well as eight Q-F-L 

subcompositions, resulting in R2 scores of 0.654 ± 0.031 (1-sigma) and 0.706 ± 0.023 (1-sigma) 



for ln(F/Q) and ln(L/Q) models, respectively. Mean Q-F-L prediction error within one standard 

deviation is 2.6% ± 15% for Q, -1.1 ± 9.4% for F, and -1.5% ± 15.4% for L. 

The Global Prediction of Sand Mineralogy (GloPrSM) model was generated by applying 

the 100 RF meta-estimators to a global dataset of fluvial watersheds (mean area of ~1,500 km2). 

The resulting Q-F-L prediction includes an estimate of spatial uncertainty based upon variability 

in the 100 predictions. In general, the GloPrSM model predicts quartz enrichment in low 

latitudes (35°N to 35°S), feldspar enrichment near plutonic and metamorphic crystalline terranes 

in middle to high latitudes, and lithic enrichment near active margins and flood basalts. Low 

model confidence is exhibited in catchments draining large igneous provinces, in sedimentary 

terranes in middle to high latitudes, and in orogenic settings. Feature importance algorithms 

reveal that slope, temperature, metamorphic source abundance, and felsic to intermediate 

plutonic source abundance are the most important predictors of Q-F-L composition. In addition, 

partial dependence analysis suggests temperatures higher than 15 ºC and large drainage areas 

favor quartz enrichment, while steeply sloping environments favor lithic enrichment. The 

GloPrSM model represents the first, global-scale estimate of sand mineralogical proportions, and 

illustrates that the spatial distribution of Q-F-L at Earth’s surface can be predicted from the first-

order factors that generate sediments. 
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Chapter 1: Introduction 

Sand petrography has long been used as a tool for deciphering sedimentary provenance 

and unraveling the geologic history of modern and ancient landscapes (e.g., Krynine, 1942; 

Potter 1978; Dickinson et al., 1983; Potter, 1994). In many cases, sediments are the only 

remnants of eroded terranes and thus provide insight to the tectonic and paleogeographic context 

of Earth’s distant past. The idea that grain proportions in sand and sandstone reflect the nature of 

the source area and transport history suggests that inferences can be made about the boundary 

conditions that modify sediments, including lithology, climate, physiography, and tectonism 

(Johnsson, 1993). Furthermore, the mineralogical proportions within sedimentary accumulations 

have a direct impact on human activities, with implications for civil engineering (Nilsen et al., 

1976, Gue and Tan, 2006; Qasim et al., 2013; Tarolli and Sofia, 2016), agriculture (Dalal and 

Probert, 1997; Pimentel et al., 1987), tourism (Mestanza-Ramón et al., 2020), climate change 

(Berner et al., 1983; Berner and Berner, 1997; Colbourn et al., 2015), carbon sequestration 

(Lackner et al., 1995; Krevor and Lackner, 2009), groundwater (Aagaard et al., 1990), energy 

(Bloch 1994), paleogeographic reconstruction (Dickinson and Suczek, 1979), and more. Thus, it 

is of paramount importance to understand the relationship between sand mineralogy and the 

processes that modify it. 

1.1. Importance of Sand Mineralogical Studies 

The production of siliciclastic sediment via weathering of primary minerals within 

bedrock and during pedogenesis directly controls the fertility of soil and release of nutrients upon 

which nearly all terrestrial life depends (White and Buss, 2003; Brantley et al., 2007). Yet the 

expansion of agricultural practices due to increased global demand for food and biofuels has 

accelerated nutrient depletion, erosion, and sedimentation rates in developed landscapes (Costa, 
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1975; Pimentel et al., 1987; Dalal and Probert, 1997; Tan et al., 2005; Montgomery, 2007; 

Merten and Minella, 2013). At geologic time scales, silicate weathering has been proposed as the 

principal moderator in controlling fluctuations in global temperature and precipitation (Berner et 

al., 1983; Brady and Carroll, 1994; Berner and Berner, 1997; Gaillardet et al., 1999; Hilley and 

Porder, 2008; Colbourn et al., 2015). Through the consumption of atmospheric CO2, silicate 

weathering products are eventually stored as carbonates in the world’s oceans (West et al., 

2005). Thus, mineralogic proportions in sand can record global climate signals through geologic 

time (Potter, 1978; Hessler et al., 2017). 

Perhaps the greatest relevance of sand mineralogy to human prosperity is the exploitation 

of water- and petroleum-bearing reservoirs in the subsurface. As reservoir quality is a function of 

the volume (i.e., porosity) a container can hold and the rate at which fluids flow from it (i.e., 

permeability), the most prolific reservoirs are those which supply large volumes over short time 

intervals. Numerous studies have established a reciprocal relationship between sediment porosity 

and permeability (Griffiths, 1958; Chilingar, 1964; Bloch, 1994). The re-equilibration of 

framework minerals to subsurface conditions during burial diagenesis commonly results in the 

destruction and dissolution of unstable phases (Nickel, 1973; Siebert et al., 1984; Morton, 1986) 

and the ensuing development of authigenic phases (Land and Milliken, 1981; Boles, 1982; 

Helmold and van de Kamp, 1984; Walker, 1984; Morad et al., 1990), cementation (Longstaffe, 

1984), and secondary porosity (Bjølykke, 1984; Boles, 1984; Franks and Forester, 1984; Markert 

and Al-Shaieb, 1984; Moncure et al., 1984; Surdam et al., 1984; Morton, 1986; Nedkvitne and 

Bjørlykke, 1992), with the extent of diagenetic alteration largely dependent on the starting 

composition of the material (Walderhaug, 1994; Lander and Walderhaug, 1999; Yang et al., 

2017). In general, quartzose sands yield the least rapid reduction in porosity with burial depth 
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(Sclater and Christie, 1980), followed by feldspathic sands (Zeiglar and Spotts, 1978) and lithic 

sands (Galloway, 1974), respectively. Grain size also plays a significant role in porosity-

permeability characteristics of sandstone (Chilingar, 1964; Masch and Denny, 1966; Russell, 

1989) and is in part controlled by mineralogy (Potter, 1978; Blatt, 1982; Ingersoll et al., 1984; 

Zuffa, 1985; Potter, 1986; Tolosana-Delgado and von Eynatten, 2009; Garzanti et al., 2009). 

In addition to the aforementioned applications of sand mineralogical studies, researchers 

have taken interest in the development and implementation of actualistic models to ascertain 

sedimentary provenance. The mineralogical characteristics of a sedimentary deposit can be 

useful in aiding paleogeographic reconstruction. For instance, the identification of unaltered 

feldspars or solution pits in quartz grains has been used as indicators of arid or tropical climates, 

respectively (Krynine, 1950; Franzinelli and Potter, 1983). The plate tectonic paradigm that 

developed during the 1960s and 1970s was followed by the introduction of a revolutionary 

classification scheme that related the detrital modes of terrigenous sand and sandstone to the 

tectonic setting of their source terrane (Dickinson and Suczek, 1979; Dickinson, 1985). The 

“Dickinson model” has seen great success in its application to ancient sedimentary basins 

(Dickinson et al., 1983; Girty, 1987; Jett and Heller, 1988; Ingersoll, 1988; Ingersoll, 1990) and 

has equally been met with criticism (Molinaroli et al., 1991; Weltje, 2006). Other actualistic 

modeling efforts have sought to deduce sand composition from the scale of local drainages to 

entire basins and continents (Ingersoll et al., 1993; Potter, 1986; Potter, 1994). More recently, 

there has been advocacy for updating the approach to actualistic provenance with advanced 

statistical methods (e.g., Weltje, 2002) and the development of dynamic, process-based 

simulations to address the limitations of these foundational models and account for the 

complexities observed in natural systems (Weltje, 2012; Garzanti, 2016). 
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1.2. Controls on Sand Mineralogy 

Decades of research have uncovered a complex system of factors that control the 

composition of clastic sediments (Fig. 1.1; Johnsson, 1993). Clastic detritus undergoes several 

evolutionary stages prior to burial and lithification, and the interplay and feedbacks between 

first-order factors such as source lithology, climate, basin physiography, transport distance, and 

tectonic setting coevally alter the framework proportions in clastic sediments (Suttner et al., 

1981; Johnsson, 1993). If the relative influence of these factors on sediment composition can be 

constrained, so too can their combined influence explain the abundance of framework grains in 

sand. 

Source lithology dictates the petrologic diversity of sediments produced during 

pedogenesis and supplied to sediment routing systems. Under ideal conditions, sand mineralogy 

may closely reflect the composition of the sediment source terrane, such as in the absence of 

chemical weathering (e.g., Potter et al., 2001, Garzanti et al., 2015b) or when sampled from low 

order drainages (Heins, 1992; Ingersoll et al., 1993). However, most environments at Earth’s 

surface are hostile to silicate minerals that are thermodynamically stable at the depths in which 

they form, leading to an inevitable divergence in compositional space between source 

assemblages and their derived sediments with time (Weltje et al., 1998). This process of 

mineralogic modification within sediment routing systems may produce a sedimentary product 

that better records the climatic regime than source lithology (Potter, 1978; Franzinelli and Potter, 

1983; Johnsson et al., 1988, 1991). 

Climate factors include the temperature of the weathering environment and the supply of 

weathering agents, such as water from precipitation and organic acids from the productivity and 

decay of vegetation (Jackson and Keller, 1970; Knoll and James, 1987). Bedrock lithology 
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dictates the starting porosity of unweathered material (Graham et al., 1997; Behrens et al., 2015) 

which can control turnover rates of weathering fluids (Maher, 2010), the composition of 

dissolved solids (Aagaard et al., 2010), and the rate at which dissolved solids are introduced to 

the weathering medium (Lasaga et al., 1994), with the chemical composition and residence time 

of weathering fluids introduced to the critical zone controlling the reaction rate of unweathered 

material (Maher, 2010). Fluid residence time is dependent upon the rate of supply of fresh water, 

where longer residence times correspond to decreasing mineral reaction rates as fluids becomes 

progressively saturated with dissolved solids (Maher, 2010). Furthermore, reaction rates are 

temperature-dependent with higher temperatures accelerating silicate weathering (White and 

Blum, 1995; West et al., 2005). For example, Eq. 31 from White and Buss (2003) predicts that 

silicate reaction rates should increase by an order of magnitude between 0°C and 25°C when all 

else is held constant. Additionally, Riebe et al. (2004) measured 10Be cosmogenic nuclides from 

sampled granitic outcrops in North America and New Zealand to show coupled temperature and 

precipitation explain 67-84% of variance in the measured chemical depletion fraction across their 

study area.  

Topographic elements such as elevation and slope govern the residence time of sediments 

and the duration of weathering during pedogenesis. Low slopes favor longer residence times as 

the aid of gravity-driven transport is diminished, while steep slopes, often associated with high 

elevation settings, lead to the rapid downslope transport of material and generally correspond to 

high sedimentation rates in adjacent sedimentary basins (Johnsson, 1993). The weathering 

regime can be thought of in terms of the relationship between residence time and mineral 

weathering rates. Where the supply of weathering agents is large relative to the supply of 

unweathered material and the residence time of the material is long compared to the reaction 
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rate, minerals may be significantly or wholly altered before removal (Stallard and Edmond, 

1983; Johnsson, 1993; West et al., 2005; Maher, 2010, Sklar et al., 2017). This “transport-

limited” regime is controlled by the supply of fresh, unweathered solids, where the transport of 

material is slow compared to chemical weathering rates. Conversely, a “kinetically-limited” 

regime occurs where silicate weathering is incomplete, as the supply of material is high relative 

to the rate at which it is altered or if it is removed faster than it is supplied (Stallard and Edmond, 

1983; Johnsson, 1993; Sklar et al., 2017). Generally, steep slopes favor high denudation rates, 

thus limiting the exposure of sediments to weathering in the depositional environment (Johnsson, 

1993). 

Previously, sediment transport processes were thought to remove softer grains via 

mechanical breakdown and to promote the relative enrichment of durable constituents (Martens, 

1931; Plumley, 1948; Hayes, 1962; Pittman, 1969). However, Garzanti et al. (2015a) showed 

that physical processes that operate during transport were insufficient to modify sand 

composition along the 1,750 km Orange littoral cell of the Atlantic coast of Africa. In a tumbler 

experiment, Osborne et al. (1993) revealed that different grain sizes became statistically 

homogeneous after significant transport distances and suggested that observed compositional 

differences are the result of sedimentological processes rather than from mechanical reduction in 

grain size. Compositional evolution during transport in fluvial systems may be associated with 

transport-limited weathering processes acting on alluvially stored sediments in fluvial systems 

(Johnsson, 1993). Despite the relative lack of influence of mechanical processes on the alteration 

of clastic sediment composition during transport, it is often difficult to separate the effects of 

mechanical and chemical weathering as the least durable constituents are often chemically labile 

(Johnsson, 1993). Furthermore, the comminution of grains during transport can accelerate 
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chemical weathering following a proportional relationship between grain surface-area-to-volume 

ratio and reaction rates (White and Brantley, 2003; Gabet and Mudd, 2009; Israeli and 

Emmanuel, 2018).  

Tectonic setting has been regarded as the overarching control of clastic sediment 

composition due to its influence on several of the aforementioned factors (Pettijohn et al., 1972). 

With rapid uplift, climate in the source area can be modified as temperatures fall and liquid 

precipitation is reduced. Tectonism determines topographic characteristics of a drainage basin 

where rapidly uplifted settings favor higher denudation rates and associated kinetically limited 

weathering regimes. With the development of plate tectonic theory, the global distribution of 

rock types could be better explained in terms of plate tectonic setting (Dickinson and Suczek, 

1979; Valloni and Maynard, 1981; Dickinson et al., 1983, Yerino and Maynard, 1984). This 

association has led to the development of classification schemes that relate framework modes of 

a sample to the geodynamic setting of its source terrane (Dickinson and Suczek, 1979; 

Dickinson, 1985).  
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Figure 1.1. Schematic diagram of the system that controls the composition of clastic sediments, 

modified after Johnsson (1993). Complex interactions and feedbacks at Earth’s surface drive 

progressive changes in mineral abundances prior to final deposition and lithification. 

 

The notion that sediments generated in different geodynamic settings will plot in distinct 

fields on a ternary diagram has faced criticism since the conception of the Dickinson model 

(Molinaroli et al., 1991; Weltje, 2006; Garzanti, 2016, 2019). Molinaroli et al. (1991) showed 

that Dickinson et al. (1983) successfully classified the tectonic setting of no more than 85% of 

North American Phanerozoic sandstones in their database when using the Dickinson model. 

Further evaluation by Weltje (2006) suggested that Molinaroli et al. (1991) overestimated the 

discriminatory power of the Dickinson model, with an updated success ratio ranging between 
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64% and 78% for the four ternary classifications used by Dickinson et al. (1983) (Q-F-L, Qm-F-

Lt, Qm-P-K, Qp-Lv-Ls). Factors such as source lithology, sampling scale (Ingersoll et al., 1993), 

basin slope (Stallard, 1988), and climate (Nesbitt et al., 1996) can alter sediment composition 

along sediment routing systems (Fig. 1.1) and are not accounted for in the Dickinson model. 

Furthermore, not all tectonic settings are represented in this classification, some of which 

represent significant areal proportions of Earth’s surface, such as anorogenic flood basalts, 

transform margins, and other hybrid settings. In effect, sediments derived from vastly different 

source terranes can plot in the same provenance fields (e.g., Hunter, 1967; Johnsson et al., 1991; 

Garzanti et al., 2015b).  

1.3. Purpose of This Study 

Provenance analysis often applies inverse modeling approaches to infer cause from effect 

(e.g., tectonic setting from point counts) (Graham et al., 1976; Valloni and Maynard, 1981; 

Maynard et al., 1982; Bhatia, 1983; Dickinson et al., 1983; Bhatia and Crook, 1986; Roser and 

Korsch, 1986; Ingersoll, 1990; Marsaglia, 1992; Marsaglia and Ingersoll, 1992; Marsaglia et al., 

1995a, 1995b; Weltje et al., 1998; Weltje and Prins, 2003; Verma and Armstrong-Altrin, 2013). 

However, few studies have forward modeled sediment generation based on fundamental 

controlling factors (Weltje, 2012). Heins and Kairo (2007) introduced SandGEM, an empirical, 

Bayesian belief network-based forward model, to predict sand mineralogy and texture as a 

function of environmental controls. Others have used data-calibrated theoretical approaches to 

quantify mineral weathering rates, major element geochemistry, mass transfer, and soil formation 

in response to chemical, mechanical, and geomorphological processes (Gabet, 2007; Yoo and 

Mudd, 2008; Gabet and Mudd, 2009; Yoo et al., 2009; Ferrier et al., 2010; Hilley et al., 2010; 

Maher, 2010; Brantley and Lebedeva, 2011; von Eynatten et al., 2012, 2016; Israeli and 
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Emmanuel, 2018). Despite these significant advances, there is not yet a framework that 

integrates a suite of environmental factors and processes (e.g., Fig. 1) to predict the 

spatiotemporal evolution of mineral abundances in clastic, sand-sized sediments at the global 

scale. 

This research aims to better understand how Earth-surface processes are manifested in 

sediment and the sedimentary archive. Herein we introduce the Global Prediction of Sand 

Mineralogy (GloPrSM) model that is derived from a series of machine learning models trained 

on a global petrographic database compiled from 51 published sources. Following the 

methodology of previous actualistic studies (e.g., Ingersoll, 1990, 1993; Garzanti, 2016, 2019), 

GloPrSM model is calibrated to Pleistocene-modern samples whose boundary conditions can be 

inferred with a high degree of confidence. The data-driven, forward modeling approach 

presented herein draws on first-principle relations between sand composition and its controlling 

factors, incorporating globally extensive climatic, topographic and lithologic datasets. The 

GloPrSM model includes predictions for several sand classification schemes, including Q-F-L 

(Dickinson, 1970; Garzanti, 2019), Qm-F-Lt (Dickinson, 1985), and an internally developed 

scheme to predict Q-F-L proportions and eight Q-F-L subcompositions. The GloPrSM model 

provides insights into the fundamental controls on sand mineralogy through stochastic 

simulations and novel model interrogation techniques (Pedregosa et al., 2011; Molnar, 2020). 

The result is a high-resolution, first-order estimate of the global distribution of sand mineralogy 

explained in the context of Earth’s present-day source-to-sink systems.  
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Chapter 2: Methods 

2.1. Published Data Sources 

This research is based upon a compilation of sand mineralogical (i.e., modal point count) 

data acquired from published sources (Supplemental Table A). Several criteria must have been 

met for a data source to be included: 1) published data were reported as raw sedimentary point 

counts or recalculated percentages of raw point counts, 2) point counts were collected from 

unconsolidated, sand-sized sediments (Wentworth, 1922), 3) samples are Pleistocene or younger, 

4) sample locations were reported, either as coordinates or plotted on study area maps, and, 5) 

data were reported for individual samples instead of as averages of multiple samples. The sand 

modal composition database was compiled from 51 published sources, the majority from peer-

reviewed journal articles and university theses (Supplemental Table A).   

2.2. Data Model and Methodological Parameters 

Point count parameters may vary by label and definition depending on the published 

source. Furthermore, methodological approaches may vary by point counting operator. To 

address the lack of a consistent format for published point count data, a data model was designed 

to standardize modal point counting parameters (Supplemental Table B) and to capture 

methodological metadata (Table 2.1). First, petrographically distinct grain types were identified 

from source publications. For instance, chert grains may be reported in different source tables as 

the labels ‘Lh’, ‘Lch’, or ‘Lsch’ (e.g., Marsaglia et al., 1995a, 1995b; Rittner et al., 2016; 

Garzanti et al., 2019). Moreover, chert may be defined simply as “chert” (e.g., Malkowski and 

Hampton, 2014), or more specifically as “sedimentary chert or cherty argillite lithic” (e.g., 

Marsaglia and Ingersoll, 1992; Van Grinsven and Marsaglia, 2019). As each of these labels and 

definitions describe the same, or similar, petrographic observations, the data model standardizes 
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chert’s label as ‘Qch’. Using this approach, 287 unique point counting labels were distilled to a 

final list of 54 point counting parameters, following these guidelines. 

1. The most specific point counting label was used, whenever possible. For example, if an 

author reported counts of both monocrystalline quartz and polycrystalline quartz, these 

data would be reported separately and not combined under the umbrella quartz (Q) 

category. However, some authors reported data in more detail than captured in the data 

model. In this case, data were generalized into the appropriate point counting parameter. 

For example, Marsaglia et al. (1995a, 1995b) reported grain types of “quartz-mica 

tectonite lithic” and “quartz-feldspar-mica aggregate lithic” which are both grouped 

under ‘Lmh’ (Supplemental Table B). 

2. Point counts are never included twice. For example, if a source reports counts for K-

feldspar and plagioclase, these data would not be also included under the “feldspar” (F) 

point counting parameter. 

3. Primary compositions (e.g., Q, F, L) may be counted alongside their corresponding 

subcompositions (e.g., Qm, K, Lv) if the source did not supply sufficiently detailed 

definitions of the subcomposition. For example, Chamov and Murdmaa (1995) report P 

as “clearly identified calcic, intermediate, and sodic plagioclases” and F as “other 

feldspars with refractive index n < 1.540”, yet F does not imply the presence of alkali 

feldspars (K). Thus, counts of both P and F were added to the database, with counts of P 

excluded from counts of F.  

4. Zero values for a point counting parameter indicate that the parameter was included in the 

source’s counting scheme but not found in the sample. Null values were used to indicate 

that a point counting parameter was not counted for a given sample. 
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Additionally, the data model records differences in data acquisition and reporting as 

methodological parameters (Table 2.1). For instance, the ‘Qch_as_Qp’ parameter was used to 

record whether a data source counted chert as polycrystalline quartz and the ‘GaDi’ parameter 

was used to indicate whether the Gazzi-Dickinson method (Ingersoll et al., 1984) used during 

point counting. Methodological parameters were chosen to provide a measure of data quality and 

consistency. 

Table 2.1. List of methodological parameters recorded during data compilation. 

 

2.3. Data Compilation – Dependent Variables 

Published datasets were compiled in Microsoft Excel as exact replicas. A modified 

spreadsheet was created to reassign reported petrographic labels to their new label following the 

data model (Supplemental Table B). After label reassignment, Q-F-L and Qm-F-Lt ternary 

values were recalculated following the classification schemes of Dickinson (1970, 1985) and 

Garzanti (2019) (Supplemental Table F). The Dickinsonian approach seeks to use the framework 

modes of sediments as a proxy for identifying sedimentary provenance and paleotectonic setting. 

This classification counts chert toward the Q-pole in a Q-F-L system due to its stability 

(Dickinson, 1970). Furthermore, counts of extrabasinal carbonate grains are excluded from 

recalculations of lithic proportions due to their propensity to chemical alteration or removal in 

certain weathering environments, and their ease of confusion with intrabasinal clasts (Dickinson, 

Methodological Parameter Description 

Qch_as_Qp Chert was counted as polycrystalline quartz 

GaDi 
Gazzi-Dickinson method was used during the point counting 

procedure 

Q_undiff 
Total quartz is divided into subcompositions, such as 

monocrystalline or polycrystalline quartz 

Raw_as_pct Raw point counts are reported as percentages 

Ternary_vals 
Values are reported in ternary proportions instead of raw 

counts or percentages 

Location_approximate Georeferencing was used to determine sample locations 



 14 

1985). Both polycrystalline quartz and chert are included with the total lithics (Lt) of the Qm-F-

Lt scheme of Dickinson (1985). On the other hand, Garzanti (2019) counts chert towards the L-

pole in a Q-F-L system on the basis that chert cannot always be distinguished from other lithic 

grain types such as felsitic volcanic lithics and argillitic grains. Garzanti (2019) also argues that 

all extrabasinal lithic grain types be included in recalculations of lithic proportions, as the 

exclusion of carbonates on the notion of lability is inconsistent with the inclusion of even more 

labile grain types such as shale and gypsum. This exclusion of weathering-susceptible 

sedimentary grains leaves very few observations of sedimentary grains being recorded (Garzanti, 

2019). 

Following the principles of Dickinson (1970, 1985) and Garzanti (2019), an internal 

classification scheme was developed to calculate grain proportions for eight commonly observed 

groups of parameters (Supplemental Table F). Monocrystalline quartz (Qm), polycrystalline 

quartz (Qp), and chert (Qch) were subdivided from the Q-fraction of the Q-F-L global prediction, 

while alkali feldspar (K) and plagioclase feldspar (P) were subdivided from the F-fraction, and 

volcanic lithics (Lv), sedimentary lithics (Ls), and metamorphic lithics (Lm) were subdivided 

from the L-fraction. The purpose of this octonary classification is to increase the granularity of 

model predictions while still being able to regroup these parameters in Q-F-L proportions. In this 

hybrid model, chert is classified under total quartz in a Q-F-L ternary system while counts of 

extrabasinal carbonate lithics are counted toward the L- and Ls-poles. Despite arguments against 

classifying chert as a quartzose grain type (Garzanti, 2019), we have chosen to group Qch under 

the Q-pole, in part due to its chemical stability, but, more importantly, due to inconsistency in the 

reporting of chert as polycrystalline quartz (Table 2.1). 
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Recalculated proportions from each scheme are the dependent variables for the GloPrSM 

models and were calculated in Python. Recalculated parameters are sum-to-one values and were 

not calculated if any of the categories lacked counted parameters (i.e., null values). For example, 

Qm-F-Lt would not be calculated if an operator did not count Qm as separate category. 

2.4. Statistical Treatment of Recalculated Parameters 

By nature, compositional (i.e., sum-to-one) data are constrained and unable to assume 

any value greater than 1 and less than 0. For this reason, compositional data cannot be 

statistically treated by methods designed for use with unconstrained data (Chayes, 1960; 

Aitchison, 1982; Weltje, 2002). To account for this, an additive log ratio transformation 

(Aitchison, 1982) was applied to each classification’s recalculated proportions: 

𝑦𝑖 =  𝑙𝑛 (
𝑥𝑖

𝑥𝑘
)  𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑘 − 1    (1) 

where 𝑥𝑖 represents the relative abundance of the ith component in a system with k constituents 

(k = 3 for ternary systems), and the kth component’s value, 𝑥𝑘, is specified from the sum of the 

other k – 1 components. Ratios alone (e.g., F:Q or Q:F) are asymmetric depending on the value 

assigned to the denominator, and arbitrarily choosing one value or the other can yield different 

results of mean or variance (Weltje, 2012). By taking the logarithms of ratios, symmetry is 

restored and variances are identical regardless of a components place in the log ratio’s numerator 

or denominator (Weltje, 2012). 

Prior to log transformation, an imputation was applied to the compositional dataset where 

zero values were replaced by 0.001, implying 1 occurrence of a component for every 1000 

recorded observations (Martin-Fernandez et al., 2003; Weltje, 2012; Vermeesch, 2018). The 

purpose of the imputation was to, 1) maximize the size of the training dataset as the natural log 

of zero is indeterminable, and 2) to retain important information contained by end-member 
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values (e.g., Q = 100%). With the imputed dataset, log ratios can now assume any value between 

𝑙𝑛 (
0.001

1
) and 𝑙𝑛 (

1

0.001
). All possible combinations of log ratios were calculated for each 

classification, resulting in k2 – k combinations for each system (e.g., 6 possible combinations for 

ternary systems). An inverse transformation was applied return log-ratio values to their 

corresponding sum-to-one values (Supplemental Table G): 

𝑧𝑖 = {

𝑒𝑦𝑖

1+ ∑ 𝑒𝑦𝑖𝑘
𝑖=1

 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑘 − 1

1

1+ ∑ 𝑒𝑦𝑖𝑘
𝑖=1

 𝑓𝑜𝑟 𝑖 = 𝑘
    (2) 

where zi is the inverse transformed composition of the ith log-ratio in a system with k 

components. 

2.5. Data Compilation – Independent Variables 

Prior to the widespread use of GPS, most authors did not report sample locations as 

coordinates. For these sources, sample locations were georeferenced from study area maps in 

ArcGIS software using the WGS84 datum. Samples with reported coordinates were imported to 

ArcMap as point features, converted to the WGS84 datum if necessary, and subsequently 

georeferenced to flow accumulation lines corresponding with the original sample location. 

Where possible, published data tables containing the names of streams and beaches from which 

samples were collected were used to inform the georeferencing workflow. 

Two flow accumulation datasets were employed for georeferencing tasks, following 

Sharman and Malkowski (2020). For samples south of 60°N, the HydroSHEDS HydroRIVERS 

15 arc-second global river network was utilized (Lehner et al., 2008). Only fluvial and littoral 

samples were georeferenced to HydroRIVERS, as samples from other depositional environments 

(e.g., aeolian, marine, lacustrine) do not necessarily correspond to river and coastline locations.  

Fluvial sample point features were manually moved to intersect flow accumulation polylines 
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representing the river reaches corresponding to their original sampled locations. This practice 

ensured that the calculated watershed for that sample correctly captured its upstream drainage 

area. Littoral sample locations were drawn as polygon features that extended from the reported 

sample location along the reach of coastline to the source of their respective littoral cells, often 

intersecting several high flow accumulation polylines along the reach of the coastline. This 

practice was employed to ensure that littoral samples included all relevant fluvial inputs. Where 

possible, the identification of littoral cell extent was informed by the source publication. 

Watershed boundaries were delineated using the HydroSHEDS 15 arc-second flow direction 

grid. Subsequently, these catchment polygons were resampled to the resolution of the ETOPO1 

Global Relief Model (Amante and Eakins, 2009). 

ETOPO1 is a 1 arc-minute global digital elevation model (DEM) that integrates land 

surface elevation and ocean bathymetry (Amante and Eakins, 2009). A flow accumulation 

polyline feature dataset was extracted from the ETOPO1 DEM and employed to georeference 

samples located north of 60°N and those collected from offshore depositional environments. 

Source publications were used to guide the placement of marine sample polygon features and 

determine if they should overlap flow accumulation polylines representing submarine canyon 

networks or other local sediment routing networks. Catchment boundaries were then delineated 

from an input flow direction dataset extracted from the ETOPO1 DEM. Once all catchment 

boundaries were computed as raster data types, each was converted to a polygon feature to 

calculate catchment area (Fig. 2.1b) and catchment-averaged elevation (Fig. 2.1c). In total, 3,208 

catchment boundaries were delineated in ArcGIS for samples spanning fluvial, littoral, nearshore 

shelf, and deepwater depositional settings. 
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Figure 2.1. Independent variables and their source datasets used in this study: a) bedrock 

lithology (GLiM, Hartmann and Moosdorf, 2012), b) maximum basin drainage area, c) elevation 

(ETOPO1, Amante and Eakins, 2009), d) slope (EarthEnv-DEM90, Robinson et al., 2014), e) 

precipitation (WorldClim v1.4, Hijmans et al., 2005), and f) temperature (WorldClim v1.4, 

Hijmans et al., 2005).  

 

HydroATLAS is a compilation of two globally extensive, hydro-environmental databases 

(BasinATLAS and HydroRIVERS; Lehner et al., 2008; Linke et al., 2019). From BasinATLAS, 

three datasets were extracted at the level 12 catchment scale (Fig. 2.1) to satisfy data 

requirements for the independent variables, including precipitation and temperature (WorldClim 

v1.4, Hijmans et al., 2005), terrain slope (EarthEnv-DEM90, Robinson et al., 2014), and bedrock 
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lithology (GLiM, Hartmann and Moosdorf, 2012). These datasets are stored in the BasinATLAS 

feature dataset and were downloaded from the HydroSHEDS website (https://hydrosheds.org/) as 

shapefiles before subsequent being converted to raster format. Independent variable raster 

datasets were loaded into Python as NumPy arrays using the Rasterio external library (Gillies et 

al., 2019), and the catchment polygons were loaded using the GeoPandas external library 

(Jordahl et al., 2020). Catchment polygons were iteratively used to mask the independent 

variable arrays, allowing basic arithmetic operations to be performed on the intersection. 

Excluding the GLiM dataset, the average, minimum and maximum values in each catchment 

polygon were extracted for each independent variable. For GLiM, the relative areal abundance of 

each “first level” lithologic class (16 total classes, Hartmann and Moosdorf, 2012) present in 

each catchment polygon were calculated. To reduce the total number of independent variables, 

each lithologic proportion was assigned to a new category based on shared mineralogic 

associations between each lithology (Table 2.2); lithologic classes in the ‘Unassigned’ group 

were excluded from the GloPrSM model training dataset.  
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Table 2.2. GLiM database lithologies and their reassigned groupings based on assumed 

mineralogical associations. 

Original Lithologic Class Label Reassigned Lithologic Group 

Plutonic Acid PA 
Felsic to Intermediate Plutonic 

Plutonic Intermediate PI 

Plutonic Basic PB Mafic Plutonic (undivided) 

Pyroclastic PY 

Felsic to Intermediate Volcanic + Pyroclastic Volcanic Acid VA 

Volcanic Intermediate VI 

Volcanic Basic VB Mafic Volcanic (undivided) 

Sedimentary Mixed SM 

Siliciclastic + Mixed + Unconsolidated Sedimentary Sedimentary Siliciclastic SS 

Sedimentary Unconsolidated SU 

Metamorphic MT Metamorphic (undivided) 

Evaporites EV 
Evaporites + Carbonates 

Sedimentary Carbonate SC 

Ice and Glaciers IG 

Unassigned No Data ND 

Waterbodies WB 

 

2.6. Machine Learning 

2.6.1. Model Selection – Random Forest Regressor 

Due to the numerical, multivariate nature of the dependent and independent datasets, the 

Scikit-Learn Random Forest (RF) Regressor algorithm was selected for machine learning 

modeling tasks (Pedregosa et al., 2011). RF is a widely employed algorithm that can constrain 

complex, non-linear relationships between predictor and response variables (Breiman, 2001). In 

addition, RFs are known for their high accuracy, interpretability, and are capable of handling a 

large number of predictor variables. RFs are composed of a series of decision or regression trees 

(Fig. 2.2) and draw upon two elements of randomness in their construction. First, a bootstrapped 

dataset is built from a subset of the original dataset that is randomly selected with replacement, 

leaving approximately one-third of the cases unused. Second, a subset of predictor variables are 

chosen when splitting each node. When applying the RF, each tree in the forest generates an 
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individual prediction. While individual trees may be weak estimators, their predictions are 

averaged to produce a final result that is relatively insensitive to noise from new datasets.  

 
Figure 2.2. Conceptual diagram of a random forest regressor, adapted from TIBCO 

(https://www.tibco.com/reference-center/what-is-a-random-forest). Random forests comprise a 

series of N decision or regression trees. When applied to a new dataset, each tree in the forest 

generates an individual prediction, with all predictions averaged to produce a result that is 

relatively insensitive to noise. 

 

Regression trees are composed of root nodes, internal nodes, and terminal or “leaf” 

nodes. In each tree, a random subset of the predictor features is selected without replacement 

when splitting a node. This subset can contain as few as 2 features or up to as many features as 

are present in the input dataset; the Scikit-Learn RF Regressor defaults to the latter. At the root 

node, each feature is evaluated by how well it can predict the target value using the mean square 

error (MSE) estimated over 𝑛 samples: 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1     (3) 

where �̂�𝑖 is the predicted value of the ith sample and 𝑦𝑖 is the corresponding true value. First, 

each feature’s values are compared against the target values (i.e., �̂�). A split is then made 
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between each feature value in the sequence, and the mean of the target values is computed on 

either side of the split (Fig. 2.3). The difference between the true value and the mean is 

calculated and summed for all individual values on each side of the split. The split value is 

iterated over each feature value in the sequence, and the MSE computed. The split with the 

lowest MSE is chosen as a candidate for the node value.  

 
Figure 2.3. The splitting framework employed by a single regression tree, using mean 

temperature as an example feature with data points colored by their MSE. Each feature’s value 

becomes a split value, with the mean of the target values and each data points MSE calculated on 

either side of the split. 

 

This process is repeated for all features in the dataset, and the feature with the lowest 

MSE is selected to be the root node value which is subsequently split into true and false 

outcomes (Fig. 2.4), and the iterative evaluation of a feature condition by its MSE is performed 
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for the internal nodes representing these outcomes. Nodes will continue to expand until 1 of 3 

scenarios occur, in which case a leaf node is realized: 1) the MSE of an unsplit node is higher 

than if the node were split, 2) the leaf is pure (MSE equals zero), or 3) the node contains less 

than the required number of samples needed to split a node (2 samples minimum). 

 
Figure 2.4. Conceptual diagram of a single regression tree within a random forest regressor. 

Decisions are made in a top-down fashion through root (orange), internal (blue), and terminal or 

“leaf” nodes (green). MSE is used to evaluate features when assigning a node condition, and, in 

general, MSE decreases as the terminal nodes are approached. 

 

2.6.2. Model Training and Cross Validation 

Cross-validation techniques were employed during model training to prevent overfitting. 

When training a model, it is common practice to use a held-out test set to validate model 

performance. Testing the prediction function on the data from which it was derived would repeat 



 24 

the labels of the samples it has already seen and fail to make a useful prediction from yet unseen 

data (Pedregosa et al., 2011). As the input dataset is stratified by Source ID and consequently by 

geographic location, the ShuffleSplit cross validator was chosen. This algorithm randomly 

selects rows from the input dataset to divide the training and test sets. ShuffleSplit was run with 

100 re-shuffling and splitting iterations for each log-ratio combination for each classification 

scheme. In each shuffle, a random forest regressor was instantiated with the number of 

estimators (i.e., trees in the forest) set to equal to the length of the dataset, the test size set as 0.2 

(train size becomes 0.8 by default), and the random state set to 0 for reproducibility; the 

remaining hyperparameters such as max_depth, min_samples_split, and min_samples_leaf were 

kept as their package default values. The RF was then fit to the shuffled training features and 

target variables (e.g., ln[F/Q]), and a prediction was generated from the test features. The 

prediction was scored against the test labels using the R2 coefficient of determination. Model 

performance was documented with each shuffle, and the log-ratio combination with the best 

median performance of the 100 shuffles was chosen to generate future predictions (Supplemental 

Table D). 

2.6.3. Permutation Feature Importance 

A Scikit-Learn permutation importance algorithm was employed to assess the influence 

of each predictor variable on model accuracy (Pedregosa et al., 2011). This model inspection 

technique is applied to a fitted estimator (i.e., RF) by randomly permuting the values of a 

variable from the test dataset and generating a new prediction using the trained model. The R2 

score is calculated for the new prediction and compared to the original score generated from the 

validation prediction. This process was repeated 30 times for each predictor variable; variables 

with the largest residual R2 score are considered most important as they control the model’s 
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ability to explain variation in the dataset from which they are trained. Due to the extensive 

processing time and computing power required to implement the permutation importance 

algorithm, variable importance was only calculated for the highest scoring RFs from 100 

ShuffleSplit iterations.  

2.6.4. Feature Partial Dependence 

The Scikit-Learn partial dependence (PD) algorithm (Pedregosa et al., 2011) was 

employed to quantify the log-ratio prediction’s response to sequential changes in each predictor 

variable’s values (Molnar, 2020). To compute PD of the Q-F-L prediction, a grid is initialized to 

contain evenly spaced values between the minimum and maximum values of each predictor 

variable. Iteratively, each variable’s original values are replaced by a value from the grid while 

holding the remaining variable values constant before a new log-ratio prediction is generated and 

its mean is computed. The result is a series of predicted values representing the sequential 

change in log-ratio composition as a function of a predictor variables values. Long processing 

times only allowed for the partial dependence to be calculated for the highest scoring RFs from 

100 shuffles.  

2.7. Developing a Global Predictive Model 

Integrated upstream watershed boundaries were computed for BasinATLAS level 8 

catchment polygons and independent variable data (Fig. 2.1) were subsequently collected for 

each integrated watershed. Catchments in Greenland and Antarctica were excluded as these 

landmasses have very few watersheds not covered by ice and glaciers. The resulting dataset 

contains 183,672 watershed polygons with approximate mean and median areas of 27,000 km2 

and 1,500 km2, respectively. The trained RFs were applied to this dataset to generate 100 log-

ratio predictions for each classification system (Supplemental Table D) during the ShuffleSplit 
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procedure. Statistics were calculated from variations within each classification’s 100 predictions 

and include the prediction mean, median, standard deviation, skewness, 2.5th percentile, 25th 

percentile, 75th percentile, and 97.5th percentile. These variances were then inverse transformed 

to ternary values (Eq. 2) and their interquartile range and range of the inner 95% of the predicted 

distribution were calculated from the percentiles. Results were joined with the BasinATLAS 

level 8 shapefile to be mapped in ArcGIS software. 

Chapter 3: Results 

3.1. Sand Modal Composition 

The sand modal composition database contains data for 3,512 Pleistocene-modern 

samples spanning all continents except Antarctica (Supplemental Table C). An average of 364 

point counts were conducted per sample, and the dataset thus contains approximately 1.2 million 

point counts of which ~50% are quartzose grains, 17% are feldspar, and 33% are lithic and other 

grain types (Fig. 3.1). Samples were categorized into nine depositional environments (Fig. 3.2). 

Approximately 65.6% of samples are from fluvial environments, 15.2% from marine 

environments, 15.1% from littoral environments, and 4.1% from aeolian and other environments. 

Database sample catchments have a median area of approximately 6,400 km2. With 69.7% of 

samples deposited in terrestrial environments, data coverage roughly amounts to a terrestrial 

sample for every 61,000 km2 of Earth’s land area, a beach sample every 1,300 km of coastline, 

and a sample for every 145,000 km2 of Earth’s total surface area. 
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Figure 3.1. Ternary plot of database samples for fluvial, littoral, and marine depositional 

environments. Feldspathic samples are least abundant and quartzose samples are the most 

abundant, especially in littoral and fluvial environments. 

 

 
Figure 3.2. Map of 3,512 Pleistocene-modern sand samples and their depositional environments. 
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3.2. Model Performance – Q-F-L 

The mean R2 score of the 100 ShuffleSplit ln(F/Q) models is 0.654 ± 0.031 (1-sigma) 

with minimum and maximum scores of 0.560 of 0.730, respectively. For ln(L/Q), the mean R2 

score is 0.706 ± 0.023 (1-sigma) with minimum and maximum scores of 0.654 and 0.770, 

respectively (Fig. 3.3; see Supplemental Table D for results from all models). The validation 

dataset used to evaluate model performance during the 100 ShuffleSplit iterations contains 

61,100 total samples for each of the ln(F/Q) and ln(L/Q) models. Figure 3.4 shows a scatter of 

the true log-ratio composition against the validation prediction with 1-, 2- and 3-sigma 

confidence ellipses. The imputation of the zero values for lithic and quartz data leads to lower 

prediction confidence for ln(L/Q), as the true imputed values are compared against a wide range 

of values for the validation prediction (Fig. 3.4). 

Log-ratios from the validation prediction were inverse transformed to provide an estimate 

of prediction error (predicted minus true composition) in Q-F-L ternary space (Fig. 3.5). Error in 

the prediction of quartz averages 2.6% ± 15% (1-sigma) indicating a slight overprediction of 

quartz abundance relative to its true values in the validation dataset. Prediction error for feldspar 

is -1.1% ± 9.4% (1-sigma), and for lithics is -1.5% ± 15.4% (1-sigma), suggesting a slight 

underprediction of these components relative to their true values.  
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Figure 3.3. Frequency distribution of R2 scores from 100 ShuffleSplit iterations for ln(F/Q) and 

ln(L/Q) models. On average, ln(L/Q) models outperform ln(F/Q) models and display a narrower 

distribution. 

 
Figure 3.4. Scatter plots of true log-ratio composition against the validation prediction. 
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Figure 3.5. Histograms of Q-F-L error percent (prediction minus true) and their standard 

deviations for 61,100 samples of the validation dataset. 

 

3.3. Global Prediction of Sand Mineralogy (GloPrSM) 

3.3.1. Q-F-L Classification 

The median of the 100 global ln(F/Q) and ln(L/Q) predictions from this study’s internal 

classification scheme was inverse transformed to ternary Q-F-L values (Eq. 2) and mapped to a 

cyan-yellow-magenta (CYM) color scale (Fig. 3.6). Total quartz (Q) is predicted to be the most 

abundant component of sand with an area-weighted abundance of 68.5%. Predicted global Q 

abundance displays a bimodal distribution with modes at 45-50% and 90-95% (Fig. 3.7a). In 

general, quartzose sands are most common in low latitudes and within broad, low elevation 

basins, with relative enrichment predicted to occur in the Gulf Coast Basin of North America, the 

Amazon foreland basin of South America, and in nearly all of Africa, the Middle East, India, and 

Australia (Fig. 3.7a). 



 

 

 
Figure 3.6. Ternary CYM color map of the GloPrSM Q-F-L prediction showing the relative abundance of quartzose (yellow), 

feldspathic (cyan), and lithic (magenta) grain types, with mixed compositions shown as a gradient between endmember colors.

3
1
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Lithic grains (L) are predicted to be the second most abundant component of sand, 

comprising 18% areal abundance globally. Relative enrichment of L is predicted in proximity to 

convergent plate boundaries, including the circum-Pacific Belt and Alpine-Himalayan belt, 

ancient collisional mountain belts, intraplate volcanic provinces (e.g., Deccan traps of India), and 

in catchments that drain these settings (e.g., foreland basins) (Fig. 3.6 and 3.7b). A histogram of 

globally predicted L shows a mode at 0-5%, reflecting the depletion of this grain type in tropical 

latitudes. Most catchments are predicted to contain less than ~55% abundance (Fig. 3.7b). 

Grains of total feldspar (F) account for 13.5% of the global prediction by area. F is 

predicted to be most abundant in higher-latitude catchments that are sourced by coarse 

crystalline bedrock (felsic plutonic and/or metamorphic), including the Canadian Shield, portions 

of Scandinavia, and the North China Craton (Fig. 3.6 and 3.7c). F is also predicted at modest 

abundances in association with volcanic rocks, such as those from the East Africa Rift and 

Deccan Traps, and is generally predicted to be depleted in low-elevation, tropical settings as 

suggested by the 0-5% mode in the frequency distribution of the prediction (Fig. 3.7c). 
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Figure 3.7. Global maps and frequency distribution plots of A) total quartz (Q), B) feldspar (F), 

and C) lithic (L) abundance from the median of 100 ShuffleSplit iterations. 
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Figure 3.8 shows the spatial distribution of the inner 95% of the GloPrSM Q-F-L 

prediction. Globally, inner 95% variance for Q is generally low (< ±5%) where Q is predicted to 

be most abundant (Fig. 3.8a). These occurrences include vast regions of the Amazon foreland 

basin, a significant proportion of sub-Saharan Africa, India excepting the Himalaya and the 

Deccan Traps, northern Australia, and the northern Gulf Coast Basin of the United States. In 

tropical settings, high variance of Q occurs where volcanic lithic input is significant, particularly 

in smaller catchments draining the Paraná-Etendeka flood basalts, the East Africa Rift, and the 

Deccan Traps (Fig. 3.8a). In the northern hemisphere north of the Tropic of Cancer, high 

variance of Q is observed in east China, northeast Siberia, and the middle reaches of the 

Mississippi River basin north of the Gulf Coast Plain (Fig. 3.8a). 

Predicted F generally displays low variance in many of the catchments where feldspar 

abundance is low to begin with, particularly in tropical latitudes and settings distant from coarse 

crystalline bedrock and volcanic input (Fig. 3.8b). In settings where F is locally and regionally 

predicted at modest abundance, variance is also high suggesting low confidence in the prediction 

of higher abundances of F. These settings include many of the world’s volcanic provinces, such 

as the Deccan and Siberian Traps (Fig. 3.8b). 

For the prediction of L, inner 95% variance is generally lowest in tropical latitudes 

excepting the aforementioned volcanic provinces (Fig. 3.8c). North of the tropics, variance is 

low in the vicinity of regions with high predicted L values, including the Siberian Traps and the 

Columbia River basin of North America (Fig. 3.8c). Variance is notably high locally in western 

Europe, along the Arctic coast of Siberia, in the northern reaches of the Nunavut territory in 

Canada, and in the Mississippi River basin (Fig. 3.8c).  
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Figure 3.8. Global variance maps (inner 95%) of the Q-F-L prediction with areas of lowest 

variance in blue and highest variance in red. 
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An example of the range of Q-F-L predictions from the 100 ShuffleSplit predictions is 

shown for four BasinATLAS level 8 catchments in Figure 3.9. Some catchment predictions 

display little variation, with less than ±5% Q, F or L (e.g., green circles). Other catchments 

display a wider variation with some predicted Q-F-L components experiencing the full range of 

abundance (e.g., 0–100%; red or black circles). Approximately 1% of watersheds contain 

bimodal or multimodal distributions of predicted Q-F-L producing some of the highest variances 

in the GloPrSM model. However, within each mode, variance is typically low.  

 
Figure 3.9. Q-F-L ternary diagram showing the 100 ShuffleSplit predictions for four 

BasinATLAS catchments and their 95% confidence intervals. Locations for each catchment are 

shown in the inset map. 

 

3.3.2. Octonary Classification 

Figure 3.10 shows the predicted global abundances of the eight modeled Q-F-L 

subcompositions. Monocrystalline quartz (Qm) is the dominant component of the quartzose 

fraction of Q-F-L and composes 62.3% of sand at Earth’s surface, on average (Fig 3.10a). Qm 
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follows similar spatial trends as the prediction of Q, being most abundant in low latitudes and 

low-elevation catchments and least abundant in high elevation catchments and in areas 

dominated by mafic volcanic lithologies. In the northern hemisphere, relative enrichment of Qm 

is predicted to occur along the course of large rivers draining low elevation basins, such as the 

Ob and Lena River systems and their major tributaries. Qm values as high as 60-70% are 

predicted in catchments draining basement exposures such as the Anabar Shield of the Siberian 

Craton and the Canadian Shield in northeast Nunavut. Polycrystalline quartz (Qp) accounts for 

approximately 5.8% of the aerially normalized global prediction and never exceeds 53.2% 

abundance in any drainage. Highest Qp is predicted to exist in broad, low elevation basins and in 

catchments draining sedimentary bedrock and unconsolidated sediments away from volcanic 

lithic input (Fig. 3.10b). Examples include western Africa, Saudi Arabia, the Canadian Rockies 

of North America, northwest Siberia between the Ob and Yenisei Rivers, and northeast Siberia in 

the Verkhoyansk range. Chert (Qch) is the least abundant subcomposition globally accounting 

0.47% of the aerially normalized prediction. Like Qp, Qch is most abundant in catchments 

containing sedimentary bedrock, never exceeding 12.5% in predicted abundance in any drainage. 

Notable locations of higher abundance include the Nullarbor Plain of southern Australia, the 

Paleozoic sedimentary bedrock in the southeastern portion of the Boreal Plains, the Hudson Bay 

Lowlands of Canada, the Baltica region of western Russia, and the eastern portion (peripheral 

foreland) of the Siberian craton (Fig. 3.10c).  



 38 

 
Figure 3.10. Maps of the global prediction for eight Q-F-L subcompositions: a) monocrystalline 

quartz, b) polycrystalline quartz, c) chert, d) alkali feldspar, e) plagioclase feldspar, f) volcanic 

lithics, g) sedimentary lithics, and h) metamorphic lithics. 

 

The prediction of alkali feldspar (K) averages 7.2% with low values in low latitudes and 

highest values in catchments draining the coarse, crystalline basement of ancient cratons (Fig. 

3.10d). Regions of high predicted abundance of K include the Canadian Shield of North 
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America, the Baltic Shield of Scandinavia, the Ukrainian Shield of eastern Europe, and the 

Aldan Shield of northeast Asia (Fig. 3.10d). Plagioclase feldspar (P) is predicted to be slightly 

less abundant (6.3%) than K (7.2%) and is predicted to coexist with K in the aforementioned 

crystalline basement exposures but at lower abundance relative to K (Figs. 3.10e and 3.11). 

Unlike K, P is more abundant at lower latitudes, particularly near exposures of volcanic bedrock 

including the Mesozoic Paraná-Etendeka flood basalts of South America and the Late Cretaceous 

Deccan Traps of west-central India (Fig. 3.10e). P is also predicted at modest abundances within 

large tropical rivers such as the Nile and Limpopo Rivers of Africa (Fig. 3.10e). At higher 

latitudes, P is predicted to be common in active margins such as the North and South American 

Cordillera, and in vast exposures of flood basalts including the Paleozoic-Mesozoic Siberian 

Traps, and the Cenozoic Columbia River flood basalts of North America.  

 
Figure 3.11. Global map of predicted plagioclase abundance as a percentage of total feldspar. 

Areas with <5% total feldspar are displayed in white. 

 

Volcanic lithics (Lv) are predicted to average 4.8% abundance globally and follow 

similar spatial trends as P (Fig. 3.10e-f). Elevated Lv predictions are most common in regions 
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characterized by active volcanism, such as in the East Africa Rift, eastern Iceland, the eastern 

Kamchatka Peninsula, and central Honshu, Japan. Vast regions of relatively high Lv are also 

predicted in the broad expanse of the Baltica paleocontinent of eastern Europe (Southern Baltica 

and Volgo-Uralia) and east of the Ural Mountains of Russia. Sedimentary lithics (Ls) are 

predicted to comprise an average aerial abundance of 6.1%, with particularly high (>60%) values 

in catchments draining highlands primarily composed of sedimentary bedrock (Fig. 3.10g) such 

as the Ozark region of Arkansas, the Appalachian peripheral foreland, the Northern Apennines of 

Italy, and the eastern Balkan region of southeastern Europe (Fig. 3.10g). Lastly, metamorphic 

lithics (Lm) are predicted at an average aerial abundance of 7.1%. Lm are predicted to be most 

abundant in extensive fold-thrust belts and collisional orogens that form many of the world’s 

elevated mountain ranges (Fig. 3.10h), including the North and South American Cordillera, the 

Alps of Europe, the Pontic Mountains of Turkey, the Tian Shan of central Asia, the Himalaya, 

the Verkhoyansk and Sikhote-Alin Ranges of east Siberia, the New Guinea Highlands, and 

Southern Alps of New Zealand (Fig. 3.10h). 

Chapter 4: Discussion 

4.1. Assumptions and Limitations 

1) Point count error is a source of uncertainty in the dataset. The number of counts per 

sample (typically 200-400) dictates the counting error associated with any given result 

(Van der Plas and Tobi, 1965). Operator error in misclassifying point counts is another 

source of uncertainty that is difficult to quantify (Weltje, 2002). Finally, methodological 

differences in point counting introduce an additional source of uncertainty (Table 2.1). 

Approximately 61.2% of samples were compiled from sources who report using the 

Gazzi-Dickinson method (Ingersoll et al., 1984), 31.3% of samples are from sources that 
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use a different method, and the remaining 7.5% of samples are from source publications 

that do not report their method. Samples collected by methods other than the Gazzi-

Dickinson were included to maximize the size of the training dataset when generating the 

global prediction (e.g., Potter, 1993). Point count methodology primarily affects the 

treatment of encountered rock fragments and polymineralic grains, with implications for 

grain comminution and a corresponding mineralogical dependence on grain size 

(Ingersoll et al., 1984). Operators who do not use the Gazzi-Dickinson method are likely 

to count higher values of lithic fragments than operators who use the Gazzi-Dickinson 

method. Spatial uncertainty in the global prediction resulting from a mixed-method 

dataset may manifest as the conflation of polymineralic grains (e.g., Lv and Ls) and their 

monocrystalline derivatives (e.g., P and Qm).  

2) The data model (Supplemental Table B) is a standardization of the grain types and 

descriptions encountered in source publications and was designed to reduce database 

complexity and allow comparison between samples containing similar petrographic 

observations. Information may have been lost and uncertainty introduced in the process 

of distilling 287 uniquely reported petrographic labels to the final list of 54 labels. 

3) The presence of zero values may indicate either the complete absence of certain 

components in a sample or that components present in trace amounts were not 

encountered during point counting (Weltje, 2002). Not only are zero values incompatible 

with log ratio transformation, but variation in the proportions of the missing component 

may be a passive response to the variations in one of the components that were present 

yet unmeasured (Weltje, 2012). Under the assumption that missing components in 

database samples are present in trace amounts within their original sample, zeros within 
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recalculated proportions were replaced with values of 0.1%, implying one observation of 

a component for every 1,000 counts made. When the number of zeros is small, this 

practice is justified (Weltje, 2002; Garzanti, 2016) and will have a minimal influence on 

the overall data covariance structure (Vermeesch, 2018). However, if the number of zeros 

is significant, the use of advanced imputation techniques is advised (Martín-Fernández et 

al., 2003; Hron et al., 2010, Vermeesch, 2018). Some recalculated Q-F-L proportions 

have up to 9% of their values as zeros, but for some octonary proportions this value was 

much higher (up to 68.5%, Supplemental Table E). The choice of imputation method may 

yield a greater influence on recalculated proportions with a high number of zero values. 

4) The database contains 317 Pleistocene samples from marine depositional environments, 

amounting to approximately 62.9% of all marine samples and 9.9% of all database 

samples. The inclusion of Pleistocene samples allows improved representation of marine 

environments. However, these samples are older than modern samples reported from 

continental depositional settings. Because climate has varied widely during Pleistocene 

and Holocene time, we use a simplifying assumption that modern values of global 

temperature and precipitation are representative of average climate conditions operating 

on sediment production, transport, and deposition. 

5) There is a degree of uncertainty added from the sample georeferencing workflow. For 

fluvial samples, georeferencing was informed by each sample’s source publication. 

However, the locations of smaller, locally named drainages were difficult to identify in 

some instances (e.g., Garzanti et al., 2005). The best candidate drainage was usually 

deduced from internet searches and annotated online maps (e.g., Google Maps). More 

subjective was the placement of manually drawn pour point polygons to calculate littoral 
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and marine sample catchment boundaries. Littoral cell boundaries were inferred from the 

source publication, prevailing wind direction in the locality of the sample, and the 

samples position with respect to discrete physical boundaries that inhibit the longshore 

transport of sediment including promontories, submarine canyons, and inlets. Marine 

sample catchment boundaries were inferred predominantly from littoral cell boundaries, 

especially for nearshore shelf samples. Boundaries for slope and deepwater sample 

catchments were further informed by bathymetric contours as well as proximity to local 

submarine channels.  

6) Due to the availability of published datasets, the GloPrSM model was largely trained on a 

fluvial dataset (71% of samples) supplemented by samples from offshore (15.7%) and 

littoral (13.3%) environments. A prediction was then applied to HydroSHEDS 

BasinATLAS level 8 terrestrial catchments, including aeolian and glaciated environments 

where fluvial processes are absent or where their extent is limited. The GloPrSM model 

thus is designed to represent the composition of fluvially transported sediments and may 

not be representative of other sediment transport types (e.g., aeolian sediment transport in 

dune fields). 

7) The independent variables used in the GloPrSM model to predict sand mineralogy, 

including source lithology, climate, transport history, and tectonic setting, are not the 

only factors that are known to influence sand composition (Johnsson, 1993). Other 

potentially important factors that are unaccounted for in the GloPrSM model include 

vegetation (Jackson and Keller, 1970; Knoll and James, 1987), grain size (Ingersoll et al., 

1984; Tolosana-Delgado and von Eynatten, 2009), recycling (Garzanti et al., 2013a; 

Garzanti et al., 2016), sorting and mixing effects within the depositional environment 
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(Weltje et al., 1996; Garzanti et al., 2013b), residence time (Dosseto et al., 2006; Maher, 

2010), and anthropogenic factors. The addition of these variables to the model may result 

in an improved prediction and reduce spatial uncertainty. 

8) The use of first level GLiM lithologies presents a major limiting factor when establishing 

a relationship between source rock composition and sand mineralogy. For example, the 

undivided metamorphic class (MT) includes foliated and nonfoliated rocks across a wide 

variety of metamorphic grades (e.g., slate to gneiss) and mineral assemblages (e.g., felsic 

to mafic; Hartmann and Moosdorf, 2012). Moreover, many assumptions were made in 

the compilation of GLiM itself; for instance, if metamorphism was weak then the 

protolith was used when defining lithological class (Hartmann and Moosdorf, 2012). 

Incorporation of second and third level attributes of the GLiM dataset with higher levels 

of detail such as grain size information for sedimentary lithologies may improve future 

model predictions.  

9) The GloPrSM model prediction was generated using a random forest algorithm. While 

RFs are generally efficient and accurate, their performance is contingent upon the 

datasets they are trained from, thus, predictive power can change considerably with small 

changes in the training dataset. Other machine learning approaches, such as boosting 

algorithms or neural networks, may better constrain the nonlinear relationship between 

predictor variables and sand mineralogy. 

10) Although sample coverage is global, certain regions on Earth have sparse coverage (Fig. 

3.1). For example, the continent of Australia is characterized by only 30 samples. Other 

poorly characterized regions include southeast Asia, Canada, western Africa, and western 

Russia (Fig. 3.1). Predictions of sand mineralogy are inferred to be less reliable in 
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settings that are unconstrained by the dataset, particularly if those regions represent a 

unique combination of independent variables that are not represented in the training 

dataset (see section 4.2). 

11) The GloPrSM model was developed to predict the Q-F-L proportions of siliciclastic sand 

following the aforementioned classification schemes (Supplemental Table F). Thus, the 

model is not applicable for sands composed of non-Q-F-L components (e.g., bioclastic or 

intrabasinal grains). 

4.2. Spatial Uncertainty 

In general, the GloPrSM model predicts low Q-F-L variance along the course of many 

large rivers, including the Mississippi, Missouri, Mackenzie, Yenisei, Lena, Ob, Indus, Niger and 

Congo rivers (Fig. 3.8). However, some large, well-sampled rivers show moderate to high 

variance along their reaches, particularly where their upstream catchments display high variance 

in predicted Q-F-L. These rivers include the Lena at the confluence of the Aldan, the White Nile 

at the confluence of the Blue Nile, and the entirety of the main Amazon River (Fig. 3.8). Better 

characterization of high-variance regions that these rivers drain may improve model predictions. 

There are three types of settings where prediction uncertainty (inner 95th percentile) is 

particularly high: 

1. Large Igneous Provinces (LIPs) 

Mafic igneous lithologies are the least well represented lithologic classes in 

database samples (Supplemental Fig. A) and are some of the least abundant lithologic 

classes in the GLiM dataset (Fig. 2.1, Supplemental Fig. A; Hartmann and Moosdorf, 

2012). In catchments draining mafic volcanic lithologies, the GloPrSM model displays 

high variance in predicted Q-F-L abundances, depending on latitude (Fig. 3.8). In low 
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latitudes, high uncertainty for Q, F and L can be seen in the Paraná-Etendeka flood 

basalts, the East Africa Rift, and the Deccan Traps (Fig. 3.8). In these settings, the model 

struggles to consistently determine the relative proportions of Q and L that should be 

derived from mafic volcanic sources. These high variances also highlight the 

complexities that arise when generating a prediction in LIPs where chemical weathering 

is moderate to intense and the rate of L depletion and corresponding Q enrichment is 

poorly constrained by the database samples used to train the model.  

In settings where chemical weathering is limited, predicted L-variance in LIPs is 

generally low (Fig. 3.8c). In arid LIPs, such as the western coastal escarpment of the 

Arabian Peninsula (Hejaz region), uncertainty is more pronounced in Q and F relative to 

L, suggesting the GloPrSM model may be more confident at predicting L abundances in 

settings where chemical weathering is less intense. This is further supported by low L 

variance within middle and high latitude LIPs, such as in the Columbia River Basalt 

Group, Iceland, and the Siberian traps (Fig. 3.8b). Instead, high uncertainty in these 

settings is primarily related to Q and F abundance (Fig. 3.8a, b). While dataset coverage 

may be higher for some tropical LIPs (e.g., Paraná-Etendeka, East Africa; Fig. 3.2), very 

few analogs exist in the database for high-latitude and arid LIPs. Additional data from 

these settings will improve the model’s predictive power and may help reduce 

uncertainty.  

2. Sedimentary Terranes 

Sedimentary lithologies (SM+SS+SU and EV+SC) are the most abundant GLiM 

lithologic group at Earth’s surface (Fig. 2.1; Hartmann and Moosdorf, 2012). Despite 

sedimentary lithologies being the best represented lithologic class in database samples 
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(Supplemental Fig. A), several regions with sedimentary bedrock display very high 

uncertainty from the GloPrSM model (Fig. 3.8). The highest variance in Q and L is 

observed in small to mid-sized catchments draining the sedimentary terranes of the 

Appalachian foreland of the eastern United States (Figs. 3.8a, c). While the GloPrSM 

model was trained on data from catchments draining the Appalachian foreland, samples 

are located along the course of the Mississippi River and its major tributaries, and thus 

only the largest catchments in this region are represented (Fig. 3.2). Additional settings 

where Q and L variances are high include the sedimentary terranes of western Europe, 

the mixed sedimentary rocks of the Southern Arctic Islands, the Great Dividing Range of 

Australia, and the vast expanse of siliciclastic sedimentary rocks and unconsolidated 

sediments in northern Siberia (Figure 3.8a, c). Meanwhile, Q, F, and L variances are high 

in catchments draining the siliciclastic sedimentary rocks of the Karoo Supergroup in 

southern Africa, the unconsolidated sediments of the Buenos Aires province of 

Argentina, and the unconsolidated sediments of the North China Plain near the Yellow 

Sea.  

High variance in sedimentary terranes can most likely be attributed to the nature 

of the GLiM lithologic database. At the first level of GLiM, siliciclastic sedimentary 

lithologies (SS) and unconsolidated sediments (SU) are not subdivided by grain size 

(Hartmann and Moosdorf, 2012). This lack of specificity may affect the predicted 

abundance of (sub)compositions produced by these lithologies, such as Q (Qm) derived 

from sandstone and L (Ls) derived from shale and siltstone, as well as the rate at which 

these (sub)compositions are enriched or depleted during transport and alluvial storage. 

Furthermore, the Q-F-L composition of SS and SU is not known despite older sediments 
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and sedimentary rocks likely being just as compositionally diverse as modern sands. 

Lastly, the mixed sedimentary class (SM) represents a mixture of siliciclastic and 

carbonate sedimentary rocks which can produce varying amounts of Q or L.  

3. Orogens 

Orogenic settings (modern and ancient) that display locally high Q-F-L variance 

include the Sunda Arc of Indonesia, the Verkhoyansk range of northeastern Siberia, the 

Great Dividing Range of Australia, the Japan Arc, the Sierra Madre Occidental range of 

Mexico, and the Andes Mountains (Fig. 3.8). A vast range of lithologies are exposed at 

the surface in many of the world’s orogens (Fig. 2.1a), complicating the GloPrSM 

model’s ability constrain the influence of source lithology on sand composition in these 

settings. For example, Lm is predicted at relatively high abundance in catchments where 

MT is absent (Fig. 3.10h, Supplemental Fig. F), suggesting significant quantities of Lm 

may be produced from rocks that are weakly metamorphosed. 

To improve upon the predictive power of the GloPrSM model and reduce uncertainty, 

more data should be collected from LIPs, sedimentary terranes, and orogens. In addition, a 

higher resolution lithologic dataset may improve upon modeled relationships between source 

lithology and sand composition. This issue can, in part, be resolved by employing the second- 

and third-level information contained by the full GLiM database (Hartmann and Moosdorf, 

2012). 

4.3. Factors Controlling Sand Mineralogy 

4.3.1. Elevation and Slope 

According to partial dependence (PD) analysis, increasing elevation tends to produce a 

modest degree of progressive quartz enrichment and lithic depletion, with this effect most 
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pronounced between 0 – 1 km and above 5 km (Fig. 4.1a). This prediction is in contrast with 

some previous observations that silicate weathering rates are elevation-independent (Drever and 

Zobrist, 1992). One explanation for the modeled result relates to sedimentary (SM+SS+SU and 

EV+SC), metamorphic, and felsic to intermediate plutonic (PA+PI) lithologies, which tend to be 

Q prone (Supplemental Fig. F) and comprise some of the highest elevation catchments in 

database samples (Supplemental Figs. B, E) and in the world (Supplemental Figs. C, F). 

It has been suggested that slope angle exerts a significant control on the composition of 

sediments (Basu, 1985; Johnsson, 1993). Slope is ranked as the single most important predictor 

feature for both log-ratio models (Fig. 4.2). Slope largely determines whether a chemical 

weathering regime is transport- or kinetic-limited, with low slopes corresponding to long fluid 

and sediment residence times that allow for the near-complete alteration or removal of 

framework proportions stored in alluvial environments (Johnsson, 1993; Maher, 2010). As slopes 

increase, so too does the predicted proportion of L until slopes reach 25º, above which there is a 

modest shift towards Q enrichment (Fig. 4.1b). The abundance of sedimentary lithologies in 

many of the Earth’s highest mountains may account for the increase in predicted quartz 

abundance in slopes greater than 25º. Approximately 7% of database samples contain catchment 

averaged slopes greater than 25º (Supplemental Fig. A), most of which are derived from the 

sedimentary and metasedimentary terranes of the Himalaya and Alps (Garzanti et al., 2005; 

Garzanti et al., 2007; Garzanti et al., 2010; Vezzoli et al., 2017). Future sampling efforts could 

target steeply sloping regions underlain by a more diverse array of lithologies. 

4.3.2. Precipitation and Temperature 

Precipitation is the fourth most important variable for the ln(L/Q) model and ranks even 

lower for the ln(F/Q) model (Fig. 4.2). Modest quartz enrichment and feldspar depletion are 



 50 

predicted as precipitation increases from approximately 200 – 1,000 mm/yr, and between 1,000 – 

2,000 mm/yr lithic enrichment occurs (Fig. 4.1d). This pattern suggests that, although water is a 

critical component of chemical weathering (Maher, 2010), high precipitation alone is not enough 

to enrich quartz in sand. Quartz enrichment in moderate rates of precipitation (200 –1,000 

mm/yr) might reflect a lack of chemical weathering in arid regions and high rates of denudation 

associated with a kinetically-limited regime in areas where precipitation is very high (Potter, 

1978; Johnsson, 1993). Only 11% of dataset samples have precipitation above 2,000 mm/yr or 

below 200 mm/yr, suggesting that the model is less well constrained for the driest and wettest 

regions at Earth’s surface (Supplemental Fig. A).  

Temperature is predicted to have a strong influence on Q-F-L proportions with 

substantial quartz enrichment above 15ºC (Fig. 4.1e). Temperature ranks as the 2nd highest 

contributor to model accuracy for the best ln(L/Q) model but has low influence on the best 

ln(F/Q) model (Fig. 4.2). Because samples with catchment averaged temperatures between -

2.5ºC and 27.5ºC are well represented in the sample dataset (Fig. 4.1e), the relationship between 

temperature and sand composition at 15ºC is well constrained. Furthermore, many studies show a 

positive, approximately exponential increase in weathering rates with increasing temperature 

(e.g., White et al., 1999; Oliva et al., 2003; West et al., 2005). The effects of increasing 

temperature on lithic reduction may be explained by a higher proportion of unstable minerals in 

these grains and a higher proportion of reactive surfaces with respect to grain volume due to their 

aphanitic nature (White, 2002; White and Buss, 2003; Israeli and Emmanuel, 2018). The lack of 

an appreciable influence of temperature on the F:L ratio may reflect both of these constituents 

being chemically unstable, and thus experiencing concomitant reductions in abundance within 

hot, wet climates.  
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4.3.3. Basin Area 

Increasing basin area is predicted to yield relative enrichment of Q at the expense of L 

and with little change in F abundance (Fig. 4.1c). As basin area is a proxy for sediment transport 

distance (Somme et al., 2009), it is thus inferred that increasing transport distance appears to 

favor quartz enrichment and lithic dilution. This finding is agreeable with studies that show a 

reduction in the proportion of unstable lithic fragments during transport (Cameron and Blatt, 

1971; Shukis and Ethridge, 1975). Further, the rate at which the Q:F ratio increases with basin 

area (Supplemental Fig. D) is consistent with other studies that quantify feldspar depletion 

during sediment transport (Mackie, 1896; Martens, 1931; Plumley, 1948; Hayes, 1962; McBride 

et al., 1996). As basin area increases to 2x106 km2, quartz proportions increase gradually. At and 

above 2x106 km2 there is a sharp increase in Q and F with a corresponding decrease in L (Fig. 

4.1c). These largest catchments account for approximately 8% of database samples and are 

predominantly from low latitudes (Supplemental Fig. B) where chemical weathering rates are 

likely higher but the effects mechanical and tropical weathering are difficult to separate from one 

another (Johnsson, 1993). Moreover, mechanical comminution of softer grains during transport 

may lead to their redistribution in different size fractions (Cather and Folk, 1991) and accelerated 

chemical weathering following an inverse-proportional relation between grain size (i.e., mineral 

surface area) and weathering rates (White, 2002; White and Buss, 2003).  
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Figure 4.1. Stack plots of independent variable partial dependence for the highest-scoring 

ln(F/Q) and ln(L/Q) models. Histograms to the right of each variable’s stack plot show data 

density of the training dataset.  

 

4.3.4. Lithology 

Of all lithologic variables, the felsic to intermediate volcanic and pyroclastic lithologic 

group (PY+VA+VI) is predicted by PD analysis to exert the greatest control on Q-F-L 

proportions, with increasing PY+VA+VI predicted to lead to the rapid enrichment of feldspar 
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and depletion of quartz (Fig. 4.1f). It should be noted that PY+VA+VI are among the least 

abundant lithologic classes globally and only compose 3.3% of the Earth’s unglaciated surface 

area (Hartmann and Moosdorf, 2012). Thus, the spatially limited extent may explain the low 

permutation importance of PY+VA+VI, ranking 8th and 11th for ln(L/Q) and ln(F/Q) models, 

respectively (Fig. 4.2). Meanwhile, the MT lithologic class is among the most important 

variables for both log-ratio models, ranking 2nd most important for ln(FQ) and 3rd for ln(L/Q) 

(Fig. 4.2). Increasing MT abundance corresponds to a decrease in L proportions (Fig. 4.2l) while 

the F:Q ratio is predicted to hold constant (Supplemental Fig. D), however, high values of MT 

are similarly underrepresented in database samples (Supplemental Fig. A).  

Other lithologies that exert significant control on Q-F-L proportions include the mafic 

volcanic (VB) class whose increasing abundance is predicted to increase F and L proportions at 

the expense of Q with rapid lithic enrichment above 70% VB (Fig. 4.1h). Data are scarce for this 

lithologic class as well as for the PA+PI group whose increasing abundance is predicted to 

increase F proportions at the expense of L while holding Q abundance constant (Fig. 4.1g). PD 

analysis suggests that the remaining lithologic variables have little influence on sand mineralogy 

(e.g., mafic plutonic lithologies [PB] and the evaporites + carbonate sedimentary group 

[EV+SC], Fig. 4.1i, j). Although SM+SS+SU is very abundant globally, the lack of its predicted 

influence on Q-F-L compositions may reflect the undifferentiated nature of this lithologic class. 

In other words, siliciclastic sediments and sedimentary rocks are likely diverse in terms of their 

Q-F-L composition and thus can produce a wide variety of Q-F-L sand compositions that are 

ultimately averaged in the GloPrSM model prediction (Fig. 4.1k). A more detailed lithologic 

category that differentiates quartzose, feldspathic, and lithic siliciclastic sediments and 

sedimentary rock may thus improve the GloPrSM prediction. 
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Figure 4.2. Results of permutation importance analysis for the highest-scoring ln(F/Q) (y-axis 

left) and ln(L/Q) (y-axis right) GloPrSM models. 

 

4.4. Synthesis 

The influence of source lithology on sand mineralogy is more prominent in middle to 

high latitudes where the effects of tropical weathering are reduced (Fig. 4.3). For example, the 

proportion of predicted F may correspond to an increase in PA+PI abundance between 35˚N to 

70˚N and 35˚S to 55˚S, and an increase in predicted Ls may also correspond to an increase in 

SM+SS+SU north of 70ºN (Fig. 4.3a–b). Increased Lv abundance between 35ºS and 50ºS may 

correspond to the increase in volcanic lithologies (VB and PY+VA+VI) seen at these latitudes. 

Lastly, increased Lm at around 40ºS may result from increased MT at this latitude (Fig. 4.3a–b). 

In low latitudes (35ºS to 35ºN), however, Q-F-L proportions cannot be easily explained 

by lithological variability (Fig. 4.3a–b). Transitioning from high to low latitudes, average Q 

abundance is predicted to increase from 30-40% to 80% of Q-F-L proportions (Fig. 4.3a). This 

exceptional enrichment cannot be explained by any single variable’s influence (Fig. 4.1) but by 

the combined effects of several factors. Large drainage areas and high temperatures observed in 
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low latitudes (Fig. 4.3c) are predicted to increase Q proportions (Fig. 4.1a, c, e). Globally, low 

average slopes are also found in these latitudes (Fig. 4.3c), yielding transport-limited weathering 

regimes and amplifying the rate of Q generation and L depletion (Fig. 4.1b). Despite the seemly 

unimportant influence of precipitation on Q-F-L proportions (Fig. 4.1d), high average 

precipitation in low latitudes not only provides a medium for chemical work to be enacted on 

sediments, but also transports sediments from high elevation, high slope catchments in a 

kinetically-limited regime to large, low elevation, gently sloping basins where the residence 

times are long and transport-limited weathering dominates. 

 
Figure 4.3. Comparison of the GloPrSM Q-F-L prediction moving average to the moving 

average of independent variables as a function of latitude with the positions of 30ºN and 30ºS 

shown as black dotted lines. a) Stack plot of GloPrSM Q-F-L abundance displayed as octonary 

proportions. b) GLiM proportions of recalculated lithologic groupings. c) Climatic and 

topographic independent variables. 
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Conclusions 

This study introduces a framework for predicting sand mineralogy at a global scale based 

on fundamental controls. The GloPrSM model is a data driven, forward sediment generation 

model trained to predict Q-F-L proportions from source lithology, climate (precipitation and 

temperature), and topographic factors including slope, elevation, and basin area. The model was 

extended to HydroSHEDS BasinATLAS level 8 fluvial catchments. The median of 100 global 

predictions shows quartz enrichment occurs in low latitudes (35ºS to 35ºN) and in large, gently 

sloping basins characterized by high precipitation and temperature. Feldspar enrichment occurs 

in mid to high latitude catchments draining coarse-crystalline bedrock where chemical 

weathering processes are suppressed. Lithic enrichment occurs near the world’s active and 

ancient orogens and within intraplate volcanic provinces. Variance within the inner 95% (2.5th to 

97.5th percentile) of predictions reveals spatial uncertainty is greatest in large igneous provinces, 

sedimentary terranes, and orogens where unique combinations of some fundamental controls are 

underrepresented in dataset samples.  

The influence of fundamental controls of mineralogic proportions in sand can be 

quantified using model interrogation techniques such as permutation importance and partial 

dependence analysis. Slope is the most important feature contributing to model accuracy and 

largely determines if weathering occurs in a transport-limited or kinetically-limited regime; steep 

slopes favor lithic enrichment and low slopes favor quartz enrichment. Temperature is the most 

influential climate factor on Q-F-L proportions with rapid quartz enrichment occurring in 

catchments with average temperatures greater than 15ºC. Some lithologic variables are predicted 

to exert a significant control on Q-F-L proportions, including PY+VA+VI, VB, and MT. 
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The expression of the Q-F-L composition of sand at Earth’s surface cannot be attributed 

to a solitary factor, but rather the interplay and feedbacks between multiple factors. Where these 

factors are well understood, it is possible to predict how their unique combinations will manifest 

in mineralogy of sand, and ultimately within the global sedimentary archive. Although the 

GloPrSM model represents a first step towards predicting the Q-F-L composition of modern sand 

globally, directed future sampling, improved characterization of bedrock lithology, and the 

incorporation of additional factors that control sand mineralogy will improve the reliability and 

spatial resolution of the global prediction. 
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