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Abstract 

 Rice provides much needed sustenance to a large portion of the global population, 

particularly in the developing world. With stress placed on food production systems under the 

reality of climate change and an increasing global population, rice production systems require 

solutions to a number of issues, including a limited water supply. As producers explore new 

strategies for conserving local water resources to continue to maintain yields, new irrigation 

strategies and technologies are being developed and validated for use at commercial production 

scales. Alternate wetting and drying (AWD) is an irrigation practice that provides water savings 

through the capture of rainfall during periodic drying events during the growing season. The 

AWD practice also has relevance as a climate change mitigation measure as the periodic drying 

disrupts and reduces methane production commonly associated with continuously flooded rice. 

With drying introduced during the growing season, there is potential for AWD to cause drought 

stress that is harmful to the plant and may reduce yields. To validate AWD as a safe practice, the 

following work is focused on estimating and characterizing canopy water use as 

evapotranspiration (ET).  In each chapter, ET is presented as a means to understand how drying 

may affect canopy water use. Furthermore, ET also has operational value in that accurate 

estimates of ET can be used to better inform irrigation management decisions for producers. To 

that end, we also explore ET estimation methods of varying complexity that can be used to 

assess the impacts of drying while also providing accurate estimates of ET throughout the 

growing season. Ultimately, our work provided validation for AWD as a safe irrigation practice 

that can be applied at the commercial scale.
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Introduction 

 Rice is a staple food for a large portion of the global population and plays a major role in 

the economics of the developing world (Maclean et al., 2013). Given the continued aspects of 

climate change, rice production faces several challenges in the form of increasing temperatures, 

increasing demand to feed a growing population, and limited water resources to support elevated 

production (Ahmed and Ahmad, 2017; Boazar et al., 2020; Ye et al., 2015). In order to maintain 

and promote the sustainable production of rice globally, solutions to these challenges will likely 

require combinations of both scientific innovation as well as adaptation of current growing 

practices (Chhetri et al., 2012; Foley et al., 2011; Jovanovic et al., 2020; Spangenberg et al., 

2018). To reduce water demand associated with growing rice, alternative irrigation practices 

have been proposed that can improve the irrigation efficiency and potentially reduce the amount 

of water applied during the growing season (Horst et al., 2005; Massey et al., 2018; Massey et 

al., 2017; Wang et al., 2020; Zhuang et al., 2019). Alternate wetting and drying (AWD) is an 

irrigation practice that introduces periodic drying instead of maintaining a constant flood 

throughout the growing season to increase water savings while maintaining yields (Ishfaq et al., 

2020; Yao et al., 2012). The drying events provide water savings through potential rainfall 

capture, which offsets the amount of pumping required to maintain inundation (Henry et al., 

2013). Current research has indicated that AWD can reduce irrigation water use by up to 20% 

(Carrijo et al., 2017; Lampayan et al., 2015). Additional benefits of AWD include reduced 

methane emissions normally associated with rice, which aid in curbing the effects of climate 

change (Feng et al., 2021; Liao et al., 2020). One of the primary challenges with AWD is the 

potential for drought stress introduced by allowing the field to dry while rice is growing, which 
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could result in decreased yields and lower quality grain at harvest (Graham‐Acquaah et al., 2019; 

Norton et al., 2017). 

 The impacts of stress can be reflected in ET and primary production, where drought 

stress can result in decreased production and inefficient use of water (Shekhar et al., 2020). 

Accurate estimates of primary production and canopy water use are then needed to observe the 

impacts of drying at the canopy scale (Hsiao et al., 2007; Liu et al., 2009). Canopy water use and 

production are reflected in evapotranspiration (ET) and photosynthesis, which can both be 

measured or modeled using advanced instrumentation and measurements of the local 

microclimate. Eddy covariance (EC) is a technique which uses advanced instrumentation to 

directly measure water and carbon dioxide fluxes at the canopy scale. The carbon dioxide fluxes 

can be partitioned further into ecosystem respiration (Reco) and gross primary production (GPP), 

where GPP is the amount of carbon fixed during photosynthesis. The water fluxes can also be 

partitioned in contributing portions of transpiration (T) and evaporation (E), where transpiration 

represents plant mediated water use that is tied to photosynthetic activity. When formulating 

representations of canopy water use, ecosystem water use efficiency (eWUE) is the most 

common and represents the ratio of GPP to ET (Ito and Inatomi, 2012). In addition to eWUE, 

canopy water use can also be represented as the ratio of GPP to T as both fluxes share common 

pathways that are mediated by the plant (Molden et al., 2010; Tanner and Sinclair, 1983). 

Understanding how GPP, ET, and T change during drying and throughout the growing season is 

beneficial when evaluating AWD as a suitable alternative to conventional flooded irrigation. In 

addition to understanding how different practices affect canopy water use, ET has operational 

value for producers when deciding how much water needs to be applied during irrigation events 

(Earl D. Vories and Phil L. Tacker, 2006; Martin et al., 1990; Vories et al., 2017).  
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 Given the importance of ET in irrigation planning and understanding canopy water use, 

there is a growing number of methods and applications used to estimate ET (Amatya et al., 2016; 

Subedi and Chávez, 2015). Many models use measured microclimactic variables in empirical or 

mechanistic frameworks to determine ET across a given surface, occasionally including specific 

parameters for a specific crop (Allen, 2000; Drexler et al., 2004; Subedi and Chávez, 2015; 

Zhang et al., 2014). In addition to localized models, developments in remote sensing have made 

it possible to estimate both ET and GPP across a greater area using satellite observations, which 

reduces the need and cost for widely distributed instrumentation (Balch et al., 1989; Carlson et 

al., 1995; Chen et al., 2014; Courault et al., 2005; Jiang and Ryu, 2016; Ryu et al., 2012). The 

estimates of GPP and ET can be used in similar fashion to models driven by field scale data 

when estimating canopy water use and understanding water use efficiency dynamics and 

responses to disturbances such as drought (Huang et al., 2018; Jiang et al., 2020; Zhao et al., 

2020). Additionally, some products estimate ET use at fine spatial scales (~70 m), meaning the 

estimates can be used to inform management decisions during the growing season (Melton et al., 

2012; Savoca et al., 2013; Senay, 2018). In the case of products such as ECOSTRESS, ET can 

also be partitioned into contributing portions of evaporation (E) and T without the need for sites 

specific parameterization (Anderson et al., 2021; Fisher et al., 2008). 

 The following chapters of this dissertation will highlight ET in Mid-South rice production 

with emphasis on estimation and modeling throughout each chapter. The first chapter provides 

estimates of ET across three growing seasons in two commercial rice fields. Included in the 

analysis is a direct comparison of the impact of AWD on ET as well as a comparison of common 

ET estimation methods. This chapter was published in the Journal of Hydrology, where I, Colby 

Reavis, served as the primary and corresponding author who was responsible for processing and 
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analyzing data, creating the document, assimilating feedback from coauthors and reviewers 

throughout the submission process, and guiding and submitting the document to final approval 

by the publisher. 

The second chapter provides a detailed look at canopy water use during the growing 

season. Using the same growing season data as Chapter 1, we provide a further look at the 

impacts of drying with respect to ET and GPP, and we apply a new method for estimating T 

using EC flux data at our field sites. To provide a constrained estimate on T as well as T:ET, we 

also compare the EC-derived T to two other common methods for estimating transpiration, the 

Priestley-Taylor Equation developed by NASA’s Jet Propulsion Laboratory (PT-JPL) and the 

FAO56 Penman Monteith dual crop coefficient (PM56Dual) approach. We also observe the 

dynamics of WUE with respect to canopy development during the growing season using field 

observations of LAI.  

In the third chapter, we expand our assessment of the PT-JPL method by comparing ET 

across the EC towers, the PT-JPL model using local microclimate measurements, and the 

ECOSTRESS remote sensing product, which is based entirely on the PT-JPL framework 

utilizing remotely sensed information. We test the viability of the parameterless approach of the 

PT-JPL model to estimate ET as compared to ECOSTRESS, which uses remotely sensed data in 

the same modeling framework. The analysis includes an examination of the ECOSTRESS 

product to estimate both daily ET and instantaneous ET rates measured at different times of day. 

In addition to comparing modeled and observed ET, we estimate ET across different periods of 

the growing season marked by both phenological development and irrigation management.  

Across all three chapters, we reduce the uncertainty of growing season ET for rice in 

commercial production within the Mid-South. We test the impacts of drying in AWD treatment 
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on observed fluxes during the growing season, and we provide a comprehensive view of water 

use across different fields, growing seasons, and irrigation treatments. We employ EC as an 

advanced technique to provide the most accurate estimate of ET while testing the ability of other 

ET estimation methods. The selected methods differ in complexity with varying degrees of input 

data required. We also provide an evaluation of the same framework supported by either remote 

sensing or field level data. The outcomes of this work provide the best estimates for ET in Mid-

South rice, detailed information regarding the pros and cons of different methods used to 

estimate ET, and support for the adoption of AWD as a safe irrigation practice with potential for 

water savings. 
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1. Introduction 

Water resources are currently consumed at unsustainable rates within the Lower 

Mississippi River Basin, where a majority of rice is grown in the United States (Reba et al., 

2013; Kresse et al., 2014). Due to this depletion, the region is increasing efforts to conserve 

water and quantify water use, particularly by agricultural irrigation for its sustainable future 

management (ANRC, 2014; Reba et al., 2017). To promote sustainable water use in rice 

production, various methods and technologies are being applied, such as field levelling to zero–

grade, which can reduce irrigation water use by up to 40% (Henry et al., 2016), and multiple 

inlet irrigation, which can reduce water use by up to 24% (Massey et al., 2014, 2018). Alternate 

wetting and drying (AWD) is a practice that can potentially reduce irrigation water use by up to 

20% by capturing rain during the growing season, offsetting pumping costs for the producer 

(Carrijo et al., 2017; Pan et al., 2017; Lampayan et al., 2015). Prior to the onset of the initial 

flood in both AWD and delayed flood (DF) practices, the rice germinates and establishes in non–
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flooded soils (Hardke, 2013). The recommended AWD practice allows periodic paddy drying, 

which lasts approximately 5 days, to occur at least 3 weeks after the first flooding. The 

conventional DF practice maintains a constant flood once the first flood is established until the 

fields are drained for harvest. However, the level and timing of drying induced in AWD are 

management decisions based on irrigation infrastructure, precipitation forecasting, soil type, 

plant variety, growth stage, and water supply. While AWD conserves water, there are concerns 

regarding plant health, grain quality, and decreases in yield compared to conventional growing 

practices (Norton et al., 2017a, 2017b; Sudhir–Yadav et al., 2012, Graham-Acquaah et al., 

2019); therefore, the timing and duration of the dry periods needs careful management. AWD is 

also expanding in use because of its potential to reduce greenhouse gas emissions associated with 

rice production (Linquist et al., 2014, 2018; Runkle et al., 2019).  

Fields managed with AWD have the potential to reduce evapotranspiration (ET) when 

compared to conventionally managed fields due to the decline of available water at the soil 

surface and alteration of land surface radiative properties, which may reduce the amount of open 

water or soil water evaporation (Norman et al., 1995; Liu et al., 2019). However, ET is typically 

dominated by the plant–mediated release of water (transpiration), especially during the later 

portion of the growing season when the rice canopy is fully developed (Wei et al., 2015; Wei et 

al., 2017). The water savings for AWD are primarily seen in the capturing of rain events during 

drying periods. Ideally, the amount of rainfall captured during these events should offset the 

amount of pumped water required to replace water lost through ET (Kima et al., 2015). In rice 

water budgets and irrigation schedulers, producers use ET to estimate the amount of water 

required to sustain crop production without incurring stress (Li and Cui, 1996; Smith, 1996). 

Understanding how ET changes throughout the growing season also provides an indication of 
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canopy health (Moran et al., 1995). ET is tied to primary production of plant biomass as water 

release from the plant is regulated by stomatal control, which helps dictate assimilation of carbon 

dioxide within the plant during the daytime (Roel et al., 1999; Ikawa et al., 2018; Lieu et al., 

2020). Because AWD has the potential to conserve water resources and provide economic 

benefits to the producer (Nalley et al., 2015), uncertainty within the terms of the water balance 

(including ET) must be reduced through careful measurement.  

In agricultural settings, ET is typically estimated using approaches such as the 

Hargreaves or Penman–Monteith equations, which rely on meteorological data and basic 

estimates of phenology (Allen et al., 1998; Hargreaves & Allen, 2003; Pereira et al, 2015). 

However, studies conducted in rice have indicated sizeable differences when comparing 

measured ET, using micrometeorological approaches such as the eddy covariance method, and 

ET estimated with variations of the Penman–Monteith equation (Ikawa et al., 2017; Wang et al., 

2017). These approaches include the Penman–Monteith method for actual ET (PM–AET) and 

the Penman–Monteith method as outlined in FAO Document 56 (PM–FAO56) (Penman, 1948; 

Monteith, 1965; Allen et al., 1998). Methods such as the PM–AET are of interest as their 

improvement would provide a platform for relating associated changes in measured ET to 

physically derived relationships between ET and multiple meteorological and phenological 

variables contained within the PM–AET. Many studies have identified areas of improvement for 

different implementations of the Penman–Monteith equation by focusing on different 

components, including canopy conductance and variable crop coefficients (Lecina et al., 2003; 

Alberto et al., 2014; Yan et al., 2018).  

A common application of conductance is the “big leaf” approach that treats conductance 

as a bulk value across all leaves in the canopy, where its parameterization can be completed 
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using only observations of local meteorological variables, LAI, and ET observations. However, 

single layer conductance models typically underperform in periods of sparse (LAI<2) vegetation 

(Xu et al., 2018; Lafleur & Rouse, 1990). Dual-layer conductance approaches that address 

canopy and soil as separate contributors to ET have been recommended to address the poor 

performance of the PM-AET under sparse vegetation, including rice (Shuttleworth and Wallace, 

1985; Facchi et al., 2013). Studies utilizing both the dual-layer and single layer conductance 

frameworks in rice have shown comparable performance between each approach during the 

growing season (Gharsallah et al., 2013; Liu et al., 2020). 

Here, we quantify ET rates from within two fields in the humid U.S. Mid–South and 

compare AWD and DF irrigation management practices. The primary aim of this study is to 

better characterize half-hourly and seasonal ET in this region and identify associated impacts of 

altering the conventional irrigation regime with respect to ET. For this aim, we test whether 

fields with AWD irrigation show reduced ET relative to the DF field due to the lack of a free 

water surface during drying events by quantifying ET using different methods across multiple 

growing seasons. We then examine how ET changes during drying events to observe the effects 

drying has on plant activity. We assume that during drying events, if the plants undergoing AWD 

remain unstressed, the differences in transpiration should be negligible. Because transpiration 

makes up a large portion of ET during the growing season, we hypothesize that canopies with 

similar transpiration rates will show little differences in ET once the canopy is established. The 

second aim is to evaluate the performance of two accepted estimation methods in comparison to 

eddy covariance observations within both DF and AWD fields across the 2015–17 growing 

seasons. Finally, we seek to compare crop coefficients derived from local estimates of reference 

ET and eddy covariance to the crop coefficients for rice recommended in the FAO 56 document.  
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2. Materials and Methods 

2.1. Site Description 

The study site is composed of two adjacent commercial fields (~24 ha each) located in 

eastern Arkansas, USA (34° 35’ 8.6” N, 91° 45’ 05” W). The fields have been used to grow rice 

in continuous rotation since 2004 and are zero–graded with no slope within the planted area of 

the field. For this study, the fields are identified as North Field (NF) and South Field (SF). The 

soil within the fields is primarily characterized as poorly drained Perry silty clay (USDA 

classification: very-fine, smectitic, thermic Chromic Epiaquerts), which represents 100% of NF 

and 93.2% of SF (Runkle et al., 2019; Soil Survey Staff, 2018). The remaining portion of SF soil 

(~2 ha) is a Herbert silt loam (fine-silty, mixed, superactive, mesic Udollic Epiaqualfs). The 

composition of the soil varied between NF and SF where NF had greater clay content (62% vs. 

43%). The fields are connected in a series of five similarly-sized fields where irrigation water is 

delivered across each field, moving north to south, before arriving at the desired field.  

The rice was drill seeded and the growers apply the first flood approximately 47 days 

after planting (DAP). Rice grown within the fields in each study year was a hybrid variety 

(Clearfield XL745, RiceTec, Inc., Alvin, TX, USA) and followed the typical growing season for 

rice in Arkansas from early April to September. The 2015–2017 growing seasons for NF and SF 

ranged 133–143 days from planting to harvest (Runkle et al., 2019). Irrigation during the 

growing season relies primarily on surface water, which travels between fields by gravity flow 

through pipes and ditches. Irrigation routes are set up so that water must flow through each field 

as a series running north to south. The irrigation treatments were altered between the three 

growing seasons (Table 1). In 2016, seeding was delayed due to wet field conditions, and, thus, 
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the first flood was established later in the summer compared to 2015 and 2017 (i.e., 14 Jun vs. 

14-17 May). 

Table 1. Seasonal Irrigation and first flooding dates for NF and SF during the 2015-2017 

growing seasons. 

Field Year 

Irrigation 

Treatment 

Planting 

Date 

First Flooding Harvest 

Date Date DAP 

NF 

2015 DF 8-Apr 14-May 40 19-Aug 

2016 AWD 23-Apr 14-Jun 52 13-Sep 

2017 DF 10-Apr 17-May 37 26-Aug 

SF 

2015 AWD 8-Apr 15-May 41 19-Aug 

2016 AWD 23-Apr 16-Jun 54 13-Sep 

2017 DF 9-Apr 18-May 38 27-Aug 

  

Instrumentation consisted of eddy covariance and biometeorological sensors (Runkle et 

al., 2019) and was identically installed in both fields. These measurements contribute to the 

Ameriflux Management Project (NF:US–HRC and SF:US–HRA) and its subnetwork Delta–Flux 

for responding to questions on sustainable practices in agriculture (Runkle et al., 2017). Due 

to the homogeneous fetch requirements for the eddy covariance technique, the equipment was 

installed on the northern edge of each field at approximately half the distance of the northern 

border to capture the dominant southern winds during the growing season, and fluxes north of 

each field were discarded. Equipment was installed approximately 15 m from the north edge of 

each field after drill–seeding and removed immediately prior to harvest. Deployment during the 

growing season normally occurred within 4 days post-planting, and removal of equipment 

occurred 2 days prior to harvest. Fluxes collected at the towers using eddy covariance were 

screened to include only wind directions between 95 and 265 degrees to ensure measurement 

footprints were limited to their respective fields. Gaps within the observed fluxes for all three 
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years were empirically filled using an artificial neural networks approach (Knox et al., 2015, 

2016). This method used the following explanatory variables: days since the start of the study 

period, leaf area index (LAI), plant height, friction velocity (u*), air temperature (T), incoming 

solar radiation (Rg,in), vapor pressure deficit (VPD), water depth (WD), and fuzzy transformation 

sets representing seasonality and time of day (see Runkle et al., 2019 for more details). The 

turbulent energy flux models correlated with observations with R2 values greater than 0.90.  

2.2. Measurement of fluxes, microclimate, and plant parameters 

 The eddy covariance (EC) system provided measurements of sensible heat (H) and latent 

heat (LE) flux through the net exchange of the scalars, temperature and H2O, respectively. The 

EC system included a 3D sonic anemometer (CSAT3, Campbell Scientific, Inc., Logan, UT, 

USA) and an open–path infrared CO2/H2O analyzer (LI–7500A, LI–COR, Inc., Lincoln, NE, 

USA). The EC system was mounted on a tripod, with the sensor height measuring 2.2 m above 

the surface of the rice field. Separation for the EC sensors was approximately 0.1 m and was 

accounted for with frequency correction factors and signal lagging, including flow distortion by 

transducer shadowing (Horst et al., 2015), described in Runkle et al. (2019) and Suvočarev et al. 

(2019). The EC components used a designated analyzer interface unit (LI–7550, LI–COR, Inc., 

Lincoln, NE, USA) with outputs recorded at 20 Hz and half-hourly fluxes calculated with 

EddyPro v. 6.2 software with the output including calculated flux, quality flags, and an analysis 

of the flux footprint throughout the growing season. Fluxes were screened based on multiple 

factors, including turbulence, dominant wind direction (southern winds), footprint size, and 

availability based on power failures. The flux footprint was used to only include periods where 

90% of the data was measured within 350 m of the tower to remove the effects of measurement 

drift across adjacent fields (Runkle et al., 2019). The resulting data coverage for half-hourly 
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sensible and latent heat fluxes after filtering ranged between 23% to 34% across the growing 

periods.  

The four components of net radiation (RN) were measured (CNR4, Kipp & Zonen, Inc., 

Delft, NL) at a height of 2.0 m. Incoming and outgoing photosynthetically active radiation 

(PAR) was also measured using quantum sensors (LI–190SB, LI–COR, Inc., Lincoln, NE, USA) 

at 1.85 m. Air temperature (T) and relative humidity (RH) were measured using a shielded probe 

(HMP155A, Vaisala, Helsinki, FI). In addition to the sonic anemometer, wind speed and 

direction were also measured using a 2-D anemometer mounted at 3.2 m (05103−5 propeller 

wind monitor, R.M. Young, Traverse City, MI, USA). Soil heat flux (G) measurements were 

collected using two soil heat flux plates (HFP01, Hukseflux, Delft, NL) placed at different 

depths in each year: 8 cm, 5 cm, and 4 cm below the soil surface for the 2015, 2016, and 2017 

growing seasons, respectively. Soil heat flux plate measurements were corrected for the stored 

energy in both soil and water column, using soil surface temperature and water temperature 

thermistor measurements (CS–107 (BetaTherm 100K6A1IA), Campbell Scientific, Inc., Logan, 

UT, USA). Thermistors were placed directly at the soil surface, 2 cm above each soil heat flux 

plate, and on a flotation device to capture the temperature of the changing flood level. The 

energy balance closure (EBC), as reported in Runkle et al. (2019), was calculated using sensible 

and latent heat flux from the EC towers, RN, and storage-corrected G at the half-hourly time 

step. For the 2015-2017 growing seasons, the EBC for NF was 0.73, 0.75, and 0.69, respectively, 

and 0.89, 0.69, and 0.82 for SF, respectively. 

 Volumetric water content measurements were collected using soil moisture Time 

Domain Transmissometer probes (SDI–12, Acclima, Sydney, AU) at 8 cm and 15 cm for all 

fields during all growing seasons. Measurements of WD were collected continuously using a 
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piezometric sensor (Series 46x, Keller USA Inc., Fort Mill, SC, USA), vented for automatic 

compensation for barometric pressure changes, installed 30 cm from the tower in a perforated 

tube reaching approximately 30 cm below the soil surface. Other field parameters including plant 

density and soil bulk density were collected manually at different times during the growing 

season (Runkle et al., 2019). Bulk density and soil temperature above the soil heat flux plate 

were used in conjunction with WD measurements to correct for changes in heat storage in the 

water and saturated soil matrix above the plate during flooded and dry conditions (Fuchs and 

Tanner, 1968; Runkle et al., 2019). 

2.3 Leaf area index (LAI) and canopy height model 

To characterize changing canopy conditions and provide necessary inputs for the 

Penman–Monteith approach and EC processing, canopy height measurements were collected 

throughout the growing season and averaged across 10–measurements during each field 

excursion (approx. twice monthly, but less frequently in 2016; see below). Because of high crop 

uniformity, canopy height measurements were taken only within 30 m of the EC station, and 

represented the height from the soil surface to the height of the canopy top at eye level, ignoring 

flag leaves. LAI was measured at similar intervals using a plant canopy analyzer (LAI–2200C, 

LI–COR, Inc., Lincoln, NE, USA), averaging three samples taken within 30 m of the EC tower, 

per measurement period. Typically, sampling for LAI did not begin until the canopy had 

achieved a measurable level of growth, usually 50–60 DAP when the canopy height was 

approximately 0.5 m. We estimated LAI and canopy height throughout the growing season with 

a growing–degree–day (GDD) model (Yang et al., 1995). This approach uses GDD as the 

cumulative sum of the differences between the mean daily temperature (Tmean,daily) and a base 
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temperature (Tbase). In this setting, Tbase was set as 10 ºC to represent the minimum temperature 

for growth and development in rice (Keisling et al., 1984).  

LAI and canopy height data were collected through field measurements during the 2015–

2017 growing seasons in both the NF and SF. LAI observations were complemented with 

MODIS Terra (AM) satellite LAI (MOD15A2H; Myneni et al., 2015) to remedy gaps in field 

measurements and improve model timing regarding canopy development. The MODIS data 

provided information about rice canopy dynamics, most notably the transition to a phase of rapid 

growth (approximately 45 DAP) as the rice canopy transitioned from the vegetative to 

reproductive stages. The 1–km MODIS pixel encompassed vegetation from both studied fields 

(Figure 1). The area surrounding the experimental fields are also rice paddies with similar 

phenological development. 

 

Figure 1. MODIS pixel (1–km) in red used for both NF and SF fields also known as US–HRC 

and US–HRA, respectively, in the Ameriflux Management Project. Pixel taken from ORNL 

MODIS Web Interface (ORNL, 2017); Background image from Google Earth (imagery date, 14 

October 2015). Towers include eddy covariance equipment. 

 

For the 2015 and 2017 growing seasons, field observations collected with the LAI-2200C 

(n=8 and n=13, respectively) were necessary to model LAI as a linear and quadratic function of 

GDD during the early and rapid growth stages, respectively. In contrast, only two field 
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observations (n=2) of LAI were collected during the 2016 growing season in the early growth 

period. To compensate for lack of data in 2016, in that year the MODI5AH2 LAI product was 

used to estimate LAI (Myneni et al., 2015). To correct for the MODIS LAI product’s consistent 

under–estimation bias (up to 20%) determined in 2015 and 2017, the MODIS data points used to 

model LAI during the 2016 growing season were adjusted using a scaling factor. This factor was 

estimated using a regression slope between measured data points and the MODIS data at the 

same time period for each field across the 2015–2017 growing seasons. The scaling factors 

(slopes) for each field were then applied to their respective MODIS data to generate a sufficient 

(n > 5) set of LAI data that could be used to identify linear and quadratic growth periods with 

respect to GDD during the 2016 growing season. A similar approach was applied to canopy 

height, where field data were collected and modeled based on the period of the growing season. 

Canopy height measurements were collected during the 2015–2017 growing seasons for each 

field within the study (NF and SF). The same approach used to model LAI before and after the 

transition from vegetative to reproductive stages was applied to canopy height, where the growth 

patterns before and after this transition were considered to be linear and quadratic, respectively, 

in relation to GDD. 

2.4 Methods for modeling ET  

The PM–AET is based on meteorological data and information about plant development. The 

combination equation (1) is based on the latent energy requirement for evaporating water and the 

deficit of vapor pressure necessary for removing water. It also accounts for the resistances for 

transpiring the water from plant tissue and transporting it away from the crop canopy. It was 

used to evaluate data collected in real time from both fields at the 30–min time step. 
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λET =

Δ(RN − G) + cpρaVPD/ra

Δ + γ(1 + rs/ra)
 

 

(1) 

Where λ is the latent heat of vaporization (2.45 MJ kg–1), ET is evapotranspiration (mm 

day–1), cp is specific heat of air (J kg–1 °C–1), ρa is mean air density (kg m–3), rs is bulk surface 

resistance (s m–1), ra is aerodynamic resistance (s m–1) derived from wind speed, canopy height, 

and measurement height of wind speed (see Appendix A), Δ is the slope of vapor pressure–

temperature relationship (kPa °C–1), and γ is the psychrometric constant (kPa °C–1) determined 

as 6.65*10–3 Patm (Atm). The PM–AET can be used to estimate stomatal conductance using EC 

data through inversion and is also one of the few methods that can generate an ET estimate at the 

half–hourly time scale using only meteorological data. 

The PM–FAO56 method (Equation 2) generates daily estimates of reference ET (ETo, 

mm day–1) from a reference crop, a short, well-watered grass, and the crop ET (mm day–1) is 

calculated using dimensionless crop coefficients:  

 ETc = ET0 ∗ Kc =
0.408Δ(Rn − G) + γ (

Cn

T + 273) (VPD)u2m

Δ + γ(1 + Cdu2m)
∗ Kc (2) 

 

where ETc is crop evapotranspiration (mm day–1), ET0 is reference evapotranspiration (mm 

day-1), T is mean daily air temperature at 2.0 m height (°C), u2m is wind speed at 2.0 m height (m 

s–1), Cd and Cn are coefficients based on canopy development for a theoretical crop at 0.12 m in 

height, and Kc is the crop coefficient for converting ET0 to rice canopy ET.  

Each rice development stage has corresponding crop coefficient that is changing. 

According to tabulated FAO56 values the crop coefficients for rice grown in a humid 
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environment with moderately high wind speed (>2 m s–1) are equal to 1.05, 1.20, and 0.9 for the 

initial, mid–season, and late–season periods of the growing season, respectively. The lengths of 

time used to define the initial, developmental, mid–season, and late season stages of rice crop 

growth are 30, 30, 80, and 40 days, respectively. The tabulated rice crop coefficients given were 

also derived from the water-seeded rice practice, where rice was deposited directly into pre-

flooded paddies, based on the identical recommended values (1.05) for coefficient Kc,ini and open 

water surfaces. For this method, several assumptions were made in relation to the reference 

evapotranspiration and G. Reference evapotranspiration requires measurements taken from a 

representative plot that adheres to FAO 56 standards so that all other assumptions inherent to the 

model hold for representativeness of the evaporative demand of the atmosphere. The local 

USDA weather station in Stuttgart, AR (~20 km to east of site surrounded by similar agricultural 

fields) provided measurements of T, RH, u3m, and Rg,in. The wind speed measurements from the 

weather station were corrected to u2m using the logarithmic wind speed profile approach outlined 

in FAO56. Additional components of RN were estimated using “missing climate data methods” 

outlined in FAO 56 based on the location of the site as well as the day of year. Daily ground heat 

flux G is assumed by FAO 56 to average to zero at the daily time step. The crop coefficient was 

also adjusted using modeled canopy height and relative humidity as outlined in FAO 56, Chapter 

6 to account for differences between the field site and the sites used to derive the recommended 

crop coefficients (Allen et al., 1998). Both the recommended and adjusted crop coefficients were 

compared to the observed crop coefficients at our field site. 

2.5 Estimating and modeling canopy conductance 

Canopy conductance, gc, is a key term within the PM–AET model that reflects biological 

mediation of the exchange of gases between the rice canopy and the surrounding atmosphere. To 
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estimate gc within each experimental field site, the PM–AET model was inverted (Equation 3) to 

solve for gc using observed (non–gap–filled) EC measurements of ET (ETEC) for the 

evapotranspiration term:  

 
gc =

λETEC ∗ γ ∗ ga

Δ(Rn − G) + cppa(es − ea)ga − λETEC(Δ + γ)
 (3) 

 

Values of estimated gc were limited to periods with positive ETEC. The estimated gc in these 

half–hour intervals was used to parameterize a model (Equations 4–8), which utilized both 

meteorological and biological inputs to predict estimates of gc in a Jarvis–style approach (Jarvis, 

et al., 1976; Xu et al., 2017; Ershadi, 2015; Gardiol et al., 2003). Surface conductance, gs, was 

determined through gs = gc LAIactive
–1 where LAIactive, determined with Equation 8, represents the 

active fraction of LAI (m2 m–2) available for transpiration.  

 gc = gs,max ∗ f(Rg,in) ∗ f(VPD) ∗ f(T) ∗ LAIactive (4) 

 
f(Rg,in) = 1 − e

(
−Rg,in

a1
)
 (5) 

 f(VPD) = 1 − a2 ∗ VPD (6) 

 f(T) = 1 − a3 ∗ (25 − T)2 (7) 

 

LAIactive =  {

1
LAI

2
0.5 LAI

 LAI < 1
         1 ≤ LAI < 2
         2 ≤ LAI < 4

4 ≤ LAI

 (8) 

where a1, a2, a3 are fitted parameters and gs,max is the maximum surface conductance. The 

LAIactive scales from gs to gc, to incorporate the effects of canopy development and associated 

driving forces on surface conductance across the rice canopy (Collatz et al., 1991; Leuning et al., 

1995). The use of LAIactive follows the “big leaf” approach for modeling conductance across 
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landscapes (Zhang et al., 2008; Li et al., 2016; Xu et al., 2017). To prevent uneven weighting of 

LAI and contributing plant transpiration, the LAIactive parameter was assigned to have a value of 

unity during the early growing season when surface evaporation would be most pronounced in 

ET. Maximum surface conductance (gs,max) was determined as the maximum gs observation in a 

7–day moving window across the entire growing season. Negative and pseudo–infinite values (gs 

> 104 mm s–1) were removed as well as values when incoming Rg,in radiation was less than 30 

W m–2. 

For calibration and validation of the model, we conducted a random selection of the data 

across all six site years for each step. The calibration dataset represented 70% of the total dataset 

while the model and parameters were validated using the remaining 30%. The parameters for the 

conductance model were optimized using nonlinear regression of measured and modeled ET, and 

assessed by the slope, R2, and RMSE of the regression. The parameters were calculated using 

nonlinear least squares regression between measured ET and modeled ET while fitting gc with 

parameters a1, a2, and a3; thus, any uncertainty in the biometeorological inputs (in addition to 

measured ET) was also transmitted to the conductance term. Conductance parameterization only 

utilized data taken from 40 DAP and during the daytime period (8 AM to 6 PM, local time) to 

ensure that conductance terms were not estimated with influence from periods when the rice 

canopy was less likely to impact ET. 

2.6 Comparison and analysis of ET observations 

To better understand impacts related to differences in irrigation treatment, we directly 

compared simultaneous ET observations (non–gap–filled) to other biometeorological factors. 

The variables tested included meteorological drivers in the Penman–Monteith equation, such as 

available energy and VPD, and variables tied to the soil conditions in each field, including 
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volumetric water content (VWC) and WD. Modeled canopy height and LAI were included in 

this analysis to account for canopy differences. Ratios of H to RN were analyzed over the 

growing season to better understand how shifts in ET and canopy development affect the 

partitioning of available energy within the field energy balance. Cumulative estimates of ET 

were compared across growing seasons and irrigation treatments. The number of days missed 

due to the instrument deployment and pre-harvest removal averaged 6, 5, and 2 days across both 

fields for the 2015, 2016, and 2017 growing seasons, respectively. The estimates of cumulative 

ET were also normalized by DAP to calculate a seasonal ET rate absent of bias incurred by 

differences in growing season length.  

The 2015 growing season was the only growing season where the effects of drying could 

be compared using simultaneous observations between both fields throughout the entire growing 

season. In 2016 and 2017, both fields were kept under the same irrigation management, making 

it impossible to directly compare simultaneous ET observations during drying events occurring 

in a single field. Instead, comparisons for the 2016 and 2017 growing season provided an 

opportunity to observe the effects of drying by comparing periods where both fields were either 

wet or dry to determine the relative impacts of drying events during each month of the growing 

season. To assess the impacts of drying events on ET, analysis of covariance (ANCOVA) was 

used to determine if ET was significantly different between fields when one was wet and the 

other was dry using WD measured in both fields. The comparison was conducted on a monthly 

basis where “Wet” (WDDF > 0 & WDAWD >0) and “Dry” (WDDF > 0 & WDAWD <0) categories 

served as the groupings for ET, where the subscripts indicate the respective field. To remain 

consistent with other comparisons between fields, this analysis was limited to measurements 

taken during the daytime (8 AM – 6 PM, local time). For the purposes of this paper, we define a 
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drying event as any period after initial flooding where WD in a field falls below the soil surface 

for at least 24 hours. The analysis was also limited to AWD drying periods, meaning any data 

prior to initial flooding and after the beginning of final drainage was not included.  

Comparisons between the modeled and observed ET were used to evaluate model 

performance using residuals analysis. Residuals from regressions between modeled and observed 

ET were compared to both meteorological and phenological variables within the respective fields 

to identify periods of higher and lower model performance. The approach would also determine 

what input variables are critical in determining ET in the U.S. Mid–South production setting as 

well as identifying variables that could be associated with differences between observed and 

modeled ET. Moreover, comparing performance across both PM methods allows a test of which 

methods are better suited for estimating ET and understanding dynamics of ET with respect to 

the local biometeorology. For the PM–FAO56 method, comparisons between modeled and 

observed values were limited to days where less than 40% of the original EC data between 8 AM 

and 6 PM were missing before gap filling using the ANN procedure. This measure was taken to 

limit the impact of completely gap–filled days while preventing uneven weighting within the 

non–gap–filled dataset due to quality control based on turbulence and instrumentation limits. 

3. Results 

3.1 Meteorological observations 

 Across all growing seasons, the NF and SF sites maintained a mean daily temperature of 

24.5 °C with values ranging between 10 °C (early April) and 36 °C (mid–July). Mean daily 

relative humidity was 80% with values ranging 22–100% during the early growing season (April 

and May) and 40–100% during the mid–late growing season (June–August) after the flood was 

applied. The mean daily VPD ranged between 0.5 and 1.7 kPa with maximum values exceeding 
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2.5 kPa during the daytime period (8 AM – 6 PM, local time) with peak values typically 

occurring between 4 PM and 6 PM. Wind speed averaged 2.06 m s–1 with maximum speeds 

exceeding 10 m s–1. Mean incoming solar radiation was 248 W m–2 across all growing seasons 

with maximum measured values greater than 1000 W m–2 occurring between mid-June and early 

July, and maximum values typically occurred between 12h and 14h. Comparisons to the 30-year 

(1981–2010) average showed that monthly mean temperatures were always within 2 °C of 

normal (Runkle et al., 2019). Comparison of precipitation during the growing season months of 

April to August showed that all three growing seasons were wetter than the 30–year normal of 

492 mm, with 505 mm in 2015, 627 mm in 2016, and 868 mm in 2017. For all three 

measurement seasons, 40–60% of the growing season precipitation occurred in April and May. 

3.2 Canopy height and LAI  

 By comparing MODIS data to collected LAI data, we were able to determine a shift from 

slow to rapid canopy growth, after emergence and the initial vegetative growth stages (Figure 2). 

Due to different planting dates, this transition date varied among growing seasons, occurring 

between 40 and 50 DAP. Maximum LAI was achieved in the SF at 103, 89, and 99 DAP and 

103, 89, and 94 DAP in the NF during the 2015–2017 growing seasons, respectively. Maximum 

LAI for the three respective growing seasons was 5.4, 6.5, and 5.6 for the SF and 4.5, 5.5, and 

4.5 for the NF, respectively. Relative to other years, MODIS data for 2016 indicated a more 

rapid early growth and higher peak in LAI; while we do not have LAI-2200C measurements in 

this year, the canopy height measurements also show higher values.  
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Figure 2. Comparison between measured, GDD–modeled, and remote sensing LAI throughout 

the 2015–2017 growing seasons at: (A) the North Field (NF) and (B) South Field (SF), including 

the model in 2016 where LAI was directly scaled from MODIS without using direct 

measurements. Points displayed represent field observations made by the LAI-2200C; (C) 

smoothed (n=5) and 8–day unscaled MODIS LAI time series from 2015 through 2017 with 

measured LAI points from the LAI-2200C for comparison, where black points represent MODIS 

data points, and dashed lines mark the planting and harvest dates for each year. The standard 

deviation of individual points ranged between 0.24 and 0.73 m2 m-2 throughout the growing 

season. 
 

For the 2015–2017 growing seasons, maximum canopy height was reached between 111 

and 124 DAP for SF and between 109 and 130 days for NF (Figure 3). Maximum canopy height 

for NF and SF ranged between 0.95–1.32 m and 0.93—1.24 m, respectively. Similar to observed 

LAI, the 2016 growing season had a taller canopy during the latter portion of the growing season 

when the canopy was fully developed. The timing of peak canopy height varied as well, 

occurring between 105 and 118 DAP across NF and SF, respectively. Based on our estimates of 
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phenological development, both peak LAI and peak canopy height occurred near the end of the 

R4 reproductive growth stage and the beginning of grain filling. 

 

Figure 3. Comparison between measured and GDD–modeled daily canopy height for the 2015, 

2016, and 2017 growing seasons for NF (a) and SF (b) using DAP for inter-year comparison. 

Solid lines are the GDD–derived modeled values, while the dots represent measured values.  

3.3 Growing Season ET Estimates and Dynamics in 2015-2017 

 The observed and gap–filled growing season ET ranged from 560 to 636 mm across the three 

growing seasons in both fields (Table 2). The 2015 growing season showed the lowest 

cumulative ET across both fields. From planting to harvest, the lengths of the growing season 

were comparable between the fields (i.e., from 0-2 days difference). WD varied throughout each 

growing season, especially in the 2015 and 2016 growing seasons where AWD was applied to at 

least one field (Figure 4). 
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Figure 4. Half-hourly ANN gap–filled eddy covariance ET and water depth (WD) time series for 

the 2015–2017 growing seasons for NF (blue) and SF (red). Dashed lines mark planting and 

harvest for NF (blue) and SF (red) (NOTE: The planting date was the same in 2016 for both 

fields, and harvest dates were the same in 2015 and 2016 for both fields). 

 For the 2015 and 2016 growing seasons, drying events lasted between 2 to 7 days when 

irrigation was interrupted, and the flood water was evaporated. The minimum WD during drying 

events ranged between 2–30 cm below the soil surface prior to re–flooding. The soil moisture 

sensors at 15 cm below the soil surface indicated up to a 33 percentage-point reduction 

(saturation to minimum VWC) in VWC during drying events. Volumetric water content 

measured during drying events in both fields during the 2015 and 2016 growing seasons did not 

fall below 20% compared to 58% soil moisture at saturation during inundation. The producers 

reestablished the flood based on presumed soil dryness and observed decline in the water depth, 

corresponding to a WD of between 25 and 30 cm below the soil surface measured at the EC 

tower. 
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Using the gap–filled eddy covariance observations, cumulative growing season ET was 

calculated for NF and SF for the 2015–2017 growing seasons (Table 2). There were no clear 

relationships between irrigation treatment and estimated daily ET rate, as AWD and DF fields 

produced overlapping ranges of estimated daily ET rates during the 2015–2017 growing seasons. 

There were also no distinguishing patterns when only looking at the daytime ET, therefore 

irrigation regime did not seem to play a major factor in determining growing season ET for NF 

and SF during the 2015–2017 growing seasons. Fields under AWD management averaged 609 

mm while fields under DF management averaged 595 mm, which were not significantly 

different. In relation to cumulative seasonal precipitation across both fields during the growing 

season, ET exceeded growing season precipitation in 2015 and 2016 by as much as 20% while 

only accounting for up to 78% of growing season precipitation in 2017, when precipitation 

events were unusually frequent. However, the precipitation event dynamics did not match the 

crop water requirements and some irrigation applications were necessary to regulate the flood 

levels.  

Table 2. Estimated growing season (GS) ET from gap–filled EC observations, seasonal Daily ET 

rate, and Daytime ET for NF and SF during the 2015–2017 growing seasons. 

Field Year 
Irrigation 

Treatment 

Growing 

Season ET 

[mm] 

Growing 

Season Length 

[days] 

Avg. Daily ET 

Rate 

[mm day–1] 

Growing 

Season 

Precipitation 

[mm] 

NF 

2015 DF 551 ± 7.1 133 4.14 500 

2016 AWD 601 ± 10.5 143 4.20 556 

2017 DF 628 ± 6.9 138 4.55 795 

SF 

2015 AWD 598 ± 14.0 134 4.46 500 

2016 AWD 604 ± 9.7 143 4.22 556 

2017 DF 579 ± 13.4 140 4.13 795 
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Next, we compared treatments at the half hourly time step to test the effects of AWD and 

DF on ET across both fields for the 2015–2017 growing seasons using ANN gap–filled half–

hourly ET. The period of observation was limited to daytime values between 8 AM and 6 PM to 

prevent uneven weighting from nighttime periods. This comparison also confirms, despite 

having different irrigation regimes, there were no significant differences in ET during the 2015 

growing season (Figure 5). Comparisons of ET measured in 2016 and 2017, when both fields 

were in the same irrigation treatment, showed similar results as well. In addition, these results 

did not change significantly when only observed values (i.e., not gap–filled data) were used for 

comparison.  

 

Figure 5. Comparison of half-hourly ANN gap–filled eddy covariance evapotranspiration (ET) 

between the South Field (SF) and North Field (NF) during the 2015–2017 growing seasons, 

where the irrigation treatments are indicated (Alternate wetting and drying, AWD; Delayed 

Flood, DF). Points are colored by days after planting (DAP) (Note: In 2017, SF was planted a 

day earlier than NF, but the coloring represents DAP for SF only). 

NF showed consistently similar LE compared to SF. In 2016, NF had slightly higher ET 

based on a linear regression slope of 0.96. The slopes of each regression were significant with 

the slope standard error across all three comparisons, never exceeding 0.00042. For comparisons 

between NF and SF across 2015–2017, RMSE ranged between 1.02 to 1.68 mm day–1 with a 

majority of the divergence occurring earlier in the growing season. The divergence in ET during 
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the early growing season, when the soil water or water evaporation components dominate the ET 

process, was due to different planting and flooding schedules for each field. Events where one 

field was flooded first before the other indicate higher ET, and these events are especially 

common during the early growing season (e.g., the cluster of points in Figure 5c extending to 16 

mm day–1 in NF and 8 mm day–1 in SF). Typically, once the canopy was established, the fields 

converged in terms of ET and continued to do so through closure until they were drained for 

harvest. Based on our observations, development and closure of the rice canopy clearly reduced 

the impact of factors of change in ET between both fields, including factors related to their 

respective irrigation treatments such as water level or soil moisture. 

There were no significant differences in the measured RN between NF and SF across all 

three growing seasons. The majority of ET was driven by RN with the ratio of LE to RN 

throughout the growing seasons ranging between 0.71 and 0.85. For individual months, 

particularly July and August, LE measured between 55–75% of RN while in early periods of the 

growing season (April and May), LE ranged between 24 and 51% of RN. The ratio of H to RN 

consistently decreased from the beginning of the growing season until pre–harvest draining, 

when the ratio of H to RN increased in most cases. Given that the variation of RN was minimal 

during the growing season, this decrease in the ratio of H to RN was most likely due to the 

increase in LE associated with flooding, canopy development, and greater amounts of 

transpiration.  

3.4 Effects of AWD on ET in Eddy Covariance Observations 

In order to test the effect of AWD on ET variation due to changing flood water 

availability for evaporation, parts of the 2015 growing season with drying events in SF and 

inundation in NF field were used to compare the simultaneous ET values. The length of drying 
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events was consistently around 1 week. Our results indicate that prior to canopy development 

and closure, specifically in May 2015 when dry and wet conditions were being compared 

directly, there is a significant difference (p<0.05) in measured ET (Table 3). While there were 

significant differences in ET, these drying events were not carried out as part of an AWD 

treatment as the first permanent flood had yet to be established.  

Table 3. ANCOVA analysis of NF vs. SF ET observations across different hydrological 

scenarios throughout the growing season. Values are slopes between a number, n, of 

simultaneous 30–min ET estimates in each field. "Wet Condition" refers to periods when both 

fields are wet, defined as having a water level above the soil surface in both fields. "Drying 

Condition" refers to periods where drying occurred in one or both fields with drying considered 

as a decline in the WD below the soil surface for given field(s).  

Year Month 

Number of 

AWD drying 

events 

Total duration of 

drying events, 

days1  

Wet 

Condition 

slope (n) 

Drying Condition 

slope (n) 

NF SF NF SF 

2015 May 0 1 0 5 1.05 (110) 0.91 (34)* 

 June 0 2 0 10 1.01 (124) 1.06 (152) 

 July 0 2 0 8 0.96 (286) 0.96 (22) 

 August 0 1 0 1 0.91 (18)  

2016 May 0 0 0 0 0.75 (18)   

 June 1 3 4 7 0.85 (63)  0.99 (31) †  

 July 0 1 0 3 0.93 (262)   

 August 0 0 0 0 0.93 (161)  

2017 May 1 0 2 0 0.77 (36)   

 June 2 0 4 0 0.99 (170)   

 July 0 0 0 0 1.01 (293)   

 August 0 0 0 0 1.04 (15)   
 

1 Total duration of drying event does not include period prior to first flooding or drainage period 

in late growing season, rounded to the nearest day based on half–hourly WD data.  

* Denotes significantly different “Drying Condition” slope compared to “Wet Condition” slope 

† Marks comparisons of drying condition where both fields were dry (i.e., not 2015) 

 In May 2015, the slope of 0.91 indicates that drying period ET was 9% greater in the 

inundated NF compared to the non-flooded conditions in SF. During this period, both fields did 

not have a developed canopy, and one drying event had occurred. While we do not consider the 
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significant differences in ET to be a direct result of the AWD treatment in NF, analysis between 

the residuals taken from the initial field–to–field regression and the declining WD in SF 

indicated that the drying was able to significantly explain only up to 5% of ET residual variance. 

All other months during the 2015 growing season indicated no significant difference in observed 

ET across all hydrological conditions, and declining WD in the drying field was unable to 

explain any significant differences observed in ET between NF and SF. We suspect that 

differences occurring early in the growing season are substantially influenced by precipitation as 

well in altering the plant canopy response with respect to ET. Additionally, in this farm setting, 

precipitation can be managed in a way that water is actively drained between fields along a 

designated flow path (NF to SF) to prevent unsuitable growth conditions for the crop during 

early growth stages. 

The canopy development stages explain the convergence of ET between the two fields 

and the inability of changes in WD to explain significant differences in ET during the latter 

portion of the growing season. Because both canopies were similar in structure and showed no 

decreases in yield associated with drying events in 2015, we can conclude that plant–mediated 

transpiration was likely similar in both fields. As the canopy continued to develop, the 

contributing portion of transpiration to ET increased, resulting in similar ET rates across both 

fields when the canopy was fully closed and developed. Canopy cover also likely exercised 

control over open water surface evaporation through shading, meaning the contributing portion 

of evaporation to ET likely decreased as well. This would result in insensitivity to ET and 

differences between fields with respect to water level.  

In 2016 and 2017, there were no periods where only one field was dry since both fields 

were treated in AWD and DF, respectively. The columns in Table 3 for these years are therefore 
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during periods when both are dry. During the 2016, slopes from the “All Wet” case did not 

significantly differ from slopes in the “All Dry” case across the growing season. Under both 

conditions, NF appeared to always have greater ET compared to SF despite both fields 

undergoing the same treatment. Measured ET between both fields seemed to agree more during 

dry periods, but these slopes were not significantly different from their wet counterpart during 

each individual month. In 2017, when both fields were managed with DF throughout the entire 

growing season, the comparison indicated no significant differences in slopes from the 

comparison between wet and dry periods. Flooded conditions made it impossible to perform dry 

period analysis in June and July of 2017 as well. Based on the observations in 2016–2017, we 

can infer wetting and drying did not play a significant role in influencing differences in ET 

across both fields, meaning the field effect based on changing WD does not play a consistent, 

significant role in our ET comparisons. This finding supports our observation of similar ET 

between fields regardless of WD management across all growing seasons. The change in slope 

between NF and SF ET rates also indicated that the fields continued to converge on similar ET as 

the canopy developed during the growing season as the slope drew nearer to a value of 1 with 

each successive month. Given that both fields were treated using the same irrigation method in 

2016 and 2017, this similarity was expected and supports the concept of decreasing impacts of 

changing WD and associated soil water evaporation throughout the growing season as canopy 

transpiration dominates the ET flux.  

 3.4 Modeling canopy conductance for the 2015–2017 growing seasons.  

Canopy conductance estimated using eddy covariance measurements for LE and the inverted 

Penman–Monteith equation was estimated using the full 2015–2017 dataset (including both NF 

and SF). Maximum applied surface conductance from the 7–day moving window ranged 
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between 8 and 70 mm s–1 across both fields for the 2015–2017 growing seasons with peak values 

occurring during periods characterized by increased canopy height and LAI. Parameterization 

was performed for individual site seasons and across all six site-years combined. The parameters 

and standard error were estimated for each growing season as well as the combined period of all 

growing seasons (Table 4). 

Table 4. Fitted parameters for the individual and combined growing seasons across NF and SF 

for 2015–2017. Standard error estimates in parentheses were derived from the MSE for each 

parameter associated with the regression; RMSE is presented in terms of the LE flux (where 28 

W m–2 is approx. equivalent to 1 mm ET) 

 Year a1 [W m–2] a2 [kPa–1] a3 [°C–2] 
Mean gs,max 

[mm s–1] 
RMSE 

[W m–2] 

NF 

2015 2445 (85) 0.14 (0.02) 0.005 (0.0003) 30 23.50 

2016 2522 (189) 0.04 (0.06) 0.007 (0.0004) 24 34.48 

2017 1367 (80) 0.26 (0.02) 0.005 (0.0008) 22 32.11 

SF 

2015 1542 (63) 0.26 (0.02) 0.006 (0.0005) 32 30.16 

2016 2169 (130) 0.33 (0.00) 0.000 (0.0012) 20 40.26 

2017 826 (85) 0.31 (0.04) 0.006 (0.0009) 19 27.77 

NF+SF 
2015–

2017 
1659 (30) 0.31 (0.00) 0.003 (0.0003) 28 34.88 

 

3.5 Modeling ET for the 2015–2017 growing seasons using PM–AET 

After parameterization with 70% of the data during calibration with data from across all 

six field–seasons, the calibrated model performed well against the remaining data as a validation 

set. The parameterized PM equation was able to estimate half–hourly ET with high correlation 

(R2=0.84; m=1 ± 0.0015 mm day–1; RMSE=2.12 mm day–1) during daytime periods of the 

growing season across all six site–years. Within each individual growing season, model 

performance was varied across each irrigation comparison scenario, but was still able to explain 

similar amounts of variance (Figure 6).  



 

39 

 

 
Figure 6. Comparison of half-hourly PM model to non–gap–filled EC observations during the 

daytime period (8 AM to 6 PM, local time) across the 2015–2017 growing seasons and 

observations from both fields are plotted together. 

 

Analysis of model performance across the growing season indicated that the largest 

portion of variance between model and observation was during the early portion of the growing 

season (<40 DAP) when the active fraction of LAI was the lowest. General performance across 

all three growing seasons was inconsistent as the model both overestimates ET by 2% in 2015 

and 2016 and underestimates ET by 12% in 2017. During the 2017 growing season, there was 

greater precipitation than 2015 and 2016, which could explain the model’s inability to accurately 

reflect changes in canopy ET in response to rain events and an elevated moisture status. A two–

sample t–test indicated that mean gs,max estimated across 2017 was significantly (p<0.05) lower 

than mean gs,max in 2015 and 2016 by as much as 60%.  

3.6 Modeling ET for the 2015–2017 growing seasons using PM–FAO56 

The PM–FAO56 method was applied to the 2015–2017 growing season measurements at 

the daily time scale and compared to daily ET measured using EC. Because we did not observe 

noticeable differences in ET between NF and SF for all three growing seasons (the average daily 

difference was only 0.027 mm), an average ET representing both fields was used when 

comparing to the FAO56 estimates at the daily time step. Estimates from the PM–FAO56 
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approach were consistently higher than EC estimates with cumulative seasonal ET amounts at 

607, 709, and 660 mm for the 2015–2017 growing seasons, respectively. These values were 8, 

105, and 81 mm greater than the seasonal ET as directly measured by the EC. Adjusted estimates 

of ET from the FAO56 method for the 2015–2017 growing seasons were 611, 698, and 651 mm, 

which are 13, 94, and 72 mm higher from the observed seasonal values, respectively. The 

estimated crop coefficient curve was shown to vary greatly throughout the growing season when 

compared to the FAO56 recommended values, including cases where the coefficient was 

adjusted for nonstandard conditions (Figure 7).  

 

 

Figure 7. Comparison of FAO56 recommended and adjusted crop coefficient (black and pink 

lines, respectively) and estimated crop coefficient (Kc) using eddy covariance ET (black data 

points) for SF and NF during the 2015–2017 growing seasons (note change of scale for 2017). 

Red data points represent Kc values where more than 60% of the daytime (8 AM to 6 PM, local 

time) non–gap–filled EC ET data was available to help interpret the impacts of using only gap–

filled data (Note y-axis scale change on C) 

 The agreement between estimated and recommended Kc values was poor throughout the 

growing season. When comparing values of Kc derived from gap–filled EC data to recommended 

values, daily values could vary as much as 80% higher or lower than the recommended values. 

Compared to data points from days containing less gap filling, variance is reduced by 40% in 

estimated Kc across the growing season, but individual Kc values are still underestimated up to 
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79% and overestimated up to 80% across both the recommended and adjusted Kc values. Using 

only the non–gap–filled EC derived Kc (red points in Figure 7) across 2015-2017, we estimate 

the Kc, ini, Kc,mid, and Kc,end to be 0.94 ± 0.03, 1.16 ± 0.02, and 0.95 ± 0.11, respectively. 

Variability between the recommended and observed crop coefficients was noticeable in the early 

growing season due to the difference in irrigation practices between the FAO recommendation 

and our field site as mentioned in the methods, but values were within an acceptable margin of 

error for the mid and late growing seasons. When comparing ET rates between the PM-FAO56 

method and the EC towers using data, we excluded data points from the initial 60 days to remove 

the variance introduced from Kc, ini. We also limited observation to only include periods where 

greater than 60% of the measured daytime (8 AM to 6 PM, local time) ET was present to reduce 

the amount of uncertainty introduced by ANN gap-filling (Figure 8). 

 

Figure 8. Comparison of PM-FAO56 to EC-derived, gap-filled daily ET during the mid to late 

growing season across the 2015-2017 growing seasons. Points are colored by DAP. 

 Our results indicated no clear seasonal pattern to increased performance of the PM-

FAO56 method when considering only the mid and late growing season. Across all growing 

seasons, we observed a consisted overestimation of ET during the late season period (DAP>115) 
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in 2015 and 2016, but mid-season performance varied from year to year. The adjusted crop 

coefficients (not shown) provided no improvement when compared to the same EC observations. 

Similar to the PM-AET approach, we suspect that increased precipitation and regional 

differences in growth conditions between our site and the reference site could have resulted in an 

irregular canopy response and altered ET from both fields during the growing season. We 

observed the best performance of the PM-FAO56 method when both fields were under AWD 

treatment and the amount of precipitation was noticeably less than in 2017 (Table 2).  

4. Discussion 

4.1 Comparing ET across irrigation regimes 

 Mean growing season ET was estimated to be between 4.14 and 4.55 mm day–1 for DF 

and between 4.20 and 4.46 mm day–1 for AWD using gap–filled eddy covariance estimates. 

Thus, this is additional evidence that ET rates do not significantly differ between the different 

treatments. Other studies have indicated a similar range of mean growing season ET when 

compared to other conventional systems involving continuous flooding and AWD both 

domestically and internationally (Table 5). Based on this literature synthesis across methods, 

climate conditions, and production settings, estimated growing season ET ranged between 411 

and 889 mm with daily ET rates ranging from 3.31 to 7.87 mm day–1 (Table 5). When EC was 

used to measure ET directly, the range narrowed to 485 mm to 636 mm with measured daily ET 

between 3.50 and 4.65 mm day–1. When only comparing studies reporting DAP, the median 

growing season ET was 653 mm with an equivalent ET rate of 4.87 mm day–1. Other methods, 

including the PM model, showed a much larger range of ET from 499 mm to 762 mm with 

estimated daily ET ranging between 4.05 and 4.65 mm day–1. Variation in estimated rates was 

likely linked to differences in climate conditions, method, and possibly production practices such 
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as transplanting, which changes the scope or range of observation compared to direct seeding 

(Naklang et al., 1996; Tuong & Bhuiyan, 1999). With respect to metrics such as derived daily ET 

rate, the number of days after transplanting or direct seeding indicate different growth phases 

that can potentially differ in productivity (Dingkuhn et al., 1991). 
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Table 5. Cumulative ET estimates and estimated daily ET rate during the growing season for 

different studies estimating ET in rice agriculture; EC is eddy covariance, PM is Penman–

Monteith AET, PM–FAO56 is PM as defined in FAO56). 

Seasonal 

ET 

(mm) 

Growing 

Season 

Length 

(Days) 

Equivalent 

Rate (mm 

day–1) 

Location Transplanted Method Study 

813 122 6.66 CA–Water 

Seeded 

 

 

No 

Energy 

balance 

residual 

Linquist et al., 2015 

889 113 7.87 No 

856 115 7.44 No 

873 134 6.51 CA–Dry Seeded 

 

 

No 

865 112 7.72 No 

875 116 7.54 No 

670 116 5.76 Namibia Yes 
Penman 

Monteith 
Kotani et al., 2017 

548 100 5.48 Hyderabad, India Yes 
Pan 

evaporation 
Mote et al., 2018 

499 117 4.25 IRRI No EC, PM Alberto et al., 2014 

562 132 4.26 Brazil No EC 

Timm et al., 2014 593 132 4.49 Brazil No PM 

596 132 4.52 Brazil No PM–FAO56 

411 124 3.31 Japan Yes Lysimeter Shimono et al., 2013 

485 113 4.29 IRRI–Flooded Yes 
EC, PM Alberto et al., 2011 

506 133 3.8 IRRI–AWD Yes 

568 122 4.66 Italy-DF No 

PM Facchi et al., 2013 678 122 5.56 Italy-DF No 

691 120 5.76 Italy-AWD No 

419–534 120 3.5–4.4 Japan Yes EC Ikawa et al., 2017 

595 147 4.05 

Brazil 

No 

EC Diaz et al., 2019 

762 164 4.65 No 

677 164 4.13 No 

733 162 4.52 No 

716 154 4.65 No 

693 168 4.13 No 

551 133 4.14 

Arkansas 

(this study) 

No 

EC 

NF, 2015 

601  143 4.20 No NF, 2016 

628  138 4.55 No NF, 2017 

598  134 4.46 No SF, 2015 

604  143 4.22 No SF, 2016 

579  140 4.13 No SF, 2017 

 

4.2 The effects of AWD on ET during the 2015 growing season 

 In our study, ET rates measured using eddy covariance showed no significant differences 

across the entire growing season and no significant differences during drying events when ET 
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was expected to change due to the decline in WD. Regarding the drying events, neither field 

experienced major declines in volumetric water content (<20% VWC) that significantly 

influenced differences in ET between NF and SF. Studies conducted on field plots containing 

poorly drained clay soils  have also reported similar results. Significant levels of drying relative 

to the study soils still yielded no significant differences in AWD and control yields (Carrijo et 

al., 2018; Norton et al., 2017). Because we observed no significant differences in yield quality or 

quantity between the treatments (Runkle et al., 2019), we assume with confidence that the plants 

were not significantly inhibited by water stress in grain production and associated transpiration. 

Thus, a large portion of ET remained unaffected by the AWD treatment. Additionally, the rice 

grown in both fields (XL745) was a hybrid variety associated with high nutrient efficiency and 

water–use efficiency to produce comparable yields in water–limited conditions (Lopez et al., 

2018). The combination of limited drying and the rice variety likely explained the lack of 

response in ET to drying events in both fields. 

4.3 Modeling conductance using inverted PM  

 Across the daytime period, the estimated canopy conductance values from the inversion 

of the Penman–Monteith equation showed values ranging roughly between 3 and 33 mm s–1, 

which are similar to other studies estimating canopy conductance in rice across a number of 

studies (Table 6). 
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Table 6. Comparisons of estimated rice canopy conductance  ranges under different production 

practices reported in studies 

Conductance 

range  

[mm s–1] 

Irrigation Style Location Method Author(s) 

4 to 16 
Controlled 

irrigation 
Japan 

Inverted PM & EC 

(daily mean over 5–

day period in late 

season) 

Harazano et al., 

1998 

0 to 20 Flooded Japan (Saito) Dual–Source Heat 

transfer model 

(based on seasonal 

observations) 

Marayuma & 

Kuwagata, 2008 
0 to 20 Flooded Japan (Saga) 

0 to 30 Flooded Japan (Aso) 

16.55 ± 8.99 Flooded Philippines (2008, Dry Season) 

Inverted PM & EC 

(seasonal mean) 

Alberto et al., 

2011 

8.85 ± 4.51 
Aerobic 

(AWD) 
Philippines (2008, Dry Season) 

12.47 ± 6.39 Flooded Philippines (2008, Wet Season) 

9.82 ± 4.34 
Aerobic 

(AWD) 
Philippines (2008, Wet Season) 

14.86 ± 7.12 Flooded Philippines (2009, Dry Season) 

8.91 ± 3.35 
Aerobic 

(AWD) 
Philippines (2009, Dry Season) 

18.24 ± 7.98 Flooded Philippines (2009, Wet Season) 

9.44 ± 3.59 Aerobic 

(AWD) 

Philippines (2009, Wet Season) 

0 to 16.86 DF NF (2015) 

Inverted PM & EC 

(seasonal mean) 
This study 

1.5 to 20.5 AWD SF (2015) 

0 to 15.56 AWD NF (2016) 

0 to 14.09 AWD SF (2016) 

0 to 13.53  DF NF (2017) 

0 to 15.94 DF SF (2017) 

 

Canopy conductance estimates from various studies (Table 6) show comparable ranges to 

the current study, between 0 and 21 mm s–1 during the growing season. Daily maximum 

conductance estimated from half hourly data throughout growing seasons ranged between 24 mm 

s–1 (2016) and 28 mm s–1 (2015) for NF and 20 mm s–1 (2016) and 33 mm s–1 (2017) for SF with 

peak values occurring between 1 PM and 5 PM for both fields when the canopy is most active. 

However, based on comparisons between the model and the initial estimates of conductance, the 

model was not able to accurately estimate conductance at any given time. A comparison of initial 
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conductance estimates from the inverted PM–AET and known drivers of ET, such as net 

radiation and VPD, showed no apparent relationships during the daytime period throughout the 

growing season. While the parameterized model was able to give some definition to the 

relationships between environmental drivers and conductance across each growing season, our 

results indicated that the rice canopy faced no apparent limitation based on VPD, available 

energy, or temperature with respect to conductance. However, the parameterized conductance 

was still able to generate more consistently accurate estimates of LE when compared to using a 

static monthly value for canopy conductance in the Penman–Monteith equation.  

4.4 Improving PM–AET and PM–FAO56 

 In this study, the PM–AET approach was able to estimate ET effectively across the 

growing season at the half–hourly time step. Because the model was constrained based on time 

of day due to the conductance modeling, ET estimates generated outside of the primary period 

are considered less reliable and less valuable when describing mechanistic relationships between 

drivers and associated ET. During the growing season, the canopy consistently experienced 

elevated levels of humidity (>80%) during the daytime period, reducing the overall atmospheric 

demand of water. We were also unable to detect significant responses in modeled stomatal 

conductance to changes in temperature and VPD, meaning the plants were not stressed despite 

the elevated temperatures and increased VPD. Available energy was the primary driver of ET 

throughout the growing season as evidenced through both direct observations and the use of the 

PM–AET, where measured available energy was able to explain a significant amount of the 

variance in ET residuals between both fields. Regarding our hypotheses, we did not see any 

significant amount of variance between modeled and observed ET explained using soil moisture 

or water level across a variety of conditions in each growing season. As mentioned previously 
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when addressing the effects of AWD, the canopy did not experience significant levels of drying 

below 40% VWC. Thus, while we did not see a significant response, low soil moisture is known 

to impact canopy health (Carrijo et al., 2018). Additionally, the PM–AET method generated 

acceptable estimates of ET during the growing season regardless of irrigation regime. 

 Regarding the PM–FAO56 approach, it was clear that the current methodology was able 

to produce comparable estimates of ET in 2015, but the model performance was inconsistent 

across the 2016 and 2017 growing seasons based on the comparison of cumulative ET amounts 

between the PM-FAO56 approach and the EC measurements. When observing the PM-FAO56 

daily ET rates during the mid to late growing season, we saw the best performance in 2016, 

when both NF and SF were under AWD. Contrastingly, the model performance was poorest in 

years the precipitation was greater (2017) or the fields were kept under different management 

strategies (2015).   Across the growing season, the estimated Kc and recommended Kc were more 

similar in the mid to late growing season. The dissimilarity between the estimated and 

recommended Kc,ini was likely due to the difference in production settings over which the 

coefficients were estimated. Water seeded rice production applies a substantially greater amount 

of water to the field during the early growing season compared to the drill seeding approach used 

in our experiments. Under flooded conditions at planting, the resulting ET would be higher 

compared to dry soil present in drill seeded rice, meaning the ratio of crop ET to reference ET 

would also be greater in the flooded field. This effect was reduced as the canopy developed in 

the later portion (DAP>60) of the growing season, where variance was almost 50% less in the 

regression between EC derived values for Kc,mind and Kc,end  and the recommended FAO56 values.  

However, the early growing season does not represent a period of time where producers 

are actively concerned with irrigation applications as the first flood has not been applied yet. 
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Producer interest in using ET to schedule irrigation events would likely be tied to the mid and 

late growing season, when plant water availability is critical to maintaining profitable yields 

(Hardke, 2013). Local climate likely played a role in differences in crop coefficient as the 

recommended crop coefficients were generated under climates that are less humid (Doorenbos et 

al., 1977; Doorenbos and Kassam, 1979). Considering our findings, we recommend that 

improvements to the method should include regional or site–specific crop coefficient 

development to better account for differences in production practices, such as water seeding vs. 

drill seeding. For practical applications, the PM-FAO56 method could still be a viable option for 

producers to estimate ET and schedule irrigation events.  

The PM–AET model was able to perform well as a method for gap filling LE fluxes at 

the half hourly time step. Based on our results with the PM–AET, capturing the amount of 

available energy as the difference between the net radiation and G is a critical component of 

estimating ET as demonstrated in our experiment. Because available energy represents such a 

large portion of ET in our production settings, less complex ET estimation methods such as the 

Priestley–Taylor (also a PM derivative) and the Hargreaves equation could prove to be valuable. 

Other studies based in rice across varying production systems have also identified available 

energy as the driving factor of ET in rice paddy systems with the ratio of LE to RN ranging from 

71 to 74% during the typical growing period under flooded conditions (Hossen et al., 2011; 

Timm et al., 2014; Liu et al., 2019). While establishing robust methodology and application of 

tools is complex and multifaceted, development of methods for estimating ET at the canopy 

scale provides valuable information to better inform producers. Exploration and improved 

knowledge of modeling limitations and controls at the field scale can serve as a point of 
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comparison for larger scale applications of ET modeling using remote sensing (Jiang & Ryu, 

2016; Fisher et al., 2020). 

5. Conclusions 

Based on this experiment’s findings, the use of AWD as an irrigation treatment showed 

no significant effect on ET when compared to the conventional DF practice. The treatments 

showed no significant differences in yields, meaning that there was not significant water stress 

associated with drying events. If taken as a plant health indicator, ET was not affected and leads 

us to conclude that the plants did not experience drought stress and could still access sufficient 

water within the soil as VWC did not fall below 20% during drying events. We were able to use 

the PM–AET approach and conductance model to estimate half-hourly ET across the growing 

season. The model has potential to continue to provide mechanistic insight on driving 

environmental variables during different portions of the growing season with respect to ET. As 

seen in the comparison of field and recommended Kc, the PM–FAO56 method did not yield 

strong results. We conclude that site-specific crop coefficient values are necessary to generate 

accurate crop coefficient values, especially during the early growing season. However, we also 

recognize that in practical application, ET during the mid-to-late growing season is more 

valuable for planning irrigation based on field ET estimates.  

6. Acknowledgements 

We thank the Isbell family’s Zero Grade Farms for hosting and helping manage our experiment 

and Allison Sites, Zach Johnson, Bryant Fong, Yin–Lin Chiu and W. Jonathon Delp, for field and 

data analysis support. We thank Merle Anders for his contributions. We thank Cove Sturtevant of 

NEON for sharing Matlab code used to gap–fill flux data with artificial neural networks.  



 

51 

 

This work has been funded through the U.S. Geological Survey under Cooperative Agreements 

G11AP20066 and G16AP00040 as administered by the Arkansas Water Resources Center at the 

University of Arkansas; the USDA–NRCS under Cooperative Agreement 68–7103–17–119, and 

the NSF under CBET Award 1752083. The views and conclusions contained in this document are 

those of the authors and do not represent the opinions or policies of the USGS or the Department 

of Agriculture; use of trade names and commercial products does not constitute endorsement.   



 

52 

 

Chapter 1: References 

Alberto, Ma.C.R., Quilty, J.R., Buresh, R.J., Wassmann, R., Haidar, S., Correa, T.Q., Sandro, 

J.M., 2014. Actual evapotranspiration and dual crop coefficients for dry–seeded rice and hybrid 

maize grown with overhead sprinkler irrigation. Agricultural Water Management 136, 1–12. 

https://doi.org/10.1016/j.agwat.2014.01.005 

Alberto, Ma.C.R., Wassmann, R., Hirano, T., Miyata, A., Hatano, R., Kumar, A., Padre, A., 

Amante, M., 2011. Comparisons of energy balance and evapotranspiration between flooded and 

aerobic rice fields in the Philippines. Agricultural Water Management 98, 1417–1430. 

https://doi.org/10.1016/j.agwat.2011.04.011 

Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration – Guidelines for 

computing crop water requirements – FAO Irrigation and drainage paper 56. FAO, Rome 300, 

D05109. 

Carrijo, D.R., Akbar, N., Reis, A.F.B., Li, C., Gaudin, A.C.M., Parikh, S.J., Green, P.G., 

Linquist, B.A., 2018. Impacts of variable soil drying in alternate wetting and drying rice systems 

on yields, grain arsenic concentration and soil moisture dynamics. Field Crops Research 222, 

101–110. https://doi.org/10.1016/j.fcr.2018.02.026 

Carrijo, D.R., Lundy, M.E., Linquist, B.A., 2017. Rice yields and water use under alternate 

wetting and drying irrigation: A meta–analysis. Field Crops Research 203, 173–180. 

https://doi.org/10.1016/j.fcr.2016.12.002 

Collatz, G.J., Ball, J.T., Grivet, C., Berry, J.A., 1991. Physiological and environmental regulation 

of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar 

boundary layer. Agricultural and Forest Meteorology 54, 107–136. https://doi.org/10.1016/0168–

1923(91)90002–8 

Diaz, M.B., Roberti, D.R., Carneiro, J.V., Souza, V. de A., de Moraes, O.L.L., 2019. Dynamics 

of the superficial fluxes over a flooded rice paddy in southern Brazil. Agricultural and Forest 

Meteorology 276–277, 107650. https://doi.org/10.1016/j.agrformet.2019.107650 

Dingkuhn, M., Schnier, H.F., De Datta, S.K., Dorffling, K., Javellana, C., 1991. Relationships 

between ripening–phase productivity and crop duration, canopy photosynthesis and senescence 

in transplanted and direct–seeded lowland rice. Field Crops Research 26, 327–345. 

https://doi.org/10.1016/0378–4290(91)90009–K 

Doorenbos, J., Kassam, A., 1979. Yield response to water. Irrigation and Drainage 257, 33. 

Doorenbos, J., Pruitt, W.O., 1977. Crop water requirements. FAO irrigation and drainage paper 

24. Land and Water Development Division, FAO, Rome 144. 

Ershadi, A., McCabe, M.F., Evans, J.P., Wood, E.F., 2015. Impact of model structure and 

parameterization on Penman–Monteith type evaporation models. Journal of Hydrology 525, 

521–535. https://doi.org/10.1016/j.jhydrol.2015.04.008 



 

53 

 

Facchi, A., Gharsallah, O., Chiaradia, E.A., Bischetti, G.B. and Gandolfi, C., 2013. Monitoring 

and modelling evapotranspiration in flooded and aerobic rice fields. Procedia Environmental 

Sciences, 19, pp.794-803. 

Fisher, J.B., Lee, B., Purdy, A.J., Halverson, G.H., Dohlen, M.B., Cawse‐Nicholson, K., Wang, 

A., Anderson, R.G., Aragon, B., Arain, M.A., Baldocchi, D.D., Baker, J.M., Barral, H., 

Bernacchi, C.J., Bernhofer, C., Biraud, S.C., Bohrer, G., Brunsell, N., Cappelaere, B., Castro‐

Contreras, S., Chun, J., Conrad, B.J., Cremonese, E., Demarty, J., Desai, A.R., Ligne, A.D., 

Foltýnová, L., Goulden, M.L., Griffis, T.J., Grünwald, T., Johnson, M.S., Kang, M., Kelbe, D., 

Kowalska, N., Lim, J.-H., Maïnassara, I., McCabe, M.F., Missik, J.E.C., Mohanty, B.P., Moore, 

C.E., Morillas, L., Morrison, R., Munger, J.W., Posse, G., Richardson, A.D., Russell, E.S., Ryu, 

Y., Sanchez‐Azofeifa, A., Schmidt, M., Schwartz, E., Sharp, I., Šigut, L., Tang, Y., Hulley, G., 

Anderson, M., Hain, C., French, A., Wood, E., Hook, S., 2020. ECOSTRESS: NASA’s Next 

Generation Mission to Measure Evapotranspiration From the International Space Station. Water 

Resources Research 56, e2019WR026058. https://doi.org/10.1029/2019WR026058 

Fuchs, M., Tanner, C.B., 1968. Calibration and Field Test of Soil Heat Flux Plates. Soil Science 

Society of America Journal 32, 326–328. 

https://doi.org/10.2136/sssaj1968.03615995003200030021x 

Gardiol, J.M., Serio, L.A., Della Maggiora, A.I., 2003. Modelling evapotranspiration of corn 

(Zea mays) under different plant densities. Journal of Hydrology 271, 188–196. 

https://doi.org/10.1016/S0022–1694(02)00347–5 

Gharsallah, O., Facchi, A. and Gandolfi, C., 2013. Comparison of six evapotranspiration models 

for a surface irrigated maize agro-ecosystem in Northern Italy. Agricultural Water Management, 

130, 119-130. 

Graham‐Acquaah, S., Siebenmorgen, T.J., Reba, M.L., Massey, J.H., Mauromoustakos, A., 

Adviento‐Borbe, A., January, R., Burgos, R., Baltz‐Gray, J., 2019. Impact of alternative 

irrigation practices on rice quality. Cereal Chemistry 96, 815–823. 

https://doi.org/10.1002/cche.10182 

Hardke, J., 2013. Arkansas Rice Production Handbook – MP192. 

Hargreaves George H., Allen Richard G., 2003. History and Evaluation of Hargreaves 

Evapotranspiration Equation. Journal of Irrigation and Drainage Engineering 129, 53–63. 

https://doi.org/10.1061/(ASCE)0733–9437(2003)129:1(53) 

Henry C. G., Hirsh S. L., Anders M. M., Vories E. D., Reba M. L., Watkins K. B., Hardke J. T., 

2016. Annual Irrigation Water Use for Arkansas Rice Production. Journal of Irrigation and 

Drainage Engineering 142, 05016006. https://doi.org/10.1061/(ASCE)IR.1943–4774.0001068 

Horst, T.W., Semmer, S.R., Maclean, G., 2015. Correction of a Non–orthogonal, Three–

Component Sonic Anemometer for Flow Distortion by Transducer Shadowing. Boundary–Layer 

Meteorology 155, 371–395. https://doi.org/10.1007/s10546–015–0010–3 



 

54 

 

Hossen, M.S., Mano, M., Miyata, A., Baten, M.A., Hiyama, T., 2012. Surface energy 

partitioning and evapotranspiration over a double–cropping paddy field in Bangladesh. 

Hydrological Processes 26, 1311–1320. https://doi.org/10.1002/hyp.8232 

Ikawa, H., Chen, C.P., Sikma, M., Yoshimoto, M., Sakai, H., Tokida, T., Usui, Y., Nakamura, 

H., Ono, K., Maruyama, A., Watanabe, T., Kuwagata, T., Hasegawa, T., 2018. Increasing 

canopy photosynthesis in rice can be achieved without a large increase in water use—A model 

based on free–air CO2 enrichment. Global Change Biology 24, 1321–1341. 

https://doi.org/10.1111/gcb.13981 

Ikawa, H., Ono, K., Mano, M., Kobayashi, K., Takimoto, T., Kuwagata, T., Miyata, A., 2017. 

Evapotranspiration in a rice paddy field over 13 crop years. Journal of Agricultural Meteorology 

73. https://doi.org/10.2480/agrmet.D–16–00011 

Jarvis, P.G., Monteith, J.L., Weatherley, P.E., 1976. The interpretation of the variations in leaf 

water potential and stomatal conductance found in canopies in the field. Philosophical 

Transactions of the Royal Society of London. B, Biological Sciences 273, 593–610. 

https://doi.org/10.1098/rstb.1976.0035 

Jiang, C. and Ryu, Y., 2016. Multi-scale evaluation of global gross primary productivity and 

evapotranspiration products derived from Breathing Earth System Simulator (BESS). Remote 

Sensing of Environment, 186, 528-547. 

Keisling, T., Wells, B.R., Davis, G.L., 1984. Rice Management Decision Aids Based Upon 

Thermal Time Base 50 ̊. Cooperative Extension Service, University of Arkansas, USDA, and 

county governments cooperating. 

Kima, A.S., Chung, W.G., Wang, Y.–M., Traoré, S., 2015. Evaluating water depths for high 

water productivity in irrigated lowland rice field by employing alternate wetting and drying 

technique under tropical climate conditions, Southern Taiwan. Paddy Water Environ 13, 379–

389. https://doi.org/10.1007/s10333–014–0458–7 

Knox, S.H., Matthes, J.H., Sturtevant, C., Oikawa, P.Y., Verfaillie, J., Baldocchi, D., 2016. 

Biophysical controls on interannual variability in ecosystem–scale CO2 and CH4 exchange in a 

California rice paddy. Journal of Geophysical Research: Biogeosciences 121, 978–1001. 

https://doi.org/10.1002/2015JG003247 

Knox, S.H., Sturtevant, C., Matthes, J.H., Koteen, L., Verfaillie, J., Baldocchi, D., 2015. 

Agricultural peatland restoration: effects of land–use change on greenhouse gas (CO2 and CH4) 

fluxes in the Sacramento–San Joaquin Delta. Global Change Biology 21, 750–765. 

https://doi.org/10.1111/gcb.12745 

Lafleur, P.M. and Rouse, W.R., 1990. Application of an energy combination model for 

evaporation from sparse canopies. Agricultural and Forest Meteorology, 49, 135-153. 

Lampayan, R.M., Rejesus, R.M., Singleton, G.R., Bouman, B.A.M., 2015. Adoption and 

economics of alternate wetting and drying water management for irrigated lowland rice. Field 

Crops Research 170, 95–108. https://doi.org/10.1016/j.fcr.2014.10.013 



 

55 

 

Lecina, S., Martı́nez–Cob, A., Pérez, P.J., Villalobos, F.J., Baselga, J.J., 2003. Fixed versus 

variable bulk canopy resistance for reference evapotranspiration estimation using the Penman–

Monteith equation under semiarid conditions. Agricultural Water Management 60, 181–198. 

https://doi.org/10.1016/S0378–3774(02)00174–9 

Leuning, R., Kelliher, F.M., Pury, D.G.G.D., Schulze, E.–D., 1995. Leaf nitrogen, 

photosynthesis, conductance and transpiration: scaling from leaves to canopies. Plant, Cell & 

Environment 18, 1183–1200. https://doi.org/10.1111/j.1365–3040.1995.tb00628.x 

Li, X., Kang, S., Li, F., Jiang, X., Tong, L., Ding, R., Li, S., Du, T., 2016. Applying segmented 

Jarvis canopy resistance into Penman–Monteith model improves the accuracy of estimated 

evapotranspiration in maize for seed production with film–mulching in arid area. Agricultural 

Water Management 178, 314–324. https://doi.org/10.1016/j.agwat.2016.09.016 

Li, Y.H., Cui, Y.L., 1996. Real–time forecasting of irrigation water requirements of paddy fields. 

Agricultural Water Management 31, 185–193. https://doi.org/10.1016/0378–3774(96)01252–8 

Linquist, B.A., Anders, M.M., Adviento‐Borbe, M.A.A., Chaney, R.L., Nalley, L.L., Rosa, 

E.F.F. da, Kessel, C. van, 2015. Reducing greenhouse gas emissions, water use, and grain arsenic 

levels in rice systems. Global Change Biology 21, 407–417. https://doi.org/10.1111/gcb.12701 

Linquist, B., Snyder, R., Anderson, F., Espino, L., Inglese, G., Marras, S., Moratiel, R., Mutters, 

R., Nicolosi, P., Rejmanek, H. and Russo, A., 2015. Water balances and evapotranspiration in 

water–and dry–seeded rice systems. Irrigation science, 33(5), pp.375–385. 

Linquist, B.A., Marcos, M., Adviento‐Borbe, M.A., Anders, M., Harrell, D., Linscombe, S., 

Reba, M.L., Runkle, B.R.K., Tarpley, L., Thomson, A., 2018. Greenhouse Gas Emissions and 

Management Practices that Affect Emissions in US Rice Systems. Journal of Environmental 

Quality 47, 395–409. https://doi.org/10.2134/jeq2017.11.0445 

Liu, H., Yang, L., Wang, Y., Huang, J., Zhu, J., Yunxia, W., Dong, G., Liu, G., 2008. Yield 

formation of CO2–enriched hybrid rice cultivar Shanyou 63 under fully open–air field 

conditions. Field Crops Research 108, 93–100. https://doi.org/10.1016/j.fcr.2008.03.007 

Liu, B., Cui, Y., Luo, Y., Shi, Y., Liu, M., Liu, F., 2019. Energy partitioning and 

evapotranspiration over a rotated paddy field in Southern China. Agricultural and Forest 

Meteorology 276–277, 107626. https://doi.org/10.1016/j.agrformet.2019.107626 

Liu, X., Xu, J., Yang, S., Lv, Y., 2019. Surface Energy Partitioning and Evaporative Fraction in 

a Water-Saving Irrigated Rice Field. Atmosphere 10, 51. https://doi.org/10.3390/atmos10020051 

Liu, X., Xu, J., Wang, W., Lv, Y., Li, Y., 2020. Modeling rice evapotranspiration under water-

saving irrigation condition: Improved canopy-resistance-based. Journal of Hydrology 590, 

125435. https://doi.org/10.1016/j.jhydrol.2020.125435 

López‐López, R., Jiménez‐Chong, J.A., Hernández‐Aragón, L., Ibarra, M.A.I., 2018. Water 

Productivity of Rice Genotypes with Irrigation and Drainage. Irrigation and Drainage 67, 508–

515. https://doi.org/10.1002/ird.2250 



 

56 

 

Lv, Y., Xu, J., Yang, S., Liu, X., Zhang, J., Wang, Y., 2018. Inter–seasonal and cross–treatment 

variability in single–crop coefficients for rice evapotranspiration estimation and their validation 

under drying–wetting cycle conditions. Agricultural Water Management 196, 154–161. 

https://doi.org/10.1016/j.agwat.2017.11.006 

Massey, J. H., Smith M. C., Vieira D. A. N., Adviento–Borbe M. A., Reba M. L., Vories E. D., 

2018. Expected Irrigation Reductions Using Multiple–Inlet Rice Irrigation under Rainfall 

Conditions of the Lower Mississippi River Valley. Journal of Irrigation and Drainage 

Engineering 144, 04018016. https://doi.org/10.1061/(ASCE)IR.1943–4774.0001303 

Massey, J.H., Mark Stiles, C., Epting, J.W., Shane Powers, R., Kelly, D.B., Bowling, T.H., 

Leighton Janes, C., Pennington, D.A., 2017. Long–term measurements of agronomic crop 

irrigation made in the Mississippi delta portion of the lower Mississippi River Valley. Irrig Sci 

35, 297–313. https://doi.org/10.1007/s00271–017–0543–y 

Moran, M.S., Maas, S.J., Jr, P.J.P., 1995. Combining remote sensing and modeling for 

estimating surface evaporation and biomass production. Remote Sensing Reviews 12, 335–353. 

https://doi.org/10.1080/02757259509532290 

Mote, K., Rao, V.P., Kumar, K.A., Ramulu, V., 2018. Estimation of crop evapotranspiration and 

crop coefficients of rice (Oryza sativa L.) under low land condition. Journal of 

Agrometeorology; Anand 20, 117–121. 

Myneni, R., Knyazikhin, Y., Park, T. (2015). MOD15A2H MODIS/Terra Leaf Area 

Index/FPAR 8–Day L4 Global 500m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes 

DAAC. Accessed 2020–03–27 from https://doi.org/10.5067/MODIS/MOD15A2H.006 

Naklang, K., Shu, F., Nathabut, K., 1996. Growth of rice cultivars by direct seeding and 

transplanting under upland and lowland conditions. Field Crops Research 48, 115–123. 

https://doi.org/10.1016/S0378-4290(96)01029-5 

Nalley, L., Linquist, B., Kovacs, K., Anders, M., 2015. The Economic Viability of Alternative 

Wetting and Drying Irrigation in Arkansas Rice Production. Agronomy Journal 107, 579–587. 

https://doi.org/10.2134/agronj14.0468 

Norman, J.M., Kustas, W.P., Humes, K.S., 1995. Source approach for estimating soil and 

vegetation energy fluxes in observations of directional radiometric surface temperature. 

Agricultural and Forest Meteorology, Thermal Remote Sensing of the Energy and Water Balance 

over Vegetation 77, 263–293. https://doi.org/10.1016/0168-1923(95)02265-Y 

Norton, G.J., Shafaei, M., Travis, A.J., Deacon, C.M., Danku, J., Pond, D., Cochrane, N., 

Lockhart, K., Salt, D., Zhang, H., Dodd, I.C., Hossain, M., Islam, M.R., Price, A.H., 2017. 

Impact of alternate wetting and drying on rice physiology, grain production, and grain quality. 

Field Crops Research 205, 1–13. https://doi.org/10.1016/j.fcr.2017.01.016 

Pan, J., Liu, Y., Zhong, X., Lampayan, R.M., Singleton, G.R., Huang, N., Liang, K., Peng, B., 

Tian, K., 2017. Grain yield, water productivity and nitrogen use efficiency of rice under different 



 

57 

 

water management and fertilizer–N inputs in South China. Agricultural Water Management 184, 

191–200. https://doi.org/10.1016/j.agwat.2017.01.013 

Pereira, L.S., Allen, R.G., Smith, M., Raes, D., 2015. Crop evapotranspiration estimation with 

FAO56: Past and future. Agricultural Water Management, Agricultural Water Management: 

Priorities and Challenges 147, 4–20. https://doi.org/10.1016/j.agwat.2014.07.031 

Reba, M.L., Daniels, M., Chen, Y., Sharpley, A., Bouldin, J., Teague, T.G., Daniel, P., Henry, 

C.G., 2013. A statewide network for monitoring agricultural water quality and water quantity in 

Arkansas. Journal of Soil and Water Conservation 68, 45A–49A. 

https://doi.org/10.2489/jswc.68.2.45A 

Reba, M.L., Massey, J.H., Adviento‐Borbe, M.A., Leslie, D., Yaeger, M.A., Anders, M., Farris, 

J., 2017. Aquifer Depletion in the Lower Mississippi River Basin: Challenges and Solutions. 

Journal of Contemporary Water Research & Education 162, 128–139. 

https://doi.org/10.1111/j.1936–704X.2017.03264.x 

Roel, A., Heilman, J.L., McCauley, G.N., 1999. Water use and plant response in two rice 

irrigation methods. Agricultural Water Management 39, 35–46. https://doi.org/10.1016/S0378–

3774(98)00087–0 

Runkle, B.R.K., Rigby, J.R., Reba, M.L., Anapalli, S.S., Bhattacharjee, J., Krauss, K.W., Liang, 

L., Locke, M.A., Novick, K.A., Sui, R., Suvočarev, K., White, P.M., 2017. Delta–Flux: An Eddy 

Covariance Network for a Climate–Smart Lower Mississippi Basin. Agricultural & 

Environmental Letters 2. https://doi.org/10.2134/ael2017.01.0003 

Runkle, B.R.K., Suvočarev, K., Reba, M.L., Reavis, C.W., Smith, S.F., Chiu, Y.–L., Fong, B., 

2019. Methane Emission Reductions from the Alternate Wetting and Drying of Rice Fields 

Detected Using the Eddy Covariance Method. Environ. Sci. Technol. 53, 671–681. 

https://doi.org/10.1021/acs.est.8b05535 

Shuttleworth, W.J. and Wallace, J.S., 1985. Evaporation from sparse crops‐an energy 

combination theory. Quarterly Journal of the Royal Meteorological Society, 111, 839-855. 

Smith, M., 1992. CROPWAT: A computer program for irrigation planning and management. 

Food & Agriculture Org. 

Soil Survey Staff, Natural Resources Conservation Service, United States Department of 

Agriculture, 2018. Web Soil Survey. Available at: https://websoilsurvey.sc.egov.usda.gov 

(accessed 12.3.18). 

Sudhir–Yadav, Humphreys, E., Li, T., Gill, G., Kukal, S.S., 2012. Evaluation of tradeoffs in land 

and water productivity of dry seeded rice as affected by irrigation schedule. Field Crops 

Research 128, 180–190. https://doi.org/10.1016/j.fcr.2012.01.005 

Suvočarev, K., Castellví, F., Reba, M.L., Runkle, B.R.K., 2019. Surface renewal measurements 

of H, λE and CO2 fluxes over two different agricultural systems. Agricultural and Forest 

Meteorology 279, 107763. https://doi.org/10.1016/j.agrformet.2019.107763 



 

58 

 

Tuong, T.P., Bhuiyan, S.I., 1999. Increasing water-use efficiency in rice production: farm-level 

perspectives. Agricultural Water Management 40, 117–122. https://doi.org/10.1016/S0378-

3774(98)00091-2 

Wang, Y., Zhou, L., Jia, Q., Yu, W., 2017. Water use efficiency of a rice paddy field in Liaohe 

Delta, Northeast China. Agricultural Water Management 187, 222–231. 

https://doi.org/10.1016/j.agwat.2017.03.029 

Wei, Z., Yoshimura, K., Okazaki, A., Kim, W., Liu, Z., Yokoi, M., 2015. Partitioning of 

evapotranspiration using high–frequency water vapor isotopic measurement over a rice paddy 

field. Water Resources Research 51, 3716–3729. https://doi.org/10.1002/2014WR016737 

Wei, Z., Yoshimura, K., Wang, L., Miralles, D.G., Jasechko, S., Lee, X., 2017. Revisiting the 

contribution of transpiration to global terrestrial evapotranspiration. Geophysical Research 

Letters 44, 2792–2801. https://doi.org/10.1002/2016GL072235 

Xu, J., Liu, X., Yang, S., Qi, Z., Wang, Y., 2017. Modeling rice evapotranspiration under water–

saving irrigation by calibrating canopy resistance model parameters in the Penman–Monteith 

equation. Agricultural Water Management 182, 55–66. 

https://doi.org/10.1016/j.agwat.2016.12.010 

Xu, J., Wu, B., Yan, N., Tan, S., 2018. Regional Daily ET Estimates Based on the Gap–Filling 

Method of Surface Conductance. Remote Sensing 10, 554. https://doi.org/10.3390/rs10040554 

Yan, H., Zhang, C., Hiroki, O., 2018. Parameterization of canopy resistance for modeling the 

energy partitioning of a paddy rice field. Paddy Water Environ 16, 109–123. 

https://doi.org/10.1007/s10333–017–0620–0 

Yang, S., Logan, J., Coffey, D.L., 1995. Mathematical formulae for calculating the base 

temperature for growing degree days. Agricultural and Forest Meteorology 74, 61–74. 

https://doi.org/10.1016/0168–1923(94)02185–M 

Zhang, B., Kang, S., Li, F., Zhang, L., 2008. Comparison of three evapotranspiration models to 

Bowen ratio–energy balance method for a vineyard in an arid desert region of northwest China. 

Agricultural and Forest Meteorology 148, 1629–1640. 

https://doi.org/10.1016/j.agrformet.2008.05.016 

  



 

59 

 

Chapter 1: Appendix A 

Aerodynamic resistance (ra) 

 Aerodynamic resistance was calculated using the following equation presented as a part 

of FAO 56 document with regards to the Penman–Monteith equation: 

  

ra =
ln (

zm − d
zom

) ∗ ln (
zh − d

zoh
)

k2 ∗ uz
 

d =
2

3
∗ h 

zom = 0.123 ∗ h 

zoh = 0.1 ∗ zom 

Where ra is aerodynamic resistance, s m–1, zm is height of wind measurements in meters (2.2 m), 

zh is height of humidity measurements in meters (2.2 m), d is zero plane displacement height in 

meters, zom is roughness length governing momentum transfer in meters, zoh is roughness length 

governing transfer of heat and vapor in meters, k is von Karman's constant, 0.41, uz is wind 

speed at height z, m s–1. 

Crop Coefficient Adjustments 

 For the initial crop coefficient, Kc,ini, FAO56 recommends a value of 1.05 for rice. The 

document also provides adjustments based on wind speed and humidity. Our site was classified 

as very humid with moderate to strong winds, meaning the initial value could be between 1.05 

and 1.10 based on Table 14 in Chapter 6 of FAO 56. For this study, we used 1.05 as Kc,ini. 
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 For the mid–season crop coefficient and end crop coefficient, Kc,mid and Kc,end , similar 

adjustments were made based on relative humidity, wind speed, and canopy height using the 

equation: 

Kc,mid(end) = Kc,mid(end),rec + [0.4 ∗ (u2 − 2) − 0.004(RHmin − 45)] (
h

3
)

0.3

 

Where Kc,mid (end),rec is the recommended value for the middle or end of the growing season taken 

from Table 12 of FAO56 (1.2 and 1.0, respectively), u2 is the daily wind speed at 2 m during the 

mid–season or end growth stage, RHmin is the daily minimum during the mid–season or end 

growth stage, respectively, %, and h is mean plant height during the mid–season or end growth 

stage, respectively, in m. 
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Chapter 2: Water use efficiency dynamics for improved understanding of carbon and water 

exchange in rice 

Authors: Colby W. Reavis1, Michele L. Reba2, Benjamin R.K. Runkle1 

1 Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, 

AR, USA 

2 USDA ARS Delta Water Management Research Unit, Jonesboro, AR, USA 

Author’s Note: This work is currently in internal review with the USDA-ARS. We intend to 

submit the document to Agricultural and Forest Meteorology where I (Colby) 

will serve as the corresponding author. 

1. Introduction 

Carbon assimilated as gross primary production (GPP) and water released as 

evapotranspiration (ET) are commonly linked as canopy water use efficiency, or WUE (Law et 

al., 2002). In agriculture, understanding crop water use efficiency is especially important under 

an environment where changes in crop performance are driven by limited water availability 

(Zwart and Bastiaanssen, 2004), elevated ambient CO2 concentration (Kim et al., 2003), 

increased vapor pressure deficit (VPD) during the daytime (Kobayasi et al., 2010; Massmann et 

al., 2019), and higher nighttime temperatures (Cheng et al., 2009). Heavily irrigated crops, such 

as rice, rely on well-timed irrigation events and water availability during key stages in their 

growth cycle to secure profitable yields (Kato et al., 2009; Pan et al., 2017). Rice has been 

historically produced in an inundated environment with continuous water cover throughout the 

year, where the crop is most sensitive to water stress during panicle initiation and anthesis 

(Moldenhauer et al., 2013). However, new management practices, such as alternate wetting and 
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drying (AWD), provide opportunities for producers to conserve water while maintaining 

comparable yields at the commercial scale (Massey et al., 2014; Moreno-García et al., 2021; 

Yang et al., 2017). The application of AWD is challenging because it introduces periodic drying 

during the growing season, which can stress the crop under severe moisture deficit (Wopereis et 

al., 1996; Henry et al., 2011). Because these techniques disrupt the typical application of water in 

conventional rice growing practices, additional research is needed to determine the impacts of 

different growing methods with respect to canopy water use during the growing season. 

In application, ET provides an estimate of water to be replaced in irrigated fields based 

on how much water the crop utilizes (Cahoon et al., 1990; Martin et al., 1990; Allen et al., 1998). 

Developmentally, crops exhibit different levels of control on water use based on the growth stage 

(Tomar and O’Toole, 1980; Yang et al., 2019), cultivar (Yao et al., 2012; Xu et al., 2015) and the 

implementation of alternative management practices (Zhang et al., 2008; Sudhir-Yadav et al., 

2012; Kima et al., 2015). In practical settings, rice growers tend to prioritize irrigation during 

periods where the plant is most sensitive to water stress, mainly during flowering and grain 

filling, to prevent declines in yield (Henry et al., 2013). In commercial production settings, the 

conservation of water should not be implemented at the expense of declining yields (Tuong and 

Bhuiyan, 1999; Yang et al., 2007; Lampayan et al., 2015a). One of the primary concerns with the 

AWD irrigation practice is the introduction of periodic drying events, which can potentially 

induce stress and subsequently decrease yield while altering plant water use during the growing 

season (Carrijo et al., 2017; Lampayan et al., 2015b; Norton et al., 2017).  

Our previous research indicated that the impacts of AWD on growing season ET were 

negligible when compared to traditional delayed flood (DF) irrigation (Reavis et al., 2021). In 

that study, we observed no significant impacts of drying on measured ET, indicating that plants 
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were still able to access water in the absence of inundation at our field site. Furthermore, 

adjacent AWD and DF fields converged in terms of ET rates as the canopy developed, and ET 

transitioned from being primarily driven by open evaporation to transpiration. However, in wet 

environments, the combined ET term may mask stress that is expressed disproportionately 

through canopy water use in transpiration (O’Toole and Baldia, 1982; Bouman et al., 2005). 

Because transpiration is considered a critical component in multiple areas related to crop 

productivity, including water use and yield estimation, accurate estimates of transpiration are 

both relevant and useful in agricultural production settings (Howell, 2001; Hsiao et al., 2007; 

Paredes et al., 2014). 

Partitioning ET throughout the growing season has potential in evaluating individual 

canopy responses and controls to the environment throughout the growing season. Through 

partitioning, the isolated impacts of individual management decisions on plant mediated water 

use can be identified in agricultural settings when irrigation events can introduce sizeable 

amounts of evaporation from soil, open water surface, and interception compared to transpirative 

water release (Kool et al., 2014; Zhou et al., 2018). Transpiration is a key component in water 

use efficiency as it shares the stomatal pathway as carbon assimilation, with similar controls at 

the leaf level (Wallace, 2000; Haefele et al., 2009). Partitioned ET can be estimated and used to 

further represent canopy water use efficiency in relation to gross primary productivity (GPP) as 

ecosystem water use efficiency (eWUE), inherent WUE (iWUE), underlying water use 

efficiency (uWUE), and transpirative WUE (tWUE) where each metric represents WUE with 

increasing proximity to canopy level dynamics and controls (Zhou et al., 2016, 2014). The 

uWUE partitioning method presented in Zhou et al. (2016) has been tested on rice landscapes in 
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both California, US and Ibaraki, Japan, with T:ET ranging between 0.55 and 0.59 during the 

growing season (Jiang et al., 2020).  

Historically, methods used to estimate and partition ET in agricultural settings have 

varied significantly under the advent of advanced instrumentation and development of models 

that take advantage of these data streams. Efforts have been made to combine models and 

instrumentation to estimate contributing portions of ET individually and a separate estimate of 

ET to understand changes in canopy water use during the growing season (Kool et al., 2014). 

Alternatively, models have also employed a variety of frameworks to mechanistically define and 

quantify transpiration, evaporation, and interception using localized microclimate measurements 

(Shuttleworth, 1991; Stannard, 1993; Allen, 2000; Allen et al., 2005; Zhao et al., 2015; Qiu et 

al., 2019). These models can differ based on how phenological input, such as leaf area index 

(LAI) or canopy height, are incorporated to improve a variety of radiative transfer models 

(Tanner and Jury, 1976; Shuttleworth and Wallace, 1985; Béziat et al., 2013; Gong et al., 2021). 

Some methods have also directly incorporated models of GPP to better simulate water use during 

the growing season given the connected pathway for transpirative water use and canopy 

production (Collatz et al., 1991; Tian et al., 2010). In an effort to develop accurate estimates of 

ET that are applicable across greater spatial scales, methods, such as the Priestley-Taylor model 

developed by NASA’s Jet Propulsion Laboratory (PT-JPL), leverage a wealth of remotely sensed 

information in conjunction with well-defined models for the estimation of ET and its constituent 

portions (Fisher et al., 2008, 2020). The variety of methods and platforms used to estimate and 

constrain T and ET is valuable given the uncertainty surrounding global and field scale estimates 

of T:ET and associated phenological and meteorological controls (Wang et al., 2014; Schlesinger 

and Jasechko, 2014; Stoy et al., 2019; Nelson et al., 2020). 
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In this work, we seek to use methods for estimating ET in conjunction with field 

observations of ET and an observation-driven model of GPP to estimate and describe WUE 

throughout the growing season in rice fields using conventional delayed-flood (DF) and 

alternative (AWD) irrigation practices. First, we examine the impacts of drying events and 

elevated VPD on GPP and calculate WUE throughout the plant life cycle to detect how it 

changes across key developmental stages (such as flowering, etc.). Next, we employ ET models 

to partition ET to (1) better understand the direct relationship between canopy transpiration and 

WUE, and (2) identify plant response under “drier” soil conditions introduced by AWD across 

different developmental stages. We apply the uWUE method in the humid Mid-South to 

complement previous rice studies and allow a basis for comparison across major rice production 

areas. We hypothesize that as the canopy develops during the growing season, vulnerability to 

drought-induced stress during soil drying is increased and reflected in the transpiration portion of 

ET as well as the GPP. In characterizing canopy WUE and response to alternative management 

practices, we aim to contextualize the impacts of AWD with respect to water use throughout the 

rice developmental cycle to better inform management decisions. 

2. Methods 

2.1 Site Information 

 The study site is comprised of two adjacent commercial rice fields located in Arkansas, in 

the mid-South US rice production region. The fields, labeled as North Field (NF) and South 

Field (SF), are managed to study the impacts of alternative irrigation practices with respect to 

irrigation water conservation and greenhouse gas emissions. The fields are zero-graded and have 

been used to grow rice in continuous rotation for at least 15 years. Both NF and SF were drill 

seeded across the 2015-2017 growing seasons. Soils in NF and SF are primarily poorly drained 
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Perry silty clays (USDA classification: very-fine, smectitic, thermic Chromic Epiaquerts) with a 

small (~2 ha) contributing portion of Herbert silt loam (fine-silty, mixed, superactive, mesic 

Udollic Epiaqualfs) in SF (Soil Survey Staff, USDA-NRCS, 2018; Runkle et al., 2019). During 

the 2015-2017 growing seasons, the irrigation treatments for NF for were DF, AWD, DF, and the 

irrigation treatments for SF were AWD, AWD, DF (Table 1). 

2.2 Instrumentation 

 Each field is equipped with similar micrometeorological instruments, including an open-

path eddy covariance (EC) system used to measure CO2, H2O, and CH4. Further information 

regarding the suite of sensors and available measurements can be found in previous publications 

(Runkle et al., 2019; Suvočarev et al., 2019; Reavis et al., 2021). In addition to the EC system, 

each station had an identical set of meteorological instruments. The four components of net 

radiation (RN) were measured (CNR4, Kipp & Zonen, Inc., Delft, NL) at a height of 2.0 m. Air 

temperature (Ta) and relative humidity (RH) were measured using a shielded probe (HMP155A, 

Vaisala, Helsinki, FI) at approximately 2.1 m. Wind speed and direction were measured using a 

2-D anemometer mounted at 3.2 m (05103−5 propeller wind monitor, R.M. Young, Traverse 

City, MI, USA). A local weather station located in Stuttgart, AR, which is approximately 20 

miles from the field site, provided daily microclimatic measurements of T, RH, and wind speed 

over a reference surface for use in the FAO Dual crop coefficient partitioning method, described 

further below. These measurements over the reference surface were used in conjunction with a 

simple radiation model to estimate ET and T without using any measurements at the field site. 

 The stations also hosted a suite of soil measurements. Volumetric water content 

measurements were collected using soil moisture Time Domain Transmissometer probes (SDI–

12, Acclima, Meridian, ID) buried approximately 2 m from the tower base at 8 cm and 15 cm for 
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all growing seasons across both fields. Measurements of water depth (WD) were collected using 

a piezometric sensor (Series 46x, Keller USA Inc., Fort Mill, SC, USA), vented for automatic 

compensation for barometric pressure changes. The WD sensors were installed 30 cm from the 

tower in a perforated tube reaching approximately 30 cm below the soil surface. Soil heat flux 

(G) measurements were collected using two soil heat flux plates (HFP01, Hukseflux, Delft, NL) 

placed at different depths in each year: 8 cm, 5 cm, and 4 cm below the soil surface for the 2015, 

2016, and 2017 growing seasons, respectively. Bulk density and soil temperature above the soil 

heat flux plate were used in conjunction with WD measurements to correct for changes in heat 

storage in the water and saturated soil matrix above the plate during flooded and dry conditions 

(Fuchs and Tanner, 1968; Runkle et al., 2019). Thermistors (CS–107 (BetaTherm 100K6A1IA), 

Campbell Scientific, Inc., Logan, UT, USA) were placed near the soil surface at approximately 2 

cm above each soil heat flux plate. Estimates of soil bulk density were collected manually at 

different times during the growing season to support the energy storage calculation across both 

fields (Runkle et al., 2019).  

Each station was also equipped with a field camera used to observe canopy development 

throughout the growing season (PhenoCam; Milliman et al., 2019). Aside from instrumentation 

deployed at the towers, phenological measurements were taken throughout the growing season, 

including canopy height and LAI estimated using an inceptometer (LI-2200C, LI-COR, Lincoln, 

NE). Across both fields, canopy height was measured 7 ,13, and 11 times during the 2015-2017 

growing seasons. Likewise, LAI was measured 4, 2, and 10 times during the 2015-2017 growing 

seasons, respectively. During the 2016 growing season, when only two LAI measurements were 

taken during the peak LAI period, we calculated and applied a simple numerical scaling factor 

for the MODIS LAI dataset to generate estimates of LAI throughout the growing season (Reavis 
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et al., 2021). Using the collected and scaled data for both LAI and canopy height, we employed 

simple growing degree day models to generate a daily time series for each variable during the 

2015-2017 growing seasons, as described in Reavis et al. (2021). 

Measurements of biometeorological variables were resolved at the half-hourly time step. 

Measurements were gap filled across fields when appropriate for variables including 

temperature, relative humidity, incoming longwave radiation (LWin), and incoming shortwave 

radiation (SWin) where differences between fields were minimal. Fluxes were calculated from 

the EC station using the EddyPro software (v. 6.2.2, LI-COR Inc., Lincoln, NE). Additionally, 

the latent heat flux (LE), sensible heat flux (H), and CO2 time series were gap filled using 

artificial neural networks (Knox et al., 2016, 2015). In the case of CO2  flux, the contributing 

portions of gross primary production (GPP) and ecosystem respiration (Reco) were estimated 

throughout the growing season as well (Reichstein et al., 2012, 2005). 

2.3 Water use efficiency evaluation  

 Water use efficiency (WUE) is differentiated in this study as ecosystem WUE (eWUE), 

underlying water use efficiency (uWUE), and transpirative WUE (tWUE), which are defined in 

the introduction. In this study, we will refer to ET and transpiration in units of mm day-1, 

translated from the molar basis using the estimated latent heat of vaporization. Vapor pressure 

deficit was calculated directly for each field using estimates of temperature and relative humidity 

at approximately 2.2 m above the soil surface. For all WUE terms (eWUE, uWUE, tWUE), 

observations and measurements of GPP, ET, and T used during calculation were limited to the 

daytime period (SWin > 30 Wm-2). Additionally, half hourly periods containing or within 6 hours 

of a precipitation event were removed. Additionally, only daytime values were used in the 

calculation of daily means for each WUE term as well as modeled T using the uWUE method. 
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Outliers in the WUE terms resulted from periods of the day where GPP, ET, and T were each 

low and the resulting WUE was unrealistically high or low while representing only a small 

portion of the daily flux. We thus removed half hourly data points exceeding three mean absolute 

deviations (MADs) for the eWUE, uWUE, T, and tWUE time series. 

 When determining the impacts of drying events on GPP, ET, and T, we provided analysis 

in two ways. First, we observed the impacts of drying when one field was undergoing AWD 

treatment while the other field was under DF treatment, which was only possible during the 2015 

growing season. In this analysis, we compared differences in GPP, ET, and T across fields 

during periods where the AWD field was undergoing a drying event as a part of AWD 

management. For our analysis, a drying event was defined as a period where the water table 

declined below the soil surface for a period of at least 1 day. During the early growing season, 

short flushing events can be used to establish the crop across both AWD and DF systems, and the 

differences in the irrigation treatments is only apparent after the initial flood is established at 

tillering. We thus focused on drying events following the onset of the first flood as those events 

were implemented as a part of the AWD system by the producers. Second, we compared 

individual responses of GPP, ET, and T within the same field during AWD drying events. For 

the 2015 and 2016 growing seasons when AWD was applied in one or both fields (Table 1), we 

analyzed the response of each term during separate drying events to test whether a decline in soil 

moisture coincided with decreased GPP, ET, and/or T as a result of stress induced by drying. We 

normalized GPP, ET, and T by SWin when comparing across fields or identifying responses 

during individual drying events. Additionally, we classified each event based on relevant 

microclimate conditions in each field, including minimum VWC during drying, maximum daily 

temperature, and the length of the drying event recorded in days (Table 2). By comparing AWD 
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and DF directly as well as highlighting individual responses of the key WUE terms, the resulting 

analysis provided understanding on how drying affects individual fields while also giving insight 

to how AWD and DF compare when practiced concurrently. 

2.4 Evapotranspiration partitioning 

 Evapotranspiration (ET) was directly measured at each field site using the EC system. Its 

partitioning is based on the direct proportionality of the ratio of apparent to potential underlying 

WUE (uWUE) to the ratio T:ET during the growing season (Zhou et al., 2016). In the work 

presented in Zhou et al. (2016) uWUE is the ratio of GPP to ET and scaled by VPD where the 

traditional formulation is: 

uWUE =
GPP∗VPD0.5

ET
 Eqn 1 

Where GPP is in units of mmol C m-2 s-1, ET is in units of mmol H2O m-2 s-1, and VPD is 

in units of hPa. Underlying WUE (uWUEi) was estimated with Eqn 1 across the growing season 

using the half-hourly microclimate dataset. The potential uWUE (uWUEp) was calculated using 

quantile regression across the full growing season as the slope (m) of the relationship between 

ET and GPP*VPD0.5 at the 95th percentile. To compare our results across different growing 

seasons and methods, we estimated transpiration using this approach at both the half-hourly and 

daily time step. For the half hourly time step, the fraction of uWUEi to uWUEp was considered to 

be equal to T:ET at that half hour. For the daily time step, we used a linear regression between 

half hourly ET and GPP*VPD0.5 for a given day to calculate the apparent uWUE (uWUEa). The 

mean relationship between ET and GPP*VPD0.5 at the daily time scale, represented as uWUEa , 

was only estimated using daytime data, meaning the resulting T and ET estimates are only daily 

daytime rate estimates rather than true daily estimates. Restricting data to the daytime period 

provides a plausible physiological constraint for T and GPP as these fluxes are most significant 
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during the daytime and are inconsequential during the nighttime period. The fraction of uWUEa 

to uWUEp was then considered to be equal to the ratio of T to ET. Both regressions were forced 

through zero to be consistent with work presented in Zhou et al. (2016). In both cases, when the 

estimated ratio of T to ET at either the half hourly or daily time step exceeded 1 (i.e., uWUEi or 

uWUEa were greater than uWUEp), we fixed the ratio of T to ET to 1. The method was applied 

across each individual site-year, with NF and SF having unique uWUEp values for each growing 

season. We included the calculation of the uWUE terms and resulting T using both gap filled and 

observed data. Gap filled data were used to deliver seasonal estimates of relevant parameters and 

to generate daily estimates of T using the uWUE method. Estimates of WUE and T derived using 

non gap filled data were used primarily in comparisons during individual portions of the growing 

season when exploring response to drying events and comparing T across fields. Additionally, 

derived transpiration estimates were reported in mm for seasonal sums and mm day-1 when 

comparing rates across methods.  

2.5 Evapotranspiration partitioning methods 

 We further compared the estimates of transpiration from the uWUE method with two 

other methods for estimating growing season T. The dual crop coefficient variant of the FAO56 

Penman Monteith (PM56Dual) estimates transpiration as the product of calculated reference ET 

(ET0) and a basal crop coefficient (Kc,b), where the crop coefficient contains a majority of the 

phenology and subsequent seasonality of transpiration (Eqn 2): 

ETc = ET0 ∗ Kc,b =
0.408Δ(Rn−G)+γ(

Cn
Ta+273

)(VPD)u2m

Δ+γ(1+Cdu2m)
∗ Kc,b Eqn 2 

Where ETc is considered the transpiration component of ET across the given crop or surface, ET0 

is reference ET, Kc,b is a basal crop coefficient, Δ is the slope of the vapor pressure deficit curve, 
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Rn is net radiation, G is soil heat flux, γ is the psychrometric constant, VPD is vapor pressure 

deficit, u2m is wind speed measured 2 m above the reference surface,  and Cn and Cd are unique 

coefficients of the reference surface at 900 and 0.34, respectively. The basal crop coefficient was 

adjusted for local use using estimates of wind speed and relative humidity as recommended by 

FAO56.  The initial crop coefficient for rice from the FAO56 documentation is recommended for 

transplanted systems where fields are inundated at planting and the recommended crop 

coefficient is thus equivalent to the open water coefficient. Conversely, fields in this study are 

drill seeded into non-inundated soil and the initial flood is delayed for up to 5 to 6 weeks. 

Because both NF and SF were drill seeded rather than transplanted, the first 30 days of the 

growing season where the initial crop coefficient would normally be applied were removed to 

remove the effect of different planting practices on the estimation of ET and resulting T.   

The Jet Propulsion Laboratory variant of the Priestley-Taylor equation (PT-JPL) provides 

a partitioned estimate of ET, which includes contributing canopy transpiration (Eqn 3-6): 

AET = ETs + ETc + ETi   Eqn 3 

ETc = (1 − fwet)fgfTfmα
Δ

Δ+γ
RNnc  Eqn 4 

ETs = (fwet + fSM(1 − fwet))α
Δ

Δ+γ
RNns Eqn 5 

ETi = fwet α
Δ

Δ+γ
RNnc   Eqn 6 

Where actual ET (AET) is the sum of scaled actual ET from the canopy (ETc), soil 

surface (ETs), and intercepted water (ETi). The scaling terms are further defined in Appendix A, 

where fwet is the relative surface wetness, fg is the green canopy fraction, fT is a plant 

temperature constraint, fM is a plant moisture constraint, fSM is a soil moisture constraint, RNnc is 

net radiation utilized by the canopy, 𝑅𝑁𝑠 is net radiation at the soil surface, and 𝛼 is the 
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Priestley-Taylor coefficient with an assumed value of 1.26. The PT-JPL framework does not 

require site specific parameterization, but we did incorporate several field specific estimates of 

phenology rather than deriving them solely from remotely sensed vegetation indices. 

Specifically, we incorporated field measurements of upwelling and downwelling 

photosynthetically active radiation (PAR) to calculate the green canopy fraction and plant 

moisture constraint. We also provided direct field measurements of RN, G, Ta (including daily 

maxima and minima), and RH as inputs into the modeling framework.  

 The intercomparison between the three methods was done at the daily time step as 

dictated by the PM56Dual and PT-JPL approaches. Daily T was calculated for the uWUE 

method for direct comparison using gap filled daytime data. The methods were evaluated based 

on multiple metrics at both the daily and seasonal scales, including how well the models 

estimated the ratio of T to ET (hereafter, T:ET) and demonstrated reasonable seasonal dynamics. 

While we report T and ET from each method, the performance for each method was primarily 

focused on how well they predicted T:ET throughout the growing season, meaning the methods 

could differ in estimated T and ET and still provide a mechanistically sound method of 

partitioning ET. In our analysis, we considered the uWUE transpiration to be the most accurate 

field-based measurement of transpiration while the PT-JPL and PM56Dual methods were 

considered to be more widely applicable as each method could be applied without site specific 

data or parameterization.  

3. Results 

3.1 Impacts of drying on field observed ET and GPP  

During the 2015-2017 growing seasons, both AWD and DF irrigation were practiced 

across both NF and SF in different combinations year-to-year (Table 1). The first flood applied 
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during the growing season occurred in the first 37 to 54 days after planting (DAP). The 2017 

growing season experienced greater precipitation compared to the 2015 and 2016 growing 

seasons.  

Table 1. Summary of growing season irrigation treatments, ET, and GPP during the 2015-2017 

growing seasons for NF and SF. First flood date is given as a calendar date and in days after 

planting (DAP). 

Site Year 

Irrigation 

Treatment 

Growing 

Season 

Length 

[days] 

Growing 

Season ET 

[mm] 

Growing 

Season 

Precip. 

[mm] 

Growing 

Season GPP 

[gC m-2] 

First Flood 

Date (DAP) 

Harvest 

Date 

NF 

2015 DF 133 551 ± 7.1 500 1087 14-May (40) 19-Aug 

2016 AWD 143 601 ± 10.5 556 1318 14-Jun (52) 19-Aug 

2017 DF 138 628 ± 6.9 795 1257 17-May (37) 13-Sep 

SF 

2015 AWD 134 598 ± 14.0 500 1225 15-May (41) 13-Sep 

2016 AWD 143 604 ± 9.7 556 1192 16-Jun (54) 26-Aug 

2017 DF 140 579 ± 13.4 795 1416 18-May (38) 27-Aug 

 

 The AWD treatments of SF in 2015 and both fields in 2016 allow us to examine a variety 

of drying events for their impact on water use dynamics. The impacts of drying were directly 

compared across fields in 2015 when SF was undergoing drying while NF was flooded. To 

complement the treatment effects analysis in 2015, we also tested the impact of declining soil 

moisture on GPP, ET, and uWUE-derived T across NF and SF during drying events within the 

2015 and 2016 growing seasons.  During the 2015 and 2016 drying events, soil moisture reached 

minimums ranging from 20.5 to 35.0 %, and drying event length ranged from 1 to 10 days (Table 

2). For reference, the soil moisture under inundation ranged between 52 to 58% across 2015 and 

2016 in both NF and SF. The minimum water depth during drying ranged between 2.6 and 33.7 

cm below the soil surface. During the AWD treatments in 2015 and 2016, the most severe events 

in terms of soil moisture decline and WD occurred between 42 and 69 DAP in both NF and SF. 

During the 2015 and 2016 growing seasons, the earliest drying event occurred 42 days after 
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planting (DAP) in 2015 and the latest was approximately 123 days after planting in 2015. During 

drying events, daily maximum VPD ranged between 0.9 and 2.5 kPa, and the mean daily 

maximum temperature ranged between 28.2 and 34.4 °C. Mean maximum SWin ranged between 

812 and 951Wm2 during the drying. The ranges in maximum VPD, T, and SWin were consistent 

across both fields. 

Table 2. Characterization of AWD drying events occurring across NF and SF during the 2015 

and 2016 growing seasons. Mean maximum temperature and SWin were taken across all drying 

event days. Minimum VWC values of “~” denote periods where soil moisture data was not 

available. 

Site Date 

DAP

, 

days 

Event 

Duration

, days 

Min 

VWC at 

8 cm, % 

Min 

Water 

Depth, 

cm 

Max 

VPD 

range, 

kPa 

Mean 

Daily 

Max 

Temp, 

°C 

Mean 

Daily 

Max 

SWin, 

Wm-2 

SF                               

23-May-15 46 4 ~ -13.9 1.2 - 1.5 28.2 812.6 

13-Jun-15 67 5 30.80 -3.1 1.2 - 1.7 30.7 908.2 

20-Jun-15 74 2 31.00 -2.6 1.2 - 1.6 30.8 951.0 

21-Jul-15 105 2 30.29 -14.4 1.7 - 2.0 33.1 837.3 

30-Jul-15 114 1 35.03 -14.0 2.1 30.7 911.0 

5-Aug-15 120 1 ~ -9.8 2.5 34.4 879.0 

4-Jun-16 42 10 24.3 -21.2 0.9 - 2.3 31.3 913.1 

25-Jun-16 62 4 21.7 -33.7 1.7 - 2.0 32.4 911.8 

1-Jul-16 69 1 33.6 -17.0 1.8 32.2 911.0 

23-Jul-16 91 3 29.1 -31.5 1.6 - 2.1 33.8 884.3 

NF 26-Jun-16 64 3 20.5 -17.3 1.9 - 2.1 32.8 935.0 

 

We examined the 2015 drying periods to determine the impacts of drying through a 

comparison of AWD and DF treated fields where one field was dry and the other was wet during 

one of the drying periods defined in Table 2. Of the listed drying events for SF in 2015, only two 

events (13-Jun and 20-Jun) had adequate data coverage between observed (i.e., not gap–filled) 

GPP, ET, T and VWC across both fields. We selected these two events to assess whether drying 

in an AWD field was able to explain the differences in GPP, ET, and T across fields during 
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AWD drying events. During the 20-Jun drying event in SF, where soil moisture was most 

depleted in comparison to other events in 2015, there were no observable signs of stress in a 

drying SF compared to a flooded NF across GPP, ET, and T (Figure 1). 

 

Figure 1. Comparison of half-hourly GPP, ET, and T (n= 41) during the June 20, 2015 drying 

event across NF and SF where SF is drying for approximately 2 days (to volumetric water 

content of 31%). The dashed line is 1:1 and the blue line is the line of best fit. 

The observations indicate that GPP, ET, and T across NF and SF are very similar during 

the drying event with SF exhibiting slightly higher GPP, ET, and T despite drying (slope of 1.1 

relative to the NF for all three terms). We further compared the differences in each term across 

NF and SF to test if declining soil moisture or water depth could significantly explain variation 

across both fields during the drying event. Because the landscape fluxes are heavily energy 

driven, we normalized each term (GPP, ET, T) by SWin measured across each field during the 

drying event. Differences in SWin-normalized GPP and ET across NF and SF were not 

significantly explained by declining soil moisture in the drying field across 20-Jun drying event 

in 2015 (Figure 2).  
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Figure 2. Analysis of the field-to-field difference in SWin-normalized half-hourly A) GPP and B) 

ET (n=41) during the 20-Jun drying event in 2015 where SF is drying for approximately 2 days. 

Points are colored by days after drying (DAD). The blue line is the line of best fit between VWC 

and the differences in SW-normalized GPP or ET. 

During the 13-Jun drying event, the declining soil moisture was able to significantly 

explain field-to-field differences in GPP, but not ET (Figure 3). However, the relationship 

between differences in GPP and declining soil moisture indicate that as SF dried, GPP was 

increasingly greater in SF compared to NF. Contrastingly, we would expect SF to exhibit 

decreasing GPP and ET when experiencing drought stress. The result of this comparison would 

indicate that neither the 20-Jun nor the 13-Jun drying event was severe enough to generate a 

noticeable amount of plant stress in SF when compared directly to NF. 
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Figure 3. Analysis of the field-to-field difference in SWin-normalized half-hourly A) GPP and 

B) ET (n=101) during the 13-Jun 2015 drying event where SF is drying for approximately 2 

days. Points are colored by days after drying (DAD). The blue line is the line of best fit between 

VWC and the differences in SW-normalized GPP or ET. 

To further support our observations when comparing AWD directly to DF irrigation 

during drying events, we also compared the impacts of declining soil moisture with respect to 

GPP, ET and T within each field. Here, we observe the response of SW-normalized GPP, ET, 

and T across NF and SF to drying during AWD drying events to assess if drying has a significant 

impact on the terms individually. While we did observe significant responses of GPP and T 

during drying events, the responses both terms were not consistent across fields or during other 

drying events (Figure 4). 
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Figure 4. Comparison of SWin-normalized, half-hourly GPP, ET, and T (n=41) response to 

declining soil moisture during the June 20, 2015 drying event in SF. The blue line is the line of 

best fit between VWC and SW-normalized GPP, ET, or T. 

 In the case of canopy stress due to drying, we would expect to see a decline in all three 

terms as a sign of significant drought stress. However, a majority of the drying events displayed 

opposing trends, as is the case in Figure 4, where both GPP and T were significantly correlated 

to declining VWC in SF during drying while ET was not.  

We extended this comparison across all drying events where data coverage was available 

and found similar conflicting results wherein the responses of GPP, ET, and T were inconsistent 

across events and did not seem to explain any declines in activity due to drying. Across both NF 

and SF, the most severe drying event occurred from June 26 to June 29 during the 2016 growing 

season. During this event, NF and SF experienced the lowest VWC at 20.5% and 21.7%, 

respectively, and the overall shift in VWC from saturation to minimum dryness was 

approximately 35 percentage points. Comparing individual responses of GPP, ET, and T across 

both NF and SF during the most “severe” drying event, we still observed no significant drying 

response in ET and T (Figure 5,B-C, E-F) while the responses across fields in GPP were 

inconsistent (Figure 5, A,D). In this period, NF demonstrated a significant decline in radiation 
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SWin-normalized GPP with respect to declining soil moisture (Figure 4A) while SF showed no 

such decline (Figure 5D). 

 

Figure 5. Comparison of drying responses in SWin-normalized GPP, ET, and T between NF (A-

C) and SF (D-F) during concurrent drying events beginning on 26-Jun in NF and 25-Jun in SF. 

The blue line is the line of best fit between VWC and SW-normalized GPP, ET, or T. 

  As a result of both analyses, we determined that soil moisture decline was unable to 

explain simultaneous differences in GPP, ET, and T between AWD and DF fields. Additionally, 

when looking at the impact of drying on GPP, ET, and T, there was no consistent response or 

decline in any of the terms that would indicate drought stress during drying events. Given the 

direct comparison of AWD to DF as well as the individual response analyses, we concluded that 

drying events were not likely to generate stress regardless of the minimum VWC during drying 

or the length of drying achieved in this experiment. 
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3.2 Dynamics and controls of WUE throughout the growing season 

 As demonstrated in Zhou et al. (2014), we examined the relationship between ET, VPD, 

and GPP to determine if the same water use efficiency relationships could be applied at our field 

sites. Between the relationships presented in Figure 6A, C, and D, the relationship between GPP 

and ET was best defined when accounting for VPD. Moreover, implementing the exponent of 

0.5 on the VPD term improved the relationship slightly based on the greater R2 values in Figure 

6D compared to Figure 6C without it. Supported by these findings, we applied the relationship 

shown in Figure 6D in the uWUE approach, which is also consistent with Zhou et al. (2014). The 

relationship between ET and GPP*VPD0.5 was consistent across both NF and SF as both GPP, 

ET, and VPD were always similar across both fields. Given the strong correlation (R2=0.8) 

between ET and GPPxVPD0.5 and the lack of response in GPP and ET to drying, we felt 

confident that the uWUE method could be used to estimate transpiration across both AWD and 

DF fields during all three growing seasons without the need for separate parameterization by 

irrigation management. 
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Figure 6. Comparison of half-hourly ET to GPP (A), VPD (B), GPPxVPD (C), and GPPxVPD0.5 

(D) across the 2015-2017 growing seasons at NF. The black line represents the linear regression 

taken in each plot between ET and the different variables represented on the y-axis. 

 Estimated daytime transpiration and associated WUE terms at the half-hourly time step 

were used to generate seasonal estimates for each term with respect to individual site-years 

(Table 3). The uWUEp ranged between 12.38 and 15.99 g CO2 kg-1 H2O hPa0.5 across all site-

years. Across the DF and AWD treatments, uWUEp was 14.26 ± 0.015 and 12.97 ± 0.012 g CO2 

kg-1 H2O hPa0.5, respectively, during the 2015-2017 growing seasons. Differences in mean 
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uWUEp between fields were minimal at 13.69 ± 0.19 g CO2 kg-1 H2O hPa0.5 and13.79 ± 0.12 g 

CO2 kg-1 H2O hPa0.5 for SF and NF, respectively.  

Table 3. Estimated uWUEp, seasonal eWUE, tWUE, and estimated seasonal T:ET across NF and 

SF for the 2015-2017 growing seasons using half hourly gap filled daytime (SWin >30 Wm-2) 

data. 

Field Year 
Irrigation 

Treatment 

Cumulative 

T, mm 

uWUEp, g 

CO2 kg-1 

H2O hPa0.5 

eWUE, g 

CO2 kg-1 

H2O  

tWUE, g 

CO2 kg-1 

H2O  

T:ET, mean 

NF 

2015 DF 287 12.22 ± 0.07 2.18 ± 0.03 4.17 ± 0.04 0.54 ± 0.006 

2016 AWD 259 15.94 ± 0.13 2.28 ± 0.03 5.05 ± 0.04 0.43 ± 0.006 

2017 DF 282 13.47 ± 0.09 2.34 ± 0.03 4.43 ± 0.04 0.46 ± 0.006 

SF 

2015 AWD 317 12.28 ± 0.07 2.35 ± 0.03 4.24 ± 0.04 0.56 ± 0.006 

2016 AWD 267 13.36 ± 0.19 2.34 ± 0.03 4.50 ± 0.04 0.49 ± 0.006 

2017 DF 270 15.29 ± 0.09 2.55 ± 0.03 5.06 ± 0.04 0.43 ± 0.013 

 

Within each field, there was an inverse relationship between tWUE and uWUEp with mean 

seasonal T:ET, where increased tWUE and a higher uWUEp coincided with lower mean seasonal 

T:ET. Greater eWUE did not correlate well with tWUE or T:ET when looking at fields 

individually or collectively. The AWD and DF treatments did not have an identifiable effect on 

any of the observed WUE terms. Despite the small sample size for each irrigation treatment, 

values were comparable year to year for each term presented in Table 3. Across DF fields, mean 

eWUE, tWUE, and T:ET were 2.34 g CO2 kg-1 H2O, 4.58 g CO2 kg-1 H2O, and 0.47, 

respectively, for the 2015-2017 growing seasons. Comparatively, for AWD fields, mean eWUE, 

tWUE, and T:ET were 2.33 g CO2 kg-1 H2O, 4.64 g CO2 kg-1 H2O, and 0.50, respectively.  

The patterns of eWUE and T:ET were consistent with each term increasing with canopy 

establishment and then slightly decreasing at harvest. Timing of peaks in eWUE varied year to 

year, ranging between 69 and 86 DAP for NF and 63 and 121 DAP for SF. The latest peaks in 

eWUE were during the 2016 growing season, where planting and harvest across both fields 
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occurred later in the year compared to 2015 and 2017. Peaks in T:ET occurred earlier on average 

compared to peaks in eWUE, ranging between 50 and 64 DAP for NF and 48 and 62 DAP for 

SF. For both NF and SF, tWUE was consistent throughout the growing season as both GPP and 

T scaled similarly, and there were no significant (p>0.05) differences between fields or irrigation 

treatments when comparing across all site-years. 

At the daily time step, we compared the relationship of WUE to phenological 

development using daily LAI modeled for each site-year based on field measurements and 

growing degree days (GDD). Peak T:ET always preceded peak LAI by a period of 2 to 27 days 

across all growing seasons and fields.  Patterns in peak eWUE and peak uWUE were less 

consistent in relation to peak LAI. Likewise, peaks in uWUE ranged between 51 and 73 DAP for 

NF and 72 and 118 for SF. In five of the six site-years, peak uWUE preceded peak LAI by a 

period ranging between 1 and 22 days (Figure 7). In SF during the 2015 growing season, peak 

uWUE lagged peak LAI by 17 days. Conversely, in all other site-years, uWUE preceded peak 

LAI by a period ranging between 14 and 48 days in NF and between 11 and 21 days in SF. From 

our observations of uWUE and eWUE with respect to LAI, the canopy was consistently more 

efficient in water use prior to the peak canopy area. We associate this observation with the 

differences in plant lifecycle and development, where peak eWUE and uWUE more closely align 

with the reproductive phase (60 to 90 DAP) of the plant lifecycle, where efficient water use is 

critical. For the timing of peak LAI, the timing was closer to the weeks following anthesis (90 to 

100 DAP) at the end of reproduction, when grain filling begins. 



 

85 

 

  

Figure 7. Daily eWUE (A&B), uWUE (C&D), and LAI (E&F) across NF and SF during the 

2017 growing season. Dashed vertical line denotes day on which peak LAI occurred within each 

field. 

 To further highlight the role of phenological control on WUE, we examined the 

relationship between uWUE, eWUE, tWUE, and T:ET and LAI across each field using the full 

2015-2017 dataset (Figure 8). Across both fields, eWUE, uWUE, and T:ET were positively 

correlated to growing season LAI and showed varying degrees of correlation. 
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Figure 8. Daily eWUE, uWUE, tWUE, and weekly T/ET compared to LAI across NF and SF for 

the 2015-2017 growing seasons. Points are colored by DAP. 

 The relationship between tWUE and LAI was less dynamic as GPP, T, and LAI increase 

concurrently throughout the growing season. Our results indicated that increased leaf area did not 

explain a considerable portion of the seasonal variance in tWUE. In Figure 8E and 8F, we see 

that tWUE remains relatively stable, which suggests that the rate of exchange between GPP and 

T is independent of leaf area. Accordingly, increasing leaf area does not appear to influence the 

canopy’s water use across the growing season. The strongest relationship defined in Figure 8, 
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was between LAI and T:ET, where LAI was able to explain 80% and 73% of the variance in 

T:ET at the daily time step across NF and SF, respectively. The relationship between eWUE and 

uWUE was also strong across both fields with LAI explaining at least 65% of the variance in 

daily eWUE and at least 63% of the variance in daily uWUE. 

Across eWUE, uWUE, and T:ET, we also observed a clear hysteretic relationship where 

the peak values for each term occurred prior to peak LAI, and the mean relationship pre- and 

post-peak LAI was distinctly different. This disconnect between canopy productivity and 

development is also clear in the lag of peak LAI with respect to peak GPP, where maximum GPP 

precedes peak LAI across every site-year. During the 2015-2017 growing seasons, we observed a 

peak GPP preceding peak LAI with the time between peaks ranging from 9 to 27 days. If we 

discard the 2016 LAI time series based on the limited number of growing season observations 

and reliance on scaling from MODIS LAI, the time between peak GPP and LAI narrows to 15 to 

27 days for the 2015 and 2017 growing seasons. We suspect that elevated production is likely 

tied to the canopy’s prioritization of grain creation during the reproductive phases (60 to 90 

DAP). The highest rates of GPP closely aligned with the reproductive phases between panicle 

differentiation and booting, occurring approximately 73 to 83 DAP across NF and SF during the 

2015-2017 growing seasons. Peak LAI values then align with the transition from reproductive 

phases to grain filling during maturation, beginning around 90 to 110 DAP. Specifically, this 

transition was marked by the beginning of anthesis in the field, which occurred consistently 

between 90 and 94 DAP across all site-years based on field observations and PhenoCam 

imagery. 
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3.3 Comparison and challenges of methods used to partition evapotranspiration 

 When comparing T and ET rates across the uWUE, PM56Dual, and PT-JPL methods for 

the 2015-2017 growing seasons, the period of observation was limited to days where data were 

available for all three methods. During the overlapping period, modeled T accounted for at least 

79% of seasonal ET across all three methods with PM56Dual indicating the highest T:ET at 87% 

(Figure 9). While the methods were similar in their determined T:ET, the overall magnitudes still 

varied with T estimates ranging between 768 mm (PT-JPL) and 1104 mm (PM56Dual) during 

the overlapping period of 206 days spanning the 2015-2017 growing seasons. The range of 

transpiration across individual years was more varied when comparing across all methods (Table 

4). The PM56Dual method provided the highest estimates of both T and ET across each growing 

season. 
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Figure 9. Comparison of daily T to ET for the uWUE, PM56Dual, and PT-JPL methods during 

the 2015-2017 growing seasons during periods where estimates from all methods were available. 

Estimates of PT-JPL and uWUE methods are aggregated across NF and SF while PM56Dual is 

scaled from reference site. Dashed line is 1:1. 

 The PT-JPL and uWUE methods were the most comparable of the methods in terms of 

both T and ET estimation during the periods of overlap across each growing season. While the 

mean relationship between the PM56Dual and uWUE methods was similar based on the slopes 

presented in Figure 9, the resulting ET and T sums from the overlap periods between the uWUE 

and PT-JPL methods were actually much closer to one another (Table 4). The PT-JPL and 

uWUE methods were able to estimate similar cumulative amounts of ET using data from the 
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field sites with only 7 to 9 mm during the 2015-2017 growing seasons. Using the local weather 

station data, the PM56Dual estimated greater ET than the other methods in all three growing 

seasons. 

Table 4. T and ET estimates for each method during days of overlapping data collection within 

the 2015-2017 growing seasons. 

Year Method 

Days of 

overlap T, mm 

ET, 

mm 

2015 

uWUE  

63 

287 358 

PM56Dual 380 417 

PT-JPL 266 362 

2016 
uWUE  

70 
245 362 

PM56Dual 379 413 

PT-JPL 252 373 

2017 
uWUE  

73 
257 382 

PM56Dual 345 376 

PT-JPL 250 344 

 

Within each growing season, the PT-JPL and uWUE methods modeled transpiration with 

phenological development, where transpiration increased similarly to LAI or GPP throughout the 

growing season (Figure 10). Daily dynamics for the PM56Dual method were heavily dictated by 

the basal crop coefficient, which did not reflect the magnitude of change present in LAI or GPP 

throughout the growing season. Because the PM56Dual method did not exhibit strong seasonal 

change with respect to canopy development, the maximum T:ET always occurred sooner 

compared to the PT-JPL and uWUE methods (Figure 10). 
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Figure 10. Time series of T:ET across the uWUE, PM56Dual, and PT-JPL methods during the 

2015-2017 growing seasons averaged across NF and SF. 

  When comparing peak values of T:ET across the growing season when estimates were 

available for all three methods, the PM56Dual method preceded the other two methods 

consistently by at least 19 days across the 2015-2017 growing seasons. Peak T:ET for the PT-

JPL method lagged the uWUE method between 17 to 34 days during the 2015 and 2017 growing 

seasons while preceding peak uWUE T:ET by 10 days. As mentioned earlier, the 2016 dataset is 
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somewhat limited as it reflects a scaled MODIS LAI rather than relying solely on field 

observations as in 2015 and 2016. If we remove the impact of the MODIS time series, the lag 

between the PT-JPL and uWUE is likely linked to the difference in peak timing between the LAI 

and GPP terms. The PT-JPL transpiration is largely energy driven with LAI being incorporated 

to partition total RN to available RN within the canopy. In contrast, the seasonality in uWUE 

transpiration is largely linked to GPP, which typically precedes LAI as shown earlier in our 

analysis of the control of LAI on GPP, eWUE, and uWUE. As a result, dynamics of transpiration 

can vary based on how either phenology and/or production are accounted for within different 

modeling frameworks.   

4. Discussion 

4.1 Impacts of drying on GPP in AWD irrigation treatments 

 During individual AWD drying events, we determined that there was no noticeable 

decline in GPP with respect to declining soil moisture after accounting for differences in 

incoming SW radiation as the primary driver. Given our previous work (Reavis et al. 2021), 

where drying also lacked a significant impact on ET, we felt confident that AWD and DF fields 

would exhibit similar patterns in WUE throughout the growing season. As a result, we were also 

confident in using the uWUE method to estimate transpiration across both DF and AWD fields 

given the lack of impact drying had on GPP and ET. In other studies, aggregated net ecosystem 

exchange of CO2 , GPP, and yield showed no significant changes across fields under traditional 

irrigation practices and intermittent flooding practices across a variety of global rice production 

systems (Alberto et al., 2009; Oliver et al., 2019). However, given the differences in application 

of AWD and soil characteristics between fields, the degree of drying that occurs between fields 

is often difficult to compare. While we did not observe significant differences in the responses of 
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ET and GPP to drying, those responses will likely differ with respect to the degree of drying, 

including drying event length, field soil properties, and rice variety (Lin et al., 2014; Kar et al., 

2018; Carrijo et al., 2018). 

4.2 Growing season rice WUE dynamics 

  The WUE dynamics indicated a close relationship between eWUE, uWUE, and T:ET 

with canopy development using LAI as a proxy. However, we also observed a noticeable lag in 

peak LAI with respect to when the canopy was most efficient in terms of water use. Furthermore, 

differences in peak LAI and WUE were primarily a reflection of the differences in LAI and GPP 

throughout the growing season. The primary driver for differences in peak production and 

canopy infrastructure was the transition from reproductive growth to maturation. We determined 

that after the reproductive phases, the canopy largely prioritized grain filling during maturation 

over water use, which is consistent with other studies analyzing rice canopy development during 

the growing season (Xue et al., 2016, 2017). The shift in WUE during the maturation phases has 

been linked to decreases in canopy light use efficiency as additional plant material results in 

greater amounts of shading. In the context of our study, the rice canopy likely experienced a 

decline in GPP with respect to increasing LAI during anthesis around 90 DAP, resulting in lower 

WUE. The decline in light use efficiency post-anthesis has been observed in rice, where radiation 

use is decreased at similar levels of LAI pre- and post-anthesis (Campbell et al., 2001; Saito et 

al., 2005).  

We observed an eWUE ranging from 2.18 to 2.55 g CO2 kg-1 H2O across the 2015-2017 

growing seasons in NF and SF, which is higher than other studies reporting growing season 

eWUE in paddy rice globally (Wang et al., 2018, 2017; Jiang et al., 2020). Values of eWUE 

reported in Jiang et al. (2020) ranged were 1.38 g CO2 kg-1 H2O and 1.56 g CO2 kg-1 H2O for rice 
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grown in California, USA (US-Twt) and Ibaraki, Japan (JAN-MSE), respectively.  The potential 

uWUE (uWUEp) during the 2015-2017 growing seasons ranged between 12.20 and 15.99 g CO2 

kg-1 H2O hPa0.5 across NF and SF. The same sites from Jiang et al. (2020) were 8.94 (US-Twt; 

California) and 7.06 (JAN-MSE; Japan) g CO2 kg-1 H2O hPa0.5.  In NF and SF, tWUE ranged 

from 4.17 to 5.06 g CO2 kg-1 H2O across the 2015-2017 growing seasons. Compared to our study 

sites, rice tWUE reported in Jiang et al. (2020) was lower at both the US-Twt (2.57 g CO2 kg-1 

H2O) and the JAN-MSE (2.23 g CO2 kg-1 H2O) sites. The effective growing season ET rates for 

the Jiang et al. (2020) sites were 4.61 ± 0.24 mm day-1 and 3.94 ± 0.17 mm day-1 for the US-Twt 

and JAN-MSE sites, respectively. Comparatively, the effective growing season ET rate for NF 

and SF ranged between 4.27±0.10 mm day-1 and 4.30±0.13 mm day-1, which are within the range 

presented for US-Twt and JAN-MSE sites. Conversely, the mean effective daily GPP rates for 

NF and SF were 8.83±0.51 gC m-2 day-1 and 9.20±0.33 gC m-2 day-1, respectively, which were 

greater than the reported mean value of 6.38 ± 0.45 g C m−2 d−1 across the US-Twt and JAN-

MSE sites. Comparing yields, NF and SF averaged 10.03 and 10.4 t ha-1 normalized to 13% 

moisture content, and the US-Twt site produced yields ranging between 4.5 and 7.4 t ha-1 

normalized to 14% moisture content (Knox et al., 2016). Given the higher GPP, WUE, and 

resulting yields, it seems likely that local meteorology or agronomic practices could explain the 

differences in water use between NF and SF and other paddy rice sites. Moreover, as uWUEp is 

likely related to photosynthetic capacity, varietal differences in rice could also play a large role 

in determining both tWUE and eWUE.  

Differences in management and historical use present challenges for directly comparing 

between this study and the results from US-Twt. The US-Twt site is defined by a primarily 

Mediterranean climate with much lower annual precipitation, lower humidity, and cooler 
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nighttime temperatures compared to our sites in the humid Mid-South (Baldocchi et al., 2016; 

Hatala et al., 2012). The US-Twt site is also unique as a drained peatland in the Sacramento-San 

Joaquin Delta repurposed for agricultural production, including rice, and the soils are 

characterized by high soil organic matter (Chamberlain et al., 2018; Miller and Fujii, 2010). 

While our study sites are primarily used for commercial rice production, the US-Twt site is part 

of an ongoing assessment of rice production as a means to reduce soil subsidence while 

preventing oxidation of underlying peat and further mineralization (Kasak et al., 2021; Ye et al., 

2016; Kirk et al., 2015). Given the differences in management styles and local climate, the added  

data and perspective on canopy water use in Arkansas rice production is valuable as Arkansas 

produces a majority of the rice in the US and has major economic and environmental impact 

(Hardke et al., 2021; Reba et al., 2017).  

4.3 Comparison and evaluation of transpiration estimation methods 

 In our comparison of the uWUE, PM56Dual, and PT-JPL methods, we found that the 

uWUE and PT-JPL methods were superior in their ability to accurately reflect changes in 

growing season transpiration with respect to canopy development. One study indicated that local 

calibration of the PM56Dual method is necessary to yield accurate values of T in dry seeded rice 

systems similar to Mid-South practices as opposed to the practice of transplanting seedlings into 

flooded paddies (Alberto et al., 2014). Over the same period, the methods estimated a collective 

T:ET ranging between 0.79 to 0.87. The period of evaluation contained good coverage across the 

mid-to-late growing season from 50 DAP to harvest. The period is especially relevant as 

irrigation timing and decisions for producers typically do not occur until after the first 6 weeks. 

In comparing methods across each growing season, the PT-JPL and uWUE method produced 
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results that were close in proximity and the models generated a similar seasonal pattern of T:ET 

across the growing season. 

 The uWUE method yielded a growing season T:ET ranging between 0.43 and 0.56 across 

six site-years, which is consistent with several other studies utilizing a variety of methods to 

partition growing season ET in rice paddies (Table 5). Across the presented methods and this 

study, the PM56Dual method consistently estimated the highest T:ET ratio during the growing 

season.  
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Table 5. Summary of T, ET, and T:ET across multiple ET partitioning methods in rice paddy 

sites. 

T, 

mm 

ET, 

mm T:ET 

Partitioning 

Approach 

Growing 

Season 

Length, 

days Location 

Transplanted 

Rice? Study 

  0.74 

Isotope (Non 

steady-state)  
Japan No 

(Wei et al., 

2018) 

  

0.5 Shuttleworth 

Dual-Source 

 

360 480 0.75 
Priestley-

Taylor with 

scaling 

functions  

138 

China No 
(Qiu et al., 

2019) 
432 561 0.77 136 

358 527 0.68 161 

313 524 0.6 Empirical 

method 
120 Philippines No 

(Alberto et al., 

2014) 253 475 0.53 115 

285 348 0.82 FAO56 Dual 

Kc 

116 
India Yes 

(Anupoju and 

Kambhammettu, 

2020) 
322 384 0.84 109 

416 595 0.7 Leaf-level 

CO2 

Concentration 

Gradient w/ 

EC 

147 

Brazil No 
(Diaz et al., 

2019) 

418 762 0.55 164 

373 677 0.55 164 

434 733 0.59 162 

477 716 0.67 154 

338 693 0.49 168 

 

Methods incorporating direct observations of H2O and CO2 fluxes, similar to the uWUE 

method, indicated lower mean T:ET ratio across their respective studies, and the range of values 

presented in our study was still consistently lower. Given the differences in canopy GPP 

compared to canopy LAI, methods utilizing either variable as a major partitioning component 

will likely inherit the same differences in seasonal dynamics between LAI and GPP. We 

observed peak T:ET in the PT-JPL lagging the uWUE method across each growing season, 



 

98 

 

which was almost certainly due to the difference in peak LAI and GPP utilized in each method, 

respectively.  

5. Conclusions 

 In this work, AWD had no appreciable impact on water use during the growing season 

when compared directly to DF irrigation. Furthermore, we observed the individual responses of 

GPP, ET, and T to declining soil moisture across multiple drying events and found no indicators 

of stress consistent across fields or irrigation treatment. Using the uWUE method, we determined 

that growing season T for Mid-South rice ranged between 259 and 317 mm with mean growing 

season T:ET ranging between 0.43 and 0.56 across six site-years. The fields were most water 

efficient prior to peak LAI across all growing seasons, which was consistent with GPP peaking 

during the end of the reproductive phases prior to maturation and grain filling. The uWUE, 

PM56Dual, and PT-JPL methods indicated a mean seasonal T:ET ranging between 0.79 and 0.86 

during of the mid-to-late growing season across all three study years. While the ratios of T:ET 

were comparable across methods, the differences in ET and resulting transpiration across 

methods were as much as 50 and 100 mm, respectively. Like the differences between GPP and 

LAI with respect to WUE, methods relying on LAI as a partitioning variable resulted in different 

T and T:ET dynamics compared to GPP-based methods. The uWUE and PT-JPL methods 

utilized different indicators of phenology and associated canopy activity in GPP and LAI, 

respectively. Consequently, the methods exhibited similar seasonal dynamics in T and T:ET with 

the lag between GPP and LAI, where the uWUE method yielded a maximum T:ET prior to the 

PT-JPL method across each growing season. Our study provided estimates of T, eWUE, tWUE, 

and uWUEp which were greater than other applications of the uWUE at paddy rice sites reported 

in the literature The elevated WUE and GPP also translated to greater yields when comparing NF 
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and SF to other rice paddy sites. The increased water use efficiency could be reflective of the 

decreased VPD and sunlight due to cloud cover in the humid Mid-South as compared to other 

rice production areas like California. Additionally, our estimates of T and T:ET were well within 

the range provided by other methods across different rice sites. Given our findings, we 

considered the uWUE method a valuable approach for partitioning fluxes and providing better 

insight to canopy WUE dynamics during the growing season. Moreover, our findings support the 

adoption of AWD as a water saving technique where drying events did not impact GPP, ET, or 

T, which indicates that canopy water use was undeterred. 
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Chapter 2: Appendix A 

PT-JPL Functions 

 The following equations are used to estimate the scalars within the PT-JPL framework 

(Fisher et al., 2020). Any adjustments to the original formulations are referenced in the methods 

and we include those adjustments here: 

fwet = RH4  Eqn 7 

fg =
fAPAR

fIPAR
  Eqn 8 

fAPAR =
PARin−PARout

PARin 
 Eqn 9 

fIPAR =
PARout

PARin
  Eqn 10 

fT = e
−(

Tmax−Topt

Topt
)

2

 Eqn 11 

fM =
fAPAR

fAPAR,max
 Eqn 12 

fSM = RHVPD  Eqn 13 

Where RH is relative humidity, fAPAR is the fraction of absorbed PAR at the canopy, fIPAR is the 

fraction of intercepted PAR by the canopy, PARin is incoming PAR with respect to the canopy 

surface, PARout is outgoing PAR with respect to the canopy surface, Tmax is maximum air 

temperature, and  Topt is an optimum air temperature assumed to be 28 °C.   
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Chapter 3: Assessing the potential for ECOSTRESS and the PT-JPL model to estimate 

evapotranspiration in Mid-South rice 

Authors: Colby W. Reavis1, Beatriz Moreno-García1, Kosana Suvočarev3, Michele L. Reba2, 

Benjamin R.K. Runkle1 

1 Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, 

AR, USA 
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Author’s Note: This work is currently in preparation for journal submission. Additional data 

will be added for the 2021 growing seasons for our EC datasets. My plan is to 

submit the document to my respective co-authors for review. Our target journals 

are either Journal of Hydrology or Water Resources Research. 

1. Introduction 

Evapotranspiration (ET) is critical component of the irrigation management process in 

agricultural systems (Anapalli et al., 2019; Farahani et al., 2007). In areas where ET is used to 

inform management decisions, timely estimates of ET for individual fields are needed (Howell, 

2001; Liu et al., 2009; McAneney and Itier, 1996). Additionally, heavily irrigated areas face 

challenges associated with declining water resources. In the US, Arkansas is the largest producer 

of rice and faces notable challenges in declining groundwater levels in the eastern portion of the 

state where rice production is intensive (Reba et al., 2017). To reduce the amount of water 

consumed by irrigation, multiple strategies provide opportunities to reduce overall water use and 

improve irrigation efficiency (Massey et al., 2014). Alternate wetting and drying (AWD) is an 

irrigation strategy that makes use of drying events to capture precipitation, which in turn offsets 
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required water by as much as 20% along with associated pumping costs (Massey et al., 2017). 

However, there are also concerns that drying can lead to declines in yield and grain quality due 

to drought-induced stressed during certain developmental stages (Norton et al., 2017; Graham-

Acquaah et al., 2019). In rice production, ET is a valuable term that can inform growers in the 

irrigation management process while also providing some indication of canopy health via water 

use (i.e., reduced ratio of T to ET due to stress) during the growing season (Pan et al., 2017). 

Given the value of ET in the rice production system, there is a need for a method which provides 

an accessible, well-constrained estimate of ET during the growing season (Shih, 1982). 

Estimating ET at relevant temporal and spatial scales (i.e., at the field scale near daily or sub-

daily timescale) is challenging with the cost of equipment and maintenance to model or directly 

measure ET across multiple fields (Fisher et al., 2018).  

Applications of remote sensing have advantages in their ability to estimate fluxes 

consistently at a variety of spatial scales over longer periods of time. In applying remote sensing 

in agricultural settings, an additional challenge is downscaling to the field scale as satellite pixels 

are typically greater in area than most individual agricultural fields (Wang et al., 2017). 

Additionally, remote sensing products such as MODIS often rely on statistical and machine 

learning approaches, which are semi-empirical in nature and lack mechanistic details present in 

many land-surface processes that incorporate known canopy scale dynamics such as plant 

response or stomatal regulation (Huang et al., 2018; Mu et al., 2011; Zhao et al., 2005). To 

overcome this gap, researchers have started to integrate known mechanistic relationships and 

remote sensing data into advanced process-based models that are able to generate continuous 

estimates of ET across fine (~1 km2) spatial resolutions (Baldocchi et al., 2019; Jiang et al., 

2020). These models can also be validated using direct measurements of different flux, 
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phenological, and meteorological variables at the surface (Fisher et al., 2008; Velpuri et al., 

2013). In addition to validation, ground observations can be used to determine which 

measurements are key when attempting to derive an estimate of ET from some combination of 

land surface features (LAI or conductance) and local meteorology. 

 Methods such as the Priestley-Taylor (PT) can provide accurate estimates of ET with 

relatively fewer inputs compared to more complex iterations of the Penman-Monteith equation 

(Monteith, 1981, 1965; Penman, 1948; Priestley, 1959). The Priestley-Taylor provides an 

estimate of potential ET under assumed conditions (Priestley and Taylor, 1972). The 

assumptions include a well-wetted surface, where water vapor resistance is assumed to be 

negligible between the surface and atmosphere, and some amount of dry air mixing where the 

amount of actual ET can exceed potential evapotranspiration (PET). The required inputs for 

using the Priestley-Taylor approach include an estimate of available energy, air temperature, and 

pressure at the scale of observation. In addition to meteorological inputs, the PT method also 

requires a parameter αPT to account for violations in the assumed PT framework, such as 

inconsistent wetting of the surface. In the Priestley-Taylor equation, αPT is applied to available 

energy modified by the slope of the vapor pressure deficit curve to scale from potential to actual 

ET. The parameter αPT typically assumes a value of 1.26, but studies have also sought to alter the 

parameter to scale directly from PET to actual ET using different modeling strategies (Flint and 

Childs, 1991; Sumner and Jacobs, 2005). The parameter αPT is also sensitive to changes in 

temperature, relative humidity, and soil moisture availability across different landscapes (Ershadi 

et al., 2014; Stannard, 1993). Remote sensing products like ECOSTRESS apply the PT method 

to estimate ET at high resolution (70 m x 70 m) spatial scales during the daytime period during 
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the growing season in agricultural settings (Chen et al., 2014; Fisher et al., 2009, 2008; 

Vinukollu et al., 2011). 

 In this study, we estimated ET across different periods of crop growth and management 

during the growing season. The classification of water use utilized staging data collected 

throughout two growing seasons (2018 & 2020) as well as 10 site-years of data. The selected 

periods were meant to reflect canopy development as well as floodwater management during the 

growing season. To validate remote sensing as a viable solution for estimating growing season 

ET, we first aim to test the ECOSTRESS product in two commercial sized rice fields across five 

site-years. We compare eddy covariance (EC) observations to ECOSTRESS ET as LE during the 

growing season. Second, we validate the application of the PT model for estimating growing 

season LE using field-specific microclimate data. Modeling using local data tested the 

performance of the framework used in the PT model, which is the same set of equations used in 

the ECOSTRESS product. We hypothesize that given the consistent inundation periods in the 

rice growing system, the PT method will perform exceptionally well as actual ET will approach 

PET. Because ECOSTRESS uses the same PT method for estimating ET, we expect the model to 

provide accurate estimates of LE throughout the growing season. 

2. Methods 

2.1 Site Information 

 The study site was composed of two adjacent commercial fields (~24 ha each) in eastern 

Arkansas, USA (34° 35’ 8.6” N, 91° 45’ 05” W). Rice has been grown in continuous 

rotation since 2004 and are zero–graded. For this study, the fields are identified as North Field 

(NF) and South Field (SF). The soil within the fields is primarily characterized as poorly drained 

Perry silty clay (USDA classification: very-fine, smectitic, thermic Chromic Epiaquerts), which 
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represents 100% of NF and 93.2% of SF (Runkle et al., 2019). The remaining portion of SF soil 

(~2 ha) is a Herbert silt loam (fine-silty, mixed, superactive, mesic Udollic Epiaqualfs). The 

irrigation treatments for each field were altered year to year in an experimental setup designed to 

assess the impacts of alternate wetting and drying (AWD) irrigation on methane emissions and 

ET during the growing season when compared to the traditional delayed flood (DF) irrigation.  

Since 2015, instrumentation has been deployed during the growing season at both NF and 

SF. During the growing season, the instruments are typically deployed the following day after 

planting and removed no earlier than three days prior to harvest. When the stations are deployed, 

instrumentation in each field was located on the northern edge of each field at approximately half 

the distance of the field edge and approximately 20 m into the field interior. Each field was 

outfitted with an EC system, including a 3D sonic anemometer (CSAT3, Campbell Scientific, 

Inc., Logan, UT, USA) and an open–path infrared CO2/H2O analyzer (LI–7500A, LI–COR, Inc., 

Lincoln, NE, USA) measuring dominant southern winds during the growing season at 20 Hz. 

Fluxes from the sites were gap filled using artificial neural networks as used in similar other 

applications of EC (Knox et al., 2016, 2015).  

For this study, we used different portions of our EC dataset to match product availability. 

When comparing to models and remote sensing products, we discarded data from the 2019 

growing seasons in NF and SF and the 2021 growing season in NF due to equipment issues that 

resulted in poor estimates of ET that could not be gap-filled. Additionally, because the 

ECOSTRESS product was only recently launched in June 2018, we further limited our model 

comparisons to only include the 2018-2021 growing seasons. For determining seasonal dynamics 

of ET during the growing season using development and irrigation management, we used data 

from the 2015-2020 growing seasons minus the data that was discarded due to equipment issues. 
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The 2021 growing season data was used in the seasonal analysis as cumulative ET could not be 

quantified across both NF and SF. 

We delineated the growth stage information across each site year based on staging data 

collected during the 2018 and 2020 growing seasons. The staging data was collected and 

recorded using staging guides developed for rice in AR (Counce et al., 2000; Moldenhauer et al., 

2013). We define the following ranges of time for the individual growth phases: Vegetative (10 

to 60 DAP), Reproductive-Panicle Initiation (70 to 80 DAP), Reproductive (80 to 100 DAP), 

Grain filling and Maturation (110 to 145 DAP). In the context of water management, we 

highlight the start of both the reproductive and grain filling periods as key stages of development 

where the crop is most vulnerable to stress (Henry et al., 2013; Moldenhauer et al., 2013). We 

discarded the first 10 days after planting to ensure the canopy had transitioned from emergence 

to vegetative growth. Staging data was collected approximately 2 to 4 times a month during 

weekly visits to the field site during the 2018-2020 growing seasons.  

The timeline of development was then extrapolated to across other site-years. Segmenting 

water use during the growing season identified target periods to validate model performance. 

Additionally, two of the periods being examined represented developmental periods where 

inundation is commonly recommended to reduce canopy stress. Combined irrigation information 

collected at the site, we used the following stages to characterize periods of DAP during the 

growing season: 1) Vegetative, Pre-First flood (VPre), 2) Vegetative, Post- First Flood (VPost), 

3) Reproductive-Panicle Initiation (RPI), 4) Reproductive (RPD), 5) Grain filling and 

Maturation, Pre-drain (GMPre), and 6) Grain filling and Maturation, Post-drainage (GMPost). Of 

these six periods, we identified the RPI and GMPre period as periods where inundation should be 
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prioritized to ensure the canopy develops properly without lowering yield or grain quality (Henry 

et al., 2013; Moldenhauer et al., 2013). 

Measured energy terms included 4-component net radiation at 2 m (CNR4, Kipp & 

Zonen, Inc., Delft, NL), photosynthetically active radiation at 1.85 m (LI–190SB, LI–COR, Inc., 

Lincoln, NE, USA), and ground heat flux using plates (HFP01, Hukseflux, Delft, NL) placed at 

different 5 cm below the soil surface. Additional meteorological and phenological measurements 

included leaf area index (LAI), canopy height, air temperature (T), relative humidity (RH), 

barometric pressure, water depth (WD), volumetric water content (VWC), wind speed (uz), and 

wind direction as described in Reavis et al., 2021 and Runkle et al., 2019.  

2.2 Priestly-Taylor Model overview 

 The Priestley Taylor (PT) equation estimates PET that is primarily driven by available 

energy with a single modeling parameter αPT (Equations 1-3): 

𝑃𝐸𝑇𝑃𝑇 =  𝛼𝑃𝑇  
∆

∆+𝛾
(𝑅𝑁 − 𝐺)    (Equation 1) 

 

∆ =  
4096∗0.6108 𝑒𝑥𝑝 (

17.27∗𝑇

𝑇+237.3
)

(𝑇+237.3)2     (Equation 2) 

 

𝛾 =
𝑐𝑝∗𝑃

𝜖∗𝜆 
     (Equation 3) 

Where G is soil heat flux (W m-2), RN is net radiation (W m-2), Δ is the slope of the vapor 

pressure deficit curve (kPa °C-1), γ is the psychrometric constant (kPa °C-1), P is atmospheric 

pressure (kPa), T is air temperature (°C), cp is the specific heat (MJ kg-1 °C-1), ε is the molecular 

weight ratio of water vapor to dry air (0.622), λ is the latent heat of vaporization (2.45 MJ kg-1) 

and αPT is the Priestley-Taylor coefficient (commonly given as 1.26). The generalized form of 

the PT equation present in the ECOSTRESS application (PT-JPL) estimates actual ET from PET 
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using scalar functions acting on individual contributing terms of ET. In this approach, actual ET 

is estimated as the sum of canopy ET (ETc), soil ET (ETs), and intercepted moisture ET (ETi) 

such that: 

ETPT−JPL =  ETc + ETs + ETi    (Equation 4) 

ETc = (1 − fwet)fgfTfMαPT
∆

∆+γ
RNc    (Equation 5) 

ETs = (fwet + fSM(1 − fwet))αPT
∆

∆+γ
(RNs − G)   (Equation 6) 

ETi = fwetαPT
∆

∆+γ
RNc     (Equation 7) 

LAIJPL = (− ln(1 −  fIPAR) / 0.5)    (Equation 8) 

RNs = RN ∗ e−0.6∗LAIJPL    (Equation 9) 

RNc = RN − RNs     (Equation 10) 

Where fwet is relative surface wetness, fg is green canopy fraction, fT is a limiter based on plant 

temperature, fM is a limiter based on plant moisture, fIPAR is fraction of intercepted PAR, and 

fSMis a limiter based on soil moisture. All individual scalars are unitless and range in value 

between 0 and 1. The terms RNc and RNs represent net radiation present at the canopy and soil, 

respectively, in Wm-2. The individual scaling functions are derived from multiple studies and are 

based on common meteorological measurements supported by most weather stations and Earth 

observation datasets (Fisher et al., 2008): 

fwet = RH4     (Equation 11) 

fg =
fAPAR

fIPAR
     (Equation 12) 
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fT = exp (− (
Tmax−Topt

Topt
)

2

)    (Equation 13) 

Topt = Tmax (max (RN ∗ Tmax ∗
SAVI

VPD
))   (Equation 14) 

fM =  
fAPAR

fAPAR,max 
     (Equation 15) 

fSM = RHVPD     (Equation 16) 

Where RH is relative humidity, fAPAR is absorbed photosynthetically active radiation (PAR),  

Tmax is maximum air temperature in °C, Topt is the optimum temperature for growth in °C, 

SAVI is the soil adjusted vegetation index, and VPD is vapor pressure deficit in kPa.  

The current modeling framework does not rely on any parameterization as each of the 

given scaling functions can be calculated using data measured in the field or using remote 

sensing. While ECOSTRESS utilizes remotely sensed information to drive the PT-JPL model, 

field observations of microclimate conditions were leveraged to improve model performance. In 

the scope of this study, we used direct measurements of incoming and outgoing SW radiation, 

incoming and outgoing PAR, T, RH, G, and LAI with the scaling functions (Equations 8 – 16) to 

estimate partitioned ET for both NF and SF. Because the sites do not have ground-based estimate 

of NDVI to distinguish fIPAR from fAPAR, we only utilized periods where vegetation was 

dense (LAI>1) under the assumption that fIPAR would equal fAPAR under such conditions. 

Additionally, we assumed that mean G was effectively zero over a 24-hr period (Oliver et al., 

1987). The field specific PT-JPL ET estimates were then compared to ECOSTRESS and EC ET 

across both fields.  
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2.4 ECOSTRESS data collection and organization 

 ECOSTRESS data were collected using the Application for Extracting and Exploring 

Analysis Ready Samples (AρρEEARS) API provided by the USGS (AppEEARS Team, 2021; 

Hook and Fisher, 2019). The pixel for observation was selected based on the dominant wind 

direction and estimated footprint of the tower during the growing season. The selected pixels 

were a subset of the 70 m ECOSTRESS datasets provided through AppEEARS. The product 

outputs were filtered for cloud cover and uncertainty in land surface temperature estimates prior 

to being delivered as a quality-controlled Level 3 product. Level 3 denotes the product 

application level where the output is estimated using a combination of ECOSTRESS land surface 

temperature at Level 2 and other remote sensing products (Fisher and ECOSTRESS algorithm 

development team, 2015). For our study, we sampled pixels in our fields beginning at the launch 

of ECOSTRESS in June 2018 to the end of the most recent growing season, August 2021. 

The ECOSTRESS product delivers ET estimates as latent energy flux (LE). The 

ECOSTRESS product uses the same framework presented in equations 4 through 16, but the 

model is driven by remotely collected data. The product provides an estimated instantaneous LE 

taken at different hours of the day as well as a daily estimate of ET, which provided two points 

of comparison to the EC data collected at both NF and SF. For comparing instantaneous rates 

between ECOSTRESS and EC, we assume the instantaneous rate of LE to be representative of 

the entire half-hour in which the measurement was taken. For comparing daily measurements 

between ECOSTRESS and EC, we calculated the daily mean LE for each field using gap-filled 

EC datasets. When calculating the mean values of LE using EC data, we only took the mean of 

the daytime (SWin > 30 Wm-2) values to be consistent with the mean provided by ECOSTRESS. 
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2.5 Comparison framework for observations and models 

 To test the performance of the ECOSTRESS product, we compared instantaneous and 

daily LE provided by ECOSTRESS to daily mean LE estimated during the daytime period in NF 

and SF. We used regression slope (m), percent bias (PBIAS), coefficient of determination (R2), 

root-mean-square error (RMSE), and Nash-Sutcliffe efficiency coefficient (NSE) to evaluate 

how well ECOSTRESS estimated LE at both the daily and instantaneous time steps compared to 

our EC observations. For evaluating model performance, we characterized “good” model 

performance with NSE and R2 greater than 0.6, which is in line with other studies examining 

performance of remote sensing products estimating ET as LE (Parajuli et al., 2018; Herman et 

al., 2018). In addition to estimating LE, we also examined factors of change that resulted in 

better or worse model performance including seasonal development and ECOSTRESS time of 

measurement. 

 To test the performance of the PT-JPL model, we used the same statistics as the 

ECOSTESS performance evaluation (m, PBIAS, R2, RMSE, and NSE). The performance of the 

PT-JPL model with respect to canopy development was also tested. The evaluation with respect 

to canopy development was done by comparing differences in modeled and measured LE over 

the course of the growing season to LAI. Additionally, we tested the potential of using field 

measured LAI instead of modeled LAI to see if model performance was improved. 

3. Results 

3.1 Growing season ET observations using EC 

Seasonal estimates of ET were measured using EC for both NF and SF to be used in the 

analysis of water use with respect to canopy development and irrigation management (Table 1). 

Growing season ET ranged between 547 and 792 mm across NF and SF during the selected 
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growing seasons. For the collective of site-years, timing of the first flood ranged between 31 and 

45 DAP, and final drainage began between 112 and 120 DAP. The time between the application 

of the first flood and final drainage ranged between 69 and 85 days. 

Table 1. Field management information for NF and SF during the 2015-2020 growing seasons. 

First flooding is presented using dates and days after planting (DAP). Data presented for 2015-

2017 in NF and SF is adapted from Reavis et al., 2021. 

Site Year 
Irrigation 

Treatment 

Growing 

Season 

Length 

[days] 

Growing 

Season ET 

[mm] 

Planting 

Date 

First Flood 

Date (DAP) 

Drainage 

Date (DAP) 

Harvest 

Date 

NF 

2015 DF 133 551 ± 7.1 8-Apr 14-May (36) 6-Aug (120) 19-Aug 

2016 AWD 143 601 ± 10.5 23-Apr 26-May (33) 17-Aug (116) 13-Sep 

2017 DF 138 628 ± 6.9 10-Apr 17-May (37) 3-Aug (115) 26-Aug 

2018 DF 123 547 ± 2.4 30-Apr 12-Jun (43) 20-Aug (112) 31-Aug 

2020 AWD 139 792 ± 7.1 2-Apr 17-May (45) 27-Jul (116) 17-Aug 

SF 

2015 AWD 134 598 ± 14.0 8-Apr 15-May (37) 3-Aug (117) 19-Aug 

2016 AWD 143 604 ± 9.7 23-Apr 24-May (31) 17-Aug (116) 13-Sep 

2017 DF 140 579 ± 13.4 9-Apr 18-May (38) 4-Aug (117) 27-Aug 

2018 AWD 122 572 ± 1.8 30-Apr 3-Jun (34) 23-Aug (115) 30-Aug 

2020 AWD 139 550 ± 4.1 2-Apr 17-May (45) 30-Jul (119) 19-Aug 

 

 For each growing season, ET was calculated for desired growth periods in both NF and 

SF (Table 2). The general pattern of water use in the canopy was a steady increase during the 

vegetative period marked by the first 21-35 DAP, peak water use during the vegetative and 

reproductive period between 35 and 110 DAP, and a decrease in water use during the grain 

filling and maturation periods until harvest. For the vegetative (VPre and VPost) and Grain-

filling and Maturation (GMPre and GMPost) stages, the length of time varied with the timing of 

the first flood establishment and drainage, respectively. The Reproductive periods (RPI and 

RPD) were fixed in duration as periods of 10 and 30 days, respectively. Across all site-years, the 

greatest amount of ET occurred during the vegetative periods (VPre, VPost), which collectively 

represent the period of 10 to 70 DAP. The vegetative periods accounted for between 40 % and 
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60% of the estimated cumulative ET across all periods for each site-year. While the mean ET 

experienced by the VPost period was greater than the VPre period on average, both the VPre and 

VPost periods had similar durations across all site years at 31 ± 3 and 27 ± 2 days, respectively. 

Mean ET across the VPost period was similar across NF and SF at 164.9 ± 6.2 and 171.9 ± 16.6 

mm, respectively. Mean ET across the VPre period was more varied year to year across NF and 

SF at 120.9 ± 17.5 and 90 ± 4.7 mm, respectively.  

Table 2. Cumulative ET estimates for unique periods of time defined by canopy development 

and irrigation management in NF and SF. SE is Standard Error. 

Field Year Treatment 

Estimated ET by period [mm] 

VPre VPost RPI RPD GMPre GMPost 

NF 

2015 DF 84.5 152.4 54.7 152.9 54.4 48.2 

2016 AWD 90.7 180.5 57.5 151.3 19.7 87.8 

2017 DF 102.1 152.2 58.9 158.4 32.3 66.9 

2018 DF 155.7 157.9 47.4 113.8 6.1 40.8 

2020 AWD 171.6 177.6 74.3 168.9 38.6 121.8 

SF 

2015 AWD 99.1 155.6 59.0 162.7 40.1 77.5 

2016 AWD 85.0 194.2 57.4 154.0 20.4 84.0 

2017 DF 74.5 156.2 52.1 171.1 34.7 81.8 

2018 AWD 99.4 222.7 50.7 129.0 17.9 27.0 

2020 AWD 89.3 128.3 56.7 138.4 41.8 80.5 

  Mean= 105.2 167.8 56.9 150.0 30.6 71.6 

  SE= 10.2 8.4 2.3 5.7 4.5 8.6 

 

 The reproductive periods accounted for 31 to 39% of cumulative growth period ET 

during across all site-years. The duration of RPI and RPD periods were 10 and 30 days across all 

site-years. RPI represented approximately 23 to 31% of the reproductive period ET. The RPI 

period exhibited similar ET across NF and SF with mean ET across all site-years at 58.5 ± 4.4 

and 55.2 ± 1.6 mm, respectively. Differences between fields during the RPD period were also 

minimal at 149.1 ± 9.3 mm in NF and 151.8 ± 7.7 mm in SF. The grain filling and maturation 

periods (GMPre and GMPost) portion of ET was between 8 and 20% of the cumulative growth 
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period ET across all site years. The GMPre period was considerably shorter compared to all the 

other periods, lasting approximately 1 week across all site years. The timing of the GMPost 

period was consistent across all site years with a mean duration of 33 ± 1 days.  

 Across each growth period in site years, mean ET rates indicated that water use was 

greatest during the VPost and RPI periods, representing approximately 30 to 60 DAP across all 

site-years (Table 3). This pattern was consistent across both NF and SF.  

Table 3. Mean ET rates for individual growth periods estimated from EC observations during the 

site-years between 2015 and 2020. 

Field Year 

Estimated ET rates by period [mm day-1] 

VPre VPost RPI RPD GMPre GMPost 

NF 

2015 4.4 4.9 5.5 5.1 7.8 1.5 

2016 2.2 10.0 5.7 5.0 3.3 2.6 

2017 3.5 4.9 5.9 5.3 4.6 2.0 

2018 4.7 5.8 4.7 3.8 3.0 1.1 

2020 4.9 7.1 7.4 5.6 6.4 3.6 

SF 

2015 3.7 4.7 5.9 5.4 5.7 2.3 

2016 1.9 12.1 5.7 5.1 3.4 2.5 

2017 3.9 5.0 5.2 5.7 5.0 2.5 

2018 4.1 6.2 5.1 4.3 3.6 0.8 

2020 2.6 5.1 5.7 4.6 4.6 2.6 

 Mean= 3.6 6.6 5.7 5.0 4.7 2.1 

 SE= 0.3 0.8 0.2 0.2 0.5 0.3 

 

Previous work for the 2015-2017 growing seasons indicated that growing season ET rates 

between NF and SF were similar, including during seasons where the fields were not under the 

same irrigation regime. The same pattern was observed in the 2018 growing season, where NF 

was under DF irrigation and SF was under AWD irrigation. Seasonal ET in NF was greater in the 

2020 growing season when compared to other site-years. Additionally, cumulative ET was 

greater in the AWD treatments compared to the single DF treatment in 2018. Maximum LAI for 
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NF and SF were 8.23 and 4.56 in 2018 and 7.84 and 4.56 in 2020, respectively. When comparing 

observed ET rates (i.e., not gap filled), NF consistently exhibited greater ET during the 2020 

growing season while ET was similar between fields in 2018 (Figure 1). Given the difference in 

ET presented in Figure 1B, further investigation may be required to validate the flux estimates in 

SF and NF during the 2020 growing season. 

 

Figure 1. Comparison of half-hourly ET rates between NF and SF in 2018 (A) and 2020 (B) 

during the growing season. The line of best fit (red) is compared to the one-to-one line (dashed, 

gray). 

3.2 Comparison of EC observations to ECOSTRESS 

 Instantaneous LE estimates were collected for both NF (n=13) and SF (n=17) using 

ECOSTRESS across 5 site years during the 2018, 2020, and 2021 growing seasons (Figure 2). 

For example, the 2020 growing season contained twelve observations of ECOSTRESS LE across 

the growing season in both NF and SF. The distribution of points during the growing season was 

slightly skewed towards the beginning of the growing season, where the months of May and June 

contained 8 of the 12 data points collected for the season. During May and June in 2020, the 

collective ECOSTRESS instantaneous measurements covered the diurnal pattern of LE well with 
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the times of measurement at hours 7.5, 8, 9, 10.5, 13.5, 18, 18.5, 19.5, and 20 on the 24-hr time 

scale, local time. 

 

Figure 2. Time series of gap-filled half-hourly EC LE (black) during the 2020 growing season 

for (A) NF and (B) SF with instantaneous ECOSTRESS LE (red). 

ECOSTRESS overestimated LE in both NF and SF during the collective growing seasons 

(Figure 3). Instantaneous LE measurements for ECOSTRESS were taken between hours 7.5 and 

20 local time across both fields. Cumulative LE from ECOSTRESS exceeded EC LE by 34.8% 

and 48.9%, respectively.   
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Figure 3. Comparison of instantaneous LE from ECOSTRESS (LEECO) to half-hourly LE from 

the EC technique (LEEC) at (A) NF and (B) SF during the 2018, 2020, and 2021 (SF only) 

growing seasons. The line of best fit (red) is compared to the one-to-one line (dashed, gray). 

  Positive NSE values indicated that the modeled instantaneous LE from ECOSTRESS 

provided a better fit than the mean of LE measured using EC during the growing seasons. 

However, the NSF was close to 0, which indicated that modeled LE estimated using 

ECOSTRESS was only slightly better than the mean taken across the observed LE from EC. The 

bias between ECOSTRESS and EC was greater in SF compared to NF.  

There was not a significant relationship with ECOSTRESS instantaneous measurement 

time and model performance (Figure 4). The difference in ECOSTRESS and EC ET was 

significantly (p<0.05) correlated to DAP, where the ECOSTRESS ET progressively 

overestimated ET as the growing season progressed.  
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Figure 4. Comparison of ECOSTRESS measurement time of day (A & B) and DAP (C & D) to 

differences in LE between ECOSTRESS (LEECO) and EC(LEEC) during the 2018, 2020, and 

2021 (SF-only) growing seasons. The black horizontal line denotes y=0. The line of best fit is 

red. 

 To better explain the variation of differences in instantaneous LE between ECOSTRESS 

and EC with respect to growing season progression, we tested the impact of increasing LAI 

(Figure 5). We found that increasing LAI across both fields was able to explain between 39% 

and 48% of the variance, and the amount of variance explained was 1 to 6 percentage points 

greater compared to the comparison between DAP and differences in ECOSTRESS and EC LE 

(shown in Figure 4 C,D). 
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Figure 5. Comparison of the differences in ECOSTRESS (LEECO) and EC (LEEC) LE to 

measured LAI in (A) NF and (B) SF during the 2018, 2020, and 2021 (SF-only) growing 

seasons. The black horizontal line denotes y=0. The line of best fit is red. 

 When comparing the derived daily daytime LE from ECOSTRESS to mean daily daytime 

LE from the EC systems, we observed similar levels of overestimation as in the analysis of 

instantaneous LE (Figure 6). In the comparison of daily LE, the performance in NF was 

considerably better than SF considering the lower PBIAS and RMSE. Regression slopes were 

similar across both NF and SF. The NSE in SF indicated that ECOSTRESS did not provide a 

better approximation of LE with respect to the observed mean of daily LE values measured using 

EC. 
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Figure 6. Comparisons of daily derived daytime ECOSTRESS LE (LEECO,daily)  to mean daily 

daytime EC LE (LEEC,daily) across (A) NF and (B) SF during the 2018, 2020, and 2021 (SF-only) 

growing seasons. The line of best fit (red) is compared to the one-to-one line (dashed, gray). 

 The differences in daily daytime ET were compared to both time of ECOSTRESS 

measurement and DAP similarly to the analysis of instantaneous rates. Neither DAP nor 

measurement time were able to provide consistent explanation of differences in ECOSTRESS 

and EC LE across both NF and SF. In NF, there was no significant (p>0.05) relationship between 

differences in ECOSTRESS ET and EC LE, but DAP was able to explain up to 43% of the 

variance in differences in ECOSTRESS ET and EC LE (Figure 7). In contrast, neither DAP or 

time of ECOSTRESS measurement had a significant (p>0.05) relationship to differences in 

ECOSTRESS LE and EC LE in SF. 
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Figure 7. Comparison of the differences in daily LE from ECOSTRESS LE (LEECO,daily) and EC 

LE (LEEC,daily) compared to ECOSTRESS measurement time of day (A & B) and DAP (C & D) 

during the 2018, 2020, and 2021 (SF-only) growing seasons. The black horizontal line denotes 

y=0. The line of best fit is red. 

 At the daily timescale, both DAP and time of measurement were not able to explain 

between ECOSTRESS and EC ET to the degree observed in the instantaneous LE rates analysis. 

To stay consistent across the instantaneous and daily analyses, we compared differences in 

ECOSTRESS and EC LE at the daily timescale to LAI during the 2018 and 2020 growing 
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seasons (Figure 8). In NF, there was a near significant (p=0.05) relationship between the 

difference in daily ECOSTRESS and EC LE and increasing LAI. This pattern would corroborate 

the relationship between the methods’ differences with respect to DAP, where ECOSTRESS 

overestimated LE as the growing season, and LAI, progressed. In NF and SF, ECOSTRESS 

performed well during the early growing season period (LAI<1), where differences between the 

methods were generally lower in magnitude. Distribution of ECOSTRESS points along SF was 

weighted towards periods of low LAI (LAI<1), which could explain the field-to-field differences 

in the relationship between model performance and canopy development.  

 

Figure 8. Comparison of the differences in daily daytime ET from ECOSTRESS and EC to LAI 

across (A) NF and (B) SF during the 2018 and 2020 growing seasons. The black horizontal line 

denotes y=0. 

 From our comparisons between ECOSTRESS and EC, we determined that the 

performance of the ECOSTRESS product was linked to canopy development the instantaneous 

time scale, where growing season progression resulted in overestimate LE. At the daily time 

scale, we saw good agreement between ECOSTESS and EC in NF, but the results in SF 
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indicated that ECOSTRESS was not able to provide a better estimate than the mean value of the 

EC LE datapoints. We were also unable to verify a performance linkage to canopy development 

when comparing differences in LE from ECOSTRESS and EC to measured LAI in NF and SF.  

3.3 Comparison of PT-JPL to EC observations 

 The PT-JPL model was used to estimate during the 2018 and 2020 growing seasons 

under conditions where canopy coverage was considerable (LAI>1). Across both fields, the PT-

JPL model underestimated LE across the collective growing seasons (Figure 9).  

   

 

Figure 9. Comparison of mean daily daytime PT-JPL LE to EC LE across (A) NF and (B) SF 

during all growing seasons (black points) and only during the 2018 growing season (blue 

circles). For all growing seasons (black), the line of best fit (red) is compared to the one-to-one 

line (dashed, gray). For the 2018 growing season, datapoints are marked in blue circles and the 

line of best fit is also blue. 

The PT-JPL model’s performance was poor in NF, where the NSE indicated that the 

model was unable to predict LE better than the mean of the EC measurements. Given the 
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discrepancies observed in ET during the 2020 growing season where NF cumulative LE was 

approximately 44% greater than SF, we narrowed the analysis to only include the 2018 growing 

season to ensure both fields had similar observed LE during the growing season (shown in 

Figure 9 A,B in blue). The comparison indicated that the PT-JPL still underestimated LE despite 

both fields having similar EC ET during the 2018 growing season. However, the PBIAS in both 

fields decreased, indicating that the model underestimated LE less when the fields had similar 

LE. Additionally, the overall variance decreased in modeled estimates and the NSE improved 

when using only 2018 measurement of LE. Neither LAI or DAP was able to explain a significant 

(p>0.05) portion of the variance in differences between PT-JPL and EC LE across NF and SF 

during the 2018 growing season. However, the PT-JPL model did perform similarly across both 

fields with relatively small underestimation as compared to the overestimation present in the 

ECOSTRESS daily product (Figure 6). When comparing the differences between observed and 

modeled LE, we did not observe an impact of DAP or LAI on model performance that was 

consistent across both fields. In NF, the relationship between differences in observed and 

modeled LE and DAP was significant, but only 5% of the remaining variance. Neither field 

indicated a significant relationship between modeled PT-JPL LAI and differences in observed 

and modeled LE. 

3.4 Incorporation of field measured LAI into PT-JPL  

Because the PT-JPL model consistently underestimated LE during the 2018 and 2020 

growing seasons, we compared LAI derived from the PT-JPL Equation 8 to direct measurements 

of LAI taken during the growing season in both NF and SF. The relationship between both LAI 

terms was not significant across both fields, meaning the modeled LAI did not accurately reflect 

the changes in LAI present in field observations. Specifically, the minimum modeled LAI during 
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the early growing season (DAP<50) was around 2.8 m2 m-2, and the method underestimated LAI 

by as much as 5.2 m2 m-2 in the same timeframe. Additionally, the method used to model LAI 

did not capture peak LAI during the latter portion of each growing season (DAP>80) and 

consistently underestimated LAI by as much as 5.8 m2 m-2. We ran the PT-JPL model with the 

field measured LAI during the 2018 growing season to identify potential for improvement. 

Improvements to LE estimation using field LAI in the PT-JPL model were more apparent in NF 

compared to SF (Figure 11).

 

Figure 11. Comparison of daily modeled PT-JPL LE using field LAI compared to daily EC ET in 

(A) NF and (B) SF during the 2018 growing season. The line of best fit (red) is compared to the 

one-to-one line (dashed, gray). 

 While regression slopes improved when using field LAI compared to modeled LAI, the 

bias and error in predicted rates increased in SF. In contrast, NF showed noticeable improvement 

as the PT-JPL predicted LE with a slope of 0.98 with low PBIAS and a relatively high NSE 

compared to our analysis across both the PT-JPL and ECOSTRESS modeling approaches.  
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4. Discussion 

4.1 Growing Season ET  

 In this study, ET estimated using EC was compared across ten site-years. Values ranged 

between 547 and 792 mm across all site-years. Estimated ET was comparable across both 

irrigation regimes and fields in all growing seasons except for the 2020 growing season, where 

ET in NF was 44% greater than SF. During the growing season, the VPost and RPI periods had 

the highest estimated ET rates across all site-years. The vegetative periods, VPre and VPost, 

occurring between 10 and 70 DAP accounted for between 40% and 60% of cumulative seasonal 

ET across all site-years. The comparison of mean ET rates across growth periods in all growing 

seasons indicated that peak ET rates occurred during the VPost and RPI periods, which 

represented approximately 41 to 78 DAP. Studies focused on crop water use modeling have 

identified the development and reproductive stages as the highest period of canopy water use 

during the growing season (Qiu et al., 2019; Zhai et al., 2019; Shah and Edling, 2000). A field 

study in China examining water use under different irrigation regimes identified a similar pattern 

to our dataset, where ET was greatest during the vegetative periods marked by middle- and late 

tillering (Liu et al., 2018). In that study, the calculated ET rates for middle and late tillering 

ranged from 4.87 to 5.34 mm day-1 using EC and 5.58 to 7.29 mm day-1 using micro-lysimeters 

over a 20 to 30 day period during the growing season. The same growth stages have also been 

identified and incorporated into irrigation schedulers recommended for a number of crops, 

including rice (Cao et al., 2019; Earl D. Vories and Phil L. Tacker, 2006; Martin et al., 1990). In 

practical applications of water management, ET used during periods of develop can also define 

the potential for soil water stress during periods of drying in AWD irrigation (Ishfaq et al., 2020; 

Xu et al., 2019; Chu et al., 2014). In the context of our study, the mean ET rates given during the 
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VPost, RPI, and GMPre are all relevant for producers or irrigation managers who may be 

planning to practice AWD and want to better understand how quickly water is used at different 

stages of development. Future research could also incorporate estimates of photosynthesis and 

canopy mediated water use as transpiration to further isolate and evaluate canopy water needs 

during the season (Riaz et al., 2020). 

4.2 Using ECOSTRESS to model ET in rice 

 In our study, ECOSTRESS was able to estimate LE in NF well. In SF, we observed poor 

performance in the ECOSTRESS product. At both time scales, the NSE values were either close 

to zero or negative, indicating the model was not able to predict LE better than the mean value of 

LE taken across all the observations. In our work, we identified the challenge of ECOSTRESS to 

estimate instantaneous LE accurately with respect to canopy development, where the product 

consistently overestimated instantaneous LE with increasing LAI. While the ECOSTRESS 

product has potential, the studies comparing performance at the field scale are few (Anderson et 

al., 2021; Fisher et al., 2020). Fisher et al. (2020) provide the best evaluation of ECOSTRESS 

performance when compared to EC sites globally. The study highlights good agreement between 

the ECOSTRESS 70-m product with EC observations from a collection of agricultural sites 

(R2=0.89) while also demonstrating how performance improves moving 1-km to 70-m 

resolution. Other studies have described the difficulty in measuring LE as ET in flooded rice, 

where ET contributions from the open water above the soil surface were not always captured 

well and especially so under increasing LAI (Teluguntla et al., 2020; Bastiaanssen et al., 2000). 

As seen in our study, the number of data points available for comparison during the growing 

season made comparison to different methods difficult. To address the issue of collection 

frequency, there have also been concentrated efforts to generate ensemble values of LE using a 
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variety of remote sensing products, including MODIS, Atmosphere-Land Exchange Inverse 

model (ALEXI), and disaggregated Atmosphere-Land Exchange Inverse model (disALEXI) 

(Stisen et al., 2021; Xue et al., 2021; Zhu et al., 2016). Recent efforts have also included the 

development of platforms where estimates across methods are aggregated and readily available 

for use by individuals, including growers, irrigation managers, or other interested parties (Melton 

et al., 2021).  

4.3 Using the PT-JPL model to estimate ET in rice 

 The PT-JPL model performed well when estimating LE during the 2018 growing season, 

when observed LE was similar between both NF and SF. The inclusion of field measured LAI to 

the PT-JPL model instead of using modeled LAI improved the PT-JPL model performance in 

NF, but the amount of bias and variance increased in SF. With respect to studies modeling LE as 

ET, others have applied the PT-JPL model using field measurements across a variety of 

landscapes, including croplands, and found good agreement with direct estimates of ET (Ershadi 

et al., 2014; García et al., 2013). The clear advantage of the PT-JPL over other complex models 

is the relatively small amount of input information required as well as the lack of any site-

specific parameterization. Improvements to the PT-JPL, similar to our incorporation of LAI, 

have focused on providing more information in the form of additional scaling variables or new 

formulations of the scaling functions to accommodate for unique features of landscapes, such as 

aridity or drought sensitivity (Marshall et al., 2020; Mobe et al., 2021). With respect to applying 

the PT-JPL in rice, Marshall et al. (2020) found good agreement between the PT-JPL and EC ET 

measured in rice grown in California with a different index describing soil moisture state. There 

are no applications of the PT-JPL model driven by field observations of microclimate in the state 

of Arkansas, where a majority of rice in the US is grown.  
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5. Conclusions 

 We observed ET dynamics across periods of the growing season defined by both canopy 

development and irrigation management. Across ten site-years, cumulative growing season ET 

ranged between 547 and 792 mm. We determined that ET was greatest during the vegetative 

periods in terms of both cumulative ET and in estimated daily ET rates. The rates were similar 

across fields as well as irrigation treatments across all growing seasons except one. Based on our 

findings, ET rates were greatest after the first flood was applied (VPost) and before grain filling 

and maturation (GMPre), which aligns with a major portion of biomass accumulation 

aboveground within the field. Comparisons to ECOSTRESS showed good agreement with EC 

observations at the instantaneous and daily time scale in NF, but ECOSTRESS performance in 

SF was worse based on the observed bias and the NSE values. When estimating instantaneous 

ET, model performance significantly (p<0.05) declined as the magnitude of overestimation from 

ECOSTRESS increased with time and LAI during the growing season. The relationship between 

model performance and canopy development in the instantaneous LE analysis was not consistent 

with the daily LE analysis, where no patterns in model performance related to canopy 

development were observed. While ECOSTRESS LE rates were higher on average compared EC 

across both fields, the practical implication would mean that irrigation decisions based on the 

amount of LE recommended by ECOSTRESS would likely not result in a deficit. The PT-JPL 

provided good estimates of daily LE in the 2018 growing season, where LE was comparable 

between NF and SF based on EC observations. During the 2018 growing season, cumulative LE 

was only underestimated by a maximum of 6% when comparing PT-JPL to EC. When 

incorporating field estimates of LAI, the level of improvement was not consistent across NF and 

SF during the 2018 growing season. Future work could improve the method in which LAI or 
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other variables are used in the PT-JPL model to generate accurate estimates of LE without the 

need for site-specific parameterization. 
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Chapter 3 Appendix: 

Data Inventory by analysis: 

Site-years used in growing season water use analysis: 

• 2015 NF & SF 

• 2016 NF & SF 

• 2017 NF & SF 

• 2018 NF & SF 

• 2020 NF & SF 

Site years used in EC vs. ECOSTRESS instantaneous and daily: 

• 2018 NF & SF 

• 2020 NF & SF 

• 2021 SF 

Site years used in EC vs. PT-JPL: 

• 2018 NF & SF 

• 2020 NF & SF 

• 2021 SF 

Comparison of ECOSTRESS pixels across different areas of the field: 

 Different pixel locations were sampled across both NF and SF during the growing 

seasons to test the variability present across the field and across different subsets (Figure A 1). 

The same sampling scheme was utilized across both NF and SF. Sampling locations were at the 

EC tower (ECT), the center of the field (C), east end of the field center (CE), west end of the 

field center (CW), mid-point between C and CE (MCE), and mid-point between C and CW 

(MCW). 
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Figure A 1. Sampling scheme for ECOSTRESS used across both fields. The red circle marks the 

approximate location of the EC tower in both fields. The field shown is SF. 

 Differences in ET measured across each pixel were minimal. During the 2020 growing 

season in SF as an example, all points across all pixels were on or near the 1:1 line (m>0.95, 

R2>0.95), indicating that sampling different portions of the field did not result in varying 

estimates of LE (Figure A 2).  
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Figure A 2. Comparison of ECOSTRESS ET across selected subsets in SF during from 2020 

(n=12). Solid black line is 1:1. Histograms show distribution of flux magnitudes for each pixel.  
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Conclusions 

 In our first work, we provided seasonal estimates of ET and identified no impacts of 

drying on ET. During the 2015-2017 growing seasons, estimated ET ranged from 551 to 628 mm 

during the growing season. Normalizing seasonal ET by growing season length, the mean ET 

rate ranged between 4.13 mm day-1 and 4.55 mm day-1. During drying events, we observed no 

decreases in ET in the AWD treatment when compared to ET in a DF treated field during the 

same period of time. We observed a convergence of ET rates between the fields across all three 

growing seasons, where ET rates between fields became increasingly similar with increasing 

canopy development. The PMAET model estimated ET accurately during the growing season 

when incorporating the “big leaf” modeling approach with LAI as a scaling term. The FAO56 

single crop coefficient consistently overestimated ET, but performance was acceptable when 

looking at periods in the mid-to-late growing season when irrigation decision making is more 

critical. Ultimately, we concluded that site specific crop coefficients are necessary to estimate ET 

accurately using the FAO56 single crop coefficient. Based on our findings, we determined that 

the level of AWD practiced in our study was “safe” and provides support for the adoption of 

AWD as a water saving technique in commercial rice production. 

 Using data collected in the 2015-2017 growing season, we applied an ET partitioning 

method to estimate T using local measurements of GPP, ET, and VPD. Estimated T, ET, and 

GPP were used to determine how water use changed during the growing season with respect to 

both drying and canopy development. Across the 2015-2017 growing seasons, transpiration 

accounted for 43 to 56% of ET. We found strong relationships between T:ET and LAI during the 

growing season, where daily LAI explained at least 73% of the variability in T:ET during the 

growing season. We saw similar patterns of increasing eWUE and uWUE with increasing LAI, 
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but mean value of tWUE did not fluctuate throughout the growing season. In a comparison of 

partitioning methods, we saw some similarity in estimated T:ET when looking at the mean 

relationship between both ET and T when data was available across all methods. However, the 

estimated ET and resulting T during the periods indicated greater uncertainty in both terms 

across methods. When observing canopy water use during the growing season, we observed a 

disconnect between peak GPP and a lagging peak LAI, where the individual peaks marked 

distinctly different developmental periods in the canopy lifecycle. The disconnect between peak 

LAI and GPP was further observed in the modeling portion of our paper. The uWUE and PT-JPL 

methods expressed differences in T:ET dynamics during the growing season because of their 

utilization of GPP and LAI, respectively. From our work, we concluded that the uWUE method 

for partitioning ET was able to generate reasonable estimates of T throughout the growing 

season. Using those estimates of T, we further analyzed the drying periods of AWD treatment 

and saw no signs of stress in GPP, ET, or T across NF and SF. The lack of stress observed in any 

of the terms related to water use indicates that the level of AWD presented in this study can be 

considered “safe”. As canopy water use is not affected, we can further recommend the AWD 

practice as a possible solution for water conservation in commercial rice production. 

 Finally, we provided a survey of ET throughout the growing season using growth periods 

as periods of time defined by developmental stages of the canopy and irrigation management. 

Across 10 site-years, cumulative growing season ET ranged between 547 and 792 mm in NF and 

SF. Our results indicated that the vegetative period between 10 and 70 DAP accounted for 

between 40 and 60% of the total ET across all the defined growth periods. When translated to 

effective rates of ET using cumulative ET and duration within each period, the vegetative period 

following the first flood (VPost) and the early reproductive period marked by panicle initiation 
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(RPI) were the most active periods of water use across each site-year. We compared EC 

estimates across 5 site-years to the ECOSTRESS remote sensing platform, where we found good 

agreement at both the instantaneous and daily timescales. Our results indicated that 

ECOSTRESS overestimated ET at the daily timescale, and degree of underestimation ranged 

between 4 and 35% compared to daily ET estimated using EC. We also observed a significant 

relationship between model performance and canopy development, where ECOSTRESS 

increasingly overestimated ET with increasing LAI during the growing season in both NF and 

SF. To test the fundamental framework of the ECOSTRESS product, we adapted the PT-JPL 

model to provide estimates of daily ET using local measurements of microclimate and 

phenology. While the PT-JPL model consistently underestimated ET on average, the degree of 

underestimation was only a maximum of 6% when compared to EC ET estimates across both 

fields. Assessing the potential of the PT-JPL included running the model using field observations 

of LAI rather than modeled estimates, where we saw some improvement in NF, but increased 

bias and uncertainty in SF. Based on our findings, we concluded that both ECOSTRESS and the 

PT-JPL model have potential as methods to estimate ET in rice. 
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