
University of Arkansas, Fayetteville University of Arkansas, Fayetteville 

ScholarWorks@UARK ScholarWorks@UARK 

Graduate Theses and Dissertations 

12-2021 

Data-Driven Statin Initiation Evaluation and Optimization for Data-Driven Statin Initiation Evaluation and Optimization for 

Prediabetes Population Prediabetes Population 

Muhenned A. Abdulsahib 
University of Arkansas, Fayetteville 

Follow this and additional works at: https://scholarworks.uark.edu/etd 

 Part of the Artificial Intelligence and Robotics Commons, Biostatistics Commons, Endocrinology, 

Diabetes, and Metabolism Commons, Medical Humanities Commons, and the Vital and Health Statistics 

Commons 

Citation Citation 
Abdulsahib, M. A. (2021). Data-Driven Statin Initiation Evaluation and Optimization for Prediabetes 
Population. Graduate Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/4326 

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for 
inclusion in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more 
information, please contact scholar@uark.edu, uarepos@uark.edu. 

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F4326&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.uark.edu%2Fetd%2F4326&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/210?utm_source=scholarworks.uark.edu%2Fetd%2F4326&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/686?utm_source=scholarworks.uark.edu%2Fetd%2F4326&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/686?utm_source=scholarworks.uark.edu%2Fetd%2F4326&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1303?utm_source=scholarworks.uark.edu%2Fetd%2F4326&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/826?utm_source=scholarworks.uark.edu%2Fetd%2F4326&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/826?utm_source=scholarworks.uark.edu%2Fetd%2F4326&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/4326?utm_source=scholarworks.uark.edu%2Fetd%2F4326&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20uarepos@uark.edu


Data-Driven Statin Initiation Evaluation and Optimization for Prediabetes Population

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy in Industrial Engineering

by

Muhenned A. Abdulsahib
University of Baghdad

Bachelor of Science in Mathematics, 1999
University of Arkansas

Master of Science in Mathematics, 2014

December 2021
University of Arkansas

Shengfan Zhang, PhD
Dissertation Director

Haitao Liao, PhD Chase E. Rainwater, PhD
Committee Member Committee Member

Qingyang Zhang, PhD
Committee Member



Abstract

This dissertation develops quantitative models to support medical decision making of

statin initiation considering the uncertainty in disease progression for prediabetes patients.

A mathematical model is built to help medical decision-makers take action of statin

initiation under uncertainty in future prediabetes progressions. The association between

cholesterol drug use, such as statin, and elevating glucose level attracted considerable

amounts of attention in the literature. Statin effects on glucose vary with respect to

different levels of glucose. The first chapter of this dissertation introduces the problem and

an overview of the tools that will be used to solve it. In the second chapter of this

dissertation, we use quantile regression to investigate the statin effects on different glucose

quantiles. The third chapter is devoted to address the problem of estimating transition

probabilities for the prediabetes populations for different levels of lipid ratios (i.e., ratios of

total cholesterol to high-density lipoprotein) from cross-sectional data. We also show the

risk of prediabetes as a function of age using a Bayesian approach. These parameters are

used in the implementation of the Markov Decision Process (MDP) to estimate the best

point in time, i.e., age to start statin treatment, which is discussed in the fourth chapter of

the dissertation. Parameter estimation plays a crucial role in our model. Therefore, our

fifth problem to tackle is to provide the optimal policy for statin initiation by considering

stochastic progression under uncertainty for lipid ratio transition probabilities. A robust

MDP problem is formulated and an optimal policy for statin initiation is provided.

Structural properties of the robust MDP problem are proved. Additionally, sufficient

conditions for the existent of robust MDP are introduced.
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Chapter 1

Introduction

Disease progressions have long been represented using Markov chains by the medical

community. Because patients react to different treatments in different ways, it is cru-

cial to develop a policy that personalizes treatment plans. Markov decision processes

(MDPs) are a valuable tool used to tackle complex problems in medical decision-making

in which decision-makers are required to take a sequential decision under uncertainty.

Through using the MDP tool, decision-makers can find the best action that maximizes

the future rewards under uncertainty. Recently, researchers have implemented MDP to

optimize treatment-related decisions for diabetes and related conditions. For example,

Denton et al. [24] developed an MDP model to find the optimal time (age) to start

statin treatment in the diabetes population, which considers protection from cardio-

vascular diseases and cost of treatment. They found that statin treatment initiation is

sensitive to the cholesterol levels, gender, and risk models that are used to estimate the

CVD risk. Mason et al. [61] studied optimizing the starting time for statin initiation

assuming uncertain future adherence. The optimal time for interventions to improve ad-

herence is also studied using an MDP model [60]. In another study, the optimal policy

for taking the A1C test, measuring the glucose level in a three-month period, was stud-

ied using an MDP model from which the authors recommended taking the test quar-

terly [51]. Zhang et al. [97] developed an MDP model to optimize the best sequence

for glucose medications that are used to reduce glucose levels. Although the studies

mentioned above focused on diabetes and related conditions, MDP is a powerful tool

used to find the optimal policy in different complicated problems, see [29] and references

therein.
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This dissertation focuses on prediabetes, which is considered one of the leading chronic

conditions in the U.S. [34]. Prediabetes is defined as a health condition in which either

impaired fasting glucose (IFG) with fasting plasma glucose is greater than 100 mg/dl

and less than 126 mg/dl or impaired glucose tolerance (IGT) with 2-hour plasma glu-

cose is greater than 140 mg/dL and less than 199 mg/dL, i.e., the state in which the

criteria for diabetes mellitus are not all satisfied [72]. For every new-onset diabetes pa-

tient, they must have visited a prediabetes state before reaching a diabetes state [59].

Better management of prediabetes can delay or prevent the progression to the diabetes

state, for example, lifestyle intervention may reduce the risk of progression to the dia-

btest state by 20% [88]. Therefore, the prediabetes individuals need to get special at-

tention from medical decision-makers.

There are approximately 3 million newly diagnosed prediabetes cases each year accord-

ing to the American Diabetes Association. More specifically, about 38% of adults in the

U.S. have prediabetes [62]. Approximately 16.2% of American adults, aged above 20,

use statin [40] to reduce cholesterol levels, but statin has side effects such as elevating

the glucose levels [78] and/or body mass index (BMI) [84]. The 2013 cholesterol guide-

line by the American College of Cardiology/American Heart Association (ACC/AHA)

recommended statin treatment initiation for patients with a 10-year risk of atheroscle-

rotic vascular disease of more than 7.5%. It has been shown through simulation that

the ACC/AHA guideline is expected to treat more people, save more lives, and cost less

if the dis-utility associated with pill burden is small [43]. Pandya et al. [68] presented

a cost-effectiveness analysis for statin use in which they found that the dis-utility as-

sociated with taking a pill daily, statin price, and the risk of statin-induced diabetes

negatively impacted the cost-effectiveness of statin.

There is a strong positive relationship between elevated glucose levels and cardiovascular

disease risk (CVD) [80], [56]. Defronzo et al. [23] reported individuals with prediabetes

2



are at high risk of diabetes and adverse cardiovascular event, stroke, and cardiovascu-

lar deaths in later life. In addition, there is a positive relationship between diabetes and

impaired glucose metabolism with an increased risk of CVD mortality [19]. Braun et al.

[9] suggested using glucose values instead of total cholesterol values in estimating the

overall CVD mortality risk. Therefore, it is important to consider the two risk factors

for CVD when a drug is recommended to reduce cholesterol levels. In other words, rais-

ing glucose levels and decreasing cholesterol levels may increase CVD risks.

The west of Scotland coronary prevention study (WOSCOPS ) presented that statin

use reduces the risk of new-onset diabetes by 30% [32]. On the other hand, other stud-

ies found that using statin increases the risk of new-onset diabetes [89], [95], [21], [85],

[12], [78], [76], and [93]. In addition, a recent study presented a proportional relation

between the diabetes risk and length of time statin is used (hazard ratio (HR) 1.25 < 1

year, HR 2.22 for 1 − 2 years, and HR 2.62 > 2 years) [49]. Moreover, the presence of

diabetes risk factors, such as prediabetes, raises the relative risk for new-onset diabetes

associated with using statin significantly [76], [13].

A multivariate quantile regression model is used to quantify the association between

statin use and elevated glucose levels. This approach is used to study the effects of age,

gender, body mass index on different quantiles of the conditional fasting blood glucose

distribution. The benefit of this approach is that it can characterize the association be-

tween statin use and fasting blood glucose levels in a specific group, e.g., prediabetes

population

Based on the above it is crucial to find a personalized decision for statin treatment in

prediabetes patients. Lowering the glucose threshold for diabetic prevention gives more

health benefits but raises the cost [98]. Our goal is to find the optimal policy to ini-

tiate statin treatments that considers the trade-offs between heart risks and diabetes

risk for prediabetes patients. Researchers face an issue in calculating a personalize deci-

3



sion, which is the difficulty in estimating the exact value of the population parameters.

One of these parameters is the transition probability matrix. Fortunately, we are able

to estimate the transition probability matrix using the National Health and Nutrition

Examination Survey (NHANES) cross-sectional survey data set. We also used Bayesian

approach to estimate the risk of prediabetes using NHANES data sets.

State transition probabilities are assumed to be known with certainty in the MDP mod-

els but these probabilities are estimated from data and, hence, they are subject to un-

certainty due to different reasons such as scarcity of data for some state-action pairs,

measure ment errors, and environment reacts in a different way that alters state-action

probabilities. The solution of dynamic problems may be different with small changes in

the probability estimation. Therefore, it is crucial to come up with an optimal solution

that stays optimal with small changes in the transition probabilities. In the fifth chap-

ter, we find an optimal solution for a finite horizon Markov decision process with finite

state and action spaces. A sufficient condition for the existence of optimal control limit

policy is introduced.

4



Chapter 2

Quantile Regression Analysis for Glucose

2.1 Introduction

The association between statin use and the risk of elevating glucose levels recently has

attracted researchers in the medical community [78], [13], [76], [43]. Statin use can cause

elevated FBG levels [78], [76]. Both elevated cholesterol levels and elevated FBG lev-

els are cardiovascular disease risk factors [23]. Therefore, we will investigate statin use

effects on FBG levels at different quantiles of the conditional FBG distribution rather

than studying the mean effect of statin use on FBG because the mean effects approach

is done by averaging the effects on higher quantiles and on lower quantiles of FBG. The

mean effects approach reduces the statin use effects on higher FBG levels quantiles.

Quantile regression (QR) was developed to study the relationships between predictor

variables that have weak or no relationship with the mean of the response or when our

interests are in the covariates effects at different quantiles of the conditional response

distribution. In QR, for every quantile, there are different estimations for the regression

coefficients. That is, the association relation between response and explanatory variables

varies with respect to different levels of the response. Quantile regression is an impor-

tant tool used to regress the dependent variable with high variance over the indepen-

dent variables (predictors) [50].

On the other hand, the ordinary least squares method (OLS) is used to summarize the

relationship between covariates X and the conditional mean of the response. Guo et al.

[42] used QR to study the association between different fasting blood glucose (FBG)

5



quantiles and risk factors for the Northeast Chinese population. They found that BMI

has positive effects on the low and middle quantiles of FBG, but waist circumference

has a positive effect on the higher quantiles of FBG. They also found that the condi-

tional distribution of FBG varies with respect to gender. Using NHANES data (2007-

2014), Shoumeng et al. [94] show there is a negative association between FBG and con-

sumption of folic acid in male individuals with normal or high FBG. For a male in-

dividual with normal FBG, there is a negative association between FBG and calcium

intake. For a female, there is a negative association between FBG and folic acid, and

calcium in the individuals with normal FBG. Using QR, Hu et al. [44] studied the ef-

fects of age and gender on different FBG quantiles for adolescents aged between 12 and

20 years old in the NHANES data set. They recommended establishing standard blood

glucose for adolescents that considers ages and genders. Ellerbe et al. [25] used QR to

study the gestational diabetes mellitus effects on different birth weight quantiles consid-

ering maternal pregnancy, body mass index and race. Another area of QR application is

health care expenditure. In terms of health condition, the frequent users of health care

are very different from the average users. However, other predictors of interest for deci-

sion makers are Race/Ethnicity, gender and employment. These predictors are used to

assess the difference in health care expenditure [20].

In this chapter, we use QR to study the statin effects on different glucose quantiles.

This helps us to understand the effect of statin use on the normoglycemic, prediabetes,

and diabetes populations. One of the advantages of using QR over OLS is QR’s robust

ability to account for outliers [50].

6



2.2 Quantile Regression

Consider a random variable X with cumulative distribution function (CDF) F (X). The

τth quantile of X is defined by

F−1(τ) = inf{x : F (x) ≥ τ},

where 0 < τ < 1. Let the loss function be defined as

ρτ (u) = u(τ − I(u<0)),

where I is the indicator function. The quantile estimator is the value that minimizes

the expected loss function

Eρτ (X − x̂) = (τ − 1)

∫ x̂

−∞
(x− x̂)dF (x) + τ

∫ −∞

x̂

(x− x̂)dF (x).

Differentiating with respect to x̂, we get

0 = (τ − 1)

∫ x̂

−∞
dF (x)− τ

∫ −∞

x̂

dF (x) = F (x̂)− τ.

Due to the monotonicity of the cumulative distribution function, any solution that satis-

fies {x : F (x) = τ} is a minimum of the expected loss function.

The least-square method expresses the conditional mean of y given x as µ(x) = xTβ and

it solves

min
β∈Rp

n∑
i=1

(yi − xT
i β)

2.
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Quantile regression expresses conditional quantile function Qy(τ |x) = xTβ(τ) and solves

min
β∈Rp

n∑
i=1

ρτ (yi − xT
i β)

2.

This minimization problem can be reformulated into a linear programming problem by

introducing artificial and slack variables to take care of the positive and negative parts

of the vector of residuals, see Eq. (1.15) [50].

2.2.1 Data

In this section, NHANES data is used. BMI values are classified into categories un-

derweight, 18.5 kg/m2; normal weight, 18.5 to 25 kg/m2; overweight, 25 to 30 kg/m2;

obese, 30 to 35 kg/m2; and very obese more than 35 kg/m2. The statin medications

and their survey codes used in this study are LOVASTATIN : d00280, SIMVASTATIN:

d00746, ROSUVASTATIN: d04851, ATORVASTATIN: d04105, PRAVASTATIN: d00348,

EZIT/SIMVASTATIN: d05348, AMILop/ATROV: d05048. Table 5.1 describes the char-

acteristic of our data set.

Table 2.1: Baseline characteristic for the study population including mean and standard
deviation.

Population Attribute Estimation (S.E.) female Estimation (S.E.) male
Age 47.0 (17.1) 47.2 ( 17.1)
FBG 104(31.2) 110 (34.5)
TC (No statin) 196(41.0) 193(40.9)
HDL (No statin) 59.3(16.4) 49.6 (14.6)
LDL (No statin) 115(35.1) 118 (35.2)
BMI 29.2(7.47) 28.3( 5.94)
% count 0.523 0.477
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Figure 2.1: Boxplot for fasting blood glucose plotted with respect to Gender, Age,
Statin uses, and Race-ethnicity (Mexican American, Other Hispanic, Non-Hispanic
White, Non-Hispanic Black, Other Race - Including Multi-Racial). Age groups
2, 3, · · · , 8 on the x-axis represents ages from 20− 29, 30− 39, · · · , 80, respectively.

From Fig. 2.1, we can see that at younger ages cholesterol medication treatments are

given only to populations with high glucose levels. After the age of 50 years, the differ-

ences in glucose levels between populations who take cholesterol medication and those

who do not start to diminish until they reach a negligible value. This can be inter-

preted in two ways: either there is a positive correlation between glucose and choles-

terol, or taking cholesterol medication can cause an elevated glucose level. However,

both of these scenarios have been studied. It is shown that cholesterol medications (statins)
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can cause elevating glucose levels [78], [13], [43], and there is a positive correlation be-

tween cholesterol and glucose [81].

Moreover, there is a variation in glucose distribution in terms of gender and race as a

function of age. For example, Mexican females have higher variability in glucose val-

ues if compared to others. On the other hand, white populations have low variability

in glucose values. In terms of age, there is a clear pattern, when age increases, glucose

level increases too. In the Other Hispanic and Non-Hispanic Black groups, the statin

users at age group 40 suffer from high FBG. That is, at 40 years old, these groups start

to suffer from high cholesterol levels and high FBG. In the Mexican American group,

the elevation in cholesterol and FBG start earlier, at the age group 30 years old. On

the other hand, FBG concentrations for white males do not show a noticeable change

in the FBG distribution as a function of age but show a mild increase in glucose lev-

els. Prevalence of prediabetes in the white race and other races are higher than the rest

of the Race/Ethnicity groups, but the prevalence of diabetes in the rest races is higher

than the prevalence of diabetes in white and other Race/Ethnicity groups, see Fig. 2.1.

This trend was observed by [63]. Variations in terms of gender and Race/Ethnicity have

also been noticed in the TC level distribution. Engeda et al. [26] have noticed that the

progression from ideal to intermediate TC across adulthood varied by Race/Ethnicity

and sex.

2.2.2 Quantile Regression Equation

A multivariate quantile regression model is used to assess the characteristics of the as-

sociation variability in different quantiles of the conditional distribution of the glucose

levels with respect to influencing factors. The dependent variables in our model are

gender, Race/Ethnicity (Mexican, Other Hispanic, Non-Hispanic White, Non-Hispanic

Black, Other Race Including Multi-Racial), age, BMI, and cholesterol medication (statin)
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(yes or no).

In many cases, the relationships between responses and predictor variables are compli-

cated to the point that linear regressions are not suitable to model these relationships

[10]. For example, the responses to different levels of drug doses form a nonlinear rela-

tionship. One approach used to model the nonlinear relationships is using polynomial

regression. The nonlinear regression is modeled using polynomial terms of predictors.A

draw back of this approach is that the degree of the polynomial forces the relationship

to take a specific shape. For example, when a predictor is modeled using a quadratic

term, the value of the response will approach ±∞ as values of approaches ±∞. A more

robust approach used to deal with the nonlinar relationships is by modeling predictors

through using spline basis expansions. This is called a spline regression, which is con-

structed by using different polynomials for different segments of the predictor.

Since the correlation between age and BMI is small (ρ = 0.03), we added both of them

in the model.The regression equation is defined as follows:

ˆFBG = β0 + β1Gender+ β2spline(Age, df=5)+ β3spline(BMI, df=5)+

β4Statin+ β5Race/Ethnicity+ ϵ.

(2.2.1)

Fig. 2.2 shows, at younger ages, the 90th quantile of fasting blood glucose in predia-

betes statin users is higher than the 90th quantile of fasting blood glucose in non-statin

users. In other words, cholesterol medications are given to prediabetes patients with

higher glucose. This could be interpreted as statin use can elevate glucose levels [78],

[76]. Furthermore, there is a disparity in the 90th quantile in terms of genders. The

90th quantile of glucose for females is almost constant with respect to age but the 90th
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Figure 2.2: An illustration of age effects on the 90th quantile of glucose, with respect to
gender and statin use, is presented for prediabetes population.

quantile of glucose for males increases with respect to age. The 90th quantile for female

statin users is higher than the 90th quantile for male statin users; that is, at younger

ages, statin is prescribed to females with a higher glucose level than males or statin

uses have higher effects on females FBG levels than males FBG levels.

2.2.3 The Association Between TC and FBG

Because Statin has effect on both TC and FBG, it is crucial to study the association

between TC and FBG. QR is used to study the relationship between TC and FBG. We

modeled FBG as a function of TC using spline basis expansions of degree 5. The re-

lationship between TC and fasting blood glucose levels have been studied in [87], [30],

[17]. The authors found that there is a positive correlation between the two groups on
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average. However, we found that the trends are different in different FBG quantiles.

Figure 2.3: Illustration of the TC effects on glucose levels for four different quantiles of
the conditional glucose distribution.

Fig. 2.3 shows TC effects on FBG at different quantiles of conditional FBG distribu-

tion. For TC levels less than around 150 mg/dL the glucose level and TC are nega-

tively correlated. When TC values pass 160 mg/dL, the association is positively cor-

related for the FBG values less than 125 mg/dL. The TC effects on FBG diminishes

when TC values passes 200 mg/dL. At the fourth quantile of FBG, the relationship is

almost constant for TC value between 160 mg/dL and 225 mg/dL, but a positive rela-

tionship occurs after that. The lowest effects of TC on FBG occurs at TC=140 mg/dL,

TC=150 mg/dL, TC=150, TC= 200 for the first, second , third, and 90th quantiles of

FBG, respectively. This tells us that there is a disparity in the association between TC

and different FBG quantiles, and studying the TC effect on the conditional mean of

glucose, which is the second quantile of FBG, is not appropriate to detect this associa-

tion.
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2.3 Results

A concise summary of the model output is presented in Fig. 2.4. The marginal effects

of each predictor are presented in the plot. The point estimates {β̂j(τ) : j = 1, . . . , 17}

are represented by the solid line with filled dots. The 95th percentiles are depicted by

the shaded area. The resulting ordinary least squares estimates of conditional mean of

glucose level may not reflect the size and nature of these effects on the lower or upper

quantiles. For example, the conditional mean effects of gender (female) on the glucose

level is on average about -7 mg/dL less than the conditional mean effects of gender

(male), see Fig. 2.4. However, the disparity of the gender effects on lower tails is al-

most -4 mg/dL. At higher quantiles, the conditional mean effect of female is less than

of male by, on average, approximately -9 mg/dL. The OLS method estimation is fixed

across different quantiles. The QR plot shows that at lower quantiles of the conditional

FBG distribution, the gender has a small effects, but at higher quantiles, the gender
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Figure 2.4: Quantile regression marginal effects results for fasting blood glucose re-
gressed on Gender, Age, Race-Ethnicity, Statin use (0-not statin users, 1- statin users),
and body mass index. The x-axis represents different glucose quantiles.
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has a larger effects.

Figure 2.5: Illustration of the age effect on glucose levels for four different quantiles of
the conditional glucose distribution.

Fig. 2.5 shows the age effect, which is modeled using spline basis expansions of degree

5. There is a positive association between age and FBG. However, at a lower quantile

of FBG τ = 0.25, there is a negative association for an individual who is between 20

and 27 years old. At higher quantiles of FBG, we do not see this trend for a young

population, i.e., the age effect is almost negligible for this age group. One reason for

the negative association, at younger ages, is that individuals are more active due to

engaging in college life and other sport activities. When an individual’s age passes 27

years old, the age effects start to increase. These effects are very small at lower quan-

tiles, which is around 10 mg/dL. At a higher quantile, τ = 0.75, age effects are small

at lower ages and they starts to increase at a round 27 years old until around 70 years

old, where the age effects start to diminish. Populations with high glucose levels have
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a higher rate of changes with respect to age if compared to low glucose level popula-

tions. It was found that there is a significant correlation between glucose levels and age

[87]. Francisco et al. [30] reported a positive association between diabetes and age in

the studied population, in which age values are less than 74 years old. However, this

trend is reversed after age 74 years old, see the right bottom plot in Fig. 2.5.

Race/Ethnicity is a categorical variable with five categories. Different Races/Ethnicities

(Mexican, Other Hispanic, Non-Hispanic White, Other Race-Including Multi-Racial)

have different associated trends with respect to Non-Hispanic Black, but overall Race-

/Ethnicity associates with an increase in the glucose level if compared to Non-Hispanic

Black except Non-Hispanic White. Mexican population has higher FBG levels by ap-

proximately 5 mg/dL when compared to Black population at a lower quantiles. The

differences increase to 10 mg/dL at higher quantiles. At lower quantiles, Non-Hispanic

white population has higher FBG than Non-Hispanic Black population, but at higher

quantiles, Non-Hispanic White population has lower FBG value by 6 mg/dL.

Next, from the OLS plot, statin users have on average higher glucose levels if compared

to non-statin users, which is around 10 mg/dL. When QR is used to study the asso-

ciation, a different trend is detected. The disparity in glucose level for statin users vs

non-statin users is negligible at lower quantiles. However, statin use seems to be asso-

ciated with rather large effects on FBG levels somewhat larger than 40 mg/dL for the

upper quantile see Fig. 2.4. In other words, there is a strong association between high

glucose levels and statin use. As is mentioned earlier using statin raises the chance of
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progression to the diabetes state [78].

Table 2.2: Estimation of the 90th quantile regression parameters are presented with the
standard errors and P values.

Estimate Std. Error t value Pr(> |t|)
Intercept 98.103 8.301 11.819 < 0.001

Gender Female -9.013 0.777 -11.597 < 0.001
Age1 -0.052 1.951 -0.027 0.97855
Age2 4.548 2.221 2.048 0.041
Age3 21.746 5.078 4.282 < 0.001
Age4 41.242 6.803 6.062 < 0.001
Age5 31.705 2.682 11.820 < 0.001

Mexican 4.920 2.310 2.130 0.0332
Other 2.324 1.575 1.475 0.140

Other Hispanic 1.501 1.692 0.887 0.375
White -2.162 1.348 -1.605 0.109
Statin 29.062 9.287 3.129 0.002
BM1 9.951 12.813 0.777 0.437
BMI2 2.273 5.895 0.386 0.700
BMI3 46.244 20.252 2.283 0.022
BMI4 127.486 89.331 1.427 0.154
BMI5 5.572 381.297 0.015 0.988
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Figure 2.6: Illustration of the BMI marginal effect on the conditional FBG distribution.
Different BMI quantiles have different marginal effects on the conditional FBG distribu-
tion.

BMI is modeled using spline basis expansions. According to NHANES data for 2007,

63% of Americans were in the overweight category and 26% are in the obese category

[22]. For a population with low BMI ( BMI ≤ 20 kg/m2), the association between FBG

and BMI is negative for the first three FBG quantiles (τ = 0.25, τ = 0.5, τ = 0.75). At

a higher quantile (τ = 0.90) of FBG, the association is flat for the population with a

BMI value less than 25 kg/m2. The positive association between FBG and BMI starts

to occurs after an individual BMI passes the cut point around 20 kg/m2. The marginal

BMI effects on FBG starts to diminish when BMI values pass 60 kg/m2. This might be

due to the drop off in the population size after this value, see Fig. 2.6. Different studies

report the BMI effects on FBG [27], [47]. Our results suggest that the ideal BMI values

is around 20 kg/m2. The CDC classification of ideal BMI is between 18.5 kg/m2. and

24.9 kg/m2 [14].
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2.3.1 Race/Ethnicity and Gender Effects on Glucose

Recently, Race/Ethnicity effects on cardiovascular health have attracted researchers

attention, see [28] and references therein. They found that cardiovascular health for

non-Hispanic Asian Americans is better than the cardiovascular health of non-Hispanic

Whit. The difference diminishes at lower BMI.

In this section, our goal is to estimate the effects of gender, age, statin, and Race/Ethnicity

on FBG at different quantiles of the conditional FBG distribution. The number of pre-

dictors in the model is reduced for simplicity purposes. The model is defined as follows:

ˆFBG = β0 + β1Gender+ β2spline(Age, df=5) + β4Statin+ β5Race/Ethnicity+ ϵ. (2.3.1)

The association between age and glucose levels in different quantiles of glucose varies

with respect to race and gender. On average, in all Race/Ethnicity groups males have

higher FBG levels than females, see Fig. 2.7, · · · , Fig. 2.10. Statin users on average

have higher FBG levels than non-statin users. This observation is consistent with what

we have found in the boxplot, Fig. 2.1. Moreover, the association between age and

FBG at higher quantiles is greater than the association at lower quantiles because the

estimation of age coefficient, at lower quantile τ = 0.25, is less than the estimation of

age coefficient at higher quantile, τ = 0.90. This association was noticed in the adoles-

cent population, see [44].

The lowest age effects occur in females and males from the group of Other Race-include

Multi-racial. The highest age effects occur in the female and males group of Other His-

panic. This may interpret the reason why the cardiovascular health of non-Hispanic

Asian Americans is better than the cardiovascular health of non-Hispanic White [28].
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Figure 2.7: Illustration of the age effect with respect to Race/Ethnicity (Mexican Amer-
ican, Other Hispanic, Non-Hispanic White, Non-Hispanic Black, Other Race-Including
Multi-Racial) and gender for the first quantile (τ = 0.25)of the conditional glucose dis-
tribution.
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Figure 2.8: Illustration of the age effect with respect to Race/Ethnicity (Mexican Amer-
ican, Other Hispanic, Non-Hispanic White, Non-Hispanic Black, Other Race-Including
Multi-Racial) and gender for the second quantile (τ = 0.5)of the conditional glucose
distribution.
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Figure 2.9: Illustration of the age effect with respect to Race/Ethnicity (Mexican Amer-
ican, Other Hispanic, Non-Hispanic White, Non-Hispanic Black, Other Race - Including
Multi-Racial) and gender for the third quantile (τ = 0.75)of the conditional glucose dis-
tribution.
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Figure 2.10: Illustration of the age effect with respect to Race/Ethnicity (Mexican
American, Other Hispanic, Non-Hispanic White, Non-Hispanic Black, Other Race - In-
cluding Multi-Racial) and gender for the 90th quantile of the conditional glucose distri-
bution.

2.4 Conclusion

Multivariate quantile regression is used to study the effects of different variables on fast-

ing blood glucose levels. A positive relation between FBG and age is found. Further-

more, statin effects on glucose at the lower quantiles are very small if compared to the

higher quantiles of FBG, see Fig. 2.4. Therefore, it is crucial to find a policy that max-

imizes the benefit of using statin and minimizes the side effects.

We also studied the association between FBG and TC using QR. Our study showed

that there is negative association between TC and FBG for the value of TC less than
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140 mg/dL for the FBG value less than 105 mg/dL. At higher values of FBG,that is

greater than 105 mg/dL, the lowest value of FBG occurs at TC value around 160 mg/dL.

In conclusion, TC values around 150 mg/dL is an ideal value for TC.

Additionally, BMI effects on FBG have been presented. Our results state that the low-

est BMI effects on FBG occurs at values of BMI around 20 BMI, which are the recom-

mended BMI values. When BMI values passes 20 mg/dL, it is positively associates with

FBG.

Race/Ethnicity effects on FBG vary with respect to age. The lowest age effects on FBG

occurs in female White and Other Race-Including Multi-Racial . The highest effects of

age occurs in the male Mexican and black.
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Chapter 3

Characterizing Prediabetes Risk and Lipid Ratio Progression Using NHANES

Cross-Sectional Survey Data

Approximately 17.8 million deaths in 2017 were caused by cardiovascular (CVD) dis-

eases globally, and it is estimated that by 2030, more than 22.2 million deaths will be

caused by CVD [92]. In 2011, annual costs for CVD and stroke were $320.1 billion,

which is more than the annual cost of cancer. This includes $195.6 billion in direct

costs (health care costs), and the cost of future productivity loss is $124.5 [64]. One

of the CVD risk factors is abnormal lipid ratio [96]. Lowering low-density lipoprotein

(LDL), using statin, reduces the risk of cardiovascular diseases even in a population

with no CVD [96]. It is known that diabetes is a risk factor for CVD; however, it is

shown that elevated glucose is also a risk factor for CVD even for prediabetes [4]. Niel-

son et al. [66] found that individuals with prediabetes compared to normoglycemic have

higher incident rates of myocardial infarction, acute coronary syndrome, and a greater

number of new prescriptions for nitrates by 53.9%, 18.6%, 26.4%, respectively. An inde-

pendent predictor of deaths and cardiovascular events is high volatility of fasting blood

glucose and total cholesterol levels, systolic blood pressure, and body mass index [48].

Statin use is associated with a high risk of new-onset diabetes in normoglycemic (HR

1.19, 95% CI, 1.05 to 1.35) and in prediabetes patients (HR 1.24 95% CI, 1.11 to 1.38).

On the other hand, overall mortality risks decrease in both normoglycemic (HR 0.70;

95 % CI, 0.66 to 0.80) and impaired fasting glucose (IFG) patients (HR 0.77, 95 % CI,

0.64 to 0.91) with statin use [13]. For patients with one or more risk factors for dia-

betes, statin use is associated with a 39% reduction in the primary endpoints (the HR
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0.61) and a 28% (HR 1.28) increase in diabetes [76]. Pandya et al. [68] suggested that

the dis-utility associated with taking a pill daily, statin price, and the risk of statin-

induced diabetes negatively impacted the cost-effectiveness of statin use.

Several studies estimated the association of high-level glucose risk factors, such as waist

circumference, and cholesterol, with the conditional mean of glucose using ordinary least

squares (OLS) or logistic regression models. The drawbacks in these studies are ignoring

the dispersion of the association of covariates with different quantiles of the dependent

variables (glucose levels).

In the second section, we estimate transition probabilities for different cholesterol levels

using cross-sectional survey data. There are different models that are used to estimate

transition probabilities from cross-sectional data; see [70] and [26].

3.1 Estimating Transition Probabilities

One of the issues in chronic diseases modeling, using the Markovian chain, is estimating

the transition probability of a patient moves from one state of a categorical risk fac-

tor to another state of a different risk factor in the next decision epoch (or next year).

There is vast literature about estimating transition probability for multi-state Markov

models from longitudinal data. However, this is not the case with cross-sectional data.

There are some methods that are developed to estimate transition probability from re-

peated cross-sectional data using age-specific prevalence data, see for an example [69]

and [70]. Pelzer et al. [69] utilize a Bayesian approach to estimate the transition prob-

abilities, but the restriction with using this method is that it works well only for risk

factors that can be categorized into two states, for example, two states of lipid ratios,

high and low. Another approach to estimate transition probabilities is through estimat-

ing the odd of transition to a particular state against staying at the same state. Van
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de Kassteele et al. [90] introduced a method to calculate net transitions, which are net

inflow or outflow into a particular risk factor at a particular time point. Net transitions

are different from transition probabilities. In this approach, a transportation problem is

formulated to transform the proportions from time t to time t+1. The drawback of this

approach is that it is sensitive to the cost matrix which is hard to estimate. Engada et

al. [26] implemented this method by using longitudinal data to estimate the cost matrix

and then used this cost matrix for larger populations.

In this section, we present a continuous-time multi-state model that is used to estimate

transition probabilities which was developed by Ardo Van Den Hout [91]. We denote

age in years by t, and the lipid ratio states are denoted by LR1, LR2, LR3 in ascending

order. Transitions between lipid ratio sates are defined by the hazard model

q(r,s)(t) = exp(β(r,s) + ξ(r,s)t), (r, s) ∈ (1, 2), (2, 1), (2, 3), (3, 2), (3.1.1)

where β(r,s) is transition hazards, and ξ(r,s) is the age effect. Maximum likelihood is

used to estimate the model parameters. The likelihood function of a multinomial dis-

tribution for the frequency at a point in time (age t) conditional on the proportions

at a previous point in time (age t − 1) is constructed. The distribution of frequencies

ωt = (ω1(t), ω2(t), ω3(t)) at time t conditioning on row vector of proportions pt−1 =

(p1(t− 1), p2(t− 1), p3(t− 1)) at (t− 1) is formulated as multinomial distribution; that is,

ωt|pt−1, P (t− 1, t),mt ∼ Multi(pt−1P (t− 1, t),mt), (3.1.2)

where P (t − 1, t) = [expqrs ] is a transition matrix for one period, and the number of the

multinomial trials is denoted by mt. The sum of the observed frequencies for each of

the lipid ratio levels at time t is the number of multinomial trials. The probability mass

function of multinomial distribution is denoted by f . The likelihood function is defined
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as

L(θ|data) =
20∑
t=1

log(f(ωt|pt−1,mt, θ)),

where θ is a vector of parameters of interest. The model is implemented for a popula-

tion with age values between 40 and 60 years. This age range is selected to ensure we

get an accurate picture of all cholesterol level distributions because the high cholesterol

levels have a negative impact on an individual life expectancy and, hence, the propor-

tion of high cholesterol levels population disappear from the higher ages. The time scale

t represents the age after converting it to start from 0, i.e., in this scenario (t− 40).

Due to limited information that is available on individual transitions in the cross-sectional

data, our model is set to restrict the number of variables that are needed to be esti-

mated. This can be done by assuming we have only two different processes: one for

moving forward and the other for moving backward. In this scenario, we have only two

independent parameters: one for the hazards of transitioning forward and the other for

the hazards of transitioning backward. Hence, the parameters that are needed to be es-

timated are β12 = β23 = βF , for the hazards of moving forward and β21 = β32 = βB

for the hazards of moving backward. Due to the positive association between lipid ra-

tio and age [38], we extended our model to include the age effect for the risk of mov-

ing forward through different lipid ratio levels: LR1, LR2, LR3. The age effect for the

hazard of moving forward is denoted by ξf , and these forward effects are assumed to

be equal; ξ12 = ξ23 = ξF . The age effect for the hazard of moving backward is as-

sumed to be zero as it does not improve Akaike’s information criterion (AIC) value, i.e.,

ξ21 = ξ32 = 0.

q12(t) = exp(βF + ξF t)

q21(t) = exp(βB)
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q23(t) = exp(βF + ξF t)

q32(t) = exp(βB),

3.1.1 Introduction to Data

The data used in this study is National Health and Nutrition Examination Survey data

(NHANES) [16]. It is available for free for the public with no ethics application re-

quired. The survey examines a nationally representative sample of the U.S. population.

Every two years a new cycle of the survey is implemented. The survey focuses on a

variety of health and nutrition measurements. In this study, we cumulated 6 cycles of

NHANES data (2007–2018). There are around 12,000 records. Population ages in this

study are more than 20 years old and less than 80 years old.

Fig. 3.1 shows TC distribution with respect to age, gender, and Race/Ethnicity using

box plot. From this visualization, we can see different trends for the mean of the TC as

a function of age. Mean values of TC for different races/ethnicities and gender start low

and then increase to the peak. Then they start to decline. The peak point vary with

respect to Race/Ethnicity and gender. For example, the peak point for a white female

American is around the age group 5 , while for a male is a round the age group 4. In

all Race/Ethnicity groups, the average TC passes 200 mg/dL in males earlier than in
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females.

Figure 3.1: A Boxplot for TC is presented for prediabetes population with respect to
Gender, Age, Statin uses, and Race-ethnicity (Mexican American, Other Hispanic, Non-
Hispanic White, Non-Hispanic Black, Other Race - Including Multi-Racial). Age groups
2, 3, · · · , 80 on the x-axis represents ages from 20− 29, 30− 39, · · · , 80, respectively.

3.1.2 Results

The above multi-state model is fitted on NHANES cross-sectional survey data to esti-

mate transition probabilities. The model is fitted to the prediabetes population whose

ages range from 40 to 60 years. Four subgroups of the prediabetes population are con-

sidered: male statin users, male non-statin users, female statin users, and female non-

statin users. The likelihood function is optimized using the optim function in the statis-
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tical software R.

Figure 3.2: An illustration of the observed prevalence and the estimated distribution of
the prevalence of the three categories of lipid ratios for the NHANES prediabetes males
non-statin users.

Fig. 3.2 shows under conditioning on the prevalence at a particular age, the model is

able to predict the three-stat process. With only a few parameters to estimate (three

parameters), the model is efficient in capturing the trend in the state transitions with

respect to age given the prevalence at a specific age, such as 40.

Table 3.1: Estimations of the model parameters are presented for females and males
prediabetes non-statin users using the NHANES data.

females and males prediabetes statin users.

Parameters Estimation (S.E.) for a female Estimation (S.E.) for a male

β̂F -1.86 (0.54) -1.58 (0.53)

β̂B -1.06 (0.43) -1.13 (0.3)

ξ̂F 0.03 ( 0.03) 0.02 (0.03)
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Table 3.2: Estimations of the model parameters are presented for the females and males
prediabetes statin users.

Parameters Estimation (S.E.) for a female Estimation (S.E.) for a male

β̂F -1.98 (0.6) -1.58 (0.53)

β̂B -0.63 (0.55) -1.13 (0.3)

ξ̂F 0.02 ( 0.03) 0.02 (0.03)

Table 3.3: The fitted model AIC (−2 log(likelihood)) value for the four prediabetes sub-
groups using the NHANES data

Parameters Male Female
Non-statin users 231.78 166.87
Statin users 200.98 136.5

The transition probability matrix for a female prediabetes non-statin user at age 50

years old is given in the matrix Eq. (3.1.3). The first row of the matrix shows the prob-

ability of moving from LR1 to LR1, LR2, and LR3. Similarly, the second and third-row

represents the probability of moving from LR2 and LR3 to LR1, LR2, and LR3. The

transition probabilities for female statin users, male non-statin users, and male statin

users are given in Eq. (3.1.4), Eq. (3.1.5), and Eq. (3.1.6), respectively.

Pfns =


0.84 0.14 0.01

0.24 0.62 0.13

0.04 0.23 0.73

 (3.1.3)

Pfs =


0.87 0.12 0.01

0.36 0.55 0.1

0.09 0.30 0.61

 (3.1.4)
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Pmns =


0.81 0.17 0.02

0.22 0.61 0.17

0.04 0.21 0.75

 (3.1.5)

Pms =


0.84 0.15 0.02

0.31 0.56 0.13

0.07 0.28 0.65

 (3.1.6)

The transition probabilities of lipid ratios for female non-statin users, male non-statin

users, female statin users, and male statin users are plotted in Fig. 3.3, Fig. 3.4, Fig.

3.5, Fig. 3.6, respectively. The first row of the panel represents, as a function of age,

the transition probability of moving from LR1 to each of the three lipid ratios LR1,

LR2, and LR3. The columns show the probability of moving to a single state from the

three levels of lipid ratios. For example, at age 50, the probability of staying at the

same state LR1 in the next year is 0.84, the probability of moving from LR1 to LR2
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in the next year is 0.24, and the probability of moving from LR1 to LR3 is 0.04.

Figure 3.3: An illustration of the transition probabilities for the three categories of lipid
ratios for a female non-statin user.

Fig. 3.3 shows there is a positive relationship between age and the risk of moving to

higher cholesterol states. For example, at age 50, the risk of moving from LR1 to LR2

is 0.14, while at a higher age (60 years old) the risk becomes around 0.17. The proba-

bility of an individual staying at the same LR level in the next year is higher than the
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probability of moving to a higher LR level or a lower LR level.

Figure 3.4: An illustration of the transition probabilities for the three categories of lipid
ratios for a male non-statin user.
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Figure 3.5: An illustration of the transition probabilities for the three categories of lipid
ratios for a female statin user.
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Figure 3.6: An illustration of the transition probabilities for the three categories of lipid
ratios for male statin users.

3.1.3 Conclusion

A multi-state model is used to estimate the transition probability matrix for the three

levels of lipid ratios. The transition probabilities among different lipid ratio levels for

males are higher than the transition probabilities for females. Engeda et al. [26] show

the net transition probabilities among different total cholesterol levels vary with re-

spect to Race/Ethnicity and sex. As expected, statin therapy reduces the probability

of progression to a higher lipid ratio level, i.e., the probability of progression from LR1

to LR2 and LR2 to LR3 are higher for non-statin users if compared to statin users.
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Adding age effects to the model has positively impacted model performance in terms

of AIC value.

Our model is sensitive to the observed proportions at the starting age because the prob-

ability of each outcome, category of lipid ratio, to occur at age t depends on the ob-

served proportions at age (t − 1). This dependent relationship goes to the starting age.

In our setting, the starting age is 40 years old.

3.2 Using Bayesian Approach to Estimate The Risk of Prediabetes

In this section, we estimate the risk of prediabetes using the Markov Chain Monte Carlo

(MCMC) approach to estimate the parameters of the logistic regression function. One

advantage of using Bayesian inference over the maximum likelihood approach to esti-

mate model parameters is that in Bayesian inference we are concerned with sampling

from the posterior distribution of the parameters given the data and prior density. The

mean or mode of the posterior distribution of the parameters is used as an estimation

for the population parameters, while in the maximum likelihood approach we are con-

cerned with calculating the maximum for the likelihood function, which might have

multiple local maximums that make it intractable to solve. Therefore, the Bayesian in-

ference approach is more accurate in this case.

We consider the prediabetes population in the NHANS data set. A logistic regression

model is used to estimate the probability of transitioning from a normoglycemic to a

prediabetes state. The basic idea of inferencing parameters of a population is rooted

in Bayes’ Theorem (Thomas Bayes, 1701-1761). The Mathematical formulation for the

Bayes’ Theorem is as follows:

π(θ|D) =
L(D|θ)π(θ)

π(D)
,
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where θ is a parameter of interest, D is the data, L(D|θ) is the likelihood function of

D given θ, and π(θ) is the probability distribution of θ (prior). For D = {y1, y2, · · · , yn},

where yi
iid∼ f(.|θ), the likelihood function is defined as: L(D|θ) = Πn

i=1f(yi|θ).

In Bayesian inference, we are interested in finding the posterior distribution of θ given

the data i.e., π(θ|D) = Πn
n=1f(yi|θ)π(θ). Information about θ can be found from ana-

lyzing the posterior distribution; for example, we may use the mean=
∫
θπ(θ|D) as a

good estimator for θ. When θ is a vector of variables, the calculation of the mean be-

comes intractable. One approach used to solve this integral is the Monte Carlo method

[77]. Using the strong law of large numbers, the mean can be computed using the for-

mula
∑n

i=1 Yi

n
→ µ, where Yi are independent and identically distributed random variables

sampled from the target distribution (in our scenario posterior distribution.) When the

posterior distribution is unknown in closed form, then the MCMC method is used to

sample from the posterior distribution. MCMC method can be run using different algo-

rithms such as Metropolis-Hasting algorithm (MH) ([54], [54], Gibbs sampler [37].

Next, we present a brief description of the MH algorithm, which we are going to use

to sample from our posterior. At iteration i, we propose an initial value for θ and a

proposal distribution q(x). The next proposed value for θ is drawn from the proposal

distribution conditioning on the previous value q(θproposed|θi). The acceptance ratio is

computed according to the following formula:

R = min{1, p(θ
proposed)q(θi|θpropsed)
p(θi)q(θproposed|θi)

}.

For a uniform random number u generated from the interval (0,1), the next value θi+1 =

θproposed if u ≤ R, otherwise θi+1 = θi. There is a trade-off between the acceptance rate

and the variance of the proposed distribution. With high variance, the acceptance rate

is low, but with low variance, the acceptance rate is higher. However, choosing a small
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value for the variance reduces the chance to investigate the whole parameter space.

Therefore, it is preferable to have the acceptance rate in the range between 20-40% [36].

Moreover, it is recommended that the initial draws are thrown to reduce the effects of

the initial values. Additionally, to reduce the effect of correlation a thinning process is

recommended.

3.2.1 Model Formulation

A logistic function takes values between 0 and 1 for all values in the domain (Age). An

MCMC is used to maximize the probability of the parameter given the data, that is,

the logistic regression parameters α, and β.

P (Pre|Age) = 1

1 + e α+βAge

.

Since we do not have information about the distributions of the model parameters α

and β, we assume they are coming from the normal distribution, which has two param-

eters µ and σ. These parameters play an important role in the model. For example, if

the parameters that we are interested in are positive, then we need to choose a value

for σ that restricts our parameters from taking negative values, provided that µ is tak-

ing a positive value. A larger value of σ indicates the data is spread out a lot. The

other parameter µ defines the location of the distribution. So, the normal distribution

is defined as follows:

f(α|µ, σ) = 1

σ
√
2π

e−
1
2(

α−µ
σ )

2

.
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3.2.2 Posterior Probability of Prediabetes given Age

We have all the pieces for the posterior probability and can now put them together.

The logistic function describes the transition from normoglycemic to prediabetes state,

but we do not know the parameters β and α. The aim is to find the parameters of the

logistic function which maximizes the likelihood of the observed data. The parameters

are assumed to come from a normal distribution defined by a mean denoted by µ, and

a variance denoted by τ . The MCMC algorithm will sample values of µ and τ for both

α and β to try and maximize the parameters of the logistic function given the data.

The data is connected to the parameters through a Bernoulli Variable.

3.2.3 Bernoulli Variable

A Bernoulli variable is a discrete random variable that takes a value of either 0 or 1.

In our problem, we model normoglycemic or prediabetes as a Bernoulli variable where

normoglycemic is 0 and prediabetes is 1. The Bernoulli random variable pre for predia-

betes depends on the age, in a manner defined by the logistic function:

prei ∼ Ber( p(ti) ), i = 1, · · · , N,

where p(ti) is the logistic function with the independent variable time. Therefor, the

probability of becoming prediabetes is defined as follows:

P (pre|ti) = Ber(
1

1 + e(βti+α)
)

The goal of MCMC is to find the α and β parameters using the data and assuming
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normal priors.

3.3 Results

The Metropolis-Hastings algorithm is used to sample from the posterior distribution.

The code is implemented using Python Package PyMC3, which was developed by Google.

Fig. 3.7 shows the trace plot for the samples drawn from the posterior distribution for

β and α. The MCMC algorithm is expected to converge at the true values as the num-

ber of samples increases. It is recommended to do burn in to the early samples. In the

problem, we have drawn 10000 samples and 5000 samples are burned in. Only the last

5000 are used to estimate β and α values.

Figure 3.7: Trace of α and β. Sampled from the posterior distribution using Metropolis
Hastings algorithm.
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Figure 3.8: Posterior distribution of α and β.

Fig. 3.8 shows the resulting parameter estimates for α and β are 2.049, and -0.059, re-

spectively. These values correspond to modes of the density distributions. These esti-

mations for α and β are being used to estimate the risk of prediabetes as a function of

45



age, see Fig (3.9).

Figure 3.9: Illustration for the risk of transitioning from normoglycemic to prediabetes
state with respect to age.

Fig. 3.9 shows the risk of prediabetes increases when age increase. For example, at age

50 years old, the prediabetes risk is around 20%, which increases up to 55%, at age 80

years old. It is shown that the prevalence of prediabetes in the age group 24-44 years,

45-64 years, and ≥ 65 years are 28.2 (CI: (24.4-32.4)), 44.9 (CI: (37.6-52.4)) and 49.5

(CI: (43.4-55.6)), respectively [63]. The trend in the prevalence is consistent with our

model estimation for the results of prediabetes risks.

3.3.1 Discussion

According to the National Diabetes Statistics report [31], there are approximately 32

million individuals with diabetes in the US population, of which approximately 12 mil-

lion instances are over 65 years old. This number constitutes about 25% of this age
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group category. From Fig 3.9, we can see after age 64, approximately 25% of this age

group is estimated to have prediabetes. This similarity in the population behavior is ac-

ceptable as the prediabetes population is converting to diabetes population with a rate

of 51% in 10 years [65].
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Chapter 4

A Markov Decision Process Approach for Statin Initiation in the Prediabetes

Population

Both high glucose and high cholesterol levels are risk factors for heart diseases [18], and

aging is a risk factor for diabetes and heart diseases [79], too. However, statin can be

used to reduce the level of cholesterol but it has side effects such as raising the glucose

levels [78] and body mass index [84]. Compared to the normoglycemic patients, the rel-

ative risks for coronary heart disease (CHD) and stroke in prediabetes patients are 1.10

and 1.06, respectively [45]. The relative risk associated with using statin for new-onset

diabetes in the prediabetes population is 1.28 compared to normoglycemic [76]. Accord-

ing to an observational study, it was found that the existence of type 2 diabetes mel-

litus elevates CVD risk by two to four folds [3]. Therefore, it is important to consider

the risk of moving to the diabetes state when cholesterol medication (statin) is given

to prediabetes individuals. During 2011-2012, more than 27.9% of the US population

whose their ages were more than 40 years old reported using a cholesterol-lowering med-

ication [41]. Of this number, 83% reported using statin for cholesterol-lowering treat-

ment, and the remaining 10% and 7% reported using both a statin and a non-statin

and a non-statin, respectively.

According to the American College of Cardiology and the American Heart Association

(ACC/AHA) guideline, Cholesterol medication is recommend if the estimated 10-year

atherosclerotic cardiovascular disease risk is ≥ 7.5% [83]. Our goal is to find the optimal

decision strategy to initiate statin treatment that maximizes the discounted reward. A

discrete-time finite horizon Markov decision process (MDP) model is developed to tackle
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this problem for the prediabetes populations. Our model optimizes the starting time for

statin treatment by considering the risk of moving to a terminal event (including CHD,

stroke, death from causes other than CHD or stroke) or the diabetes state. A backward

value iteration technique is used to find the optimal policy that provides the maximum

value of accrued rewards.

4.1 Overview of Markov Decision Process

An MDP is a tool used for sequential decision-making under uncertainty. MDPs are

categorized into two groups: the finite horizon and the infinite horizon MDP. Each cat-

egory has its own analytical properties and solution algorithm. The optimal solution of

finite horizon MDPs are approaching the optimal solution of infinite horizon MDPs if

the planning horizons increase and both rewards and transition probabilities are station-

ary. MDPs are categorized as discrete-time if decisions are taken only at discrete time

intervals, and continuous-time if decisions occur at any time [75]. The important com-

ponents of MDPs are states, actions, the transition probabilities between states, and re-

wards. The information that is needed to decide how the system will evolve is encoded

in states. Under Markovian assumption, the system’s next state only depends on the

current state and action, i.e., the past states do not have an effect on system evolve-

ment. Our goal is to find the best action that maximizes the total expected rewards.

A patient’s health condition at a given age is described by lipid ratio, systolic blood

pressure, prediabetes, and gender. These are risk factors for diabetes, CHD, and stroke.

We stop following a patient after an individual reaches an absorbing state. Rewards as-

sociated with moving to a living state are based on quality-adjusted life years gained.

A patient accrues lump-sum rewards (i.e., total quality-adjusted life years) if they en-

ters the diabetes state or accrued zero rewards if he/she enters one of the other termi-
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nal states. The systolic blood pressure is needed as a covariate in the Framingham risk

equations [2] which is used to estimate CHD and stroke risks for patients. The systolic

blood pressure is modeled as a function of age, and it is estimated by fitting a cubic

spline on the prediabetes population. Since statin reduces the lipid ratio and increases

the risk of diabetes, we modeled the change over time in lipid ratio as a discrete-time

Markov process [35] and moving stochastically to the diabetes state. At a given age t,

a decision-maker chooses between either initiating statin treatment or waiting for the

next decision epoch. At age t + 1, a patient moves to one of the living states or to an

absorbing state Fig. 4.1.

Figure 4.1: Illustration of the Markov model representing transitions among lipid ratio
(LR) states, and absorbing states.

4.1.1 Model Formulation

Due to statin benefits for reducing the low-density lipoprotein and its side effects, the

decision to initiate statin is revised annually starting from some age t. The set of de-

cision epochs is denoted by T. A finite-horizon model is presented. At the end of the
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decision horizon, which is the epoch N − 1, the decision is made according to the best

action that maximizes the reward, and the model parameters are assumed to be station-

ary beyond this epoch. That is, all decision epoch beyond N − 1 are computed using

N − 1 epoch’s parameters. Moreover, patients accrue lump-sum rewards instead of fol-

lowing them after the decision horizon N − 1, see [24], [60]. If the decision is to initiate

a treatment, then the treatment is used for the rest of the patient’s life, otherwise, no

treatment for the rest of the patient’s life. It is also assumed that, once the decision is

taken to initiate statin, the patients will continue using statins for the rest of their life,

and the patient will use statins with perfect adherence. We describe the MDP compo-

nents for our problem in the following sections.

4.1.2 States

The model has L living states denoted by L = {LR1, LR2, LR3, . . . , LRL} which are

levels of lipid ratio ordered from low to high epoch and two absorbing states denoted

by D = {O,D} which are fatal stroke or cardiovascular heart disease or deaths from

other causes denoted by O, and the diabetes state denoted by D. At age t, we have

L̄ = {LR1, LR2, LR3, . . . , LRL} ∪ D states. The lipid ratio states have deterministic

values of systolic blood pressure for a patient.

4.1.3 Actions

At any decision epoch t ∈ T = {1, 2, 3, . . . , N} , the set of available actions are either

to initiate statin treatment or to wait until the next decision epoch, which is after one

year. We denote the action of starting treatment by 1 and the action to wait by 0. The

set of available actions are denoted by A = {0, 1}.
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4.1.4 Transition Probabilities

To implement the MDP model, we need to estimate the transition probability from a

living state at age t to another living state at age t + 1 and from a living state to

the set of absorbing states D. The probability of CHD or stroke events at state st oc-

curs with a probability pCS
t (s, a). The probability of fatal CHD or stroke at time t is

(1− Ft) p
CS
t (s, a) , where Ft denotes for non-CHD or non-stroke related deaths and a ∈

A. Therefore, the probability of moving to the absorbing state O under treatment sta-

tus a ∈ A at time t is computed as follows: pt (O | s, a) = Ft + (1− Ft) p
CS
t (s, a) . The

probability of moving to the diabetes state is denoted by Wt (s
′ | s, a) . The probability

of moving to other living states in the next epoch is equal to the probability of not in-

curring a terminal events (absorbing states) 1 − (pt (O | s, a) + pt (D | s, a)) times the

probability of moving to another living state s′ at age t + 1 denoted by qt(s
′ | s, a. The

transition probability function is defined as follows:

pt(s
′ | s, a) =



[1− (pt (O | s, a) + pt (D | s, a))]qt(s′ | s, a), s, s′ ∈ L

Ft + (1− Ft) p
CS
t (s, a) , s′ = O, s ∈ L

Wt (s
′ | s, a) , s′ = D, s ∈ L

1, s = s′ ∈ D

0. Otherwise

(4.1.1)

4.1.5 Rewards

The immediate reward for the patient in a state st under treatment status at = 0 is

rt (st, at) = 1 QALY [24], and under treatment status at = 1 is rt (st, at) = 1 − k

QALY, where k is pill disutility which includes dissatisfaction due to using statin daily

and other pill side effects such as raising the chance of obesity during one year of life.

Due to the low cost of statin, we are not considering stain cost in the reward func-
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tion. The immediate reward accrued for a patient entering an absorbing state, a CHD

or a stroke or a non-CHD or a non-stroke related death, under either of the actions is

rt (st, at) = 0. This assumption ensures a patient accrued a maximum number of QALYs

prior to arriving in the absorbing state. However, the rewards associated with the dia-

betes states are the lump-sum rewards estimated using Kurt et al.’s work [53].

4.1.6 Optimization of Treatment Decision

The optimal policy of statin initiation considers trade-offs between the benefits of statin

use and its side effects. At epoch t and state s, we denote for the maximum total ex-

pected discounted rewards by u∗
t (s) which is collected from time t to the end of the

time horizon. It can be calculated by using the following recurrence relation

ν∗
t (s) = max{rt (st, 0)+ λ

∑
s′∈L

pt (s
′ | s, 0) ν∗

t+1 (s
′) , µt(s)}, s ∈ L̄, t = 1, . . . , N − 1,

(4.1.2)

where µt(s) is the patient’s post-treatment discounted rewards computed in a separated

Markov model. The value of µt(s) is the value of accrued rewards under treatment initi-

ation in the state s at the time of epoch t for the rest of life period, i.e.,

µt(s) = rt (st, 1) + λ
∑
s′∈L

pt (s
′ | s, 1)µt+1 (s

′)}, s ∈ L̄, t = 1, . . . , N − 1. (4.1.3)

At epoch N, the values of ν∗
N , µN(s) are computed using pN−1 values as follows:

ν∗
N (s) = max{rN−1 (st, 0) + λ

∑
s′∈L

pN−1 (s
′ | s, 0) ν∗

N (s′) , µN(s)}, s ∈ L̄, (4.1.4)
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µN(s) = rt (st, 1) + λ
∑
s′∈L

pN−1 (s
′ | s, 1)µN (s′)}, s ∈ L̄. (4.1.5)

A decision-maker chooses to start treatment if the value of µt(s) is greater than the

value of delaying the treatment for one more decision epoch.

Since we stop following patients after age N , the decision at this epoch is used to find

the action that gives us the higher rewards value for the whole post-horizon rewards.

The calculation for the post-decision horizon rewards (PDHR) is done using the follow-

ing formula:

E [PDHR | aN , sN ] = maxaN∈A rN (sN , aN)
M−N∑
i=1

i[1− p (L | sN , aN ] p (L | sN , aN)i−1λi,

(4.1.6)

where p(L | sN , aN) = 1 − p(O | sN , aN) denotes the probability of staying alive for one

decision epoch after post-decision horizon N . The maximum age is denoted by M years.

4.2 Numerical Studies

We implement the above model for female and male patients with prediabetes, and

evaluate the optimal policy with sensitivity for them. At a given age t, there are three

lipid ratio states: low (1 < LR1 ≤ 3.8), medium (3.8 < LR2 ≤ 5.5), and high (5.5 <

LR3 ≤ 8.7), a diabetes state and a terminating state O. The probabilities of moving

from living states to a fatal CHD or stroke or non-CHD or non-stroke related deaths

are calculated using the Framingham risk equations [2]. The parameters that are needed

in this risk equation are estimated from NHANES data sets [16]. Since the Framingham

risk equations consider either diabetic or non-diabetic patients, we multiplied the risk of

CHD or stroke by relative risk for prediabetes patients, which are 1.1 [45], 1.21 [57], re-
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spectively. We assume the whole prediabetes population will move to the diabetes state

at age 80. This is a plausible assumption because the probability of a prediabetes pa-

tient moving to the diabetes state is 51% in 10 years [65], and our decision horizon is

around 40 years. Next, we used cubic splines on NHANES data to estimate patient sys-

tolic blood pressure as a function of age. The systolic blood pressure values are needed

to estimate CHD and CVD risks using the Framingham risk equation. The probabilities

of moving to the diabetes state are estimated using [58]. We computed these values by

taking the average of rate of moving to the diabetes state in the group whose FBG is

between 100 mg/dL and 110 mg/dL, and the group whose FBG is between 110 mg/dL

and 125 mg/dL. The probabilities of moving to other living states in the next decision

epoch are given in matrices Eq (3.1.4), Eq (3.1.3), Eq (3.1.5), and Eq (3.1.6).

The lump-sum reward for a patient entering the diabetic state is estimated using the

values in Table 2 in [53]. We discretized the lipid ratio levels in [53] into three levels

and assigned the average of the maximum expected QALY prior to the first terminal

events to the first lipid ratio level [1, 3.8], similarly assigned the maximum expected

QALY to the second and third lipid ratio intervals. The use of statin can reduce the

lipid ratio levels by 0.19815 [53]. Under statin treatment, a transition probability for

a patient to move to the CHD or stroke state is estimated using the Framingham risk

equation after adjusting for the statin treatment effects. Under statin treatment, the

diabetes risk is estimated by multiplying the diabetes risk by the relative risk associ-

ated with statin use which is 1.28 [32]. The mortality rates are from National Center

for Health Statistics (NCHS) [15]. Table 5.2 summarizes the parameters that are used
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in our model.

Table 4.1: Parameters Used in the Model

Gender Disease Progression Parameters Sources
Female

Risk of Progression to
the diabetes state

0.028 Levitzky et al. [58]

Coronary heart disease Farmingham CHD Risk
Equation

Anderson et al. [2]

Stroke Risk Farmingham Stroke
Risk Equation

Anderson et al. [2]

Diabetes Relative Risk
Associated With using
statin

1.28 Freeman et al. [32]

Transition probabilities
among Lipid ratios

Eq. (3.1.3) & Eq.
(3.1.4)

Male
Risk of Progression to
the diabetes state

0.024 Levitzky et al. [58]

Coronary heart disease Farmingham CHD Risk
Equation

Anderson et al. [2]

Stroke Risk Farmingham Stroke
Risk Equation

Anderson et al. [2]

Diabetes Relative Risk
Associated With using
statin

1.28 Freeman et al. [32]

Transition probabilities
among Lipid ratios

Eq. (3.1.5) & Eq.
(3.1.6)

pill disutility 0.02 Pignone et al. [73]

4.2.1 Results

As shown in Figure (4.2), our model recommends early statin use for medium and high

lipid ratio for 0.98 QALY for statin use and 1 QALY for non-statin users. For the low
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lipid ratio state, statin initiation is recommended for females who are 50 years old and

males who are 55 years old. For states with a tie between starting a treatment or wait-

ing for the next decision epoch, we picked an action that is similar to the action that

was taken in the previous states. The existence of optimal control limit policy is proved

in [53]. The existence of optimal control limit policy grants that the treatment is ini-

tiated whenever LR is greater than some threshold. The maximum expected QALYs

gained are given in Table 5.2.

Figure 4.2: Optimal time for statin initiation is depicted with respect to the three lipid
ratio levels,(a) for a female and (b) for a male. The disutility used in this implementa-
tion is 0.02 and the diabetes relative risk associated with statin use is 1.28.
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Table 4.2: The maximum expected QALYs prior to the first terminal events for predia-
betes patients are depicted for 0.98 QALY for statin use and 1 QALY for no-statin.

Gender Age LR1 LR2 LR3
female

40 21.440 21.386 21.324
50 18.617 18.594 18.554
60 15.488 15.454 15.395
70 11.925 11.877 11.795
80+ 8.153 7.443 6.628

Male
40 20.400 20.332 20.239
50 17.499 17.448 17.410
60 14.241 14.199 14.145
70 10.374 10.318 10.248
80+ 5.697 5.097 4.403

4.2.2 Sensitivity Analysis

There are different estimates for the diabetes risk associated with statin use [76], [78],

[49]. We implement the model with different values for the relative risk associated with

statin. With a higher value for the relative risks associated with statin 1.5, the statin

use is not recommended for a low-level lipid ratio state. Furthermore, the risk of pro-

gression to the diabetes state in two years has been estimated by Tabak et al. [86] in

the range from 5% to 10%, but we use the relative risks values 2.8% for a female and

2.4% for a male, which are taken from Levitzky et al. [58]. Using the above param-

eters, our model does not recommend statin use for LR1 only at a later age. This is

because of the increased risk of moving to the diabetes state.

58



Figure 4.3: Optimal times for statin initiation are depicted with respect to the three
lipid ratio levels. The relative risk for diabetes associated with using statin is 1.5. The
QALY value is 0.96 for one year of statin use.

Table 4.3: The maximum expected QALYs prior to the first terminal events for predi-
abetes patients are depicted for 0.96 QALY for statin use and 1 QALY otherwise. The
relative risk of diabetes associated with using statin is 1.5.

Gender Age LR1 LR2 LR3
female

40 21.201 21.124 21.011
50 18.281 18.187 18.138
60 15.154 15.105 15.039
70 11.738 11.670 11.579
80+ 7.746 7.071 6.297

Male
40 20.156 20.076 19.968
50 17.169 17.055 16.922
60 13.889 13.806 13.747
70 10.158 10.098 10.021
80+ 5.412 4.842 4.183
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Due to different estimates for the relative risk associated with statin use, a sensitivity

analysis is performed to investigate its effects on the optimal policy. When QALY asso-

ciated with statin use is decreased from 0.98 QALY to 0.96 QALY, the optimal policy

does not recommend statin use for a low-level lipid ratio. In addition, the maximum

expected QALYs prior to the first terminal events have also increased.

Figure 4.4: Optimal time for statin initiation is depicted with respect to the three lipid
ratio levels. The disutility used in this implementation is 0.04, and the diabetes risk
associated with using statin is 1.28.
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Table 4.4: The maximum expected QALYs prior to the first terminal events for predia-
betes patients are depicted for 0.96 QALY for statin use and 1 QALY for no-statin.

Gender Age LR1 LR2 LR3
female

40 21.285 21.213 21.106
50 18.401 18.346 18.307
60 15.282 15.248 15.189
70 11.789 11.741 11.660
80+ 7.746 7.071 6.297

Male
40 20.252 20.174 20.067
50 17.304 17.211 17.151
60 14.028 13.985 13.931
70 10.235 10.180 10.110
80+ 5.412 4.842 4.183

4.3 Conclusion

Statin recommendations are sensitive to the dis-utility associated with its use and its

side effects [68], [43]. Our model consists of two parts. First, we compute the value

function at a given age t as a statin treatment initiated for the rest of his/her life. Then

we use these values to find the best action either to start or delay the treatment de-

pends on the action that maximizes the value function in Eq (4.1.2). Ridker et al. [76]

have suggested that the benefit of using statin overweigh the negative side effects. How-

ever, our policy shows that statin is not recommended only at late a age for patients

with a low level of lipid ratio with respect to some scenarios, for example, the case in

which pill reward associated with statin use is 0.96 QALY, see Fig. 4.4. Moreover, the

risk of a new-onset diabetes has a crucial role in delaying a statin initiation treatment

because statin use expedites the progression to the diabetes state and; consequently,

moving to the absorbing state. When the relative risk for a new-onset diabetes asso-
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ciated with statin use is raised from 1.28 to 1.5, statin is not recommended for a low

level-lipid ratio except for the old-aged population. In this model, we have applied 1.5

relative risks, and it shows a higher impact on our policy, see Fig. 4.3. As previously

mentioned, the relative risk reaches 2.62 for using statin for more than two years.

Limitations in our study are due to different factors. First, we did not consider patients

adherence to the treatment in our modeling. Low adherence can reduce the progression

rate to diabetes state. Second, treatment doses can impact on progression rate to the

diabetes state and; consequently, the value of the QALYS gained. Lastly, we did not

consider different races in our numerical example. Different races have different CVD

risk values.
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Chapter 5

A Robust Markov Decision Process Approach for Statin Initiation Decision in

the Prediabetes Population

5.1 Introduction

Dynamic programming is generalized to be more robust to account for the variation

in the model parameter estimation. Robust dynamic programming focuses on mitigat-

ing the effects of parameter uncertainty while avoiding conservative policies. In other

words, robust dynamic programing uses a “max-min” approach to find a policy that

maximizes the worst-case policy performances for different transition probability matri-

ces in an ambiguity set. One approach to model the uncertainty parameters is called

stochastic programming in which the parameters are modeled using a probability dis-

tribution. For example, stochastic programming is used to model the demand for en-

ergy. The demands vary with respect to weather, economic conditions and other factors.

Therefore, the demand can be modeled using the normal distribution [71]. Another ap-

proach to tackle optimization under uncertainty is to ensure the constraints are satisfied

with a specific probability, say 1− ϵ. This approach is called chance constraint [74]. The

decision-makers are able to choose risk levels by specifying the probability for the con-

straints to be satisfied. The formulation of chance programming is as follows:

minimize
x

f(x)

subject to

P{ξ ∈ Θ|G(x, ξ) ≤ 0}≥ 1− ϵ,

(5.1.1)
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where the decision variables are denoted by x; the objective function is denoted by

f(x); the set of constraints is denoted by G(x); the uncertainty set of a given proba-

bility distribution P of the random variable ξ is denoted by Θ. The constraint in Eq.

(5.1.1) ensures that the decision variables x satisfy the constraint with a probability

1 − ε. One of the limitations of this approach is computational complexity due to the

non-convexity of the feasible region even a convexity of the feasible region with respect

to x is satisfied for some realization of ξ [74].

Robust optimization (RO) is another approach to tackle uncertainty in the parameters.

The first main contribution to RO is by Soyster [82] who developed robust linear pro-

gramming. Robust optimization has many applications in portfolio optimization [39],

healthcare [97], and many other fields of operations research; see Ben-Tal et al. [7] and

the references therein.

Robust Markov decision processes (RMDPs) have been introduced in the work of Iyen-

gar [46] and Nilim et al. [67]. The development of RMDP is rooted in robust optimiza-

tion. RMDPs are developed to address the variability that arises in estimating a tran-

sition probability matrix for MDPs. Ambiguity in parameter estimation plays a crucial

rule in determining the optimal policy for RMDP. Transition probabilities are subject

to variability due to the environment, missing data, measurement errors, estimation er-

rors, or some other reasons. RMDPs are also categorized into the finite-horizon and the

infinite-horizon problems, which are the same as MDP. A finite-horizon RMDP is repre-

sented by the tuple:

(τ,S,Pa
t ,As, rt(s, a)),

where the set of decision epochs is denoted by τ = {1, 2, · · · , T}, T < ∞; the set

of states is denoted by S = {1, 2, · · · , S}; the collection of transition probability ma-

trices at time t under action a is denoted by Pa
t ; the set of actions that are allowed at

state s is As; and the accrued reward at state s under action a at time t is denoted by
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rt(s, a). At each time t and action a, we only know the transition probability P a
s,t lies

in a given subset Pa of matrices that satisfy Markov transition probabilities (rows sum-

ming to one and nonnegative entries.)

RMDPs are hard to tackle for a general uncertainty set, and the computational com-

plexity is more than NP-hard [55]. However, under some restrictions on the uncertainty

set the problems are solvable. An example of the restriction on the uncertainty set is

a rectangular property [67], [46]. A set Pa
t satisfies the rectangular property if for every

action a ∈ A, Pa
t can be written as:

Pa
t = Pa

1,t × Pa
2,t × · · · × Pa

n,t,

where Pa
i,t denotes the uncertainty set of the ith row of the transition probability matrix

P a
t . In other words, rectangularity means the transition probability for each state-action

pair is independent of the others. The set Pa
t can be considered as a set of confidence

for the transition matrices. Depending on the uncertainty of transition matrices, there

are two models: stationary uncertainty model and time-varying uncertainty model. In

the first model the transition probabilities are fixed with respect to time, while in the

second model, they are varying with respect to time. The second model is used in our

problem modeling.

Solution methods for the RMDP is developed by Nilim et al. [67] and Iyenger [46] un-

der rectangular property for the uncertainty set. The robust value function for state s

at time t is given by the following Bellman equation:

νt(s) = max
a∈As

{rt(s, a) + min
p∈Pa

s,t

∑
s′∈S

p(s′)νt+1(s
′)} for t = 1, · · · , N − 1 and s ∈ S,

(5.1.2)
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and

νT (s) = rT (sT ) ∀sT ∈ S, (5.1.3)

where p is a specific row of a particular transition matrix in the uncertainty set of this

row which is Pa
i,t. The rewards that a patient accrued when they arrives at the end of

the decision horizon is denoted by rT (sT ). The minimization problem part in the Eq.

(5.1.2) is called the inner problem which is denoted by σa
t,s. The goal of the inner prob-

lem is to find the minimum solution on the uncertainty set of a specific row of a tran-

sition probability matrix. The construction of the uncertainty sets Pa
t by using a like-

lihood constraint approach approach grantees that the uncertainty sets represent a pre-

cise description of statistical uncertainty on the transition matrix. Then the solution of

the interior problem is given by the bisection method [67].

The following algorithm is used to solve RMDP:

Algorithm 1 Robust Finite-Horizon Dynamic Programming Algorithm, Adapted from
[67]

Require: Initialize the value function of all states to its terminal value ν̂T = rT (sT )
while t ̸= 0 do
for every state st ∈ S and action a ∈ A, use the bisection algorithm to solve the
inner problem and update ν̂t−1(st) = max

a∈A
{rt(st, a) + λσ̂a

t,s }

the optimal action is the one that maximizes Â(st)← argmax
a∈A

{rt(st, a) + λσ̂a
t,s}

Replace t by (t− 1)
end while

A robust medical decision model is introduced in this chapter to help decision-makers

optimize statin initiation treatment for prediabetes populations. An optimal policy is

computed using robust backward value iteration to solve the Markov decision process

problems [67]. Our model is developed considering the uncertainty in the transition

probability matrix. A sensitivity analysis for the optimal policy is studied for the re-
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wards and pill dis-utility.

5.2 Robust Markov Decision Process Formulation

A finite-horizon, discrete-state robust MDP is formulated to find the optimal statin ini-

tiation policies for prediabetes patients. The structure of this model is similar to the

structure of the MDP model in Chapter 4, but the RMDP approach is different. In

this chapter, our goal is to find the optimal policy that remains optimal even with a

small perturbation in the transition probabilities, i.e., optimizing the worst-case sce-

nario. Let the set of available actions at time t for all states be denoted by At = {0, 1}.

A decision-maker chooses one of the two available actions at any decision epoch t ∈

{1, 2, 3, . . . , N} . If a decision-maker chooses action 0, statin initiation is postponed to

the next decision epoch, and if action 1 is chosen, then treatment is started for the

rest of the decision horizon. At each decision epoch t, the system occupies one of the

L states that are classified according to the metabolic state. The living states are de-

noted by L = {LR1, LR2, LR3, . . . , LRL}, and the absorbing states are denoted by

D = {O,D} which are fatal stroke or cardiovascular heart disease or deaths from other

causes denoted by O, and the diabetes state is denoted by D. At age t, we have L̄ =

{LR1, LR2, LR3, . . . , LRL} ∪ D states.

The transition probabilities that are needed in our implementation of a robust MDP

model are transition from a living state at age t to other living states at age t + 1, and

from a living state at age t to the set of absorbing states D. At epoch t and state s

the probability of CHD or a stroke event is denoted by pCS
t (s, a). The probability of fa-

tal CHD or stroke is (1− Ft) p
CS
t (s, a) , where Ft denotes for non-CHD or non- stroke

related deaths and a ∈ A. Therefore, the probability of moving to the absorbing state

O under treatment status a ∈ A at time t is computed as follows: pt (O | s, a) =
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Ft + (1− Ft) p
CS
t (s, a) . The probability of moving to the diabetes state is denoted by

Wt (s
′ | s, a) , and the probabilities of moving to other living states in the next epoch

are equal to the probability of not incurring terminal events 1−(pt (O | s, a)+pt (D | s, a))

times the probability of moving to another living state s′ at age t + 1 (refer to Eq.

(4.1.1)).

The immediate reward for a patient in a state st under treatment status at = 0 is

rt (st, at) = 1 QALY [24], and under treatment status at = 1 is rt (st, at) = 1 − k QALY,

where k is pill dis-utility. The immediate reward accrued for a patient entering an ab-

sorbing state, a CHD or a stroke or a non-CHD or a non-stroke related death, under

either of the actions is rt (st, at) = 0. However, the rewards associated with the diabetes

state is the lump sum rewards estimated using Kurt et al.’s work [53].

Our goal by solving the RMDP problem is to find the optimal policy that collects the

largest number of rewards. At epoch t and state s, we denote the maximum total ex-

pected discounted rewards prior to the death by u∗
t (s), which are collected from state

t to the end of the time horizon. It can be calculated by using the recurrence relation

given in the following equation:

νt(s) = max {rt(s, 0) + min
p∈P0

s,t

∑
s′∈S

p(s′)νt+1(s
′), µt(s)} for t = 1, · · · , N − 1 and s ∈ S,

(5.2.1)

where

µt(s) = rt (st, 1) + min
p∈P1

s,t

∑
s′∈S

p(s′)µt+1(s
′) for t = 1, · · · , N − 1 and s ∈ S. (5.2.2)

The patient’s post-treatment discounted rewards µt(s) is computed in a separated Markov

model. The value of µt(s) (in Eq.(5.2.2)) is an estimation of accrued rewards under
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treatment initiation in state s at time epoch t for the remaining life period. The decision-

maker chooses to start treatment if the value of µt(s) is greater than the value of delay-

ing the treatment for one more decision epoch. Since we stop following patients after

age T , the decision at epoch N − 1 is to find the action that gives us the higher re-

wards value for the whole post-horizon rewards. The calculations for the post-decision

horizon rewards (PDHR) are completed using Eq.(4.1.6).

5.3 Structural Properties

A sufficient condition for the existence of an optimal control limit policy of a station-

ary infinite-horion MDP was proved by Alagoz et al. [1]. Kurt et al. [53] extended the

result to a non-stationary finite- horizon MDP. In this section, we introduce a sufficient

condition for the existence of the optimal control limit policy of the RMDP. We fol-

lowed a similar technique that developed by Kurt et al. [53]. By using of the mono-

tonicity of the value function, and consequently the expected benefit-loss function we

introduce a threshold for the optimal control limit policy of an RMDP.

First we present the definition of the increasing failure rate (IFR) of a transition proba-

bility matrix [6].

Definition 5.3.1 ([6]). Let B = [bij]n×n be a stochastic matrix. If
∑l

j=1 b(j|i) is nonin-

creasing in i for every l ∈ {1, · · · , n}, then B is said to have the IFR property.

Next, we define Assumption 1 as follows.

� If a matrix satisfies the IFR property, then it satisfies the following condition: for

ℓ > s, we have

min
p∈Pa

s,t

∑
s′∈S

p(s′)νt+1(s
′) ≥ min

p∈Pa
ℓ,t

∑
s′∈S

p(s′)νt+1(s
′). (5.3.1)

69



This assumption may be interpreted as the worst case-scenario for a sicker patient

is more probable to become worse. This assumption is proved for an MDP case in

[75] (Proposition 4.7.3), but for an RMDP we make it as an assumption to prove

the structural property of an optimal policy.

The expected benefit loss caused by postponing treatment initiation until the next deci-

sion epoch is denoted by Bt(s), which is defined as follows

Bt(s) = µt(s)− λmin
p∈P0

s,t

∑
s′∈S

p(s′)µt+1(s
′). (5.3.2)

Theorem 5.3.1. If Assumption 1 is satisfied, then the optimal value function νt(s) is non-

increasing in s ∈ L.

Proof. For ℓ ≥ s, from Assumption 1, and rt (s, 1), the post-treatment rewards are non-

increasing in s, i.e., µt(s) ≥ µt(ℓ). Moreover, from Assumption 1 and rt (s, 0) being non-

increasing in s, we can see the first term in the maximization function is also nonin-

creasing. Hence, the νt(s) is nonincreasing in s.

At epoch t = N and iteration k + 1, the values of νk+1
N (s) and µk+1

N (s) of the value

iteration algorithm function are defined as follows:

νk+1
N (s) = max {rN−1(s, 0) + min

p∈P0
s,N−1

∑
s′∈S

p(s′)νk
N(s

′), µk+1
N (s)},

and µk+1
N (s) = rN−1 (s, 1) + min

p∈P1
s,N−1

∑
s′∈S p(s

′)µk
N(s).

Theorem 5.3.2. Let Bt(s) be nondecreasing in s for all t. Then there exists st∗ such that

if at(s∗) = 1, then for s <= s∗, at(s) = 0, and for s > s∗, at(s) = 1, for all t.

Proof. It is enough to show ρt(s) = νt(s) − µt(s) is nonincreasing in s ∈ L for all t ∈ T,
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because the value of νt(s) can be one of the two values of the maximizing function in

Eq. (5.2.1). If νt(s) = µt(s), then ρt(s) = 0, and the nonincreasing property of Bt(s) en-

sures the action will be the same for the remaining t values. The proof of this theorem

is accomplished by an induction on value iteration’s iterates, k. Consider the following

cases:

� Case I: Let t0 denote any epoch different than epoch N.

– If νk+1
t0 (s + 1) = µt0(s + 1), then the function ρt(s) is nonincreasing. It can be

seen by just plugging the values of νt0 , i.e.,

νk+1
t0

(s)− µt0(s) ≥ νk+1
t0

(s+ 1)− µt0(s+ 1).

– Otherwise, the value function νk+1
t0 takes the first argument in Eq. (5.2.1),

i.e., νk+1
t0 (s+ 1) ≥ µt0(s+ 1). We assume the following inequality is correct for

some iteration k ≥ 0, νk
t0
(s) − µt0(s) ≥ νk

t0
(s + 1) − µt0(s + 1), and prove it

correct at higher iterations of the value iteration algorithm νk+1
t0 (s) − µt0(s) ≥

νk+1
t0 (s+ 1)− µt0(s+ 1).

From Eq. (5.2.1), the value function νk+1
t0 (s) = rt0(s, 0)+ min

p∈P0
s,t0

∑
s′∈S p(s

′)νk
t0
(s′).

Let us consider

νk+1
t0

(s)− νk+1
t0

(s+ 1)
?

≥ min
p∈P0

s,t0

∑
s′∈S

p(s′)νk
t0
(s′)− min

p∈P0
s+1,t0

∑
(s+1)′∈S

p((s+ 1)′)νk
t0
((s+ 1)′)

??

≥ min
p∈P0

s,t0

∑
s′∈S

p(s′)µk
t0
(s′)− min

p∈P0
s+1,t0

∑
s′∈S

p(s′)µk
t0
(s+ 1′)

???

≥ µt0(s)− µt0(s+ 1).

(5.3.3)

The first inequality comes from plugging in the values of νk+1
t0 (s) and νk+1

t0 (s+
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1). The second inequality is due to the fact that TPM is IFR and satisfies

Assumption 1:

min
p∈Pa

s,t0

∑
s′∈S

p(s′)(νk
t0
− µt0)(s

′) ≥ min
p∈Pa

s+1,t0

∑
(s+1)′∈S

p((s+ 1)′)(νk
t0
− µt0)((s+ 1)′).

(5.3.4)

The third inequality in Eq. (5.3.3) comes from the induction step. From the

non-increasing property of Bt0−1(s), we get that the induction inequality is

satisfied.

� Case II: Let t denote the last epoch (t = N).

We assume νk
N(s) − µN(s) ≥ νk

N(s + 1) − µN(s + 1) is nonincreasing in iteration

k ≥ 0 and prove the relation is correct in a higher iteration of the value iteration

algorithm, i.e., νk+1
N (s)− µN(s) ≥ νk+1

N (s+ 1)− µN(s+ 1).

From Eq.(5.2.1), if νk+1
N (s) = µN(s), then the relation is satisfied. Next, if νk

N(s) =

rN−1(s, 0) + min
p∈P0

s,N−1

∑
s′∈S p(s

′)νk+2(s
′), we consider

νn+1
N (s)− νn+1

N (s+ 1)
?

≥ min
p∈P0

s,N−1

∑
s′∈S

p(s′)νn
N(s

′)− min
p∈P0

s+1,N−1

∑
(s+1)′∈S

p((s+ 1)′)νn
N((s+ 1)′)

??

≥ min
p∈P0

s,N−1

∑
s′∈S

p(s′)µn
N(s

′)− min
p∈P0

s+1,N−1

∑
s′∈S

p(s′)µn
N(s+ 1′)

???

≥ µN−1(s)− µN−1(s+ 1).

(5.3.5)

By plugging in the values of νn+1
N (s), and νn+1

N (s + 1), we get the first inequality.

The second inequality is due to the fact that TPM is IFR and satisfies Assump-

tion 1:
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min
p∈Pa

s,t

∑
s′∈S

p(s′)(νn
N − µN)(s

′) ≥ min
p∈Pa

s+1,t

∑
(s+1)′∈S

p((s+ 1)′)(νn
N − µN)((s+ 1)′). (5.3.6)

The third inequality in Eq. (5.3.5) comes from the induction step. From the non-

increasing property of BN−1(s), we obtain that the induction inequality is satis-

fied.

Our next theorem is to show the existence of an optimal policy.

Theorem 5.3.3. For all s ∈ L, the value function νt(s) is nonincreasing in t; t ∈ T.

Proof. The result is proved using backward induction. Since the value function νt(s)

consists of two parts, we prove the nonincreasing property for both. First, we consider

post-treatment reward µt(s). Assume the relation is true for some epochs, say k + 2 ≤

N − 1, i.e. µk+1 ≥ µk+2. Let ℓ ∈ L′. We need to show µk(ℓ) − µk+1(ℓ) ≥ 0. Consider the

value of µk(ℓ)− µk+1(ℓ,

µk(ℓ)− µk+1(ℓ) = min
p∈P1

ℓ,k

∑
s′∈S

p(s′)µk+1(s
′)− min

p∈P1
ℓ,k+1

∑
s′∈S

p(s′)µk+2(s
′)

†
≥ min

p∈P1
ℓ,k

∑
s′∈S

p(s′)(µk+1(s
′)− µk+2(s

′))

††
≥ 0.

(5.3.7)

The first inequality, with †, is correct because, at higher epoch k + 1, the risk of mov-

ing to the absorbing state is higher than the risk of moving to the absorbing state at
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epoch k. The second inequality, with ††, comes from the induction step. Using the same

technique, we can show the value function is nonincreasing.

Theorem 5.3.4. Assume Bt(s) is nonincreasing in t ∈ T ′ and for all s ∈ L′. Then,

if a treatment is recommended to initiate in epoch t, it is recommended for the rest of the

patient’s life, i.e., if at(s) = 1→ at+1(s) = 1.

Proof. Consider ρt(s) = νt(s) − µt(s). The value of νt(s) takes one of the two values of

the maximizing function in Eq. (5.2.1). If νt(s) = µt(s), then ρt(s) = 0. Therefore, it is

enough to show ρt(s) is non-increasing in t ∈ T for all s ∈ L. The proof is done using

backward induction on t.

Suppose the relation is correct for some k + 1 < N , i.e., νk+1(s) − µk+1(s) ≥ νk+2(s) −

µk+2(s) for some fixed state s. We want to show the relation is true for νk(s)−νk+1(s) ≥

µk(s)− µk+1(s). Consider the following cases:

� Case I: For some state s, if νk+1(s) = µk+1(s), then the relation is satisfied by the

fact that νk(s) ≥ µk(s).

� Case II: Otherwise, the value function takes νk+1(s) = rt(s, 0)+ min
p∈P0

s,k+1

∑
s′∈S p(s

′)νk+2(s
′).

Consider

νk(s)− νk+1(s)
?

≥ min
p∈P0

s,k

∑
s′∈S

p(s′)νk+1(s
′)− min

p∈P0
s,k+1

∑
s′∈S

p(s′)νk+2(s
′)

??

≥ min
p∈P0

s,k

∑
s′∈S

p(s′)(νk+1(s
′)− νk+2(s

′))

???

≥ min
p∈P0

s,k

∑
s′∈S

p(s′)(µk+1 − µk+2)

????

≥ µk+1(s)− µk(s).

(5.3.8)
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The first inequality is just plugging the values of νk, and νk+1. The second in-

equality is due to the fact that at epoch k + 1 the probability of moving to an

absorbing state is higher than the probability of moving to an absorbing state at

epoch k. The third inequality comes from the induction step.

Next, from the non-increasing property of Bk(s), we have

Bk+1(s)−Bk(s) ≥ 0.

Substituting values of Bk&Bk+1, from Eq. ( 5.3.2), in the above equation, we get

µk+1(s)− λ min
p∈P0

s,k+1

∑
s′∈S

p(s′)µk+2(s
′)− µk(s)− λ min

p∈P0
s,k

∑
s′∈S

p(s′)µk+1(s
′) ≥ 0.

Rearrange, we obtain

µk+1(s)− µk(s) ≥ λ min
p∈P0

s,k+1

∑
s′∈S

p(s′)µk+2(s
′) + λ min

p∈P0
s,k

∑
s′∈S

p(s′)µk+1(s
′).

This shows the fourth inequality is satisfied. Hence, the induction step is satisfied.

In the next theorem, we present a threshold on this disutility value (τ) for statin treat-

ment to be initiated. The MDP version of Theorem (5.3.5) was proved in [52]. How-

ever, we prove the RMDP version.

Theorem 5.3.5. Let the dis-utility associated with statin use be τ, then there exists ε1, ε2

such that if τ ≥ ε1, the best action is to wait for the next decision epoch, and if τ ≤ ε2, the

best action is to start medication.
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Proof. For t ∈ [0, T ),

ν1
t (s)− ν0

t (s) = E[R(s, 1, j) + γVt+1(j)]− E[R(s, 0, j) + γVt+1(j)]

= min
p∈P1

s,t

3∑
j=1

((1− τ) + γVt+1(j))pij − min
p∈P0

s,t

3∑
j=1

(1 + γVt+1(j))pij

= min
p∈P1

s,t

3∑
j=1

(1 + γVt+1(j))pij − min
p∈P0

s,t

3∑
j=1

(1 + γVt+1(j))pij(1)− τ

= min
p∈P1

s,t

3∑
j=1

γVt+1(j)pij − min
p∈P0

s,t

3∑
j=1

γVt+1(j)pij − τ

(5.3.9)

The sign of ν1
t (s) − ν0

t (s) depends on the dis-utility τ . We can choose τ ≥ ε1 such that

ν1
t (s)− ν0

t (s) ≤ 0, and the best action is to wait until the next decision epoch. Similarly,

we can choose τ ≤ ε2, such that ν1
t (s) − ν0

t (s) ≥ 0, and the best action is to initiate

treatment.

5.4 Numerical Studies

We implement the model above for a patient with prediabetes, and the optimal policy

with sensitivity is evaluated. At a given age t, there are three lipid ratio states: low

(1 < LR1 ≤ 3.8), medium (3.8 < LR2 ≤ 5.5), and high (5.5 < LR3 ≤ 8.7), a di-

abetes state and a terminating state O. The probabilities of moving from living states

to a fatal CHD or stroke or non-CHD or non-stroke related deaths are calculated using

the Framingham risk equations [2] and the NHANES data set [16]. Since the Framing-

ham risk equations consider either diabetic or non-diabetic patients, we multiplied the

risk of CHD or stroke by relative risk for prediabetes patients, which are 1.1, 1.06, re-

spectively [45]. Moreover, we use cubic splines on the NHANES to estimate a patient

systolic blood pressure as a function of age. The probability of moving to the diabetes

state is calculated using the work of Levitzky et al. [58]. The probabilities of moving
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to other living states are estimated using the results of Section 3.1. We let Pns and Ps

denote the transition probability matrices for different levels of lipid ratio for untreated

and treated populations, respectively, and are estimated as shown in the third chapter.

Figure 5.1: A robust MDP policy is presented with respect to the three lipid ratio lev-
els. The disutility used in this implementation is 0.02.

Fig. 5.2 presents a worst-case scenario policy under pill dis-utility 0.02. Statin initia-

tion is not recommended for low lipid ratio level but statin initiation is recommended at

older age around 50 years old for medium lipid ratio. This also can be seen from sen-

sitivity analysis in Chapter Four where the higher diabetes risk associated with statin

negatively impacted statin recommendation. The Robust MDP implementation decreases

the values of accrued QALYs. This justifies that the MDP policy is better than Robust

MDP policy in terms of QALYs accrued. The maximum expected QALYs is presented
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in Table 5.1.

Table 5.1: The maximum expected QALYs prior to the first terminal events for predi-
abetes patients are depicted. The rewards are 0.98 QALY for statin use and 1 QALY,
otherwise. The relative risk for diabetes associated with using statin is 1.28.

Gender Age LR1 LR2 LR3
female

40 17.736 17.717 17.677
50 15.538 15.515 15.491
60 13.090 13.076 13.041
70 10.464 10.444 10.400
80+ 7.746 7.071 6.297

Male
40 17.133 17.112 17.071
50 15.120 15.079 15.056
60 12.580 12.551 12.517
70 9.631 9.617 9.577
80+ 5.412 4.842 4.183

Table (5.1) displays the maximum expected QALYs prior to the first terminal event us-

ing the robust MDP model. At the same scenario, a reward of 0.98 QALY for statin

use and 1 QALY for non-statin use is assigned for one year period. The MDP approach

accrued a higher value of QALYs than RMDP. For example, at age 40 with a low lipid

ratio, the maximum expected QALYs accrued using the MDP approach is 21.440 QALYs,

while the maximum expected QALYs accrued using robust MDP approach is 17.736

QALYs. The following table explains the remaining tasks in each chapter and the es-

timated time to finish them.
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5.5 Sensitivity

A sensitivity analysis is implemented to study the effects of a small change in QALY

values and the relative risk associated with statin use on the optimal policy. The pill

disutility can take values more than 0.02 because of the other consequences of using

statin like cancer [8], adverse effects on lever [11]. In this implementation, we raised the

disutility associated with using statin from 0.02 to 0.04, and the relative risk of diabetes

associated with using statin is raised from 1.28 to 1.5.

Figure 5.2: A robust MDP policy is presented with respect to the three lipid ratio lev-
els. The disutility used in this implementation is 0.04, and the relative risk associated
with statin use for diabetes is 1.5.
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Table 5.2: The maximum expected QALYs prior to the first terminal events for predi-
abetes patients are depicted for 0.96 QALY for statin use and 1 QALY for no-statin.
The relative risk associated with using statin is 1.5.

Gender Age LR1 LR2 LR3
female

40 17.111 17.106 17.088
50 14.990 14.980 14.953
60 12.639 12.622 12.583
70 10.176 10.152 10.103
80+ 7.746 7.071 6.297

Male
40 16.532 16.512 16.471
50 14.338 14.297 14.229
60 11.856 11.800 11.763
70 9.034 9.009 8.964
80+ 5.412 4.842 4.183

5.6 Conclusion

In this study, we developed a model that introduce a policy that consider the trade off

between the benefits of CVD risk reductions and side effects of using statin for pre-

diabetes population. Using RMDP model, we are able to find an optimal policy that

is robust to a small changes in the model parameters, which are transition probabili-

ties. The QALYS accrued using this model are lower because we are maximizing the re-

wards against the worst case scenario. In general, females are accruing higher number of

QALYs then males. This could be because the average FBG and LDL for females are

less than that for males, see table 5.1. Another reason for the differences in the accrued

QALs is women have lower CVD risks than men [33]. The structural properties pro-

vided a sufficient condition for the existence of optimal control limit policy. Addition-

ally, our rectangularity approach to formulate the uncertainty set allows to the worst
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case scenario to occur simultaneously at the same time. This is considered one of the

limitation of this approaches.

Future work is to add adherence factor to the model, and study its effects on the opti-

mal policy. Race/Ethnicity need to be consider because the progression rates to the dia-

betes states and to the CHD or stroke risk state vary with respect to different race/ethnicity

groups.
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Chapter 6

Conclusion

Studying prediabetes disease has attracted researchers’ attention recently. Prediabetes

is a state with a high risk of developing diabetes, and complications of diabetes such as

early nephropathy, small fiber neuropathy, early retinopathy and risk of macrovascular

diseases [5], [23].

In the first chapter, we estimated the transition probabilities among different lipid ratio

levels for prediabetes population using cross-sectional NHANES data sets. Additionally,

using Bayesian approach, we estimated the risk of prediabetes as a function of age. Our

result stats that as age increases the prediabtes risk is also increase. This result is used

in modeling the risk of prediabetes in our MDP model as a function of age.

A multivariate quantile regression model is used to assess the characteristics of the as-

sociation in different quantiles of the conditional distribution of the FBG. The depen-

dent variables in our model are gender, Race/Ethnicity (Mexican, Other Hispanic, Non-

Hispanic White, Non-Hispanic Black, Other Race - Including Multi-Racial), age, BMI,

total cholesterol, and statin use (yes or no). Our model shows there is an association

between statin use and FBG. In other words, statin users have higher FBG levels by

approximately on average 50 mg/dL higher. However, OLS model is not able to detect

this association because at lower quantile the effect of glucose is negligible. On average,

the OLS shows statin users have higher glucose by 10 mg/dL. Gender effects on differ-

ent FBG quantiles are investigated. At lower quantiles of FBG, the FBG for femals is

less than FBG for males by 4 mg/dL. This dispersion reaches up to 8 mg/dL on aver-

age at higher quantiles. There is no association between FBG and TC at lower FBG
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quantiles, but there is an association at higher FBG quantiles. The age and BMI effects

on FBG are approximately similar.

An MDP model is used to introduce an optimal policy for statin treatment initiation.

A sensitivity analysis is implemented on model parameters. Our findings are consistent

with results in [68], and [43]. We found that whenever the risk of diabetes increases the

statin initiation delays. More over, pill disutility also delays statin initiation treatments.

Our MDP model is sensitive to small changes in transition probabilities. We develop

an RMDP model to tackle this issue. In the RMDP model, we found an optimal policy

that stays optimal for small perturbations in the transition probability matrix. We also

introduce a sufficient condition for the existence of the optimal control limit policy.

Our feature works is to study the uncertain adherence of the treatment effects on the

optimal policy. The adherence has been study for diabetes population in the work of

Mason et al. [61]. Moreover, We also interested in studying the effects of different statin

drugs. It was reported that different statin drugs have different effects on cholesterol

levels.
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