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ABSTRACT 

 Most North American waterfowl overwinter in southern North America before migrating 

back to breeding grounds in the northern US and Canada. These species face the challenge of 

needing to maintain or increase their body mass during an environmentally difficult winter 

period. Successful body mass maintenance during the winter period has major ramifications not 

only for their winter survival but for their fitness across the entire year. Recent research in 

Europe and the western United States suggests that the body mass of mallards (Anas 

platyrhynchos) has increased from the late 1960s to early 2000s. However, the factors 

responsible for increases in mallard body mass remain unknown. Because research has shown 

that mallard body mass and condition is directly proportional to energy acquired across the 

landscape, conservation agencies attempt to provide high-energy habitat such as woody 

wetlands, herbaceous wetlands, and open water areas for waterfowl to feed, rest, and complete 

other important life-cycle activities. Additionally, managers have tried to increase the amount of 

flooded agricultural grain across the landscape, as crops like rice can provide waterfowl with a 

source of high-energy food, especially in important overwintering waterfowl areas such as the 

Lower Mississippi Alluvial Valley (LMAV). However, long-term trends in mallard body mass, 

as well as the relationship between body condition of mallards and landscape composition has 

yet to be assessed in the LMAV. 

 To assess mallard body mass over time in the LMAV, we collected measurements from 

hunter-harvested mallards across the LMAV of Arkansas and Mississippi during duck hunting 

seasons from 1979-2021. We measured body mass, wing length, and aged and sexed each bird. 

We then developed four age-sex linear mixed effects models (LMM) analyzing changes in body 

mass across years. We also analyzed body mass within a winter period across the day of duck 



   

season, as well as in relation to cumulative rainfall, river flooding, and a weather severity index 

(WSI). We determined that mallard body mass has increased within the LMAV from 1979-2021. 

Within years, body mass generally decreased over the course of the hunting season. Mallard 

body mass generally increased when rainfall and river flooding increased. However, there was 

generally no relationship with mallard body mass and WSI. 

 Using Arkansas mallard measurements from duck hunting seasons 2019-2020 and 2020-

2021, we calculated body condition indices (BCI) for each bird using the residuals from a mass 

by wing length regression for each age-sex class. We then used an LMM to analyze changes in 

mallard BCI in relation to landscape variables known to influence mallard body mass or BCI 

within a 30-km radius of each harvest site. Landscape variables included proportion of water 

cover, rice, soybeans, woody wetlands, herbaceous wetlands, open water areas, and areas of 

human disturbance. We found that mallards with high BCI came from areas with higher 

proportions of water cover, woody wetlands, and open water. However, mallards with lower BCI 

came from areas with higher proportions of herbaceous wetlands and human disturbance. We 

suggest managers restore, protect, and increase food resource availability in wetlands including 

bottomland hardwood forests
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Long-Term Monitoring of Body Mass and Body Condition in Waterfowl 

 Overwintering waterfowl must maintain their body mass to meet energetic needs during 

the winter period (Loesch et al. 1992). Waterfowl can maintain body mass by having access to 

adequate foraging and roosting habitat across the landscape (Delnicki and Reinecke 1986; 

Reinecke et al. 1988; 1989; Frederickson and Taylor 2007). Waterfowl that successfully 

maintain their energy stores are more likely to be in a better body condition, and will be more 

equipped to survive the winter, properly time important life-cycle events (e.g., molt cycles, pair 

formation), as well as prepare for the challenges of spring migration (Bergan and Smith 1993; 

Dujins et al. 2017; Owen and Cook 1977; Hepp 1986; Miller 1985) and subsequent breeding 

activities (Devries et al. 2008). Thus, body mass and resulting body condition in waterfowl can 

be important indicators of waterfowl population health and waterfowl resource provision across 

the landscape. 

 However, few studies have measured long-term trends in waterfowl body mass, but all 

suggest body mass has increased in several species of waterfowl from the late 1960s to early 

2000s, and that waterfowl in more recent decades may be of a better body condition than those of 

previous decades. In the Northwest European Flyway, researchers found that mallards (Anas 

platyrhynchos) and European green-winged teal (Anas crecca) increased in mass by between 

7.3% and 11.7% from the 1960s to the 2000s. The authors speculated that the increases in mass 

could be due to waterfowl spending less energy on thermoregulation due to a more benign winter 

climate. Furthermore, increases in mass may be the result of more rainfall and flooding over 

time, thus, increasing access to food. Additionally, researchers believe that the intensification of 

wetland management practices as well as the increase in protected areas over time could have 

resulted in increases in waterfowl body mass (Guillemain et al. 2010). Waterfowl body mass and 
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resulting condition has also increased in the Central Valley (California, USA) for several duck 

species. Researchers speculate increases in mass are due to improved habitat management. Over 

the 20-year study period, wetland enhancement programs in the Central Valley area improved 

post-harvest flooding of crop fields, like rice; better managed the productivity of natural seeds in 

wetlands; and increased the amount of available roosting habitat. Thus, waterfowl at the end of 

the study period were able to spend less time searching for and traveling between resources to 

maintain energy requirements as opposed to waterfowl in previous time periods (Fleskes et al. 

2016). 

On the contrary, other studies suggest that body mass increases in waterfowl are more 

likely a function of distributional shifts of subpopulations or the genetic swamping of wild 

populations by hand-reared waterfowl. In the Mediterranean Flyway (Europe), researchers found 

that mallards have shortened their migration distances (Gunnarsson et al. 2012). Additionally, 

mallards within this area have increased in body mass. Because shorter migration distances 

require less energy use, it is thought that the shifts in distributions are possibly responsible for 

the increases in body mass (Gunnarsson et al. 2011). Additionally, this area was subject to 

mallard stocking of hand-reared mallards. Because hand-reared mallards are usually of a larger 

size than wild mallards (Harrison 1966; Greenwood 1975; Figley and VanDruff 1982; Byers and 

Carey 1991; Dubovsky and Kaminski 1994), the introgression of hand-reared mallards could be 

responsible for the increases in mass (Gunnarsson et al. 2011). 

Waterfowl Management in Relation to Mallard Body Mass and Body Condition in the Lower 

Mississippi Alluvial Valley 

 Because waterfowl body mass is directly proportional to energy acquired (Labocha and 

Hayes 2012), the quality and quantity of food resources that management agencies provide can 
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influence waterfowl body mass and their resulting body condition (Rave and Baldassarre 1991). 

Additionally, habitat that allows waterfowl to sufficiently rest and avoid disturbance will prevent 

waterfowl from engaging in unnecessary behaviors (e.g., swimming, flying) and wasting energy. 

Thus, waterfowl management is centered upon the premise that maximizing the amount of food 

on the landscape, while regulating human disturbance (Fredrickson and Taylor 2007; Reinecke et 

al. 1989) will increase mallard body condition. Therefore, waterfowl using managed habitats 

should assimilate more energy, resulting in a higher body condition index (BCI) value. 

 Management of habitat for overwintering waterfowl body condition is especially 

important in the Lower Mississippi Alluvial Valley (LMAV). The LMAV is 26.7 million acres in 

size and spans from the upper Midwest to southern portions of the Mississippi Flyway (Oswalt 

2013). In particular, the Arkansas portion of the LMAV is a point at which many rivers 

converge, and this attracts some of the highest densities of overwintering waterfowl in North 

America. For this reason, conservation agencies like the U.S. Fish and Wildlife Service and 

Arkansas Game and Fish Commission spend millions of dollars each year to protect, restore, and 

manage habitat for waterfowl in this region. 

 Several types of habitats that are managed in the Arkansas LMAV for waterfowl and can 

influence mallard body mass or body condition. For example, this area is known worldwide for 

its once vast bottomland hardwood forests that provide waterfowl with high-energy mast in the 

form of acorns (Allen 1980; Dabbert and Martin 2000; Heitmeyer and Fredrickson 1990: Miller 

et al. 2003: Reinecke et al. 1989), macroinvertebrates in the leaf litter that provide valuable 

proteins (Foth et al. 2014; Fredrickson and Heitmeyer 1988; Krapu and Reinecke 1992; 

Fredrickson and Batema 1992), as well as offer waterfowl areas to roost and avoid hunting 

pressure which contributes toward energy conservation (Reinecke et al. 1989). Herbaceous 
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wetlands, in the form of moist soil units, are also managed to provide waterfowl with a variety of 

vegetative matter and seeds packed with unique, essential vitamins and amino acids (Checkett et 

al. 2002), as well as aquatic invertebrates for dietary proteins (Fredrickson and Taylor 1982; 

Anderson and Smith 1999; Gray et al. 1999). Open water lakes are also areas of management 

interest as they allow waterfowl to have good visibility to locate and avoid predators, shallow 

water shorelines for foraging, and areas for roosting (Chabreck et al. 1989; Rave 1987; Tamisier 

1978). Waterfowl also benefit from flooded agricultural fields, like rice, as they offer high 

energy food resources for waterfowl. However, not all commercial crops are beneficial to 

waterfowl. Soybeans, sometimes utilized by waterfowl, do not provide much nutrition. If 

digested, soybeans can sometimes cause impaction and increase mortality among waterfowl 

(Ringleman 1990). Additionally, because areas with high human disturbance can cause 

waterfowl to alter their behavior (Burger and Gochfeld 1998; Pease et al. 2005; Riddington et al. 

1996) and waste energy (Knapton et al. 2000; Taylor et al. 2010), conservation agencies also 

manage waterfowl refuges, which are habitats closed to human access during the winter period 

(Bellrose 1954; Madsen 2004). Waterfowl use a variety of these habitat types to maintain energy 

stores required during different life cycles events across the winter. 

Objectives 

 Long-term body mass trends, specifically for mallards, have yet to be assessed within the 

LMAV. Additionally, because recent assessments show the LMAV is below goal levels of food 

energy provision for ducks (LMVJV 2015), it is important for conservation agencies to 

understand how the body condition of waterfowl is responding to a lack in resources so they may 

be able to manage the landscape appropriately. Therefore, I conducted the studies below to 

assess how body mass in hunter-harvested mallards has changed from 1979-2021 within the 
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LMAV, as well as analyzed the environmental and landscape variables that could be responsible 

for observed trends in mallard body mass and body condition. 

 The objectives of my study were to: 1) to measure variation in overwintering mallard 

body mass within the LMAV based on intrinsic factors such as age and sex, as well as extrinsic 

factors such as temperature, rainfall, river height, day, and year; 2) to explore landscape cover 

within the vicinity of mallard harvest sites that promotes high BCI in mallards; and 3) identify 

areas within the Arkansas LMAV that will promote better body condition among waterfowl. 

 Chapter One of my thesis addresses my first objective. Chapter Two will examine my 

second and third objectives. Chapter One is formatted with the intent of publication in the 

Journal of Wildlife Management with Dr. Brett A. DeGregorio, Luke W. Naylor, Dr. Kenneth J. 

Reinecke, Dr. Brad C. Dabbert, Dr. Dean W. Demarest, Dr. Kevin M. Hartke, and Dr. David G. 

Krementz. Chapter Two is also formatted with the intent of publication in the Journal of Wildlife 

Management with Dr. David G. Krementz, Luke W. Naylor, and Dr. Brett A. DeGregorio.  
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WINTER MALLARD (ANAS PLATYRHYNCHOS) BODY MASS TRENDS FROM 1979 – 
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ABSTRACT 

Body mass in overwintering waterfowl is an important fitness attribute as it relates directly to 

winter survival, timing of spring migration, and reproductive success the following spring. 

Recent research in Europe and the western United States suggests that the body mass of mallards 

(Anas platyrhynchos) has increased from the late 1960s to early 2000s. Some researchers 

hypothesize that increases in body mass are due to a more benign winter climate and increased 

food availability. Others suggest body mass has increased due to introgression of wild mallard 

populations by game-farm mallards or the shifting of wintering distributions northward. 

However, it is currently unclear if this phenomenon is occurring in other important waterfowl 

flyways. Here we analyze trends in mallard body mass in the Lower Mississippi Alluvial Valley 

from 1979-2021 to establish whether such changes have occurred. During Arkansas and 

Mississippi duck hunting seasons, we measured hunter-harvested mallards from hunting clubs, 

state and federal public duck hunting areas, and plucking stations. From 1979-2021, mallard 

body mass has increased by between 5.6 and 7.6 % among all age-sex classes. On average, 

mallards are increasing in mass by 1.5 % per decade. However, mallard body mass fluctuated 

within the wintering period and was quite variable between years. Mallards generally decreased 

in mass over the course of the waterfowl hunting season. Additionally, mallard body mass was 

influenced by rainfall, with ducks having larger body mass after periods of increased rainfall or 

river flooding, likely due to increased availability of food. Conservation agencies that promote 

flooding strategies to help waterfowl optimally access food resources may help promote a higher 

body mass in ducks
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INTRODUCTION 

Long-term monitoring of wildlife has revealed instances of body mass change coincident 

to landscape alterations, climate change, or genetic swamping from captive-bred individuals 

(Ktitrov et al. 2008; La Sorte et al. 2009; Reeves et al. 2020; Robel et al. 1979). For example, in 

Norway, changing forestry practices are thought to have led to decreases in moose (Alces alces) 

body size from the early 1970s to early 2000s (Bjørneraas et al. 2011; Lavsund et al. 2003). 

Additionally, the body mass of wood rats (Neotoma spp) in New Mexico, USA has decreased 

from 1989-1996 as minimum and maximum temperatures increased over the course of the study 

period (Smith et al. 1998). Wacker et al. 2021 was able to demonstrate that farm raised Atlantic 

salmon (Salmo salar), which escaped into River Atla in Norway, were able to breed with wild 

salmon. After 20 years, introgressed Atlantic salmon in the river were of a larger body size than 

those of non-introgressed salmon (Wacker et al. 2021).  

Some of the strongest evidence for body mass change over large time scales comes from 

waterfowl. For example, Guillemain et al. 2010 showed that the body mass of mallards (Anas 

platyrhynchos) and European green-winged teal (Anas crecca) in Europe increased between 

7.3% to 11.7% from the 1960s to the 2000s. The authors hypothesized that these changes could 

have been caused by climate change and local habitat management. Waterfowl body mass has 

also increased over time for several duck species in California, USA (Fleskes et al. 2016). The 

authors suggest that the observed increases in waterfowl body mass can be explained by 

increases in waterfowl food resources and wetland area. However, there are other potential 

explanations such as stocking programs using heavier, hand-reared mallards to supplement wild 

mallard populations as well as shifts in winter distributions of subpopulations leading to 

increased body mass in mallards (Gunnarsson et al. 2011). Given these similar trends on 
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different continents, it is likely that this phenomenon of waterfowl increasing in body mass over 

time occurs in additional regions. Elucidating the extent of these changes will be important for 

understanding how wildlife are responding to a changing world.  

Understanding long-term changes in body mass for waterfowl is complicated by the fact 

that body mass varies both year-to-year and within years in relation to several intrinsic and 

extrinsic factors. Waterfowl body mass can be affected by endogenous regulation due to specific 

life cycle events as well as age and experience. For example, female mallards during certain molt 

stages, specifically the mid-pre-breeding molt stage, were lower in lipid mass than other females 

in other molt stages (Heitmeyer 1988). In the same study, females who completed breeding pair 

formation with males contained greater lipid masses than females who failed breeding pair 

formation. Mallard body mass also varies across the wintering period, driven by physiological 

processes (Heitmeyer 1988; Loesch et al. 1992), perhaps as a mechanism to attain optimal spring 

departure weights for efficient, fast migration (Lindström and Alerstam 1992). Other researchers 

have shown that older ducks have greater body mass because they are more efficient foragers 

than younger individuals (Hohman and Weller 1994). Waterfowl body mass can also be affected 

by exogenous factors such as food availability and climate. Dabbling ducks like mallards forage 

in shallow marshes, flooded fields, and floodplains for aquatic invertebrates, rice, soybeans, 

mast, and seeds of moist-soil plants (Delnicki and Reinecke 1986; Miller et al. 2003; Reinecke et 

al. 1989). Because duck body mass is directly proportional to energy acquired (Labocha and 

Hayes 2012), the quality and quantity of available food resources can alter waterfowl body mass 

(Rave and Baldassarre 1991). Food availability for dabbling ducks varies across the winter 

period as foods are consumed, decompose, or become available/unavailable based on rising or 

receding water levels driven by rainfall and flooding (Behney 2020; Hagy and Kaminski 2012; 
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Poysa 1983). Temperatures can further impact duck body mass by either making food 

unavailable under ice or by thermally stressing animals and increasing their metabolism 

(McKinney and McWilliams 2005; Schummer et al. 2010).  

Here, we assess body mass trends in hunter harvested mallards across four decades 

(1979-2021) within the LMAV, as well as explore the factors responsible for those trends. Our 

overall goal was to evaluate if mallards have increased in body size as has been reported in 

Europe (Guillemain et al. 2010; Gunnarsson et al. 2011) and in the western United States 

(Fleskes et al. 2016), but to also explore other factors influencing changes in body mass within 

and among years. Our specific objective is to quantify variation in winter body mass of mallards 

in the LMAV based on intrinsic factors such as age and sex, as well as extrinsic factors such as 

temperature, rainfall, river height, day, and year. We predict that overall body mass has increased 

over time as has been seen in other regions such as western Europe and the western United States 

(Fleskes et al. 2016: Guillemain et al. 2010; Gunnarsson et al. 2011). We also predict that this 

overall trend will be complicated by natural variation in weather within years such that mallards 

will be heaviest when food availability is increased due to higher levels of winter rain and river 

flooding (Delnicki and Reinecke 1986; Reinecke et al. 1988), as well as being heaviest when 

weather is mild relative to years with severe winter weather that can lead to increased 

physiological stress and reduced food availability (McKinney and McWilliams 2005; Schummer 

et al. 2010; Whyte and Bolen 1984). 

METHODS 

Study Area 

The Lower Mississippi Alluvial Valley (LMAV) is the largest floodplain in the USA and 

spans 26.7 million acres across portions of seven states within the Mississippi Flyway (Oswalt 
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2013). The LMAV is made up of many river systems used by waterfowl as they migrate south 

for the winter. As a result, the LMAV supports some of the highest densities of waterfowl in 

North America (Bellrose et al. 1976). Additionally, the LMAV contains rich alluvial soil which 

makes it a productive agricultural region for crops like rice that are a valuable waterfowl food 

source (National Fish and Wildlife Foundation 2019; Nelms et al. 2007). Our study area spanned 

the entirety of the LMAV of Arkansas, as well as some sites within the LMAV in Mississippi 

(Figure 1.1).  

Body Mass Measurements 

Body measurements were collected from several different published (Dabbert et al. 1997; 

Dabbert and Martin 2000; Delnicki and Reinecke 1986) and unpublished studies the authors 

have collectively conducted from 1979-2021. Thus, sample site locations and methodology were 

not standardized across different time periods. We included body mass measurements of 

mallards collected during the Mississippi duck hunting seasons of 1979-1980 through 1982-

1983, as well as Arkansas duck hunting seasons of 1990-1991, 1999-2000 through 2003-2004, 

2015-2016, 2016-2017, 2019-2020, and 2020-2021. We collected data from both public and 

private lands. We selected field sites based on availability of harvested mallard samples from 

hunters, but also in an attempt to obtain a wide geographic distribution of mallard samples across 

the Arkansas and Mississippi LMAV. In later years, we focused efforts on collecting samples 

from as wide of a geographic area as possible and sampling areas not previously visited. We 

sampled ducks at hunting lodges, public waterfowl hunting areas, as well as duck cleaning 

businesses. Body mass measurements from 1979-1983 were previously collected by Delnicki 

and Reinecke (1986) and measurements from 1990-1991 were previously collected from Dabbert 

et al. (1997) and Dabbert and Martin (2000) (Table 1.1). From 1979-1980 through 1982-1983, 
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we measured mallards killed by hunters at Hillside National Wildlife Refuge (NWR), Panther 

Swamp NWR, Delta National Forest, and private hunting clubs in Holmes, Humphreys, Sharkey, 

and Yazoo Counties in west-central Mississippi. From 1990-1991, we harvested and measured 

mallards from Bayou Meto Wildlife Management Area (WMA) and the White River NWR. 

From 1999-2000 through 2003-2004, we obtained body mass data for mallards at a duck 

cleaning business in Stuttgart, Arkansas in the Grand Prairie region of east-central Arkansas. 

During 2015-2016 and 2016-2017, we collected mallard body mass measurements from 

harvested mallards on private farmland in east-central Arkansas. During 2019-2020 and 2020-

2021, we collected mallard body mass measurements from harvested mallards on private land 

and public waterfowl hunting areas (WMAs and NWRs) across the north, central, and south 

LMAV of Arkansas. All mallards were aged and sexed using plumage dimorphism and feather 

morphology characteristics (Carney 1992; Krapu et al. 1979). 

Body Mass Analyses 

To explore mallard body mass change over time and in response to intrinsic and extrinsic 

factors, we used linear mixed effects models (LMMs) in R Computing Software (package lme4 

in R Studio 1.2.5042; 2020). Because mallards display sexual dimorphism with males being 

larger than females (Bellrose 1980), and by age with adults being larger than juveniles (Hohman 

and Weller 1994), we analyzed each sex and age group separately. For all four models, we used 

mallard body mass as the response variable, and we used location as our random variable to 

control for variation across sites. We used Year as our first fixed factor to explore how mallard 

body mass has changed over the course of the study (1979-2021). However, we should note that 

the duck hunting season spans calendar years (often Nov-Feb). Thus, our use of the term Year 

refers to the duck hunting season initiating in November of that year and spanning to February of 
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the next calendar year. We expected that mallard body mass would increase from 1979 to present 

as has been reported for mallards in Europe and the Central Valley of the U.S. 

Additionally, we explored several other extrinsic fixed factors to assess how they also are 

related to mallard body mass fluctuations. These extrinsic factors include Day of Season, 

Cumulative Rainfall, River Gage Height, and Weather Severity Index (WSI). Day of Season 

refers to each chronological day of the duck hunting season. We included Day of Season because 

mallard body mass is known to fluctuate over the course of the winter (Loesch et al. 1992; 

Pawlina et al. 1993). We used a modified Julian day with the earliest date that a mallard was 

harvested across the study labeled as day 1 (November 19th) and each subsequent day numbered 

sequentially until day 83 (Feb 13th), the latest date a bird was harvested. We expected body mass 

to be negatively correlated to the day of hunting season as food resources become scarcer as 

winter progresses (Eadie et al. 2008). To assess the relationship of Cumulative Rainfall and WSI 

to mallard body mass, we collected climate variables from nearby National Oceanic and 

Atmospheric Administration (NOAA) weather stations. We obtained daily measures of 

precipitation (cm) and minimum and maximum temperature (°C). We used data from Yazoo 

City, Yazoo County, Mississippi (station name: Yazoo City 5 NNE) for winters 1979-1980 

through 1982-1983 and Arkansas (station names: Stuttgart 9 ESE, Des Arc, Searcy, Georgetown, 

Pine Bluff, Augusta, Wynne, Alicia, Keiser, Eudora, Monticello Municipal Airport, Marianna, 

Arkansas Post, Rohwer, Paragould, and Pocahontas) for winters 1990-1991, 1999-2000 through 

2003-2004, 2015-2016, 2016-2017, 2019-2020, and 2020-2021 based on proximity of harvest 

site to closest weather station. We calculated 3-day cumulative rainfall prior to mallard harvest to 

explore the relationship of rainfall with waterfowl body mass. We expected body mass to be 

positively related to precipitation because flooding increases available foraging habitat (Reinecke 
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et al. 1988). We then calculated daily average temperature for each day of the season and used 

these values to calculate the 3-day average of daily average temperatures prior to mallard 

harvest. Finally, we calculated WSI using our 3-day average temperature values (by modifying 

the WSI equation from Schummer et al. 2010) to evaluate the relationship of weather severity 

and mallard body mass before harvest. 

𝑊𝑆𝐼 = %−1 ∗ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑜𝑓	𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠	3 − 𝑑𝑎𝑦	𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝐷𝑎𝑖𝑙𝑦	𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒	(𝐶°)C

+ (𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝐷𝑎𝑦𝑠	𝐶𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒𝑙𝑦	 ≤ 0	𝐶°)

+ (𝑆𝑛𝑜𝑤	𝐷𝑒𝑝𝑡ℎ	(𝑐𝑚	𝑥	0.394)	𝑜𝑛	𝐷𝑎𝑦	𝑜𝑓	𝐻𝑎𝑟𝑣𝑒𝑠𝑡) + (𝐶𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒	𝑑𝑎𝑦𝑠

≥ 2.54	𝑐𝑚	𝑜𝑓	𝑠𝑛𝑜𝑤)	 

We predicted that during extreme weather events, mallards will have higher metabolic 

needs and potentially reduced access to food resources, and thus lower body mass (Whyte and 

Bolen 1984). Finally, River Gage Height refers to river gage height data (m) that was collected 

from the USGS Lower Mississippi-Gulf Water Science Center for Mississippi winters 1979-

1983 (gage name: Big Black River near Bovina) and for Arkansas winters 1990-1991,1999-2000 

through 2003-2004, 2015-2016, 2016-2017, and 2019-2020, and 2020-2021 (gage names: Black 

River near Corning, Black River at Pocahontas, Black River at Black Rock, Cache River at 

Egypt, White River at Newport, White River at Georgetown, Cache River near Cotton Plant, 

White River at DeValls Bluff, L’Anguille River near Colt, L’Anguille River near Palestine, 

Bayou Meto near Lonoke, Bayou Bartholomew at Garrett Bridge, and Bayou Bartholomew near 

McGehee). Gage data was retrieved from river gages that were nearest to our sample sites to 

examine the relationship of daily river height on harvested mallard body mass. Similar to 

rainfall, we expect that mallard body mass will be highest when river levels are high because of 

increased foraging habitat. After developing all variables, we checked for collinearity using 

Pearson’s correlation coefficient. No predictor variables were highly correlated (≥ 0.7 
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correlation), and thus, all were retained for analyses. Among predictor variables, only 

Cumulative Rainfall did not meet assumptions of homogeneity of variances. Therefore, 

Cumulative Rainfall was log transformed to better meet assumptions. 

Determining Rate of Change (%) of Body Mass Over Time 

To better explore the magnitude of body mass change over time for each age-sex class, 

we binned duck body mass into decadal groups and calculated the rate of change in body mass 

between decadal groups. We used the following time periods: Decade 1 = 1979-1980 through 

1988-1989, Decade 2 = 1989-1990 through 1998-1999, Decade 3 = 1999-2000 through 2008-

2009, Decade 4 = 2009-2010 through 2018-2019, and Decade 5 = 2019-2020 through 2020-

2021. We chose to bin body mass measurements among decadal groups because our data were 

collected during sampling periods separated by uneven gaps of time. We then calculated pair-

wise changes in average body mass across these time periods using variations of the following 

rate of change equation from Hopkins (1992):  

%	𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝐵𝑜𝑑𝑦	𝑀𝑎𝑠𝑠	𝐺𝑟𝑜𝑤𝑡ℎ	𝐵𝑒𝑡𝑤𝑒𝑒𝑛	𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙	𝐷𝑒𝑐𝑎𝑑𝑒𝑠

= Y
𝐴𝑣𝑔. 𝐵𝑜𝑑𝑦	𝑀𝑎𝑠𝑠	𝐷𝑒𝑐𝑎𝑑𝑒	(𝐷) − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝐵𝑜𝑑𝑦	𝑀𝑎𝑠𝑠	𝑜𝑓	𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠	𝐷𝑒𝑐𝑎𝑐𝑑𝑒	(𝐷 − 1)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝐵𝑜𝑑𝑦	𝑀𝑎𝑠𝑠	𝑜𝑓	𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠	𝐷𝑒𝑐𝑎𝑑𝑒	(𝐷 − 1)
Z ∗ 100 

 

%	𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝐵𝑜𝑑𝑦	𝑀𝑎𝑠𝑠	𝐺𝑟𝑜𝑤𝑡ℎ	𝑝𝑒𝑟	𝐷𝑒𝑐𝑎𝑑𝑒

= 	
𝑆𝑢𝑚	𝑜𝑓	%	𝐶ℎ𝑎𝑛𝑔𝑒	𝐵𝑒𝑡𝑤𝑒𝑒𝑛	𝐴𝑙𝑙	5	𝐶ℎ𝑟𝑜𝑛𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙	𝐷𝑒𝑐𝑎𝑑𝑒	𝑃𝑎𝑖𝑟𝑠	(1	&	2, 2	&	3, 𝑒𝑡𝑐. )

5
 

We should note, binning of body mass measurements by decadal groups was only used to 

calculate the rate of change of body mass over time. Binning was not used to analyze trends in 

body mass overtime within LMMs. 
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RESULTS 

In total from 1979-2021, we measured body mass of 6,307 mallards within the LMAV. 

Our mallard measurements included 2,765 adult males, 1,505 juvenile males, 912 adult females, 

and 1,125 juvenile females. On average, mallard body mass was generally the highest in sample 

year 2020-2021 among most age-sex classes (adult males = 1331.28 g ± 4.89 (SE), adult females 

= 1180.79 g ± 11.93 (SE), juvenile males = 1290.5 g ± 4.97 (SE)) as compared to other sample 

years, except for juvenile females being slightly heavier in 2015-2016 (1141.1 g ± 27.01 (SE)). 

Adult male (1167.22 g ± 13.53 (SE)) and juvenile female (988.86 g ± 33.02 (SE)) mallard body 

mass was lowest during 2016-2017. Juvenile male mallard body mass was lowest in 1990-1991 

(1034 g ± 9.00 (SE)). Adult female mallard body mass was lowest in 1980-1981 (1051.15 g ± 

6.57 (SE)) (Table 2.1). 

Body Mass Change Over Time 

We found that mallard body mass among all age-sex classes was significantly related to 

Year (P < 0.01), with all groups increasing in mass over time. Adult males (b = 1.68, CI = 0.94 – 

2.43), juvenile males (b = 2.91, CI = 2.08 – 3.76), adult females (b = 1.41, CI = 0.59 – 2.22), and 

juvenile females (b = 2.16, CI = 1.13 – 3.21) all increased in body mass from 1979-2021. On 

average the rate of change of body mass from Decade 1 to Decade 5 was 5.6% for adult males, 

6.9% for adult females, and 7.6% for juvenile males and females. Among all age-sex classes, 

increases in mallard body mass ranged on average between 1.2-1.9 % per decade (Figure 2.1; 

Table 3.1).  

Although mallard body mass generally increased over the course of the study, body mass 

varied among years (Figure 3.1). For adult males and adult females (P < 0.01), as well as 

juvenile males (P = 0.02), body mass was related to Day of Season within a sample year. Mallard 



  22 

body mass generally decreased from the start to end of each hunting season for adult males (b = -

0.8, CI = -1.05 – -0.55), adult females (b = -1.04, CI = -1.43 – -0.61), and juvenile males (b = -

0.38, CI = -0.71 – -0.06). However, juvenile female mallard body mass was not significantly 

related to Day of Season (Table 3.1; Figure 4.1). 

Body Mass Trends in Relation to Climate 

It should be noted that a priori analyses indicated that Cumulative Rainfall and River 

Gage Height were not highly correlated (r = 0.24 – 0.27 among models). We observed that all 

age-sex classes were generally related to Cumulative Rainfall (P ≤ 0.039 for adult males, and 

juvenile males and females). Body mass for adult males (b = 3.09, CI = 1.33 – 4.86), juvenile 

males (b = 2.53, 0.14 – 4.90), and juvenile females (b = 3.02, 0.30 – 5.84) increased as 

cumulative rainfall increased. However, there was no relationship between cumulative rainfall 

and adult female body mass (P ≥ 0.1) (Table 3.1; Figure 5.1).  

We also observed that mallard body mass was generally related to River Gage Height. 

Adult females (P < 0.01; b = 9.65, CI = 5.81 – 13.53) and juvenile females (P < 0.01; b = 9.32, 

CI = 5.24 – 13.36) increased in body mass as River Gage Height increased. There was a 

marginally significant relationship between adult male (P = 0.084) mallard body mass with River 

Gage Height, with adult males generally increasing in mass as River Gage Height increased (b = 

2.14, CI = -0.27 – 4.61). However, juvenile male mallard body mass was not significantly related 

to River Gage Height (P ≥ 0.1) (Table 3.1; Figure 6.1). 

Mallard body mass among adult males and females, as well as juvenile males, was not 

significantly related to WSI (P > 0.1). However, body mass among juvenile females held a 

marginally significant relationship with WSI (P = 0.066) with juvenile females generally 

decreasing in mass as WSI increased (b = -1.62, CI = -3.36 – -0.09) (Table 3.1; Figure 7.1). 
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DISCUSSION 

We found that mallard body mass has increased from 1979-2021. We documented a body 

mass increase of 5.6-7.6 % among all age-sex classes. This aligns with increases in body mass 

observed in both North America and Europe. In the Central Valley of the U.S., mallard body 

mass was 3.2-6.1% greater in 2006-2008 as compared to 1985-1993 and 1982-1984 respectively 

(Fleskes et al. 2016). In Europe, mallard body mass increases were ≥ 7.3 % among all age-sex 

classes collected in 2002-2008 as compared to 1952-1969 (Guillemain et al. 2010).  

Increases in body mass have occurred in multiple regions, yet the underlying 

mechanism(s) has yet to be elucidated. Several primary hypotheses have emerged including 

climate change, genetic swamping of wild populations with captive bred individuals, wintering 

distributional shifts, and landscape alteration (Fleskes et al. 2016; Guillemain et al. 2010; 

Gunnarsson et al. 2011). First, we will explore the four hypotheses that attempt to explain 

mallard body mass increase over time. We will then investigate the trends of mallard body mass 

change within winters. 

One factor that could be responsible for increases in waterfowl body mass is climate 

change. Recent weather data show that rainfall and river flooding have increased in variability 

from 1979-2021, while also indicating that rainfall and river flooding has increased on average 

and is predicted to continue to increase in future years (IPCC 2021; NOAA US Climate 

Extremes Index 2021). Because the amount of water across the landscape can affect the degree to 

which waterfowl can efficiently access food resources (Fredrickson and Taylor 2007), it is 

possible that increasing amounts of precipitation and river flooding could be increasing foraging 

habitat availability for mallards. Furthermore, temperatures are also increasing on average in 

Central North America (IPCC 2021; NOAA US Climate Extremes Index 2021). Because cold 



  24 

temperatures can inhibit access to food resources due to the presence of ice (Schummer et al. 

2010), and colder temperatures require waterfowl to burn more energy for thermoregulation 

(McKinney and McWilliams 2005), it could be assumed that increases in temperatures could also 

increase food resource availability for waterfowl during the winter, as well as require waterfowl 

to burn less energy resulting in higher body mass. 

Another factor that could be responsible for the observed increase in waterfowl body 

mass is the genetic swamping of wild strain mallards with domesticated mallard genes. In a 

recent study, nearly 40% of mallards sampled in the Mississippi Flyway had game-farm mallard 

DNA signatures (Lavretsky et al. 2019). Game-farm mallards are heavier and larger in size 

compared to North American wild-strain mallards (Harrison 1966; Greenwood 1975; Figley and 

VanDruff et al. 1982; Byers and Carey 1991; Dubovsky and Kaminski 1994). Thus, over time, 

genetic crossover of wild strain and game-farm-strain mallards could result in increased mallard 

body mass. Gunnarsson et al. 2011 showed that, in Europe, mallard body mass increased over a 

30-year period of regular mallard stockings. European green-winged teal, which were not 

subjected to stocking programs in Europe, did not increase in body mass over the same 30-year 

period. A similar phenomenon has occurred in other species, such as Atlantic salmon (Wacker et 

al. 2021). While this link remains speculative and correlational, it is one of the hypotheses that 

would be most feasible to explore.  

A third factor that could be responsible for mallard body mass increase over time is the 

shift in wintering distributions northward. Shorter migration distances should require less fat to 

be burned, resulting in a heavier morphology (Gunnarson et al. 2011). In the Northwest 

European Flyway, mallards experienced an increase in body mass as well as a shift northward in 

their migration distance in winter compared to earlier decades (Gunnarsson et al. 2012; Sauter et 
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al. 2010). However, Green and Krementz (2010) found no evidence to support significant, 

directional changes in the latitude of mallard distributions within the Mississippi Flyway, as 

harvest distributions of mallards have not significantly changed. Their study did point to an 

overall broader distribution of mallard harvest across the Central and Mississippi Flyways, and it 

is possible this emerging trend has continued since the time of their study. While additional data 

might further refine our understanding of distributional shifts within the LMAV, we do not think 

this hypothesis is likely to account for the body mass changes we documented here because 

recent midwinter mallard distribution surveys suggest otherwise (AGFC 2021, unpublished 

report). 

One final factor that could be responsible for mallard body mass increase over time is 

changing food availability caused by landscape alteration. Waterfowl habitat has continued to 

decline in the LMAV over time (LMVJV 2015). Recent studies have shown that bottomland 

hardwood forests may have reduced mast-producing potential due to declining tree health 

(AGFC 2017; T. Foti, Arkansas Natural Heritage Commission, personal communication; Nelms 

et al. 2007). Other reports indicate that the acreage of crops, such as rice which is utilized by 

waterfowl, has declined in Arkansas and Mississippi at a rate ≤ 2.6 % annually from 1995-2017 

(McBride et al. 2018). The reasons for crop acreage decline are suggested to be the result from 

agricultural technological advancements (ie. planting earlier maturing crop strains) and practices 

(ie. stripper-header harvesting, fall tillage) that increase farmer yield per acre, requiring less 

acreage to be planted (Anders et al. 2008; McBride et al 2018). In addition to declines in the 

extent of important crops, food resources available in these fields have declined over time, most 

notably in rice fields (Stafford et al. 2006). Because mallard body mass has increased over time 

despite the general decline in wetland and agricultural habitat, we believe that landscape 
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alteration is not fully responsible for the observed long-term increases in mallard body mass 

from 1979-2021 in the LMAV. 

Detecting long-term trends in body mass change can be further complicated by body 

mass changes within a year or season. Although mallards increased in body mass over time, our 

results indicated that mallard body mass decreases over the course of each winter. This aligns 

with numerous studies that have shown mallard body mass declines from earlier and mid-winter 

periods to late-winter periods (e.g., Delnicki and Reinecke 1986; Loesch et al. 1992; Whyte et 

al.1986). Mallard body mass may decrease over winter as a result of pressure for birds to reach 

optimal (lower) spring departure weights as it is a more efficient migration strategy (Lindström 

and Alerstam 1992). However, decreasing body mass may also reflect decreasing food 

availability as food items are consumed or deteriorate over time (Greer et al. 2009).  

Our results suggest that average body mass of mallards varied among years and was 

influenced by climate variables. The most reliable indicators of mallard body mass were rainfall 

and river gage height. These variables have long been associated with foraging habitat 

availability (Delnicki and Reinecke 1986; Frederickson and Taylor 2007; Guillemain et al. 

2000). Increased area of surface water (from flooding or rainfall) could increase access to food 

resources; thus, mallard body mass could increase as a result. Interestingly, river gage height is 

not necessarily correlated with local rainfall, suggesting that factors occurring upstream from the 

focal areas or associated with water control regimes likely affect foraging habitat availability. 

Because it is beneficial to female mallards to pair early in the winter and as a result may have 

increased body mass (Heitmeyer 1988), and paired mallards are more likely to seek out forested 

wetland habitat for isolation where natural river flooding is more likely to occur (Harris et al. 

1984; Heitmeyer 1985; Reinecke et al. 1989), this could explain how adult female mallard body 
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mass is more likely to fluctuate in response to changing river levels rather than nearby rainfall. 

Due to there being more male mallards than hen mallards on average (Munro and Kimball 1982), 

the increased competition for male mallards to find a mate could explain why there was only a 

marginal relationship between adult male mallard body mass and river gage height. It is possible 

we could have collected a larger sample of measurements from unpaired male mallards that were 

more often using habitat where access might be governed by rainfall rather than river flooding 

(e.g., flooded agricultural fields) (Heitmeyer 1985; Reinecke et al. 1989). This case could further 

be supported by the fact that juvenile male mallard body mass was unrelated to river gage height. 

Juvenile males might be less successful in pair formation than adult male mallards (Heitmeyer 

1995). Therefore, juvenile males may also spend more time in more open habitat where water 

levels may fluctuate primarily by local rainfall (e.g., agricultural fields) in search of a potential 

mate. Additionally, it could be noted that both adult females and juvenile females contained the 

smallest sample sizes of mallard body mass among age-sex cohorts, and thus, could also be 

responsible for differences in results. 

Among adult males, adult females, and juvenile males, WSI appeared to have no 

relationship with mallard body mass. This does not align with traditional assumptions, where it is 

believed that severe cold weather could lead to insufficient access to food resources (Schummer 

et al. 2010) or increase metabolism, which could result in lowered body mass (McKinney and 

McWilliams 2005). Whyte and Bolen (1984) found that when feeding conditions are optimal, 

severe cold weather does not affect gains in lipids or body mass. Based on these studies, our 

results would suggest that food resources in the LMAV may be sufficient to counteract any 

effects from severe cold weather on mallard body mass. However, we did find that juvenile 

female body mass might decrease when WSI increases. This could most likely be explained by 
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sensitivity of female mallard body mass fluctuation to intrinsic and extrinsic factors (Pattenden 

and Boag 1989) as well as juvenile female mallards engaging in activities that are more 

energetically costly (e.g., forming mating pairs in late winter, having larger home ranges in their 

first winter) than those of adults (Heitmeyer 1995; Jorde et al. 1984; Whyte et al. 1986). Thus, 

juvenile female mallards may initially expend more energy reserves during the winter than other 

age-sex groups. As a result, juvenile female mallards may experience increased mass loss during 

periods of intense thermoregulatory demand from colder weather. 

We recognize that there are some potential biases of using hunter-harvested birds and 

non-standardized sampling methods among years. For example, it has been shown that hunter-

harvested mallards tend to weigh less than mallards occupying undisturbed locations (Heitmeyer 

et al. 1993). This could have led to us collecting mallard measurements from a higher proportion 

of mallards that were more likely to die of natural causes. Additionally, mallard body mass was 

rounded to the nearest 10 g in years 1979-1983 and 2015-2017. This could have led to less 

precise body mass measurements within those years. Therefore, we emphasize that the results of 

our study are purely correlative. However, we would also like to recognize that to the best of our 

knowledge, this is the only comprehensive mallard body mass dataset that exists for the last 42 

years within the LMAV, and our results are comparable to the results of other studies monitoring 

long-term trends in mallard body mass (e.g., Fleskes et al. 2016; Guillemain et al. 2010; 

Gunnarsson et al. 2011). 

Management Implications 

Our study shows strong evidence that mallard body mass has increased from 1979-2021 

in the LMAV of Arkansas and Mississippi. Because the causal factors of body mass increase 

remain unknown, direct management recommendations are more difficult to elucidate. However, 
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the links between climate and mallard body mass are likely to yield actionable possibilities. For 

example, managers seeking to increase the body mass of ducks could possibly accomplish this 

by manipulating surface water to provide access to shallow foraging areas, especially in periods 

of low rainfall. This may be particularly important late in the winter when food availability is 

likely most limited. Direct strategies for increasing the degree to which waterfowl can access 

food resources include gradually flooding food resources to ideal dabbling duck foraging water 

levels, and increasing the number of flooded impoundments as more waterfowl arrive in the 

wintering grounds (Frederickson and Taylor 2007). Ensuring the ability of river overflow events 

to inundate extensive area of unmanaged lands, thereby increasing resource availability, is 

important to maintain the ability of the LMAV to support mallard mass gains during winter. 

Other practices to improve late-winter food resource availability include incentivizing farmers to 

flood and leave crop stubble post-harvest for the duration of the fall and winter (Anders et al. 

2008), purchasing and restoring natural wetlands (Fredrickson and Taylor 2007; Miller et al. 

2003), and promoting natural flood regimes within bottomland hardwood forests to avoid tree 

stress and increase mast productivity (Nelms et al. 2007).  
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TABLES 

Table 1.1. General locations; sample period; land use types (state owned Wildlife Management 
Areas (WMA’s), Federally owned National Wildlife Refuges (NWRs), private land, and duck 

processing businesses); and weight scale, body mass correction, and aging methodology of 
harvested mallards (Anas platyrhynchos) within the Lower Mississippi Alluvial Valley during 

study years 1979-1983, 1990-1991, 1999-2004, 2015-2017, 2019-2021. 

Sample Years 1979-1983 1990-1991 1999-2004 2015-2017 2019-2021 

States 
Sampled Mississippi Arkansas Arkansas Arkansas Arkansas 

Duration of 
Hunting 
Seasons 
Sampled 

December & 
January 

November – 
February 

December & 
January 

2015-2016: 
December 
& January 

2016-2017: 
November 
– January 

November – 
February  

Source of 
Ducks 

National 
Wildlife 
Refuges, 
National 
Forest, 

Private Land 

Wildlife 
Management 

Areas and 
National Wildlife 

Refuges 

Duck 
Processing 
Businesses 

Private 
Land 

Wildlife 
Management 

Areas and 
National Wildlife 

Refuges, 
National Forest, 

Private Land 

Weight 
Measurement 

Device 

Spring Scale 
(nearest 

10g) 

Spring Scale 
(nearest g) 

Battery 
Powered 

Electronic 
Balance 

(nearest g) 

Spring 
Scale 

(nearest 
10g) 

Battery Powered 
Electronic 

Balance (nearest 
g) 

Food 
Removed 

Before 
Weighing? 

Yes No Yes No No 

If No, How 
Food Was 

Corrected? 
N/A 

Subtracted 
weight of 

esophageal 
contents from 

raw mass of bird 

N/A N/A 

All birds that had 
undigested 
esophageal 

contents were 
removed from 

analysis 
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Table 2.1. Average body mass measurements (rounded to nearest gram; plus/minus standard 
error (SE) rounded to nearest integer) and sample size from harvested mallards (Anas 

platyrhynchos) within the Lower Mississippi Alluvial Valley among hunting seasons within 
years 1979-1983, 1990-1991, 1999-2004, 2015-2017, 2019-2021. 

 Males Females 

 Adults Juveniles Adults Juveniles 

Year  SE n  SE n  SE n  SE n 

1979-1980 1262 7 207 1220 12 71 1114 13 52 1088 12 64 

1980-1981 1205 5 459 1134 13 64 1051 7 182 1001 10 82 

1981-1982 1240 5 390 1144 25 18 1112 9 122 1004 21 26 

1982-1983 1319 6 253 1239 24 16 1145 10 97 1101 26 16 

1990-1991 1205 26 20 1034 9 2 1168 20 31 1068 36 13 

1999-2000 1262 8 168 1173 9 118 1111 11 109 1029 8 122 

2000-2001 1261 11 116 1205 8 111 1109 12 66 1053 9 115 

2001-2002 1282 11 87 1216 14 41 1181 15 45 1070 11 76 

2002-2003 1288 12 76 1228 13 48 1155 14 49 1082 13 49 

2003-2004 1280 12 86 1209 13 55 1136 18 26 1037 10 74 

2015-2016 1299 21 29 1253 21 29 1103 36 9 1141 27 10 

2016-2017 1167 14 59 1164 19 24 1057 37 13 989 33 14 

2019-2020 1299 5 391 1253 5 455 1158 12 53 1095 7 219 

2020-2021 1331 5 424 1290 5 453 1181 12 58 1140 7 245 

 
 
 
 
 
 
 
 

x x x x
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Table 3.1. Average % increase in body mass per decade and from 1979-2021, as well as results 
from general linear mixed effects models evaluating the influence of Year, Day, Cumulative 

Rainfall, Gage Height, and Weather Severity Index (WSI) on the body mass of mallards (Anas 
platyrhynchos) from 1979 – 2021 in the Lower Mississippi Alluvial Valley of Arkansas and 

Mississippi. 

Age-Sex Variable P F b (95% CI) 
Average % 

Increase in Body 
Mass  

Adult 
Males 

Year * < 0.01 F1,45 = 19.42 1.68 (0.94 – 2.43) From 1979-2021: 
5.6 

 
Per Decade: 

1.2 

Day * < 0.01 F1,2127 = 40.23 -0.81 (-1.06 – -0.55) 
Cumulative 
Rainfall * 

< 0.01 F1,2453 = 11.75 3.09 (1.33 – 4.86) 

Gage Height 0.084 F1,1624 = 2.98 2.14 (-0.27 – 4.61) 
Juvenile 
Males 

Year * < 0.01 F1,32 = 46.73 2.91 (2.08 – 3.76) From 1979-2021: 
7.6 

 
Per Decade: 

1.9 

Day * 0.020 F1,1261 = 5.42 -0.39 (-0.72 – -0.06) 
Cumulative 
Rainfall * 

0.039 F1,1094 = 4.29 2.53 (0.14 – 4.90) 

    
Adult 

Females 
Year * < 0.01 F1,24 = 11.09 1.41 (0.59 – 2.22) From 1979-2021: 

6.9 
 

Per Decade: 
1.5 

Day * < 0.01 F1,700 = 27.85 -1.07 (-1.46 – -0.64) 
Gage Height * < 0.01 F1,305 = 23.39 9.65 (5.81 – 13.53) 

    

Juvenile 
Females 

Year * < 0.01 F1,34 = 16.40 2.16 (1.13 – 3.21) From 1979-2021: 
7.6 

 
Per Decade: 

1.5 

Cumulative 
Rainfall * 

0.032 F1,999 = 4.61 3.02 (0.30 – 5.84) 

Gage Height * 
WSI 

< 0.01 
0.066 

F1,722 = 20.15 
F1,1059 = 3.39 

9.32 (5.24 – 13.36) 
-1.62 (-3.36 – 0.09) 
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FIGURES 

 
Figure 1.1. Map of field sites where body mass measurements were taken from hunter-harvested 
mallards (Anas platyrhynchos) across the Lower Mississippi Alluvial Valley of Arkansas and 
Mississippi from 1979-2021. 
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Figure 2.1. Predicted relationship of adult male (a), juvenile male (b), adult female (c), and 
juvenile female (d) mallard (Anas platyrhynchos) body mass with Year within the Lower 
Mississippi Alluvial Valley from 1979-2021. Solid black lines refer to estimated mean body 
mass and gray bands are upper and lower limits of the 95% CI. 
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Figure 3.1. Average annual mallard (Anas platyrhynchos) body mass (points) with 95 % CI 
(error bars) among adult males, juvenile males, adult females, and juvenile females collected 
during waterfowl hunting seasons within the Lower Mississippi Alluvial Valley of Arkansas and 
Mississippi during 1979-1980 through 1982-1983, 1990-1991, 1999-2000 through 2003-2004, 
2015-2016, 2016-2017, 2019-2020, and 2020-2021 (these graphs ignore years for which data 
was not collected). 
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Figure 4.1. Predicted relationship of adult male (a), juvenile male (b), and adult female (c) 
mallard (Anas platyrhynchos) body mass with Day of Hunting Season within the Lower 
Mississippi Alluvial Valley from 1979-2021. Solid black lines refer to estimated mean body 
mass and gray bands are upper and lower limits of the 95% CI. 
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Figure 5.1. Predicted relationship of adult male (a), juvenile male (b), and juvenile female (c) 
mallard (Anas platyrhynchos) body mass with 3-Day Cumulative Rainfall previous to mallard 
harvest within the Lower Mississippi Alluvial Valley from 1979-2021. Solid black lines refer to 
estimated mean body mass and gray bands are upper and lower limits of the 95% CI. 
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Figure 6.1. Predicted relationship of adult male (a), adult female (b), and juvenile female (c) 
mallard (Anas platyrhynchos) body mass with River Gage Height within the Lower Mississippi 
Alluvial Valley from 1979-2021. Solid black lines refer to estimated mean body mass and gray 
bands are upper and lower limits of the 95% CI. 
 
 

 
Figure 7.1. Predicted relationship of juvenile female mallard (Anas platyrhynchos) body mass 
with Weather Severity Index (WSI) within the Lower Mississippi Alluvial Valley from 1979-
2021. Solid black lines refer to estimated mean body mass and gray bands are upper and lower 
limits of the 95% CI. 
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ABSTRACT 

Overwintering waterfowl with a high body condition index are more likely to survive the winter, 

complete important life cycle events, and have increased productivity during the following 

breeding season. Body condition index in waterfowl should reflect the food and resting resources 

available to them locally. Some researchers suggest that increased surface area of water and low 

areas of human disturbance promote better body condition within waterfowl. Wetland habitat 

like woody wetlands, herbaceous wetlands, and open water may also promote better waterfowl 

body condition because they offer places to forage, rest, socially interact, and avoid disturbance. 

Agricultural habitat, like flooded rice, can improve lipid stores in waterfowl and could be 

beneficial to body condition. However, flooded soybeans may negatively impact body condition 

because they serve little nutrient value to ducks. Here, we analyze the effects of landscape 

composition on mallard (Anas platyrhynchos) body condition using a mass by wing length index 

(BCI) within the Lower Mississippi Alluvial Valley of Arkansas. We measured hunter-harvested 

mallards from hunting clubs and state and federal public duck hunting areas during the 2019-

2020 and 2020-2021 Arkansas duck hunting seasons. We found that mallards collected from 

areas with high proportions of water cover, woody wetlands, and open water within a 30-km 

radius had higher BCI. Conversely, we found that mallards collected from areas with higher 

proportions of herbaceous wetlands or human disturbance had lower BCI. Management entities 

that can maintain water levels for waterfowl to efficiently access food resources, while providing 

ample habitat that allows for resting, loafing, and other life cycle events free of human 

disturbance, will most likely increase BCI among mallards.
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INTRODUCTION 

Most North American waterfowl overwinter in southern North America before migrating 

back to breeding grounds in the northern U.S. and Canada. These species face the challenge of 

needing to maintain or increase their body mass during an environmentally difficult winter 

period (Loesch et al. 1992). During the winter, ducks must find and occupy areas that provide a 

number of resources with possibly the most important being access to abundant and nutritious 

food. Waterfowl that can meet energetic needs will most likely have a better body condition 

(Delnicki and Reinecke 1986; Owen and Cook 1977; Reinecke et al. 1988, 1989). Body 

condition can be defined as the fitness of an individual based on mass associated with energy 

reserves (Schulte-Hostedde et al. 2005). This fitness score is usually developed by an index that 

corrects raw body mass using a structural size component. Thus, a resulting higher score 

indicates higher fitness, and a lower score indicates lower fitness (Johnson et al. 1985; Harder 

and Kirkpatrick 1994; Schulte-Hostedde et al. 2005).  

Body condition, as a function of mass and structural components, has been related to 

several factors that are linked to waterfowl fitness. For example, researchers have shown that 

early winter body condition can influence survival (Bergan and Smith 1993). Furthermore, 

waterfowl in poorer body condition are more likely to be infected by blood parasites, thus, 

potentially having an affect survival or productivity (Meixwell at al. 2016; Shutler et al. 1999). 

Individuals with lower body mass (which may result in a lower body condition) may have 

delayed courtship and breeding pair formation (Hepp 1986; Miller 1985). Additionally, better 

winter body condition in waterfowl increases the chances of survival and level of productivity 

during the following breeding season (Devries et al. 2008; Fowler et al. 2020; Heitmeyer and 

Fredrickson 1981; Warren et al. 2014). A better body condition can also shorten the timing of 
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spring migration in migratory birds (Dujins et al. 2017), allowing migrants to reach the breeding 

grounds sooner, potentially increasing reproductive success (Elmberg et al. 2005; Rohwer et al. 

1992). 

One of the fundamental philosophies of waterfowl management is manipulating 

landcover to maximize the amount of available food on the landscape, while regulating human 

activity to reduce unnecessary energy use (Fredrickson and Taylor 2007; Reinecke et al. 1989). 

Therefore, conservation agencies expend substantial time and financial resources annually to 

manage overwintering waterfowl habitat to ensure adequate foraging and resting resources. 

Waterfowl using these managed habitats should assimilate more energy, resulting in a higher 

body condition index (BCI) value. The Lower Mississippi Alluvial Valley (LMAV) is one of the 

largest wintering areas for waterfowl in North America (Bellrose et al. 1976; Reinecke et al. 

1989) and wintering ducks in this region forage and/or rest in woody wetlands such as flooded 

bottomland hardwood forests, herbaceous wetlands such as moist-soil impoundments, open 

water lakes, flooded agricultural crops, and waterfowl refuges with generally low levels of 

human disturbance (Reinecke et al. 1989). Woody wetlands can provide waterfowl with fatty 

metabolites in the form of acorns (Allen 1980; Dabbert and Martin 2000; Heitmeyer and 

Fredrickson 1990; Miller et al. 2003; Reinecke et al. 1989) as well as macroinvertebrates that 

provide valuable proteins (Foth et al. 2014; Fredrickson and Heitmeyer 1988; Krapu and 

Reinecke 1992; Fredrickson and Batema 1992). These forested habitats also offer a place for 

waterfowl to roost and potentially avoid hunting pressure and other predation risks which 

contributes toward energy conservation (Reinecke et al. 1989). Herbaceous wetlands provide 

waterfowl with a variety of vegetative matter and seeds that contain essential vitamins, minerals, 

and amino acids that are found in low quantities in other habitats (Checkett et al. 2002). 
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Herbaceous wetlands also provide waterfowl with aquatic invertebrates for dietary proteins 

(Fredrickson and Taylor 1982, Anderson and Smith 1999, Gray et al. 1999). Open water areas 

are favored by many waterfowl as they offer good visibility for locating predators, shallow water 

shorelines for feeding, and water for resting (Chabreck et al. 1989; Rave 1987; Tamisier 1978). 

Flooded agricultural fields containing rice, although not as nutrient diverse as herbaceous 

wetland vegetation and seeds, generally provide high energy per unit mass (Checkett et al. 2002; 

Kaminski et al. 2003). However, crops like soybeans decompose underwater rapidly, can cause 

fatal digestive issues, and contain digestive inhibitors that can reduce the amount of protein and 

other nutrient uptake by waterfowl (Ringleman 1990). Areas of high human disturbance can 

cause waterfowl to alter their behavior (Burger and Gochfeld 1998; Pease et al. 2005; Riddington 

et al. 1996), thus wasting energy and impacting lipid reserves (Knapton et al. 2000; Taylor et al. 

2010). For this reason, conservation agencies also manage waterfowl refuges, which are habitats 

closed to human access during the winter period (Bellrose 1954; Madsen 2004). Waterfowl 

overwintering in the LMAV likely use a combination of these wetland habitat types throughout 

the course of the winter to meet nutritional demands required by different life cycle events (e.g., 

pair formation, molting).  

The mallard (Anas platyrhynchos) is the most abundant waterfowl species overwintering 

in the LMAV (Bellrose 1976). Aside from being a popular resource among recreational hunters, 

mallards serve as a focal species of waterfowl management because their response to 

management is likely indicative of how other dabbling duck species respond (Gunnarsson et al. 

2006; Newbold and Eadie 2004; Nichols et al. 2007; Reinecke et al. 1989). Despite management 

efforts to ensure sufficient food resources are provided to sustain a large and healthy population 

of mallards, the LMAV is currently estimated to not provide food for waterfowl at goal levels 
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(LMVJV 2015). In addition, food resources for mallards are unevenly distributed across the 

LMAV. Thus, the region of the LMAV in which waterfowl choose to winter and the landscape 

composition in those areas likely influences their BCI. 

 Here, we assess the relationship of a body mass by wing length BCI in hunter harvested 

mallards with landscape composition across the LMAV of Arkansas within two winter periods. 

Our overall goal is to explore landscape cover within the vicinity of each harvest site that 

promotes high BCI in mallards, as well as identify areas within the Arkansas LMAV that will 

promote better body condition among waterfowl. We predict BCI to be highest in areas with 

abundant woody wetlands, herbaceous wetlands, and overall water cover because these are 

typically associated with traditional mallard foraging habitats and are the target of management 

(Checkett et al. 2002; Fredrickson and Heitmeyer 1988; Fredrickson and Taylor 1982; Heitmeyer 

and Fredrickson 1990; Reinecke et al 1989). We also predict that mallards harvested from areas 

with a high proportion of rice fields will be in higher body condition because these foods are 

high in energy (Checkett et al. 2002; Kaminski et al. 2003). We also predict that the presence of 

open water areas that allow waterfowl to rest and avoid stress will also contribute to higher BCI 

(Chabreck et al. 1989; Reinecke et al. 1989). Finally, we predict that a high proportion of land 

cover consisting of low nutrition crops (e.g., soybean fields) or in areas with high levels of 

human disturbance will result in birds with lower BCI (Madsen 2004; Ringleman 1990). 

METHODS 

Study Area 

The Lower Mississippi Alluvial Valley (LMAV) spans 26.7 million acres along the upper 

Midwest to southern portions of the Mississippi Flyway. Our study area spanned the entirety of 

the LMAV of Arkansas, which makes up 34% of the entire floodplain (Oswalt 2013) (Figure 
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1.2). Because the LMAV of Arkansas is a point at which many rivers converge, it attracts some 

of the highest densities of overwintering waterfowl in North America (Bellrose et al. 1976). 

Additionally, the LMAV of Arkansas contains flooded bottomland hardwood forests, which 

waterfowl use for food resources and other important life cycle events (Reinecke et al. 1989). 

The large density of rivers also provides the LMAV with rich alluvial soil which makes the area 

productive for agriculture. Waterfowl regularly forage in these agricultural fields if they flood 

during the winter (National Fish and Wildlife Foundation 2019; Nelms et al. 2007). 

Body Condition Measurements 

We collected hunter-killed mallard body measurements from private duck hunting clubs 

as well as public duck hunting areas. We focused on collecting body measurements from 

harvested ducks across as wide of a geographic range as possible within the LMAV, particularly 

during the second year of the study where we focused on collecting measurements from areas not 

sampled within the previous year. For each harvested mallard, we collected body mass measured 

to the nearest gram using an electronic scale. We used an ornithological wing ruler to measure 

wing length to the nearest millimeter (Carney 1992). Additionally, we aged and sexed each bird 

using plumage dimorphism and feather morphology characteristics (Carney 1992). We extracted 

the residuals from a mass by wing length regression separately for each age-sex class to calculate 

BCI for each bird. Although using body condition indices made up of structural components 

such as mass and wing length have received criticism (e.g., Green et al. 2001; Labocha and 

Hayes 2012; Schamber et al. 2009), indices using mass and wing length in migratory birds has 

been shown to be a reliable indicator of lipid and protein reserves (Johnson et al.1985; Whyte 

and Bolen 1984), winter survival (Bergan and Smith 1993), productivity (Devries et al. 2008), 

and locomotive performance (Dujins et al. 2017). Some researchers have also found that the use 
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of a residual body condition index is the most reliable compared to alternative indices (Schulte-

Hostedded et al. 2005). 

Landscape Composition 

We extracted landscape composition and human disturbance variables within a 30-km 

radius of each known harvest location. A 30-km radius buffer was chosen because research 

suggests that any waterfowl movement within 30-km is considered a local scale movement, 

while movement >30-km is considered a migration event (Beatty et al. 2014) and most mallards 

even have smaller home ranges within a 30-km radius (Allen 1987; H. Hagy, US Fish and 

Wildlife Service, personal communication). Furthermore, a priori analyses using data from 

telemetry marked mallards in Beatty et al. 2014 indicate that only 1.44% of mallards that winter 

in Arkansas will move outside of a 30-km radius before the spring (Beatty, unpublished data). 

Therefore, we had a high degree of certainty that a larger proportion of mallards used for our 

study had utilized the habitat within their respective location buffers before harvest. 

Additionally, because most waterfowl require anywhere from 4-72 hours to assimilate energy 

from the food they ingest (Charalambidou et al. 2005), we also had a high degree of certainty 

that mallards had assimilated energy from the vicinity of their harvest site at the time of 

collection; thus, their BCI would reflect recent energy assimilation.  

We calculated 8 landcover variables that have been shown to, or predicted to, influence 

waterfowl body mass or BCI (e.g., Heitmeyer and Fredrickson 1990; Reinecke et al. 1989; 

Ringleman 1990; Taylor et al. 2010) and that were related to mallard foraging, resting, or human 

disturbance. The variables we calculated for each mallard harvest point were percentage of total 

water cover, woody wetlands, herbaceous wetlands, open water areas, flooded rice fields, 

flooded soybean fields, area of human disturbance, and percent area of lands managed by state or 
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federal management agencies. We calculated percentage of total water cover using the Google 

Earth Engine Water Layer (GEE Water Layer 2019 & 2020, produced by the Intermountain 

West Joint Venture and Ducks Unlimited). We calculated the percent of woody wetlands, 

herbaceous wetlands, and open water using the National Land Cover Database Landcover Layer 

(NLCD 2019, produced by United States Geological Survey). We first overlayed the NLCD 

layer with the GEE Water Layer to ensure that we only included wetlands that were flooded and 

thus available to foraging ducks. We defined percent human disturbance as the combination of 

road density and development that was most likely to converge with waterfowl habitat. For this 

reason, we calculated percent human disturbance using “medium” disturbance cells from the 

Human Impact Avoidance Gap Analysis Project (produced in 2011 by the United States 

Geological Survey). To calculate the percent area of rice fields and soybean fields within each 

buffer, we used the United States Department of Agriculture Cropland Data Layer (USDA-CDL 

2019 & 2020). However, we first overlayed this layer with the GEE Water Layer to ensure that 

we only included fields that were flooded during the study period. We chose to focus on rice and 

soybeans as they occur in large quantities within the LMAV of Arkansas (USDA Arkansas Field 

Office 2021) and are utilized as food resources by waterfowl. We also calculated the percent of 

area comprised of managed lands (e.g., state and federally managed) within each buffer using the 

Protected Areas Database of the U.S. (PAD-US 2.1, produced in 2020 by the United States 

Geological Survey). However, this layer was also first overlayed with the GEE water layer to 

ensure managed lands were flooded and accessible to foraging waterfowl. All landscape layers 

were generated using geographic information system software (ArcGIS Pro 2.8, Esri Inc, 

Redlands, CA, USA).   
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Analyses 

To explore how landscape composition influenced mallard BCI, we used a linear mixed 

effects model (LMM). We first checked for collinearity using Pearson’s correlation coefficient. 

Managed lands had a correlation coefficient of 0.78 with woody wetlands, so managed lands 

were excluded from our models. No other variables were highly correlated (≥ 0.7 correlation), 

and thus, all other variables were retained for analyses. We used BCI as the response variable 

and harvest site location as the random factor to control for variation across sites. We used % 

Total Water Cover, % Rice, % Soybeans, % Woody Wetlands, % Herbaceous Wetlands, % Open 

Water, and % Disturbance as fixed factors. We log transformed % Total Water Cover, % 

Soybeans, % Herbaceous Wetlands, % Open Water, and % Disturbance to better meet 

assumptions of homogeneity of variances. All analyses were conducted using R Computing 

Software (package lme4 in R Studio 1.2.5042; 2020). 

To spatially project our results, we generated a 500 m x 500 m grid across the entirety of 

the LMAV of Arkansas. Using methods adapted from Lassiter et al. 2021, we then calculated the 

% landscape composition variable for each grid cell. We then reclassified each grid cell’s % 

landscape composition to corresponding predictions of mallard BCI from the LMM analysis. 

These steps were completed individually for each statistically significant variable that influenced 

mallard BCI. Resulting mallard BCI prediction maps were then combined using the Weighted 

Sum Tool within ArcGIS Pro 2.8, where variables were ranked in the following order with the 

first receiving the most weight, based on suitability for waterfowl: % Total Water Cover > % 

Woody Wetlands > % Open Water > % Herbaceous Wetlands = % Human Disturbance (Allen 

1987). Although important to waterfowl, herbaceous wetlands were ranked last due to only 

~18% of herbaceous wetlands in the LMAV being intensively managed to provide high levels of 
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food resource (B. Elliot, Lower Mississippi Valley Joint Venture, personal communication; 

NLCD 2019). Because there is limited information on habitat suitability based on human 

disturbance, % Disturbance was also ranked last. 

RESULTS 

We measured 2,277 mallards within the LMAV of Arkansas during the 2019-2020 and 

2020-2021 duck hunting seasons. Our measurements were from 807 adult males, 902 juvenile 

males, 107 adult females, and 461 juvenile females. We collected these samples from 47 hunting 

clubs or other private properties and 26 public hunting areas. 

 The proportion of landcover within harvest buffers aligned reasonably well with 

proportion of overall coverage of these landcovers across the LMAV. Among our variables, % 

Total Water Cover spanned the most area among our harvest-site buffers ( = 25.45 %, ± 0.13 

(SE)) as well as the LMAV (  = 26.45, ± 0.53 (SE)). The lowest coverage by a variable within 

our harvest site buffers (  = 0.26 %, ± 0.001 (SE)) and the LMAV (  = 0.27, ± 0.002 (SE)) was 

% Herbaceous Wetlands. In general, all landcover variables we examined occurred in harvest-

site buffers at a similar proportion to their availability across the LMAV (Table 1.2). 

 Mallard BCI was significantly related to % Total Water Cover (P < 0.01, F1,69 = 14.44), 

% Woody Wetlands (P < 0.01, F1,82 = 7.46), % Herbaceous Wetlands (P < 0.01, F1,58 = 12.90), % 

Open Water (P = 0.04, F1,49 = 4.42), and % Disturbance (P < 0.01, F1,59 = 9.66). Mallard BCI 

was positively related to % Total Water Cover (b = 1.66, CI = 0.82 – 2.47), % Woody Wetlands 

(b = 0.09, CI = 0.02 – 0.16), and % Open Water (b = 0.04, CI = 0.01 – 0.70) such that BCI 

increased as these variables represented larger proportions of landcover surrounding the harvest 

location. Mallard BCI was negatively associated with the proportion of Herbaceous Wetlands (b 

= -1.47, CI = -2.22 – -0.61) and Disturbance (b = -0.62, CI = -0.98 – -0.23) surrounding the 

x

x

x x
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harvest locations. There was no relationship between BCI and % Rice or % Soybeans (P > 0.05) 

(Table 2.2; Figure 2.2). 

DISCUSSION 

Mallard BCI is an important predictor of fitness and is likely related to a combination of 

health, food availability, and stress-free resting sites (Delnicki and Reinecke 1986; Devries et al. 

2008; Heitmeyer and Fredrickson 1981; Madsen 2004; Reinecke et al. 1988). We found that 

mallard body condition (BCI) was highest in areas with a large proportion of water cover, woody 

wetlands, and open water wetlands and lowest in areas with a high proportion of herbaceous 

wetland habitat or areas of high human disturbance. Contrary to our predictions, mallard BCI 

was unrelated to the proportional coverage of flooded rice or soybeans. These results indicate the 

importance of increased water cover, open water habitat, and woody wetland habitat, as well as 

the mitigation of human disturbance to body condition in mallards (Reinecke et al. 1988, 1989; 

Chabreck et al. 1989; Pease et al. 2005). Thus, understanding where waterfowl are meeting their 

resource needs can inform management practices, especially because bioenergetics modeling 

indicates that Arkansas does not currently provide waterfowl food resources at goal levels 

(LMVJV 2015). 

 Mallards are dabbling ducks and forage in shallow water where they eat seeds, hard and 

soft mast, agricultural waste grain, and invertebrates. As available water on the landscape 

increases (due to rain or flooding), foraging areas open to mallards because fields begin to hold 

standing water and the footprint of wetlands expand. Numerous studies support our results that 

mallard BCI or body mass increases with increasing water availability (Fredrickson and Taylor 

2007; Guillemain et al. 2000; Reinecke et al. 1988). For instance, Delnicki and Reinecke (1986) 

found that mallards wintering in the LMAV were heavier (i.e., better condition) during wetter 
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years than drier years, most likely the result of increased access to food resources. Similarly, 

Heitmeyer and Fredrickson (1981) found that winter precipitation was positively correlated with 

mallard productivity in the spring, suggesting that mallards were arriving in a better condition to 

engage in breeding behaviors.  

Interestingly, our results showed that mallard BCI also increased when open wetlands 

such as large lakes and reservoirs were available within the surrounding landscape. Typically, 

these large and deep wetlands are not considered to be productive foraging grounds for dabbling 

ducks (Behney 2020). Although there is some limited food value to ducks along the shoreline, 

open water habitats likely contribute to high mallard fitness and BCI by offering locations to 

roost and loaf that are relatively free from human disturbance and predators (Reinecke et al. 

1989). Some of the areas within Arkansas where mallards are predicted to have the highest BCI 

are associated with large open wetlands (e.g., reservoirs) on Big Lake National Wildlife 

Refuge/Wildlife Management Area, as well as some open water areas along the Cache River 

National Wildlife Refuge (Figure 3.2). These areas are likely beneficial to resting mallards 

because they provide a combination of open water and limited human disturbance, most likely 

from lower levels of development and being on wildlife refuges. 

Arkansas is one of the most popular locations for waterfowl hunting, especially for the 

mallard hunting opportunities provided by its historically expansive bottomland hardwood 

forests (Guttery and Ezell 2006; Raftovich et al. 2021). Thus, it is unsurprising that individuals 

occupying areas with a high proportion of bottomland hardwoods were in better body condition 

than those with limited extent of these flooded forests (Bellrose 1976). Flooded bottomland 

hardwood forests provide both foraging and resting opportunities for mallards. They provide 

waterfowl with high energy mast in the form of acorns (Allen 1980; Dabbert and Martin 2000; 
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Heitmeyer and Fredrickson 1990; Miller et al. 2003: Reinecke et al. 1989) as well as valuable 

proteins and amino acids from macroinvertebrates harbored in the leaf litter and soil (Foth et al. 

2014; Fredrickson and Heitmeyer 1988; Krapu and Reinecke 1992; Fredrickson and Batema 

1992). Woody wetland complexes are also important to waterfowl during life cycle events 

beyond foraging. For example, woody wetlands offer mating pairs of mallards a place to avoid 

stress caused by courting parties that could occur on more open habitat (Heitmeyer 1985). 

Woody wetlands also offer waterfowl a place to roost and avoid predators (Fredrickson and 

Batema 1992). Thus, waterfowl occupying woody wetlands may be least likely to engage in 

energetically costly behaviors (e.g., excessively flying to avoid disturbance or predators, or to 

search for food), which may result in better body condition. Our results indicate that mallard BCI 

is likely high in areas with high densities of bottomland hardwood forests (Figure 3.2). It should 

be noted that bottomland hardwood forests can, at times, be heavily hunted throughout the 

Arkansas duck hunting season. These disturbances could potentially decrease mallard BCI. We 

suggest two possible reasons why mallards residing in or near these heavily hunted compounds 

may be of a better body condition. First, forested systems offer more cover, thus making it easier 

for ducks to avoid predators and lowering energetically costly vigilant behaviors (e.g., flying, 

swimming) (Fredrickson and Batema 1992; Knapton et al. 2000; Reinecke et al. 1989; Taylor et 

al. 2010). Second, ducks could be maintaining proper energy levels by day roosting away from 

these compounds when hunting pressure is high (typically in the morning) and returning to use 

woody wetland habitat in the afternoon, evening, and/or nighttime (Lancaster et al. 2015; 

Shirkey et al. 2020). 

 Herbaceous wetlands, some of which are moist-soil units, can offer waterfowl a wide 

variety of seeds and vegetative matter, as well as a variety of aquatic invertebrates that are 
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valuable to waterfowl as a food resource (Anderson and Smith 1999; Checkett et al. 2002; 

Fredrickson and Taylor 1982; Gray et al. 1999). However, our results did not support our 

prediction that mallard BCI would increase as herbaceous wetland landcover increased. It is 

possible that our results are biased towards unmanaged herbaceous wetlands as most of the 

herbaceous wetlands in the region are not intensively managed for waterfowl (~ 82%) for food 

resources and may provide little food value to a duck (Reinecke et al 1989; B. Elliot, Lower 

Mississippi Valley Joint Venture, personal communication). Herbaceous wetlands that are not 

heavily managed by water manipulation and other management techniques could decrease in 

food resource productivity for waterfowl (Allen 1987; Reinecke et al. 1989), thus potentially 

resulting in lower BCI among nearby mallards. Additionally, most herbaceous wetlands are 

relatively small as compared to tracts of woody wetlands and open water wetlands, which could 

contribute to a greater degree of disturbance from hunters or other visitors (Fredrickson and 

Taylor 1982; Madsen 2004; Pease et al. 2005; Reinecke et al. 1989). As a result, disturbance 

could lead to unnecessary energy use by waterfowl, thus lowering BCI (Knapton et al. 2000; 

Taylor et al. 2010). Although we did not investigate the effects of hunting pressure disturbance 

on mallard BCI, our results did indicate that human disturbance in the form of road density and 

human infrastructure was negatively correlated with mallard BCI. Additionally, our predicted 

map of BCI shows that ducks harvested from or near areas of development are predicted to be in 

poor body condition (Figure 3.2). 

 Finally, we did not see changes in mallard BCI with changes in percent buffer of rice or 

soybeans despite our predictions that rice would be positively associated with BCI due to its high 

energy value and that soybeans would be negatively associated with BCI due to its low 

nutritional value (Checkett et al. 2002; Kaminski et al. 2003; Ringleman 1990). This can most 
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likely be explained by changing agricultural practices such as planting earlier maturing rice 

variants, stripper-header harvesting, and fall tillage, all of which reduce the amount of actual 

waste rice present on the ground for ducks upon arrival to the wintering grounds (Anders et al. 

2008). Once the remaining waste rice is inundated with water on the ground, ducks and other 

waterfowl may continue to reduce this resource over time. Crops like soybeans also degrade 

quickly compared to other natural seeds, thus, reducing availability further. For example, 

soybeans have been found to degrade the quickest among most agricultural grains, losing 1% of 

energy a day while flooded (Fredrickson and Reid 1988). Therefore, there may be an uneven 

distribution or actual availability in rice and soybeans among agricultural fields within our 

harvest site buffers. Although we selected rice and soybean cells that had at least 10% water 

cover, our water layer considers the presence of all water on the landscape during the winter 

(early Nov-early Feb). It is possible that the degree of flooding among crop fields could be 

highly variable across time (e.g., lose all water due to periods of drought, or become completely 

inundated due to controlled or natural flooding events). Thus, compared to natural wetlands, 

agricultural fields likely provide variable food resources that rapidly decline across the winter 

period. 

It should be recognized that our results are purely correlative and not empirical. We only 

analyzed the relationship of landscape composition and mallard BCI but did not experimentally 

test what specific factors among the landscape influence changes in mallard BCI. It is also 

assumed that the 30-km buffer represents the area within which mallards have been assimilating 

energy from. However, it is possible ducks were moving beyond these buffers. Finally, we 

assume that the condition of the mallards we sampled are reflective of the quality of food 

resources within their respective buffer areas. Yet, our measurements ignore other ecological 
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phenomena that could impact mallard BCI (e.g., density dependence, competition, etc.). 

Therefore, future studies that investigate specific factors within different habitat types that may 

influence mallard BCI may help to better understand the trends observed in our findings. 

Management Implications 

Our results indicate that mallard BCI is related to the availability of both foraging habitat 

as well as roosting, and/or loafing habitat relatively free from human disturbance. This highlights 

the need to protect and restore the once extensive bottomland hardwood forests that occurred in 

this region. Proper water management techniques across the landscape, if employed, could allow 

waterfowl to access food resources more efficiently. However, water levels in habitat that is 

sensitive to prolonged inundation, such as greentree reservoirs, should be monitored closely to 

protect the long-term health of these forests. In addition to foraging areas, mallards benefit from 

the presence of open water habitat. Although not as food dense as other habitats used by 

waterfowl, open water areas provide locations for roosting, loafing, and social interactions that 

are valuable to survival and reproduction. Additionally, our results may aid in locating areas in 

need of management efforts to improve mallard BCI. 
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TABLES 

Table 1.2. Average % coverage of Total Water, Rice, Soybean, Woody Wetlands, 
Herbaceous Wetlands, Open Water, and Disturbance (plus/minus standard error (SE)) 
with 30-km buffers surrounding all mallard (Anas platrhynchos) harvest locations and 
within the Arkansas portion of the Lower Mississippi Alluvial Valley (LMAV) during 

duck hunting seasons 2019-2020 and 2020-2021, 
 

30-km Buffer LMAV  

Variable  SE  SE 

% Total Water 25.17 0.60 26.45 0.53 

% Rice 5.20 0.30 5.11 0.14 

% Soybean 4.37 0.28 6.77 0.34 

% Woody Wetlands 6.75 0.24 6.13 0.5 

% Herbaceous Wetlands 
 

0.26 0.01 0.27 0.002 

% Open Water 2.57 0.16 2.91 0.03 

% Disturbance 0.52 0.03 0.59 0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x x
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Table 2.2. Results from linear mixed effects model (LMM) evaluating the influence of % Total 
Water, % Rice, % Soybean, % Woody Wetlands, % Herbaceous Wetlands, % Open Water, 
and % Disturbance on body condition index (BCI) of mallards (Anas platyrhynchos) during 
duck hunting seasons 2019-2020 and 2020-2021 in the Lower Mississippi Alluvial Valley of 

Arkansas (“*” denotes a significant effect on mallard BCI). 
Variable P F b 95% CI 

% Total Water * < 0.01 F1,69 = 14.44 1.66 0.82 – 2.47 

% Rice 0.08 F1,63 = 3.12 -0.06 -0.12 – 0.01 

% Soybean 0.16 F1,59 = 1.98 -0.23 -0.53 – 0.07 

% Woody Wetlands * < 0.01 F1,82 = 7.46 0.09 0.02 – 0.16 

% Herbaceous Wetlands * < 0.01 F1,58 = 12.90 -1.47 -2.22 – -0.61  

% Open Water * 0.04 F1,49 = 4.42 0.37 0.01 – 0.70 

% Disturbance * < 0.01 F1,59 = 9.66 -0.62 -0.98 – -0.23 
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FIGURES 

 
Figure 1.2. Harvest locations of mallards (Anas platyrhynchos) across the Lower Mississippi 
Alluvial Valley of Arkansas during suck hunting seasons 2019-2020 and 2020-2021. 
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Figure 2.2. Predicted relationship of mallard (Anas platyrhynchos) body condition index (BCI) 
with % Total Water, % Woody Wetlands, % Herbaceous Wetlands, % Open Water, and % 
Disturbance within the Lower Mississippi Alluvial Valley of Arkansas during duck hunting 
seasons 2019-2020 and 2020-2021. Solid black lines refer to estimated mean BCI and gray 
dashed bands are upper and lower limits (using 95% CI). 
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Figure 3.2. Predicted relationships of mallard (Anas platyrhynchos) body condition index (BCI) 
with % Total Water, % Woody Wetlands, % Herbaceous Wetlands, % Open Water, and % 
Disturbance within the Lower Mississippi Alluvial Valley of Arkansas from hunting seasons 2019-
2020 and 2020-2021. This map consists of a continuous color scale where more red areas refer to 
locations that are predicted to have mallards with high BCI (+ BCI), yellow areas refer to locations 
with average BCI (BCI = 0), and green areas indicate areas with predicted low BCI (- BCI). Each 
number label refers to examples (among others) of Wildlife Management Areas (WMA), National 
Wildlife Refuges (NWR), and/or other notable waterfowl habitat that promotes higher BCI in 
mallards.
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We demonstrate body mass of mallards (Anas Platyrhynchos) has increased over time 

(1979-2021). However, within winters, body mass declines over the course of the hunting 

season, most likely as resources become less available throughout the hunting season, and as 

waterfowl attempt to attain optimal spring departure weight. Body mass was observed to increase 

in the presence of increased rainfall and river flooding events; perhaps as increased water levels 

may increase access to food resources. Finally, mallards that were in a better body condition 

were associated with areas surrounding harvest sites containing higher proportions of water 

cover, woody wetlands, and open water, while mallards of a lower body condition were 

associated with areas containing higher proportions of herbaceous wetlands and human 

disturbance. Although we determined factors that influence mallard body mass within hunting 

seasons, the direct factors for why mallard body mass has increased over the past five decades 

remains a subject for additional research. 

 Although the direct factors for mallard body mass increases are unknown, the observed 

increases of mallard body mass show promising management possibilities. For example, if 

conservation agencies manipulate surface water to allow waterfowl to efficiently access food 

resources during the winter, the body mass of waterfowl could increase. This could be especially 

important during periods of drought or late in the winter when resources are scarcer (Fredrickson 

and Taylor 2007). Because river flooding is not always correlated to rainfall events, managers 

could ensure river overflow is able to flood large tracts of unmanaged lands to also provide 

waterfowl with more access to food resources to improve body mass. Additionally, programs 

that incentivize farmers to avoid fall tillage practices and ensure post-harvest flooding could 

increase the amount of agricultural waste grain across the landscape, thus providing waterfowl 

with more resources to improve their body mass (Anders et al. 2008).  
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 Several habitat types and management strategies should be considered as conservation 

agencies attempt to increase waterfowl resources across the landscape. Our study highlights the 

importance of woody wetland habitat, some of which are managed as greentree reservoirs, to 

waterfowl due to its ability to provide high energy resources in the form of acorns (Allen 1980; 

Dabbert and Martin 2000; Heitmeyer and Fredrickson 1990; Miller et al. 2003: Reinecke et al. 

1989), as well as areas for roosting, protection from predators, and social activities valuable to 

survival and reproduction (Reinecke et al. 1989). We recommend agencies continue to promote 

proper hydrology management techniques that allow waterfowl to access food resources 

efficiently but monitor water levels to avoid prolonged inundation in woody wetlands sensitive 

to flooding, like greentree reservoirs, to protect the long-term health of these forests. In addition 

to woody wetlands, our study indicates that ample open water habitat should be provided 

because mallards of higher BCI were found near this habitat type. Open water habitat provides 

waterfowl with locations for roosting, loafing, social interactions that are valuable to survival 

and reproduction, as well as some foraging opportunities near shorelines (Chabreck et al. 1989; 

Rave 1987; Tamisier 1978). Although we saw mallards with lower BCI located within or near 

higher proportions of herbaceous wetlands, the limited extent of this habitat (particularly 

intensively managed herbaceous wetlands) surely impacted our findings. Even so, we believe 

that herbaceous wetland restoration coupled with intensive food resource management may 

improve BCI among mallards using this habitat (Fredrickson and Taylor 2007; Miller et al. 2003; 

Reinecke et al. 1989). Finally, our study highlights the importance of mitigating human 

disturbance within or near wetlands to improve mallard BCI. In general, increasing availability 

of foraging habitat, as well as roosting and loafing habitat relatively free from human disturbance 

will most likely increase BCI among mallards, and potentially other waterfowl species. 
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