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Abstract 

Aminoacyl-tRNA synthetases (AARSs) are an ancient and highly conserved family of 

enzymes which can catalyze a two-steps aminoacylation reaction to charge tRNAs with their 

cognate amino acids, thus playing crucial roles in ribosomal protein synthesis. Naturally, the 

accurate amino acids and tRNA recognition of these synthetases are essential to the fidelity of 

translation process. To assure the correct recognition, some of these synthetases have evolved 

with an editing function to help remove the mischarged tRNAs. In addition to these functions, 

AARSs are also involved in various biological processes ranging from transcription to 

translation. Currently, a series of proteomic studies have shown that AARSs are one of the 

enzymes with the most abundant acetylation. And a few studies have shown site-specific 

acetylation on AARSs can cause significant changes in enzyme activities. It is necessary to 

conduct more investigation on the relationship between acetylation and the function of AARSs. 

However, due to the dynamic, reversible, transient, and uncontrollable pattern of lysine 

acetylation, it is usually challenging to learn its effects on proteins. To solve this problem, 

genetic code expansion strategy can be an ideal solution. This strategy offers a co-translational 

incorporation system (a pair of engineered orthogonal AARS/tRNA and an unassigned codon is 

required) which is able to introduce noncanonical amino acids including acetyllysine (AcK) into 

specific positions of object proteins.  

Using an engineered pyrrolysyl-tRNA synthetase variant specific for AcK and its 

orthogonal tRNApyl, this study established an AcK incorporation system which could stably 

produce site-specific acetylated AARSs. Four AARSs in Escherichia coli, including class I 



cysteinyl-tRNA synthetase (CysRS) as well as class II aspartyl-tRNA synthetase (AspRS), 

histidyl-tRNA synthetase (HisRS), and threonyl-tRNA synthetase (ThrRS), were chosen as 

objects in this study. The results indicate that the impacts of lysine acetylation could be different 

between two classes, and even within the class. In addition, this study also found that acetylation 

of ThrRS (at K169) could affect its editing function can cause mistranslation. To furtherly detect 

the possible mistranslation rate of ThrRS with site-specific acetylation in its editing domain, we 

also designed a GFP variant with only one Threonine (Thr) in position 203 which determines the 

fluorescence signal of GFP. Briefly, if the mistranslation occurs, then the Thr would be 

mistranslated to serine, and then the GFP probe would lose its fluorescence signal. This probe 

was then applied to indicate that K169 acetylation could affect the editing function of ThrRS and 

cause mistranslation in vivo.   
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CHAPTER I: Introduction 

1.1 Aminoacyl-tRNA synthetases (AARSs) 

Aminoacyl-tRNA synthetases (AARSs) are an ancient family of enzymes which essentially 

function in protein synthesis[1]. Canonically, AARSs are responsible for the correct translation 

of three-letter genetic code in mRNA, and they can catalyze a two-step aminoacylation reaction 

where the amino acid is activated by ATP hydrolysis to form an intermediate, aminoacyl-AMP, 

and then the aminoacyl group is transferred to either 3’-OH or 2’-OH of A in CCA acceptor 

sequence of cognate tRNA to form aminoacyl-tRNA which will be delivered to the ribosome and 

participate in protein synthesis (Figure 1.1)[1, 2].  

Currently, there are a total 23 AARSs found in organisms, including 21 for 20 proteinogenic 

amino acids (two for lysine) plus pyrrolysyl-tRNA synthetase (PylRS) and phosphoseryl-tRNA 

synthetase (SepRS)[3, 4]. These enzymes can be divided into two distinct classes mainly featured 

by their own class-specific catalytic domains. In class I AARSs (methionyl-tRNA synthetase 

(MetRS), valyl-tRNA synthetase (ValRS), leucyl-tRNA synthetase (LeuRS), isoleucyl-tRNA 

synthetase (IleRS), cysteinyl-tRNA synthetase (CysRS), arginyl-tRNA synthetase (ArgRS), 

glutamyl-tRNA synthetase (GluRS), glutaminyl-tRNA synthetase (GlnRS), lysyl-tRNA 

synthetase-I (LysRS-I), tyrosyl-tRNA synthetase (TyrRS) and tryptophanyl-tRNA synthetase 

(TrpRS)), the class-conserved motifs HIGH and KMSKS play important role in the interaction 

with substrate ATP. However, in class II AARS (seryl-tRNA synthetase (SerRS), threonyl-tRNA 

synthetase (ThrRS), alanyl-tRNA synthetase (AlaRS), glycyl-tRNA synthetase (GlyRS), prolyl-

tRNA synthetase (ProRS), histidyl-tRNA synthetase (HisRS), aspartyl-tRNA synthetase 
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(AspRS), asparaginyl-tRNA synthetases (AsnRS), lysyl-tRNA synthetase-II (LysRS-II), 

phenylalanyl-tRNA Synthetases (PheRS), PylRS and SepRS), motifs 2 (fRxe) and 3 

(gxgxgfd/eR) are responsible for this role. Another class II-conserved motif, motif 1 functions in 

dimerization of enzyme[2]. Besides these class-specific catalytic domains, both classes contain a 

ACB domain related to tRNA aminoacylation, and many additional modules with diverse 

structure and function such as editing.  

  

Figure 1.1 Two-steps aminoacylation reaction catalyzed by aminoacyl-tRNA synthetase 
(AARSs).  
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1.1.1 The fidelity of amino acid recognition and tRNA recognition 

To correctly achieve their tRNA aminoacylation function, aminoacyl-tRNA synthetases 

(AARSs) need to accurately charge the tRNAs with their cognate amino acids. Thus, it is 

important for these synthetases to evolve and develop a proper mechanism for the recognition of 

both substrates. Since the activation of amino acid is the first step of aminoacylation occurring in 

AARSs, amino acid recognition is one of the most important missions of AARSs. However, it 

could be challenging for AARSs to recognize and pick up a specific amino acid from a large poor 

consisting of natural and unnatural amino acids. To overcome this problem and maintain the 

fidelity of amino acid recognition, AARSs have evolutionally developed multiple strategies, both 

to secure correct recognition and to avoid the noncognate amino acids[5-7]. Most of the 

recognition mechanisms rely on the specific non-covalent interaction features in the amino acid 

binding site of AARSs[1, 2, 8-10]. For instance, the GlyRS uses a highly negatively charged 

pocket in its active site to avoid the binding of larger amino acids[11], while some AARSs like 

ThrRS[12] and CysRS[13] use coordinated zinc atom to prevent the recognition of noncognate 

amino acid. Additionally, by analyzing the features and interaction patterns of the binding site in 

AARSs, three main points about the amino acid recognition have been summarized as follows: 

1) Two classes of AARSs have different overall recognition strategies; 2) Although the binding 

site and interaction pattern play the most important roles in recognition specificity, very similar 

amino acids still need more selective strategies like steric effects or editing function; 3) The 

accurate recognition is indicated as a complicated process which may involves many strategies 

including the features of binding site, interaction patterns, editing function of enzyme and steric 
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effects[14]. Furthermore, there are certain AARSs such as GlnRS[15], ArgRS[16] and 

LysRS[17], requiring cognate tRNA for both recognition and activation of amino acid.  

Unlike amino acid, tRNAs usually have very similar base composition and structure to each 

other. To specifically recognize the cognate tRNA from tRNAs, AARSs not only perform 

differential binding affinity for their cognate tRNAs (Km)[18], but also set up a kinetic 

discrimination to avoid noncognate tRNAs (Vmax)[19]. tRNA identity rules used to explain these 

effects are also called the second genetic code which relies in each AARS-tRNA pair on the 

tRNA identity determinants that help cognate tRNA bind to the AARS, or the anti-determinants 

that prevent false binding of noncognate tRNA to AARS[20-22]. Determinants are mainly 

located at the two distal ends (anticodon stem or the acceptor arm)[1, 2]. Taking the well-studied 

alanine system as an example, the G3-U70 identity pair is required for the aminoacylation of 

tRNA and is highly conserved in different organisms. In addition, the A73 discriminator base in 

acceptor arm is determinant for aminoacyl group transfer[23, 24]. Differently, anti-determinants 

are not well-studied, and only a few have been reported. One example is the A36 in E. coli 

tRNAArg which help prevent the binding of this tRNA to the TrpRS[25].  
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1.1.2 Editing function of AARSs and mistranslation  

As is mentioned above, AARSs need to distinguish their cognate amino acids from those 

structurally similar noncognate constitutes. The main amino acid recognition strategies rely more 

on the feature of the active site and the pattern of interaction between the substrate and active 

site. However, it is indicated that these strategies are not sufficient for the complete accuracy of 

cognate amino acids recognition[14, 26, 27]. Indeed, it was estimated that there was an error rate 

of 10–4 in protein synthesis in nature[28]. To face these challenges, AARSs have evolved more 

complicated mechanisms to ensure accurate amino acid recognition. Editing (proof-reading) 

function is one of the most useful tools to help part of AARSs ensure the fidelity of amino acid 

recognition[1, 2, 29]. And, editing function has been found to be more essential for those AARSs 

which might wrongly activate the structurally similar noncognate amino acids, such as class I 

IleRS, ValRS, LeuRS and MetRS, as well as class II ThrRS, ProRS, LysRS, AlaRS and PheRS[2, 

30]. This proof-reading function allows mischarged noncognate amino acids either to be 

hydrolyzed from AMP or tRNA through different mechanisms (pre-transfer or post-transfer 

editing) [1]. The mechanisms for pre-transfer editing are poorly studied but mostly thought to be 

related to either direct release of mischarged aa-AMPs or hydrolysis of aa-AMPs at active sites 

or independent editing sites[1, 27]. The editing function found in Class I MetRS[31] is one 

example for active site hydrolysis, as well as class II LysRS[32]. Post-transfer editing occurs 

after the transfer of aminoacyl group from the AMP to the tRNA, and it usually involves the 

translocation of aminoacyl-tRNA from active site to a separated hydrolytic editing domain. Class 

I IleRS, LeuRS and ValRS perform their post-transfer editing function in CP1 domain, while 
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class II AARSs tend to have different editing domains and different mechanisms for their post-

transfer editing function[2]. ThrRS and AlaRS are thought to deserve more attention because 

they have structurally related editing sites and they both need to discriminate against the 

misactivation of serine[33]. Beyond the post-transfer editing, trans-editing factor family is also 

the important participant in editing function. These factors are usually freestanding proteins 

whose mission is to prevent mischarged tRNAs from protein synthesis in the ribosome. They 

usually function as extra checkpoints after the amino acids proofreading in AARSs. One of the 

most well-studied trans-editing factors is the AlaX protein which possesses the editing function 

exclusively against Ser-tRNAAla [34]. Recently, Vo et al. have identified a protein called 

ANKRD16 in mice which functions like a co-regulator in AlaRS editing process and brings a 

new editing mechanism that a cofactor can bind directly to the catalytic domain of AlaRS and 

capture the misactivated serine to prevent the mischarging of serine to tRNAAla[35].  

Although various mechanisms have been developed to help AARSs avoid the potential 

mischarge of tRNAs by noncognate amino acids, misincorporation of amino acids still exists in 

organisms from three domains of life. Functional changes occurring at the editing domain can 

cause amino acid mistranslation. Such an amino acid mistranslation could bring damages to 

cells, and lead to diseases in mammalian. In mice, it was demonstrated that a missense mutation 

in AlaRS editing domain could cause mischarge of tRNAAla, then furtherly triggering the 

synthesis of misfolded protein and lead to neurodegeneration [36]. In E. coli, under severe 

oxidative stress, ROS like hydrogen peroxide can cause the oxidation of cysteine 182 in the 

editing domain of ThrRS and impair the editing function of this AARS, which then leads to the 
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misincorporation of serine by tRNAThr and damage the growth of cells[37]. In addition, the 

deficiency of editing function of AARSs can affect the ability of cells to sense the available 

amino acid pool under amino acids starvation[38]. However, in some instances, amino acid 

misincorporation can be a beneficial strategy to prevent cell from damage brought by stress 

conditions. MetRS in yeast and mammalian cells is one of these examples. The posttranslational 

phosphorylation of MetRS increases under the oxidative stress, resulting in an increase of 

mismethionylate tRNAs. The excessive amount of Met residues can attract the ROS and then 

protect the amino acid residues at active site[39]. Similarly, global misacylation of tRNA under 

the antibiotic stress can help E. coli increase their stress resistance[40]. This evidence indicates 

that mistranslation can be regulated as a tool for certain organisms to deal with various stress 

conditions. 

 

1.1.3 Noncanonical functions of AARSs 

Despite their crucial roles in translation process, AARSs are also found to be involved in a 

variety of biological processes ranging from gene transcription, RNA splicing to translational 

regulation[1, 41, 42]. Here, a specific emphasis should be given to ThrRS. In E. coli, besides its 

canonical function in translation, ThrRS also participates in its own mRNA translational 

regulation. ThrRS can bind to an operator which mimics the anticodon loop of tRNAThr in the 

upstream of the initiation codon, leading to the repression of its own mRNA translation[43]. In 

human cells, ThrRS (or TRS) is recently found to be involved in translation initiation of mRNAs 

for proteins required for vertebrate development, such as vascular endothelial growth factor 
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(VEGF)[44]. A schematic model for TRS-mediated translation machinery has been proposed. 

The TRS specifically bind to 4EHP (an eIF4E (the cap-binding protein) homologous protein) via 

its UNE-T region (eukaryote-unique N-terminal extension) and recruit the initiation factor eIF4A 

to form an eIF4F-like initiation complex[44]. The selected mRNAs in this model are required to 

have tRNAThr anticodon-like loops in their 5’ UTR[44]. Another example of noncanonical role is 

TyrRS which has been proved to function against DNA damage under stress conditions like 

oxidative stress by activating transcription factor E2F1 to upregulate the expression of DNA 

damage repair genes[45].  

 

1.2 Lysine acetylation 

Protein acetylation, one of the major post-translational modifications (PTMs) in both 

eukaryotes and prokaryotes, plays important role in biological processes. Normally, there are two 

different forms of protein acetylation, Nt-acetylation, and lysine acetylation[46]. Nt-acetylation 

mainly occurs in in Nα-termini of the nascent polypeptide chains, catalyzed by Nt-

acetyltransferases (NATs)[47], while lysine acetylation is only found in ε-amino group of 

lysine[46]. Lysine acetylation is a reversible and regulatory process in cells, which is mainly 

determined by two major groups of enzymes, lysine acetyltransferases (KATs) and lysine 

deacetylases (KDACs). In addition to these two kinds of enzymes, non-enzymic acetylation 

(Acetyl-phosphate (AcP) as the donor of acetyl group) has also been demonstrated to be critical 

in bacterial lysine acetylation[48]. In human cells, heavy attention has been paid to histone 

acetylation which plays an important role in regulating gene transcription[49]. Similarly, lysine 
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acetylation has also been identified in prokaryotic nucleoid-associated proteins (NAPs) which is 

histone-like and function in the regulation of DNA flexibility[50]. Besides these gene regulation-

related effects, lysine acetylation is also involved in many different biological processes such as 

mitochondrial metabolism and protein synthesis.  

 

1.2.1 Lysine acetyltransferases (KATs) and lysine deacetylases (KDACs) 

KAT family and KDAC family are the main players in lysine acetylation. The enzymic 

pathway for lysine acetylation is believed to involve KATs and cofactor acetyl-coenzyme A 

(acetyl-CoA, the donor of acetyl group). Currently, enzymes from KAT family can be divided 

into three families: the Gcn5-related N-acetyltransferases (GNAT) family, the p300/CREB-

binding proteins (p300/CBP), and the MYST family[46]. GNAT family is one of the most 

important and conserved KAT. In human or mammalian cells, enzymes in GNAT family like 

HAT1, GCN5, and PCAF are studied to be related to different histone acetylation[51, 52]. 

Similarly, the p300/CBP family and the MYST family (containing MOZ, YBF2, SAS2, and 

TIP60) are also mainly functioning in histone acetylation[52]. Most of KATs in human cells 

serve as subunits of multiprotein complexes. For example, acetyltransferases p300/CBP can 

acetylate proteins alone or in the PCAF complex, and they can be autoacetylated in certain lysine 

positions, which is crucial for their function in H3K53 acetylation[53]. Differently, the KATs in 

bacteria have been rarely studied. The Gcn5-like acetyltransferase Pat/YfiQ has been identified 

to be mainly responsible for the enzymic acetylation regulation in E. coli and salmonella [54, 

55]. Recently, in addition to YfiQ, another 4 KATs have been found in E. coli, including RimI, 
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YiaC, YjaB, and PhnO[56].  

Lysine deacetylases (KDACs) are those enzymes that can remove the acetyl group from 

acetyl-lysine. In higher eukaryotic cells, four classes of KDACs (class I, II, III and IV) have been 

identified. Except class III KDACs (also called sirtuin) requiring NAD+ as co-substrate to 

achieve their deacetylase function, all other three classes are found to be Zn2+ dependent[57, 58]. 

Among all Zn2+ dependent KDACs, KDAC class I, including HDAC1, 2, 3 and 8, is mostly 

located at nucleus. KDAC class II (HDAC4, 5, 6, 7, 9, 10) shares high homological catalytic 

domains with class I[59]. Both class I and class II KDACs mainly function in the deacetylation 

of histone proteins and several transcription factors[46]. HDAC11 is the only member in class 

IV, and it’s primarily located at nucleus, involved in immune responses[60]. The NAD+ 

dependent sirtuins (class III, including sirtuins (SIRT) 1-7) are different to other classes. They 

are found to localize in many different cellular compartments and participate in various 

biological processes. Specially, SIRT3, SIRT4 and SIRT5 are predominantly located in 

mitochondria and influence the energy metabolism[61, 62]. Same as KATs, KDACs in bacteria 

world need more exploration. The SIRT2 like deacetylase, CobB has been identified in E. coli 

and shows a role in regulating the metabolic processes. However, the mechanism of the 

regulation is poorly understood[63]. 
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1.2.2 Nonenzymatic lysine acetylation (via acetyl-phosphate, AcP) 

It is observed that when transferring E. coli cells to media which use glucose or acetate as 

the nutritional source, cells grow with an increase of acetylation level[48, 64]. But this enhanced 

acetylation level has been proved to be YfiQ (the only known Gcn5-like acetyltransferase in E. 

coli) independent, suggesting unknown the existence of unknown acetyltransferase or even an 

acetyltransferase-independent mechanism, which can be the possible reason for this acetylation 

increasing[48]. To find the potential mechanisms, the focus has been moved to the acetate, a 

byproduct produced during glucose consumption, and its metabolism. After examining the 

knock-out strains for three enzymes involved in acetate and acetyl-CoA conversion, acetyl-

phosphate (AcP) is demonstrated to be responsible for the glucose-induced acetylation, as the 

phosphotransacetylase (Pta, converting acetyl-CoA to acetate) knock-out strain failed to 

accumulate acetylation, while the acetate kinase (AckA, converting acetate to acetyl-CoA) 

knock-out strain show an increasing of acetylation[48]. In addition, CobB, the deacetylase in E. 

coli shows no preference toward YfiQ dependent acetylation and AcP-mediated acetylation. 

Furthermore, AcP-mediated acetylation is also found in other bacteria such as Bacillus subtilis 

[65]. As for eukaryotic cells, although nonenzymatic acetylation is not prominent, acetyl-CoA 

has been indicated to acetylate proteins in mitochondria in a nonenzymatic way[66].  
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1.2.3 Lysine acetylation and aminoacyl-tRNA synthetases (AARSs)  

Previous acetylome studies have shown an enrichment of lysine acetylation in eukaryotic 

histone proteins, as well as in metabolic pathways such as tricarboxylic acid (TCA) cycle in both 

eukaryotic and prokaryotic cells[67-69]. It is also remarkable that aminoacyl-tRNA synthetases 

family is one of the protein family which have the most acetylation site and the highest 

acetylated level[70-72]. Here, this part will emphasize on the studies related to AARSs 

acetylation. Recently, several studies have been conducted to learn the effects of lysine 

acetylation on AARSs with a concentration on their canonical functions. Since K73 residue in 

motif II of class II AlaRS in E. coli is naturally acetylated, a site-specific study has found that the 

acetylation of K73 can significantly reduce the alanylation activities of the enzyme[73]. 

Similarly, in class I AARSs, LeuRS and ArgRS, acetylation occurring in catalytic domain 

(KMSKS motif, K619 of LeuRS, K16 of ArgRS) can also significantly impair the catalytic 

activity of enzyme. In addition to catalytic domain, acetylated lysine residue in tRNA binding 

domain can also influence the affinity of LeuRS and ArgRS for tRNA[74]. Moreover, site-

specific lysine acetylation (K235 and K238) in KMSKS motif of another class I AARS, TyrRS, 

is also found to have important effects on the canonical aminoacylation function of enzyme[75]. 

Furthermore, except MetRS, acetylation is found in KMSKS motif of other class I AARSs[75]. 

Based on the results from LeuRS, ArgRS and TyrRS, it’s expected that acetylation in KMSKS 

motif can help regulate the canonical activities of class I AARSs. However, more studies are still 

needed to identify the effects of acetylation on class I and even class II AARSs in E. coli. In 

eukaryotic cells, the effects of acetylation on AARSs are even rarely studied. As is mentioned 
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above, TyrRS participates in stress response by functioning in transcriptional regulation of DNA 

damage repair genes[45], however, no possible mechanism to explain the translocation of TyrRS 

to nuclear has been determined until 2017. Yu’s group has reported a mechanism that high 

acetylation level promotes the translocation of TyrRS[76]. To be specific, an acetyltransferase 

PCAF (GNAT family) and a class III KDAC, sirtuin 1, are the main players in this mechanism. 

PCAF can acetylate the K244 residue near nuclear localization signal (NLS) and cause a 

conformational change, which then promote the localization of TyrRS to nuclear[76]. But this is 

just an example for the effects of acetylation on noncanonical function of AARSs in eukaryotes, 

more future investigation will be necessarily needed.  

 

1.3 Genetic code expansion strategy 

Naturally, the genetic code of life contains 64 triplet codons, including 3 stop or terminal 

codons and 61 codons encoding 20 canonical amino acids. Beyond these building basic blocks, 

natural proteins still require extra various modifications such as posttranslational modifications 

(PTMs) to function well in organisms. However, it can be challenging to study those 

modifications, because they are usually dynamic, transient and hard to control[77]. Therefore, to 

resolve these difficulties, more rigorous and effective strategies to synthesize protein with ideal 

modifications for different purposes are needed. Rather modify protein post-translationally, co-

translationally incorporating noncanonical amino acids (ncAA) into defined sites of protein 

obviously is a better strategy to specifically modify protein with certain chemical modifications. 

The first example to incorporate ncAA (selenomethionine (Se-Met)) into proteins in bacteria 
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during translation dates back to 1956[78]. Since then, lots of ncAAs which can be substrate for 

natural translational machinery have been successfully incorporated into protein by substituting 

their natural counterparts[79, 80]. Besides this residue-specific incorporation way, several 

strategies have been developed to achieve site-specific ncAAs incorporation[81], among which 

genetic code expansion strategy (GCE) is one the most useful way.  

Basically, a pair of engineered orthogonal aminoacyl-tRNA synthetase (AARS) and its 

orthogonal tRNA, usually from different life domain and not cross-reacting with endogenous 

AARS/tRNA pair, will be introduced into host cells[82]. Typically, the altered-specificity 

orthogonal synthetase can recognize the specific ncAA, then aminoacylating the orthogonal 

tRNA. The ncAA-charged tRNA will be delivered by EF-Tu (elongation factor-Tu) to the 

ribosome and directly incorporate ncAA into the specific position of object protein in response to 

an unassigned codon (usually an amber stop codon)(Figure 1.3.1)[83, 84]. Currently, the most 

widely used othorgonal AARS/tRNA pairs are engineered from either pyrrolysyl-tRNA 

synthetase (PylRS)/tRNApyl pair from Methanosarcina species[85-87], or tyrosyl-tRNA 

synthetase from Methanococcus jannaschii[88]. Additionally, the codon for original canonical 

amino acids can be mutant to unassigned codon through site-direct mutagenesis. Thus, genetic 

code expansion strategy is theoretically applicable to incorporate ncAAs into proteins at any 

specific positions, which indeed can facilitate the study on the site-specific effects of specific 

modifications like PTMs on proteins both in vivo and in vitro.  
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1.3.1 Players in GCE strategy 

As is mentioned above, there usually are two important factors required in GCE system. 

One is orthogonal AARS/tRNA pair, and another is the unassigned codon[89, 90]. The first 

orthogonal AARS/tRNA pair applied to the genetic code expansion of E.coli was derived from 

MjTyrRS-tRNACUA [91, 92], and this pair was also one of the most frequently used pair in 

prokaryotic cells.  Based on MjTyrRS-tRNACUA, He et al. designed three MjTyrRS-opt variants 

(pBpaRS, pAzPheRS, pIPheRS, respectively) to construct UAA incorporation systems to site 

specifically incorporate p-benzoyl-L-phenylalanine (pBpa), p-azido-L-phenylalanine (pAzPhe), 

tR
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ncAA

tR
N

A*

ncAA

Ribosome

tR
N
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AUC
UAG

mRNA

EF-Tu

ncAA
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Figure 1.2 A scheme for genetic code expansion strategy[84]. The introduced 
orthogonal AARS aminoacylates its cognate tRNA with one ncAA. Then the ncAA-
charged tRNA is brought to the ribosome by EF-Tu. The introduced tRNA with a 
designed anticodon can read the corresponding codon in the mRNA (UAG as a 
representative), then direct the incorporation of ncAA into the specific site of the target 
protein. AARS*: introduced aminoacyl-tRNA synthetase; tRNA*: introduced tRNA; 
ncAA: noncanonical amino acid. 
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and p-iodo-L-phenylalanine (pIPhe) into proteins in Streptomyces venezuelae, which would 

facilitate the study of actinobacterial proteins[93]. Different to MjTyrRS-tRNACUA, PylRS-

tRNACUA pair was used to incorporate pyrrolysine (Pyl), the 22nd proteinogenic amino acid[94] 

into protein, and it was orthogonal in E. coli, yeast, and animals[87, 95-97]. Recently, to make 

PylRS-tRNACUA pair system more effective, Fan et al. rationally evolved tRNApyl to create 

tRNAPyl-opt by setting up three mutant libraries, including library I for the 2-71 and 3-70 

positions (replacing these two base pairs with standard base pairs (GC/CG and AU/UA) as well 

as one wobble pair (GU/UG)), library II for 6-67 and 7-66 with same replacement and library III 

for 49-65 and 50-64 with same replacement, and the results showed that tRNAPyl-opt could be 

more effective to incorporate Nε-acetyl-L-lysine into super-folder green fluorescence protein 

(sfGFP) and implied it as an excellent replacement of wild-type tRNAPyl. Except MjTyrRS-

tRNACUA pair and PylRS-tRNACUA pair, scientists have also found many other pairs. For 

example, Park et al. site-specifically incorporated O-Phosphoserine (Sep) into a protein in E.coli, 

by designing an Sep-tRNA synthetase (SepRS)-tRNAsep pair and an engineered EF-Tu (EF-

Sep)[98]. As for unassigned codons choices, the stop codons and quadruplet codons[99, 100] 

were often selected. Among them, the amber stop codon UAG was commonly used to direct a 

noncanonical amino acid at specific position of an aim gene[101].  
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1.3.2 Recent developments of GCE strategy in lysine acetylation studies 

GCE strategy has been used to incorporate a variety of amino acids with specific PTMs 

(Table 1.3.2), here we give a specific review on studies which develop the GCE system for 

introducing site-specific lysine acetylation into proteins both in prokaryotic cells and eukaryotic 

cells.  

Recently, the genetic code expansion method for incorporating Nε-acetyllysine (Ack) and its 

analogs has been developed in bacterial cells. In 2008, Neumann et al. demonstrated the site-

specific incorporation of Ack in recombinant proteins produced in Escherichia coli using a 

pyrrolysyl-tRNA synthetase (MbPylRS)/MbtRNACUA pair and suggested the potential of this 

strategy in future[102]. Then Yokoyama group successfully introduced this Ack-incorporation 

system into mammalian cells[103], while the Söll group engineered this system to obtain a AcK-

specific PylRS variant (AckRS)[104]. However, these PylRS variants showed serious catalytic 

deficiency. To solve this problem and optimize the Ack-incorporation system, certain 

developments have been conducted. Liu group firstly set up a convenient approach which 

enhanced amber suppression by overexpression of the C-terminal domain of the ribosomal 

protein L11, to incorporate three three Nε-acetyl-L-lysines (AcKs) into one GFPUV protein in E. 

coli[105]. Besides, both tRNApyl [106] and PylRS[107] engineering have been performed to 

achieve high incorporation efficiency. Furthermore, combing optimized tRNAPyl mutants and 

PylRS variants, our group develop a facile protocol for Ack incorporation[108].  
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Table 1.1 Noncanonical amino acids incorporation used in different PTMs studies. 
PTM type Noncanonical Amino Acids 
Lysine acetylation  
 Nε-acetyllysine （Ack） 

 
Nε-thioacetyl-L-lysine (TAcK) 
2-amino-8-oxonoanoica acid (KetoK) 
Trifluoro-acetyllysine (TFAcK) 

Lysine ubiquitination  
 D-Cys-ε-Lys 
 L-Cys-ε-Lys 
 δ-thiol-L-lysine 
 δ-hydroxy-L-lysine 
Lysine methylation  
 Nε-Boc-Nε-methyllysine 
 Nα-Fmoc-Nɛ-(Boc, methyl)-lysine 
 Nε-(4-azidobenzoxycarbonyl)-δ, ɛ-dehydrolysine 
 phosphoserine (pSer) 
Arginine methylation  
 NG-monomethyl-L-arginine 
Tyrosine phosphorylation  
 p-Carboxymethyl-L-phenylalanine (pCMF) 
 4-phosphonomethyl-L-phenylalanine (Pmp) 
 Phosphotyrosine (pTyr) 
 a charge neutral and stable pTyr analog (Uaa 1) 
Serine phosphorylation  
 phosphoserine (pSer) 
Threonine phosphorylation  
 phosphothreonine (pThr) 
Tyrosine sulfation  
 sulfotyrosine 
Tyrosine nitration  
 3-nitro-tyrosine (nitro Tyr) 
other lysine PTMs  
 ε-N-crotonyllysine (Kcr) 
 ε-N-propionyllysine (Kpr) 
 ε-N-butyryllysine (Kbu) 
 ε-N-alkynyllysine (Kal) 
 ε-N-scuccinyllysine (Ksc) 
 ε-N-2-hydroxyisobutyryl-lysine (HibK) 
Other PTMs  
 3,4-dihydroxy-L-phenylalanine (L-DOPA) 
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As is mentioned in lysine acetylation part, deacetylases could remove the acetyl group from 

lysine. Although deacetylase inhibitors like nicotinamine could be helpful, sometimes 

deacetylase still might affect the Ack incorporation. To avoid the influence from deacetylase, 

several non-deaceylatable analogs Ack (Figure 1.3.3) were used in certain studies. 2-amino-8-

oxononanoic acid (KetoK) was the first Ack analog genetically incorporated into proteins[109]. 

later, under a cell-free translation condition, thio-acetyllysine (TAcK) was site-specifically 

incorporated into histone H3 by flexizyme system[110]. Recently, our group engineered the 

AckRS for better TAcK recognition and also indicated that TAcK could be an ideal mimic of 

AcK with the ability to avoid deacetylation[111]. In addition to KetoK and TAcK, trifluoro-

acetyllysine (TFAcK) was incorporated into p53 protein as a NMR probe for lysine 

acetylation[112].    
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Figure 1.3 The Structures of acetyllysine and its non-deacetylatable analogs[84]. 
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With the development of GCE strategy, researchers were able to study the lysine acetylation 

of bacteria. For instance, our group was able to use the GCE strategy to study the site-specific 

effects of lysine acetylation on three important enzymes involved in E. coli tricarboxylic acid 

(TCA) cycle, Malate dehydrogenase (MDH), isocitrate dehydrogenase (ICDH) and type II citrate 

synthetase (CS)[113-115]. Interestingly, acetylation was able to increase the enzyme activity of 

MDH and type II CS, whereas it could decrease the enzyme activity of ICDH. Additionally, our 

group and other lab also applied Ack incorporation system to learn the site-specific effects of 

lysine acetylation on AARSs in E. coli, including class I TyrRS, LeuRS and ArgRS as well as 

class II AlaRS, and the results showed the acetylation in catalytic domain or tRNA binding 

domain could affect the catalytic activity of AARSs[73-75]. Similarly, many efforts have been 

already made to develop the genetic code expansion strategy of eukaryotic cells. In the past, 

genetic code expansion had been used to incorporate acetyl-lysine into core histones including 

H2A, H2B and H3[116], however it was hard to get recombinant H4 with acetylation. According 

to this situation, Wilkins et al. improved the general way of acetyl-lysine incorporation by 

constructing a gene fusion coding for H3 connected to H4 by a proper linker, which would 

facilitate the production of H4 as same as H3[117]. Except histones, there also were many 

studies about protein acetylation of other human genes. For instance, Pan et al. used the genetic 

code expansion strategy to incorporate Nε-acetyl-L-lysine into hPrx1at 27 position and found that 

in different environmental changes, the acetylation in specific site of hPrx1 may change its 

biological role[118]. As another example, site-specifically K104-acetylated and K107-acetylated 

K-Ras 4B were synthesized by genetic code expansion method to study K-Ras 4B regulation by 
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lysine-acetylation[119]. Additionally, Scientists also provided many powerful tool for studying 

protein acetylation in eukaryotic cells, like mouse[120].  

 

1.4 Rationale and gap in knowledge 

Aminoacyl-tRNA synthetases (AARSs) charge tRNAs with cognate amino acids to 

maintain the faithful process of translation. Some of the AARSs can perform editing or proof-

reading function to assure the accuracy of amino acids recognition. Besides, these synthetases 

also possess noncanonical functions related to several biological processes, such as 

transcriptional and translational regulation. Recently, proteomic studies have shown an 

enrichment of lysine acetylation in AARSs. Although a few examples have indicated that 

acetylation had profound impacts on catalytic activities of AARSs, more studies are needed to 

well-understand the effects of lysine acetylation on these enzymes. To furtherly understand the 

relationship between lysine acetylation and AARSs, it’s necessary to conduct research on those 

synthetases whose acetylation haven’t been explored before, and it is also important to deeply 

investigate the potential roles of acetylation in enzyme activities or even other functions, 

especially the editing function, of AARSs. This study will provide biochemical evidence and 

structural insight of site-specific effects on AARSs and firstly explore the potential 

mistranslation caused by acetylation-related editing domain dysfunction of ThrRS.  
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2.1 Abstract 

Aminoacyl-tRNA synthetases (AARSs) charge their cognate tRNAs with corresponding 

amino acids, playing key roles in ribosomal protein synthesis. A series of proteomic studies have 

demonstrated that AARSs have much higher levels of lysine acetylation than other proteins in 

Escherichia coli. To study AARS acetylation, 25 site-specifically acetylated variants of four 

AARSs were generated by the genetic code expansion strategy. Kinetic analyses were performed 

to biochemically characterize the impact of site-specific acetylation on AARS functions, 

including amino acid activation, tRNA aminoacylation, and editing activities. The results showed 

that impacts of acetylation were different between class I and class II AARSs, and also varied 

among the same class of AARSs. The results also showed that acetylation of threonyl-tRNA 

synthetase (ThrRS) could affect its editing function. Both in vivo and in vitro studies were further 

performed to explore the acetylation and deacetylation processes of ThrRS. Although 

nonenzymatic acetylation and CobB-dependent deacetylation were concluded, the results also 

indicated existence of additional modifying enzymes or mechanisms for ThrRS acetylation and 

deacetylation. 
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2.2 Introduction 

The first step of ribosomal protein synthesis is to charge tRNAs with their cognate amino 

acids. This reaction is catalyzed by an ancient family of enzymes known as aminoacyl-tRNA 

synthetases (AARSs), and proceeds with two steps: activating a specific amino acid and 

transferring it to the correct tRNA [1]. Due to the essential role of translation in all living species, 

the AARS family is one of the most ubiquitous and conserved protein families in all three 

domains of life, and their functions are critical for the high fidelity of the translation process [2]. 

Besides this canonical role, AARSs are also found to be involved in many other biological 

processes such as transcription, translation, RNA splicing, cell signaling and migration [3, 4], 

and are associated with a variety of human diseases including mitochondrial diseases, Charcot-

Marie-Tooth and related neuropathies, cancers, and infectious diseases [5-7], making AARSs 

favorable targets for diagnostic and therapeutic development [8-10]. 

For both basic sciences and medical applications, a number of studies have been performed 

to explore AARS regulation, most of which focused on gene expression of AARSs [11]. 

Different from regulation at the gene expression level which needs relatively longer time, post-

translational modifications (PTMs) can rapidly modify properties of existing proteins to regulate 

their functions for adapting to different stimuli or environmental changes [12]. It has been shown 

that phosphorylation of eukaryotic AARSs mostly affects noncanonical functions of AARSs, and 

only has little influence on their canonical tRNA charging activities [13, 14]. Recently, we and 

others showed that acetylation of lysine residues in the KMSKS motifs of three Escherichia coli 

class I AARSs, tyrosyl-tRNA synthetase (TyrRS), leucyl-tRNA synthetase (LeuRS), and arginyl-
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tRNA synthetase (ArgRS), could impair their aminoacylation activities [15, 16]. Although class 

II AARSs have no KMSKS motifs, acetylation of the lysine residue at the tRNA binding site 

could also decrease the activity of E. coli alanyl-tRNA synthetase (AlaRS) [17]. In human cells, 

acetylation of TyrRS could promote its nuclear translocation to prevent oxidative damage under 

oxidative stress [18]. These studies demonstrated the role of acetylation in regulating both 

canonical and noncanonical functions of AARSs. 

To study lysine acetylation, glutamine is commonly used to be a mimic of acetyllysine, 

which however does not always yield expected results [19]. To overcome this issue, the genetic 

code expansion strategy has been applied to use an engineered pyrrolysyl-tRNA synthetase 

variant specific for acetyllysine (AcK) and its cognate tRNAPyl to incorporate AcK directly at an 

assigned codon to produce site-specifically acetylated proteins [20]. To explore general 

mechanisms of AARS acetylation, we utilized the genetic code expansion strategy to generate 

totally 25 purely acetylated variants of four E. coli AARSs, and characterized their site-specific 

impacts on amino acid activation, tRNA aminoacylation, and editing activities. The acetylation 

and deacetylation processes were also investigated. 

 

2.3 Methods 

2.3.1 Experimental materials  

Chemicals and bacterial growth media were purchased from Sigma-Aldrich (St. Louis, 

MO), BDH Chemicals (Radnor, PA) or CHEM-IMPEX (Wood Dale, IL). Radioactive 

compounds were purchased from PerkinElmer (Waltham, MA) or VWR International (Radnor, 
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Figure 37 Acetylation of ThrRS by YfiQ. A) SDS-PAGE and western blotting analyses of 
purified native ThrRSs from BW25113 wild-type and ΔyfiQ cells. B) SDS-PAGE and western 
blotting analyses of purified ThrRS treated with purified YfiQ and acetyl-CoA in vitro. C) RcsB 
is a known substrate of YfiQ and was used to show the purified YfiQ protein was active. 
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Supplementary data for chapter III 

Supplementary material and methods 

The DNA sequence of Thr-free GFP* 

atgagcaagggcgaagaactgttttcgggcgtggtgccgattctggtggaactggatggtgatgtcaatggtcacaaattcagcgtgcgcg

gcgaaggtgaaggcgatgcaagcaatggtaaactgtcgctgaagtttatttgcagctcgggtaaactgccggttccgtggccgagcctggtc

agctcgctgtcgtatggtgttcagtgtttcagtcgttacccggatcacatgaaacgccacgactttttcaagtccgcgatgccggaaggttatgt

ccaagaacgtagcatctcatttaaagatgacggcagctacaaatcgcgcgccgaagtgaaattcgaaggtgattcgctggttaaccgtattga

actgaaaggcatcgattttaaggaagacggtaatattctgggccataaactggaatataacttcaattcgcacaacgtgtacatcagcgcagat

aagcagaagaacggtatcaaggctaacttcaagatccgccataatgtggaagatggcagcgttcaactggccgaccactatcagcaaaac

agcccgattggtgatggcccggtcctgctgccggacaatcattacctgagctcgcagtctgtgctgagtaaagatccgaacgaaaagcgtga

ccacatggtcctgctggaattcgtgagcgcggccggcatctcgcacggtatggacgaactgtataaaggctcataa 

* The mutated Ser codons to Thr codons are marked with yellow. 

The protein sequence of Thr-free GFP* 

MSKGEELFSGVVPILVELDGDVNGHKFSVRGEGEGDASNGKLSLKFICSSGKLPVPWPS

LVSSLSYGVQCFSRYPDHMKRHDFFKSAMPEGYVQERSISFKDDGSYKSRAEVKFEGDS

LVNRIELKGIDFKEDGNILGHKLEYNFNSHNVYISADKQKNGIKANFKIRHNVEDGSVQL

ADHYQQNSPIGDGPVLLPDNHYLSSQSVLSKDPNEKRDHMVLLEFVSAAGISHGMDEL

YKGS 

* The substitutions of Thr with Ser are marked with yellow. 
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Figure S2 The circular dichroism (CD) spectra of the WT-GFP and TF-GFP. The CD spectra 
were recorded on a J-1500 CD Spectrometer. Purified proteins were diluted to a concentration of 
0.1 mg/ml in 5 mM Tris-HCl pH 7.8, 0.1 M KCl, and scanned from 190 nm to 250 nm with a 20 
nm/min speed. Scanning was performed three times for each sample and the average was plotted. 
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Figure S3 Cell culture densities and fluorescence readings of cells expressing the TF-sfGFP 
T203 reporter in strains with WT-ThrRS and ThrRS C182 variants, respectively. Mean and 
standard deviations were calculated based on five replicates. 
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Figure S4 LC-MS/MS analysis of the ThrRS-169AcK variant. The tandem mass spectrum of 
the peptide (residues 157-183) VSILDENIAHDDKACPGLYFHEEYVDMCR from the purified 
ThrRS-169AcK variant. KAC denotes AcK (acetyllysine) incorporation. The partial sequence of 
the peptide containing the AcK can be read from the annotated b or y ion series. 
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Figure S5 The location of K169 in E. coli ThrRS. K169 is shown in the structure of the N-
terminal editing site of ThrRS (PDB ID: 1TKG). The nonhydrolyzable analog of seryl-
adenylate is in magenta. The lysine residue K169 is marked with red color. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

K169 
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Table S1 The list of primers used for generating sfGFP variants 
Variant name Forward primer Reverse primer 
TFGFP-9T ctgtttacgggcgtggtgcc ttcttcgcccttgctcatggtatatc 
TFGFP-38T gatgcaaccaatggtaaactgtcg gccttcaccttcgccgc 
TFGFP-43T gtaaactgacgctgaagtttatttgc cattgcttgcatcgccttcac 
TFGFP-49T atttgcacctcgggtaaactgcc aaacttcagcgacagtttaccattgcttg 
TFGFP-50T atttgcagcacgggtaaactgcc aaacttcagcgacagtttaccattgcttg 
TFGFP-59T gccgaccctggtcagctc cacggaaccggcagtttacc 
TFGFP-62T ggtcacctcgctgtcgtatgg aggctcggccacggaac 
TFGFP-63T ggtcagcacgctgtcgtatgg aggctcggccacggaac 
TFGFP-65T ggtcagctcgctgacgtatgg aggctcggccacggaac 
TFGFP-97T gaacgtaccatctcatttaaagatgacgg ttggacataaccttccggcatc 
TFGFP-105T gacggcacctacaaatcgcgc atctttaaatgagatgctacgttcttggac 
TFGFP-108T gacggcagctacaaaacgcgc atctttaaatgagatgctacgttcttggac 
TFGFP-118T gtgatacgctggttaaccgtattgaac cttcgaatttcacttcggcgcg 
TFGFP-153T tacatcaccgcagataagcagaagaac cacgttgtgcgaattgaagttatattccag 
TFGFP-186T caaaacaccccgattggtgatgg ctgatagtggtcggccagttg 
TFGFP-203T ctgagcacgcagtctgtgctgag gtaatgattgtccggcagcaggac 
TFGFP-225T gaattcgtgaccgcggcc cagcaggaccatgtggtcac 
TFGFP-230T ggcatcacgcacggtatgg ggccgcgctcacgaattc 

 


