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Abstract 

Fitting wrongly specified models to observed data may lead to invalid inferences about 

the model parameters of interest. The current study investigated the performance of the posterior 

predictive model checking (PPMC) approach in detecting model-data misfit of the hierarchical 

rater model (HRM). The HRM is a rater-mediated model that incorporates components of the 

polytomous item response theory (IRT) model, such as the partial credit model (PCM) and 

generalized partial credit model (GPCM), at the second level of the hierarchy, to model 

examinees’ responses to performance assessments. To date, the HRM has not been rigorously 

evaluated using PPMC techniques. Monte Carlo simulations were employed to explore the 

effectiveness of 13 discrepancy measures in detecting model-data misfit of the HRM. Misfits 

were assessed at the test-, item-, and rater-level. Using the HRM-GPCM, data were generated by 

varying the rating design (fully-crossed and spiral), proportion of aberrant raters (no rater effects 

and 25% of the raters with rater effects), and number of examinees (250 and 500). Data 

generated were analyzed using the HRM-PCM and HRM-GPCM with eight raters and four 

items. Type I error and power rates were computed for each discrepancy measure. 

The results indicate that the standard deviation of the total score was the only useful 

discrepancy measure at the test level. Furthermore, the item-total correlation and odds ratio were 

found to be powerful in detecting misspecification of the HRM-PCM at the item level. Of the 

three rater-level discrepancy measures, only the score-estimate correlation and rater-total 

correlation were adequate in detecting the misfit of the HRM-PCM. The performance of the 

discrepancy measures in detecting misfit of HRM-PCM differed by the magnitude of the item 

discrimination parameters. The impact of the simulation factors on detecting misfit of the HRM-

PCM and implications are further discussed. 
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CHAPTER 1:  

INTRODUCTION 

In education and psychology, measurement models describe characteristics and behaviors 

of people and objects, including the proficiency level of examinees, the difficulty level of items, 

and the behaviors of human raters. Often, human raters provide numerical scores for examinees, 

introducing another consideration for measurement models. Assessments requiring human raters 

are subject to measurement errors, which, among other factors, could be due to the subjectivity 

of raters or an unclear rating guide. To ensure that examinee characteristics or performances are 

accurately described, measurement models that compensate for rater effects are needed when 

human raters are employed. The misspecification of such measurement models may threaten the 

validity of inferences made using the model parameters. Consequently, model-checking is 

fundamental to ensure that valid and meaningful inferences are made. The main purpose of this 

study is to evaluate the fit of the hierarchical rater model (HRM; Patz et al., 2002) to data ( i.e., 

absolute model-data fit) under varying conditions. The HRM is increasingly being applied in 

educational and psychological measurement fields to model data from performance assessments. 

This introductory chapter first introduces performance assessments followed by a description of 

approaches to model performance assessments. The latter parts of this chapter briefly describe 

the HRM, and the Bayesian techniques applied to evaluate absolute model-data fit of the HRM. 

Finally, the research questions are provided.  

1.1 Overview of Performance Assessments 

In educational testing, measuring examinees’ mastery of a subject or learning objectives 

may come from exams, assignments, quizzes, or performing tasks such as conducting a 

laboratory experiment and participating in a debate (Lane & Stone, 2006). Many educators 
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traditionally rely on multiple-choice test items to assess examinee learning. Multiple-choice test 

items are graded as either correct or incorrect and include predefined lists of possible correct 

options. Items on multiple-choice tests can range from easy to hard in terms of the item difficulty 

level and from low to high with regards to how well the items discriminate between low 

achieving examinees and high achieving examinees.  

Wiggins (1998) suggested that the essence of educative assessment is to give tests in 

which the examiner can learn whether the examinees can intelligently use what they were taught 

rather than selecting answers from easy-to-score questions. These types of assessments typically 

require some kind of performance, which could be in the form of writing or showcasing a skill. 

Assessments that require performance are generally referred to as performance assessments. 

Performance assessments can range from tasks on writing (Weigle, 2010), creativity (Hung et al., 

2012; Primi et al., 2019), or musical performances (Wesolowski et al., 2015). For example, an 

examinee may be tasked with writing an essay to describe their experience abroad, or a more 

challenging task such as designing and implementing a laboratory experiment.  These 

performances challenge the examinees to perform simple or complex tasks rather than selecting 

answers from predefined lists. Performance assessments provide examinees the opportunity to 

use their initiatives, judgments, and knowledge to tackle assigned problems (Wiggins, 1998). 

They also provide examinees the opportunity to collaborate with other examinees.  

Literature has argued that performance assessments provide rich information that is not 

directly measured by multiple-choice items (Johnson et al., 2008; Priestley, 1982; Wiggins, 

1990). Performance assessment asks the examinees to use their judgment in innovative ways to 

effectively solve problems. An examinee’s strategies of formulating and solving the performance 

tasks provide the potential of diagnosing the strengths and weaknesses of the examinee (Lane, 
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2010).  Hence, performance assessments provide information about what examinees know and 

how they apply their knowledge. It also provides an avenue to give direct feedback about the 

examinees.  

There are drawbacks; performance assessments require recruiting and training human 

raters and are time-consuming and expensive to score (Lane & Stone, 2006; Myford & Wolfe, 

2003; Popham, 2003; Wainer & Thissen, 1993). For example, Wainer and Thissen (1993) 

reported that scoring the constructed-response portion of the Advanced Placement (AP) 

Chemistry test costs $3 to $4 per item compared to 1¢ for the entire multiple-choice section. This 

implies that the costs associated with scoring performance assessments could be as high as $40 

for each examinee for a test with 10 constructed-response items. Another important 

consideration is the number of raters required to score each constructed-response item. Typically, 

multiple human raters are employed to judge the quality of examinees’ responses. The use of 

multiple raters to rate the same examinee is to facilitate the increase in reliability and reduce the 

error associated with using a single rater (Eckes, 2011; Johnson et al., 2000). Rating each 

examinee’s work by more than one rater is especially crucial if the results have consequences for 

the examinees, especially in high-stake testing (Bock et al., 2002). Unfortunately, human raters 

are fallible, which may result in unwanted variability in scores between raters who rate the same 

examinee (Linacre, 1989; Wilson & Case, 2000). Raters may lack consistency in how they apply 

the rating scale. For example, two raters who received the same training may be differential in 

how they apply the scoring rubrics (Weigle, 1998). In some instances, some raters may have 

more experience in the content area than others. Therefore, failing to account for the 

characteristics of different raters may lead to biased inferences concerning examinees’ 

proficiency in the skills being evaluated. 
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1.2 Modeling Performance Assessments 

Psychometric modeling in educational measurement involves important considerations 

such as the amount of measurement error and reliability (AERA, APA, & NCME, 2014; Wang et 

al., 2000). Reliability captures the extent to which measurements are free of measurement error 

(Perron & Gillespie, 2015). Traditionally, inter-rater reliability has been used to measure the 

extent of agreement among raters. Several techniques for computing inter-rater reliability have 

been proposed, including “percentage agreement,” Cohen’s kappa (1960), and weighted kappa 

(Cohen, 1968).  These approaches are often employed to gauge rating quality (Saal et al., 1980). 

Ratings awarded by multiple raters are typically assumed to be independent, and rating 

consensus is desirable. Assessments with high rater consensus will yield a high inter-rater 

reliability. Unfortunately, traditional inter-rater reliability coefficients, such as percentage 

agreement and weighted kappa, do not account for rater effects and other sources of variability 

such as items and occasions. 

Consider a situation where 10 raters are employed to each rate 500 examinees on an 

ethical reasoning essay. Raters may become fatigued from long hours of rating and may 

introduce errors in the rating operation (Myford & Wolfe, 2003). There is also a possibility that 

some of these raters may have different interpretations of the scoring rubric, despite being 

trained and calibrated. A culmination of these rater effects (i.e., subjective interpretation of the 

rating scale and rater fatigue) may lead to raters awarding ratings that are less than or greater 

than the true scores of the examinees. Scholars have used the term leniency to refer to raters who 

rate above examinee true scores and severity to refer to raters who rate below examinee true 

scores (Eckes, 2011; Myford & Wolfe, 2003, 2004). Many traditional inter-rater reliability 
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coefficients may fall short in modeling the data resulting from this illustration. When using these 

inter-rater reliability indices, a high degree of agreement among raters does not necessarily imply 

a high degree of accuracy in the ratings (Eckes, 2011). This is especially true when raters have 

similar levels of leniency or severity. Therefore, it is important to employ measurement models 

that account for the differences in raters’ characteristics. 

Significant advances have been made in modeling ratings of an examinee’s work by 

multiple raters. The many-facet Rasch measurement (MFRM; Linacre, 1989) model is one of the 

foremost and popularly applied models that account for rater effects. The MFRM is an extension 

of the traditional Rasch model. The MFRM provides for measures [parameters] to account for 

potential sources of variability such as raters, scoring criteria, and rating methods (Eckes, 2011). 

These sources of variability are referred to as facets. For example, a four-facet MFRM model 

would be an assessment in which each examinee responds to different performance assessment 

items, and each item was judged by multiple raters using two different types of scoring rubrics. 

In this situation, examinees, items, raters, and scoring methods are the four facets of interest. In 

this example, the examinee ability, item, rater, and scoring method parameters can all be 

estimated using the MFRM model. 

MFRM has often been criticized for its failure to account for the dependence structure of 

the ratings. The MFRM treats raters as locally independent experts such that each rater has a 

unique perspective of what the “true” rating is (Linacre, 2003). This implies that more 

measurement information is produced by increasing the number of ratings of the same person by 

multiple raters. The implication of this is that as the number of raters per item increases, the 

MFRM appears to give infinitely precise measurement of the examinee’s latent proficiency, even 

though they answered no more items (Patz et al., 2002). Despite this criticism of the MFRM, the 
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model remains very popular among practitioners. 

Other recent measurement models for calibrating performance assessments include HRM, 

rater bundle model (Wilson & Hoskens, 2001), hierarchical rater model-signal detection theory 

(HRM-SDT; DeCarlo, 2008, 2010; DeCarlo et al., 2011), and generalized rater model (Wang et 

al., 2014). One common theme across these models is their ability to model rater behaviors. At 

the kernel of most of these modeling approaches is the extension of item response theory (IRT; 

Hambleton & Swaminathan, 1985) models to capture rater effects. Unlike the MFRM, the HRM 

and HRM-SDT models are not limited to Rasch models.  

This study focuses on the HRM which accounts for rater effects such as bias (i.e., award 

scores that are below or above the examinees’ true scores) and variability (i.e., 

consistency/inconsistency in the use of the rating scale). The HRM models the hierarchy that 

exists in rating data by combining polytomous IRT-based and generalizability theory (Cronbach 

et al., 1972; Shavelson & Webb, 1991) modeling approaches. The HRM incorporates the 

dependence structure in ratings awarded to the same examinee by multiple raters. The HRM 

models the data from multiple ratings using a two-stage measurement process. The first level 

models the observed ratings given the ideal ratings using a discrete signal-detection-like model. 

In the second level, the HRM models ideal ratings given the examinee latent abilities using a 

polytomous IRT model. 

In HRM, estimation of item, examinee ability, and rater parameters can be accomplished 

by employing a Bayesian Markov Chain Monte Carlo (MCMC; Patz, 1996) algorithm. Hombo 

and Donoghue (2001) have also estimated parameters of the HRM using marginal maximum 

likelihood (MML; Bock & Lieberman, 1970; Bock & Aitkin, 1981) estimation method. Bayesian 

modeling has remained attractive because of its capability to model complex designs comprising 
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complex dependency structures (Fox, 2010; Gilks et al., 1995). This makes Bayesian estimation 

a natural home for HRM because of its hierarchical structure and parameterization. Current 

literature that applied the HRM has employed Bayesian MCMC estimation techniques (see 

Casabianca & Wolfe, 2017; Casabianca et al., 2017; Nieto & Casabianca, 2019).  

When applying the HRM, users are allowed to choose a polytomous IRT model at the 

second level of the HRM. The polytomous IRT models are described in the next chapter. 

Unfortunately, the effects of misspecifying the polytomous IRT component in the HRM have not 

been documented in literature. Because models are only approximations to reality, it is 

imperative to assess how well a posited model fits the observed data. In traditional IRT models, 

model misspecifications have been documented to lead to biased examinee latent trait estimates 

(Feuerstahler, 2018), and low statistical power of fit indices (Ames et al., 2020; Orlando & 

Thissen, 2000). In the context of the HRM, valid inferences about the examinees and accurate 

estimation of rater behaviors (i.e., severity/leniency and consistency) must be assured. To this 

end, model-checking is fundamental to ensure that valid and meaningful inferences are made. 

1.3 Purpose of the Study 

The conclusions and usefulness of the results from a measurement model are dependent 

on the extent to which the model accurately reflects the data (Orlando & Thissen, 2000). In IRT, 

adequate model-data fit has two main advantages: (1) parameter estimates of the items are not 

dependent on the samples of examinees drawn from the population of examinees for whom the 

test was designed for; (2) expected values of examinee ability estimates are not dependent on the 

choice of test items (Hambleton & Swaminathan, 1985). These two desirable features hinge on 

the adequate fit of the model to the data and should not be overlooked. Therefore, to ensure that 

the model parameters are adequately estimated, it is essential to evaluate various aspects of 
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model-data fit (Sheng, 2017). 

The main purpose of this study is to evaluate absolute model-data fit of the HRM under 

varying conditions using posterior predictive model checking (PPMC; Gelman et al., 1996; 

Meng, 1994; Rubin, 1984) techniques. The PPMC is a Bayesian technique for assessing absolute 

model-data fit. Using a Bayesian paradigm, Gelman et al. (1996) summarized three approaches 

of evaluating model-data fit, which they gave as: (1) examining the sensitivity of inferences to 

reasonable changes in the prior distribution and the likelihood; (2) checking that the posterior 

inferences are reasonable, given the substantive context of the model; and (3) checking that the 

model fits the data. This study will focus on the last approach of checking model-data fit. 

The PPMC is implemented to evaluate whether certain aspects of the data are not 

captured by the model. In PPMC, data are replicated from the joint posterior distribution 

conditional on the observed data. The replicated data based on the posterior predictive samples 

are then compared to the observed data. Data replicated can be graphically illustrated or 

numerically quantified. Any systematic differences between features of the replicated and 

observed data indicate a failure of the model to explain those aspects of the data (Sinharay et al., 

2006). One of the drawbacks of graphically comparing observed and replicated data is that some 

key features of the data may not be easily noticeable. Thus, more quantifiable techniques using 

discrepancy measures and posterior predictive p-values (PPP-values) allow for a more direct 

evaluation of the discrepancy between the observed data and posited model (Gelman et al., 1996; 

Meng, 1994). There is no limit to the number of discrepancy measures that can be applied in 

PPMC, however, the choice of the discrepancy measure is important to ensure that misfits are 

detected.  

The PPMC approach has been used to assess model-data fit in traditional IRT models 
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(Ames, 2015, 2018; Hoijtink, 2011; Levy, 2006; Levy et al., 2009; Sinharay et al., 2006). The 

HRM has not benefited from rigorous assessment of absolute model-data fit using PPMC. 

Previous studies (Casabianca et al., 2017; Nieto & Casabianca, 2019) have applied PPMC to two 

extensions of the HRM: longitudinal-HRM (L-HRM) and multidimensional-HRM (M-HRM). 

These two studies applied only two discrepancy measures (total score and rater variability). In 

addition, none evaluated the utility of PPMC in detecting misfit of the HRM when the model is 

misspecified. In other words, these studies did not assess the power of the PPMC technique in 

detecting misfit if the HRM were misspecified. This study intends to explore the effectiveness of 

different discrepancy measures in detecting model-data fit when the HRM is correctly and 

incorrectly specified. Specifically, the study will attempt to answer the following research 

questions: 

Research Question 1 

What is the Type I error rate and power of the test-level discrepancy measures in 

detecting model-data misfit of the HRM using PPMC? 

Research Question 2 

What is the Type I error rate and power of the item-level discrepancy measures in  

detecting model-data misfit of the HRM using PPMC? 

Research Question 3 

What is the Type I error rate and power of the rater-level discrepancy measures in  

detecting model-data misfit of the HRM using PPMC? 

1.4 Definition of Key Terms 

 The definitions of the terms provided in this section is aimed at assisting the reader to 

understand the context of each term used in this study.  



10 

 

Discrepancy Measure. This is a statistic computed from the observed (or replicated) data. 

Discrepancy measures could be summary statistics such as measures of center, variability, and 

shape. It could also be measures such as correlation and reliability coefficients. 

Hierarchical Rater Model. A measurement model for calibrating data from performance 

assessments. The hierarchical rater model models the hierarchy that exists in rating data by 

accounting for rater severity and variability. In the first stage, an IRT model describes the 

relationship between ideal ratings and observed ratings using signal-detection-like model, while 

the second stage describes the relationship between the ideal ratings and latent ability traits using 

a polytomous IRT model. 

Ideal Rating. This is an examinee’s true rating based on the quality of the examinee’s 

work. The ideal rating is an examinee’s true score if the examinee were rated by a rater who is 

unbiased and has high consistency in the use of the rating scale. 

Item Score. The average rating given to an examinee by multiple raters on a particular 

item. 

 Item-Total Correlation. The correlation between a particular item’s score (defined above) 

and the total score (which is the sum of the item scores). The item-total correlation is regarded as 

a discrimination index. It indicates how well items discriminate between high-performing and 

low-performing examinees. 

Performance Assessment. This is an assessment of tasks performed by examinees to 

measure the degree to which the examinees apply their skills and knowledge to problems.  

Posterior Predictive Distribution. This is a distribution of future observable data given 

the observed data. 
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Posterior Predictive Model Checking. This is a Bayesian technique used for assessing 

absolute model-data fit using replicated data simulated from the posterior predictive distribution. 

Posterior Predictive P-value. The probability that the simulated or replicated data could 

be more extreme than the observed data as measured by the discrepancy measure. 

Rater Leniency. A rater is considered a lenient rater if the rater rates well above the true 

scores of the examinees. 

Rater Score. The average rating awarded by a particular rater to an examinee across all 

items. 

Rater Severity. A rater is considered a severe rater if the rater rates well below the true 

scores of the examinees. 

Rater-Total Correlation. The correlation between a rater’s score and the total score, 

where the total score is the sum of the average rating given to an examinee by multiple raters 

across all items. 

Score-Estimate Correlation. The correlation between a rater’s score and the ability 

estimates of the examinees.  

 Total Score. The sum, across all items, of the average item ratings given to an examinee 

by multiple raters.  

1.5 Chapter Summary 

 Chapter 1 began with an overview of performance assessments. Several examples of 

performance assessments were described in the early part of this chapter. In addition, some of the 

drawbacks of performance assessments were outlined. Traditional approaches of describing the 
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extent to which raters agree, using inter-rater reliability, were discussed. A brief discussion of 

some of the approaches of modeling performance assessments was provided, including MFRM 

and HRM. The main advantages of adequate model-data fit, and the purpose of the study were 

further described in this chapter. The latter part of this chapter provided the research questions in 

addition to the definition of the key terms used in this study.    
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CHAPTER 2:  

LITERATURE REVIEW 

The first part of this chapter highlights traditional IRT models for dichotomous and 

polytomous items and modeling approaches for performance assessments. This chapter also 

discusses rater effects and rating designs. The later part of this chapter introduces Bayesian 

estimation and model-data fit including an extensive description of the Bayesian techniques for 

assessing absolute model-data fit using PPMC. 

2.1 Models for Polytomous Responses 

 In educational testing, items can be dichotomously scored in a binary format (i.e., scored 

as either correct or incorrect) or polytomously scored (i.e., three or more score points). When 

items are scored using a binary format, latent trait measurement models such as the one-

parameter logistic (1PL; Rasch, 1960), two-parameter logistic (2PL; Birnbaum, 1958, 1968), and 

three-parameter logistic (3PL; Birnbaum, 1968) models are frequently applied to describe the 

probability of an examinee correctly responding to an item given the item parameters and the 

examinee’s latent ability. In the 1PL model, only the item difficulty and examinee latent ability 

parameters are estimated. The 1PL assumes that all items have the same discrimination value 

(i.e., equal slope) and no guessing parameter. The 2PL model relaxes the restrictive assumption 

of the 1PL model by allowing the estimation of the discrimination parameter of each item. 

Finally, the 3PL model estimates the difficulty, discrimination, and examinee latent ability 

parameters. In addition, the 3PL model includes a guessing parameter to model the effect of 

examinees selecting the correct response option based on guessing. 

Items with three or more response categories are referred to as polytomous items. These 

types of items are common in educational assessments or psychological measures. For example, 
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a school administrator might administer a teacher satisfaction survey. The items on the survey 

may elicit a teacher’s responses to several items by endorsing each item on a 5-point Likert-type 

scale (e.g., 1 = strongly disagree, 2 = disagree, 3 = neither agree nor disagree, 4 = agree, 5 = 

strongly agree). When items are scored polytomously, the probability of an examinee (or subject) 

attaining a score category can be modeled by polytomous IRT models. The partial credit model 

(PCM; Masters, 1982), the generalized PCM (GPCM; Muraki, 1992), and the graded response 

model (GRM; Samejima, 1969) are some of the commonly applied polytomous IRT models. 

These three models are characterized by how they define their step functions using either the 

adjacent category approach or the cumulative approach and the constraints placed on the 

parameters (Penfield, 2014).  

Partial Credit Model 

 The PCM is designed to model responses where partial credit (or full credit) is awarded 

to examinees based on the quality of work. The PCM is also appropriate for calibrating 

psychological measures where respondents endorse their beliefs on a given scale. The PCM 

belongs to the family of Rasch models (Rasch, 1960) and can be thought as an extension of the 

1PL model. In the PCM, the discrimination parameter for all items is constrained to 1. 

The PCM specifies the probability of examinee i endorsing item j’s kth category given 

the examinee’s latent ability, and item step difficulty parameters. The item response function 

(IRF) for the PCM can be mathematically expressed as 

𝑃(𝑋𝑖𝑗 = 𝑘|𝜃𝑖 , 𝛿𝑗𝑣) =  
exp[∑ (𝜃𝑖 − 𝛿𝑗𝑣)𝑘

𝑣=0 ]

∑ exp [∑ (𝜃𝑖 − 𝛿𝑗𝑣)𝑐
𝑣=0 ]𝐾−1

𝑐=0

,                           (2.1) 

where 𝛿𝑗𝑣 is the step difficulty parameter of item j with ∑ (𝜃𝑖 − 𝛿𝑗𝑣) ≡ 00
𝑣=0 , K is the number of 

category of item j, and 𝜃𝑖  represents the latent ability of examinee i.  In terms of log odds, the 

PCM is given by 
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ln [
𝑃(𝑋𝑖𝑗 = 𝑘|𝜃𝑖 , 𝛿𝑗𝑣)

𝑃(𝑋𝑖𝑗 = 𝑘 − 1|𝜃𝑖 , 𝛿𝑗𝑣)
] =  𝜃𝑖 − 𝛿𝑗𝑣 .                                (2.2) 

The PCM is defined using the adjacent category approach where the step function uses 

adjacent pair of score categories. Therefore, 𝛿𝑗𝑣 is the relative difficulty parameter of each step. 

In essence, 𝛿𝑗𝑣 indicate where on the examinee latent trait continuum the score of one category is 

more likely than the previous category. An important distinction of the PCM is that the 𝛿𝑗𝑣 

parameters do not necessarily have to be ordered. In the PCM, we can express (and obtain) the 

probabilities associated with each score point. For example, assuming examinees were scored on 

a scale of 0 to 2, then the probabilities of obtaining scores of 0, 1, and 2 are presented in 

Equations 2.3, 2.4, and 2.5, respectively. The resulting probabilities depend on the examinees’ 

latent ability and item step difficulty parameters. 

𝑃(𝑋𝑖𝑗 = 0|𝜃𝑖 , 𝛿𝑗𝑣) =  
1

1 + 𝑒𝑥𝑝[(𝜃𝑖 − 𝛿𝑗1)] + 𝑒𝑥𝑝[(2𝜃𝑖 − 𝛿𝑗1 − 𝛿𝑗2)] 
,                     (2.3) 

 

𝑃(𝑋𝑖𝑗 = 1|𝜃𝑖 , 𝛿𝑗𝑣) =  
𝑒𝑥𝑝[(𝜃𝑖 − 𝛿𝑗1)]

1 + 𝑒𝑥𝑝[(𝜃𝑖 − 𝛿𝑗1)] + 𝑒𝑥𝑝[(2𝜃𝑖 − 𝛿𝑗1 − 𝛿𝑗2)] 
,                     (2.4) 

 

𝑃(𝑋𝑖𝑗 = 2|𝜃𝑖 , 𝛿𝑗𝑣) =  
𝑒𝑥𝑝[(2𝜃𝑖 − 𝛿𝑗1 − 𝛿𝑗2)]

1 + 𝑒𝑥𝑝[(𝜃𝑖 − 𝛿𝑗1)] + 𝑒𝑥𝑝[(2𝜃𝑖 − 𝛿𝑗1 − 𝛿𝑗2)] 
.                     (2.5) 
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Figure 1. Category response curves for a hypothetical example using partial credit model 

 

Continuing with this example, an example of the category response curves for a 

hypothetical item scored on a scale of 0 to 2 is illustrated in Figure 1. The step parameters for 

this example are 𝛿𝑗1 =  −0.867  and 𝛿𝑗2 = 2.202. From Figure 1, it can be seen that an 

examinee with a latent ability of 𝜃 = 3.00 is most likely to receive a score of 2 and an examinee 

with a latent ability of  𝜃 =  −3.00 is most likely to receive a score of 0. Specifically, the 

probability of an examinee with a latent ability of  𝜃 = −3.00 obtaining a score of 2 is 0.005 

(computed using Equation 2.5), however, the probability of this examinee with latent ability of 

𝜃 = −3.00 obtaining a score of 0 is 0.894 (computed using Equation 2.3). 
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Generalized Partial Credit Model 

As the name implies, the GPCM (Muraki, 1992) is a generalization of the PCM. Under 

the GPCM, items within a scale are allowed to have different discrimination parameters. Thus, a 

discrimination parameter is estimated for each item. Like the PCM, the GPCM is also defined 

using the adjacent category approach. The IRF for the GPCM can be mathematically expressed 

as 

𝑃(𝑋𝑖𝑗 = 𝑘|𝜃𝑖 , 𝛼𝑗 , 𝛿𝑗𝑣) =  
exp[∑ 𝛼𝑗(𝜃𝑖 − 𝛿𝑗𝑣)𝑘

𝑣=0 ]

∑ exp [∑ 𝛼𝑗(𝜃𝑖 − 𝛿𝑗𝑣)𝑐
𝑣=0 ]𝐾−1

𝑐=0

 ,                          (2.6) 

where 𝛼𝑗 is the discrimination parameter of item j, 𝛿𝑗𝑣 is the step difficulty parameter of item j 

with ∑ (𝜃𝑖 − 𝛿𝑗𝑣) ≡ 00
𝑣=0 , 𝐾 is the number of categories of item j, and 𝜃𝑖 is the latent ability of 

examinee i. Just like the PCM, the 𝛿𝑗𝑣 represents the difficulty of the step of moving from one 

response category to another response category. The 𝛿𝑗𝑣 can be decomposed into item threshold 

parameters (𝜏𝑗𝑣) and item location parameter (𝛽𝑗). The decomposition is given as 𝛿𝑗𝑣 = 𝛽𝑗 − 𝜏𝑗𝑣. 

Graded Response Model 

 The GRM is applied to polytomous items with two or more ordered categorical 

responses. The GRM models the probability of an examinee obtaining a score at or above each 

item score category. The GRM is an extension of the 2PL model. Samejima (1969) developed a 

two-step process for computing the probability that an examinee receives a certain score given 

the item characteristics and examinee latent ability.  

In the first step, the IRF of an examinee receiving a score of k or higher is mathematically 

expressed as  

𝑃𝑗𝑘
∗ (𝑋𝑖𝑗 ≥ 𝑘|𝜃𝑖 , 𝛼𝑗 , 𝛿𝑗𝑘) =

exp (𝛼𝑗(𝜃𝑖 − 𝛿𝑗𝑘))

1 + exp (𝛼𝑗(𝜃𝑖 − 𝛿𝑗𝑘))
,                                  (2.7) 
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where 𝛼𝑗 is the discrimination parameter, 𝛿𝑗𝑘 is the threshold parameter for category k of item j, 

and 𝜃𝑖 is examinee i's latent ability. The expression in Equation 2.7 is the 2PL model for a series 

of dichotomies. For example, for an item with three ordered response categories, the possible 

series of dichotomies are 0 vs. 1, 2 and 0, 1 vs. 2.  

In the second step, the marginal probabilities are computed by taking the difference 

between the cumulative probabilities of the adjacent categories. This is mathematically expressed 

as 

𝑃𝑗𝑘(𝜃) =  𝑃𝑗𝑘
∗ (𝜃) − 𝑃𝑗(𝑘+1)

∗  (𝜃).                                                          (2.8) 

Equation 2.8 is equivalent to expressing the GRM as: 

𝑃(𝑋𝑖𝑗 = 𝑘|𝜃𝑖 , 𝛼𝑗 , 𝛿𝑗𝑘) =
exp (𝛼𝑗(𝜃𝑖 − 𝛿𝑗𝑘))

1 + exp (𝛼𝑗(𝜃𝑖 − 𝛿𝑗𝑘))
−  

exp (𝛼𝑗(𝜃𝑖 − 𝛿𝑗𝑘))

1 + exp (𝛼𝑗(𝜃𝑖 − 𝛿𝑗(𝑘+1)))
              (2.9) 

For the three ordered response category example, the probabilities of responding in the three 

categories can be computed using: 

{

𝑃𝑗0 = 1 − 𝑃𝑗1
∗ (𝜃)           

𝑃𝑗1 = 𝑃𝑗1
∗ (𝜃) − 𝑃𝑗2

∗ (𝜃)  

𝑃𝑗2 = 𝑃𝑗2
∗ (𝜃) − 0            

                                                       (2.10) 

2.2 Models for Performance Assessments 

Performance assessments are typically polytomously scored. For instance, examinees 

may be asked to respond to an essay about their first trip abroad. Scoring rubrics employed to 

assess essay quality are usually designed to communicate expectations about the features of the 

essay. These rubrics could be on a scale of 0 to 3 (e.g., 0 = poor essay quality, 1 = fair essay 

quality, 2 = good essay quality, 3 = excellent essay quality). In performance assessments, 

multiple human raters typically judge the quality of an examinee’s work.   

Most traditional IRT models assume that an examinee’s response to an item is 
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independent of the examinee’s response to any other item given the examinee’s ability, an 

assumption referred to as local independence (Hambleton & Swaminathan, 1985).  

Mathematically, the assumption of local independence is expressed as: 

𝑃(𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋𝐽 = 𝑥𝐽|𝜃𝑖) = ∏ 𝑃(𝑋𝑗 = 𝑥𝑗|𝜃𝑖),

𝐽

𝑗=1

                                (2.11) 

where 𝜃𝑖 is the latent ability of examinee i and 𝑥𝑗 is the response of the item response variable 

𝑋𝐽. The expression in Equation 2.11 is referred to as strong local independence (McDonald 1994; 

Stout, 2002). In traditional IRT models, the presence of local item dependence could lead to the 

overestimation of item discrimination parameters and the accuracy of the parameter estimates 

(Mislevy et al., 2012). 

The statistical property of local independence is the reason why the sum of the item 

information functions is the test information function (Verhelst & Verstralen, 2001). This implies 

that the test information function is a result of the independent contributions of the item 

information functions. The test information function plays an important role when a test 

administrator wants to select items that can provide a desired level of accuracy at specific 

regions of the examinee ability scale (Hambleton & Swaminathan, 1985; Park, 1997). 

Although the polytomous IRT models discussed in Section 2.1 (i.e., PCM, GPCM, and 

GRM) are specifically designed to calibrate polytomous items; analyzing data from performance 

assessments with these traditional polytomous IRT models may lead to biased estimates due to 

the violation of local independence (Bock et al., 2002; Verhelst & Verstralen, 2001; Yens, 1993). 

This is due to the dependency in the rating structure of multiple ratings on the same examinee 

assessment artifact. In particular, multiple ratings of the same examinee will be correlated 

(Verhelst & Verstralen, 2001). Yen (1993) highlighted 10 possible sources of local item 
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dependency, which include (1) interference or external assistance (e.g., assistance from an 

instructor), (2) speededness, (3) fatigue, (4) practice, (5) item or response format, (6) passage 

dependence, (7) item chaining, (8) explanation of previous answer, (9) scoring rubrics or raters, 

and (10) content, knowledge, and abilities. The aspect that relates to performance assessments 

the most is (9) scoring rubrics or raters. Yen (1993) explained that items scored with the same 

scoring rubric may exhibit local dependence when specific demands are placed on the raters or 

because the items measure common constructs in the examinee. Furthermore, some performance 

assessment scoring designs only require specific raters to score a subsection of the test. When 

multiple ratings are elicited and there are uncontrolled rater effects, then the local independence 

assumption may be violated (Yen, 1993). 

One potential approach to correcting the issue of local dependence is to consider each 

rater’s ratings as separate items. For example, consider a test with three items (Items 1, 2, and 3) 

rated by two raters (Raters 1 and 2). This will result in six ratings (2 raters x 3 items). These six 

ratings could be treated as separate items. However, as observed by Bock et al. (2002), the 

resulting standard error of estimates would be underestimated if multiple ratings were treated as 

separate items.  

Another approach could be to sum or average multiple item ratings of an examinee to 

create a single item score. Thereafter, the single item scores are analyzed using polytomous IRT 

models (e.g., PCM or GPCM). Consider the hypothetical illustration in Table 1. In Table 1, three 

raters rated five examinees on two items. Columns three to five of Table 1 gives the ratings of 

the three raters. For example, Examinee 5 was rated 4, 4, and 3 on Item 1 resulting in an average 

score of 3.67. Unfortunately, polytomous IRT models only allow for discrete values. As shown 

in Table 1, the average scores for some examinees are non-discrete values, which makes it 
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impossible to directly use any of the polytomous IRT models to fit the data in this situation. Even 

if the average scores were discretized, the resulting standard errors of the examinee ability 

estimates will still be underestimated (Song, 2019). Most importantly, summing across raters or 

the use of the average would result in loss of rater consistency information. Consequently, using 

an appropriate modeling approach is necessary to account for the dependency between multiple 

ratings of the same examinee. The MFRM and HRM are examples of measurement models that 

account for rating structures where multiple raters judge the same examinee’s work. 

Table 1. Hypothetical Distribution of Ratings by Rater and Examinee  

Examinee Item 
Rater Sum  

Score 

Average 

Score 1 2 3 

1 1 5 4 4 13 4.33 

2  3 3 3 9 3.00 

3  3 4 5 12 4.00 

4  4 4 4 12 4.00 

5  4 4 3 11 3.67 

       

1 2 5 5 5 15 5.00 

2  4 4 3 11 3.67 

3  4 4 5 13 4.33 

4  4 4 4 12 4.00 

5  4 4 4 12 4.00 

 

Many-Facet Rasch Measurement Model 

 Linacre (1989) introduced the MFRM, an extension of the traditional Rasch model, to 

account for other facets in rater-mediated assessments. These facets are other potential sources of 

variability such as raters, scoring criteria, rating methods, and many others (Eckes, 2011). The 

MFRM models the sources of variability on an additive logit scale. Essentially, the MFRM is a 

PCM that incorporates other facets. For instance, in a situation where the interest is to account 

for rater bias such as severity/leniency, the MFRM model can be expressed as 
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ln [
𝑃(𝑋𝑖𝑗𝑟 = 𝑘|𝜃𝑖)

𝑃(𝑋𝑖𝑗𝑟 = 𝑘 − 1|𝜃𝑖)
] =  𝜃𝑖 − 𝛿𝑗𝑘 −  𝜙𝑟 ,                                (2.12) 

where 𝑋𝑖𝑗𝑟 is the observed ratings awarded to examinee i on item j by rater r, 𝜙𝑟 is the severity 

of rater j in how they rate the examinees, 𝜃𝑖 is the latent ability of examinee i, 𝛿𝑗𝑘 is the step 

difficulty parameter, 𝑃(𝑋𝑖𝑗𝑟 = 𝑘|𝜃𝑖) is the probability of examinee i being rated in category k on 

item j by rater r, and 𝑃(𝑋𝑖𝑗𝑟 = 𝑘 − 1|𝜃𝑖) is the probability of examinee i being rated in category 

k – 1 on item j by rater r. 

One of the strengths of the MFRM is that the model allows for the estimation of 

interaction effects. For instance, the MFRM model can include rater-by-item interaction, which 

allows for investigating rater behavior across items. Also, if raters applied different types of 

rating methods, a rater-by-method interaction can be investigated (e.g., analytical versus holistic 

rubric). One of the limitations of the MFRM model is that it assumes that all items have the same 

discriminatory value. Also, the MFRM does not capture the consistency of raters in their ratings. 

In other words, the MFRM assumes that raters have the same consistency level. These 

assumptions are too restrictive and may not be satisfied in practice (Uto & Ueno, 2020). 

 As previously noted in this section, the multiple ratings awarded to examinees are not 

locally independent. Ignoring this assumption violation can downwardly bias the standard error 

(Mariano, 2002; Verhelst & Verstralen, 2001; Wilson & Hoskens, 2001). Although MFRM is 

one of the most widely applied performance assessment models, one of the criticisms of the 

MFRM is its failure to account for the dependence structure of the ratings. The MFRM treats 

raters as locally independent experts such that each rater has a unique perspective of what the 

“true” rating is (Linacre, 2003). This means that more measurement information is produced by 

increasing the number of ratings of the same person by multiple raters. Patz et al. (2002) 
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discussed that as the number of raters per item increases, the MFRM appears to give infinitely 

precise measurement of the examinee’s latent proficiency even though they answered no more 

items. Patz et al. (2002) proposed the HRM as an attempt to address the dependencies between 

multiple ratings using the hierarchical structure of performance assessment data. 

Hierarchical Rater Model 

 The HRM incorporates the dependence structure in ratings awarded to the same examinee 

by multiple raters. The model corrects the problem of downward bias of standard errors in the 

MFRM by breaking the data generation process into two stages (Patz et al., 2002). In the first 

stage, a hypothetical rating describing an examinee’s performance on a particular item is given. 

In the second stage of the model, raters evaluate the quality of the examinee’s work using 

prescribed rubrics. Hierarchically, the first level of the HRM models the distribution of ratings 

awarded given the ideal ratings (i.e., 𝑋𝑖𝑗𝑟|𝜉𝑖𝑗). The second level of the hierarchy models the 

examinees’ responses given the latent ability traits (i.e., 𝜉𝑖𝑗|𝜃𝑖). The hierarchy of the HRM is 

expressed as 

𝜃𝑖  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎2), 𝑖 = 1, … , 𝑁                                                 (2.13) 

𝜉𝑖𝑗|𝜃𝑖  ~ a polytomous IRT model, 𝑗 = 1, … , 𝐽           for each 𝑖                     (2.14) 

𝑋𝑖𝑗𝑟|𝜉𝑖𝑗 ~ a polytomous signal detection model, 𝑟 = 1, … , 𝑅.           for each 𝑖, 𝑗         (2.15) 

In the first expression above (Equation 2.13), the proficiency levels of the examinees are 

assumed to be normally distributed with mean (𝜇) and variance (𝜎2). The distribution of 

examinee latent trait may not necessarily follow a normal distribution. 𝜉𝑖𝑗 represents the ideal 

rating for examinee i’s response to item j. The ideal ratings 𝜉𝑖𝑗 given the examinee latent trait 𝜃𝑖 

(i.e., Equation 2.14) may be modeled using polytomous IRT models such as PCM, GPCM, and 

GRM. 𝑋𝑖𝑗𝑟 represents the observed ratings awarded to examinee i on item j by rater r. The 
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observed ratings given the ideal ratings is modeled using a discrete signal detection model (i.e., 

Equation 2.15). The signal-detection-like model allows using a matrix of probabilities of the 

ratings to model the relationship between observed and ideal ratings. Table 2 presents an 

example of a matrix of probabilities between observed and ideal ratings for a five-category scale. 

 

Table 2. Hypothetical Rating Probabilities Matrix for a Five-Category Scale 

Ideal  

rating (𝜉) 

Observed rating (k) 

0 1 2 3 4 

0 𝑝00𝑟 𝑝01𝑟 𝑝02𝑟 𝑝03𝑟 𝑝04𝑟 

1 𝑝10𝑟 𝑝11𝑟 𝑝12𝑟 𝑝13𝑟 𝑝14𝑟 

2 𝑝20𝑟 𝑝21𝑟 𝑝22𝑟 𝑝23𝑟 𝑝24𝑟 

3 𝑝30𝑟 𝑝31𝑟 𝑝32𝑟 𝑝33𝑟 𝑝34𝑟 

4 𝑝40𝑟 𝑝41𝑟 𝑝42𝑟 𝑝43𝑟 𝑝44𝑟 

 

The rating probability is defined as 𝑝𝜉𝑘𝑟
≡ 𝑃(𝑟𝑎𝑡𝑒𝑟 𝑟 𝑟𝑎𝑡𝑒𝑠 𝑘 |𝑖𝑑𝑒𝑎𝑙 𝑟𝑎𝑡𝑖𝑛𝑔 𝜉). For 

example, 𝑝20𝑟 is the probability of rater r awarding a score of 0 given an ideal rating of 2. It is 

expected that the probabilities along the diagonal (i.e., 𝑝00𝑟 , 𝑝11𝑟 , 𝑝22𝑟 , … , 𝑝𝑘𝑘𝑟) will be largest.  

This probability (i.e., 𝑝𝜉𝑘𝑟
) is proportional to the normal density with mean of 𝜉 + 𝜙𝑟 and 

standard deviation of 𝜓𝑟. This parameterization allows for the estimation of rater effects such as 

rater bias and variability. The rater probability proportional to the normal density is expressed as 

𝑝𝜉𝑘𝑟
≡ 𝑃(𝑋𝑖𝑗𝑟 = 𝑘|𝜉 =  𝜉𝑖𝑗)  ∝ exp {−

1

2𝜓𝑟
2

 [𝑘 − (𝜉 + 𝜙𝑟)]2},                             (2.16) 

where 𝜙𝑟 indicates the severity/leniency of rater r. This captures the rater r’s deviation from the 

ideal rating. Patz et al. (2002) termed 𝜙𝑟 as the rater’s bias. Following the guideline provided by 

Patz et al. (2002), rater r is judged to exhibit severity relative to the ideal rating category if 𝜙𝑟 <

−0.5, which implies that rater r awarded ratings in some categories less than the ideal rating 
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category (i.e., 𝑘 < 𝜉), whereas, rater r is exhibiting leniency if 𝜙𝑟 > 0.5 (i.e., 𝑘 > 𝜉). It is not 

clear if these suggested guidelines hold for narrower or wider rating scale categories (e.g., three-

option or seven-option scales). A rater is considered more probable to award ideal ratings when 

𝜙𝑟 = 0. The parameter 𝜓𝑟 represents the variability or lack of reliability of rater r. The inverse of 

a rater’s lack of reliability provides the rater’s precision (i.e., 𝜏𝑟 = 1/ 𝜓𝑟). Essentially, 𝜓𝑟 

indicates the rater’s level of consistency in the use of the rating scale. A more consistent rater 

will have 𝜓𝑟 value close to zero. Rater bias and variability statistics are to be interpreted 

together. For example, a rater with 𝜙 = −0.67 and 𝜓 = 0.03 is indicative of a consistently 

severe rater. This rater will be judged to consistently award ratings in some category less than the 

ideal rating. However, a rater with 𝜙 = 0.04 and 𝜓 = 0.10 is indicative of a rater who is likely 

to award ratings close to the true scores of the examinees in a consistent manner. 

As the application of the HRM continues to rise, the model has been further expanded to 

cater to other facets or dimensions. To further understand how covariates influence rater bias and 

variability, Mariano and Junker (2007) extended the HRM to include other covariates of the 

rating process. These covariates could be random or fixed effects involved in the rating process. 

For instance, the rating occasion or the time (e.g., seconds) it took to complete the rating may be 

of interest to a testing program. Understanding the effects of these covariates on rater bias and 

variability may prove useful for adapting and improving features of rating designs (Casabianca et 

al., 2016).  

The HRM has also been expanded to model performance assessments from longitudinal 

designs. The L-HRM models examinees’ latent traits using an autoregressive time series model. 

The L-HRM estimates a common set of item parameters for all timepoints under the assumption 

that, over time, the items hold the same properties and relationship with the trait (Casabianca et 
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al., 2017). 

Assessing the dimensionality of a construct is a crucial component when validating IRT 

models. This is especially important in performance assessments where more complex skills may 

be of interest. Factors such as the characteristics of the scoring schemes and characteristics of the 

stimulus may impact the dimensionality of the assessment (Lane & Stone, 2006). When these 

factors are present, analyzing the data using unidimensional performance assessment models 

may not be appropriate; instead, a multidimensional framework needs to be considered. 

Multidimensional IRT (MIRT) is used to model the relationship between two or more 

unobservable variables and the probability of the examinee correctly answering any particular 

test item (Ackerman et al., 2003). A multidimensional extension of the HRM was developed by 

Nieto and Casabianca (2019) to model multidimensional performance assessments with three or 

more response categories and allow for estimation of multiple latent ability simultaneously. The 

formulation of the M-HRM assumes a multidimensional latent structure and that rater behavior is 

not consistent across dimensions. However, Nieto and Casabianca (2019) also provided 

modeling options for a situation where rater behavior is consistent across dimensions. 

The HRM-SDM is another extension of the HRM. In Patz et al.’s (2002) version of 

HRM, only rater severity/leniency and variability effects are modeled. Restriction of range or 

central tendency effect is another potential source of rater error (Myford & Wolfe, 2003, 2004) 

that is not captured in the original formation of the HRM. DeCarlo et al. (2011) expanded the 

HRM to model raters’ tendency to favor middle categories by incorporating a latent class model 

that is motivated by the signal detection theory into the first level of the HRM. 
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2.3 Rater Effects 

Assessments that require human judgments are subject to errors. Engelhard (1994), 

Myford and Wolfe (2003; 2004), Saal et al. (1980), and Wolfe (2014) described different ways 

that human raters can introduce errors in performance assessments. This includes effects due to 

(a) central tendency, (b) halo, (c) restriction of range, (d) severity or leniency.  

Central tendency refers to when raters overuse the middle category of a scale avoiding 

the use of extreme categories (Myford & Wolfe, 2003). For example, on a 5-point rating scale, a 

rater might assign scores of 3 to most examinees and only few examinees getting low or high 

scores. Evidence of a rater exhibiting effect due to central tendency may be seen in the narrow 

standard deviation of the ratings award by this rater. When a rater fails to discriminate among 

conceptually distinct aspects of an examinee’s behavior, then the rater is said to exhibit a halo 

effect (Saal et al., 1980).  

Restriction of range is often grouped with central tendency effect. Saal et al. (1980) 

discussed these two sources of rater errors separately. Restriction of range refers to when raters’ 

ratings are clustered or grouped around a part of the rating scale. As earlier described, with an 

example, the overuse of middle categories (e.g., “3”) depicts raters’ exhibiting central tendency. 

However, when the raters restrict their ratings around a certain score point (e.g., “1”) then these 

raters could be exhibiting restriction of range effects.  

Raters may also exhibit severity and leniency effects. Leniency refers to raters who rate 

above the true scores of the examinees and severity refers to raters who rate below the true 

scores of the examinee true scores. 
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Review of HRM Literature on Rater Effects  

 Rater effects have been extensively discussed in psychometric literature spanning 

different types of models for calibrating performance assessments. This section focuses on 

findings regarding rater effects in literature that applied the HRM. Patz et al. (2002) used 

simulation to compare the HRM and MFRM. Patz and colleagues generated data with the HRM 

using a fully-crossed rating design with 500 examinees, 3 raters, and 5 items. They employed the 

PCM as the IRT generating component of the HRM. In this instance, it is logical that the PCM 

was used as the IRT component of the HRM since the MFRM assumes that all items have equal 

discriminating power. The generated data were analyzed using the HRM and MFRM. As 

expected, the HRM and MFRM performed differently. First, the MFRM appeared to 

underestimate the variance of the examinee ability estimates. Patz and colleagues attribute this to 

the quality of the raters. Specifically, two out of the three raters in their simulation had large rater 

variability parameters. These large 𝜓𝑟 parameters resulted in their simulated ratings to tend 

towards middle categories when the ideal ratings have extreme values. In addition, their results 

show that difficulty parameter estimates for the MFRM shrunk toward zero. This was especially 

true for items with extreme difficulty parameters such as −2 and +2. Specifically, of the five 

items, only one of the true item difficulty parameters was captured within the 95% confidence 

interval for the model estimated with MFRM.  However, four of the five difficulty parameters 

were contained within the 95% credible interval for the model estimated with HRM. Most 

interestingly, the rater variability parameter for Rater 3 who had a true variability value of 0.06 

was least recovered by the HRM. The posterior median for this rater was 0.01, although the 95% 

credible interval was found to capture the true parameter (i.e., 0.06). Patz and colleagues further 

illustrated the utility of the HRM using real data. The dataset they used consisted of 11 



29 

 

constructed-response items, 38 raters, and different rating designs from the Grade 5 Florida Math 

Assessment. Indeed, they showed that the HRM can detect rater behaviors such as rater bias and 

variability.  

 Casabianca et al. (2017) conducted two simulation studies to examine the L-HRM under 

varying conditions. In study one, they investigated parameter recovery of the L-HRM with 

varying sample sizes (250 and 500 subjects), number of raters (3 and 6 raters), and number of 

time points (3 and 7 time points). Using only five items, parameter recovery of the item, rater, 

and longitudinal model parameters and latent traits were investigated. Their findings of the rater 

parameters show small absolute biases of rater bias and rater variability parameters. 

Interestingly, they found that recovery of the rater variability parameter was most difficult when 

the rater variability parameters were less than 0.25. This finding parallels Patz et al. (2002) that 

also revealed difficulty in recovery of rater variability parameter when the true value is small. In 

study two, Casabianca and colleagues examined parameter recovery of the L-HRM by varying 

the growth (0.25, 0.50, and 0.75) and autocorrelation (0.00, 0.30, 0.60, and 0.90). The number of 

raters (10 raters), sample size (400 subjects), number of timepoints (4 time points), and number 

of items (10 items) were fixed. As in study 1, parameter recovery of item, rater, and longitudinal 

model parameters and latent traits were examined. Again, the results show that the rater bias and 

variability parameters were adequately recovered.  

Nieto and Casabianca (2019) evaluated parameter recovery of the M-HRM under varying 

conditions. The authors simulated data using a double-scored design with 1000 subjects and 25 

raters. The number of items (3 and 6 items), number of dimensions (2 and 4 dimensions), and 

correlation between dimensions (0.00, 0.40, and 0.80) were varied. Data for their simulations 

were generated with the M-HRM. Three analyses models were employed: M-HRM, 
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multidimensional GPCM (MGPCM), and consecutive HRM (Consecutive-HRM). The MGPCM 

does not account for rater effects and the Consecutive-HRM is akin to fitting unidimensional 

HRMs. The root mean squared error (RMSE) show that raters with small variability parameters 

and severity parameters close to zero had the smallest RMSE estimates. Noteworthy is that in 

their design, each subject was randomly assigned to two raters. In other words, each subject only 

received two ratings instead of ratings from all 25 raters. The implications of this type of rating 

design are presented next. 

2.4 Rating Designs 

 One of the important aspects of performance assessments is the rating design. A crucial 

consideration is the number of raters needed to accurately estimate an examinee’s proficiency 

level. In addition, the costs of employing multiple raters and other resources such as the time it 

takes for multiple raters to rate the same examinee’s tasks are considered relative to how much 

precise measurement information is anticipated. It is often expected that higher information 

about the examinee will result in more precise measurement. The complete and incomplete rating 

designs are techniques that can be employed to obtain data in performance assessments (Eckes, 

2011). In the complete rating design, ratings are awarded to every examinee by every rater on 

every item. An illustration of the complete rating design is shown in Table 3. This example 

depicts a scenario with 4 raters, 10 examinees, and 2 items. In this design, every rater is 

connected to every examinee and item. Although this fully crossed type of design is desirable, it 

is often expensive to implement especially in large-scale assessments with many examinees (e.g., 

the Graduate Records Examinee (GRE) and Test of English as a Foreign Language (TOEFL)) 

and potentially unrealistic due to time constraints. 

In the incomplete rating design, raters only award ratings to a subset of examinees or 
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items. While incomplete rating designs are more practical, it is important that the design has 

enough links between raters and items to adequately estimate the model parameters. Linacre and 

Wright (2002) note that MFRM does not require a fully-crossed design but it is necessary that 

ratings are designed to create a network through which every item can be directly or indirectly 

linked to every other item. Incomplete rating designs could lead to connected or disconnected 

datasets. Connected designs provide sufficient systematic links between facets, whereas 

disconnected designs provide insufficient links between facets. The spiral rating design (Hombo 

et al., 2001) is an example of a connected design in which every rater rates every examinee only 

on a subset of items. An example of the spiral rating design is presented in Table 4. In this 

design, Raters 1 and 3 rated every examinee on Item 1, while Raters 2 and 4 rated every 

examinee on Item 2. This ensured that all items are systematically connected. Table 5 shows an 

incomplete rating design with disjointed subsets (Linacre, 2020). This structure consists of two 

subsets. In the first subsets, Raters 1 and 2 rated every item for a subset of examinees 

(Examinees 1 to 5), while Raters 3 and 4 rated every item for another subset of examinees 

(Examinees 6 to 10). In the disconnected incomplete rating design shown in Table 5, there is no 

overlap in the examinees rated by raters in the two subsets. 

Deficient designs such as the disconnected incomplete rating design may introduce bias 

in parameter estimation and may pose issues with model-data fit. Linacre (2020) attribute the 

lack of connectedness to the accidental or deliberate manner in which the data was collected. For 

example, a practitioner who does not know the implications of these variants of incomplete 

rating design may design a rating process that is disjointed.  
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Table 3. An Example of a Fully Crossed Rating Design 

Rater Item 
Examinee 

1 2 3 4 5 6 7 8 9 10 

1 1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

2 1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

3 1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

4 1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Note: ✓ indicates that a rater rated an examinee on a particular item 

 

Table 4. An Example of a Spiral Rating Design 

Rater Item 
Examinee 

1 2 3 4 5 6 7 8 9 10 

1 1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

 2           

2 1           

 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

3 1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

 2           

4 1           

 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Note: ✓ indicates that a rater rated an examinee on a particular item 

 

Table 5. An Example of a Disconnected Rating Design 

Rater Item 
Examinee 

1 2 3 4 5 6 7 8 9 10 

1 1 ✓ ✓ ✓ ✓ ✓      

 2 ✓ ✓ ✓ ✓ ✓      

2 1 ✓ ✓ ✓ ✓ ✓      

 2 ✓ ✓ ✓ ✓ ✓      

3 1      ✓ ✓ ✓ ✓ ✓ 

 2      ✓ ✓ ✓ ✓ ✓ 

4 1      ✓ ✓ ✓ ✓ ✓ 

 2      ✓ ✓ ✓ ✓ ✓ 

Note: ✓ indicates that a rater rated an examinee on a particular item 
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Studies on Rating Designs in Performance Assessments 

The effects of rating designs have been explored by a number of researchers. Patz et al. 

(2002) explored the effects of the rating modality design using real data with 11 constructed-

response items and 38 raters on the estimation of parameters using the HRM. The rating 

comprised of three rating designs referred to as Modality One, Modality Two, and Modality 

Three. In Modality One, raters scored the entire booklet of 11 items, whereas one item was 

assigned to each rater in Modality Two. In Modality Three, each rater was assigned to rate 

blocks of three to four items. Patz and colleagues found that Modality One had the smallest 

absolute modality bias in comparison to Modalities Two and Three. The 95% credible interval 

associated with the modality bias of Modality One did not overlap with the 95% credible 

intervals of Modalities Two and Three suggesting that Modality One, in which raters scored 11 

items, was distinctly different in terms of the absolute modality bias. 

Hombo et al. (2001) examined the impact of rating designs on examinee ability estimates. 

They compared three types of rating designs: fully crossed (which they called crossed), nested, 

and spiral. In the crossed design, 16,000 examinees were each rated by four raters on 20 items. 

This resulted in 64,000 ratings per item. The nested and spiral designs are examples of 

incomplete rating designs. Hombo and colleagues explored three and four variations of the 

nested and spiral designs, respectively. In each of the three nested designs, Hombo and 

colleagues assigned a single rater to rate all 16,000 examinees on each item. Thus, there were 

only 16,000 ratings per item, which is only 25% of the ratings observed under the crossed 

design. Also, in each variation of the spiral design, each rater was assigned a subset of the 20 

items. Like the nested design, there were 16,000 item ratings under each variation of the spiral 

design that they explored. Data used in their study were generated using 1PL and 2PL models 
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that account for rater severity effects. 

Hombo et al. (2001) found that spiral designs produced estimates that were reasonably 

accurate, and this design was robust to rater tendencies. Among the three designs (i.e., crossed, 

nested, and spiral), the nested design produced substantially larger biases in the examinee latent 

trait abilities. Noteworthy is that all three rating designs that Hombo and colleagues employed 

had sufficient links between items, examinees, and raters. 

Wind et al. (2019) explored the impact of different types of rating designs for the 

classification of musical performances. Wind and colleagues employed four rating designs using 

simulations. Data were simulated for 250 performances (examinees) using the MFRM model 

with 25 raters. In the first design, all the raters scored all the performances (i.e., fully-crossed 

rating design). The second design was an incomplete design with each rater scoring one set of 10 

performances in common with three other raters. The third design also had each rater score one 

set of 10 performances; however, the ratings were common with one other rater. Finally, in the 

fourth design, 24 raters did not score any performances in common, but their ratings were 

connected through one rater. Thus, all four rating designs had sufficient connections. Using a 

decision consistency index to classify performances, their findings suggest that classification 

consistency of the performances were highest in the first design, which was a fully-crossed 

design, and lowest in the fourth design, which ratings of other raters were only connected 

through one rater. 

The lack of connectedness makes it difficult to compare examinees and raters who are in 

different subsets (Engelhard, 1997). For example, it is difficult to compare examinees and raters 

in the two subsets shown in Table 5. This issue could be mitigated by applying the group-

anchoring technique when calibrating the data. Using the group-anchoring approach, Wind and 
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Stager’s (2019) simulation found that disconnected designs impacted the precision of examinee 

estimates. Particularly, the correlations between the generating and estimated parameters of 

examinee latent ability were less than 0.40 in most instances. Their findings suggest that rating 

design is crucial to accurately estimate examinee proficiency levels. 

2.5 Parameter Estimation of Hierarchical Rater Model 

Accurately estimating parameters that reflect rater behaviors, item characteristics, and 

examinee proficiency levels are essential components of model building with regards to the 

HRM. There are four commonly used techniques for the estimation of parameters of IRT 

models: Bayesian estimation, MML, joint maximum likelihood (JML), and conditional 

maximum likelihood. The parameters of the HRM have been estimated with MML (Hombo & 

Donoghue, 2001) and Bayesian estimation with MCMC (Casabianca & Wolfe, 2017; Casabianca 

et al., 2017; Nieto & Casabianca, 2019; Patz et al., 2002). Bayesian estimation is the estimation 

method applied in this study and is introduced here. 

Bayes’ Theorem. Bayesian statistics involves the use of Bayes’ Theorem to combine 

observed data and prior information to make inferences about parameters. Bayes’ Theorem gives 

a framework for computing conditional probabilities. Assuming there are two events (A and B), 

by Bayes’ Theorem, the conditional probability of A given B can be expressed as 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
,                                                        (2.17) 

where 𝑃(𝐴|𝐵) is the probability of event A given B, 𝑃(𝐵|𝐴) is the probability of event B given 

A, 𝑃(𝐴) is the probability of event A, and 𝑃(𝐵) is the probability of event B. 
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Extending the Bayes’ Theorem to modeling unknown model parameters, which are of 

interest in educational testing, we can consider the inference about model parameters based on 

observed data to be conditionally given as 

𝑃(𝜃|𝑥) =
𝑃(𝑥|𝜃)𝑃(𝜃)

𝑃(𝑥)
,                                                             (2.18) 

where 𝑃(𝜃|𝑥) is the probability of the parameter 𝜃 given the observed data 𝑥, 𝑃(𝑥|𝜃) is the 

probability of observing the data given the 𝜃 parameter values, 𝑃(𝑥) is the “unconditional” 

probability of the data, and 𝑃(𝜃) is the “unconditional” probability of the parameters. The 𝑃(𝜃) is 

referred to as the prior distribution. The prior distribution expresses the uncertainty about 𝜃. The 

denominator of Equation 2.18 is considered to be the marginal likelihood since it does not depend 

on the unknown parameters. Essentially, 𝑃(𝑥) sums or integrates over all possible values of the 

parameter 𝜃. In a case of discrete parameters, 𝑃(𝑥) can be expressed as ∑𝑃(𝜃)𝑃(𝑥|𝜃) and 

∫ 𝑃(𝜃)𝑃(𝑥|𝜃)𝑑𝜃 if the parameters are continuous. These expressions are referred to as a 

normalizing constant, which essentially makes the probability distribution integrate to 1 in the 

continuous case and sum to 1 in the discrete case. Consequently, Equation 2.18 can be rewritten 

as 

𝑃(𝜃|𝑥) ∝ 𝑃(𝑥|𝜃)𝑃(𝜃) .                                                             (2.19) 

The conditional distribution of the parameter 𝜃 given the observed data, 𝑃(𝜃|𝑥), is the 

posterior distribution. The posterior distribution captures the prior information and the likelihood 

of the data. Essentially, the posterior distribution reflects the plausibility of the parameter values 

given some prior information or knowledge and the observed data. 
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 Bayesian techniques offer several advantages over frequentist estimation methods. 

Tsutakawa and Soltys (1988) and Tsutakawa and Johnson (1990) mentioned that frequentist 

estimation approaches such as MML ignore the uncertainty due to the error in calibration. 

Tsutakawa and colleagues noted that ignoring this could lead to inferential errors, especially with 

a small sample size. This uncertainty is captured in the Bayesian paradigm, which makes a 

Bayesian estimation method very attractive. Frequentist method such as MML estimation makes 

distributional assumptions about the ability parameter. In reality, this assumption may not be 

met. Woods (2014) summarized that simulation studies have shown that nontrivial biased item 

parameter estimates are produced when the probability density of the examinee latent ability is 

non-normal and nonsymmetric. Bayesian estimation methods have been shown to perform well 

when latent ability distributions are non-normal (Kieftenbeld & Natesan, 2012). The benefits of 

Bayesian estimations in the presence of small sample sizes were also demonstrated by Finch and 

French (2019). One of the offerings of Bayesian estimation methods is the ability to estimate 

parameters of highly parameterized models, although this comes with some costs. When working 

with complex models, it becomes difficult to directly obtain samples from the posterior 

distribution. Fortunately, this can be resolved using MCMC methodology. 

Markov Chain Monte Carlo. It is often difficult to numerically derive the posterior 

distribution, 𝑃(𝜃|𝑥), which is usually high-dimensional and may not be analytically feasible. For 

example, the computation of the posterior distribution may require integration over several 

parameters (e.g., item and ability) and complex parameter spaces that require constraining 

parameters. The MCMC methodology, a simulation-based approach, can handle the 

dimensionality problems of numerical integration (Fox, 2010).  
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The MCMC methodology combines Monte Carlo with Markov chain techniques. Monte 

Carlo uses simulation to estimate the characteristics of the distribution by drawing large random 

samples from a probability distribution, called a proposal distribution. On the other hand, a 

Markov chain is a stochastic process in that the probability of transitioning to the next state 

depends on the current state. The key is for the Markov process to converge to a stationary 

distribution. This is achieved by running a simulation long enough that the distribution of the 

current draws is close to the stationary distribution (Gelman et al., 2004). This process can be 

time-consuming for datasets with large number of examinees, items, and raters. Some commonly 

applied MCMC algorithms include the Metropolis-Hastings sampler (Hastings, 1970), Gibbs 

sampler (Geman & Geman, 1984), and the No-U-Turn sampler (Hoffman & Gelman, 2014). The 

features of these algorithms are extensively discussed in Gelman et al. (2004) and Hoffman and 

Gelman (2014). 

2.6 Model-Data Fit for Traditional IRT Models 

A measurement model is of little importance if it fails to communicate the story that the 

data is expected to convey. An accurate story is only told when all necessary model assumptions 

are satisfied, including that the model fits the data. Typically, the fit of a model is assessed by 

evaluating the discrepancy between the model-implied data structure and the observed data 

(Levy, 2006). Model-data fit indices are specific to the type and complexity of the model. From a 

measurement perspective, a good fitting model is a model that accurately estimates the true item 

parameters and the true abilities of the examinees. Essentially, the degree to which the properties 

of an IRT model are attained depends on whether the appropriate model is used (Hambleton & 

Swaminathan, 1985; Stone & Hansen, 2000). Traditional IRT fit statistics can be classified into 

person-fit statistics, test-fit statistics, and item-fit statistics. Item-fit statistics are useful in 
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assessing the fit of individual items, whereas test-fit statistics are used in assessing the fit of all 

the items as a whole (Stone & Zhu, 2015). On the other hand, person-fit statistics are examinee-

specific.  

An item may produce a poor fit when the wrong IRT model is employed to calibrate the 

item (Yen & Fitzpatrick, 2006). Most widely used fit indices adopt either the chi-square or 

likelihood ratio approach (Ames & Penfield, 2015).  The Yen’s 𝑄1 (Yen, 1981) and Yen’s 𝑄3 

(Yen, 1984), 𝐺2(McKinley & Mills, 1985), 𝑆 − 𝑋2 (Kang & Cohen, 2008; Orland & Thissen, 

2000), 𝑆 − 𝐺2 (Orland & Thissen, 2000), Bock’s 𝜒2 (Bocks, 1960), OUTFIT and INFIT (Wright 

& Panchapakesan, 1969) are some of the popular model-data fit indices for both dichotomous 

and polytomous (the generalized forms of some of the indices) items. The sensitivity and Type-I 

error rates of many of these fit indices have been extensively investigated and their shortcomings 

have also been documented (Kang & Cohen, 2007, 2008; Orland & Thissen, 2000). 

Yen’s Q1 Statistic 

 Yen (1981) proposed the Yen’s 𝑄1 statistic to detect items that are poor fitting. The 𝑄1 is 

based on a chi-square approach. The Yen’s 𝑄1 statistic is expressed as 

𝑄1𝑗 = ∑ 𝑁𝑔

(𝑂𝑗𝑔 − 𝐸𝑗𝑔)
2

𝐸𝑗𝑔(1 − 𝐸𝑗𝑔)
 

10

𝑔=1

,                                                       (2.20) 

where 𝑂𝑗𝑔 is the observed proportion of correct responses to item j for the examinees in group g, 

𝐸𝑗𝑔 is the predicted proportion of correct responses to item j for the examinees in group g, 𝑁𝑔 is 

the number of examinees in group g. From the formulation, it is seen that the Yen’s 𝑄1 divides 

examinee ability scale into 10 groups. If the model is true, the 𝑄1 is distributed approximately as 

a 𝜒2 with degrees of freedom of 10 – m, where m the number of parameters estimated for item j. 

One of the drawbacks of the Yen’s 𝑄1 statistic is that it is sensitive to sample size. A large 
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sample size will tend to increase the 𝑄1 statistic. In addition, Yen’s 𝑄1 is dependent on the 

estimates of the examinee latent ability for group assignment. Studies have shown that Yen’s 𝑄1 

statistic results in high Type I error rates for short test length (see Ames et al., 2020; Kang & 

Chen, 2008; Orlando & Thissen, 2000). Fitzpatrick et al. (1996) provided a generalized form of 

the Yen’s 𝑄1 for polytomous items. 

Yen’s 𝑸𝟑 Statistic 

 Yen (1984) proposed the Yen’s 𝑄3 statistic as a measure for detecting local dependence 

of items after accounting for the latent ability of the examinees. For dichotomously scored items, 

Yen (1984) defined, 𝑑𝑗, the difference between examinee’s observed score on item j and the 

predicted score based on the IRT model as 

𝑑𝑗 = 𝑋𝑗 − 𝐸(𝑋𝑗|𝜃).                                                      (2.21) 

The Yen’s 𝑄3 statistic is computed as the correlation between the deviation scores of two 

items. This statistic is given as  

𝑄3𝑗𝑗′ = 𝑟𝑑𝑗𝑑𝑗′
,                                                      (2.22) 

where 𝑟𝑑𝑗𝑑𝑗′
 is the Pearson product moment correlation between the examinees’ deviation scores 

on item j and item 𝑗′. Items j and 𝑗′ are a pair of items of the same scale. Correlating the deviation 

scores essentially takes into account the examinees’ abilities. Under the null assumption that sets 

of items are locally independent, if some sets of items are locally dependent, then they will have 

significantly high residual correlations (Yen, 1993). 

𝑮𝟐 Statistic 

McKinley and Mills (1985) proposed the 𝐺2 item-fit statistic, which is based on a 

likelihood ratio. The 𝐺2 statistic is mathematically expressed as 
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𝐺𝑗
2 = 2 ∑ 𝑁𝑔 [𝑂𝑗𝑔 ln (

𝑂𝑗𝑔

𝐸𝑗𝑔
) + (1 − 𝑂𝑗𝑔) ln (

1 − 𝑂𝑗𝑔

1 − 𝐸𝑗𝑔
)],                              (2.23)

10

𝑔=1

 

where 𝑂𝑗𝑔 is the observed proportion of correct responses to item j for the examinees in group g, 

𝐸𝑗𝑔 is the predicted proportion of correct responses to item j for the examinees in group g, 𝑁𝑔 is 

the number of examinees in group g. Like the Yen’s 𝑄1 statistic, the original formulation 

provided by McKinley and Mills (1985) divides individuals into 10 groups. If the model is true, 

the 𝐺2 is distributed approximately as a 𝜒2 with degrees of freedom of 10 – m, where m is the 

number of parameters estimated for item j. Orlando and Thissen (2000) note that the approach of 

grouping examinees into equal-size groups is sample dependent, which tends to affect the fit 

statistic.  

𝑺 − 𝑿𝟐 and 𝑺 − 𝑮𝟐 Statistics 

 Orlando and Thissen (2000) proposed 𝑆 − 𝑋2 and 𝑆 − 𝐺2 statistics based on the chi-

square and likelihood ratio approaches, respectively. One distinct difference of their approach 

from Yen’s 𝑄1 and 𝐺2 is how Orlando and Thissen defined the groups. The groups for their 

proposed statistics are defined based on number of correct scores (i.e., observed test scores) 

instead of latent ability estimates. The 𝑆 − 𝑋2 is expressed as 

𝑆 − 𝑋𝑗
2 = ∑ 𝑁𝑔

(𝑂𝑗𝑔 − 𝐸𝑗𝑔)
2

𝐸𝑗𝑔(1 − 𝐸𝑗𝑔)
,                                                       (2.24)

𝑃−1

𝑔=1

 

and 𝑆 − 𝐺2 is expressed as 

𝑆 − 𝐺𝑗
2 = 2 ∑ 𝑁𝑔 [𝑂𝑗𝑔 ln (

𝑂𝑗𝑔

𝐸𝑗𝑔
) + (1 − 𝑂𝑗𝑔) ln (

1 − 𝑂𝑗𝑔

1 − 𝐸𝑗𝑔
)],                   (2.25)

𝑃−1

𝑔=1

 

where 𝑂𝑗𝑔 is the observed proportions of correct responses to item j for the examinees in group 

g, 𝐸𝑗𝑔 is the expected proportions of correct responses to item j for the examinees in group g, 𝑁𝑔 
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is the number of examinees in group g. For dichotomously scored items with P items, the 

proportion of examinees scoring zero is zero and the proportion of examinees scoring with 

correct responses on all P items is 1. Hence, the summation in the 𝑆 − 𝑋2 and 𝑆 − 𝐺2 

formulations exclude g = 0 and g = P.  

Another key distinction of Orlando and Thissen’s (2000)  𝑆 − 𝑋2 and 𝑆 − 𝐺2 statistics is 

how the expected proportions of correct responses is computed. In the formulation provided in 

Equation 2.25, 𝐸𝑗𝑔 is computed as 

𝐸𝑗𝑔 =
∫ 𝑃𝑗(𝜃)𝑓∗𝑗(𝑔 − 1|𝜃)𝜙(𝜃)𝜕𝜃

∫ 𝑓(𝑔|𝜃)𝜙(𝜃)𝜕𝜃
,                                                      (2.26) 

where 𝜙(𝜃) is the population distribution of the examinee ability parameter 𝜃, 𝑓(𝑔|𝜃) is the 

posterior distribution of the number of correct responses for group g, 𝑓(𝑔 − 1|𝜃) is the posterior 

distribution of the number of correct responses for group g excluding item j. Approximating the 

integral in Equation 2.26 can be achieved using rectangular quadrature over equally spaced 

increments of 𝜃 from -4.5 to 4.5 (Orlando & Thissen, 2000). Kang and Chen (2008) described a 

generalized 𝑆 − 𝑋2 index for polytomous items. 

2.7 Model-Data Fit for Performance Assessment Models 

In performance assessments, the discrepancies in ratings awarded to a particular 

examinee by multiple raters could be due to the different levels of severity/leniency exhibited by 

the raters or other types of rater effects such as centrality/extremity, halo, or inaccuracy. Eckes 

(2011) summarized three steps to analyzing data from performance assessments: (1) forming 

hypotheses on the facets that are likely to be relevant, (2) specifying a measurement model that is 

ideal to incorporate each facet, (3) applying the model to account for each facet’s impact in the 

best possible fashion. The adequacy of the measurement model used is an important ingredient in 

model building. If the wrong model is specified in Step 2 of Eckes’ summary, then the validity of 
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the estimates is questionable. The MFRM uses a chi-square statistic for the evaluation of the 

overall (global) absolute model-data fit. This index is based on a log-likelihood chi-square and 

may be more useful in assessing the practical utility of the model (Eckes, 2011; Linacre, 2020).  

The model specification of the MFRM also allows for the examination of fit for all facets 

in the model such as item, examinee, and rater using the INFIT and OUTFIT statistics (Eckes, 

2011; Linacre, 2020). Specifically, the INFIT and OUTFIT measures are used to characterize the 

deviations in ratings that were observed and ratings that were expected. In the context of raters, 

large deviations between the observed and expected ratings for an individual rater might be an 

indication of the existence of rater effects (Myford & Wolfe, 2003). For example, a rater 

OUTFIT statistic can be expressed as 

𝑂𝑈𝑇𝐹𝐼𝑇𝑟 =
∑ ∑ 𝑧𝑖𝑗𝑟

2𝐽
𝑗=1

𝑁
𝑖=1

𝑁 ∗ 𝐽
,                                                         (2.27) 

where 𝑁 is the number of examinees, 𝐽 is the number of items, and 𝑧𝑖𝑗𝑟 is the standardized 

residual of rater r’s rating of examinee i on item j. The standardized residual is computed using  

𝑧𝑖𝑗𝑟 =
𝑋𝑖𝑗𝑟 − 𝐸𝑖𝑗𝑟

√𝑉𝑖𝑗𝑟

,                                                         (2.28) 

where 𝐸𝑖𝑗𝑟 is the expected rating of examinee i rated by rater r on item j, 𝑋𝑖𝑗𝑟 is the observed 

rating of examinee i rated by rater r on item j, and 𝑉𝑖𝑗𝑟 is the variance of the observed rating 𝑋𝑖𝑗𝑟 

around its expectation. The OUTFIT statistic is an unweighted mean-squared fit statistic, hence, 

it is sensitive to unusually deviant ratings from a rater who is considered a consistent rater. 

 The INFIT statistic is a weighted mean-square statistic. The INFIT is less sensitive to 

unexpected ratings. The rater INFIT statistic is given as 

𝐼𝑁𝐹𝐼𝑇𝑟 =
∑ ∑ 𝑧𝑖𝑗𝑟

2𝐽
𝑗=1

𝑁
𝑖=1 𝑉𝑖𝑗𝑟

∑ ∑ 𝑉𝑖𝑗𝑟
𝐽
𝑗=1

𝑁
𝑖=1

.                                                         (2.29) 
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Since raters’ INFIT and OUTFIT statistics provide information on rater consistency in the use of 

the scales, large values may indicate inconsistency or other rater biases in the use of the rating 

scales. As earlier noted, the INFIT and OUTFIT measures can be extended to evaluate the fit of 

items and examinees. 

Wolfe and McVay (2010) suggested the use of score-estimate correlation for evaluating 

rater effects. The score-estimate correlation, also referred to as point-measure correlation, is 

useful in detecting rater inaccuracy because this statistic depicts “the consistency between the 

rank ordering of the examinees by a particular rater and the rank ordering of those examinees by 

composite scores assigned by all other raters” (Wolfe & McVay, 2010, p. 7). The score-estimate 

correlation is analogous to the Pearson Product Moment Correlation since the scores and ability 

estimates are assumed to be continuous. A rater’s score-estimate correlation (𝑟𝑟) is computed 

using 

𝑟𝑟 =
∑ (𝑋̅𝑖.𝑟 − 𝑋̅..𝑟)(𝜃𝑖 − 𝜃̂̅)𝑁

𝑖=1

√∑ (𝑋̅𝑖.𝑟 − 𝑋̅..𝑟)2𝑁
𝑖=1  √∑ (𝜃𝑖 − 𝜃̂̅)

2
𝑁
𝑖=1

,                                                 (2.30) 

where 𝑋̅𝑖.𝑟 is observed average rating of rater r to examinee i across all items, 𝑋̅..𝑟 is the observed 

average rating of rater r across all items and examinees, 𝜃𝑖 is ability estimate of examinee i, and 

𝜃̂̅ is the average ability estimate of all examinees. Boone and Staver (2020) indicated that the 

score-estimate correlation may be useful in detecting misfitting or miscoded items. 

 Another version of what looks like the score-estimate correlation is the Single Rater-Rest 

of the Raters (SR/ROR) correlation (Linacre, 2003). The SR-ROR reflects the extent to which a 

rater’s ratings are consistent with the ratings of the rest of the raters. Myford and Wolfe (2003) 

provided some guidelines in interpreting SR/ROR correlations. They suggested that: 

SR/ROR correlations less than .30 are considered to be somewhat low, while correlations 
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greater than .70 are considered to be high for a rating scale composed of several 

categories. However, as the number of rating scale categories decreases, these rule-of-

thumb values should be relaxed. For example, it is not uncommon to see SR/ROR 

correlations no higher than 0.20 in dichotomous ratings. If a SR/ROR correlation is near 

zero or negative for a given rater, then that rater rank orders ratees in a manner different 

from the other raters’ rank ordering. (p. 410). 

The SR/ROR correlation is computed using 

𝑟𝑟,𝑟𝑒𝑠𝑡 =
2𝑁𝐽[∑ ∑ 𝑅𝑗,𝑖𝑗𝑟𝑋𝑖𝑗𝑟 +𝑁

𝑖=1
𝐽
𝑗=1 𝑅𝑖,𝑖𝑗𝑟𝑋𝑖𝑗𝑟] − 2 ∑ ∑ 𝑋𝑖𝑗𝑟

𝑁
𝑖=1

𝐽
𝑗=1 [∑ ∑ 𝑅𝑗,𝑖𝑗𝑟 + 𝑅𝑖,𝑖𝑗𝑟

𝑁
𝑖=1

𝐽
𝑗=1 ] 

√(2𝑁𝐽 [∑ ∑ 𝑅𝑗,𝑖𝑗𝑟
2 + 𝑅𝑖,𝑖𝑗𝑟

2𝑁
𝑖=1

𝐽
𝑗=1 ] − [∑ ∑ 𝑅𝑗,𝑖𝑗𝑟 + 𝑅𝑖,𝑖𝑗𝑟

𝑁
𝑖=1

𝐽
𝑗=1 ]

2
) (4[𝑁𝐽 ∑ ∑ 𝑋𝑖𝑗𝑟

2 ]𝑁
𝑖=1 − [∑ ∑ 𝑋𝑖𝑗𝑟]2𝑁

𝑖=1
𝐽
𝑗=1

𝐽
𝑗=1 ) 

, (2.31) 

where 𝑋𝑖𝑗𝑟 is the observed rating of examinee i, rated by rater r, on item j and NJ is the total 

number of ratings awarded by rater r. The average scores of the items and examinees, excluding 

the rater r rating are given as 𝑅𝑗,𝑖𝑗𝑟 and 𝑅𝑖,𝑖𝑗𝑟, respectively. Specifically, 𝑅𝑗,𝑖𝑗𝑟 and 𝑅𝑖,𝑖𝑗𝑟 are 

computed, respectively, using Equations 2.32 and 2.33. 

𝑅𝑗,𝑖𝑗𝑟 =
∑ ∑ 𝑋𝑖𝑗𝑟 − 𝑋𝑖𝑗𝑟

𝑁
𝑖=1

𝑅
𝑟=1

𝑁 ∙ 𝑅 − 1
,                                                (2.32) 

 

𝑅𝑖,𝑖𝑗𝑟 =  
∑ ∑ 𝑋𝑖𝑗𝑟 − 𝑋𝑖𝑗𝑟

𝐽

𝑗=1
𝑅
𝑟=1

𝐽 ∙ 𝑅 − 1
.                                                (2.33) 

All the rater fit statistics detailed so far have been widely applied using MFRM (see 

Eckes, 2011; Wolfe & McVay, 2010). Gaps still exist in literature about the best approach of 

evaluating model-data fit for the HRM. There are no documented absolute fit measures for the 

HRM. Patz et al. (2002) used Schwarz’s (1978) Bayesian Information Criteria (BIC) to evaluate 

relative model-data fit between the HRM and the MRFM. A recent R package by Robitzsch and 

Steinfeld (2018), which uses the immer_hrm function to fit the HRM, reports seven fit indices 

including BIC, Akaike Information Criteria (AIC; Akaike, 1973, 1974), and the AIC corrected 
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for bias (AICc; Sugiura, 1978). All these fit indices are typically employed when assessing 

relative model-data fit between competing models with smaller values indicating better fit. For 

example, Nieto and Casabianca (2019) used AIC, BIC, and deviance information criteria (DIC; 

Spiegelhalter et al., 2002) to compare the M-HRM to the MGPCM. Given the preponderance of 

Bayesian studies, there is a need for Bayes absolute fit. One of those methods is PPMC.  

2.8 Posterior Predictive Model Checking 

2.8.1 Overview of PPMC 

Model-checking from a Bayesian perspective can be approached using Bayesian residuals 

and predictive diagnostic checks (Fox, 2010). This study was designed to evaluate the 

effectiveness of several discrepancy measures in assessing model-data fit of the HRM using 

PPMC. The PPMC is used for assessing whether there are aspects of the data not captured by the 

model. The PPMC is built on the posterior predictive methodology (Rubin, 1984) on the 

principle that data replicated or simulated from the posterior distribution should bear a 

resemblance to the observed data. The predictive posterior methodology accounts for the 

parametric uncertainty in the posterior distribution and the sampling uncertainty in the data. The 

posterior predictive distribution for replicated data, as defined by Rubin (1984), is a distribution 

of future observable quantity conditioned on the observed data. The posterior predictive 

distribution of 𝑋𝑟𝑒𝑝 is given by 

𝑝(𝑋𝑟𝑒𝑝|𝑋𝑜𝑏𝑠) =  ∫ 𝑝(𝑋𝑟𝑒𝑝|𝜃)𝑝(𝜃|𝑋𝑜𝑏𝑠)𝑑𝜃.                                             (2.34) 

In Equation 2.34, 𝑝(𝜃|𝑋𝑜𝑏𝑠) specifies the posterior distribution of the unknown parameter, 𝜃. 

This quantity gives the representation of the uncertainty in the unknown parameter. The symbol 

𝑋𝑟𝑒𝑝 denotes the replicated or simulated data, which is drawn from the posterior predictive 
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distribution, and 𝑋𝑜𝑏𝑠 represents the observed data. A model is considered a good fitting model if 

the replicated data closely resemble the observed data. As described by Equation 2.34, the 

posterior predictive distribution is intuitive and computationally straightforward using Monte 

Carlo methods. Obtaining the replicated samples is achieved by randomly drawing values of the 

parameter from the joint posterior distribution. Drawn parameter values are then used to simulate 

the data based on the fitted model. This process is repeated many times as shown in Figure 2. As 

described in this figure, {𝑋𝑟𝑒𝑝
[1]

, 𝑋𝑟𝑒𝑝
[2]

, …, 𝑋𝑟𝑒𝑝
[𝑆]

} are independent and identically distributed 

samples from 𝑝(𝑋𝑟𝑒𝑝|𝑋𝑜𝑏𝑠) which represents the posterior predictive distribution. Typically, 

1,000 or more datasets are replicated.  

 

 

 

 

 

 

 

 

 

Figure 2. Posterior Predictive Distribution Sampling Algorithm 

 

Under the PPMC approach, model misfit could be assessed graphically or numerically. 

Plots such as scatterplots, bar charts, boxplots, and histograms can be employed to graphically 

compare the observed data and replicated data. Any systematic differences observed between 

aspects of the observed data set and those of the replicated data sets are indicative of the failure 

of the model to explain those aspects of the data (Sinharay et al., 2006). One of the drawbacks of 

graphically comparing observed and replicated is that some key features of the data may not be 

sample 𝜃[1] ~ 𝑝(𝜃|𝑋1, … , 𝑋𝑛),   sample 𝑋𝑟𝑒𝑝
[1]

 ~  𝑝(𝑋𝑟𝑒𝑝|𝜃[1]) 

sample 𝜃[2] ~  𝑝(𝜃|𝑋1, … , 𝑋𝑛),   sample 𝑋𝑟𝑒𝑝
[2]

 ~ 𝑝(𝑋𝑟𝑒𝑝|𝜃[2]) 

sample 𝜃[3] ~  𝑝(𝜃|𝑋1, … , 𝑋𝑛),   sample 𝑋𝑟𝑒𝑝
[3]

 ~ 𝑝(𝑋𝑟𝑒𝑝|𝜃[3]) 

sample 𝜃[4] ~  𝑝(𝜃|𝑋1, … , 𝑋𝑛),   sample 𝑋𝑟𝑒𝑝
[4]

 ~ 𝑝(𝑋𝑟𝑒𝑝|𝜃[4]) 

⋮                                                                           ⋮ 

sample 𝜃[𝑆] ~  𝑝(𝜃|𝑋1, … , 𝑋𝑛),   sample 𝑋𝑟𝑒𝑝
[𝑆]

 ~ 𝑝(𝑋𝑟𝑒𝑝|𝜃[𝑆]) 
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easily noticeable.  

Ames et al. (n.d.) illustrated the difficulty of only using graphical checks alone to 

evaluate model-data fit using PPMC. Here, I present a similar example using simulated data 

generated from a 1PL model. Data were simulated for 1000 examinees with 5 items (simulation 

parameters are presented in Appendix 1). Figure 3 presents the total score distribution of the 

simulated data. From Figure 3, it can be seen that 227 examinees obtained a total score of zero 

(i.e., incorrect responses on all five items), whereas 17 examinees obtained a total score of five 

(i.e., correct responses on all five items). The simulated data were further calibrated with 1PL 

and 2PL IRT models using Bayesian estimation methods with MCMC.  

Using PPMC approaches, 1000 datasets were replicated using the joint posterior 

distributions of the 1PL and 2PL models. Figure 4 displays the total score distributions for two 

replicated datasets: one for the 1PL model and one for the 2PL model. In Figure 4, the left panel 

shows the total score distribution under the 1PL model, and the right panel shows the total score 

distribution under the 2PL model. The number of examinees scoring a total score of one, two, 

and three under the PPMC for the 1PL closely resemble the observed data. As shown in the right 

panel of Figure 4, the data replicated using 2PL did not closely resemble the observed data. 

However, it can be seen that 17 examinees obtained a total score of 5 in the observed total score 

distribution and 16 examinees obtained a total score of 5 in the replicated dataset for the 2PL 

model. This makes it subjective to only judge how well the replicated data resembles the 

observed data using graphical checks alone. To this end, more quantifiable techniques using 

discrepancy measures and PPP-values allow for a more direct evaluation of the discrepancy 

between the observed data and posited model (Meng, 1994; Gelman et al., 1996).  
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Figure 3: Distribution of the number of examinees obtaining each total score  
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Figure 4: Distribution of total score of replicated data for the 1PL (left panel) and 2PL (right 

panel) models.  

 

2.8.2 Discrepancy Measures 

 Discrepancy measures are statistics computed from the observed and replicated data. It 

could be simple summary statistics such as measures of center (e.g., mean, median, mode) and 

measures of spread (e.g., standard deviation, interquartile range, range). Other statistical 

measures such as correlation coefficients, item-total correlation, rater reliability, odd ratios, total 

test score and proportion of correct answers could also serve as discrepancy measures. There is 

no limit to the choice of discrepancy measure that could be employed but detecting a misfitting 

model hinge on the choice of the discrepancy measure used. Bayarri and Berger (2000) 

suggested that the choice of discrepancy measure allows the researcher to evaluate how 

compatible the fitted model is to the observed data. That is to say that for every given model, the 

choice of the discrepancy measure should be chosen to provide evidence of high power and low 

Type-I error rates. 
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The discrepancy measure of the replicated and observed data are typically denoted by 

𝑇(𝐷𝑟𝑒𝑝) and 𝑇(𝐷𝑜𝑏𝑠), respectively. For the replicated datasets, S number of 𝑇(𝐷𝑟𝑒𝑝) is computed 

[i.e., 𝑇(𝐷𝑟𝑒𝑝)
1

, 𝑇(𝐷𝑟𝑒𝑝)
2

, … , 𝑇(𝐷𝑟𝑒𝑝)
𝑆

], where S is the number of replicated datasets. Typically, 

the 50th percentile of the discrepancy measure of the replicated datasets is compared to the 

discrepancy measure of the observed statistic. Discrepancy measures such as total score 

distribution, item-score correlation, Yen’s 𝑄1, 𝑄3, 𝐺2, 𝑆 − 𝑋2, 𝑆 − 𝐺2, and Agresti’s (2002) 

global odds ratio have been employed in IRT to evaluate absolute model-data fit with PPMC 

techniques. 

Total Score Distribution 

 The total score is the sum of the item scores (for each examinee). The total score 

distribution is the distribution of examinees’ sums of item scores. The illustration presented in 

Section 2.8.1 is an example of total score distribution. This distribution may be useful in 

detecting misfit at the test level. As depicted in Section 2.8.1, the total score distribution using 

graphical checks alone may be inconclusive. However, pertinent features of the total score 

distribution can be described using summary statistics such as mean, standard deviation, and 

skewness. Summary statistics computed from the total score distribution can serve as 

discrepancy measures to examine different aspects of the distribution. For example, we see that 

the center of the total score distribution for the observed data (Figure 3) resembles the replicated 

1PL data (Figure 4, left panel). The tails of the distribution do not appear to be adequately 

captured by the 1PL model. The center can be described with the mean of the total score 

distribution. In this case, the mean will be the discrepancy measure. The variability and shape of 

the data can be evaluated using standard deviation and skewness statistics, respectively. In 

addition, we can use the first and third quartiles to evaluate how well the values around the tails 
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of the distribution are captured. 

Item-Total Correlation Coefficient 

 The item-total correlation is the correlation between a particular item’s score and the total 

score, also referred to as the point-biserial correlation for dichotomous items and polyserial 

correlation for polytomous items. This coefficient measures the extent to which responses on a 

particular item are related to responses to other items on the test (Allen & Yen, 1979). The item-

total correlation is regarded as a discrimination index. Essentially, item-total correlation indicates 

how well items discriminate between high-performing and low-performing examinees. Item-total 

correlation can be computed by including an item’s scores in the total score or removing the 

item’s score in the total score. To avoid spuriousness, it is recommended to remove a particular 

item’s score from the total score (Crocker & Algina, 1986). Item-total correlation coefficient has 

been employed as a discrepancy measure to detect item misfit using PPMC in IRT studies (Li et 

al., 2017; Sinharay & Johnson, 2003). 

Odds Ratio Statistic 

 The odds ratio is a pairwise measure statistic that measures the association between two 

items typically presented in two-way contingency tables. For example, the two-way contingency 

table for two dichotomous items (j and j*) can be given as 

 

Table 6. Two-way Contingency Table for Two Dichotomous Items 

 

Item j 

 0 1 

0 𝑛00 𝑛01 

1 𝑛10 𝑛11 

 

where 𝑛00 is the observed number of examinees scoring 0 and 0 on items j and j*, respectively. 

Similarly, 𝑛10, 𝑛01, and 𝑛11 are the observed number of examinees having pairwise scores of (1, 

Item j* 
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0), (0, 1), and (1, 1), respectively, on items j and j*. These values provide the basis for 

computing the odds ratio. The odds ratio is computed as 

𝑂𝑅 =
𝑛11𝑛00

𝑛10𝑛01
.                                                                      (2.35) 

Chen and Thissen (1997) used the odds ratio as a measure to evaluate local dependence 

for dichotomous IRT models. The scenario presented in Table 6 is suitable for items with binary 

responses (i.e., 0 and 1 responses). Previous studies (Li et al., 2017; Zhu & Stone, 2011, 2012) 

have applied the odds ratio statistic to polytomous items. These studies dichotomized 

polytomous items by categorizing them into two groups. For example, response score categories 

of 1, 2, and 3 could be recoded as 0 and score categories of 4 and 5 could be recoded as 1.  

2.8.3 Posterior Predictive p-value 

 In PPMC, there are S replicated datasets. A thousand datasets are typically replicated in 

PPMC. Therefore, for a chosen discrepancy measure, S number of this discrepancy measure will 

be computed from the datasets [i.e., 𝑇(𝐷𝑟𝑒𝑝)
1
, 𝑇(𝐷𝑟𝑒𝑝)

2
, … , 𝑇(𝐷𝑟𝑒𝑝)

𝑆
]. For example, if the item-

total correlation is chosen as the discrepancy measure, then the item-total correlation will be 

computed for each replicated dataset. The distribution of the discrepancy measure is referred to 

as the reference distribution. This distribution provides the means to assess the extremeness of 

the observed discrepancy (Fox, 2010).  

Frequentists construct the p-value under the assumption of a true null hypothesis. The p-

value over the sampling distribution of the test statistic is mathematically given as  

𝑝𝐹 = 𝑃{𝑇(𝑋) ≥ 𝑇(𝑥)|𝐻𝑜},                                                  (2.36)  

where 𝑝𝐹 is the probability of observing the test statistic 𝑇(𝑋) or values more extreme as 𝑇(𝑥) 

given that the null hypothesis 𝐻𝑜 is true. A small value of 𝑝𝐹 is an indicative of an unlikely 

statistic under the sampling distribution. The Bayesian version of the p-value is the PPP (Meng, 



54 

 

1994). The frequentist p-value approach shares some features with the Bayesian p-value.  The 

PPP-value is computed over the posterior predictive distribution and is mathematically given as  

𝑝𝐵 = Pr{𝑇(𝐷𝑟𝑒𝑝) ≥ 𝑇(𝐷𝑜𝑏𝑠)| 𝜃},                                                               (2.37)  

where 𝑝𝐵 is the probability that the replicated data 𝑇(𝐷𝑟𝑒𝑝) could be more extreme than the 

observed data 𝑇(𝐷𝑜𝑏𝑠) as measured by the discrepancy measure (Gelman et al., 2004). It is 

desired that 𝑇(𝐷𝑜𝑏𝑠) is located near the center of the distribution, therefore, a PPP-value close to 

0.5 is indicative of adequate model-data fit and values less than 0.05 or greater than 0.95 is 

indicative of poor model-data fit (Sinharay, 2006). 

2.8.4 Applications of PPMC in IRT  

Bayesians regard the PPMC as a powerful diagnostic technique in assessing whether 

different aspects of the data are captured by the model. The frequentist methods of assessing IRT 

model-data fit are easily extended to a Bayesian framework using PPMC techniques. PPMC has 

been employed to evaluate model-data fit of dichotomous and polytomous IRT models using 

popular frequentist IRT fit indices. 

Sinharay and Johnson (2003) evaluated the utility of PPMC in detecting misfit of 

dichotomous IRT models under different data generating and data analysis models. They 

generated data for 2,500 examinees responding to 30 items with the 1PL, 2PL, and 3PL models. 

Data generated with a more complex model were analyzed using the same model and models 

that are less complex. For example, data generated with the 2PL model were analyzed with the 

1PL and 2PL models; but not the 3PL model. Data were also generated to have a testlet effect, 

two dimensions, and speededness, and were analyzed with the 2PL and 3PL models. The authors 

considered several discrepancy measures such as percentage-correct score for the items, 

observed score distributions, biserial correlation coefficient (including the mean, variance, 
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minimum, and maximum of the biserial correlation), proportion of examinees answering pairs of 

items correctly and odds ratio. They found that observed score distribution and odds were useful 

in detecting misfit of the 1PL model. Also, they found biserial correlation to be powerful in 

detecting lack of fit of the 1PL model when the generating models were 2PL and 3PL models. In 

detecting lack of unidimensionality, they found the odds ratio to be a powerful discrepancy 

measure. Sinharay et al. (2006) also found biserial correlation to be useful in detecting misfit of 

the 1PL model. 

Sinharay (2006) further employed the PPMC to examine model-data fit of 

unidimensional dichotomous IRT models using item fit plots, and Orlando and Thissen’s 𝑆 − 𝑋2 

and 𝑆 − 𝐺2 statistics as the discrepancy measures.  The 𝑆 − 𝑋2 and 𝑆 − 𝐺2 measures were useful 

in detecting misfit as their type I error rates did not exceed the nominal level. The 𝑆 − 𝑋2 also 

performed well for small test with 10 items and 500 examinees. Ames (2015, 2018) investigated 

the influence of the choice of prior distributions on the performance discrepancy measures using 

PPMC. Data for her study were generated using dichotomous IRT models. Percent correct, 𝑆 −

𝑋2, OUTFIT, and INFIT measures served as the discrepancy measures. Because the focus of 

Ames (2015, 2018) was the influence of the choice of prior distributions, four prior 

specifications were employed: noninformative, informative-accurate, informative-inaccurate, 

noninformative-inaccurate. The author found that the PPMC technique was influenced by prior 

specifications. This finding varied across the choice of discrepancy measure. For example, the 

effect of prior choice was small for the 𝑆 − 𝑋2 statistic but nonnegligible for the INFIT statistic. 

Only a few simulation studies have applied PPMC to rigorously evaluate model-data fit 

of polytomous IRT models. Zhu and Stone (2011, 2012) extended PPMC to the GRM using 

discrepancy measures such as item score distribution, item-total correlation, Yen’s 𝑄1 and 𝑄3, 
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and Agresti’s (2002) global odds ratio. Consistent with previous studies, Zhu and Stone (2011, 

2012) found PPMC to be effective in detecting model-data fit. Specifically, pairwise measures 

such as the global odds ratio and Yen’s 𝑄3 were found to be powerful in detecting violations of 

unidimensionality. More recently, Li et al. (2017) investigated the performance of PPMC in 

detecting misfits of polytomous IRT models such as GPCM, PCM, rating scale model (RSM; 

Andrich, 1978), and the modified rating scale model (MRSM). Their study explored five 

discrepancy measures: (a) test score distribution; (b) item-total correlation; (c) 𝑄1 − 𝜒2; (d) 

global odds ratio; and (e) Yen’s 𝑄3.  Li and colleagues generated their data using the GPCM. 

The generated data were analyzed using GPCM, PCM, RSM, and MRSM. Li et al. (2017) results 

showed that the discrepancy measures performed differently given the analysis model. They 

found that discrepancy measures such as item-total correlation, Yen’s 𝑄1, Yen’s 𝑄3, and the 

global odds ratio were dependent on sample size. Their results showed that larger sample sizes 

were associated with a larger percentage of flagged items or item pairs. However, test lengths 

were not shown to impact the effectiveness of the PPMC using these discrepancy measures. 

As earlier noted, only Casabianca et al. (2017) and Nieto and Casabianca (2019) have 

applied the PPMC to the HRM. Casabianca et al. (2017) employed PPMC to the L-HRM using 

the total score distribution as the discrepancy measure. They defined the total score distribution 

as “the sum of the item score.” The item score is an examinee’s average rating based on multiple 

ratings on a particular item. Although Casabianca et al. (2017) did not provide the full results of 

their PPMC analyses, they conclude that the results allowed them to infer that the L-HRM with 

autoregressive time series was an adequate fit to their data. Nieto and Casabianca (2019) 

employed total score distribution and rater variability (standard deviation) to evaluate absolute 

model-data fit of the M-HRM. The results of the total score distribution suggest that the M-HRM 
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adequately captured features of the observed data. However, there were noticeable deviations 

between the observed rater variability and the replicated rater variability. These studies did not 

report the resulting PPP-values. In addition, Casabianca et al. (2017) and Nieto and Casabianca 

(2019) studies did not evaluate the utility of the PPMC when the IRT component of the HRM is 

misspecified. Hence, it is unclear as to whether the discrepancy measures they used can detect 

misfit when a correct or incorrect IRT model is specified. 

2.9 Research Questions 

The main purpose of the present study is to evaluate the absolute model-data fit of the HRM. 

This study asks the following research questions: 

1. What is the Type I error rate and power of the test-level discrepancy measures in 

detecting model-data misfit of the HRM using PPMC? 

2. What is the Type I error rate and power of the item-level discrepancy measures in  

detecting model-data misfit of the HRM using PPMC? 

3. What is the Type I error rate and power of the rater-level discrepancy measures in  

detecting model-data misfit of the HRM using PPMC? 

2.10 Chapter Summary 

It was important to understand the framework used in this study and previous work that 

has been done in this area. Chapter 2 outlined this framework and reviewed previous literature. 

This chapter first described traditional dichotomous and polytomous IRT models including when 

to apply these models. These traditional IRT models assume that an examinee’s response to an 

item is independent of the examinee’s response to any other item given the examinee’s ability – 

an assumption that researchers have suggested to be lacking in performance assessments. This 

chapter also described appropriate models for performance assessments including the HRM, 
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which is the measurement model of interest in this study. In addition, this chapter documented 

different rater effects that have been studied in the context of the HRM. In addition, the 

implications of complete and incomplete rating designs were discussed. The essential component 

of this study is to evaluate the absolute model-data fit of the HRM. The chapter ended with an 

extensive discussion of the PPMC techniques including the application of PPMC in IRT and 

different discrepancy measures that have been previously applied in evaluating PPMC in IRT 

models.  
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CHAPTER 3:  

METHODS 

The focus of this dissertation is on the performance of PPMC in detecting misfits of the 

HRM under varying simulation conditions. The HRM models the hierarchy that exists in rating 

data by accounting for rater severity and variability. In the first stage, a signal-detection-like 

model describes the relationship between the ideal ratings and observed ratings, while an IRT 

model describes the relationship between ideal ratings and examinee latent ability in the second 

stage. The current study will investigate the empirical power and Type I error rates of different 

discrepancy measures at the test-level, item-level, and rater-level of the HRM. The implications 

of rater effects and rating designs on model-data fit will also be investigated. The study will also 

document the most effective discrepancy measures. 

This chapter outlines the simulation design, discrepancy measures for the PPMC 

approach, data analyses, and evaluation methods. In addition, the methodology for a real data 

example is described in this chapter. The choice of the conditions selected for this dissertation is 

guided by previous studies involving performance assessments. The current study varied the IRT 

component model of the HRM, rating designs, number of examinees, and rater effects. Factors 

such as the number of item categories, test length, and distribution of examinee latent trait were 

fixed across all conditions. 

3.1 Simulation Design Factors 

3.1.1 Data Generation and Analysis Models 

 The second level of the HRM models the relationship between examinees’ ideal ratings 

and the latent ability traits. The second level does not depend on the rater characteristics such as 

severity/leniency and consistency in the use of the scale. A polytomous IRT model is the 
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statistical model for this level of the hierarchy 𝜉𝑖𝑗|𝜃𝑖. Several simulation studies have applied the 

PCM or GPCM at the second level of the HRM. Nieto and Casabianca (2019) evaluated 

parameter recovery of the M-HRM. In generating data for the M-HRM, Nieto and Casabianca 

(2019) specified the GPCM as the polytomous IRT model. Similarly, Casabianca et al. (2017) 

specified the GPCM as the polytomous IRT model in their simulation studies which examined 

parameter recovery of the L-HRM. Patz et al. (2002) illustrated the utility of the HRM. The 

paper compared the HRM to the MFRM. Patz and colleagues employed the PCM as the IRT 

component of the HRM. None of these studies highlighted here varied the polytomous IRT 

models used. Thus, it is unclear of the effects of using the GPCM versus the PCM on model-data 

fit or parameter estimates. In the present study, the GPCM was the generating model and both 

PCM and GPCM serve as the analysis model. This study used HRM-GPCM to refer to HRM 

data generated or analyzed with the GPCM as the IRT component, whereas, HRM-PCM refer to 

HRM data generated using GPCM and analyzed with PCM as the IRT component. 

3.1.2 Test Length 

 Unlike multiple-choice tests, performance assessments require examinees to perform 

fewer tasks because the tasks necessitate more time and resources for rating. For example, the 

Analytical Writing portion of the GRE, a high-stake assessment, consists of two analytical 

writing tasks. Similarly, the four components of the TOEFL comprise of two sections (writing 

and speaking) that require human raters to judge the quality of examinees’ work. The Speaking 

portion consists of four tasks and the Writing portion consists of two writing tasks (one 

integrated and one independent). Simulation studies involving performance assessments have 

mostly utilized a small number of test items. Patz et al. (2002) and Casabianca et al. (2017) fixed 

the test lengths to five items. Both studies used a five-category scale per item for both observed 
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and ideal ratings. Casabianca and Wolfe (2017) considered test lengths of two, four, and eight 

items, while Nieto and Casabianca (2019) investigated parameter recovery of the M-HRM with 

test lengths of three and six items. Their results were consistent with Kim (2009) and DeCarlo 

(2008, 2010) that showed that bias in parameter recovery decreased with larger test lengths. For 

example, Casabianca and Wolfe (2017) showed that the correlation coefficients between 

observed and estimated examinee ability parameters were in the range of 0.796 and 0.802 for a 

2-item test, between 0.875 and 0.881 for a 4-item test, and between 0.927 and 0.930 for an 8-

item test, suggesting that a larger number of items improve the estimates of the person 

parameters. This study uses a test length of four items with five response categories, which is 

typical of the number of items in performance assessments. 

3.1.3 Number of Examinees 

 Accurate estimation of IRT model parameters may largely depend on the number of 

examinees. Previous simulation studies have shown that larger sample sizes yield estimates that 

are close to the true parameter (e.g., Kieftenbeld & Natesan, 2012; Reise & Yu, 1990). Using the 

GRM with a test length of 25 items, Reise and Yu (1990) suggested that a minimum sample size 

of 500 examinees was needed to yield higher accuracy in parameter estimates. Reise and Yu’s 

(1990) study employed MML as their estimation method. Comparing MML and Bayesian 

methods, Kieftenbeld and Natesan (2012) revealed that accuracy in estimates increased with an 

increase in sample size and test length. There is little guidance on the sample size required to 

accurately estimate item, rater, and ability parameters in performance assessments. Linacre 

(2020) suggests that a minimum sample size of 30 observations per item and at least 10 

observations per rating-scale category are required to yield estimates that will have some degree 

of stability. In performance assessments, it is typical for each examinee to receive multiple 
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ratings. Hence, a design in which examinees receive multiple ratings on multiple items will result 

in large observations, which could augment a small sample size. Previous studies that involve the 

HRM have mostly used sample sizes between 250 and 1000 examinees (e.g., Casabianca et al., 

2017; Nieto & Casabianca, 2019; Patz et al., 2002). Consistent with previous studies on 

performance assessments, sample sizes of 250 and 500 examinees were considered for the 

present study. 

3.1.4 Number of Raters 

  The number of raters employed in performance assessments is relative to design 

considerations such as the rating design, number of items, number of examinees, and whether 

each examinee receives single or multiple ratings. Previous simulation studies have utilized 

varying number of raters. For example, Patz et al. (2002), Nieto and Casabianca (2019), and 

Casabianca and Wolfe (2017) all fixed the number of raters to 3, 25, and 100, respectively. On 

the other hand, Uto and Ueno (2020) had different number of raters (5, 10, and 30). This large 

variation in the number of raters employed in these studies is an indication that the choice of the 

number of raters in performance assessments is relative to the design considerations highlighted 

earlier. For example, the TOEFL Speaking section requires the contribution of a minimum of 

three raters to rate an individual examinee (ETS, 2016). Given the large number of examinees 

that take the TOEFL, an international assessment, it is easy to imagine that rating of assessments 

will require a large number of raters to rate all the test takers who take the TOEFL. Simulating 

data with 100 raters, Casabianca and Wolfe (2017) designed their study such that each examinee 

was rated by a subset of the raters. In their study, examinees received two, four, or eight ratings 

per item. Similarly, Nieto and Casabianca (2019) randomly assigned two ratings to each 

examinee, which resulted in an incomplete design. This type of design is common in large-scale 
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assessments (McClellan, 2010). To keep the design conditions manageable, this study fixed the 

number of raters to eight.  

3.1.5 Rating Design 

There is little research into performance of HRM with rating designs that lack 

connectedness. None of the simulation studies that directly applied the HRM explored the issue 

of connectedness. However, as documented in Chapter 2, Patz et al. (2002) explored different 

rating designs using empirical data. Patz and colleagues referred to the rating designs as 

Modality One, Modality Two, and Modality Three. Modality One, in which raters scored the 

entire booklet of 11 items, resulted in the smallest absolute modality bias. Fully-crossed designs 

have been shown to perform better in terms of bias (Hombo et al., 2001) and in terms of 

classification of examinees (Wind et al., 2019). While fully-crossed design may be desirable, the 

costs associated with employing fully-crossed design are higher compared to an incomplete 

rating design. Incomplete rating designs have been shown to yield estimates comparable to the 

true parameters. For example, Casabianca and Wolfe (2017) employed an incomplete rating 

design in which they varied the number of ratings each examinee received. They found that the 

correlation coefficients between examinees’ true and estimated parameters were considerably 

high. For example, for their 4-item condition with no biased raters, the correlation coefficient 

between true and estimated ability parameters was 0.877 when each examinee only received two 

ratings compared to 0.878 when each examinee received four or eight ratings. 

To assess the performance of the PPMC in detecting misfits across rating designs, the 

fully-crossed and spiral rating designs were considered for this study. The two rating designs 

considered here fall under the connected rating design. The fully-crossed rating design provides a 

baseline for assessing how well the spiral rating design performs. In the fully-crossed design, 
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every rater rated every examinee on all items. This design is shown in Table 7. As seen in this 

table, each examinee received 8 ratings on each item. However, in the spiral rating design, each 

rater rated every examinee on a subset of the items. Table 8 shows the spiral rating design 

employed in this study. In this design, each examinee received 2 ratings on each item. As shown 

in Table 8, Raters 1 and 2 rated every examinee on Item 1 while Raters 3 and 4 rated every 

examinee on Item 2. In addition, Raters 5 and 6 scored every examinee on Item 3, and finally, 

Raters 7 and 8 scored every examinee on Item 4. Therefore, the spiral rating design employed in 

this study provided only 25% of the data of the fully-crossed rating design. Li et al. (2017) found 

evidence of higher effectiveness of PPMC in detecting misfit with larger samples. Although 

previous studies (Casabianca & Wolfe, 2017; Hombo et al., 2001) suggested that incomplete 

rating designs resulted in adequate parameter recovery, the performance of PPMC in detecting 

misfit of the HRM-PCM is expected to be higher under the fully-crossed rating design due to 

considerably larger number of ratings. 

Table 7. Fully-Crossed Rating Design for Simulated Ratings 

Rater Item 
Examinee 

1 2 3 … n 

1 1 – 4 ✓ ✓ ✓ … ✓ 

2 1 – 4 ✓ ✓ ✓ … ✓ 

3 1 – 4 ✓ ✓ ✓ … ✓ 

4 1 – 4 ✓ ✓ ✓ … ✓ 

5 1 – 4 ✓ ✓ ✓ … ✓ 

6 1 – 4 ✓ ✓ ✓ … ✓ 

7 1 – 4 ✓ ✓ ✓ … ✓ 

8   1 – 4 ✓ ✓ ✓ … ✓ 
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Table 8. Spiral Rating Design for Simulated Ratings 

Rater Item 
Examinee 

1 2 3 … n 

1 – 2 1 ✓ ✓ ✓ … ✓ 

3 – 4 2 ✓ ✓ ✓ … ✓ 

5 – 6 3 ✓ ✓ ✓ … ✓ 

7 – 8   4 ✓ ✓ ✓ … ✓ 

 

3.1.6 Proportion of Aberrant Raters 

 Raters have different characteristics that may influence the choice of rating categories 

that they apply. These characteristics are referred to as rater effects. To reduce rater effects, 

raters are typically trained, calibrated, and monitored during the rating process. Previous research 

has shown that rater effects still exist despite training and calibration of raters (e.g., Eckes, 2020; 

Ezike & Ames, 2021; Weigle, 1998). In the context of the HRM, severe raters are those with bias 

statistics that are less than -0.5 (i.e., 𝜙 < −0.5) and raters who are deemed to be lenient are those 

whose bias statistics are greater than 0.5 (i.e., 𝜙 > 0.5). In addition, smaller values of the 

variability statistic, 𝜓, is an indication of more consistent raters. Previous simulation studies have 

varied the proportion of aberrant raters. Casabianca and Wolfe (2017) considered three types of 

aberrant raters: normal, unreliable, and severe. Normal raters were classified as raters with small 

bias (−0.5 ≤ 𝜙 ≤ 0.5) and small variability (𝜓 ≤ 0.75). In the unreliable condition, 20% of 

raters were simulated to have small bias statistics but larger variability. Similarly, in the severe 

condition, 20% of the raters were simulated to exhibit large rater severity. These raters had rater 

bias statistics less than -0.5.  

Two types of rater effects classification were employed in this study: no rater effects and 

rater effects. All raters in the no rater effects condition were simulated to have small bias and 
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small variability parameters. Similar to Casabianca and Wolfe (2017), 75% of the raters in the 

rater effects category have small bias and small variability parameters, while the remaining 25% 

have significantly large bias and large variability parameters. Hence, six out of the eight raters in 

the rater effects category have small bias and small variability parameters, while two out of the 

eight raters in the rater effects category have significant bias and are inconsistent raters. It is 

expected that conditions with rater effects with perform worse in comparison to the conditions 

without rater effects. The data generating parameters of the raters are presented in Section 3.2.2. 

3.2 Data Generation Parameters 

3.2.1 Item Parameters 

 The item parameters used in generating the IRT component of the HRM under the HRM-

GPCM are provided in Table 9. The choice of the item parameters was guided by previous 

simulation studies. Consistent with Li et al. (2017), the item step parameters were drawn from 

𝒩(𝜇 = −1.5, 𝜎 = 0.5), 𝒩(𝜇 = −0.5, 𝜎 = 0.5), 𝒩(𝜇 = 0.5, 𝜎 = 0.5) and 𝒩(𝜇 = 1.5, 𝜎 = 0.5). 

Only one set of step parameters shown in Table 9 were drawn from these distributions. These 

parameters were fixed across all replications. 

There has been evidence to suggest that the performance of PPMC in detecting misfit of 

Rasch models is lower when the discrimination parameter is close to 1 (e.g., Li et al., 2017). The 

discrimination parameters for the present study were drawn from a lognormal distribution, 

𝑙𝑛𝒩(0, 1). New discrimination parameters were drawn for every new replication to ensure 

generalizability of this study. Only the discrimination parameters were varied in this study since 

previous work has not suggested any impact of item difficulty or step parameters on the 

performance of PPMC in detecting misfits.  
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Table 9. Item Generating Parameters for the IRT Component of the HRM 

Item 𝛿𝑗1 𝛿𝑗2 𝛿𝑗3 𝛿𝑗4 

1 -2.788 -0.173 0.152 2.941 

2 -1.498 -0.203 1.885 1.675 

3 -1.993 -0.327 0.327 2.047 

4 -1.468 -0.358 1.003 1.908 

 

 

3.2.2 Rater Parameters 

The rater parameters used in generating the data are provided in Table 10. Data were 

generated for raters without rater effects (i.e., raters with normal behaviors) and raters with rater 

effects (i.e., raters with aberrant behaviors). Using distributions suggested by Casabianca and 

Wolfe (2017), the bias and variability parameters, for raters without rater effects, were drawn 

from normal distribution  𝒩(𝜇 = 0, 𝜎 = 0.25) and a lognormal distribution 𝑙𝑛𝒩(𝜇 =

−0.70, 𝜎 = 0.25), respectively. For raters with rater effects, the bias and variability parameters 

were drawn from  𝒩(𝜇 =  −1.00, 𝜎 = 0.30), and 𝑙𝑛𝒩(𝜇 = 0, 𝜎 = 0.25), respectively.  

All eight raters in the condition without rater effects have bias statistics within acceptable 

thresholds. The bias values for these raters are between -0.50 and 0.50. Also, the variability 

values are less than 0.75. Raters with bias parameters in the range of -0.50 and 0.50 and 

variability parameter less than 0.75 are more probable to award ratings that are close to the true 

ratings. 

In the rater effects condition, Raters 6 and 8 were replaced with more biased and less 

consistent raters. These raters have large variability values (𝜓6 = 1.487 and 𝜓8 = 0.980) and 

bias values outside the suggested acceptable thresholds (𝜙6 = −0.931 and 𝜙8 = −1.055). Rater 
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6 is more likely to inconsistently award scores in some categories below the ideal scores and 

Rater 8 is more likely to award scores in some categories below the ideal scores in an 

inconsistent fashion. In sum, Rater 6 and Rater 8 are inconsistently severe raters. However, Rater 

6 is more inconsistent compared to Rater 8. The rater generating parameters presented in Table 

10 were fixed across all replications. 

Table 10. Rater Generating Parameters 

Rater 
No rater effect  Rater effect** 

𝜙𝑟 𝜓𝑟  𝜙𝑟 𝜓𝑟 

1 -0.224 0.425    

2 0.046 0.270    

3 0.397 0.403    

4 -0.283 0.740    

5 -0.020 0.539    

6 0.033 0.604  -0.931 1.487 

7 0.177 0.561    

8 -0.060 0.597  -1.055 0.980 

**for Raters 6 and 8 have rater effects for the “rater effect” condition 

 

3.2.3 Examinee Latent Ability Parameters 

 The ability distribution of examinees can take on any shape. In IRT, standard estimation 

approaches such as MML assume that examinee latent ability distribution is normally 

distributed. Estimates of the item, examinee, and rater parameters may be biased when 𝜃 is 

nonnormal. Bayesian estimation approach is one solution to this problem. Using MCMC, 

Conforti and Casabianca (2016) explored how well HRM parameters were recovered with 

nonnormal latent ability distribution. They observed nonignorable bias in examinee latent traits 

and item parameters, however, the rater parameters were robust to nonnormality in the examinee 
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latent traits. The implications of nonnormal examinee ability traits are not of interest in this 

study. In all conditions of this study, the latent traits were drawn from a normal distribution with 

a mean of zero and a standard deviation of 1, 𝒩(𝜇 = 0, 𝜎 = 1), in an effort to avoid any 

potentially biased estimates in the item and examinee parameters as accurate parameter 

estimations are crucial when employing PPMC. 

3.3 Data Generation 

 Table 11 presents the summary of the fixed and manipulated simulation conditions. The 

number of response scale options, distribution of examinee latent trait, number of raters, 

generating model for the IRT component, and the test length were all fixed. However, the rating 

design, number of examinees, rater behavior, and analysis model for the IRT component were 

manipulated. The data for this study were generated in R (version 4.0.4; R Core Team, 2021). 

Fifty replicated datasets were generated for each simulation condition. The item and rater 

generating parameters were fixed across all 50 replications. Data generation for the fully-crossed 

complete rating design was relatively straightforward. However, the spiral design followed the 

layout shown in Table 9.  The steps taken in generating the data for the fully-crossed and spiral 

rating designs are presented below: 

Fully-crossed rating design: 

Step 1: Generate ideal ratings using the person and item parameters. This 

was generated with GPCM. 

 Step 2:  Generate observed ratings using the ideal ratings and rater bias and  

variability parameters. 

Spiral rating design: 

Step 1: Generate ideal ratings of each examinee using the examinee latent 
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trait and item parameters using the GPCM. 

Step 2: Create four spirals. Each spiral represents each item.  

Step 3:  -  Assign Rater 1 and Rater 2 to Spiral 1.  

- Assign Rater 3 and Rater 4 to Spiral 2. 

- Assign Rater 5 and Rater 6 to Spiral 3. 

- Assign Rater 7 and Rater 8 to Spiral 4. 

Raters within each spiral are only raters who rated the item in that  

spiral. 

Step 3: Generate observed ratings for all examinees within each spiral 

using the ideal ratings and rater bias and variability parameters.  

The data generating syntax for the fully-crossed and spiral rating designs are documented 

in Appendix 2 and Appendix 3, respectively. 
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Table 11. Summary of Simulation Conditions 

 Simulation Factor Levels 

Fixed Rating scale response options 5 categories 

 Distribution of examinee 

latent trait 
Normal, 𝒩(𝜇 = 0, 𝜎 = 1) 

 Number of raters 8 raters 

 Data generating model HRM-GPCM 

 Test length 4 items 

Manipulated Data analysis model [1] HRM-PCM 

[2] HRM-GPCM 

 

 Rating design [1] Fully-crossed rating design 

[2] Spiral rating design 

 

 Number of examinees [1] 250 

[2] 500 

 

 Rater behavior [1] 100% normal raters 

[2] 25% severe/inconsistent raters 

 

 

3.4 Estimation of Model Parameters 

 As earlier noted, data were generated with the HRM-GPCM. All simulated data were 

analyzed using HRM-GPCM and HRM-PCM. Estimating the data with HRM-PCM introduces 

misfit because the discrimination parameter in the HRM-PCM is constrained to 1. Using 

Bayesian MCMC methods, model parameters were estimated by employing R2jags package (Su 

& Yajima, 2012) in R to interface with JAGS (Plummer, 2003). 

Specification of prior distributions on all unknown parameters is one of the prerequisites 

of Bayesian estimation. Prior distributions can be informative, weakly informative, or 

noninformative, among others. Noninformative prior distributions were specified for all 



72 

 

estimated model parameters. Noninformative prior distributions reflect little knowledge about 

the model parameters. One of the benefits of noninformative prior distributions is that the results 

are similar to frequentist methods. The prior distributions chosen in the present study were 

similar to those employed by previous studies (e.g., Casabianca et al., 2017; Li et al., 2017; Patz 

et al., 2002).  The prior distributions for the item discrimination follow a lognormal distribution 

(𝛼𝑗  ~ 𝑙𝑜𝑔𝒩(𝜇 = 0, 𝜎2 = 10)) due to the non-negative requirement on the discrimination 

parameters. Lognormal priors or other priors like gamma priors allow 𝛼 to be constrained to 

positive values. Normal priors were placed on the difficulty step parameters with mean of zero 

and variance of 10 (𝛿𝑗𝑣~ 𝒩(𝜇 = 0, 𝜎2 = 10)). Similarly, normal priors were placed on the rater 

bias parameter (𝜙𝑟~𝒩(𝜇 = 0, 𝜎2 = 10)). The rater variability parameter of the HRM only takes 

on non-negative values. Hence, gamma priors were placed on the variability parameter, 

𝜓𝑟~ 𝐺𝑎𝑚𝑚𝑎(1, 1). To tackle potential identification issues, a normal prior with a mean of 0 

and a variance of 1 was placed on the examinee latent traits (𝜃𝑖~ 𝒩(𝜇 = 0, 𝜎2 = 1)).  

For each dataset, two parallel chains, each with 40,000 iterations, were used. The first 

15,000 iterations were discarded as burn-in. To reduce autocorrelation within the chains, the 

remaining 25,000 iterations were thinned. Every 10th iteration was retained. Thus, the resulting 

posterior distributions contained 5,000 iterations (2,500 iterations x 2 chains). The convergence 

of the chains was assessed using Gelman and Rubin’s (1992) potential scale reduction factor, 𝑅̂. 

For each parameter in the model, the 𝑅̂ statistic was computed by comparing the within-chain 

variances to the between-chain variances. For example, if rater r’s bias (𝜙𝑟) parameter is of 

interest, then the 𝑅̂ statistic associated with this parameter can be computed as: 
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𝑅̂ =  √
𝑉̂(𝜙𝑟)

𝑊
 ,                                                          (3.1) 

where W is the within-chain variance, and 𝑉̂(𝜙𝑟) is weighted average of the between-chain (B) 

and within-chain variances. Assuming we have M chains with N number of iterations within each 

chain, then the computations for the between-chain and within-chain variances are provided in 

Equations 3.2 and 3.3, respectively.  

𝐵 =
𝑁

𝑀 − 1
 ∑ (𝜙̅𝑟𝑚. − 𝜙̅𝑟..)

2,

𝑀

𝑚=1

                                                                     (3.2) 

𝑊 =
1

𝑀(𝑁 − 1)
 ∑ ∑(𝜙̅𝑟𝑚𝑛 − 𝜙̅𝑟𝑚.)

2

𝑁

𝑛=1

.

𝑀

𝑚=1

                                                           (3.3) 

Subsequently, the weighted average of the between-chain and within-chain variances is 

computed as: 

𝑉̂(𝜙𝑟) = (
𝑁 − 1

𝑁
) 𝑊 + (

𝑀 + 1

𝑀𝑁
) 𝐵.                                                           (3.4) 

An 𝑅̂ statistic close to 1 indicates that the chains have fully converged to the target posterior 

distributions. The number of iterations and burn-in samples provided here were chosen after 

preliminary evaluations and convergence assessments. In practice, 𝑅̂ values smaller than 1.1 are 

considered acceptable fit but declare convergence prematurely (Gelman & Shirley, 2011).  This 

study used an 𝑅̂ value of 1.05 as the baseline value to assess the convergence of the chains. In 

addition to using the 𝑅̂ statistic to assess convergence, trace plots of the estimated parameters 

were visually inspected to ensure adequate mixture of the chains. 
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3.5 Posterior Predictive Model Checking 

The converged posterior distributions from the MCMC draws were used to perform the 

PPMC in R. For the PPMC, a thousand datasets were generated from the posterior predictive 

distributions. The following steps were taken: 

Step 1: Randomly draw vector of parameter values from the joint posterior 

distribution. 

Step 2: Use parameters drawn in Step 1 to simulate observed data based on the 

fitted model. 

Step 3: Compute the discrepancy measures using the simulated data in Step 2. 

Step 4: Repeat Steps 1–3 S times (S=1,000 times in this study). 

Step 5: Compare the predictive and observed (or realized) discrepancy measures 

by calculating the proportion of times the predictive discrepancy measures 

exceeds the observed discrepancy measures. 

3.5.1 Discrepancy Measures 

In PPMC, there is no limit to the number of discrepancy measures that can be employed. 

This study considered discrepancy measures at three levels: test level, item level, and rater level. 

Some of the discrepancy measures employed have been previously used with traditional IRT 

models. 

 Test-level measure. Casabianca et al. (2017) and Nieto and Casabianca (2019) both used 

the total score distribution for evaluating model-data fit of the L-HRM and M-HRM, 

respectively. The total score distribution is the distribution of the total score received by every 

examinee on the test. As a reminder, the total score is the sum of the item scores. An item score 

(denoted by 𝑋̅𝑖𝑗.) is the average rating given to an examinee by multiple raters on a particular 
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item. A snapshot of how the total score distribution is computed is shown in Table 12. The last 

column on the table is the total score. As shown in Table 12, Examinee 1 was scored by multiple 

raters on Item 1. This examinee received scores of 4, 3, and 3 on Item 1 from Raters 1, 2, and 3, 

respectively. This examinee’s item score, computed as the average of the three ratings, was 3.33, 

and the item score on Item 2 was 4.00. Hence, Examinee 1 received a total score of 7.33 (3.33 + 

4.00 = 7.33). The total score distribution is the distribution of the total score received by every 

examinee on the test. 

Eight summary statistics were computed from the total score distribution: mean, standard 

deviation, first quartile, third quartile, minimum, maximum, skewness and kurtosis. These 

discrepancy measures capture the shape, spread, and center of the total score distribution. 

 

Table 12. Hypothetical Total Score Distribution 

Examinee 

Item 1  Item 2  Item score  

Total Score Rater   Rater   Item  

R1 R2 R3  R1 R2 R3  1 2  

1 4 3 3  4 4 4  3.33 4.00  7.33 

2 4 3 4  4 3 5  3.67 4.00  7.67 

3 2 2 2  4 5 4  2.00 4.33  6.33 

4 3 3 5  4 3 2  3.67 3.00  6.67 

5 2 2 4  4 3 3  2.67 3.33  6.00 

Note. R1 = Rater 1, R2 = Rater 2, R3 = Rater 3 

 

 Item-level measure. Two discrepancy measures were employed at the item-level. The 

item-level discrepancy measures are specific to each item or pair of items. Hence, the 

performance of the discrepancy measures will be summarized for each item or item pairs. The 

first measure was the item-total correlation. The Item-total correlation is the correlation between 
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a particular item’s score and the total score. Li et al. (2017) and Sinharay et al. (2006) found the 

item-total correlation to be effective in detecting misfit when the generating model included a 

discrimination parameter, but the analysis model did not. Going back to the illustration in Table 

12, the item-total correlation for Item 1 is the correlation between the item score for Item 1 (i.e., 

Column 8) and the total score (i.e., Column 10). Crocker and Algina’s (1986) recommendation to 

remove an item’s score from the total was employed in the current study. 

 The odds ratio was chosen as the second discrepancy measure at the item level. Odds 

ratio is a pairwise measure that captures the association between two items. The odds ratio is 

computed by employing Equation 2.35 (described in Chapter 2). Using PPMC, the odds ratio has 

been shown to perform relatively well in detecting model misfit due to functional form 

misspecification (Li et al., 2017; Sinharay & Johnson, 2003) and due to multidimensionality 

(Levy et al., 2009). The former is of interest in this study since the current study generated data 

from a unidimensional model. To implement the odds ratio, polytomous or continuous data need 

to be dichotomized. Li et al. (2017) dichotomized their items with five response options by 

recoding scores of 3 and 4 to 1 and scores of 0, 1, and 2 were recoded as 0. As earlier defined, 

item score in this study is the average rating given to an examinee by multiple raters on a 

particular item. As seen in Table 12, the item scores can take on non-discrete values. Therefore, 

this study elected to dichotomize the scale using 2.50. The odds ratio was implemented by 

dichotomizing the item scores such that 

 𝑋̅𝑖𝑗.
∗ =  {

1       if    𝑋̅𝑖𝑗.  ≥ 2.50 
 

0       if    𝑋̅𝑖𝑗. < 2.50,
                                                    (3.5) 

where 𝑋̅𝑖𝑗. is examinee i's item score on item j and 𝑋̅𝑖𝑗.
∗  is examinee i's dichotomized item score 

on item j. For example, an item score 3.67 will receive a score of 1 and an item score of 2.00 will 
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receive a score of 0. The odds ratio was computed for all item pairs: (1, 2), (1, 3), (1, 4), (2, 3), 

(2, 4), and (3, 4). 

 Rater-level measure. Performance assessment models have not been rigorously evaluated 

using PPMC; hence, there is little guidance on the performance of different discrepancy 

measures at the rater-level. Three rater-level discrepancy measures were explored in this study: 

score-estimate correlation, rater-total correlation, and rater standard deviation. 

The score-estimate correlation is the correlation between the ratings of a single rater (i.e., 

rater’s scores) and the ability estimates of the examinees. A rater’s score is defined as the 

average rating awarded by a particular rater to an examinee across all items. The formulation of 

the score-estimate correlation is presented in Section 2.7. Literature suggests that the score-

estimate correlation is useful in detecting rater inconsistency (Wolfe, 2014; Wolfe & McVay, 

2010). Misfit of the HRM was introduced in the functional form of the IRT component. It is 

expected that constraining the discrimination parameter to 1 for the HRMPCM will impact the 

estimated examinee latent traits. Hence, the score-estimate correlation may prove useful in 

detecting rater-level misfit when the IRT functional form is misspecified. 

 The rater-total correlation is another rater-level discrepancy measure considered. The 

rater-total correlation is the correlation between a rater’s score and the total score (i.e., the sum 

of the item scores). The rater-total correlation is analogous to the SR-ROR correlation that was 

described in Chapter 2. Essentially, rater-total correlation, like score-estimate correlation, reflects 

how consistent a single rater is compared to the rest of the raters. Finally, rater standard deviation 

was also employed as a rater-level discrepancy measure. The rater standard deviation is 

computed using the ratings of a single rater. The twelve discrepancy measures investigated in the 

current work are summarized in Table 13. 
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Table 13. Summary of Discrepancy Measures 

Level Discrepancy Measure Description 

Test level Total score distribution 

• mean 

• standard deviation 

• first quartile 

• third quartile  

• minimum  

• maximum 

• skewness 

• kurtosis 

The total score distribution is “the sum of 

the item score.” The item score is the 

average rating given to an examinee by 

multiple raters on a particular item. 

 

   

Item level Item-total correlation Item-total correlation is the correlation 

between a particular item’s score (defined 

above) and the total score 

 

 Odds ratio Odds ratio is the measure of association 

between pairs of items 

 

Rater level Score-estimate correlation The score estimate correlation is the 

correlation between a rater’s score and the 

ability estimates of the examinees. The 

rater’s score is the average rating awarded 

by a rater to an examinee across all items  

   

 Rater-total correlation The rater-total correlation is the 

correlation between a rater’s score and the 

total score (i.e., the sum of the item score).  

   

 Rater standard deviation The rater standard deviation is the 

standard deviation of a rater’s score to a 

group of examinees.  
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3.5.2 Outcome Measures 

The main objective of this study was to explore the effectiveness of different discrepancy 

measures in detecting (mis)fit of the HRM when a model is correctly or incorrectly specified. To 

investigate this, the functional form of the IRT was misspecified for some conditions. The ability 

of the chosen discrepancy measures in detecting misfit was assessed by computing the PPP-

values. The PPP-value is the proportion of replicated datasets for which the observed 

discrepancy measure exceeds the discrepancy measure of the replicated dataset. The PPP-value 

is computed over the posterior predictive distribution and is mathematically given as  

𝑝𝐵 = Pr{𝑇(𝐷𝑟𝑒𝑝) ≥ 𝑇(𝐷𝑜𝑏𝑠)| 𝜃},                                                               (3.7)  

where 𝑝𝐵 is the probability that the replicated data 𝑇(𝐷𝑟𝑒𝑝) could be more extreme than the 

observed data 𝑇(𝐷𝑜𝑏𝑠) as measured by the discrepancy measure. Essentially, the fraction of 

times that 𝑇(𝐷𝑟𝑒𝑝) ≥ 𝑇(𝐷𝑜𝑏𝑠) is computed which implies that PPP-values take on values 

between 0 and 1. A PPP-value close to 0.5 indicates adequate model-data fit. Small values less 

than 0.05 or large values greater than 0.95 are indicative of poor model-data fit. A PPP-value of 

0.05 indicates that 5% of 𝑇(𝐷𝑟𝑒𝑝) are less than 𝑇(𝐷𝑜𝑏𝑠), and 95% of 𝑇(𝐷𝑟𝑒𝑝) are greater than 

𝑇(𝐷𝑜𝑏𝑠). Using the guidelines suggested by Sinharay (2006), a model was judged to have 

evidence of misfit when the PPP was less than 0.05 or greater than 0.95. 

The PPP-values were used to compute the Type I error rates and power for each 

discrepancy measure. Type-I error was computed as the proportion of times a correctly specified 

model shows evidence of misfit. An alpha level of 5% was considered as an evidence of 

adequate model-data fit for this dissertation. It was expected that the Type I error rates of the 

discrepancy measures would not exceed 5% when the correct calibration model was specified. 

For each simulation condition, power was computed as the proportion of times an incorrectly 
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specified model shows evidence of misfit.  

In addition, logistic regression was used to model the probability of detecting misfit of 

the HRM-PCM. The dependent variable for the logistic regression was whether or not the HRM-

PCM was flagged for misfit. The independent variables were the simulation factors (i.e., rating 

design, rater effects, and sample size). Odds ratio coefficients from the logistic regression 

analyses were reported. 

3.6 Chapter Summary  

 Chapter 3 outlined the methodology used in this study. Details of the simulation design, 

guided by previous work in performance assessments, were provided. The data generating 

parameters and steps for generating the data for the complete and incomplete rating designs were 

detailed. The estimation procedures of the model parameters were extensively discussed 

including the prior distributions, number of iterations and burn-in samples considered, and how 

convergence was assessed using PSRF. The selected discrepancy measures for this study were 

discussed. Finally, the outcome measures and guidelines for assessing the effectiveness of the 

discrepancy measures were provided. 
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CHAPTER 4: 

RESULTS 

The purpose of this study was to evaluate the performance of PPMC in detecting misfit of 

the HRM at the test-, item-, and rater-level. The number of examinees (N = 250 and 500), rating 

design (fully-crossed and spiral rating designs), rater effects (no rater effects and 25% of raters 

with rater effects), and analysis model (HRM-GPCM and HRM-PCM) were varied, leading to 16 

fully-crossed conditions. This chapter summarizes the findings of the simulations. The power 

and Type I error rates of the different discrepancy measures employed are presented in this 

chapter. In addition, the effects of the design factors are outlined in this chapter. 

4.1. Data Features 

 All data analyzed in this study were generated using HRM-GPCM. The descriptive 

statistics of two simulation conditions are presented to show the score distributions of the two 

simulation conditions and how they compare across raters. Table 14 presents the rater mean and 

standard deviation for a single simulation replication for two conditions: (a) 500 examinees with 

fully-crossed rating design condition without rater effects and (b) 500 examinees with fully-

crossed rating design with rater effects. In Table 14, it can be seen that the rater mean was 

approximately 3 for raters with bias parameters close to zero (i.e., raters exhibiting no rater 

effects). For example, in the condition without rater effects, Raters 2, 5, 6, and 8 had mean scores 

of 3.024, 2.928, 3.012, and 2.882, respectively. These mean scores lie around the center of the 5-

response scale point used in this study (i.e., score range of 1 to 5), indicating that the average 

ratings of the raters with bias parameters close to zero fall around the center of the score 

distribution. As expected, raters simulated to have rater severity effects had the smallest rater 
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means. Raters 6 and 8 were simulated to show significant negative bias (i.e., severity) and had 

rater means of 2.372 and 2.202, respectively. 

The rater score distributions of the two conditions presented in Table 14 are further 

depicted in Figures 5 and 6. Figure 5 shows the score distribution of the eight raters in this study 

for the condition with 500 examinees, no rater effects, and a fully-crossed design. Figure 5 shows 

that raters with bias parameters close to zero have distributions that are symmetric compared to 

raters who have significant non-zero bias parameters (Figure 6). For example, in Figure 5, Raters 

6 and 8, with bias parameters of 0.033 and -0.060, respectively, mostly asigned scores in the 

middle category. In the condition with rater effects, data were simulated using significant bias 

parameters for Raters 6 and 8. As shown in Figure 6, the score distributions of Raters 6 and 8 

were positively skewed, indicating that these two raters are less likely to use higher score 

categories such as 4 and 5. It could also be seen that Raters 1 and 3 have score distributions that 

mimic the rater parameters used in generating the data. Rater 1 has a negative bias parameter 

indicating that this rater is more likely to use lower score categories such as 1, 2, and 3. 

Conversely, Rater 3 has a positive bias parameter, which indicates that this rater is more likely to 

use higher score categories. The score distributions of Raters 1 and 3 clearly depict what was 

expected based on the bias parameters of these raters. 
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Table 14. Rater Descriptive Statistics for a Single Simulation Replication 

N 
Rating 

design 
Rater Effect Rater 

Rater Parameters 
M SD 

𝜙𝑟 𝜓𝑟 

500 Full No Rater Effect 1 -0.224 0.425 2.756 1.080 

   2 0.046 0.270 3.024 1.023 

   3 0.397 0.403 3.338 1.136 

   4 -0.283 0.740 2.776 1.166 

   5 -0.020 0.539 2.928 1.123 

   6 0.033 0.604 3.012 1.111 

   7 0.177 0.561 3.134 1.178 

   8 -0.060 0.597 2.882 1.134 

500 Full Rater Effect 1 -0.224 0.425 2.748 1.118 

   2 0.046 0.270 2.978 1.083 

   3 0.397 0.403 3.330 1.122 

   4 -0.283 0.740 2.758 1.139 

   5 -0.020 0.539 2.926 1.135 

   6 -0.931 1.487 2.372 1.131 

   7 0.177 0.561 3.236 1.152 

   8 -1.055 0.980 2.202 1.056 

Note. M = mean; SD = standard deviation; N = number of examinees; 𝜙𝑟 = rater r’s bias 

parameter; 𝜓𝑟 = rater r’s variability parameter



 

 

 

Figure 5. Rater score distribution for a single item generated with 500 examinees using a fully-crossed rating design with raters with 

no rater effects. 

 

 

Figure 6. Rater score distribution for a single item generated with 500 examinees using a fully-crossed rating design with some raters 

exhibiting rater effects. 

  8
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Research Question 1: What is the Type I error rate and power of the test-level discrepancy 

measures in detecting model-data misfit of the HRM using PPMC? 

4.2 Test-Level Discrepancy Measures 

Total Score Distribution 

 The total score, computed at the test level, is the sum of the item scores. An item score is 

the average rating given to an examinee by multiple raters on a particular item. Figure 7 

illustrates an example of a total score distribution of a single replication for the condition with 

500 examinees, no rater effects, and with a fully-crossed rating design. The distribution of the 

total score shown in Figure 7 was roughly symmetric, with an average total score of 11.43 (SD = 

2.91) and a skewness statistic of -0.03.  The score distribution ranged from 5.00 to 18.50.  

 The summary statistics of the total score distribution shown in Figure 8 resembles 

statistics from Figure 7. However, the mean of the total score distribution for Figure 8 was 10.77 

(SD = 2.71), which is slightly smaller than the mean from Figure 7. In addition, the total scores 

of the lowest and highest scoring examinees were 4.75 and 18.13, respectively. Data for Figure 8 

were generated under the condition with rater effects (i.e., N=500, rater effects, and fully-crossed 

design). 

Eight summary statistics were computed from the total score distribution for the PPMC 

procedures: 1) mean, 2) standard deviation, 3) first quartile, 4) third quartile, 5) minimum, 6) 

maximum, 7) skewness, and 8) kurtosis. These discrepancy measures capture the shape, 

variability, and center of the total score distribution. For each measure, this study separates 

results into subsets for which the generating model (GM) equals analysis model (AM), in which 

the generating model (HRM-GPCM) and analysis model match (HRM-GPCM), denoted by 

GM=AM. In contrast, GM≠AM is the other subset, in which the generating model (HRM-
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GPCM) and analysis model do not match (HRM-PCM). The hypothesis is that when the 

GM=AM, discrepancy statistics will show model-data fit resulting to a low Type I error rate and 

when GM≠AM, discrepancy statistics may detect misfit resulting in high power.   

 

   

Figure 7. Total score distribution for data generated with 500 examinees using a fully-crossed 

rating design with raters with no rater effects. 
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Figure 8. Rater score item distribution for data generated with 500 examinees using a fully-

crossed rating design with some raters exhibiting rater effects. 

 

4.2.1 Mean Discrepancy Measure 

4.2.1.1 Summary of Observed and Replicated Mean of Total Score Distribution 

 The observed mean estimates of the total score distribution for the 50 replications used in 

this study are presented in Figure 9. Each boxplot in Figure 9 contains 50 values – each value is 

the observed mean of the total score distribution of a set of simulation conditions for the ith 

replication. In general, conditions with raters with no rater effects have higher means compared 

to conditions with rater effects. The shape of the distributions, across all simulation conditions, 

appears to be roughly symmetric.  
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Figure 9. Observed mean of total score distribution across simulation conditions 

 

 GM=AM. For each ith observed mean of the total score distribution, there are 1000 

PPMC replicated means of the total score distribution based on the posterior predictive samples. 

The PPMC replicated means at the 5th, 50th, and 95th percentiles were compared to the 

observed mean. This comparison shown in Figure 10 illustrates that the observed means closely 

resemble the PPMC replicated means at the three percentiles. For example, the smallest observed 

mean of the total score was 11.01 for the condition with 250 examinees, fully-crossed rating 

design, and no rater effects (Panel 1 in the top row of Figure 10). When the data were fitted with 

the correct model (i.e., HRM-GPCM), the mean of the total score of the replicated dataset at the 

5th, 50th, and 95th percentiles were 10.84, 11.02, and 11.20, respectively.  



89 

 

GM≠AM. Fitting the data with HRM-PCM (i.e., incorrectly specified model) resulted in 

means of 10.79, 11.01, and 11.22 at the 5th, 50th, and 95th percentiles, respectively. The 

replicated datasets based on the posterior predictive samples when the HRM was correctly and 

incorrectly specified resulted in similar mean estimates of the total score distribution. This 

suggest that the mean of the total score distribution is not an effective discrepancy measure for 

detecting misfit of the HRM at the test level. 

  



 

 

 

Figure 10. Scatterplot of observed mean of total score distribution and replicated median, 5th, and 95th percentile of the total score 

distributions based on the posterior predictive samples across simulation conditions. The top row represents GM≠AM and bottom row 

GM=AM.  

9
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4.2.1.2 Type I Error and Power of Mean Discrepancy Measure 

The PPP-values resulting from comparing the observed and replicated means across the 

simulation conditions are presented in Figure 11. Figure 11 has 16 boxplots. Each boxplot 

contains 50 PPP-values corresponding to 50 replications for each set of simulation conditions 

used in this study. There are two boxplots within each panel - the first boxplot contains PPP-

values for data analyzed using the misfitted model (i.e., HRM-PCM) and one second boxplot 

contains PPP-values for data analyzed with the correct model (i.e., HRM-GPCM). Overall, the 

distributions of the PPP-values center around 0.50. Across all sets of conditions, the PPP-values 

were between 0.45 and 0.57. PPP-values around 0.50 suggest good model-data fit (Gelman et al., 

1996). 

GM=AM. Previous studies (e.g., Sinharay, 2006) have used PPP-values less than 0.05 or 

greater than 0.95 to suggest evidence of a misfitting model. The proportions of extreme PPP-

values are presented in Table 15. The Type I error rate is the proportion of extreme PPP-values 

when the generating model is the same as the analysis model. Essentially, this is the proportion 

of times the HRM-GPCM does not fit the data. As shown in Table 15, all Type I error rates when 

GM=AM are 0% across the simulation conditions. A Type I error rate of 0% implies that, out of 

the 50 replications used in this study, the HRM-GPCM was never flagged for misfit using the 

mean discrepancy measure.  

GM≠AM. The power rates reported in Table 15 were all 0% in all simulation conditions 

employed in this study. Power was used to show evidence of misfit. Power is the proportion of 

extreme PPP-values when the generating model is different from the analysis model (i.e., data 

are generated with HRM-GPCM but analyzed with HRM-PCM). A power rate of 0% implies 

that, when the mean discrepancy measure was employed, the HRM-PCM was not flagged for 
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misfit in all 50 replications in the current study. 

 

 
 

Figure 11. Distribution of PPP-values for the mean of total score distribution discrepancy 

measure across simulation conditions. The dashed horizontal line represents where the PPP-value 

is 0.50 

 

 

Table 15. Type I Error Rates and Power for the Mean of the Total Score Discrepancy Measure 

Examinee Rater Effect 
Rating 

Design 

𝐻𝑅𝑀𝐺𝑃𝐶𝑀 → 𝐻𝑅𝑀𝐺𝑃𝐶𝑀 

(Type I error) 

 𝐻𝑅𝑀𝐺𝑃𝐶𝑀 → 𝐻𝑅𝑀𝑃𝐶𝑀 

(Power)  

250 No Rater Effect Full 0.00  0.00 

  Spiral 0.00  0.00 

 Rater Effect Full 0.00  0.00 

  Spiral 0.00  0.00 

500 No Rater Effect Full 0.00  0.00 

  Spiral 0.00  0.00 

 Rater Effect Full 0.00  0.00 

  Spiral 0.00  0.00 

Note. GPCM = generalized partial credit model; PCM = partial credit model. 
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4.2.2 Standard Deviation Discrepancy Measure 

4.2.2.1 Type I Error and Power of Standard Deviation Discrepancy Measure 

 Standard deviation was used to measure the spread of the total score distribution. The 

distributions of the resulting PPP-values across the simulation conditions are presented in Figure 

12. As shown in Figure 12, the boxplots of the PPP-values when the analysis model was HRM-

GPCM are narrower and have values that ranged from 0.13 to 0.74. However, there were 

noticeably more variability and large extreme values in the boxplot of the PPP-values when 

HRM-PCM was the analysis model.  

 GM=AM. Table 16 displays the proportions of extreme PPP-values of the standard 

deviation discrepancy measure. The Type I error rates, when HRM-GPCM was used in 

analyzing the data, were all zero percent across the simulation conditions. This suggests that the 

replicated standard deviations of the total scores based on the posterior predictive samples were 

similar to the observed standard deviations of the total scores.  

GM≠AM. The power rates for the standard deviation discrepancy measure are also 

presented in Table 16. The power rates ranged from 24% to 76% when HRM-PCM was used in 

analyzing the data, indicating that the standard deviation of the total score performed moderately 

well in detecting misspecification of HRM-PCM at the test level. The performance of the 

standard deviation discrepancy measure when the model was misspecified (i.e., HRM-GPCM → 

HRM-PCM) varied across simulation conditions. Conditions with 500 examinees performed 

better than conditions with 250 examinees. For instance, the power was 76% for the set of 

conditions with 500 examinees, no rater effects, and with fully-crossed design in comparison to 

62% for the condition with 250 examinees, no rater effects, and with fully crossed design. Within 

conditions with the same number of examinees, the conditions with no rater effects outperformed 
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the conditions with rater effects. For example, when the number of examinees was 250, the 

power was 48% for the condition without rater effects generated with spiral design compared to 

24% for the condition with rater effects generated with spiral design. In addition, the power rates 

suggest that the standard deviation of the total score is more useful in detecting misspecification 

of the HRM-PCM under a fully-crossed rating design compared to a spiral rating design. For 

example, in conditions with 500 examinees, the power rates under the fully-crossed rating design 

were 76% (without rater effects) and 66% (with rater effects) compared to power rates of 58% 

under the spiral rating design. 

 

Figure 12. Distribution of PPP-values for the standard deviation of total score distribution 

discrepancy measure across simulation conditions. The dashed horizontal line represents where 

the PPP-value is 0.50 
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Table 16. Type I Error Rates and Power for the Standard Deviation of the Total Score 

Discrepancy Measure 

Examinee Rater Effect 
Rating 

Design 

𝐻𝑅𝑀𝐺𝑃𝐶𝑀 → 𝐻𝑅𝑀𝐺𝑃𝐶𝑀 

(Type I error) 

 𝐻𝑅𝑀𝐺𝑃𝐶𝑀 → 𝐻𝑅𝑀𝑃𝐶𝑀 

(Power)  

250 No Rater Effect Full 0.00  0.62 

  Spiral 0.00  0.48 

 Rater Effect Full 0.00  0.58 

  Spiral 0.00  0.24 

500 No Rater Effect Full 0.00  0.76 

  Spiral 0.00  0.58 

 Rater Effect Full 0.00  0.66 

  Spiral 0.00  0.58 

Note. GPCM = generalized partial credit model; PCM = partial credit model. Power above 70% 

is bolded 

 

4.2.3 First and Third Quartiles Discrepancy Measures 

4.2.3.1 Type I Error and Power of First and Third Quartiles Discrepancy Measures 

GM=AM. Table 17 presents the Type I error and power rates of the first and third 

quartiles of the total score discrepancy measures. The 25% and 75% percentiles allow for the 

assessment of how well values at the extreme ends of the distribution were adequately captured 

by the fitted models. When the generating model is the same as the analysis model (i.e., HRM-

GPCM → HRM-GPCM), the results show that the proportions of extreme PPP-values (i.e., Type 

I error rates) for the first quartile discrepancy measure ranged from 0.00 to 0.38. Interestingly, all 

the conditions under the fully-crossed rating design had Type I error rates below 5%. However, 

the Type I error rates of the first quartile discrepancy measure were inflated under the spiral 

rating design. Similar patterns in the Type I error rates were observed for the third quartile 

discrepancy measure. For the correctly specified model with a fully-crossed design, all Type I 

error rates for the third quartile discrepancy measure were less than 5%, while the Type I error 
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rates were inflated under the spiral design. The patterns observed suggest that the tails of the 

total score distribution was better captured under a fully-crossed rating design. 

GM≠AM. The proportions of extreme PPP-values of the first and third quartiles of the 

total score discrepancy measures for the misspecified model (i.e., power) were small. Most 

conditions resulted in power less than 50%. Only one condition with 500 examinees, under spiral 

design, and no rater effect resulted in power above 70%. These low power rates suggest that the 

first and third quartiles may not be useful measures of detecting misfit on the HRM-PCM. 

Table 17. Type I Error Rates and Power for the First and Third Quartiles of the Total Score 

Discrepancy Measures 

Examinee Rater Effect 
Rating 

Design 

𝐻𝑅𝑀𝐺𝑃𝐶𝑀 → 𝐻𝑅𝑀𝐺𝑃𝐶𝑀 

(Type I error) 

 𝐻𝑅𝑀𝐺𝑃𝐶𝑀 → 𝐻𝑅𝑀𝑃𝐶𝑀 

(Power)  

Q1 Q3  Q1 Q3 

250 No Rater Effect Full 0.00 0.02  0.18 0.24 

  Spiral 0.10 0.28  0.00 0.54 

 Rater Effect Full 0.00 0.00  0.24 0.26 

  Spiral 0.22 0.16  0.06 0.34 

500 No Rater Effect Full 0.02 0.00  0.38 0.50 

  Spiral 0.38 0.42  0.14 0.80 

 Rater Effect Full 0.04 0.04  0.32 0.28 

  Spiral 0.44 0.44  0.16 0.68 

Note. Q1 = first quartile; Q3 = third quartile; GPCM = generalized partial credit model; PCM = 

partial credit model. Power above 70% is bolded 
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4.2.4 Minimum and Maximum Discrepancy Measures 

4.2.4.1 Type I Error and Power of Minimum and Maximum Discrepancy Measures 

 The minimum and maximum values of the total score distribution also served as 

discrepancy measures. The Type I error rates and power of these two discrepancy measures are 

presented in Table 18.  

GM=AM. For both the minimum and maximum discrepancy measures, the Type I error 

rates were relatively large. The Type I error rates were within the range of 2% and 22% 

suggesting that the model performed poorly in predicting the tails of the total score distribution.  

GM≠AM. The power for the minimum discrepancy measure ranged from 6% to 18% and 

ranged from 8% to 26% for the maximum discrepancy measure. These results suggest that the 

minimum and maximum discrepancy measures underperformed in detecting misfit of the HRM-

PCM. 

Table 18. Type I Error Rates and Power for the for the Minimum and Maximum values of the 

Total Score Discrepancy Measures 

Examinee Rater Effect 
Rating 

Design 

𝐻𝑅𝑀𝐺𝑃𝐶𝑀 → 𝐻𝑅𝑀𝐺𝑃𝐶𝑀 

(Type I error) 

 𝐻𝑅𝑀𝐺𝑃𝐶𝑀 → 𝐻𝑅𝑀𝑃𝐶𝑀 

(Power)  

Minimum Maximum  Minimum Maximum 

250 No Rater Effect Full 0.10 0.16  0.18 0.16 

  Spiral 0.22 0.12  0.10 0.22 

 Rater Effect Full 0.04 0.02  0.06 0.08 

  Spiral 0.20 0.10  0.14 0.10 

500 No Rater Effect Full 
0.12 0.08  0.12 0.26 

  Spiral 0.10 0.16  0.08 0.26 

 Rater Effect Full 0.04 0.06  0.08 0.10 

  Spiral 0.22 0.08  0.18 0.18 

Note. GPCM = generalized partial credit model; PCM = partial credit model. 
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4.2.5 Skewness and Kurtosis Discrepancy Measures 

4.2.5.1 Type I Error and Power of Skewness and Kurtosis Discrepancy Measures 

 GM=AM. The performance of the fitted models in predicting the shape of the total score 

distribution was assessed using skewness and kurtosis statistics as the discrepancy measures. The 

Type I error rate and power for these measures are presented in Table 19. In all conditions, the 

Type I error rates of the skewness discrepancy measure were all less than 5%. For the kurtosis 

discrepancy measure, only one set of simulation conditions (N=500, no rater effect, and spiral 

design) resulted in Type I error rate above 5%. This indicates that HRM-GPCM performed 

adequately well in modeling the shape of the total score distribution.  

GM≠AM. When the analysis model was different from the generating model, the 

proportions of extreme PPP-values for the skewness discrepancy measure ranged from 0.00 (0%) 

to 0.02 (2%). This suggests that replicated datasets based on data fitted with HRM-PCM result in 

similar skewness statistics as the observed data (i.e., data generated using HRM-GPCM). This 

provides evidence that the skewness discrepancy measure may not be useful in detecting misfit 

of the HRM-PCM. The performance of the kurtosis discrepancy measure in detecting misfit of 

the HRM-PCM was also low. The power ranged from 4% to 26%. The largest power was 

observed for conditions without rater effects with large sample size (i.e., N = 500). 
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Table 19. Type I Error Rates and Power for the Skewness and Kurtosis Statistics of the Total 

Score Discrepancy Measures 

Examinee Rater Effect 
Rating 

Design 

𝐻𝑅𝑀𝐺𝑃𝐶𝑀 → 𝐻𝑅𝑀𝐺𝑃𝐶𝑀 

(Type I error) 

 𝐻𝑅𝑀𝐺𝑃𝐶𝑀 → 𝐻𝑅𝑀𝑃𝐶𝑀 

(Power)  

Skewness Kurtosis  Skewness Kurtosis 

250 No Rater Effect Full 0.00 0.04  0.00 0.18 

  Spiral 0.00 0.00  0.00 0.14 

 Rater Effect Full 0.00 0.02  0.00 0.06 

  Spiral 0.00 0.00  0.00 0.04 

500 No Rater Effect Full 0.00 0.00  0.00 0.22 

  Spiral 0.00 0.08  0.00 0.26 

 Rater Effect Full 0.00 0.04  0.00 0.16 

  Spiral 0.04 0.00  0.02 0.08 

Note. GPCM = generalized partial credit model; PCM = partial credit model. 
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Summary of Test-Level Discrepancy Measures 

 The choice of discrepancy measure is important to implementing the PPMC technique in 

order to make accurate conclusion of aspects of the data captured by the model. The findings of 

the current study reveal that the mean, standard deviation, skewness, and kurtosis of the total 

score distribution were well captured by the HRM-GPCM. Overall, the Type I error rates of the 

mean, standard deviation, skewness, and kurtosis discrepancy measures were less than 5%. 

However, for some simulation conditions, the tails of the total score distribution were not 

adequately captured by the HRM-GPCM. The minimum, maximum, first quartile, and third 

quartile discrepancy measures of these simulation conditions resulted in Type I error rates 

significantly greater than 5%. 

Furthermore, the results of the eight discrepancy measures assessed at the test-level 

suggest that only the standard deviation of the total score distribution was useful in detecting 

misfit of the HRM-PCM. However, only one simulation condition resulted in power greater than 

70%. Examining the results more closely, Table 20 presents factors that are associated with the 

misfit of the HRM-PCM for the standard deviation discrepancy measure. A logistic regression 

was performed to ascertain the effects of sample size, rater effects, and rating design on whether 

or not the HRM-PCM was detected for misfit.  The results indicate that the main effects of 

number of examinees, rating design, and rater effects were all significant predictors of misfit of 

the HRM-PCM using the standard deviation discrepancy measure. The number of examinees had 

the largest odds ratio of 4.382 (𝛽𝑆𝑎𝑚𝑝𝑙𝑒 𝑆𝑖𝑧𝑒 = 1.478, 𝑝 = 0.0008, 𝑂𝑅 = 4.382). This statistic 

implies that, using the standard deviation as the discrepancy measure, the odds of detecting 

misfit of the HRM-PCM for a sample size of 500 was 4.382 higher in comparison to a sample 

size of 250, holding other variables constant.  

Rating design had the second largest odds ratio of 4.373 (𝛽𝑅𝑎𝑡𝑖𝑛𝑔 𝐷𝑒𝑠𝑖𝑔𝑛 = 1.476, 𝑝 =
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0.0008, 𝑂𝑅 = 4.373). These findings indicate that the odds of detecting misfit of the HRM-

PCM under the fully-crossed rating design compared to the spiral design was 4.373 higher, 

holding all other variables constant. Additionally, holding all other factors constant, the odds of 

detecting misfit of the HRM-PCM using the standard deviation was higher when the raters had 

no rater effects compared to when raters exhibited some rater effects (𝛽𝑅𝑎𝑡𝑒𝑟 𝐸𝑓𝑓𝑒𝑐𝑡𝑠 =

1.073, 𝑝 = 0.0138, 𝑂𝑅 = 2.923). 

Table 20. Results of Logistic Regression to Predict Misfit of HRM-PCM of the Standard 

Deviation Discrepancy Measure 

Effect Estimate z-value p-value OR 

Intercept -1.153 -3.481 0.0005 0.316 

Sample size 1.478 3.370 0.0008 4.382 

Rating design 1.476 3.369 0.0008 4.373 

Rater effects 1.073 2.462 0.0138 2.923 

Sample size x rating design -1.135 -1.884 0.0596 0.321 

Sample size x rater effects -1.073 -1.803 0.0714 0.342 

Rater effects x rating design -0.906 -1.517 0.1294 0.404 

Sample size x rater effects x rating design 1.395 1.645 0.1001 4.036 

Note. OR = odds ratio. Reference group are 250 (sample size), spiral rating design, some rater 

effects. 
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Research Question 2: What is the Type I error rate and power of the item-level discrepancy 

measures in detecting model-data misfit of the HRM using PPMC? 

4.3 Item-Level Discrepancy Measures 

 Item-total correlation and odds ratio are two item-level discrepancy measures presented 

in this section. The item-total correlation is illustrated for each item, while the odds ratio is 

demonstrated for item pairs. 

4.3.1 Item-Total Correlation Discrepancy Measure 

4.3.1.1 Summary of Observed and Replicated Item-Total Correlation  

 Item-total correlation is the correlation between a particular item’s score and the total 

score without that item. As defined in Section 3, the item score is the average rating given to an 

examinee by multiple raters. The total score is the sum of the item scores. Item-total correlation 

indicates how well items discriminate between high- and low-achieving examinees. The average 

observed and replicated item-total correlation estimates across simulation conditions are 

presented in Figure 13. The replicated item-total correlation estimates in the top row of Figure 13 

are based on HRM-PCM, while the bottom row consists of item-total estimates replicated based 

on HRM-GPCM. As shown in Figure 13, the line graphs of the average observed and replicated 

item-total correlations overlapped when the generating model was the same as the analysis 

model (i.e., HRM-GPCM → HRM-GPCM), suggesting that the observed item-total correlations 

were similar to the replicated item-total correlations when the correct model was specified. It can 

be seen from Figure 13 that, on average, the item-total correlations for posterior predictive 

samples based on HRM-PCM were underestimated. 



 

 

 

Figure 13. Average observed and replicated item-total correlation of all four items across simulation conditions 

1
0
3
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4.3.1.2 Type I Error and Power of Item-Total Correlation Discrepancy Measure 

 The distributions of the PPP-values are presented in Figure 14. As seen in the 

distributions, there were only a few extreme PPP-values when HRM-GPCM was the analysis 

model. This further highlight that the replicated item-total correlations under HRM-GPCM were 

similar to the observed item-total correlations. However, there were noticeable large extreme 

PPP-values when the data were analyzed with HRM-PCM. The spread of the distributions of the 

PPP-values when the model was misspecified were larger compared to when the correct model 

was specified. 

GM=AM. The Type I error rates and power for the item-total correlation discrepancy 

measure are presented in Table 21. The Type I error rates are presented for each item. The results 

demonstrate that the proportions of extreme PPP-values when the correct model was specified 

(i.e., Type I error) ranged from 0.00 to 0.02. An item’s Type I error rate of 0% suggests that, out 

of the 50 replications, the item was never flagged to misfit the HRM-GPCM, while the item with 

a Type I error rate of 2% suggests that the item was only flagged to misfit the HRM-GPCM only 

once. These findings suggest adequate model-data fit of the HRM-GPCM. 

GM≠AM. The percentage of times data analyzed with HRM-PCM showed evidence of 

misfit ranged from 44% to 86%. Simulation conditions with 500 examinees outperformed 

conditions with 250 examinees. All simulation conditions with 500 examinees resulted in power 

above 70%. Compared to conditions with spiral rating design, the fully-crossed rating design 

yielded higher power. There were no noticeable differences in the power for conditions with and 

without rater effects. 
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Figure 14. Boxplot of PPP-values for the item-total correlation discrepancy measure, combined 

for all items, across simulation conditions. The dashed horizontal line represents where the PPP-

value is 0.50  



106 

 

Table 21. Type I Error Rates and Power for the Item-Total Correlation Discrepancy Measure 

Examinee Rater Effect 
Rating 

Design 

Item  

ID 

𝐻𝑅𝑀𝐺𝑃𝐶𝑀 → 𝐻𝑅𝑀𝐺𝑃𝐶𝑀 

(Type I error) 

𝐻𝑅𝑀𝐺𝑃𝐶𝑀 → 𝐻𝑅𝑀𝑃𝐶𝑀 

(Power) 

250 No Rater 

Effect 

Full 1 0.00 0.64 

  2 0.00 0.72 

   3 0.00 0.70 

   4 0.00 0.74 

  Spiral 1 0.00 0.72 

   2 0.02 0.66 

   3 0.00 0.66 

   4 0.00 0.68 

 Rater Effect Full 1 0.00 0.66 

   2 0.00 0.64 

   3 0.00 0.74 

   4 0.00 0.78 

  Spiral 1 0.00 0.56 

   2 0.00 0.60 

   3 0.02 0.64 

   4 0.00 0.44 

500 No Rater 

Effect 

Full 1 0.00 0.74 

  2 0.00 0.70 

   3 0.00 0.84 

   4 0.00 0.82 

  Spiral 1 0.00 0.80 

   2 0.00 0.74 

   3 0.00 0.72 

   4 0.00 0.72 

 Rater Effect Full 1 0.00 0.86 

   2 0.00 0.68 

   3 0.00 0.78 

   4 0.00 0.80 

  Spiral 1 0.00 0.80 

   2 0.00 0.76 

   3 0.00 0.72 

   4 0.00 0.78 

Note. GPCM = generalized partial credit model; PCM = partial credit model. Power rates above 

70% are bolded 
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4.3.1.3 Power of Item-Total Correlation Discrepancy Measure by Discrimination 

Parameter Classification 

Previous research (e.g., Li et al., 2017) suggests that the item-total correlation 

discrepancy measure is sensitive to the discrimination parameters of the item. In essence, Li and 

colleagues implied that items with discrimination parameters close to 1 were less likely to be 

flagged for misfit by the item-total correlation discrepancy measure. This study further explored 

the power of item-total correlation discrepancy measure when the discrimination parameters 

were considered. 

This study randomly generated item discrimination parameters. That is, new 

discrimination parameters were generated for every new replication. Baker (2001) classified item 

discrimination parameters using seven categories: none, very low, low, moderate, high, very 

high, and perfect.  The range of values for each category is presented in Table 22. Using the 

range of values suggested by Baker (2001), two categories of discrimination values were created: 

Category 1 contained items with low and high discrimination parameters (i.e., discrimination 

parameters less than 0.65 and greater than 1.34:  𝛼𝑗 < 0.65 and 𝛼𝑗 > 1.34) and Categories 2 

contained items with moderate discrimination parameters (i.e., 0.65 ≤ 𝛼𝑗 ≤ 1.34). 

 

Table 22. Labels for Item Discrimination Parameter Values 

Verbal label Range of values 

None 0 

Very low 0.01 – 0.34 

Low 0.35 – 0.64 

Moderate 0.65 – 1.34 

High 1.35 – 1.69 

Very high > 1.70 

Perfect + infinity 

Source. Baker (2001) 
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Figure 15 presents the power of detecting misfit of the HRM-PCM across the two 

categories of the discrimination parameter. As expected, items with high and low discrimination 

parameters were mostly flagged for misfit than items with moderate discrimination parameters. 

The results indicate that conditions with high or low item discrimination parameters yielded 

significantly high power, close to 100%. Only one simulation condition resulted in power less 

than 70%. Interestingly, simulation conditions with fully-crossed rating designs with 500 

examinees performed the best. It can also be seen that for smaller sample size (N = 250 

examinees), the fully-crossed design outperformed the spiral design.  

Furthermore, the results suggest that the power of detecting misfit of the HRM-PCM 

when the items have moderate discrimination parameters was low. Majority of the simulation 

conditions resulted in power less than 40% when items have moderate discrimination 

parameters. These findings parallel Li et al. (2017) that suggests that the item-total correlation 

discrepancy measure performed poorly in detecting misfit when the item discrimination 

parameters were close to 1. 
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Figure 15. Power of detecting misfit for the item-total discrepancy measure by discrimination 

parameter classification. Note.   Combination of levels of discrimination parameter → Category 

1 (Low and High), and Category 2 (Moderate). 
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4.3.2 Odds Ratio Discrepancy Measure 

4.3.2.1 Type I Error and Power of Odds Ratio Discrepancy Measure 

 GM=AM. Table 23 summarizes the Type I error rates and power of the odds ratio 

discrepancy measure for the different item pairs. The results demonstrate that the Type I error 

rates were relatively low across all conditions. However, there were a few item pairs with Type I 

error rates above 5%. Overall, the results suggest that the fitted model adequately captured the 

association among test items. 

 GM≠AM. When the HRM-PCM was fitted to the data, the results showed that the odds 

ratio performed moderately well under the fully-crossed rating design with 500 examinees. For 

example, the power ranged from 58% to 68% for the condition without rater effects, with a fully-

crossed rating design, and 500 examinees. However, the power ranged from 44% to 58% under 

similar conditions but with a smaller sample size of 250 examinees. This clearly suggests that the 

odds ratio performed better with larger sample size and fully-crossed rating design. 
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Table 23. Type I Error Rates and Power for the Odds Ratio Discrepancy Measure 

Rater Effect 
Rating 

Design 

Item 

Pair 

𝐻𝑅𝑀𝐺𝑃𝐶𝑀 → 𝐻𝑅𝑀𝐺𝑃𝐶𝑀 

(Type I error) 
 

𝐻𝑅𝑀𝐺𝑃𝐶𝑀 → 𝐻𝑅𝑀𝑃𝐶𝑀 

(Power) 

N=250 N=500  N=250 N=500 

No Rater Effect Full 1,2 0.04 0.00  0.58 0.64 

  1,3 0.00 0.07  0.52 0.62 

  1,4 0.08 0.00  0.50 0.62 

  2,3 0.02 0.00  0.44 0.68 

  2,4 0.00 0.00  0.46 0.58 

  3,4 0.02 0.07  0.52 0.66 

 Spiral 1,2 0.02 0.00  0.38 0.46 

  1,3 0.00 0.00  0.38 0.50 

  1,4 0.00 0.04  0.36 0.56 

  2,3 0.02 0.02  0.44 0.48 

  2,4 0.08 0.06  0.36 0.60 

  3,4 0.04 0.00  0.30 0.34 

Rater Effect Full 1,2 0.04 0.04  0.46 0.62 

  1,3 0.00 0.04  0.50 0.54 

  1,4 0.02 0.00  0.52 0.56 

  2,3 0.00 0.00  0.48 0.56 

  2,4 0.00 0.07  0.48 0.60 

  3,4 0.04 0.00  0.58 0.58 

 Spiral 1,2 0.04 0.00  0.42 0.54 

  1,3 0.00 0.00  0.26 0.44 

  1,4 0.04 0.04  0.28 0.44 

  2,3 0.02 0.00  0.34 0.44 

  2,4 0.04 0.02  0.36 0.46 

  3,4 0.00 0.06  0.16 0.48 

Note. N = number of examinees; GPCM = generalized partial credit model; PCM = partial credit 

model.  

 

 

  



112 

 

4.3.2.2 Power of Odds Ratio Discrepancy Measure by Discrimination Parameter 

Classification 

 Item pairs can take on six combinations of the item discrimination parameters: (1) 

high/high, (2) low/low, (3) moderate/moderate, (4) high/low, (5) high/moderate, (6) 

moderate/low. For example, a pair of items with a high/high combination both have item 

discrimination parameters above 1.34, whereas a pair of items with a moderate/low combination 

implies that one of the items has a discrimination parameter less than 0.65 and the second item 

has a discrimination parameter between 0.65 and 1.34. The six combinations were further 

grouped into three categories: (1) Category 1 contains pair of items with high/high, low/low, and 

high/low combinations, (2) Category 2 contains moderate/moderate item pairs, and (3) Category 

3 contains item pairs with moderate/high and moderate/low combinations. 

 Figure 16 illustrates the power of the item pairs for the three categories. The results 

suggest that item pairs that fall under Category 1 were easily detected for misfit of the HRM-

PCM. Item pairs with moderate discrimination parameters (i.e., Category 2) resulted in low 

power, again suggesting that the odds ratio discrepancy measure may fail to capture the 

association between pairs of items with moderate discrimination parameters. All pairs of items in 

Category 3 resulted in power less than 50%. This suggests that the odds ratio may not be useful 

in detecting misfit of the HRM-PCM when item combinations include discrimination parameters 

that are moderately classified (i.e., items with discrimination parameters that are between 0.65 

and 1.34). 



113 

 

  

Figure 16. Power of detecting misfit for the odds ratio discrepancy measure by discrimination 

parameter classification. Note.  Combination of levels of discrimination parameter → Category 1 

(Low/Low, Low/High, and High/High), Category 2 (Moderate/Moderate), and Category 3 

(Moderate/High, and Moderate/Low). I12 = Items 1 and 2; I13 = Items 1 and 3; I14 = Items 1 

and 4; I23 = Items 2 and 3; I24 = Items 2 and 4; I34 = Items 3 and 4. 
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Summary of Item-Level Discrepancy Measures 

 The power of the item-total correlation and odds ratio discrepancy measures were 

evaluated at the item-level of the test. The results suggest that item-total correlation was most 

powerful in detecting the misfit of the HRM-PCM. There was also evidence to suggest that item 

discrimination parameters influenced the performance of these discrepancy measures, especially 

with the odds ratio. These findings parallel Li et al. (2017). 

 The results of the logistic regression analysis presented in Table 24 further provide 

evidence of the impact of the design factors in detecting inadequacy of the HRM-PCM. For the 

item-total correlation, the findings show that the level of the item discrimination parameter is 

significantly associated with detecting misfit of the HRM-PCM (𝛽𝐷𝑖𝑠𝑐𝑟𝑖𝑚 = 3.541, 𝑝 <

0.0001, 𝑂𝑅 = 34.498).  This suggests that, holding all other conditions constant, the odds of 

detecting misfit of the HRM-PCM using item-total correlation for items with high or low 

discrimination parameters (Category 1) is 34.498 times when compared to items with moderate 

discrimination parameters (Category 2). The evidence also shows that sample size 

(𝛽𝑆𝑎𝑚𝑝𝑙𝑒 𝑆𝑖𝑧𝑒 = 1.405, 𝑝 < 0.0001, 𝑂𝑅 = 4.075), rating design (𝛽𝑅𝑎𝑡𝑖𝑛𝑔 𝐷𝑒𝑠𝑖𝑔𝑛 = 1.127, 𝑝 <

0.0001, 𝑂𝑅 = 3.086), and rater effects (𝛽𝑅𝑎𝑡𝑒𝑟 𝐸𝑓𝑓𝑒𝑐𝑡𝑠 = 0.537, 𝑝 = 0.0412, 𝑂𝑅 = 1.711) were 

all significantly associated with detecting misfit of the HRM-PCM. For example, the odds ratio 

associated with rating design suggests that the fully-crossed rating design had an odds in 

detecting misfit of the HRM-PCM that is 3.086 higher in comparison to the spiral rating design. 

 Similarly, the level of the discrimination parameter was an important factor in detecting 

the inadequacy of the HRM-PCM when the odds ratio discrepancy measure was employed. The 

odds ratios associated with the discrimination parameter category were 18.675 and 2.699. This 

implies that the odds of detecting misfit of the HRM-PCM for Category 1 compared to Category 
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2 was 18.675. Furthermore, when compared to Category 2, the odds of items that fall under 

Category 3 in detecting misfit of HRM-PCM was 2.699, holding all other variables constant. The 

rating design was the second most important factor in detecting misfit of the HRM-PCM using 

the odds ratio discrepancy measure (𝛽𝑅𝑎𝑡𝑖𝑛𝑔 𝐷𝑒𝑠𝑖𝑔𝑛 = 1.042, 𝑝 < 0.0001, 𝑂𝑅 = 2.834). The 

odds of detecting misfit of the HRM-PCM in conditions with rater effects compared to 

conditions without rater effects were not statistically significant (𝛽𝑅𝑎𝑡𝑒𝑟 𝐸𝑓𝑓𝑒𝑐𝑡 = 0.148, 𝑝 =

0.4370, 𝑂𝑅 = 1.159).



 

 

Table 24. Results of Logistic Regression to Predict Misfit of HRM-PCM of the Item-Total Correlation and Odds Ratio Discrepancy 

Measures 

Effect 

Item-Total Correlation  

Discrepancy Measure 

 Odds Ratio  

Discrepancy Measure 

Estimate z-value p-value OR  Estimate z-value p-value OR 

Intercept -2.479 -10.839 <0.0001 0.084  -2.978 -11.239 <0.0001 0.051 

Sample size 1.405 4.831 <0.0001 4.075  0.678 3.580 0.0003 1.970 

Rating design 1.127 4.011 <0.0001 3.086  1.042 5.438 <0.0001 2.834 

Rater effects 0.537 2.041 0.0412 1.711  0.148 0.777 0.4370 1.159 

Discrimination parameter category          

Category 1 3.541 21.570 <0.0001 34.498  2.927 12.502 <0.0001 18.675 

Category 3 - - - -  0.993 4.228 <0.0001 2.699 

Sample size x rating design -0.587 -1.399 0.1618 0.556  -0.185 -0.692 0.4890 0.832 

Sample size x rater effects -0.317 -0.774 0.4391 0.729  0.246 0.923 0.3562 1.278 

Rater effects x rating design -0.489 -1.224 0.2208 0.613  -0.072 -0.271 0.7862 0.930 

Sample size x rater effects x rating 

design 0.120 0.201 0.841 1.127 

 

-0.111 -0.296 0.7674 0.895 

Note. OR = odds ratio. Reference group are 250 (sample size), spiral rating design, and some rater effects. For the discrimination 

parameter category, Category 2 is the reference category for both the item-total correlation and odds ratio discrepancy measures. Item-

total correlation has two discrimination parameter categories, while odds ratio has three discrimination parameter categories. 

 

 

1
1
6
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Research Question 3: What is the Type I error rate and power of the rater-level discrepancy 

measures in detecting model-data misfit of the HRM using PPMC? 

4.4 Rater-Level Discrepancy Measures 

 This section summarizes the findings of three rater-level discrepancy measures: score-

estimate correlation, rater-total correlation, and rater standard deviation. First, the summary of 

the observed and replicated samples for each discrepancy measure is presented. Next, the Type I 

error and power are discussed. The impact of rater and item characteristics on the discrepancy 

measures are further evaluated.  

4.4.1 Score-Estimate Correlation Discrepancy Measure 

4.4.1.1 Summary of Observed and Replicated Score-Estimate Correlation 

Literature suggests that score-estimate correlation is a measure of rater accuracy in the 

use of the rating scale (Wolfe, 2014; Wolfe & McVay, 2010). The observed and replicated score-

estimate correlations when the model was correctly and incorrectly specified are presented in 

Figure 17. First, it can be seen that Rater 2 has the highest average score-estimate correlation. 

This is unsurprising because Rater 2 had the smallest bias and variability parameters (𝜙2 =

0.046, 𝜓2 = 0.270). In conditions with rater effects, Rater 6 has the smallest average score-

estimate correlation. Rater 6’s variability parameter was the largest among all raters (𝜓6 =

1.487). In HRM, a rater’s variability parameter is a measure of the rater’s consistency (i.e., 

accuracy) in the use of the rating scale. The patterns in Figure 17 suggest that the score-estimate 

correlations of the most accurate raters was larger than the score-estimate correlation of less 

accurate raters. 

Figure 17 further shows that, when the correct model was specified, the score-estimate 

correlations from the replicated datasets based on the posterior predictive samples resembled the 
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observed score-estimate correlation. However, it can be seen that, on average, the observed 

score-estimate correlations were higher than the score-estimate correlations from the replicated 

datasets under a misspecified model. This suggests that the HRM-PCM underestimated the 

score-estimate correlation when the item discrimination parameters are not 1.



 

 

 
Figure 17. Average observed and replicated score-estimate correlation across simulation conditions

1
1
9
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4.4.1.2 Type I Error Rates and Power of Score-Estimate Correlation Discrepancy Measures 

GM=AM. The Type I error rates and power of the score-estimate correlation discrepancy 

measure resulting from the correct specification and misspecification of the HRM are presented 

in Table 25. The results are presented for each rater since raters have different bias and 

variability parameters. In general, the Type I error rates were less than 5%. There were only two 

raters with Type I error rates greater than 5%: (1) Rater 1 with Type I error rate of 10% when 

N=250, without rater effects, and fully-crossed rating design, and (2) Rater 7 with Type I error 

rate of 8% when N=500, without rater effects, and fully-crossed rating design. Overall, the 

findings suggest that, when the correct model was specified, the score-estimate correlation 

adequately captured the relationship between the average scores awarded by a single rater and 

examinees’ true ability. 

GM≠AM. Using latent measurement models (i.e., GPCM, PCM, RSM), Wolfe (2014) 

demonstrated that the discrimination parameter was a measure of rater accuracy. Extending this 

to the HRM, the results of this study showed that the rater score-estimate correlation was 

effective in detecting misfit of the HRM-PCM when the discrimination parameters were 

constrained to 1, with power ranging from 30% to 86%. The results vary by simulation 

conditions. Conditions with 500 examinees outperformed conditions with 250 examinees. The 

average power for 500 examinees was 74% compared to 62% when N=250. Similarly, 

conditions with fully-crossed rating design performed better than conditions with spiral design.  

The effects of raters exhibiting rater effects on score-estimate correlation were further 

examined. For conditions with rater effects, Rater 6 and Rater 8 had the lowest power, on 

average. These two raters were simulated to exhibit large variability and significant bias 

parameters. For example, when N=250 under a fully-rating design, Rater 6 and 8 had power of 
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42% and 54%, respectively, compared to power between 70% and 80% for the rest of the raters 

in the same condition. We can infer that detecting misfit of the HRM-PCM using score-estimate 

correlation is adequate, but the performance is lower when raters have large variability 

parameters. 

Table 25. Type I Error Rates and Power for the Score-Estimate Correlation Discrepancy Measure 

Rater Effect 
Rating 

Design 
Rater 

𝐻𝑅𝑀𝐺𝑃𝐶𝑀 → 𝐻𝑅𝑀𝐺𝑃𝐶𝑀 

(Type I error) 
 

𝐻𝑅𝑀𝐺𝑃𝐶𝑀 → 𝐻𝑅𝑀𝑃𝐶𝑀 

(Power) 

N=250 N=500  N=250 N=500 

No Rater 

Effect 

Full 1 0.10 0.02  0.78 0.82 

 2 0.00 0.00  0.80 0.86 

  3 0.02 0.02  0.70 0.84 

  4 0.02 0.02  0.66 0.80 

  5 0.02 0.00  0.74 0.84 

  6 0.02 0.00  0.72 0.82 

  7 0.02 0.08  0.70 0.86 

  8 0.02 0.00  0.74 0.84 

 Spiral 1 0.04 0.00  0.74 0.76 

  2 0.00 0.00  0.74 0.84 

  3 0.00 0.02  0.66 0.74 

  4 0.00 0.00  0.44 0.64 

  5 0.02 0.02  0.58 0.82 

  6 0.00 0.00  0.56 0.72 

  7 0.02 0.00  0.44 0.66 

  8 0.04 0.02  0.46 0.70 

Rater Effect Full 1 0.04 0.02  0.78 0.82 

  2 0.02 0.00  0.80 0.86 

  3 0.02 0.00  0.74 0.82 

  4 0.04 0.00  0.74 0.74 

  5 0.00 0.00  0.80 0.78 

  6* 0.04 0.02  0.42 0.52 

  7 0.04 0.02  0.70 0.80 

  8* 0.00 0.00  0.54 0.70 

 Spiral 1 0.02 0.02  0.62 0.80 

  2 0.00 0.04  0.56 0.78 

  3 0.00 0.00  0.60 0.64 

  4 0.02 0.04  0.58 0.64 

  5 0.00 0.02  0.48 0.50 

  6* 0.00 0.00  0.32 0.44 

  7 0.00 0.00  0.50 0.62 

  8* 0.00 0.00  0.30 0.64 

Note. N = number of examinees; GPCM = generalized partial credit model; PCM = partial credit 

model. Power rates above 70% are bolded. *Raters simulated to exhibit rater effects 
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4.4.1.3 Power of Score-Estimate Correlation Discrepancy Measures by Discrimination 

Parameter Classification 

 In performance assessments, examinees typically take all items on the test, which implies 

that the characteristics of the items on the test, including rater characteristics, may indicate how 

well examinees’ ability parameters are estimated. For example, an item with a discrimination 

parameter near zero could be problematic even if even raters are experienced and well-trained. 

The performance of the score-estimate correlation when the item discrimination parameters were 

considered was further evaluated. Three discrimination categories were created based on the 

discrimination parameters. Category 1 contained replications with at most two items with high 

discrimination parameters (i.e., 𝛼𝑗 > 1.34). Category 2 contained replications with exactly three 

items with high discrimination parameters. Category 3 contained replications that all four items 

have high discrimination parameters. 

 The effect of the item and rater characteristics on the power of score-estimate correlation 

is illustrated in Figure 18. The results suggest that score-estimate correlation is powerful in 

detecting misfit of the HRM-PCM when all items have high discrimination parameters (i.e., 

Category 3). The performance of Category 3 was highest under fully-crossed designs with 500 

examinees. For example, the power was 100% for every rater in the condition with fully-crossed 

and 500 examinees regardless of rater effects indicating that constraining the slopes of all the 

items to 1 clearly have an impact on the fit of the raters. Category 1 with only two highly 

discriminating items performed the least. This suggests that score-estimate correlation was less 

effective in detecting misfit when only half of the items have high discrimination parameters. 
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Figure 18. Power of detecting misfit for the score-estimate correlation discrepancy measure by 

discrimination parameter classification. Note.   Combination of levels of discrimination 

parameter → Category 1 (at most two highly discriminating items), Category 2 (exactly three 

highly discriminating items), Category 3 (four highly discriminating items). 

 

 



 

 

 

Figure 19. Average observed and replicated rater-total correlation across simulation conditions
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4.4.2 Rater-Total Correlation Discrepancy Measure 

4.4.2.1 Summary of Observed and Replicated Rater-Total Correlation Coefficient 

Discrepancy Measure 

 The average observed and replicated rater-total correlation coefficients are presented in 

Figure 19. As with the score-estimate correlation, Rater 2, with the smallest variability 

parameter, had the largest average rater-total correlation. However, for the conditions with rater 

effects, Rater 6, with the largest variability parameter, had the smallest average rater-total 

correlation. This figure also shows that the observed and replicated rater-total correlation 

coefficients were similar when the data were fitted with the correct model. However, 

misspecification of the model led to noticeable differences in the average observed and 

replicated rater-total correlation, especially under the spiral rating design. 

4.4.2.2 Type I Error and Power of Rater-Total Correlation Discrepancy Measure 

 GM=AM. The proportions of extreme PPP-values when the correct model was specified 

is summarized in Table 26. Overall, the Type I error rates did not exceed the 5% in all simulation 

conditions. There were only two conditions with raters that had Type I error rates above 5%. The 

Type I error rates for the spiral design were mostly 0%. Across all conditions, the Type I error 

rates for the spiral design ranged from 0% to 2% compared to 0% to 6% under the full-crossed 

design. For example, all eight raters, including raters with rater effects, had Type I error rates of 

0% for the condition with 500 examinees under the spiral design. These findings suggest that it is 

more beneficial to have total scores (i.e., the sum of the item scores) from fewer raters (e.g., two 

raters) than from all eight raters. 

GM≠AM. Table 26 also presents the proportions of extreme PPP-values when the model 

was misspecified. Across all simulation conditions, the power ranged from 10% to 72%. It is 
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clear from Table 26 that power increased as the number of examinees increased from 250 to 500. 

For example, for the condition with fully-crossed rating design with no rater effects, the power 

rates were between 16% and 26% for a sample size of 250 examinees compared power rates 

between 26% and 58% when a sample size of 500 examinees was used. It is worth mentioning 

that  percentage of times the HRM-PCM was flagged for misfit under the spiral design was 

larger than the fully-crossed rating design. For example, for the condition with rater effects and 

500 examinees, the power ranged from 14% to 36% under the fully-crossed rating design 

compared to a superior 38% to 68% under the spiral rating design. Again, the superiority of the 

spiral rating design with rater-total correlation suggests that total scores from fewer raters is 

preferred. 

Raters 6 and 8 simulated to be less accurate (i.e., large variability parameters) have the 

lowest power rates. For example, in the condition with 500 examinees, spiral design, and with 

rater effects, Rater 6 and Rater 8 had power rates of 38% and 46%, respectively, compared to 

power between 50% and 68% for the rest of the raters. This suggests that the performance of 

rater-total correlation was weaker for raters with rater effects, implying that the ability to detect 

misfit is reduced when a dataset includes raters with rater effects. 
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Table 26. Type I Error Rates and Power for the Rater-Total Discrepancy Measure 

Rater Effect 
Rating 

Design 
Rater 

𝐻𝑅𝑀𝐺𝑃𝐶𝑀 → 𝐻𝑅𝑀𝐺𝑃𝐶𝑀 

(Type I error) 
 

𝐻𝑅𝑀𝐺𝑃𝐶𝑀 → 𝐻𝑅𝑀𝑃𝐶𝑀 

(Power) 

N=250 N=500  N=250 N=500 

No Rater Effect Full 1 0.00 0.02  0.18 0.58 

  2 0.00 0.00  0.16 0.34 

  3 0.02 0.02  0.26 0.44 

  4 0.02 0.00  0.26 0.26 

  5 0.02 0.02  0.24 0.48 

  6 0.04 0.04  0.16 0.44 

  7 0.04 0.00  0.28 0.34 

  8 0.06 0.04  0.26 0.40 

 Spiral 1 0.02 0.00  0.64 0.74 

  2 0.00 0.00  0.64 0.70 

  3 0.00 0.00  0.50 0.56 

  4 0.00 0.00  0.30 0.48 

  5 0.00 0.00  0.48 0.52 

  6 0.00 0.00  0.50 0.52 

  7 0.00 0.00  0.30 0.58 

  8 0.00 0.00  0.38 0.58 

Rater Effect Full 1 0.02 0.04  0.22 0.36 

  2 0.00 0.02  0.14 0.30 

  3 0.06 0.00  0.22 0.30 

  4 0.04 0.04  0.22 0.30 

  5 0.02 0.04  0.18 0.20 

  6* 0.02 0.00  0.12 0.14 

  7 0.02 0.02  0.30 0.34 

  8* 0.00 0.02  0.14 0.22 

 Spiral 1 0.00 0.00  0.36 0.64 

  2 0.00 0.00  0.42 0.68 

  3 0.00 0.00  0.36 0.52 

  4 0.00 0.00  0.32 0.50 

  5 0.00 0.00  0.32 0.54 

  6* 0.00 0.00  0.12 0.38 

  7 0.00 0.00  0.28 0.54 

  8* 0.00 0.00  0.10 0.46 

Note. N = number of examinees; GPCM = generalized partial credit model; PCM = partial credit 

model. Power rates above 70% are bolded. *Raters simulated to exhibit rater effects 
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4.4.2.3 Power of Rater-Total Correlation Discrepancy Measures by Discrimination 

Parameter Classification 

 Figure 20 illustrates the effect of the rater and item characteristics on the proportions of 

extreme PPP-values. The results indicate that the performance of the rater-total correlation in 

detecting misfit of the HRM-PCM increased with increase in the number of highly 

discriminating items on the test. For the condition with 500 examinees, fully-crossed design, and 

with rater effects, the power for Category 3 ranged from 55% to 100% compared to 20% to 50% 

for Category 2 and 0% to 20% for Category 1. Clearly, this suggests that the rater-total 

correlation benefits from having test items that have high discrimination parameters.  

For replications with highly discriminating items, the performance of rater-total 

correlation increased with increase in sample size. In addition, it can be observed that when the 

number of examinees was 500, the performance of Category 3 for the fully-crossed rating design 

was similar to the spiral rating design. However, increased sample size benefitted Category 1 and 

Category 2 items under the spiral rating design than the fully-crossed design. It is also worth 

noting that conditions without rater effects performed in a similar fashion as conditions with rater 

effects.  
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Figure 20. Power of detecting misfit for the rater-total correlation discrepancy measure by 

discrimination parameter classification. Note.   Combination of levels of discrimination 

parameter → Category 1 (at most two highly discriminating items), Category 2 (exactly three 

highly discriminating items), Category 3 (four highly discriminating items). 



 

 

 

Figure 21. Average observed and replicated rater standard deviation across simulation conditions
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4.4.3 Rater Standard Deviation Discrepancy Measure 

4.4.3.1 Summary of Observed and Replicated Rater Standard Deviation 

 The average observed and replicated standard deviation of the raters are presented in 

Figure 21. As seen from this figure, on average, rater standard deviations were between 1.05 and 

1.20. Rater 2 had the smallest average standard deviation among raters without rater effects. In 

conditions without rater effects, Rater 2 has the smallest bias and variability parameters. Hence, 

this rater can be said to consistently assign scores that reflect examinees’ true abilities. However, 

as shown in Figure 21, Rater 8 had the smallest average standard deviation in conditions with 

rater effects. One explanation of this is that Rater 8 has the most extreme bias parameter (𝜙𝑟 =

−1.055) suggesting that Rater 8 award scores around the lower end of the score distribution. As 

earlier depicted in Figure 6, Rater 8 most frequently used Score 1 and Score 2 of the score 

distribution. 

 When the observed and replicated rater standard deviations were compared, the patterns 

illustrated in Figure 21 reveal that, on average, the rater standard deviation based on the posterior 

predictive samples of the HRM-GPCM resemble the observed rater standard deviation. 

Comparably, the rater standard deviation based on the posterior predictive samples of the HRM-

PCM were equally similar to the observed rater standard deviation, on average. 

4.4.3.2 Type I Error and Power for the Rater Standard Deviation Discrepancy Measure 

GM=AM. The Type I error rates and power for the rater standard deviation discrepancy 

measure are presented in Table 27. The Type I error rates are presented for each rater. The 

results demonstrate the Type I error rates ranged from 0% to 10%. For example, a rater’s Type I 

error rate of 0% implies that of the 50 replications in a set of conditions, this rater’s observed 

standard deviation was similar to the rater’s replicated standard deviation based on the posterior 



132 

 

predictive samples of the HRM-GPCM in all the replications. These findings suggest adequate 

model-data fit of the HRM-GPCM. 

GM≠AM. The performance of the rater standard deviation discrepancy measure when 

the model was misspecified (i.e., HRM-GPCM → HRM-PCM) is also presented in Table 27. The 

power ranged from 0% to 10%. The low power observed across the simulation conditions for this 

discrepancy measure indicates that the rater standard deviation is not useful in detecting misfit of 

the HRM-PCM. 
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Table 27. Type I Error Rates and Power for Rater Standard Deviation Discrepancy Measure 

Rater Effect 
Rating 

Design 
Rater 

𝐻𝑅𝑀𝐺𝑃𝐶𝑀 → 𝐻𝑅𝑀𝐺𝑃𝐶𝑀 

(Type I error) 
 

𝐻𝑅𝑀𝐺𝑃𝐶𝑀 → 𝐻𝑅𝑀𝑃𝐶𝑀 

(Power) 

N=250 N=500  N=250 N=500 

No Rater Effect Full 1 0.06 0.02  0.06 0.02 

  2 0.00 0.00  0.00 0.00 

  3 0.00 0.02  0.00 0.00 

  4 0.08 0.00  0.08 0.00 

  5 0.00 0.02  0.00 0.02 

  6 0.02 0.00  0.02 0.00 

  7 0.02 0.02  0.02 0.00 

  8 0.00 0.00  0.00 0.00 

 Spiral 1 0.04 0.02  0.06 0.00 

  2 0.00 0.00  0.00 0.00 

  3 0.00 0.00  0.00 0.00 

  4 0.00 0.00  0.00 0.00 

  5 0.00 0.00  0.00 0.02 

  6 0.00 0.00  0.02 0.02 

  7 0.00 0.00  0.00 0.00 

  8 0.00 0.00  0.00 0.00 

Rater Effect Full 1 0.04 0.02  0.00 0.00 

  2 0.00 0.00  0.00 0.00 

  3 0.06 0.00  0.08 0.00 

  4 0.00 0.04  0.00 0.04 

  5 0.00 0.04  0.00 0.02 

  6 0.06 0.02  0.06 0.02 

  7 0.10 0.02  0.10 0.04 

  8 0.00 0.02  0.00 0.02 

 Spiral 1 0.00 0.00  0.02 0.02 

  2 0.00 0.00  0.00 0.00 

  3 0.00 0.00  0.00 0.00 

  4 0.00 0.00  0.00 0.00 

  5 0.00 0.00  0.00 0.00 

  6 0.00 0.00  0.00 0.04 

  7 0.00 0.00  0.00 0.00 

  8 0.00 0.00  0.02 0.00 

Note. N = number of examinees; GPCM = generalized partial credit model; PCM = partial credit 

model. 
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Summary of Rater-Level Discrepancy Measures 

 The results presented at the rater-level show that the score-estimate correlation was 

powerful in detecting misfit of the inadequacy of the HRM-PCM. The score-estimate correlation 

yielded high power across all simulation conditions. The results of the logistic regression 

analyses in Table 28 indicate that sample size, rating design, and discrimination parameter 

category were all significant predictors of misfit of the HRM-PCM. Although the rater effects 

factor was not significant, the interaction between sample size and rater effects was significant in 

detecting misfit of the HRM-PCM. It can be observed from Table 28 that the odds ratios 

associated with the categories of the discrimination parameters were largest. When compared to 

Category 1, the odds of detecting misfit of the HRM-PCM when the test has four highly 

discriminating items (Category 3) was 6.155 times higher. Similarly, the odds of detecting misfit 

of the HRM-PCM was 4.289 higher for Category 2 in comparison to Category 1.  

 The rater-total correlation also performed moderately well in detecting the misfit of 

HRM-PCM. It was evident, as reported in Section 4.4.2.3, that the power of detecting misfit of 

the inadequacy of the HRM-PCM increased when the test contained highly discriminating items. 

This evidence is further shown in the logistic regression analyses reported in Table 28. As seen 

in this table, the odds of detecting misfit of the HRM-PCM was 11.222 higher for Category 3 

compared to Category 1. This proves that the rater-total correlation performance is highest for 

highly discriminating test items. The findings also show that for the rater-total correlation 

discrepancy measure, the spiral rating design performed better than the fully-crossed rating 

design (𝛽𝑅𝑎𝑡𝑖𝑛𝑔 𝐷𝑒𝑠𝑖𝑔𝑛 = −4.192, 𝑝 < 0.0001, 𝑂𝑅 = 0.464). This study also found that the 

conditions with larger sample size and the conditions without rater effect yielded higher odds of 

detecting misfit of the HRM-PCM.



 
 

Table 28. Results of Logistic Regression to Predict Misfit of HRM-PCM of the Score-Estimate Correlation and Rater-Total 

Correlation Discrepancy Measures 

Effect 

Score-Estimate Correlation  

Discrepancy Measure 

 Rater-Total Correlation 

Discrepancy Measure 

Estimate z-value p-value OR  Estimate z-value p-value OR 

Intercept -0.967 -8.026 <0.0001 0.380  -2.037 -14.598 <0.0001 0.130 

Sample size 0.517 3.338 0.0008 1.677  1.040 6.393 <0.0001 2.829 

Rating design 0.945 5.929 <0.0001 2.572  -0.767 -4.192 <0.0001 0.464 

Rater effects 0.131 0.855 0.3923 1.140  0.567 3.492 0.0005 1.763 

Discrimination parameter category          

Category 2 1.456 15.344 <0.0001 4.289  1.314 13.083 <0.0001 3.720 

Category 3 1.817 14.881 <0.0001 6.155  2.418 20.411 <0.0001 11.222 

Sample size x rating design -0.051 -0.221 0.8250 0.950  -0.255 -1.037 0.2998 0.775 

Sample size x rater effects 0.632 2.794 0.0052 1.882  -0.064 -0.281 0.7789 0.938 

Rater effects x rating design 0.083 0.364 0.7156 1.086  -0.197 -0.789 0.4303 0.822 

Sample size x rater effects x rating design -0.413 -1.221 0.2222 0.662  0.249 0.736 0.4620 1.283 

Note. OR = odds ratio. Reference group are 250 (sample size), spiral rating design, and some rater effects. For the discrimination 

parameter category, Category 1 is the reference category for both discrepancy measures 

1
3
5
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CHAPTER 5: 

DISCUSSION 

 In educational assessments, traditional polytomous IRT models are employed to analyze 

data where an examinee can obtain partial or full credits. Examinees and item parameters, which 

are typically of interest in traditional IRT models, can be estimated with the PCM and GPCM. 

Assessments that require human raters introduces additional considerations such as rater effects. 

Consequently, measurement models that compensate for these effects are needed in performance 

assessment. The HRM is one of the IRT models that accounts for rater severity/leniency and 

accuracy. The formulation of the HRM allows for the estimation of rater bias and consistency in 

the use of the rating scale. The second stage of the HRM allows for the use of a polytomous IRT 

model to describe the relationship between an examinee’s ideal ratings and latent ability. The 

PCM and GPCM can be used in the first stage of the HRM. This study documents the 

consequences of using the wrong polytomous IRT model in the HRM. 

Researchers and practitioners risk making invalid inferences if a posited model does not 

fit the data. Using PPMC techniques, this study investigated the performance of different 

discrepancy measures in detecting misfit of the HRM. This study varied the sample size (N = 250 

and 500), rating design (fully-crossed and spiral rating designs), rater effects (no rater effects and 

25% of raters with rater effects), and analysis model (HRM-GPCM and HRM-PCM), leading to 

16 fully-crossed simulation conditions. One thousand posterior predictive samples were used for 

the PPMC. Furthermore, the PPP-values were computed as the proportions of times for which 

the observed discrepancy measure exceeds the discrepancy measure based on the posterior 

predictive samples. Models with extreme PPP-values were flagged for misfit. Using guidelines 

from previous studies (e.g., Sinharay, 2006; Sinharay & Johnson, 2003), extreme PPP-values 
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were defined as less than 0.05 or greater than 0.95. The performance of the discrepancy measures 

employed was assessed at the test-, item-, and rater-level. This study addressed three research 

questions. 

Research Question 1: What is the Type I error rate and power of the test-level discrepancy 

measures in detecting model-data misfit of the HRM using PPMC? 

 At the test level, the results reveal that the proportions of extreme PPP-values were zero 

when the generating model was the same as the analysis model (i.e., Type I error rates) for the 

mean discrepancy measure, across all the simulation conditions, suggesting that the HRM-

GPCM adequately captures the center of the total score distribution. In addition, the proportions 

of extreme PPP-values, for the mean discrepancy measure, when the generating model was 

different from the analysis model (i.e., power) were zero in all the simulation conditions. This 

implies that the mean discrepancy measure did not flag the HRM-PCM for misfit in all 50 

simulation replications across the simulation conditions. In PPMC, the discrepancy measure used 

is crucial to the inferences made regarding model fit (Levy & Mislevy, 2016).  For example, the 

mean of the total score leads us to believe that the HRM-PCM adequately fits the data even 

though that HRM-PCM was the incorrect model. Although the center of the total score 

distribution was captured by the HRM-PCM, other features of the data may not be adequately 

captured by HRM-PCM. Therefore, using only the mean of the total score distribution will lead 

to incorrect inferences about the fitted model if other features of the data are of interest. 

 The standard deviation of the total score performed moderately well in detecting misfit of 

the HRM-PCM in certain conditions. Overall, the HRM-PCM underestimated the standard 

deviation of the total score distribution. The Type I error rates were 0% across all simulation 

conditions, suggesting that the HRM-GPCM adequately captured the spread of the total score of 
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the data. The performance of the standard deviation discrepancy measure in detecting misfit of 

the HRM-PCM varied across simulation conditions. The percent of times the HRM-PCM was 

flagged for misfit (i.e., power) was between 24% and 76%. Sample size and rating design played 

the most significant role in detecting misfit of the HRM-PCM. Larger sample size (N = 500) and 

fully-crossed rating design were associated with higher odds of detecting misfit of the HRM-

PCM. In addition, it was found that detecting misfit was higher in conditions without rater 

effects compared to conditions with rater effects.  

 The first and third quartiles were used to assess how well the lower and upper ends of the 

distribution were adequately captured by the models. The Type I error rates suggest that the 

HRM-GPCM adequately captured the lower and upper 25% of the total score distribution for 

tests with fully-crossed rating design. The Type I error rates under the spiral rating design were 

relatively large (between 10% and 44%). The Type I error rates were noticeably larger for tests 

with 500 examinees compared to tests with 250 examinees. The power for the first quartile 

ranged from 0% to 38% and from 24% to 80% for the third quartile. The high Type I error rates 

and low power suggest that the quartiles may not be useful measures to assess model-data fit of 

the HRM. Under the fully-crossed design, these measures suggest that the HRM-GPCM was an 

adequate fit to the data; however, the fully-crossed design is not commonly used in practice 

(Eckes, 2011). Also, the low power observed for the fully-crossed design further implies that 

these measures are not useful in detecting misfit of the HRM-PCM. 

 It was worthwhile to investigate how well the extreme tails of the total score distribution 

were captured by the fitted models. The results indicate that the Type I error rates were as high 

as 22% for the minimum discrepancy measure and 16% for the maximum discrepancy measure. 

Surprisingly, fully-crossed design conditions with rater effects had the lowest Type I error rates, 
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ranging from 2% to 6%. The power rates were low. The maximum power was 14% for the 

minimum discrepancy measure and 26% for the maximum discrepancy measure suggesting that 

these measures were not useful in detecting the inadequacy of the HRM-PCM. In practice, it may 

be uncommon for researchers to be interested in the extremes of the distributions. However, 

these discrepancy measures indicate that extreme values in the total score distribution are not 

adequately captured by the model. 

 Distributional shapes were assessed using the skewness and kurtosis discrepancy 

measures. For both discrepancy measures, the proportions of extreme values when the correct 

model was used to analyze the data were zero across all simulation conditions. This suggests that 

the HRM-GPCM adequately captures the shape of the data. Model misspecification with HRM-

PCM yielded power that ranged from 0 to 2% for the skewness discrepancy measure and from 

4% to 26% for the kurtosis discrepancy measure. These low power rates suggest that skewness 

and kurtosis discrepancy measures should not be used to assess misfit of the HRM-PCM.  

 Overall, it can be seen that shape of the total score distribution under the HRM-PCM and 

HRM-GPCM tends to be similar, as suggested by the skewness statistics. However, the spread of 

the distribution was narrower when data generated with HRM-GPCM were fitted with HRM-

PCM leading to detecting misfit using the standard deviation discrepancy measure. The standard 

deviation discrepancy measure outperformed all the discrepancy measures employed at the test 

level. This measure is recommended for detecting deviations in the observed data and replicated 

data at the total score distribution level. 

Research Question 2: What is the Type I error rate and power of the item-level discrepancy 

measures in detecting model-data misfit of the HRM using PPMC? 

 The key distinction between the HRM-GPCM and HRM-PCM is that the item 
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discrimination parameter is fixed to 1 under the HRM-PCM but allowed to vary under the HRM-

GPCM. The item-total correlation and odds ratio were employed to detect the misfit of the 

HRM-PCM at the item level. Allen and Yen (1979) described item-total correlation as a 

discrimination index indicating how well items distinguish between high- and low-performing 

examinees. The results of the present study suggest that the true item-total correlations were 

adequately captured when HRM-GPCM was fitted to the data but underestimated when HRM-

PCM was the analysis model. The Type I error rates ranged from 0% to 2% across all simulation 

conditions indicating that the HRM-GPCM adequately captures how well items discriminate 

between high- and low-achieving examinees. The item-total correlation also yielded moderate to 

high power especially with conditions with 500 examinees. The power in conditions with 500 

examinees ranged from 68% to 86%. This suggests that the item-total correlation is powerful 

with larger (N = 500) sample size conditions in detecting misfit when the item discrimination 

parameters were constrained to 1. These findings parallel previous studies that found item-total 

correlation to be useful in detecting misfit of Rasch models (e.g., Li et al., 2017; Sinharay & 

Johnson, 2003). The discrimination parameters for this study were generated from a lognormal 

distribution. New data generating parameters were drawn for each new simulation replication. 

There was also evidence that items with discrimination parameters close to 1 were less likely to 

be detected for misfit of the HRM-PCM compared to items with discrimination parameters 

farther from 1.  

 Using global odds ratio, Li et al. (2017) found that when the GPCM was the data 

generating model and analysis model, the Type I error rates were 0% across all their simulations 

conditions. In the present study, the Type I error rates for the odds ratio ranged from 0 to 8%. A 

considerably large number of this study’s simulation conditions resulted in Type I error rates less 
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than 5% (see Table 23). It is important to note that the test length and number of examinees in Li 

et al. (2017) are considerably larger than the test length and number of examinees used in this 

study. Furthermore, Li and colleagues found that the power of the odds ratio detecting misfit of 

PCM ranged from 25% to 54%. Similar rates were found in the current study. The power of 

detecting misfit of the HRM-PCM ranged from 16% to 68%. The present study further explored 

the impact of the item discrimination parameters in detecting misfit of HRM-PCM using odds 

ratio. There was significant evidence to conclude that the odds of detecting misfit of HCM-PCM 

was almost 19 times when the item pairs consisted of items with discrimination parameters 

farther from 1 compared to item pairs with discrimination parameters close to 1. 

Research Question 3: What is the Type I error rate and power of the rater-level discrepancy 

measures in detecting model-data misfit of the HRM using PPMC? 

 Wolfe (2014) and Wolfe and McVay (2012) extensively discussed score-estimate 

correlation and rater-total correlation as indexes for detecting the accuracy of ratings awarded by 

raters. The score-estimate correlation is analogous to the point-measure correlation. Using latent 

measurement models such as GPCM, Wolfe (2014) indicated that the score-estimate correlation 

and rater-total correlation increase with rater accuracy and decrease with rater inaccuracy. 

Literature that utilized score-estimate correlation or rater-total correlation to diagnose misfit of 

the functional form of performance assessment models is scarce. The present study extends these 

two statistics to evaluate misfit of the functional form of the HRM. 

 The score-estimate correlation was computed as the correlation between a rater’s average 

ratings the latent ability of the examinees. Therefore, employing the wrong model would have an 

impact on accurately estimating the true abilities of the examinees. Feuerstahler (2018) found 

that the trait estimates were biased when data generated from a more complex model was fit to a 
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less complex model. In the present study, it was found that HRM-PCM underestimated the score-

estimate correlations. The Type I error rates were less than 5% in all but one simulation 

condition. The power of detecting misfit of the HRM-PCM ranged from 30% to 86%. The results 

of this study further demonstrate that the odds of detecting misfit for the fully-crossed design 

was more than twice higher compared to the spiral rating design. Most significantly, the odds of 

detecting misfit when the test contained more highly discriminating items were significantly 

higher than when there were fewer items with high discrimination parameters. 

 The rater-total correlation performed adequately well in detecting misfit of the HRM-

PCM. The proportion of times the HRM-GPCM was flagged for misfit was mostly less than 

0.05, demonstrating that the HRM-GPCM adequately captured how well raters’ scores and the 

total scores are correlated. When the model was misspecified, the results indicate that rater-total 

correlation performed better in conditions with spiral rating design. This would imply that fewer 

ratings in the total score are preferred when using rater-total correlation. Each examinee only 

received two ratings on each item under the spiral rating design compared to eight ratings per 

item under the fully-crossed rating design. More ratings could lead to more discrepancies in the 

scores, especially if there are raters exhibiting rater effects. In fact, the results showed that the 

odds of detecting misfit were almost twice higher in conditions without rater effects compared to 

conditions with rater effects. The rater-total correlation performed well in detecting misfit when 

the test contained highly discriminating items compared to tests with less discriminating items. 

Implications for Researchers and Practitioners 

 One of the benefits of employing Rasch models such as the PCM is that an examinee’s 

raw score is a sufficient statistic for 𝜃. In Rasch models, examinees are considered to have 

equivalent latent ability traits if the examinees have the same raw scores on a set of items. Rasch 
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models assume that all the items are equally related to the latent ability trait. This assumption 

may not be attainable in practice (Embretson & Reise, 2000). The GPCM allows the items to 

have different slopes. Studies in traditional IRT have shown that model misspecification may 

lead to biased item and examinee latent ability parameters (e.g., Feuerstahler, 2018).  

 The present study found overwhelming evidence of the role of the magnitude of the 

discrimination parameter in detecting misfit of the HRM-PCM. The power rates were 

considerably higher in conditions with slope parameters farther from 1. An implication of this 

finding is that parameters of all items should be carefully assessed when using the discrepancy 

measures employed in this study. Sinharay and Haberman (2014) discussed the practical 

significance of misfit of IRT models. One of their recommendations is omitting misfitting items 

when misfit is practically significant. The present study showed that the score-estimate and rater-

total correlations performed well in detecting misfit of the HRM-PCM when the test contains 

exactly three (out of four) highly discriminating items. However, when only two out of the four 

items are highly discriminating, the results revealed that the score-estimate and rater-total 

correlations underperformed in detecting misfit of the HRM-PCM. This implies that tests with 

only 50% misfitting items may not be flagged for misfit using the rater-level discrepancy 

measures. Thus, it is recommended to assess the item-level misfits alongside rater- and test-level 

misfits. Assessing item-level misfits would give the researchers and practitioners more 

information to make decisions about whether it is necessary to omit the misfitting items. Most 

importantly, the impact of omitting misfitting items on the proficiency levels of the examinees 

should be examined. 

 Rater training, calibration, and monitoring are some of the measures taken to improve 

rating quality in performance assessments (Johnson et al., 2008). McClellan (2010) discussed 
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several approaches for controlling rating quality including backscoring, validity papers, double 

scoring, and trend scoring. Research has extensively discussed the impacts of rater effects in 

performance assessments (e.g., Myford & Wolfe, 2003; Wind, 2019; Wolfe, 2014; Wolfe & 

McVay, 2012). The current study revealed that that the discrepancy measures useful in detecting 

misfits of the HRM-PCM slightly underperformed in conditions with rater effects. These 

findings further stress the importance of rater training and monitoring to ensure that raters have a 

shared understanding of the rubrics, thus potentially decreasing the possibilities of having 

severe/lenient and inconsistent raters. 

 Rating design is an integral component of performance assessment. This study used the 

fully-crossed and spiral rating designs. The fully-crossed rating design has been employed in 

practice (e.g., Ezike & Ames, 2021), however, this design may not be realistic in large 

operational testing with large examinee-rater-item combinations due to the time constraints and 

cost implications. Overall, the results of the current study showed that the fully-crossed rating 

design outperformed the spiral rating design in nearly all conditions. The spiral design performed 

relatively well in conditions with large sample size (N = 500). Noteworthy is that the spiral rating 

design performed better than the fully-crossed rating design for the rater-total discrepancy 

measure. Researchers and practitioners that use incomplete rating designs should consider using 

rater-total correlation alongside the score-estimate correlation in evaluating model-data fit.  

Limitations and Future Research 

There are a few limitations in the current study. First, the current study only used 50 

replications due to computing time. In addition, categorizing the discrimination parameter imply 

that the number of replications within each category was less than 50. Future studies should 

consider using larger number of replications.  
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Second, the HRM has been extended to account for longitudinal designs (i.e., L-HRM) 

and multidimensional tests (i.e., M-HRM). The current study did not consider these newer 

extensions of the HRM. The current study provides a foundation to further explore the L-HRM 

and M-HRM, and other models used for calibrating data from performance assessments.  

Third, the distribution of latent ability traits was fixed in this study. The distribution of 

latent ability traits is not limited to a normal distribution. Previous IRT studies have employed 

distributions such as uniform and skewed distributions. Conforti and Casabianca (2016) 

investigated parameter recovery of the HRM with nonnormal data. They found that rater 

parameters were robust to nonnormality in the latent ability traits. It would be interesting to 

investigate the performance of the discrepancy measures employed in the present study in the 

presence of nonnormal latent ability distributions. 

Forth, two rating designs were used in the current study. There are other incomplete 

rating designs that should be considered in future research. For example, raters can be randomly 

assigned which papers they score. This type of rating design is commonly used in large testing 

programs. Future studies should consider employing this type of rating design. 
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Appendices 

Appendix 1: Item Generating Parameters for PPMC Illustration 

Item 𝛼 𝛽 

1 1.000 0.882 

2 1.000 -0.107 

3 1.000 1.316 

4 1.000 1.497 

5 1.000 1.060 
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Appendix 2: Syntax for Data Generation for Fully-Crossed Rating Design 

 

############################################################# 

# Simulate Data Using HRM for Fully-Crossed Design 

############################################################# 

 

simulate_data_GPCM <- function(theta, a, b, phi, psi ) 

{ 

  RR <- ncol(phi)  ##Raters 

  I <- nrow(b)     ##Items 

  #################### 

  ## Ideal Ratings 

  #################### 

  K <- ncol(b)      #Location parameters 

  N <- length(theta)  ##test length 

  KM <- outer(rep(1,N), 0:K)+1 

   

  simulate_response <- function(alpha, theta, beta) { 

    unsummed <- c(alpha*theta, alpha*(theta - beta)) 

    numerators <- exp(cumsum(unsummed)) 

    denominator <- sum(numerators) 

    response_probs <- numerators/denominator 

    simulated_y <- sample(1:length(response_probs), size = 1,  

                          prob = response_probs)  

    return(simulated_y) 

  } 

   

  ii <- rep(1:I, times = N) 

  jj <- rep(1:N, each = I) 

   

  total=N*I 

   

  gpcm <- numeric(total) 

   

    for(n in 1:total) { 

      gpcm[n] <- simulate_response(a[ii[n]], theta[jj[n]], b[ii[n], ]) 

  } 

   

  gpcm_y <- matrix(gpcm, byrow=TRUE, ncol=I) 

 

  ##Simulate data for all raters 

  items <- paste0("I", 1:I) 

  dat <- NULL 

  for (rr in 1:RR){ 

    dat.rr <- matrix( NA, nrow=N, ncol=I) 
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    colnames(dat.rr) <- items 

    for (ii in 1:I){ 

      # ii <- 1 

      probs <- exp( - ( KM - ( gpcm_y[,ii] + phi[ii,rr] ) )^2 / psi[ii,rr] / 2 ) 

      probs <- probs / rowSums(probs ) 

      probs <- sirt::rowCumsums.sirt(probs) 

      vals <- sirt::rowIntervalIndex.sirt(matr=probs, rn=stats::runif(N)) 

      dat.rr[,ii] <- vals 

    } 

    dat <- rbind( dat, dat.rr ) 

  } 

   

  dat1 <- data.frame( "pid"=rep(1:N, RR), "rater"=rep(1:RR, each=N), dat ) 

  dat2 <- dat1[order( dat1$pid ), ] 

  rownames(dat2) <- NULL 

  return(dat2) 

   

} 
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Appendix 3: Syntax for Data Generation for Spiral Rating Design 

 

############################################################# 

# Simulate Data Using HRM for Spiral-Rating Design 

############################################################# 

 

simulate_spiral_data_GPCM <- function(theta, a, b, phi, psi ){ 

  RR <- ncol(phi)  ##Raters 

  I <- nrow(b)     ##Items 

  #################### 

  ## Ideal Ratings 

  #################### 

  K <- ncol(b)      #Location parameters 

  N <- length(theta)  ##test length 

  KM <- outer(rep(1,N), 0:K)+1 

   

  simulate_response <- function(alpha, theta, beta) { 

    unsummed <- c(alpha*theta, alpha*(theta - beta)) 

    numerators <- exp(cumsum(unsummed)) 

    denominator <- sum(numerators) 

    response_probs <- numerators/denominator 

    simulated_y <- sample(1:length(response_probs), size = 1,  

                          prob = response_probs)  

    return(simulated_y) 

  } 

   

  ii <- rep(1:I, times = N) 

  jj <- rep(1:N, each = I) 

   

  total=N*I 

   

  gpcm <- numeric(total) 

   

  for(n in 1:total) { 

    gpcm[n] <- simulate_response(a[ii[n]], theta[jj[n]], b[ii[n], ]) 

  } 

   

  gpcm_y <- matrix(gpcm, byrow=TRUE, ncol=I) 

   

   

  ###Simulate data for all raters 

  Total_Rater = seq(1,RR) 

   

   

  RR1 <- split(Total_Rater, sort(1:length(Total_Rater) %% 4))[["0"]] 
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  RR2 <- split(Total_Rater, sort(1:length(Total_Rater) %% 4))[["1"]] 

  RR3 <- split(Total_Rater, sort(1:length(Total_Rater) %% 4))[["2"]] 

  RR4 <- split(Total_Rater, sort(1:length(Total_Rater) %% 4))[["3"]] 

   

  Total_Item = seq(1,I) 

  I1 = split(Total_Item, sort(1:length(Total_Item) %% 4))[["0"]] 

  I2 = split(Total_Item, sort(1:length(Total_Item) %% 4))[["1"]] 

  I3 = split(Total_Item, sort(1:length(Total_Item) %% 4))[["2"]] 

  I4 = split(Total_Item, sort(1:length(Total_Item) %% 4))[["3"]] 

   

    ##Spiral One 

  items <- paste0("I", 1:I) 

   

  dat1 <- NULL 

  for (rr in min(RR1):max(RR1)){ 

    dat.rr <- matrix( NA, nrow=N, ncol=I) 

    colnames(dat.rr) <- items 

    for (ii in min(I1):max(I1)){ 

      # ii <- 1 

      probs <- exp( - ( KM - ( gpcm_y[,ii] + phi[ii,rr] ) )^2 / psi[ii,rr] / 2 ) 

      probs <- probs / rowSums(probs ) 

      probs <- sirt::rowCumsums.sirt(probs) 

      vals <- sirt::rowIntervalIndex.sirt(matr=probs, rn=stats::runif(N)) 

      dat.rr[,ii] <- vals 

    } 

    dat1 <- rbind(dat1, dat.rr ) 

  } 

   

  datS1 <- data.frame( "pid"=rep(1:N, length(RR1)), "rater"=rep(min(RR1):max(RR1), each=N), 

dat1 ) 

  datS1 <- datS1[order( datS1$pid ), ] 

   

  ##Spiral Two 

  dat2 <- NULL 

  for (rr in min(RR2):max(RR2)){ 

    dat.rr <- matrix( NA, nrow=N, ncol=I) 

    colnames(dat.rr) <- items 

    for (ii in min(I2):max(I2)){ 

      # ii <- 1 

      probs <- exp( - ( KM - ( gpcm_y[,ii] + phi[ii,rr] ) )^2 / psi[ii,rr] / 2 ) 

      probs <- probs / rowSums(probs ) 

      probs <- sirt::rowCumsums.sirt(probs) 

      vals <- sirt::rowIntervalIndex.sirt(matr=probs, rn=stats::runif(N)) 

      dat.rr[,ii] <- vals 

    } 

    dat2 <- rbind( dat2, dat.rr ) 
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  } 

   

  datS2 <- data.frame( "pid"=rep(1:N, length(RR2)), "rater"=rep(min(RR2):max(RR2), each=N), 

dat2 ) 

  datS2 <- datS2[order( datS2$pid ), ] 

   

  ##Spiral Three 

  dat3 <- NULL 

  for (rr in min(RR3):max(RR3)){ 

    dat.rr <- matrix( NA, nrow=N, ncol=I) 

    colnames(dat.rr) <- items 

    for (ii in min(I3):max(I3)){ 

      # ii <- 1 

      probs <- exp( - ( KM - ( gpcm_y[,ii] + phi[ii,rr] ) )^2 / psi[ii,rr] / 2 ) 

      probs <- probs / rowSums(probs ) 

      probs <- sirt::rowCumsums.sirt(probs) 

      vals <- sirt::rowIntervalIndex.sirt(matr=probs, rn=stats::runif(N)) 

      dat.rr[,ii] <- vals 

    } 

    dat3 <- rbind( dat3, dat.rr ) 

  } 

   

  datS3 <- data.frame( "pid"=rep(1:N, length(RR3)), "rater"=rep(min(RR3):max(RR3), each=N), 

dat3 ) 

  datS3 <- datS3[order( datS3$pid ), ] 

   

  ##Spiral Four 

  dat4 <- NULL 

  for (rr in min(RR4):max(RR4)){ 

    dat.rr <- matrix( NA, nrow=N, ncol=I) 

    colnames(dat.rr) <- items 

    for (ii in min(I4):max(I4)){ 

      # ii <- 1 

      probs <- exp( - ( KM - ( gpcm_y[,ii] + phi[ii,rr] ) )^2 / psi[ii,rr] / 2 ) 

      probs <- probs / rowSums(probs ) 

      probs <- sirt::rowCumsums.sirt(probs) 

      vals <- sirt::rowIntervalIndex.sirt(matr=probs, rn=stats::runif(N)) 

      dat.rr[,ii] <- vals 

    } 

    dat4 <- rbind( dat4, dat.rr ) 

  } 

   

  datS4 <- data.frame( "pid"=rep(1:N, length(RR4)), "rater"=rep(min(RR4):max(RR4), each=N), 

dat4) 

  datS4 <- datS4[order( datS4$pid ), ] 
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  #Combine 

  spiral_data <- rbind(datS1, datS2, datS3, datS4)  

  rownames(spiral_data) <- NULL 

  return(spiral_data) 

} 
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