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Abstract

The Rarita-Schwinger operator Q was initially proposed in the 1941 paper by Rarita

and Schwinger to study wave functions of particles of spin 3/2, and there is a vast amount

of physics literature on its properties. Roughly speaking, 3/2−spinors are spinor-valued

1-forms that also happen to be in the kernel of the Clifford multiplication. Let X be a

simply connected Riemannian spin 4−manifold. Associated to a fixed spin structure on X,

we define a Seiberg-Witten-like system of non-linear PDEs using Q and the Hodge-Dirac

operator d∗ + d+ after suitable gauge-fixing. The moduli space of solutions M contains

(3/2-spinors, purely imaginary 1-forms). Unlike in the case of Seiberg-Witten equations,

solutions are hard to find or construct. However, by adapting the finite dimensional

technique of Furuta, we provide a topological condition of X to ensure that M is

non-compact; and thus, M contains infinitely many elements.



Acknowledgements

I could not be where I am today without the help of so many wonderful people in my

life. This thesis is dedicated to them.

First, I would like to give thanks to Dr. Jeremy Van Horn-Morris. His guidance and

friendship has helped me through some of the most difficult times of my life. Every

mathematical discussion with Jeremy has always been fruitful and illuminating.

I am grateful for the constant support from my wife, Jueun Moon. Her encouragement has

always been an integral part to my development as a husband and as a mathematician. I

am also thankful for the unconditional love that has been given to me from my family: My

parents–Mr. Lam Tung Nguyen and Mrs. Van Thi Thu Nguyen, my brother-in-law and my

sister–Anthony and Hannah Quaranta.

I appreciate the encouragement of Dr. John Ryan, who first introduced me to the

Rarita-Schwinger operator and took the time to explain to me various important analytical

properties of this operator carefully. I want to thank all my close friends who are always

willing to come to my aid in time of needs. I give my thanks to my highschool teacher, Mr.

Sy Phu Nguyen who nurtured my mathematical curiosity at a young age. Finally, I would

like to give my gratitude to the late Dr. John Roe, whose life had taught me that it is first

and foremost important to be a compassionate person.



Table of Contents

1 Introduction 1

2 Background 13

2.1 Connections on vector bundles . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Curvature of a connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Characteristic classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Hodge theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Spin geometry 26

3.1 Clifford algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Clifford bundle and the generalized Dirac operator . . . . . . . . . . . . . . . 35

3.3 Connection and curvature revisited . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 The generalized Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 The exterior algebra bundle, its canonical connection, and the Dirac operator

for the exterior algebra bundle . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 Pin groups and Spin groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.7 Spin structures and spin manifolds . . . . . . . . . . . . . . . . . . . . . . . 81

4 Analysis of Dirac operator 92

4.1 General properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 Global Kuranishi model 110

6 Rarita-Schwinger-Seiberg-Witten equations 115

6.1 Rarita-Schwinger operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Gauge theoretic equations for the Rarita-Schwinger operator . . . . . . . . . 118

6.3 Pin(2)-equivariance of the RSSW functional . . . . . . . . . . . . . . . . . . 120



7 Finite dimensional approximation of the RSSW functional 125

7.1 Linearization of the RSSW functional . . . . . . . . . . . . . . . . . . . . . . 125

7.2 Kuranishi model for the RSSW functional . . . . . . . . . . . . . . . . . . . 128

8 Proof of Theorem 1.8 133

8.1 Equivariant K-theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.2 Proof of Proposition 8.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

9 Proof of Theorem 1.10 140

9.1 The elliptic complex of the RSSW equations . . . . . . . . . . . . . . . . . . 140

9.2 Parametrized transversality . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

References 150



1 Introduction

Gauge theory is the study of the analysis of certain partial differential equations

stemmed from particle physics. Its applications to low-dimensional topology are of

significance. Ever since the 80s, from the work of Atiyah, Donaldson, and Witten, gauge

theory has proved to be a powerful tool. Its advances have lead to some of the powerful

results in problems of smooth 4-dimensional manifolds such as Donaldson’s Diagonalization

Theorem, Furuta’s 10/8th theorem, etc.

One of the classical invariants of 4-manifolds is intersection forms. Given a 4-manifold

X, for simplicity assume that X is closed and simply connected, embedded oriented

surfaces in X can intersect in interesting ways. If the surfaces intersect transversally, one

would only have a finite number of intersections. The intersection form QX evaluated at

the surfaces is exactly the sign count of the intersections. Algebraically, since every

embedded oriented surface in X can be represented by a homology class in H2(X;Z), QX

can also be thought of as the composition

H2(X;Z)×H2(X;Z) → H4(X;Z) → H4(X;Z) ∼= Z,

where the first map is given by the cup product and the second map is Poincare duality.

As a result, QX is a unimodular symmetric form defined on finite-generated free abelian

group. The invariants of QX are tied directly to invariants of X. For example,

rankQX = b2(X), where b2 is the usual second betti number of X; and the signature of QX

is exactly the signature of the 4−manifold. Thus, intersection form is a homotopy invariant

of 4−manifolds, i.e, two manifolds which have inequivalent intersection forms cannot be

homotopically equivalent. However, what is even more remarkable is that in 1982, Michael

Freedman proved a theorem that suggests that the homeomorphism type of the manifold

depends only on the intersections forms [8]. Effectively, Freedman’s theorem affirms the

4−dimensional topological Poincare conjecture.

1



Coming to the smooth category, the situation can be a bit trickier. Since for every

smooth 4−manifold, its Kirby-Siebenmann class must vanish. Thus, it is reasonable to

suspect that the intersection form may carry some information about smooth structure of

the manifold. Specifically, there are two natural questions: Given a symmetric unimodular

form Q

Question 1.1. Can Q be realized as the intersection form of a closed simply connected

smooth 4−manifold?

Question 1.2. How many non-diffeomorphic 4−manifolds can realize Q?

These two questions constitute what is called geography problems of simply connected

smooth 4-manifolds.

Regarding question 1, we now almost have a complete answer. If Q is definite,

Donaldson in 1983 proved that Q can be realized on a smooth manifold if and only if

Q ∼= ±I [4]. The proof of this result is the first striking and unexpected application of

gauge theory to the geography problems. The key ingredient in Dondaldson’s proof is that

the moduli space of solutions to the Yang-Mill equation F+
A = 0 associated to a certain

principal SU(2)−bundle P → X, as a smooth oriented 5−dimensional manifold, is a

cobordism between #kCP 2 (or #kCP 2) and X.

Another proof of Donaldson’s theorem can also be obtained by gauge theory of the

Seiberg-Witten equations [7]. Given a spin-c structure on X, the Seiberg-Witten equations

are

D+
Aψ = 0, F+

A = ρ−1(ψψ∗)0 + η,

where D+
A is the twisted Dirac operator given by a choice of a unitary connection A on the

determinant line bundle associated to a spin-c structure of X, ψ is a positive spinor and

(ψψ∗)0 is the traceless part of the endomorphism on the spinor bundle, η is some generic

self-dual 2-forms on X. Fitted into abelian U(1)−gauge theory, the analysis of the

Seiberg-Witten equations are much simpler than the Yang-Mill equation in Donaldson
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theory. What is even more ’miraculous’ is that the moduli space of solutions to the

Seiberg-Witten equation is a priori compact! Armed with this key fact, the proof followed

from a contradiction argument: When the intersection form Q is negative definite, then

with respect to a spin-c structure whose first Chern class of its determinant line bundle is

equal to an arbitrarily given characteristic vector of Q, the virtual dimension d+ 1 of the

moduli space of solutions cannot be positive, i.e,

d+ 1 =
1

4
(Q(w,w)− 3σ(X)− 2χ(X)) =

1

4
(Q(w,w) + b2(X)) ≤ 0,

where σ(X) is the signature of the 4−manifold X. This is because, otherwise, truncating

around the reducible point of the moduli space would obtain a contradiction to the

Pontrjagin’s theorem. Now if Q is non-standard, Elkies showed that there is a

characteristic vector w such that

−Q(w,w) = |Q(w,w)| < rankQ = b2(X).

This is a contradiction to the previous claim, which implies that Q ∼= −I.

In the case Q is indefinite, Q could be either even or odd. A classification theorem of

Hasse-Minkowski if Q is odd, it is equivalent to a diagonal matrix whose entries are ±1,

otherwise, Q ∼= pE8⊕ q H, where p ∈ Z and q ∈ N. We already know that #kCP 2#lCP 2

can realize Q when Q is odd indefinite. As a result, what remains is the case of even

indefinite intersection forms.

Since a smooth 4−manifold is spin if and only if its intersection form is even, spin is

the right category to look for manifolds that can realize even indefinite forms. Furthermore,

Rokhlin’s theorem tells us that signature of a spin manifold must be divisible by 16 [22].

As a result, its intersection form must be equivalent to Q ∼= 2k E8⊕ q H. Without loss of

generality, we may assume k ≥ 0. In 1982, Matsumoto proposed the following conjecture

3



Conjecture 1.3. The form 2k E8⊕ q H can be realized on a simply connected closed

smooth spin 4−manifold if and only if q ≥ 3k.

One direction is rather trivial. If q ≥ 3k, 2k E8⊕ q H can always be realized on

#kK3#q−3k S
2 × S2. Thus, the other direction would be equivalent to the following version

Conjecture 1.4. If X is a simply connected closed smooth spin 4−manifold, then

b2(X) ≥ 11

8
|σ(X)|.

As of right now, the conjecture is still open, though substantial progress has been made

over the years. Donaldson used Yang-Mill equation to show that if H1(X;Z) has no

2-torsions and k = 1, then q ≥ 1 [5]. After the introduction of Seiberg-Witten equations,

Kronheimer improved the Donaldson’s result by removing the torsion condition. In 2001,

Furuta announced a result which is ’closest’ to the 11/8th conjecture thus far

Theorem 1.5 ([10]). If X is a simply connected closed smooth spin 4−manifold, then

b2(X) ≥ 10

8
|σ(X)|+ 2.

Furuta’s proof also relies on the analysis of the Seiberg-Witten equations. However,

what is different about Furuta’s approach is that he considered the Seiberg-Witten

functional F , rather than the moduli space of solutions. The Seiberg-Witten functional is

Pin(2)−equivariant. Exploiting this extra symmetry, Furuta showed that there exists a

finite dimensional approximation of F that also satisfies a certain Borsuk-Ulam hypothesis,

which induces a map between representation spheres of Pin(2). Then an application of

equivariant K-theory deduces the result.

Recently, Hopkins, Lin, Shi, and Xu extended the method of Furuta further and

combined with Mahowald invariants to obtain their 10/8 + 4-Theorem. But they also
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showed that these are best coefficients we can get by the current approaches via

Seiberg-Witten theory.

Theorem 1.6 ([15]). If X is a simply connected closed smooth spin 4−manifold that is not

homeomorphic to either S4, S2 × S2, or K3, then

b2(X) ≥ 10

8
|σ(X)|+ 4.

The two crucial points in the proofs of Theorem 1.5 and Theorem 1.6 lie in the fact

that the moduli space of solutions to the Seiberg-Witten equations is already compact, and

the presence of extra symmetry coming from Pin(2). The finite dimensional technique is

necessary to put every ingredient in finite dimension context, which is really the most

technical part of the proof. The majority of this thesis focuses on this technique but

applies to the setting where the Rarita-Schwinger operator replaces the usual Dirac

operator in the Seiberg-Witten equations.

The Rarita-Schwinger operator Q was first introduced by Rarita and Schwinger in a

1941 paper to describe the wave functions of the so-called 3/2-spinors [20]. These higher

spinors that live in kernel of Q are called Rarita-Schwinger fields. In Physics,

Rarita-Schwinger fields are important in the study of supergravity and superstring theory;

thus, its literature in this area of science is vast. In Mathematics, this operator has not

been studied as much with the exception in the classical context of Clifford analysis.

Within geometric setting, Branson and Hijazi showed that Q is conformally invariant;

they also wrote down a Weitzenbock-type formula for Q2 [3]. Based on its Weitzenbock

formula, Q2 has a lower order term whose analysis is not immediate under usual geometric

hypothesis, which could imply that the relation between the kernel of Q with the geometry

of the underlying space is harder to achieve. M. Wang also studied the role the solutions to

Q in the deformation theory of Einstein metrics that admits parallel spinors [25]. Recently

in 2018, Homma and Semmelmann considered the problem of "counting solutions" to Q
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[14]. In their work, they gave a complete classification of positive quaternion-Kahler

manifolds and spin symmetric spaces that have non-trivial Rarita-Schwinger fields. In 2021,

a paper of Bar and Mazzeo showed the existence of a sequence of closed simply connected

negative Kahler-Einstein spin manifolds for which the dimension of KerQ tends to infinity

[2]. These results could allude to the fact that Q in the setting of a Seiberg-Witten-type

theory may have something new to say about smooth simply connected spin 4−manifolds.

In this thesis, we study the Rarita-Schwinger-Seiberg-Witten equations (RS-SW). From

appearance, the RS-SW equations do not look that much different from the usual

Seiberg-Witten equations. We shall save a proper introduction later. But for now, given a

closed spin 4−manifold X and a spin structure s, associated to a line bundle L→ X, the

RS-SW equations read as

Q+
Aψ = 0, F+

A = ρ−1(ψψ∗)0 + η, (1.1)

where A is a unitary connection on L, ψ is a twisted positive 3/2−spinor, η is some fixed

self-dual 2−form, and (ψψ∗)0 is a section of isu(s+) that is a traceless self-adjoint

endomorphism. The equations still fit into abelian gauge theory with structure group U(1).

Let X be a 4−dimensional smooth spin manifold that is closed, and s1/2 be a fixed

spinor bundle over X. Since X is smooth, one has a Riemannian metric g on X. We will

also fix this metric. Denote ρ : TX ⊗ s1/2 → s1/2 by the Clifford multiplication. As usual,

since the manifold is even dimensional, there is an orthogonal decomposition of

s1/2 = s+1/2 ⊕ s−1/2 such that the Clifford multiplication ρ exchanges the chirality.

Consider ker ρ, which is another vector bundle over X. This bundle is often denoted by

s3/2 and its sections are called 3/2−spinors. With respect to the chirality of s1/2, we also

have the so-called positive and negative 3/2−spinor bundles s±3/2. Note that there is an

orthogonal decomposition TX ⊗ s±1/2 = s∓1/2 ⊕ s±3/2.

On the bundle s1/2, there are two natural first order differential operators. The Dirac

6



operator D : Γ(s1/2) → Γ(s1/2) is defined by D = ρ ◦ ∇s1/2 ; and the twistor operator

P : Γ(s1/2) → Γ(s3/2) is given by P = π3/2 ◦ ∇s1/2 . Here, ∇s1/2 is the canonical spinor

connection with respect to the fixed metric g on X ,and π3/2 is the projection of

T ∗X ⊗ s1/2 = TX ⊗ s1/2 → s3/2. Taking into account of the chirality, we note that

D± : Γ(s±1/2) → Γ(s∓1/2). Whereas, P± : Γ(s±1/2) → Γ(s±3/2).

Next, consider the twisted Dirac operator D± : Γ(s±1/2 ⊗ TX) → Γ(s∓1/2 ⊗ TX). The

compatible connection on this Clifford bundle is constructed by twisting the spinor

connection ∇s1/2 by the Levi-Civita connection ∇LC in the usual way. Let ι be the

embedding of s∓1/2 into s±1/2 ⊗ TX. Then the twisted Dirac operator D± takes the matrix

form, with respect to the decomposition TX ⊗ s±1/2 = s∓1/2 ⊕ s±3/2, as

D±
TX =

−1
2
ι ◦D± ◦ ι−1 2ι ◦ P+∗

1
2
P+ ◦ ι−1 Q±

 .

The operator Q± : Γ(s±3/2) → Γ(s∓3/2) given by Q± = π∓
3/2 ◦D

±
TX |Γ(s±

3/2
) is called the

Rarita-Schwinger operator. Of course, the whole construction carries out when we want to

define twisted version of the Rarita-Schwinger operator for 3/2−spinors with coefficients in

some line bundle L.

Let L be any complex line bundle over X and A be any unitary connection on L. We

denote Q±
A by the twisted Rarita-Schwinger operator associated to the bundles Γ(s±3/2 ⊗ L),

and PA by their corresponding twistor operators. Besides looking for twisted

Rarita-Schwinger fields, we impose a curvature condition for A. What follow is referred as

(unperturbed) Rarita-Schwinger-Seiberg-Witten equations (RS-SW),

Q+
Aψ = 0, F+

A = ρ−1(ψψ∗)0 := ρ−1(µ(ψ)) (1.2)

If A0 is a fixed reference unitary connection of L, then every other connection

A = A0 + ia, where a ∈ Ω1(X). We introduce some notations that are going to be used

7



throughout the notes.

Definition 1.1. We define C = Γ(s+3/2 ⊗ L)⊕ Ω1(X) to be the configuration space of the

RS-SW equations. R = Γ(s−3/2 ⊗ L)⊕ Ω+(X) is denoted by its range space.

The gauge group G = {Smooth maps X → S1} acts on C and R by pulling-back the

connections and left multiplying with conjugation on the twisted 3/2−spinors. Not much

different from the standard Seiberg-Witten theory, we note that if (ψ,A) is a solution to

(1.1), then elements of its orbit by the group action of G are also solutions to the RS-SW

equations. Furthermore, we also have a local slice theorem, i.e, there is a representative

A0 + ia in the orbit of A such that d∗a = 0. Therefore, when taking into account of the

gauge symmetry, the solutions of the following equations are what we study in this thesis

Q+
A0
ψ + π−

3/2 ◦ ρ(a)ψ = 0, d∗a = 0, d+a+ F+
A0

= ρ−1(µ(ψ)). (1.3)

Question 1.7. Is there any non-trivial solution to equations (1.2)?

To answer part of this question, we provide a necessary condition which ensure that

there is always non-trivial solution to equations (1.2) when L is a trivial line bundle. In

this situation, we may take A0 to be trivial, then (1.2) can be rewritten as

Q+ψ + π−
3/2 ◦ ρ(a)ψ = 0, d∗a = 0, d+a = ρ−1(µ(ψ)). (1.4)

Let D = Q+ ⊕ (d∗ ⊕ d+) be a map from C → R⊕ Ω0 and Q : C → R⊕ Ω0 be quadratic

map given by Q(ψ, a) = [(π−
3/2(a)ψ)]⊕ [−ρ−1(µ(ψ))]. It turns out that the so-called

3/2−monopole F = D⊕ Q is also Pin(2)−equivariant. Therefore, when the finite

dimensional technique is applied to F , with computations in Pin(2)−equivariant

K-Theory, we proved that

Theorem 1.8. Suppose that the moduli space of solutions M := F−1(0) for the

Rarita-Schwinger-Seiberg-Witten equations on a closed, simply connected, spin 4−manifold

8



X with b+2 (X) ≥ 1 is compact. Then we must have

b2(X) ≥ 15

4
σ(X) + 2.

The above result obviously says something stronger, i.e, we have a topological

necessary condition for an analytic result. In particular if b2(X) < 15/4σ(X) + 2, M is

never compact regardless of an a priori choice of Riemannian metric imposed on X. And

thus, it must contain solutions of RS-SW equations other than the trivial one. Moreover,

Theorem 1.8 tells us that the moduli space of solutions of the RS-SW equations is not

expected to always be compact like the usual Seiberg-Witten equations.

Question 1.9. Is there any closed, simply connected, spin 4−manifold with compact M?

This would be the next natural question to ask in consideration of Theorem 1.8. It is

not hard to manufacture manifolds with non-compact M. For example, for any n < 20,

K3#n S
2 × S2 would not have compact moduli space of solutions with respect to all

Riemannian metrics. Similarly, M associated to #nK3 is also never compact for all n.

More interesting examples of manifolds that always posses non-compact M are those

constructed by Akhmedov, Park, and Urzua [1]. The sequence of manifolds {Mk}k≥2 they

constructed consists only of simply connected spin symplectic 4−manifolds that are near

the BMY line.

On the other hand, any smooth spin 4−manifold that has indefinite intersection form

with negative signature would automatically satisfy the 15/4−bound above by direct

calculations. Furthermore, a "perturbed" version of M associated to such manifold is

actually empty (hence obviously compact)! In particular, we also will prove the following

transversality result

Theorem 1.10. Suppose X is a simply connected smooth spin 4−manifold such that

b+2 (X) ≥ 1. Furthermore assume that for every (a, ψ) an solution to the RSSW equations,

9



H2
(a,ψ) = 0. Then there is a generic self-dual 2−form ω on X such that the following holds.

The gauge equivalence classes of pairs [a, ψ] that solves the perturbed RSSW equations:

Q+ψ + π−(a · ψ) = 0, d+a = ρ−1(µ(ψ)) + ω

forms a smooth manifold of dimension

d =
19

4
σ(X)− b+2 (X)− 1.

With respect to Mη being compact, one can also obtain the 15/4−bound as in

Theorem 1.8. Thus it is interesting to know if there is a manifold with d ≥ 0 and Mη is

also compact non-trivially.

Question 1.11. Is there a Seiberg-Witten-type invariant associated to the RS-SW

equations?

After the transversality result above, this should be a natural question to consider.

Obviously when M (or Mη) is a priori compact, the same program to define the usual

Seiberg-Witten invariant can be applied. However it is rather complicated when the moduli

space of solutions is not compact. There is a possible direction one can take to deal with

non-compactness issue.

One approach is via higher index theory and analytic K-homology theory. It can be

shown that Mη is a complete Riemannian manifold. On top of that, there is a line bundle

L → Mη given by the space of solutions to RS-SW equations quotient out by the base

gauge group G0. Then the twisted signature operator DL with coefficients in L defined a

K−homology class [DL] ∈ K∗(Mη). A notion of coarse equivalence should ensure that this

class [DL] should be invariant under any generic path of perturbation in H+(X;R) up to a

"universal" K−homology. See [12] and [13] for more details.

We shall save the developments of the ideas discussed above in our future work.
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Remark 1. On R4, (1.2) is just a system of Seiberg-Witten equations for multi-monopoles

{ψi}3i=0 that Taube and several other people have considered with an extra condition that

−ψ0 + Iψ1 + Jψ2 +Kψ3 = 0, where I, J,K are the usual Pauli spin matrices.

Remark 2. In general, by Theorem 1.8, X#S2 × S2 might still have non-compact moduli

space of solutions under a certain topological data assumed about X. If there is a smooth

invariant associated to the RS-SW equations, then it is possible that such invariant of

X#S2 × S2 is non-zero. In contrast to Seiberg-Witten theory, Taubes showed that the

Seiberg-Witten invariant of such manifold would always be zero [16].

Remark 3. Recall that in Seiberg-Witten theory, solutions to the Seiberg-Witten equations

have a magical a priori C0−bound which is crucial in the proof of compactness of the

moduli space of solutions. Theorem 1.8 tells us compactness of solutions is not expected for

RS-SW under a certain topological condition. However, it is interesting to know if there is

still an analogous statement that can be made about solutions to RS-SW equations.

In particular, what sufficient conditions can be said about the Riemannian metric g

such that Mg (perturbed or not) is compact? Due to two technicality that need to be

resolved, standard techniques cannot be applied directly in this setting as one would hope:

A, there is a "divergence" term that appears in Q2
A. B, |µ(ψ)|2 ̸= |ψ|4/2 just like in the

multi-monopole setting.

The organization of the thesis is as follows:

In section 2, we briefly introduce some notions about differential geometric aspect of

connections and curvatures associated to vector bundles. Basic ideas about characteristic

classes and Hodge theory will also be discussed.

In section 3, we discuss some elementary facts about Clifford algebra and how it ties

into spin geometry and the construction of Dirac operators.

In section 4, we work out some details about basic facts of the generalized Dirac

operators. A discussion about Sobolev spaces in the context of analysis of sections of
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vector bundles is included.

In section 5, we recall the setup of finite dimensional approximation via global

Kuranishi model. Such models were used by Furuta in the proof of his famous

10/8th–Theorem. We closely adapt Furuta’s technique in our setting.

In section 6, we re-introduce the construction of Rarita-Schwinger operators in greater

details and calculate the index of a twisted Rarita-Schwinger operator. Then we re-state

our variant of the Seiberg-Witten equations using the Rarita-Schwinger operator. We shall

show that the equations are invariant under the gauge group action G, and in fact there is

a gauge fixing condition just like in the usual Seiberg-Witten setting. We will also prove

that the equations have an extra Pin(2)−symmetry when L = C. Note that this

Pin(2)−symmetry is a special phenomena for only "trivial" spinc structure over X, the

technique that we use for the proof of Theorem 1.8 cannot be extended to a general spinc

bundle.

In section 7, we prove various analytical facts about the functional F of our RS-SW

equations to set up for its finite dimensional approximation. Specifically, we show that the

linearization dQ of the quadratic part Q of (1.4) is a Pin(2)−equivariant compact operator

at any configuration whose norm is less than a prefixed R0 > 0. Moreover, the union over

B(0, R0) of all the images of the closed unit ball via dQ has compact closure.

In section 8, we briefly recall some facts about equivariant K−theory and provide a

proof Theorem 1.8. The use of equivariant K−theory in our proof is similar to Furuta’s

with a minor difference: we show that if Mg is compact, then there is a finite dimensional

approximation for F that can be viewed as Pin(2)−equivariant map between

Pin(2)−representation spheres. And such a map cannot exist unless

b2(X) ≥ 15σ(X)/4 + 2.

In section 9, we discuss the transversality of the moduli space of solutions to the

perturbed version of equation (1.4). The technique of proof is standard, and it almost

follows verbatim in the case of classical Seiberg-Witten equations. The crucial feature of
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the proof is the Rarita-Schwinger operator also enjoys analytic continuation just like the

Dirac operator.

2 Background

The majority of the content of this section is based on Chapter 1-2 of [21], and Chapter

1 of [18]. More detailed exposition on Hodge theory and elliptic complexes can also be

found in many excellent resources, for example, Chapter 1.5 of [11] and Appendix III of [6].

2.1 Connections on vector bundles

Suppose M is a smooth manifold of dimension n, a vector bundle V over M is defined

by (V, π,M,F), where F is a C or R− finite dimensional vector space, V is a smooth

manifold, π : V →M is a smooth surjective map such that for any point p ∈M and a

coordinate patch U containing p, π−1(U) ∼=diff U × F. Naturally, by this definition, we

immediately deduce that Vp := π−1(p) ∼=diff {p} × F; such thing is called a fiber of the

vector bundle V . A section of the vector bundle V is a smooth map s :M → V such that

π ◦ s = IdM . The collection of all sections of the vector bundle V will be denoted Γ(V ).

Example 2.1. One of the first elementary examples of vector bundle is the tangent bundle.

Let M be a smooth manifold of dimension n. The tangent bundle TM :=
⊔
p∈M TpM is a

real vector bundle over M of dimension n. π will be the map that takes any vector v who

belongs to some tangent space TpM to p. Consequently, each fiber would be the tangent

space TpM . The sections of TM are just vector fields on M . Hence, Γ(TM) = X(M).

Example 2.2. Another interesting example of a vector bundle is the cotangent bundle.

Let M be a smooth manifold of dimension n. Note that for each p ∈M , the tangent space

TpM is a fiber of the tangent bundle, thus can be identified with a n−dimensional real

vector space over R. Then the cotangent bundle is defined to be T ∗M :=
⊔
p∈M T ∗

pM ,

where T ∗
pM is the dual of the vector space TpM . So each fiber of the cotangent bundle is
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the cotangent space T ∗
pM , and the space of sections Γ(T ∗M) = Ω1(M), which is exactly all

the 1−form on M .

Example 2.3. In a similar manner like the above example, for any given vector bundle

π : V →M , we can also construct another vector bundle π∗ : V ∗ →M . A more interesting

construction is the vector bundle of the exterior algebra Λ∗V over M . We decree that each

fiber of the exterior algebra bundle is Λ∗Vp so that the map π : Λ∗V →M is given by

α 7→ p, if α ∈ Λ∗Vp, for some p ∈M .

It is often helpful to think of vector bundle as a family of vector spaces, parametrized

by a smooth underlying manifold. Besides the definition presented above, vector bundles

can be constructed via transition functions. Let {Uα : α ∈ A} be an open cover of M and

F = C or R. Suppose for each α, β ∈ A, we have the following smooth transition functions

gαβ : Uα ∩ Uβ → GL(m,F )

that sastisify the cocylce condition gαβgβγ = gαγ on Uα ∩ Uβ ∩ Uγ. Denote Ṽ by the set of

all triples (α, p, v) ∈ A×M × Fm where p ∈ Uα. We define an equivalence relation ∼ on Ṽ

as follows:

(α, p, v) ∼ (β, q, w) if and only if p = q ∈ Uα ∩ Uβ, v = gαβ(p)w.

Let V be the set of equivalence classes [α, p, v] and let π : V →M be the projection

map that takes [α, p, v] to p. There is a unique manifold structure on V such that

(V, π,M, Fm) also satisfies the definition of vector bundle above.

Definition 2.1. Suppose M is a smooth n−dimensional manifold, and π : V →M is a

vector bundle over M . A connection on V over M is a linear map

∇ : X(M)⊗ Γ(V ) → Γ(V ) such that for all vector field X ∈ X(M) and s ∈ Γ(V ),
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∇Xs ∈ Γ(V ); and for any smooth function f ∈ Γ(M), we have

∇fXs = f∇Xs; and ∇X(fs) = f∇Xs+ (Xf)s.

It is most beneficial to think about connection as a natural generalization of the Lie

derivative and Lie bracket. In the case of Lie derivative, LX(f) = Xf is a connection

defined for the line bundle over the manifold M ; while in the case of Lie bracket,

[X, Y ] = XY − Y X is a connection on the tangent bundle TM . Thus we say that what

∇Xs calculates is a covariant derivative of s in the X direction.

For a fixed s ∈ Γ(V ), the map X 7→ ∇Xs defined on X(M) is Γ(M)−linear; hence it

can be considered as a homomorphism between Γ(M)−modules. Note that then the values

of ∇Xs at a point p ∈M depends on the value of X at p. Therefore at p, we define an

element (∇s)(p) ∈ End(TpM,Vp) ∼=isom Vp ⊗ T ∗
pM by (∇s)(p)(Xp) = ∇Xps. Thus

connection can be considered as a linear map

∇ : Γ(V ) → Γ(V ⊗ T ∗M)

such that ∇(fs) = f∇s+ s⊗ df, for any smooth function f ∈ Γ(M) and s ∈ Γ(V ). In

other words, connection is a vector-bundle valued 1−form on M .

Now let’s specify the the rank of the vector bundle π : V →M to be l. We choose a

coordinate patch U on M so that V has a local trivialization. Then we have a frame field

(e1, e2, · · · , el), where ei(p) = ϕ−1(p, ei), ϕ is a paramatrization of U × F and (ei) is the

standard basis for F. Furthermore, since X(U) = spanΓ(U){∂1, ∂2, · · · , ∂n}, where

∂i := ∂/∂xi , we have:

∇∂iej =
l∑

k=1

ωkj (∂i)ek.

We denote ωkj (∂i) := Γkji, and we call this the Christoffel symbols of the connection. If
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s ∈ Γ(V |U), we can write s =
∑l

j=1 s
jej, where sj ∈ Γ(U). By linearity, we have:

∇∂is =
l∑

j=1

∇∂is
jej =

l∑
j=1

(sj∇∂iej + (∂is
j)ej) (2.1)

=
l∑

j,k=1

sjΓkjiek +
l∑

j=1

(∂is
j)ej (2.2)

=
l∑

k=1

(
l∑

j=1

Γkjis
j

)
ek +

l∑
j=1

(∂is
j)ej. (2.3)

If we identify s as a smooth map (s1, s2, · · · , sl)T : U → F, then (3) can be re-interpreted as

∇∂i =Γi + ∂i, (2.4)

where Γi := (Γkji), which is an (l × l)−matrix of Γ(U)−valued entries belonging to

End(Γ(V |U)) ∼=isom Γ(End(V |U)). Equation (2.4) is informative in the sense that it gives us

the necessary and sufficient condition for the existence of connection locally: If a connection

exists on a vector bundle over a manifold, locally we have these matrices of Christoffel

symbols. Conversely, given a local trivialization of a vector bundle over a manifold, a

connection is defined locally by a choice of n matrices Γ1,Γ2, · · · ,Γn ∈ Γ(End(V |U)).

Proposition 2.1. (Existence of global connection) If M is a paracompact smooth

manifold of dimension n, and π : V →M is a vector bundle over M , then there exists a

global connection on V over M .

Proof. The key here is paracompactness. Let {Uα} be an open cover of M that consists of

coordinate patches and V |Uα is a local trivialization of the vector bundle. Then we have a

partition of unity {ρα} on M that is subordinated to such open cover. By the above

observation, we know that from a choice of n matrices Γ1, · · · ,Γn ∈ Γ(End(V |Uα)), we
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obtain a local connection ∇Uα on V |Uα . Then define

∇ :=
∑
α

ρα∇Uα ,

which is a desired global connection on V .

Definition 2.2. A connection ∇ on the tangent bundle TM over a smooth manifold M is

said to be symmetric if and only if for every vector field X and Y , we have

∇XY −∇YX = [X, Y ].

Definition 2.3. A connection ∇ on TM over a Riemannian manifold (M,h) is compatible

with the metric if and only if for any three vector fields X, Y1, Y2 ∈ X(M), we have

⟨∇XY1, Y2⟩+ ⟨Y1,∇XY2⟩ = X⟨Y1, Y2⟩.

What we would like to do next is defining the "canonical" connection in the setting of

Riemannian manifold. Recall that M is a Riemannian manifold if it is a smooth manifold

equipped a map g : p 7→ ⟨ , ⟩p defined on M that is a smoothly varying inner-product on the

fibers of TM . g(p) = ⟨ , ⟩p is what we call a Riemannian metric on M .

Theorem 2.2. (Levi-Civita) A paracompact Riemannian manifold M possesses a unique

connection that is symmetrical and compatible with the metric. This is called the

Levi-Civita connection, denoted by ∇LC.

Proof. Suppose that such a connection ∇ exists on the tangent bundle TM exists. We

shall show that it is is unique. In terms of local coordinate, by compatibility, we have:

⟨∇∂i∂j, ∂k⟩+ ⟨∂j,∇∂i∂k⟩ = ∂i⟨∂j, ∂k⟩.

Denote gjk := ⟨∂j, ∂k⟩ by a smooth function on M . Then the metric is represented by the
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n× n symmetric matrix G = (gjk). Furthermore,

∂igjk =

〈
n∑
r=1

Γrji∂r, ∂k

〉
+

〈
∂j,

n∑
q=1

Γqki∂q

〉
(2.5)

=
n∑
r=1

Γrji⟨∂r, ∂k⟩+
n∑
q=1

Γqki⟨∂j, ∂q⟩ (2.6)

=
n∑
r=1

Γrjigrk +
n∑
q=1

Γqkigjq (2.7)

=
n∑
a=1

(Γajigak + Γakigaj). (2.8)

Similarly, we also have:

∂jgki =
n∑
a=1

(Γakjgai + Γaijgak). (2.9)

∂kgij =
n∑
a=1

(Γaikgaj + Γajkgai). (2.10)

Now using the fact that ∇ is symmetric, combine (2.8), (2.9) and (2.10), we deduce

∂igjk + ∂jgki − ∂kgij = 2
n∑
a=1

Γaijgak.

The derived equation above uniquely determines the Christoffel symbols, for G is an

invertible matrix. This shows that if such a connection ∇ exists on TM , then it has to be

unique. Conversely, to construct the Levi-Civita connection, locally choose an appropriate

collection of symbols Γaij that satisfy the above equations (This can always be done because

the matrix of coefficients of the linear system of equations like above is G). Such choice

gives us a local formula for symmetric and compatible connection. Then use partition of

unity to obtain ∇LC .

18



2.2 Curvature of a connection

In the previous subsection, we see that in local coordinate, a connection ∇ on a vector

bundle V →M can be written as ∇ = d+ A, where A ∈ Γ(T ∗M ⊗ End(V )). Often, A is

called a connection matrix. One can introduce the subscript A to ∇ written as ∇A to

emphasize the dependence of a connection and its connection matrix.

The map ∇A : Γ(V ) → Γ(T ∗M ⊗ V ) can be extended to a map

dA : Γ(ΛkT ∗M ⊗ E) → Γ(Λk+1T ∗M ⊗ E)

by defining dA(ω ⊗ s) = dω ⊗ s+ (−1)|ω|ω ⊗∇As, where ω ∈ Ωk(M) and s ∈ Γ(V ). One

should note that dA is a generalization of the usual exterior derivative of the de Rham

complex. Unlike the exterior derivative, d2A : Γ(E) → Γ(Λ2T ∗M ⊗ E) is not generally zero.

However,

d2A(fs) = dA(∇A(fs)) = dA(df ⊗ s+ f∇As) (2.11)

= d2f ⊗ s− df ⊗∇As+ df ⊗∇As+ fdAdAs = fdAdAs. (2.12)

Therefore, d2A is linear over functions and can be regarded as a tensor field! We call d2A the

curvature of a connection and we shall use FA to denote it by a section of

Λ2T ∗M ⊗ End(V ).

In local coordinate if we write ∇A = d+ A, then

d2As = (d+ A)(ds+ As) = d(As) + A(ds) + (A ∧ A)s (2.13)

= (dA)s− A(ds) + A(ds) + (A ∧ A)s = (dA+ A ∧ A)s. (2.14)

Furthermore, similar calculations show that dAFA = 0. This is called the Bianchi identity.

Remark 4. If V is a vector bundle with structure group O(l), (2.14) tells us locally FA is a
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2-form with value in skew-symmetric matrices. If V is a complex vector bundle with

structure group U(l), then FA is a 2-form with value in skew-hermitian matrices. In

particular, when V is a complex line bundle (l = 1), the transition functions transform

local representations FA in such a way that they all agree on the overlaps. Thus, we arrive

at a globally defined purely imaginary 2-form FA on M . Note that Bianchi identity would

imply that dFA = 0, which means that [FA] ∈ iH2
dR(M).

2.3 Characteristic classes

In the previous subsection, we see that given a connection ∇A on a vector bundle, there

is a connection matrix A that is locally defined. The local data of FA is glued together

according to a certain transformation

FAα = gαβFAβ
g−1
αβ on Uα ∩ Uβ.

The transformation above allows us to extract topological invariant of vector bundles from

connection. To see this, for now we assume that our vector bundle has structure group

U(m) and ∇A is a compatible connection. This means that locally FA is skew-adjoint

matrices-valued two forms. As a result,

(
i

2π
FAα

)k

is self-adjoint matrices-valued two forms for any natural number k. Taking its trace, we get

a differential form that is real valued. Note that trace is invariant under conjugation. So we

have a real-valued 2k−form denoted by τk(A). Using Bianchi indetity, one can show that

Lemma 2.3. For each k, dτk(A) = 0. Therefore, [τk(A)] ∈ H2k
dR(M).

What is even more remarkable about the cohomology class [τk(A)] is the following
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Proposition 2.4. [τk(A)] is independent of the choice of compatible connection ∇A and

indpendent of the choice of hermitian metric on the U(m)−vector bundle.

Proof. First, it is not hard to realize that since pull back of a curvature of a connection is

exactly the curvature of a pull back connection, τk(f ∗A) = f ∗τk(A). Now let V be a

Hermitian bundle over M and ∇A, ∇B be two compatible connections of V . Consider the

bundle V × [0, 1] →M × [0, 1]. Then under a local trivialization U × [0, 1] of V × [0, 1]

where U is a local trivialization of V , the pull-backs of ∇A and ∇B are given by

∇π∗A = d+ π∗A, ∇π∗B = d+ π∗B.

Here π :M × [0, 1] →M is a projection onto the first component. Note that ∇π∗A and

∇π∗B are now compatible connections of V × [0, 1]. Next, define d+ (1− t)π∗A+ tπ∗B to

be the local presentation of a compatible connection ∇C of V × [0, 1]. If F0, F1 are

embedding of M →M × [0, 1] given by F0(p) = (p, 0) and F1(p) = (p, 1), then

∇F ∗
0 C

= ∇A, ∇F ∗
1 C

= ∇B.

As a result, we have

[τk(A)] = F ∗
0 [τk(C)] = F ∗

1 [τk(C)] = [τk(B)].

Similar argument for different choices of hermitian metric on V and note that space of

Hermitian metrics on V is convex, we would arrive at the same conclusion.

Proposition 2.4 tells us that, to each Hermitian vector bundle V →M , we can associate

to it a cohomology class in H2k
dR(M) given by τk(V ) := [τk(A)], where ∇A is any compatible

connection of V . Such classes are called characteristic classes of the vector bundle. Being a

de Rham cohomology class, it is not difficult to see that if F : N →M is a smooth map
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between manifolds and V →M is a Hermitian vector bundle, then τk(F ∗V ) = F ∗τk(V ).

Characteristic classes can be put together to give rise to other invariant of Hermitian

vector bundle over manifolds. For example, by putting them together as an infinite series

to express tr(exp (iFA/2π)), we have Chern character:

ch(V ) = rank(V ) + τ1(V ) +
1

2!
τ2(V ) + · · ·

But since M is finite dimensional, ch(V ) is an actual polynomial of finite terms living in

the ring H∗
dR(M). Chern character satisfies the following identities

Proposition 2.5. If V1 and V2 are two Hermitian bundles over M , then

ch(V1 ⊕ V2) = ch(V1) + ch(V2) and ch(V1 ⊗ V2) = ch(V1)ch(V2).

Proof. Let ∇A1 and ∇A2 are two compatible connections on V1 and V2. Then a compatible

connection on V1 ⊕ V2 is simply ∇A1 ⊕∇A2 . On the other hand, a connection on V1 ⊗ V2

would be ∇A1 ⊗ 1 + 1⊗∇A2 . As a result, it is not hard to see that the associated curvature

of ∇A1 ⊕∇A2 is FA1 ⊕ FA2 , while the curvature of ∇A1 ⊗ 1 + 1⊗∇A2 is FA1 ⊗ 1 + 1⊗ FA2 .

From here, it is not hard to derive the above formulae.

Characteristic classes can also be combined differently to give rise to chern classes. For

example in 4−dimension topology, we define

c1(V ) = τ1(V ), c2(V ) =
1

2
(τ1(V )2 − τ2(V )).

Higher chern classes could also be defined but they would all vanish because we live in

4−dimensional topology. From Proposition 2.5, one arrive at similar formulae for chern

classes with respect to basic operations on vector bundles.

If V is a real vector bundle, we can complexify it to obtain a hermitian bundle V ⊗ C.

In this case, since the transition functions of V take value in some symmetric matrices, the

transition functions of V ⊗ C is exactly the same as their conjugations. Thus V ⊗ C and
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(V ⊗ C)∗ are isomorphic. This means that c1(V ⊗ C) = 0. However, its second chern class

might be non-zero. For a real vector bundle V , this second chern class is called the

Pontrjagin class and is denoted by

p1(V ) = −c2(V ⊗ C).

In 4-dimensional topology, a special case of real vector bundle we would be interested

in is the tangent bundle TM . From the Pontrjagin class of TM , we construct another

characteristic class called the Â−genus

Â(TM) = 1− 1

24
p1(TM) ∈ H∗

dR(M)

The Â−genus with the chern character are important in the formulae to calculate the

index of Dirac operators as we shall see in later sections.

2.4 Hodge theory

For each smooth compact manifold M , we can associate to it a de Rham complex

0 → Ω0(M) → Ω1(M) → · · · → Ωn(M) → 0.

Each map in the middle is given by the exterior derivative d. From the de Rham complex,

we have the de Rham cohomology H∗
dR(M), which is an invariant of M . In certain

situation, we from each cohomology, we would like to pinpoint a "preferred" representative.

Hodge theory enables us to do exactly that via analysis.

Definition 2.4. Let α be a k−form. We define ∗α to be the unique (n− k)−form such

that for all k−form β, we have

⟨α|β⟩vol = β ∧ ∗α.
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The ∗ operator is linear and has the property that ∗ ∗ α = (−1)nk+kα. The inner product

between forms of the same degree is thought of as the usual inner product of finite

dimensional vector spaces once an orthonormal frame field is specified, see subsection 3.1

for more details.

Definition 2.5. If α is a k−form, we define

d∗α = (−1)nk+k+1 ∗ d(∗α).

Thus d∗α is a (k − 1)−form and (d∗)2 = 0.

Remark 5. Once the Hodge ∗ operator is defined, we can define a global L2−inner product

on forms. With respect to such L2−inner product, d∗ is actually the adjoint of the exterior

derivative. Furthermore, d+ d∗ : Ω∗(M) → Ω∗ is a first order elliptic operator, and is called

the Hodge-Dirac operator. Consequently, the Hodge-Laplacian

∆ = (d+ d∗)2 = dd∗ + d∗d : Ωp(M) → Ωp(M) is an elliptic operator of order 2. These facts

will be revisited again in greater details in subsection 3.5 and section 4.

Being elliptic, as we shall see later in section 4, ker∆ ⊂ Ωp(M) is finite dimensional. A

p−form that is in the kernel of ∆ is called a harmonic p-form, and often we denote

ker∆ = Hp(M).

Theorem 2.6. (Hodge Theorem) Every de Rham cohomology class on a compact

oriented Riemannian manifold M has a unique harmonic representative, i.e,

Hp
dR(M) ∼= Hp(M). Moreover, there is an L2−orthogonal decomposition

Ωp(M) = dΩp−1 ⊕Hp(M)⊕ d∗Ωp+1(M).

For a proof of the above theorem, we refer readers to [reference].

One application of Hodge Theorem is to topology. Since ∗ takes harmonic forms to

harmonic forms, this means that Hp(M) ∼= Hn−p(M). Therefore, we also have an
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isomorphism for de Rham cohomology, Hp
dR(M) ∼= Hn−p

dR (M). This is exactly the Poincare

duality. Let bp denotes the rank of Hp
dR(M), bp is known to be the pth−betti number of M .

Then we immediately have bp = bn−p.

In particular, for 4−dimensional topology, the Euler characteristic of M is determined

only by b0, b1, and b2. Note that b2 even has further decomposition. Since ∗2 = 1,

Ω2(M) = Ω+ ⊕ Ω− orthogonally, where Ω± is the eigenspace associated to the eigenvalue

±1 of ∗. Thus if {e1, · · · , e4} is a local orthonormal frame on M , then Ω+ is generated by

dx1 ∧ dx2 + dx3 ∧ dx4, dx1 ∧ dx3 + dx4 ∧ dx2, dx1 ∧ dx4 + dx2 ∧ dx3,

while Ω− is generated by

dx1 ∧ dx2 − dx3 ∧ dx4, dx1 ∧ dx3 − dx4 ∧ dx2, dx1 ∧ dx4 − dx2 ∧ dx3,

Sections of Ω± are called self-dual and anti-self-dual two-forms. Any 2−form ω can be

orthogonally projected onto Ω± as follows

ω± = P±(ω) =
1

2
(ω ± ∗ω).

Since ∗ exchanges the kernel of d and d∗, self-dual and anti-self-dual part of a harmonic

2−forms are also harmonic. As a result, H2(M) = H+ ⊕H−, where H± is the space of all

harmonic (anti)self-dual 2−forms. Hence, b2 = b+ + b− where b± = dimH±. The signature

of M is then given by σ(M) = b+ − b−.

On a compact oriented 4−manifold M , we also have the following elliptic complex

0 → Ω0(M) → Ω1(M) → Ω+ → 0,

where the second map is the exterior derivative d, and the third map is d+ = P+ ◦ d. Hodge
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Theorems allows us to calculate the Euler characteristic of such complex. Indeed if ω ∈ Ω+

is in the orthogonal complement of image of d, then d∗ω = 0. But ω is self-dual, this means

dω = 0. Thus ω is harmonic. Now if ω ∈ ker d+ but is in the orthogonal complement of

image of d, then d∗ω = 0 and dω ∈ Ω+. Hence ∗dω = dω, which implies that dω = 0. As a

result, ∆ω = (d∗d+ dd∗)ω = 0. Therefore, if M is connected, the cohomology groups of the

above complex are exactly H0(M) ∼= R, H1(M) ∼= H1
dR(M) ∼= Rb1 , H+ ∼= Rb+ . Thus,

the its Euler characteristic is given by 1− b1 + b+. This in turns tells us that the

index (d+ + d∗) = −1 + b1 − b+.

3 Spin geometry

The majority content of this sections is based on Chapter 3-4 of [21]. Other excellent

resources on Clifford algebras, Spin groups, Pin groups, Spin geometry can also be found in

Chapter 1-2 of [17], Chapter 2-3 of [19], Chapter 2 of [18], Chapter 1-2 of [9].

3.1 Clifford algebra

Suppose V is an n−dimensional vector space over R equipped with a non-degenerate,

positive definite symmetric bilinear form q : V × V → R. Consider the tensor algebra over

V ,

T (V ) = R⊕ V ⊕ V ⊗ V ⊕ V ⊗ V ⊗ V ⊕ · · ·

Convention-wise, we denote T k(V ) :=
⊗k

i=1 V , where T 0(V ) := R. Then the tensor algebra

can be rewritten as T (V ) =
⊕∞

k=1 T k(V ). Now suppose (e1, e2, · · · , en) is an orthonormal

basis of V with respect to q. Hence, as a vector space over R, we have:

T (V ) = spanR{1, e1, e2, · · · , en, · · · , ei1 ⊗ ei2 ⊗ · · · ⊗ eik , · · · },
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where ij ∈ {1, 2, · · · , n} and ij’s are not necessarily distinct. Next consider the two-sided

ideal I generated by v ⊗ v + q(v, v) · 1, where v ∈ V . Note that since T (V ) is a unital

associative algebra over R, T (V )/I is also a unital associative algebra over R.

Definition 3.1. The Clifford algebra over a real finite dimensional vector space V equipped

with a non-degenerate, positive definite symmetric bilinear form q is Cl(V, q) := T (V )/I.

Note that with the set-up above, in the algebra Cl(V, q), eiej + ejei = −2δij, for all

1 ≤ i, j ≤ n. Therefore, as a vector space over R, we have:

Cl(V, q) = spanR{1, e1, e2, e3, · · · , en, · · · , ei1ei2 · · · eik , · · · , e1e2 · · · en},

where 1 ≤ i1 < i2 < · · · < ik ≤ n and 1 < k < n. With simple counting argument, we have

dimRCl(V, q) = 2n. If we use the multi-index notation, a typical element a ∈ Cl(V, q) can

be written as a =
∑

|I|=k aIeI , where 1 ≤ k ≤ n. It is clear then that Cl(V, q) can be

decomposed into Cl+(V, q)⊕ Cl−(V, q), where here we denote:

Cl+(V, q) := {a =
∑
|I|=k

aIeI : k is even.},

Cl−(V, q) := {a =
∑
|J |=m

aJeJ : m is odd.}.

By simple computations, we immediately obtain the following proposition:

Proposition 3.1. Cl+ · Cl+ ⊆ Cl+, Cl− · Cl+ ⊆ Cl−, and Cl− · Cl− ⊆ Cl+.

Example 3.1. Take V := R and q to be the normal real number multiplication. Then

Cl(R,×) = spanR{1, e1 : e21 = −1}. It is not hard to see that as algebras, Cl(R,×) ∼= C.

Example 3.2. If V := R2 and q is the standard Euclidean inner product ⟨ , ⟩Eu, then

Cl(R2, ⟨ , ⟩) = spanR{1, e1, e2, e1e2}. Denote i := e1, j := e2, and k := e1e2. By elementary

calculations, we have i2 = j2 = k2 = −1, ij = k, ki = j, and jk = i. Therefore as algebras,

Cl(R2, ⟨ , ⟩) ∼= H, where H denotes the quarternion algebra.
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Example 3.3. If q is trivial, then Cl(V, 0) = Λ∗V , the exterior algebra over V .

Furthermore, in general, given a bilinear form q, Cl(V, q) ∼= Λ∗V as vector spaces (not

algebras!); the isomorphism here is straight-forward: ei1ei2 · · · eij 7→ ei1 ∧ ei2 ∧ · · · ∧ eij .

There is a deeper connection between Cl(V, q) and a particular sub-algebra of End(Λ∗V ),

which we will explore shortly in subsequent subsection.

Next, we would like to introduce a norm on Cl(V, q) that generalizes the way norm is

defined for complex numbers: The reversion is given by ˜ei1ei2 · · · eij = eijeij−1
· · · ei2ei1 . And

the conjugation is given by ei1ei2 · · · eij = (−1)jeijeij−1
· · · ei2ei1 . We also decree that the

reversion and the conjugation are R−linear endomorphisms of Cl(V, q). However,

eIeJ = (−1)|I|+|J |ẽJ · ẽI = eJ · eI . In general, for any x, y ∈ Cl(V, q), xy = y · x. The same is

true for the reversion map.

For x, y ∈ Cl(V, q), write x =
∑

I xIeI and y =
∑

J yJeJ . Then x · y =
∑

I,J xIyJeIeJ .

Note that when I ≡ J , eIeI = (−1)|I|(−1)|I| = 1. Hence, we can re-write xy as:

x · y =
∑
I≡J

xIyI + {terms of degree greater or equal to 1}.

We define the scalar part of x · y to be
∑

I≡J xIyI , denoted by sc(xy). If we view the scalar

part as a map on Cl(V, q)× Cl(V, q) → R, it is easy to see that it is bilinear, positive

definite, non-degenerate, and symmetric. Hence, it defines for us an inner product on

Cl(V, q): sc(xy) := (x, y). It follows then that the norm will be naturally defined as

||x|| := (x, x)1/2.

If we think of Cl(V, q) as a left module over itself, and the left action is defined by the

Clifford multiplication from the left. Denote Lv to be the left multiplication by v, where

v ∈ V ⊂ Cl(V, q). Note that Lv ∈ End(Cl(V, q)). Then we have the following proposition:

Lemma 3.2. Lv is adjoint to its negative with respect to the inner product ( , ).

Proof. For every x, y ∈ Cl(V, q), we have
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(Lv(x), y) = (vx, y) = sc(vxy) = sc(x(−vy)) = (x,−vy) = (x,−Lv(y)).

The above Lemma and Example 3.3 will be relevant for the next discussion.

Now we present another definition of the Clifford algebra in terms of its universal

property. Suppose again that V is an n−dimensional vector space over R equipped with a

non-degenerate, positive semi-definite, symmetric bilinear form q. A Clifford algebra over

V is a unital associative R−algebra A together with a map ϕ : V → A such that

ϕ(v)2 = −q(v, v)1, and which is universal among all algebras equipped with such maps;

that is, if there is another map ϕ′ : V → A′, where A′ is another unital associative algebra

such that ϕ′(v)2 = −q(v, v)1, there exists a unique algebra homomorphism A→ A′ such

that the follow diagram commutes:

V A

A′

ϕ

ϕ′

We shall show that this definition of Clifford algebra is equivalent to the Definition 3.1 via

the following theorem.

Theorem 3.3. A Clifford algebra over any vector space V equipped with a bilinear,

symmetric, non-degenerate, positive semi-definite form q exists, and unique up to

isomorphism.

Proof. Suppose (e1, e2, · · · , en) is an orthonormal basis of V with respect to q. Let A be a

unital associative R−algebra spanned by 2n possible products of formal symbols ek11 , · · · ,

eknn , where k′js are either 0 or 1 with multiplication determined by the rule

eiej + ejei = −2δij1.

The linear R−linear map ϕ : V → A given by ϕ(ei) = ei will then satisfy

ϕ(v)2 = −q(v, v)1. The uniqueness up to isomorphism is obtained from the abstract
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nonsense of the universal property: Recall the Clifford algebra over V in Definition 3.1 is

defined as Cl(V, q) := T (V )/{v ⊗ v + q(v, v)1}. Then there is a natural R−linear map

ϕ′ : V → Cl(V, q) defined by ϕ′(ei) = ei that also satisfies ϕ′(v)2 = −q(v, v)1. Now define a

map h : Cl(V, q) → A by
∑
aIeI 7→

∑
aIeI . By universal property, we obtain the following

commutative diagram
V A

Cl(V, q)

ϕ

ϕ′

h

This shows immediately that A ∼= Cl(V, q) as algebras.

The universal property definition is not so easy to compute the Clifford algebras, but it

is useful in proving things. The advantage of this picture of the Clifford algebra will be

demonstrated shortly by showing how it is deeply related to the exterior algebra. First, we

introduce a few new definitions.

From now on, to make things less lengthy, every n−dimensional vector space V over R

will be equipped with a bilinear, symmetric, non-degenerate, positive semi-definite form q,

unless stated otherwise. And (ei) is always referred to as an orthonormal bases with

respect to q.

Definition 3.2. Consider the exterior algebra Λ∗V , for each v ∈ V , we define the

contraction by v as a linear map:

ιv : Λ
kV → Λk−1V given by ei1 ∧ ei2 ∧ · · · ∧ eik 7→

k∑
j=1

(−1)jq(v, eij)ei1 ∧ · · · ∧ êij ∧ · · · ∧ eik .

To the de-clutter the notations, we will write êij := ei1 ∧ · · · ∧ êij ∧ · · · ∧ eik and

êil êij := ei1 ∧ · · · ∧ êil ∧ · · · ∧ êij ∧ · · · ∧ eik . Note that by some computations, we have:

ι2v(ei1 ∧ ei2 ∧ · · · ∧ eik) =ιvιv(ei1 ∧ ei2 ∧ · · · ∧ eik) (3.1)
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=ιv

(
k∑
j=1

(−1)jq(v, eij)êij

)
(3.2)

=
k∑
j=1

(−1)jq(v, eij)ιv(êij) (3.3)

=
k∑
j=1

(−1)jq(v, eij)
k∑

l=1,l ̸=j

(−1)lq(v, eil)êil êij (3.4)

=
k∑

j,l=1,j ̸=l

(−1)l+jq(v, eij)q(v, eil)êil êij (3.5)

=
k∑
j<l

(−1)l+jq(v, eij)q(v, eil)êij êil +
k∑
j>l

(−1)l+j−1q(v, eij)q(v, eil)êil êij .

(3.6)

Swapping j and l in the latter summation of the right hand side of equation (16) does not

change it. Thus we obtain ι2v(eI) = 0, which implies that ι2v ≡ 0 on Λ∗V . Furthermore from

Example 3.3, we know that Λ∗V = Cl(V, 0). Therefore by the universal property, we have

the following commutative diagram:

V Λ∗V

End(Λ∗V )

ϕ

ι
ψ

In other words, we have a unique algebra homomorphism

ψ : Λ∗V → End(Λ∗V ) ∼=isom Λ∗V ⊗ Λ∗V ∗. Now by commutativity, we have

ψ(ei1 ∧ · · · ∧ eij) = ιei1 · · · ιeij . Hence, ι induces a binary operator on Λ∗V , and it can be

thought of as a linear map

ψ′ : Λ∗V ⊗ Λ∗V → Λ∗V

such that ψ′(ei1 ∧ · · · ∧ eij , ω) = ιei1 · · · ιeij (ω) := ιeI (ω), where in general, we have

ψ′(α, ω) = ψ′(
∑
aIeI , ω) =

∑
aIιeI (ω). Most of the time, we will write ψ′(α, ω) := ψ′

αω.

Another natural binary operation on Λ∗V is the wedge product: ϵα(ω) := α ∧ ω. Now for
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each α ∈ Λ∗V , we define cα := ϵα + ψ′
α ∈ End(Λ∗V ). This induces a left action

Λ∗V ⊗ Λ∗V → Λ∗V .

Proposition 3.4. Let A be a subalgebra of End(Λ∗V ) generated by {cα : α ∈ Λ∗V }. Then

A is a Clifford algebra for (V, q). In other words, A ∼= Cl(V, q) as algebras.

Proof. It suffices to show that, for each v ∈ V ⊂ Λ∗V , c2v = −q(v, v)1, where 1 denotes the

identity map on Λ∗V . Note that c2v = (ϵv + ψ′
v)

2 = ϵ2v + ϵvψ
′
v + ψ′

vϵv + ψ′2
v . However, ϵ2v ≡ 0

for v ∧ v = 0 and ψ′2
v = ι2v ≡ 0 because of previous computations. Therefore, c2v = ϵvιv + ιvϵv

so that for each eI := ei1 ∧ · · · ∧ eik , we have:

c2v(eI) =ϵvιv(eI) + ιvϵv(eI) (3.7)

=ϵv

(
k∑
j=1

(−1)jq(v, eij)ei1 ∧ · · · ∧ êij ∧ · · · ∧ eik

)
+ ιv(v ∧ ei1 ∧ · · · ∧ eik) (3.8)

=
k∑
j=1

(−1)jq(v, eij)v ∧ êij − q(v, v)eI +
k∑
j=1

(−1)j+1q(v, eij)v ∧ êij = −q(v, v)eI . (3.9)

Therefore by the abstract nonsense of the universal property argument, we immediate

obtain A ∼= Cl(V, q) as algebras.

Let λ : Λ∗V → Cl(V, q) be the inverse of the vector space isomorphism in Example 3.3.

Consider e1 ∈ V ⊂ Λ∗V and eI = ei1 ∧ · · · ∧ eik . We then have ce1(eI) = ϵe1(eI) + ψ′
e1
(eI).

So if i1 = 1, λ(ce1(eI)) = −ei2 · · · eik = e1ei1 · · · eik = λ(e1)λ(eI). However if i1 > 1,

λ(ce1(eI)) = e1eI = λ(e1)λ(eI). Regardless, we always have λ(ce1(eI)) = λ(e1)λ(eI). And by

linearity, we deduce that λ(cα(ω)) = λ(α)λ(ω), for all α, ω ∈ Λ∗V . This tells us that the

binary operation c on the the exterior algebra over V corresponds to the Clifford

multiplication. In the literature, the operators ϵα and ψ′
α , respectively, are called the

exterior and the interior product by α.

Furthermore, recall that we have an inner product for Cl(V, q), this in turn should give

us an approach to define an inner product on Λ∗V in the following way:
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(α|ω) := sc(λ(cα(ω))) = (λ(α), λ(ω)), where α :=
∑

(−1)|I|αIeik ∧ · · · ∧ ei1 . Similar to

Lemma 3.2, for each v ∈ V we have an analogous result:

Lemma 3.5. cv is adjoint to its negative with respect to the inner product ( | ).

Proof. Let α, ω ∈ Λ∗V . By the above observation, we have

(cv(α)|ω) =(λ(cv(α)), λ(ω)) = (λ(v)λ(α), λ(ω)) = sc(λ(v)λ(α)λ(ω)) (3.10)

=sc(λ(α)(−λ(v)λ(ω))) = (λ(α), λ(−cv(ω))) = (α| − cv(ω)). (3.11)

The main point of this subsection is the discussion of a proper way to define a left

action of the Cl(V, q) on the exterior algebra of the dual space. With all the machineries

set up for us previously, such procedure should not be difficult. Recall that if (V, q) is an

n−dimensional vector space over R, V ∼= V ∗. The isomorphism is naturally defined as

v 7→ q(v, .). In fact, it is also an isometry, if we define an inner product on V ∗ in the

following way: ⟨f, g⟩ := q(vf , vg), where vf , vg are unique vectors in V such that

f = q(vf , .) and g = q(vg, .). The identification of V ∼= V ∗ gives us an isomorphism of

Λ∗V ∼= Λ∗V ∗ (by taking the kth exterior power of the map v 7→ q(v, .)). It is then

reasonable that we should expect an analogous action like cv on Λ∗V ∗, for each v ∈ V .

For the contraction ιv, let Φ : Λ∗V → Λ∗V ∗ be the isomorphism defined above;

naturally the contraction by v on the dual should be defined as ΦιvΦ
−1. Denote

(f1, · · · , fn) to be an orthonormal bases of V ∗ with respect to ⟨ , ⟩, where fi = q(ei, .).

Consider a k−covectors fi1 ∧ · · · ∧ fik , we have

ι̂v(fI) := ΦιvΦ
−1(fi1 ∧ · · · ∧ fik) =Φιv(ei1 ∧ · · · ∧ eik) (3.12)

=Φ

(
k∑
j=1

(−1)jq(v, eij)ei1 ∧ · · · ∧ êij ∧ · · · ∧ eik

)
(3.13)
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=
k∑
j=1

(−1)jq(eij , v)fi1 ∧ · · · ∧ f̂ij ∧ · · · ∧ fik (3.14)

=
k∑
j=1

(−1)jfij(v)fi1 ∧ · · · ∧ f̂ij ∧ · · · ∧ fik . (3.15)

With a little bit of multi-linear algebra, one can show that the RHS of (3.15) applying to

(v1, v2, · · · , vk−1), where vi ∈ V , gives us −(fi1 ∧ · · · ∧ fik)(v, v1, · · · , vk). In the literature,

they write (fi1 ∧ · · · ∧ fik)(v, v1, · · · , vk) := v⌟fI . So we shall also denote ι̂v(.) := −v⌟(.).

Similar to the computations from (3.1)− (3.6), we obtain ι̂2v = 0. Hence, ι̂ induces a left

action ψ̂ : Λ∗V ⊗ Λ∗V ∗ → Λ∗V ∗.

On the other hand, for the exterior product ϵv, the correspondent linear map from

Λ∗V ∗ → Λ∗V ∗ should be ϵ̂v(fi1 ∧ · · · ∧ fik) := fv ∧ fi1 ∧ · · · ∧ fik , where fv is the dual of v.

Therefore, we also have a left action by the exterior product ϵ̂ : Λ∗V ⊗ Λ∗V ∗ → Λ∗V ∗. Now

define a linear map from Λ∗V ⊗ Λ∗V ∗ → Λ∗V ∗ by ĉα := ϵ̂α + ψ̂α, where α ∈ Λ∗V .

Moreover, mirroring the computations from (3.7)− (3.9), we have:

ĉ2v(fI) =(ϵ̂2v + ϵ̂vψ̂v + ψ̂v ϵ̂v + ψ̂2
v)(fI) = ϵ̂vψ̂v(fI) + ψ̂v ϵ̂v(fI) (3.16)

=ϵ̂v

(
k∑
j=1

(−1)jfij(v)f̂ij

)
+ ψ̂v(fv ∧ fi1 ∧ · · · ∧ fik) (3.17)

=
k∑
j=1

(−1)jfij(v)fv ∧ f̂ij − fv(v)fi1 ∧ · · · ∧ fik +
k∑
j=1

(−1)j+1fij(v)fv ∧ f̂ij (3.18)

=− fv(v)fi1 ∧ · · · ∧ fik = −q(v, v)fI . (3.19)

In other words, ĉ2v = −q(v, v)1, where 1 is the identity on the exterior algebra of the

dual. Therefore, the algebra Â generated by {ĉα : α ∈ Λ∗V } is also isomorphic to Cl(V, q).

This shows that Λ∗V ∗ has a left Cl(V, q)−module structure, where the left action of

Cl(V, q) on Λ∗V ∗ is defined by α · η := ĉα(η). In the literature, they call such action the left

Clifford multiplication; in particular, we are interested in the left Clifford multiplication by
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v, where v ∈ V . Note that v · η = fv ∧ η − v⌟η.

Finally it should be noted that Λ∗V ∗ has an inner product structure. And such

construction should not be surprising: For η, µ ∈ Λ∗V ∗, we define ⟨η|µ⟩ := (Φ−1(η)|Φ−1(µ)).

With respect to the this inner product, the left Clifford multiplication by a vector v

behaves in the way that is analogous to Lemma 3.5, Lemma 3.2.

Lemma 3.6. For any η, µ ∈ Λ∗V ∗ and v ∈ V , we have ⟨v · η|µ⟩+ ⟨η|v · µ⟩ = 0.

Proof. Note that with respect to V , ĉv = ΦcvΦ
−1. We then have:

⟨v · η|µ⟩ =(Φ−1ĉv(η)|Φ−1(µ)) = (cvΦ
−1(η)|Φ−1(µ)) = (Φ−1(η)| − cvΦ

−1(µ)) = (3.20)

=− (Φ−1(η)|Φ−1ĉv(µ)) = −⟨η|ĉv(µ)⟩ = −⟨η|v · µ⟩. (3.21)

As a result, it is indeed true that ⟨v · η|µ⟩+ ⟨η|v · µ⟩ = 0.

3.2 Clifford bundle and the generalized Dirac operator

Suppose (V, q) is a finite dimensional vector space over R. We say S is a Clifford

module with respect to Cl(V, q) if and only if it is a finite dimensional vector space over

F = R, or C equipped with a linear map c : V → End(S), where c2v = −q(v, v)1S. Because

of the universal property of the Clifford algebra, c induces a unique linear map

c′ : Cl(V, q)⊗ S → S

such that c′|V (.) ≡ c. The map c′ can be understood as a left action of Cl(V, q) on S. This

in turn tells us that S also enjoys a left module structure over Cl(V, q). We actually have

encountered several examples of Clifford modules in the previous sections. In particular,

Cl(V, q), Λ∗V , and Λ∗V ∗ are all such modules with respect to Cl(V, q).

Definition 3.3. Let (M, g) be a Riemannian manifold. A bundle of Clifford modules over
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M is a vector bundle π : S →M , where each fiber Sp (p ∈M) is a Clifford module with

respect to Cl(TpM, gp).

Example 3.4. For a given n−dimensional Riemannian manifold (M, g). Consider the

smooth manifold Cl(TM, g) :=
⊔
p∈M Cl(TpM, gp) and the map π : Cl(TM, g) →M is

defined by π(α) = p if α belongs to some Cl(TpM, gp). Then Cl(TM, g) is a vector bundle

over M where each fiber is exactly Cl(TpM, gp). Since any Cl(V, q) is a Clifford module

with respect to itself, where c is given by the left multiplication in the Clifford algebra,

Cl(TM, g) is a bundle of Clifford modules over M .

Example 3.5. The vector bundle π : Λ∗T ∗M →M is a also a bundle of Clifford modules

over (M, g). Indeed, each fiber is Λ∗T ∗
pM , which is exactly a Clifford module with respect

to Cl(TpM, gp), where the linear map c is uniquely induced by the linear map

ĉ(p) : Cl(TpM, gp)⊗ Λ∗T ∗
pM → Λ∗T ∗

pM that is given be ĉ(p)v(η) = ĉvp(η), for every vector

field v ∈ X(M) as in subsection 3.1.

It should be noted that, for each p ∈M , there is a natural identification between

Cl(TpM, gp) ∼= Λ∗T ∗
pM (again, not as algebras!). The bundle of Clifford module structure

from one is carried over to the other. However most of the times, we choose to work with

Λ∗T ∗M , for the sections of such vector bundles are exactly all of the differential forms

Ω∗(M). This set-up is always more convenient when discussing about integrations.

Now recall that for each p, Cl(TpM, gp) and Λ∗T ∗
pM have inner product structures that

are defined as in subsection. And if M is paracompact, the inner products can be glued

together by partition of unity so that these bundles of Clifford modules have smoothly

varying inner products across the fibers.

The behavior of the left Clifford multiplication by tangent vectors on these bundles is

exactly as described as in Lemma 3.6, Lemma 3.5, Lemma 3.2. This relation, together with

a particular condition on the bundle, give us a very special kind of bundle that we will

discuss next.

36



Definition 3.4. (Clifford bundles) Suppose (M, g) is a Riemannian manifold and S is a

bundle of Clifford modules over M that has a smooth varying inner product ⟨ | ⟩ across its

fibers. We say that S is a Clifford bundle over M if and only if it satisfies the two following

conditions:

1. The left Clifford multiplication by tangent vectors on the fibers of S is skew-adjoint,

i.e, for every vp ∈ TpM and s1, s2 ∈ Sp, we have ⟨cvp(s1)|s2⟩+ ⟨s1|cvp(s2)⟩ = 0.

2. S posses a connection ∇S that is compatible with ⟨ | ⟩, and with the Levi-Civita

connection in the sense that for every X, Y ∈ X(M), s ∈ Γ(S), we have

∇S
X(cY (s)) = c∇LC

X (Y )(s) + cY (∇S
X(s)).

Often times, the Clifford bundle S we will be considering are Z/2−graded, i.e, S has

direct-sum decomposition S = S+ ⊕ S−. We will also require that the connection and the

metric respect the decomposition. Furthermore, it is also needed that the left Clifford

multiplication by tangent vectors is odd, that is, for each vp ∈ TpM , cvp will send S+
p to S−

p

and vice versa. Compare this with Proposition 3.1.

Examples for Clifford bundles over a Riemannian manifold M are, unexpectedly, the

familiar constructions we have encountered so far: Cl(TM, g), Λ∗T ∗M . The exact details

why those two bundles satisfy the second condition in Definition 3.4 will be reserved for

later sections can be found at [reference]. We are now ready to define the notion of Dirac

operator on Riemannian manifolds.

Definition 3.5. (Dirac operator) The Dirac operator D of a Clifford bundle S over a

Riemannian manifold (M, g) is the first order differential operator on Γ(S) defined by the

following composition of maps

Γ(S) −→ Γ(T ∗M ⊗ S) −→ Γ(TM ⊗ S) −→ Γ(S),
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where the first map is given by the compatible connection ∇S, the second map is the

identification by the metric g between TM and T ∗M , and the last map is the left Clifford

multiplication by tangent vectors. In the case of S being Z/2−graded, because of the left

Clifford multiplication action, D is an odd operator.

Let (U, x) be a coordinate patch on M so that TM has a local trivialization. We then

have Γ(TM |U) = X(U) = spanΓ(U){∂1, ∂2, · · · , ∂n}, where ∂i := ∂/∂xi. Without loss of

generality, we shall assume that (∂i) is an orthonormal basis with respect to g. As a result,

Γ(T ∗M |U) = Ω1(U) = spanΓ(U){dx1, · · · , dxn}, where dxi := g(∂i, .). Denote

Φ : TM |U → T ∗M |U the isomorphism that is induced by the Riemannian metric, ∂i 7→ dxi.

Fix an s|U ∈ Γ(S), we shall follow the construction of the Dirac operator step by step to

obtain the local formula for Ds:

Step 1, s is first mapped to ∇Ss, which is a linear map from TM |U → S|U . Because of

Φ defined above, ∇Ss induces the linear map ∇S
Φ−1s : T ∗M |U → SU . Such a map then can

be interpreted as an element of Γ(TM |U ⊗ S|U), this is step 2. Finally after step 2, we have

a pairing of Φ−1(.) ∈ TM |U and ∇S
Φ−1(.)s ∈ S|U , so the left Clifford multiplication by

tangent vectors (vector fields evaluated at points in U) yields cΦ−1(.)(∇S
Φ−1(.)s); this

concludes step 3. As a result, for a fixed s|U ∈ Γ(S), Ds(Φ−1(.)) = cΦ−1(.)(∇S
Φ−1(.)s). In

particular, when we evaluate Ds at each ∂i, we obtain

Ds(∂i) = Ds(Φ−1(dxi)) = cΦ−1(dxi)(∇S
Φ−1(dxi)

s) = c∂i(∇S
∂i
s). Therefore, the local formula for

D is

D =
n∑
i=1

c∂i(∇S
∂i
). (3.22)

As expected, we will illustrate that the above local formula for the Dirac operator D

should be consistent with how we normally define the Dirac operator in the Euclidean case

Rn. However, note that in Rn, the intricacy of yielding a local formula for D is not

necessary for Rn naturally posses a global frame field and the Riemannian metric is the
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usual inner product. Though, it is beneficial to show that the definition of D is

independent of the choice of a orthonormal basis.

Let {e1, · · · , en} be the standard orthonormal basis of Rn so that for every point

p ∈ Rn, we have p =
∑
piei. Let xi be the coordinate functions on Rn given by

xi(p) = pi = ⟨p, ei⟩. Then the global frame field that spans X(Rn) is {∂/∂x1, · · · , ∂/∂xn}.

And thus for each vector field X ∈ X(Rn), we have X =
∑
X i∂/∂xi, where X i ∈ Γ(Rn).

Lemma 3.7. The map ∇ : X(Rn)⊗ X(Rn) → X(Rn) given by

∇XY (p) ≡ ∇X(p)Y := lim
t→0

Y (p+ tX(p))− Y (p)

t
,

for each p ∈ Rn, defines the Levi-Civita connection on Rn.

Proof. First we show that ∇ is a well-defined connection on Rn. We write X =
∑
X i∂/∂xi

and Y =
∑
Y i∂/∂xi; also denote c(t) = p+ tX(p), where we view X(p) here as the point

(X1(p), · · · , Xn(p)) ∈ Rn and t ∈ (−ϵ, ϵ) ⊂ R. Then ∇XY (p) = (Y ◦ c)′(0) so that

∇XY (p) =
n∑
i=1

d

dt
(Y i ◦ c)

∣∣∣∣
t=0

∂

∂xi

∣∣∣∣
c(0)

=
n∑
i=1

d

dt
(Y i ◦ c)

∣∣∣∣
t=0

∂

∂xi

∣∣∣∣
p

.

On the other hand, for each i we have

XY i(p) = XpY
i = lim

t→0

Y i(p+ tX(p))− Y i(p)

t
= lim

t→0

Y i ◦ c(t)− Y i ◦ c(0)
t

=
d

dt
(Y i ◦ c)

∣∣∣∣
t=0

.

Therefore,

∇XY (p) =
n∑
i=1

XY i(p)
∂

∂xi

∣∣∣∣
p

.

With the above formula, it is straight-forward to check that ∇ is Γ(Rn)−bilinear in X, Y

and obeys the Leibniz rule in Y . Furthermore, ∇XY indeed is a vector field on Rn. Hence,

it gives a well-defined connection. To finish the proof, we check if ∇ is symmetric and

compatible with the Riemannian metric.
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In coordinates, for every f ∈ Γ(Rn) we have

[X, Y ]f =X(Y f)− Y (Xf) = X

(
n∑
i=1

Y i ∂f

∂xi

)
− Y

(
n∑
i=1

X i ∂f

∂xi

)
(3.23)

=
n∑
i=1

(XY i)
∂f

∂xi
+

n∑
i,j=1

Y iXj ∂2f

∂xj∂xi
−

n∑
i=1

(Y X i)
∂f

∂xi
−

n∑
i,j=1

X iY j ∂2f

∂xj∂xi
(3.24)

=
n∑
i=1

(XY i)
∂f

∂xi
−

n∑
i=1

(Y X i)
∂f

∂xi
= ∇XY (f)−∇YX(f). (3.25)

Thus, ∇XY −∇YX = [X, Y ], which means ∇ is symmetric. Lastly, for each p ∈ Rn and

Z =
∑
Zi∂/∂xi, we have

⟨∇XY (p), Z(p)⟩+ ⟨Y (p),∇XZ(p)⟩ =
n∑
i=1

(XY i)(p)Zi(p) +
n∑
i=1

Y i(p)(XZi)(p) (3.26)

=

(
X

n∑
i=1

Y iZi

)
(p) = X⟨Y (p), Z(p)⟩. (3.27)

Hence ∇ is compatible with the metric of Rn. ∇ uniquely determines the Levi-Civita

connection on Rn.

Consider the vector bundle π : Cl(Rn) → Rn given by s 7→ p if s ∈ Cl(TpRn) ≈ Cl(Rn).

Each section f ∈ Γ(Cl(Rn)) ≡ Γ(Rn, Cl(Rn)) will be of the form f =
∑

I f
IeI , where

f I ∈ Γ(Rn). We define ∇Cl : X(Rn)⊗ Γ(Cl(Rn)) → Γ(Cl(Rn)) by

∇Cl
X f =

∑
I

(Xf I)eI := Xf.

It is not hard to see that ∇Cl is Γ(Rn)−linear in X and obey the Leibniz rule in f . So it

defines for us a connection on the vector bundle Cl(Rn). Furthermore, note that Cl(Rn)

satisfies all the criterion of a bundle of Clifford modules over Rn, where the action of

Cl(TpRn) on each fiber Cl(TpRn) ≈ Cl(Rn) is defined to be

cv(p)s = v(p)s := (
∑
vi(p)ei)(

∑
sIeI), the product here is the usual Clifford multiplication
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in Cl(Rn). Finally, Cl(Rn) has a smoothly varying inner product ( , ) and by Lemma 3.2,

for each s1, s2 ∈ Cl(TpRn) ≈ Cl(Rn) and v(p) ∈ TpRn, we have

(cv(p)s1, s2) + (s1, cv(p)s2) = 0. We also claim that ∇Cl is compatible with the Levi-Civita

connection ∇ defined in Lemma 3.7, i.e, for each X, Y ∈ X(Rn) and f ∈ Γ(Cl(Rn)), we have

∇Cl
X (cY (f)) = c∇XY (f) + cY (∇Cl

X f).

Indeed, since cY (f) = (
∑n

j=1 Y
jej)(

∑
I f

IeI) =
∑n

j=1

∑
I Y

jf IejeI , and regardless of when

ejeI simplifies in the Clifford algebra, it still represents a basis element of the algebra, the

left-hand side of the above equation yields

∇Cl
X (cY (f)) =

n∑
j=1

∑
I

X(Y jf I)ejeI (3.28)

=
n∑
j=1

∑
I

(XY j)f IejeI +
n∑
j=1

∑
I

Y j(Xf I)ejeI . (3.29)

The first term of the right-hand side of (39) is exactly (
∑n

j=1(XY
j)ej)(

∑
I f

IeI) = c∇XY (f).

While the second term is (
∑n

j=1 Y
jej)(

∑
I(Xf

I)eI) = cY (∇Cl
X f). Finally, it is routine to

check that ∇Cl is compatible with the inner product on Cl(Rn) defined in subsection 3.1.

With all of the above observations, we conclude:

Proposition 3.8. Cl(Rn) is a Clifford bundle over Rn.

Now we are ready to write down the formula for the Dirac operator in Rn as promised.

For each f ∈ Γ(Cl(Rn)), from (32), we have

Df =
n∑
i=1

c∂i(∇Cl
∂i
f) =

n∑
i=1

ei
∂f

∂xi
.

In literature, this is how we normally define the operator on the Euclidean space. Even if

we start off defining the Dirac operator on Rn as D =
∑n

i=1 ei∂/∂xi, it should be

straight-forward to show that it is independent of the choice of orthonormal basis.
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Suppose {w1, · · · , wn} is another orthonormal basis of Rn. Let g = (gij) ∈ O(n) so that

gei = wi. If yi are the coordinate functions on Rn with respect to {wi}, then yi =
∑

j gjixj.

Note that because gTg = ggT = 1, we also have xi =
∑

j gijyj. For each f ∈ Γ(Rn) written

in xi−coordinate, we obtain h = f ◦ ϕ, where ϕ : Rn → Rn is a change of coordinate from

yi to xi. By chain rule, we yield

n∑
i=1

wi
∂h

∂yi
=

n∑
i=1

gei

n∑
j=1

∂f

∂xj

∂xj
∂yi

=
n∑
i=1

gei

n∑
j=1

gji
∂f

∂xj
(3.30)

=
n∑

i,j=1

geigji
∂f

∂xj
=

n∑
j=1

g

(
n∑
i=1

gjiei

)
∂f

∂xj
(3.31)

=
n∑
j=1

ggT ej
∂f

∂xj
=

n∑
j=1

ej
∂f

∂xj
. (3.32)

(3.32) is still true when s ∈ Γ(Cl(Rn)), for s =
∑

I s
IeI and sI ∈ Γ(Rn). The above

calculation tells us that D is independent of the choice of orthonormal basis.

3.3 Connection and curvature revisited

Recall our setting: Let M be a Riemannian manifold, and V be a vector bundle over

M equipped with a connection ∇.

Definition 3.6. The curvature operator K associated with ∇ is given by:

K(X, Y )s = ∇X∇Y s−∇Y∇Xs−∇[X,Y ]s,

where X, Y are any vector fields on M and s ∈ Γ(V ).

Lemma 3.9. If we view K as a map from X(M)× X(M)× Γ(V ) → Γ(V ), then K is

Γ(M)−linear in each variable, anti-symmetric in the first two variable. Thus for

X, Y ∈ X(M) and s ∈ Γ(V ), K(X, Y )s at p ∈M depends only on the value of X, Y, and s

at p, but not their values at nearby points.
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Proof. Let f ∈ Γ(M) arbitrary, note that [fX, Y ] = f [X, Y ]− (Y f)X. Then we have:

K(fX, Y )s =∇fX∇Y s−∇Y∇fXs−∇[fX,Y ]s (3.33)

=f∇X∇Y s−∇Y (f∇Xs)−∇f [X,Y ]−(Y f)Xs (3.34)

=f∇X∇Y s− f∇Y∇Xs− (Y f)∇Xs− f∇[X,Y ]s+ (Y f)∇Xs (3.35)

=f∇X∇Y s− f∇Y∇Xs− f∇[X,Y ]s = fK(X, Y )s. (3.36)

Similar calculations at Y and s. Next, note that [Y,X] = −[X, Y ]; so by direct comparison,

we have K(Y,X)s = −K(X, Y )s. Now for the last part of the lemma, let p ∈M and U be

a neighborhood around p so that we have a local frame field {∂/∂xi} and trivialization {ej}

on V . We then write X =
∑

iX
i∂/∂xi, Y =

∑
j Y

j∂/∂xj, and s =
∑

k s
kek. By

Γ(M)−linearity that we proved above, we get:

K(X, Y )s =K

(∑
i

X i ∂

∂xi
,
∑
j

Y j ∂

∂xj

)(∑
k

skek

)
(3.37)

=
∑
i,j,k

K

(
X i ∂

∂xi
, Y j ∂

∂xj

)
(skek) =

∑
i,j,k

X iY jskK

(
∂

∂xi
,
∂

∂xj

)
ek. (3.38)

We observe that from (3.38), the value of K(X, Y )s at p depends only on the values of

X i, Y j, and sk at p and not their nearby points.

The above lemma tells us that even though the curvature operator K’s definition does

not involve any differentiation in its variable. Furthermore, because of Γ(M)−linearity and

anti-symmetric property, we now can view K as a linear map from

X(M)⊗ X(M)⊗ Γ(V ) → Γ(V ). Consequently, K induces a linear map from

TM ⊗ TM → End(V ) that is anti-symmetric. In other words, K is a End(V )−valued

2−form on M . In local coordinates, we can write

K =
∑
i<j

K

(
∂

∂xi
,
∂

∂xj

)
dxi ∧ dxj.
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In our context of Clifford bundle, if S →M is a Clifford bundle equipped with the

connection ∇S satisfying Definition 3.4 and KS is the curvature operator associated with

∇S, then we define the Clifford contraction KS in the following way:

Definition 3.7. Let {∂i := ∂/∂xi} be a local orthonormal frame of TM . The Clifford

contraction KS is an endomorphism on S given by

KS =
∑
i<j

c∂i(c∂j(K
S(∂i, ∂j))).

The definition of KS does not depend on the choice of local frame.

Finally, we would like to make some comments about how to precisely obtain a special

local orthonormal frame field on TM from the Levi-Civita connection ∇LC . A smooth

curve γ : [0, 1] →M is called a geodesic if and only if ∇LC
γ′ γ

′ = 0, or in other words γ′ is

parallel along γ. Note that the geodesic equation ∇LC
γ′ γ

′ = 0 is a second-order differential

equation, so it has a unique solution subjected to the initial value condition γ(0) and γ′(0).

Therefore, for any point on M , there is a unique geodesic segment through that point in a

given direction.

Note that if t 7→ γ(t) is a solution to the geodesic equation, then so is t 7→ γ(ct), for

any constant c ∈ R. Indeed, denote α(t) := γ(ct). By chain rule, we have α′(t) = cγ′(ct).

Hence we obtain

∇LC
α′(t)α

′(t) =∇LC
cγ′(ct)(cγ

′(ct)) (3.39)

=c(c∇LC
γ′(ct)γ

′(ct) + (γ′ct(c))γ
′(ct)) = c2∇LC

γ′(ct)γ
′(ct) = 0. (3.40)

Such property of a differential equation described above is called isochronous. It follows

that for every point p ∈M and U is a star-shaped open subset of TpM around the origin,
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the exponential map exp is defined in the following way:

exp : U →M,

where a vector v ∈ U ⊆ TpM is mapped to γ(1) of the unique geodesic that satisfies

γ(0) = p, γ′(0) = v. Since the total derivative of exp is nonsingular at the origin, by the

inverse function theorem, exp is a local diffeomorphism from a neighborhood of the origin

in TpM onto a neighborhood of p in M . Then an orthonormal basis of TpM induces a

special coordinate system, called a geodesic coordinate system, around a neighborhood of p.

Proposition 3.10. At the origin of a geodesic coordinate system, the Christoffel symbols

of the Levi-Civita connection vanish.

Proof. Let {∂i := ∂/∂xi} be a local orthonormal frame field associated with the geodesic

coordinate system around p. We would like to show that ∇LC
∂i
∂j = 0 at p. But because of

the symmetric property of the connection, we have ∇LC
∂i
∂j = ∇LC

∂j
∂i; hence it is sufficient to

show that ∇LC
X X = 0 at p for all vector fields X =

∑
kX

k∂k, where Xk are constant

functions. Now there is a unique geodesic γ that starts at p in the direction of X(p) ∈ TpM ,

and thus ∇LC
γ′(t)γ

′(t) = 0. In particular, when t = 0, we have ∇LC
X(p)X(p) = 0.

One can also arrive at the same conclusion in Proposition 3.10 by utilizing the

computations in Theorem 2.2. A local orthonormal frame field defined above always exists

for an arbitrary p ∈M ; and such frame where all the Christoffel symbols vanish at p is

called a synchronous at p. Furthermore as a consequence of the fact Γkij(p) = 0 and the

symmetry of the connection, we obtain the Lie bracket [∂i, ∂j](p) = 0 for all i and j. These

facts will be of relevant later when we compute the operator D2.
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3.4 The generalized Laplacian

Recall our setting: Let (M,h) by a Riemannian manifold of dimension n and S →M is

a Clifford bundle over M equipped with the Clifford multiplication c. Denote ∇LC the

Levi-Civita connection and ∇S the compatible connection on S. Around any arbitrary

point p ∈M , we can find a open neighborhood U ⊆M so that we have an oriented local

synchronous frame field {∂i := ∂/∂xi} at p for TM |U . Such local frame field induces an

oriented local oriented coordinate systems x1, · · · , xn around p. Hence by (3.22) at p, the

corresponding local formula for the Dirac operator is Ds =
∑

i c∂i(∇S
∂i
s) for each

s ∈ Γ(S|U). Consequently at p, we have

D2s =
n∑
i=1

D(c∂i(∇S
∂i
s)) =

n∑
i=1

n∑
j=1

c∂j(∇S
∂j
(c∂i(∇S

∂i
s))) (3.41)

=
n∑
i=1

n∑
j=1

c∂j(c∇LC
∂j

∂i(s) + c∂i(∇S
∂j
∇S
∂i
s)) (3.42)

=
n∑
i=1

n∑
j=1

c∂j(c∂i(∇S
∂j
∇S
∂i
s)) =

n∑
i=j=1

c∂i(c∂i((∇S
∂i
)2s)) +

∑
i ̸=j

c∂j(c∂i(∇S
∂j
∇S
∂i
s)) (3.43)

=−
n∑
i=1

(∇S
∂i
)2s+

∑
j<i

c∂j(c∂i(∇S
∂j
∇S
∂i
−∇S

∂i
∇S
∂j
)s). (3.44)

We would like to provide some short justifications for some of the equations above: (3.42)

is true because of the compatibility of ∇S with the Clifford multiplication, (3.43) is true

because of Proposition 3.10, and (3.44) is true because of the fact that c2v = −(v, v)1. Now

we denote KS the curvature operator associated with ∇S so that by definition, at p,

KS(∂j, ∂i)s = ∇S
∂j
∇S
∂i
s−∇S

∂i
∇S
∂j
s−∇S

[∂j ,∂i]
s. But from the remarks in previous subsection,

for synchronous frame, [∂j, ∂i](p) = 0. Thus at p, KS(∂j, ∂i)s = ∇S
∂j
∇S
∂i
s−∇S

∂i
∇S
∂j
s.

Combining with the definition of the Clifford contraction KS, as a result, (3.44) simplified
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further yields

D2s =−
n∑
i=1

(∇S
∂i
)2s+KSs := ∇S∗∇Ss+KSs. (3.45)

(3.45) is a very important equation called the Weitzenbock formula. The first term of D2 is

a second-order differential operator which is a generalized Laplacian on Riemannian

manifold. The second term, the Clifford contraction, is an endomorphism on S. The

notation ∇S∗∇S has its reasons: Since ∇ : Γ(S) → Γ(T ∗M ⊗ S) can be regarded as a

differential operator and these bundles are equipped with a metric so that the spaces of

sections have L2−inner products, ∇S has a formal adjoint operator ∇S∗. We then shall

show rigorously the following

Proposition 3.11. With respect to any local orthonormal frame field on TM , we have

∇S∗∇S = −
n∑
i=1

(∇S
∂i
)2.

Before delving into the proof, we would like to first describe the precise manner which

Γ(T ∗M ⊗ S) has an global L2−inner product. In general, suppose V and W are two finite

dimensional vector spaces over R equipped with their own inner products. Let {vi}ni=1 and

{wj}mj=1, respectively, be ordered basis of V and W so that every element ω ∈ V ⊗W , we

can write ω =
∑

i,j ω
jivi ⊗ wj. Note that by linearity,

ω =
n∑
i=1

m∑
j=1

ωjivi ⊗ wj =
n∑
i=1

vi ⊗
m∑
j=1

ωjiwj =
n∑
i=1

vi ⊗ hi, where hi :=
m∑
j=1

ωjiwj. (3.46)

Therefore, without even specifying an ordered basis for W , a general element of V ⊗W can

be written as
∑

i vi ⊗ hi, where hi is some element of W . Hence, an inner product on
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V ⊗W can be defined as follow:

〈
n∑
i=1

vi ⊗ hi,
n∑
j=1

vj ⊗ h′j

〉
:=

n∑
i=1

n∑
j=1

⟨vi, vj⟩V ⟨hi, h′j⟩W .

It should be routine to check that the above definition of the inner product on V ⊗W is

independent of the choice of basis on V and W . Furthermore, in the case where {vi} and

{wj} are orthonormal bases, each element ω =
∑

i,j ω
jivi ⊗ wj corresponds to an

m× n−matrix (ωji) so that we have an isomorphism of vector spaces

V ⊗W ∼= M(m× n,R)1. The inner product defined above corresponds to the Frobenius

inner product on M(m× n,R). Indeed,

〈∑
i,j

ωji1 vi ⊗ wj,
∑
k,l

ωlk2 vk ⊗ wl

〉
=

〈
n∑
i=1

vi ⊗
m∑
j=1

ωji1 wj,
n∑
k=1

vk ⊗
m∑
l=1

ωlk2 wl

〉
(3.47)

=
n∑
i=1

n∑
k=1

⟨vi, vk⟩V

〈
m∑
j=1

ωji1 wj,
m∑
l=1

ωlk2 wl

〉
W

(3.48)

=
n∑
i=1

n∑
j=1

ωji1 ω
ji
2 (3.49)

=tr((ωji1 )
T (ωlk2 )) = ⟨(ωji1 ), (ωlk2 )⟩F . (3.50)

It is fairly easy to check that the Frobenius inner product is unchanged in orthonormal

equivalent classes of matrices, and because of the above (3.47)− (3.50), the definition of

the inner product on V ⊗W is also unaffected by the change of orthonormal bases.

Definition 3.8. In our context of T ∗M ⊗ S, let’s say ⟨ , ⟩ is a smoothly varying inner

product on the fibers of T ∗M induced by the Riemannian metric and ( | ) is one for S. Let

{∂i := ∂/∂xi} be a local frame field on TM so that {dxi} is a local basis for T ∗M . The
1The space of m× n−matrices.
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inner product on each fiber of T ∗M ⊗ S would be

(
n∑
i=1

dxi ⊗ si,
n∑
j=1

dxj ⊗ s′j

)
=

n∑
i=1

n∑
j=1

⟨dxi, dxj⟩(si|s′j), (3.51)

where si, s′j are some sections of S. In the case of local synchronous frame, the inner

product on each fiber is simplified to be equal to
∑

i(si|s′i).

For the rest of this section, we shall only deal with local synchronous frame field.

Recall for an orientable Riemannian manifold 2, given an ordered local frame field {∂/∂xi},

we have the volume form vol ∈ Ωn(M) defined by vol = dx1 ∧ · · · ∧ dxn. Therefore, for

some vector bundle V →M equipped with a metric ( , ) that is smoothly varying on its

fibers, a global L2−inner product on Γ(V ) is given by

⟨s1, s2⟩L2 =

∫
M

(s1, s2)pvol, where si ∈ Γ(V ). (3.52)

Definition 3.9. In particular, for the bundle T ∗M ⊗ S, the global L2−inner product on

Γ(T ∗M ⊗ S) is given by

⟨ω1, ω2⟩L2 =

∫
M

(ω1, ω2)pvol,

where ωi ∈ Γ(T ∗M ⊗ S) and ( , ) is defined as in (3.51).

As we have seen before in Subsection 3.1, given a local frame field {∂/∂xi} for TM and

given the isomorphism Φ induced by the Riemannian metric Λ∗TM ∼= Λ∗T ∗M , we have an

inner product on Γ(Λ∗T ∗M) ≡ Ω∗(M) given by ⟨α|β⟩p = (Φ−1(α)|Φ−1(β))p for

α, β ∈ Ω∗(M) and p ∈M . In particular, when α, β ∈ Ωk(M), we can write

α =
∑

|I|=k α
IdxI and β =

∑
|J |=k β

JdxJ , where αI , βJ ∈ Γ(M); so that

⟨α|β⟩p =
∑

I α
I(p)βI(p).

In relation to the global L2−inner product on Ω∗(M), for each α, β ∈ Ωk(M) with at
2In fact, here is the first time we mention the orientability condition, we would like to note that this

condition should be implicitly understood whenever Riemannian manifold shows up in the paper.
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least one of them is compactly supported, we have

⟨α, β⟩L2 =

∫
M

⟨α|β⟩pvol =
∫
M

β ∧ ∗α =

∫
M

α ∧ ∗β =

∫
M

⟨β|α⟩pvol = ⟨β, α⟩L2 .

Proposition 3.12. d∗ is the formal adjoint of d with respect to the global L2−inner

product.

Proof. Let α ∈ Ωk(M) and β ∈ Ωk−1(M), at least one of them is compactly supported. By

Stoke’s theorem, we have

0 =

∫
∂M

β ∧ ∗α =

∫
M

d(β ∧ ∗α) =
∫
M

dβ ∧ ∗α + (−1)k−1

∫
M

β ∧ d(∗α) (3.53)

=⟨α, dβ⟩L2 + (−1)k−1+(n−k+1)n+(n−k+1)

∫
M

β ∧ ∗ ∗ d(∗α) (3.54)

=⟨α, dβ⟩L2 −
∫
M

β ∧ ∗((−1)nk+k+1 ∗ d(∗α)) = ⟨α, dβ⟩L2 −
∫
M

β ∧ ∗d∗α (3.55)

=⟨α, dβ⟩L2 − ⟨d∗α, β⟩L2 . (3.56)

Theorem 3.13. (Divergence theorem) Let α =
∑
αidxi, where αi’s are smooth

functions, be a one form on M that is compactly supported, then

∫
M

d∗α vol = 0.

d∗α is a zero form on M , i.e smooth function and is often called the divergence of α.

Proof. Immediately from Proposition 3.12, we have

∫
M

d∗αp vol =
∫
M

⟨d∗α|1⟩pvol = ⟨d∗α, 1⟩L2 = ⟨α, d(1)⟩L2 = ⟨α, 0⟩L2 = 0.
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It is beneficial to compute the divergence d∗α explicitly. Denote gij = ⟨dxi, dxj⟩ so that

we have an invertible symmetric matrix (gij) and (gij) is its inverse. Let g = det(gij). Note

that in general, we have

∗α =
n∑
i=1

n∑
j=1

(−1)j+1√ggijαidx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn.

But the local frame field is chosen to be orthonormal, the above expression simplifies to be

∗α =
n∑
k=1

(−1)k+1αkdx1 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxn.

As a result,

d(∗α) =
n∑
k=1

(−1)k+1∂α
k

∂xk
dxk ∧ dx1 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxn (3.57)

=
n∑
k=1

(−1)k+1(−1)k−1∂α
k

∂xk
dx1 ∧ · · · ∧ dxn =

(
n∑
k=1

∂αk

∂xk

)
dx1 ∧ · · · ∧ dxn. (3.58)

Hence, d∗α = − ∗ d(∗α) = −
∑n

k=1 ∂α
k/∂xk. This information will be relevant shortly.

Lemma 3.14. The definition of the linear map ∇S∗ : Γ(T ∗M ⊗ S) → Γ(S)

∇S∗

(
n∑
k=1

dxk ⊗ sk

)
= −

n∑
k=1

∇S
∂k
sk,

where sk are some sections of S, is indeed the formal L2−adjoint of ∇S.

Proof. Note that for arbitrary s ∈ Γ(S) that is compactly supported, because of the

identification T ∗M ⊗ S ∼= End(TM,S), we have(∑
k dxk ⊗∇S

∂k
s
)
(∂i) =

∑
k dxk(∂i)∇S

∂k
s = ∇S

∂i
s. Therefore, ∇Ss =

∑
k dxk ⊗∇S

∂k
s. Now
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for ω =
∑

j dxj ⊗ sj ∈ Γ(T ∗M ⊗ S), we have

(∇Ss, ω)p =

(
n∑
k=1

dxk ⊗∇S
∂k
s,

n∑
j=1

dxj ⊗ sj

)
p

=
n∑
k=1

(∇S
∂k
s|sk)p. (3.59)

On the other hand,

(s|∇S∗ω)p =

(
s

∣∣∣∣− n∑
j=1

∇S
∂j
sj

)
p

= −
n∑
j=1

(s|∇S
∂j
sj)p. (3.60)

Hence, combining (69) and (70) yields

−(∇Ss, ω)p + (s|∇S∗ω)p =−

(
n∑
k=1

(∇S
∂k
s|sk)p + (s|∇S

∂k
sk)p

)
= −

n∑
k=1

∂k(s|sk)|p. (3.61)

But by the above observation about divergence, (3.61) is exactly d∗αp, where

α =
∑

k(s|sk)dxk. The Divergence theorem will then tell us that

∫
M

(s|∇S∗ω)pvol −
∫
M

(∇Ss, ω)pvol =
∫
M

d∗αpvol = 0.

Consequently, ⟨s,∇S∗ω⟩L2 = ⟨∇Ss, ω⟩L2 , which is what we need to show.

Back to the proof of Proposition 3.11. Once we have established the formula for the

formal L2−adjoint of ∇S in Lemma 3.14, it is just a matter of piecing things together. Let

s ∈ Γ(S), then at p we obtain

∇S∗∇Ss = ∇S∗

(
n∑
i=1

dxi ⊗∇S
∂i
s

)
= −

n∑
i=1

∇S
∂i
∇S
∂i
s = −

n∑
i=1

(∇S
∂i
)2s. □

Note that ∇S∗∇S is an L2−self-adjoint differential operator. It is natural to ask

whether KS is also self-adjoint. Let s1 and s2 be in Γ(S), at least one of them is compactly

supported. For each k, we view ∇S
∂k

: Γ(S) → Γ(S) as a differential operator. We claim
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that ∇S∗
∂k

= −∇S
∂k

. Indeed at p, by compatibility we obtain

(∇S
∂k
s1|s2)p − (s1| − ∇S

∂k
s2)p = (∇S

∂k
s1|s2)p + (s1|∇S

∂k
s2)p = ∂k(s1|s2)|p = −d∗ηp, (3.62)

where η = (s1|s2)dxk. By the Divergence theorem, we immediately have

⟨∇S
∂k
s1, s2⟩L2 = ⟨s1,−∇S

∂k
s2⟩L2 .

Combine with the fact that the left Clifford multiplication is skew-adjoint, then

⟨KSs1, s2⟩L2 =
∑
j<i

⟨c∂j(c∂i((∇S
∂j
∇S
∂i
−∇S

∂i
∇S
∂j
)s1)), s2⟩L2 (3.63)

=
∑
j<i

⟨s1, (∇S
∂i
∇S
∂j
−∇S

∂j
∇S
∂i
)c∂i(c∂j(s2))⟩L2 (3.64)

=
∑
j<i

∫
M

(s1|(∇S
∂i
∇S
∂j
−∇S

∂j
∇S
∂i
)c∂i(c∂j(s2)))pvol (3.65)

Now at p, by the compatibility with the Levi-Civita connection and Proposition 3.10

∇S
∂j
(c∂i(c∂j(s2))) =c∇LC

∂j
∂i(c∂j(s2)) + c∂i(∇S

∂j
c∂j(s2)) (3.66)

=c∂i(c∂LC
∂j

∂j(s2) + c∂j(∇S
∂j
s2)) = c∂i(c∂j(∇S

∂j
s2)). (3.67)

Therefore,

∇S
∂i
∇S
∂j
c∂i(c∂j(s2)) =c∇LC

∂i
∂i(c∂j(∇

S
∂j
s2) + c∂i(∇S

∂i
c∂j(∇S

∂j
s2)) (3.68)

=c∂i(c∇LC
∂i

∂j(∇
S
∂j
s2) + c∂j(∇S

∂i
∇S
∂j
s2)) = c∂i(c∂j(∇S

∂i
∇S
∂j
s2)). (3.69)
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Similarly, we obtain ∇S
∂j
∇S
∂i
c∂i(c∂j(s2)) = c∂i(c∂j(∇S

∂j
∇S
∂i
s2)). Thus, (3.65) becomes

⟨KSs1, s2⟩L2 =
∑
j<i

∫
M

(s1|c∂j(c∂i(∇S
∂j
∇S
∂i
−∇S

∂i
∇S
∂j
)s2))pvol = ⟨s1,KSs2⟩L2 .

Proposition 3.15. KS : Γ(S) → Γ(S) is an L2−self-adjoint operator. □

Corollary 3.16. Consequently, the generalized Laplacian D2 : Γ(S) → Γ(S) is also a

self-adjoint differential operator. □

One of the important properties of the Dirac operator D is that, unsurprisingly, it is an

L2−self-adjoint differential operator:

Proposition 3.17. For any s1 and s2 are smooth sections of S where at least one of them

is compactly supported, then

⟨Ds1, s2⟩L2 = ⟨s1, Ds2⟩L2 .

Proof. We evaluate the integrand in local coordinate at p

(Ds1|s2)p − (s1|Ds2)p =
n∑
i=1

(c∂i(∇S
∂i
s1)|s2)p −

n∑
j=1

(s1|c∂j(∇S
∂j
s2))p (3.70)

=−
n∑
i=1

(∇S
∂i
s1|c∂i(s2))p −

n∑
j=1

(s1|∇S
∂j
c∂j(s2))p (3.71)

=−
n∑
i=1

∂i(s1|c∂i(s2))|p = d∗µp, (3.72)

where µ =
∑n

k=1(s1|c∂k(s2))dxk. Then the Divergence theorem with (3.70)− (3.72)

immediately yields what we need to show, i.e ⟨Ds1, s2⟩L2 = ⟨s1, Ds2⟩L2 .

Theorem 3.18. (Bochner) If the least eigenvalue of KS at each point of a compact M is

strictly positive, then there are no non-trivial solutions of the differential equation D2s = 0.

Proof. By contradiction, suppose that there exists a non-trivial s ∈ Γ(S) where D2s = 0.

At each p ∈M , denote λi(p)’s the eigenvalues of KS at p; note that λi’s are smooth
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real-valued functions on M . By Proposition 3.15, KS is self-adjoint; hence by the Spectral

theorem, we can write KS
p =

∑
i λ

i(p)Pi,p, where Pi,p’s are orthogonal projections onto

λi(p)−eigenspaces. Since Pi,p’s are orthogonal projections, we have P 2
i,p = Pi,p and

P ∗
i,p = Pi,p. Now consider

(KSs|s)p =
∑
i

(λi(p)Pi,ps|s)p =
∑
i

λi(p)(P 2
i,ps|s)p (3.73)

=
∑
i

λi(p)(Pi,ps|Pi,ps)p ≥ λ(p)
∑
i

||Pi,psp||2 > 0, (3.74)

where λ(p) is the smallest positive eigenvalue of KS at p. By compactness of M , the

function p 7→ (KSs|s)p/||s||2L2 being continuous achieves an infimum. Furthermore, (84)

shows us that it is bounded below by a strictly positive continuous function. Therefore,

there exists a c > 0 where (KSs|s)p/||s||2L2 ≥ c for all p. As a result,

⟨KSs, s⟩L2

||s||2L2

=

∫
M

(KSs|s)p
||s||2L2

vol ≥
∫
M

c vol = c · vol(M) := C,

which is a finite positive number. Equivalently, ⟨KSs, s⟩L2 ≥ C||s||2L2 . But by the

Weitzenbock forumula, we have

⟨KSs, s⟩L2 = ⟨D2s, s⟩L2 − ⟨∇S∗∇Ss, s⟩L2 = −||∇Ss||2L2 ≤ 0.

This is a contradiction to the previous assessment. Thus, there are no non-trivial solutions

to the second order differential equation D2s = 0.

3.5 The exterior algebra bundle, its canonical connection, and the

Dirac operator for the exterior algebra bundle

Recall that we have Λ∗T ∗M →M a bundle of Clifford modules which is equipped with

an smoothly varying inner product across the fibers. The goal of this subsection is to prove
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precisely that the exterior algebra of the cotangent bundle is indeed a Clifford bundle. To

do this, we shall follow this guideline:

I. We shall construct a connection on Λ∗T ∗M such that it is compatible with the metric

on the bundle and the Levi-Civita connection.

II. We will show that the action of TpM on fiber Λ∗T ∗
pM is skew-adjoint with respect to

the inner product on the fiber.

One would expect that the said connection in (I) is a natural unique extension of the

Levi-Civita connection. This is indeed the case; the necessary tools to prove such claim is

the principal G−bundle and principal connection. Let G be a Lie group, the principal

G−bundle over M is (P, π,M,G) where P is a smooth manifold and π : P →M is a

smooth surjective map. Furthermore, P is a locally trivial fiber bundle whose fiber is G

and considered as right G−space. Thus we have a smooth right action of G on P such that

π(p · g) = π(p) for any p ∈ P and g ∈ G. Consequently, M = P/G so that

dimM = dimP − dimG.

Suppose ρ : G→ GL(V ) is a representation of the Lie group G onto a finite dimensional

vector space V over R. Then G acts P × V in the following way (p, v) · g := (p · g, ρ(g−1)v)

where p ∈ P, v ∈ V and g ∈ G. The quotient space P ×ρ V of P × V induced by the right

action of G is a vector bundle over M whose fiber is isomorphic to V . Often, P ×ρ V is

called the associated vector bundle of P with respect to the representation ρ.

Conversely if W is a vector bundle of rank k over M equipped with a smoothly varying

inner product across its fibers, then the collection O(W,k) of ordered orthonormal frames

at each fiber of W is a principal SO(k)−bundle over M .

Definition 3.10. The vertical space V P is a sub-bundle of TP given by the kernel of the

map dπ : TP → TM . Here, dπ should be understood as the tangent map induced by π.

X ∈ X(P ) is said to be a vertical tangent vector if and only if X(p) ∈ VpP for all p ∈ P .
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Lemma 3.19. For each u ∈ g−the Lie algebra of G and each p ∈ P , define

Xu(p) =
d

dt
(p · exp(tu))

∣∣∣∣
t=0

.

Then the linear map u 7→ Xu(p) defines an isomorphism between g → VpP . As a result,

V P ∼= P × g. Furthermore, Xu is called the killing field on P associated with u.

Proof. u 7→ Xu(p) is obviously linear by the Leibniz’s rule of differentiation. Note that

dpπ(Xu(p)) =
d

dt
π(p · exp(tu))

∣∣∣∣
t=0

=
d

dt
π(p)

∣∣∣∣
t=0

= 0.

Thus Xu(p) ∈ Ker dpπ = VpP . Therefore, u 7→ Xu(p) is a well-defined linear map from

g → VpP . Now suppose Xu1(p) = Xu2(p) for some ui ∈ g. By the Existence and Uniqueness

theorem, we have p · exp(tu1) = p · exp(tu2) on some neighborhood of t containing [0, 1].

However the assertion is true for any p ∈ P ; hence exp(tu1) = exp(tu2). Differentiating at

t = 0, we obtain u1 = u2. This shows that the map is injective. Now since π is surjective,

the induced map dpπ is a surjective linear map. Then by Rank-Nullity theorem, we have

dimTpP = dim Ker dpπ + dim Im dpπ = dimVpP + dimTπ(p)M.

As a result, dimVpP = dimP − dimM = dimG = dimTeG = dim g, where e is the identity

of G. With all of the above observations, we conclude that u 7→ Xu(p) is indeed an

isomorphism between g → VpP .

Definition 3.11. The assignment H : p ∈ P 7→ HpP ⊆ TpP is called a principal connection

on the fiber bundle (P, π,M,G) if and only if it satisfies all the following conditions:

1. TpP = VpP ⊕HpP , for each p ∈ P . Consequently, we have TP = V P ⊕HP .

2. dpRg(HpP ) = Hp·gP , where Rg is the diffeomorphism of P onto itself given by the

right multiplication by a fixed g ∈ G.

57



3. H is smooth.

If the principal G−bundle P →M admits a principal connection, then we have the

projection onto the vertical space TP = V P ⊕HP → V P . In particular, the projection

maps each vector field X(p) + Y (p) 7→ X(p). But by Lemma 3.19, X(p) is associated

uniquely with u ∈ g, where Xu(p) = X(p). Hence, this projection induces a g−valued

1−form ω on P , ω : TP → g. Such a g−valued 1−form ω on P is called a connection 1−

form and has the following properties

Proposition 3.20.

1. ω(Xu) = u for every u ∈ g.

2. (Rg)
∗ω = Ad(g−1)ω for g ∈ G, where Ad(g−1) is the induced map from g → g by the

conjugation automorphism on G, x 7→ g−1xg.

Conversely, given g−valued 1−form ω : TP → g satisfying (1) and (2), then

HP = {X ∈ TP : ω(X) = 0} defines a principal connection on (P, π,M,G).

Proof. (1) follows directly from the discussion above. For (2), recall that the exponential

map commutes with the adjoint action on of Lie group on its Lie algebra. In particular for

each g ∈ G and u ∈ g, we have

g−1 exp(u)g = exp(Ad(g−1)u) = exp(g−1ug).

Since ω is induced by the projection onto V P , without loss of generality, we can look at its

application to the killing field Xu. At each p ∈ P , we have Ad(g−1)ωp(Xu(p)) = g−1ug. On

the other hand, since Rg(p · g−1) = p, we evaluate the pull-back of ω at p · g−1:

(Rg)
∗ωp·g−1(Xu(p · g−1)) =ωp(dp·g−1RgXu(p · g−1)) (3.75)

=ωp

(
d

dt
(p · g−1 exp(tu)g)

∣∣∣∣
t=0

)
(3.76)
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=ωp

(
d

dt
(p · exp(tg−1ug)

∣∣∣∣
t=0

)
= ωp(Xg−1ug(p)) = g−1ug. (3.77)

Hence, the left hand side and the right hand side agree with each other.

Conversely suppose ω is a g−valued connection 1−form on P satisfies (1) and (2).

Then to show that the assignment H defines a principal connection, it is enough to check

that dpRg(HpP ) = Hp·gP . Indeed, let X ∈ Γ(HP ) ⊆ X(P ), then

ωp·g(dpRgX(p)) = (Rg)
∗ωp(X(p)) = Ad(g−1)ωp·g(X(p · g)) = Ad(g−1)0 = 0.

By the definition of HP , we have dpRgX(p) ∈ Hp·gP , which implies that

dpRg(HpP ) ⊆ Hp·gP . Since dpRg is an isomorphism, dpRg|HpP is also an isomorphism onto

its image. Thus, dim dpRg(HpP ) = dimHpP = dimP − dimG = dimHp·gP . Therefore,

dpRg(HpP ) = Hp·gP as required.

The above discussion tells us that the existence of a principal connection on

(P, π,M,G) is equivalent to either a choice of sub-bundle HP satisfying Definition 3.11 or

a g−valued 1−form ω that has properties Proposition 3.20. We shall use whichever one

that is most convenient depending on the situation.

Just as for connections on vector bundles, we shall calculate the local formula of

connection 1−form ω on (P, π,M,G). Let sα : Uα ⊆M → π−1(Uα) ⊆ P be a local section

associated canonically with a local trivialization of P . Denote gα : π−1(Uα) → G the

smooth G−equivariant map that is a fiber-wise diffeomorphism so that gα(sα(m)) = e for

all m ∈ Uα. If Uα ∩Uβ ̸= ∅, then for each m ∈ Uα ∩Uβ there exists uniquely a smooth map

gαβ : Uα ∩ Uβ → G such that

sα(m) = sβ(m) · gαβ(m).

The suspiciously ambiguous notation gαβ will be justified shortly. We define Aα := s∗αω.

Note that Aα is a g−valued 1−form on Uα. Then consider a g−valued 1−form on
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π−1(Uα) ⊆ P

ωα := Ad(g−1
α )π∗Aα + g∗αΘ, (3.78)

where Θ is the Maurer-Cartan form on G. We claim that ωα is ω restricted to Tπ−1(Uα)

and thus defines a connection 1−form on π−1(Uα). Indeed, let m ∈ Uα so that

p := sα(m) ∈ π−1(Uα)m. It is sufficient to show that ωα and ω agree on Tpπ−1(Uα). Now

the existence of a principal connection on P is equivalent to a choice of splitting of the

following short exact short sequence

0 −→ V P |π−1(Uα) ↪−→ TP |π−1(Uα)
dsα◦dπ−−−−→ dsα ◦ dπ TP |π−1(Uα) −→ 0.

In particular, we have a decomposition Tpπ−1(Uα) = Vpπ
−1(Uα)⊕ dmsα ◦ dpπ Tpπ−1(Uα)

such that every X(p) ∈ Tpπ
−1(Uα) can be written as X(p) = Xu(p) + dmsα · dpπX(p).

Thus applying ωα to X(p) yields

ωαp (X(p)) = Ad(e)(sα ◦ π)∗ωp(X(p)) + Θe(dpgαX(p)) (3.79)

= ωp(dmsα · dpπX(p)) + Θe(dpgαXu(p)) (3.80)

(3.80) is true because gα ◦ sα is a constant map so that dgα · dsα is trivial. Now separately,

Θe(dpgαXu(p)) = (Le−1)∗(dpgαXu(p)) = dpgαXu(p) (3.81)

=
d

dt
gα(p · exp(tu))

∣∣∣∣
t=0

=
d

dt
(gα(p) exp(tu))

∣∣∣∣
t=0

=
d

dt
exp(tu)

∣∣∣∣
t=0

= u,

(3.82)

which is also equal to ωp(Xu(p)) by previous lemma. Thus (3.80) is simplified to

ωαp (X(p)) = ωp(dmsα · dpπX(p)) + ωp(Xu(p)) = ωp(X(p)).
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Now in the case where Uα ∩ Uβ ̸= ∅, for each m ∈ Uα ∩ Uβ, sα(m) also belongs to the fiber

π−1(Uβ)m. Thus we have a relation sα(m) = sβ(m) · gβ(sα(m)). But by uniqueness, it

follows that gβ ◦ sα = gαβ on Uα ∩ Uβ. Since ω = ωα = ωβ on Uα ∩ Uβ,

Aα = s∗α(Ad((gβ ◦ sα)−1)π∗Aβ + g∗βΘ) = Ad(g−1
αβ )(π ◦ sα)∗Aβ + (gβ ◦ sα)∗Θ (3.83)

= Ad(g−1
αβ )Aβ + g∗αβΘ. (3.84)

The previous discussion gives us an important recipe to establish a principal connection

on a principal bundle. In fact

Theorem 3.21. (Existence of principal connection) If M is a smooth manifold and

(P, π,M,G) is a principal bundle where P is paracompact, then there exists a principal

connection on the bundle.

Proof. Let {Uα} be a collection of open cover of M that are local trivialization of P . Let

sα be a local section associated canonically with a local trivialization Uα of P . Denote

gα : π−1(Uα) → G and gαβ : Uα ∩ Uβ → G the smooth maps defined as previously. Define

{Aα} a collection of g−valued 1−forms on Uα’s such that (94) is satisfied and {ωα} is one

for π−1(Uα)’s as in (88). Note that M =
⋃
Uα; thus P =

⋃
π−1(Uα). Since P is

paracompact, there exists a partition of unity {fα} subordinated to the open cover

{π−1(Uα)}. Let ω :=
∑

α fαω
α so that it is a global g−valued 1−form on P . It is routine to

check that ωα satisfies Proposition 3.20 on each π−1(Uα); hence ω also satisfies those

properties globally. Therefore, ω defines a global connection 1−form on P .

Example 3.6. Let M be n−dimensional Riemannian manifold equipped with the

Levi-Civita connection ∇LC , (O(M,n), π,M, SO(n)) be a principal SO(n)−bundle. Note

that O(M,n) is paracompact; thus it admits a connection 1−form. We construct such form

in the following way:

In so(n), choose the basis {Xij}i<j where Xij := Eij − Eji
3. Let

3Eij is the n× n−matrix where the ij−entry is 1 and the rest is 0.
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sα : Uα → π−1(Uα) ⊆ O(M,n) be a local section associated canonically with a local

trivialization of O(M,n), sα = (sα,1, · · · , sα,n). We define a family of so(n)−valued

1−forms {Aα} on Uα’s

Aα =
∑
i<j

⟨∇LCsα,i, sα,j⟩Xij. (3.85)

Aα’s satisfy (3.84) and thus produce a family of so(n)−valued 1−forms {ωα} on π−1(Uα)’s

satisfying (3.78). Using partition of unity, we obtain the required connection 1−form ω.

Suppose that (P, π,M,G) admits a principal connection. Let X ∈ X(M) be a

non-trivial vector field. Since dπ : TP → TM is surjective and TP = V P ⊕HP , there

exists an X̃ ∈ Γ(HP ) ⊆ X(P ) such that dπ X̃ = X. If X̃ ′ is another vector field that lives

in Γ(HP ) satisfying dπ X̃ ′ = X, then dπ(X̃ − X̃ ′) = 0. This means that

X̃(p)− X̃ ′(p) ∈ VpP for each p ∈ P . But at the same time, X̃(p)− X̃ ′(p) ∈ HpP ; hence

X̃ ≡ X̃ ′ on P . The discussion prompts the following definition

Definition 3.12. For any X ∈ X(M) that is non-trivial, the unique vector field X̃ on P is

called the horizontal lift of X if and only if

1. X̃(p) ∈ HpP for any p ∈ P .

2. dπ X̃ = X; equivalently, dpπ X̃(p) = X(π(p)) for all p ∈ P .

Horizontal lift of a vector field has the following properties

Proposition 3.22. Let X ∈ X(M)

1. The unique horizontal lift X̃ of X is a G−invariant vector field on P .

2. If Y ∈ X(M) and f ∈ Γ(M), then X̃ + Ỹ = X̃ + Y and f̃X = (f ◦ π)X̃.
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Proof. (2) follows directly from the definition. For (1), we need to show that (Rg)∗ X̃ = X̃

where g ∈ G. Indeed, let p be any point in P , consider

dp·gπ(dpRg X̃(p)− X̃(p · g)) = dp·gπ · dpRg X̃(p)− dp·gπ X̃(p · g) (3.86)

= dp(π ◦Rg) X̃(p)−X(π(p · g)) (3.87)

= dpπ X̃(p)−X(π(p)) = X(π(p))−X(π(p)) = 0. (3.88)

But both dpRg X̃(p) and X̃(p · g) live in Hp·gP , hence dpRg X̃(p) = X̃(p · g).

The following lemma is extremely useful in calculations in a coordinate-free way.

Lemma 3.23. Suppose P ×ρ V is an associated vector bundle over M given by the

representation ρ : G→ GL(V ). Denote Γ(P, V )G the space of G−equivariant smooth maps

f : P → V 4. There is a natural isomorphism between Γ(P ×ρ V ) and Γ(P, V )G, given by

mapping each f ∈ Γ(P, V )G to fM defined by

fM(m) = (p, f(p)),

where m ∈M and p is any element of Pm. (p, f(p)) should be understood as a

representative of its equivalence class in P ×ρ V .

Proof. First note that fM is well-defined. Indeed, suppose we choose another q ∈ Pm, there

exists a g ∈ G such that q = p · g. Then by G−equivariance of f , we have

(q, f(q)) = (p · g, f(p · g)) = (p · g, ρ(g−1)f(p)). This shows that (q, f(q)) is the same

equivalent class of (p, f(p)) in P ×ρ V . Now to show the 1 : 1 correspondence, it is

sufficient to show that each section s of P ×ρ V is of the from fM for some f ∈ Γ(P, V )G.

To do this, suppose s(m) = (p, v), where p ∈ Pm and v ∈ V ; we define f(p) to be equal to

the unique v ∈ V . As a map from P → V , f should be smooth and G−equivariant by

construction.
4G−equivariant here means that f(p · g) = ρ(g−1)f(p) for each p ∈ P and g ∈ G.
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Let X ∈ X(M) and γ : [0, 1] →M be the integral curve of X where γ(0) = m. Then X̃

is the horizontal lift of X so that for each p ∈ Pγ(0) = Pm we obtain the integral curve

γ̃p : [0, 1] → P of X̃ with γ̃p(0) = p. Note that

(π ◦ γ̃p)′(t) = dt(π ◦ γ̃p) = dγ̃p(t)π · dtγ̃p = dγ̃p(t)π · γ̃′p(t) = dγ̃p(t)π X̃(γ̃p(t)) = X(π ◦ γ̃p(t)).

But π ◦ γ̃p(0) = π(p) = m; thus by the Existence and Uniqueness theorem, π ◦ γ̃p = γ on a

neighborhood containing [0, 1]. Moreover, γ̃′p(t) ∈ Hγ̃p(t)P for all t ∈ [0, 1]. Hence, we call γ̃p

the unique horizontal lift of γ starting at a fixed point p ∈ Pγ(0).

Denote W := P ×ρ V . Let f0 ∈ Wγ(0) = Wm; and suppose w0 = (p, v), where (p, v) is a

representative of its equivalence class in W . We define the parallel translation of f0 along γ

to be f1 = (γ̃p(1), v) ∈ Wγ(1). The parallel translation should be well-defined, i.e, different

representative elements of the same equivalence class in Wγ(0) should be parallel translated

along γ to the same equivalent class in Wγ(1). Indeed, suppose (p · g, ρ(g−1)v) is another

representative element of the equivalence class of w0, then by the algorithm of parallel

translation along γ, (p · g, ρ(g−1)v) should be sent to (γ̃p·g(1), ρ(g
−1)v) ∈ Wγ(1). Now by

Proposition 3.22, consider the following

(γ̃p(t) · g)′ =
d

dt
Rg ◦ γ̃p(t) = dγ̃p(t)Rg · γ̃′p(t) = dγ̃p(t)Rg X̃(γ̃p(t)) = X̃(γ̃p(t) · g) ∈ Hγ̃p(t)·gP.

At the same time, γ̃p(0) · g = p · g and π(γ̃p(t) · g) = π(γ̃p(t)) = γ(t) on [0, 1]. Therefore,

Rg ◦ γ̃p is the horizontal lift of γ starting at p · g ∈ Pγ(0). In other words, γ̃p(t) · g = γ̃p·g(t)

for all t ∈ [0, 1]. In particular, we obtain (γ̃p·g(1), ρ(g
−1)v) = (γ̃p(1) · g, ρ(g−1)v).

In fact, for any t ∈ [0, 1], the parallel translation along γ induces a linear map from

Wγ(0) → Wγ(t) given by (p, v) 7→ (γ̃p(t), v). Such linear map is an isomorphism. To prove

this, because each fiber of W can be identified with V so they have the same dimensions,

we only need to check that (p, v) 7→ (γ̃p(t), v) is injective: Suppose there are p1, p2 ∈ Wγ(0)
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and v1, v2 ∈ V such that (γ̃pi(t), vi)’s are in the same equivalent class in Pγ(t). Then there

exists a gt ∈ G such that γ̃p2(t) = γ̃p1(t) · gt and v2 = ρ(g−1
t )v1. In particular, when t = 0,

we immediately see that (p1, v1) and (p2, v2) are in the same equivalent class in Wγ(0),

which implies the injection. Denote θt : Wγ(t) → Wγ(0) the inverse isomorphism. For each

s ∈ Γ(W ), we define

∇W
X(m)s :=

d

dt
θt s(γ(t))

∣∣∣∣
t=0

. (3.89)

With all of the notations above, (3.89) describes the following

Proposition 3.24. ∇W can be viewed as a linear map from X(M)⊗ Γ(W ) → Γ(W );

furthermore, it defines a connection on the vector bundle W over M . ∇W
X can also be

viewed as the directional derivative of a G−equivariant vector-valued function along X̃.

Proof. To show that ∇W defines a connection on the vector bundle W , we verify these two

things: (a) It is linear and Γ(M)−linear in the X; and (b) It obeys the Leibniz rule in s.

(a) Suppose that X1 and X2 are two vector fields on M . For a fixed m ∈M , let

γi : [0, 1] →M be the integral curve of Xi where γi(0) = m. Denote γ̃ip the horizontal lift of

γi starting at p ∈ Pm. Let θit : Wγi(t) → Wγi(0) be isomorphisms induced by the parallel

translation. By Lemma 3.23, we have an x ∈ Γ(P, V )G such that s(m) = (p, x(p)) for any

p ∈ Pm. Now consider

∇W
Xi(m)s =

d

dt
θits(γi(t))

∣∣∣∣
t=0

=
d

dt
θit(γ̃

i
p(t), x(γ̃

i
p(t)))

∣∣∣∣
t=0

=
d

dt
(p, x(γ̃ip(t)))

∣∣∣∣
t=0

= (p, dpx X̃i(p)).

With the same computations combined with Proposition 3.22,

∇W
(X1+X2)(m)s = (p, dpx (X̃1 +X2)(p)) = (p, dpx(X̃1(p) + X̃2(p))).

From the two equations above, we immediately obtain
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∇W
X1(m)+X2(m)s = ∇W

X1(m)s+∇W
X2(m)s. If f is a smooth function on M , then again by

Proposition 3.22, ∇W
(fX)(m)s = (p, dpx · f(π(p))X̃(p)). At the same time,

f(m)∇W
X(m)s = f(m)(p, dpx X̃(p)) = (p, dpx · f(m)X̃(p)) = (p, dpx · f(π(p))X̃(p)).

Therefore, f∇W
X s = ∇W

fXs.

(b) For f ∈ Γ(M), we need to show that ∇W
X(m)fs = f(m)∇W

X(m)s+ (Xm f)s(m). We

have the right hand side equal to (p, f(m)dpx X̃(p) + (Xm f)x(p)). On the other hand using

product rule, the left hand side equals to

d

dt
θt(γ̃p(t), f(γ(t))x(γ̃p(t)))

∣∣∣∣
t=0

=
d

dt
(p, f(γ(t))x(γ̃p(t)))

∣∣∣∣
t=0

= (p, (Xm f)x(p)+f(m)dpx X̃(p)).

Comparing the two sides and we yield the equality.

Let M be an n−dimensional Riemannian manifold. From all of the discussion above,

what we have shown is that given a principal G−bundle π : P →M that admits a

principal connection and a representation ρ : G→ GL(V ), one can construct a connection

on the associated vector bundle P ×ρ V . This is possible via the parallel translations of the

horizontal lifts. Furthermore, the process is completely reversible in the context of bundle

of ordered orthonormal frames. Denote W := O(M,n)×ι Rn, where ι : SO(n) ↪→ GL(Rn).

With the Example 3.6 comes into mind, we shall summarize this intimate dynamics in the

following flowchart diagram

Consider the tensor bundle O(M,n)⊗O(M,n) over M , it still defines for a principal

SO(n)−bundle over M . The principal connection on O(M,n)⊗O(M,n) is inherited from

O(M,n) via the connection 1−form ω ⊗ ω 5. Let ρ : SO(n) → GL(Rn ⊗ Rn) be the tensor

product representation induced by ι. The associated vector bundle

(O(M,n)⊗O(M,n))×ρ (Rn ⊗ Rn) now has a connection that is determined uniquely by

ω ⊗ ω; such connection in turns produces a connection ∇ on the vector bundle

TM ⊗ TM →M . Then the induced connection, which we also call ∇, on the vector bundle
5Though ω⊗ω is a connection 1−form on O(M,n)⊗O(M,n), it is a so(n)−valued 2−form on O(M,n).
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Λ2TM →M can be understood as an extension of ∇LC . The same process can be repeated

to yield an extension of ∇LC for ΛkTM . Therefore, we obtain a type-preserving

connection, which we again denote ∇, that is an extension of ∇LC on the vector bundle

Λ∗TM →M . Note that ∇ is unique and satisfies the following properties

(a) ∇X(α ∧ β) = (∇Xα) ∧ β + α ∧ (∇Xβ) for each X ∈ X(M) and α, β ∈ Γ(Λ∗TM).

(b) ∇X restricted to Γ(M) is the directional derivative along X.

Since Λ∗TM ∼= Λ∗T ∗M by the isomorphism Φ induced by the Riemannian metric, the

connection ∇ on Λ∗TM is naturally carried-over to define one on Λ∗T ∗M in the following

way ∇Xµ := Φ(∇XΦ
−1(µ)) for µ ∈ Ω∗(M). Note that ∇ is compatible with the metric on

Λ∗T ∗M , the computation to show this is routine in local orthonormal frame field. Now

consider left Clifford multiplication multiplication ĉY (.) = ηY ∧ .− Y ⌟ . on the bundle of

Clifford modules Λ∗T ∗M , where Y ∈ X(M) and ηY is the corresponding 1−form of Y in

Ω1(M). For each µ ∈ Ωk(M) and X ∈ X(M), we would like show

∇X(ĉY (µ)) = ĉ∇LC
X Y (µ) + ĉY (∇Xµ). (3.90)

In a coordinate patch, let {∂i := ∂/∂xi} be a local ordered orthonormal frame field.

Without loss of generality, we shall prove (3.90) in the case µ = dxI , where

dxI := dxi1 ∧ · · · ∧ dxik and d̂xij := dx1 ∧ · · · d̂xij ∧ · · · ∧ dxik , i1 < i2 < · · · < ik. By

Proposition 3.10, we have

∇Xdxi = Φ(∇LC
X ∂i) = Φ

(
n∑
j=1

dxj(X)∇LC
∂j
∂i

)
= Φ(0) = 0.

Thus combining with (a) above yields ∇XdxI = 0. Furthermore, if we denote Y =
∑

i Y
i∂i
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so that ηY =
∑

i Y
idxi, we obtain

∇XηY =
n∑
i=1

(
Y i∇Xdxi + (XY i)dxi

)
=

n∑
i=1

(XY i)dxi.

Therefore, ∇X(ηY ∧ dxI) =
∑n

i=1(XY
i)dxi ∧ dxI .

Similarly, applying ∇X to −Y ⌟ dxI gives us

∇X(−Y ⌟ dxI) =
k∑
j=1

(−1)j(X dxij(Y ))d̂xij .

As a result, the left hand side of (3.90) is equal to

∇X(ηY ∧ dxI − Y ⌟ dxI) =
n∑
i=1

(XY i)dxi ∧ dxI +
k∑
j=1

(−1)j(X dxij(Y ))d̂xij . (3.91)

On the other hand,

∇LC
X Y =

n∑
j=1

dxj(X)∇LC
∂j
Y =

n∑
j=1

dxj(X)

(
n∑
i=1

(∂jY
i)∂i

)
=

n∑
i=1

(
n∑
j=1

dxj(X)(∂jY
i)

)
∂i.

Hence, using the fact that ∇XdxI = 0 again, the right hand side of (3.90) is equal to

ĉ∇LC
X Y (dxI) =

n∑
i=1

(
n∑
j=1

dxj(X)(∂jY
i)

)
dxi ∧ dxI +

n∑
j=1

(−1)jdxij(∇LC
X Y )d̂xij . (3.92)

Note that

n∑
j=1

dxj(X)(∂jY
i) =

(
n∑
j=1

dxj(X)∂j

)
Y i =

(
n∑
j=1

⟨∂j, X⟩∂j

)
Y i = XY i,

and at the same time

dxij(∇LC
X Y ) = dxij

(
n∑
i=1

(XY i)∂j

)
=

n∑
i=1

(XY i)dxij(∂i) = XY ij = X dxij(Y ).
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Then direct comparison between (3.91) and (3.92) yields the result. (3.90) tells us us that

∇ is compatible with the Levi-Civita connection. We summarize our discussion about ∇ in

the following proposition that completes the objective (I) stated in the beginning of the

subsection.

Proposition 3.25. The connection ∇ : X(M)⊗Ω∗(M) → Ω∗(M) on the bundle of Clifford

modules Λ∗T ∗M is compatible with the metric on the bundle and with the Levi-Civita

connection. □

Objective (II) is automatically fulfilled, thus we conclude

Corollary 3.26. The bundle of Clifford modules Λ∗T ∗M →M indeed defines a Clifford

bundle over M . □

We investigate the local formula for the Dirac operator and the Laplacian associated

with ∇. For each µ ∈ Ωk(M), in local geodesic coordinate system, without loss of

generality assume µ = f IdxI , where f I ∈ Γ(M). Then by (32) we have

Dµ =
n∑
i=1

c∂i(∇∂iµ) =
n∑
i=1

c∂i((∂if
I)dxI) (3.93)

=
n∑
i=1

(∂if
I)dxi ∧ dxI +

n∑
i=1

(∂if
I)

k∑
j=1

(−1)jdxij(∂i)d̂xij (3.94)

=
n∑
i=1

(∂if
I)dxi ∧ dxI +

k∑
j=1

n∑
i=1

(−1)jdxij(∂i)(∂if
I)d̂xij (3.95)

=
n∑
i=1

(∂if
I)dxi ∧ dxI +

k∑
j=1

(−1)j(∂ijf
I)d̂xij . (3.96)

Note that first term of the right hand side of (3.96) is exactly the exterior derivative dµ,

while the second term is d∗µ. Therefore, D = d+ d∗ locally. As a result, the Laplacian

D2 = (d+ d∗)2 = d2 + dd∗ + d∗d+ (d∗)2 = dd∗ + d∗d. Recall that D = d+ d∗ is the

Hodge-Dirac operator in subsection 2.4.
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3.6 Pin groups and Spin groups

The following discussion can be generalized to any finite dimensional vector space V

over R equipped with a positive definite symmetric bilinear form; but for simplicity, we

shall restrict to the case of Cl(Rn), where Rn is equipped with its usual inner product.

Denote {e1, · · · , en} an ordered orthonormal basis of Rn. Let

x = x1e1 + x2e2 + · · ·xnen ∈ Rn ⊂ Cl(Rn), where xi ∈ R. Consider the action on Rn

defined in the following way

eixei = eix
1e1ei + eix

2e2ei + · · ·+ eix
ieiei + · · ·+ eix

nenei (3.97)

= x1e1 + x2e2 + · · ·+ (−xi)ei + · · ·xnen. (3.98)

Thus the action eixei is a reflection of x in the ei−direction, which is represented by the

following n× n−matrix Rei belonging to O(n)

Rei =



1 . . . 0 . . . 0

... . . . ...
...

0 . . . −1 . . . 0

...
... . . . ...

0 . . . 0 . . . 1


.

Now suppose v and w are two orthogonal vectors in Rn so that if we write v =
∑

i v
iei and

w =
∑

j w
jej, then we have

∑
k v

kwk = 0. We claim that vw = −wv in the Clifford algebra

Cl(Rn). Indeed, consider

vw =

(
n∑
i=1

viei

)(
n∑
j=1

wjej

)
=

n∑
i,j=1

viwjeiej =
n∑
k=1

vkwke2k +
∑
i ̸=j

viwjeiej (3.99)

= −
n∑
k=1

vkwk +
∑
i ̸=j

viwjeiej =
∑
i ̸=j

viwjeiej = −wv. (3.100)
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Based on the above observation, we investigate the action yxy on Rn where y is an element

of the unit sphere Sn−1 and x is an arbitrary vector in Rn. We write x = x|| + x⊥, here x||

is the projection of x onto y and x⊥ is orthogonal to y. Since x|| is parallel with y, there is

a constant c ∈ R such that y = cx||. Thus we obtain

yxy = yx||y+yx⊥y = cx||x||cx||+(−x⊥yy) = (c2x2||)x||+x⊥ = −c2||x||||2x||+x⊥ = −x||+x⊥.

Therefore similar to eixei, the action yxy is also a reflection of x in the y−direction. And

as an automorphism of Rn, we shall denote it Ry. It is not hard to see that Ry ∈ O(n).

Theorem 3.27. If A is an element of O(n), then there are reflections

R1, R2, · · · , Rp ∈ O(n) such that A = R1 ◦R2 ◦ · · · ◦Rp.

Proof. We will proceed by induction. For n = 1, A is either ±1, clearly it is a reflection

across the origin or product of two reflections across the origin. Suppose that the

statement of the theorem is true up to O(n− 1), we would like to show that it is also true

for O(n). Consider two different cases:

Case 1: Suppose there is a non-zero x ∈ Rn such that Ax = ±x. Let X be a subspace

of Rn of dimension n− 1 that is the orthogonal complement to {x}. Then for every y ∈ X,

we have ⟨Ay, x⟩ = ⟨Ay,±Ax⟩ = ±⟨y, x⟩ = 0. This shows that Ay is orthogonal to x,

which implies that Ay ∈ X. Thus X is invariant under A. But A|X ∈ O(n− 1) and by our

induction hypothesis, we have A|X = R1 ◦R2 ◦ · · · ◦Rp, where Ri are reflections in certain

directions.

Case 2: If there is no non-zero vectors in Rn that gets fixed or mapped to its antipodal,

let x ∈ Rn\{0} be fixed so that x and Ax are two distinct vectors that are not collinear.

Consider the subspace W of Rn that is spanned by x and Ax. Since Ax and x are not

collinear, there is an angle φ between them. Let y be the vector in W of unit length that is

orthogonal to the bisector of φ. Denote R the reflection in the y−direction. Note that

R(Ax) = x. Thus R ◦ A is an element of O(n) where it fixes a non-zero vector in Rn. Case
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1 tells us then that there exists reflections R1, · · · , Rp such that R ◦ A = R1 ◦ · · · ◦Rp,

which implies that A = R−1 ◦R1 ◦R2 ◦ · · ·Rp as required.

Definition 3.13. The Pin group Pin(n) is defined as a subset of Cl(Rn) whose elements

are invertible in the Clifford algebra and of the form x1 x2 · · · xp, where xi ∈ Sn−1.

The above definition is well-defined for each element a = x1 · · ·xp of Pin(n) has the

inverse as (−xp) · · · (−x1) = a which also belongs to Pin(n), and Pin(n) is obviously closed

under the Clifford multiplication. Furthermore for each element a ∈ Pin(n), aRnã defines a

group homomorphism ρ : Pin(n) → O(n) in the following way

ρ(a) = ρ(x1 · · ·xp) = Rx1 ◦ · · · ◦Rxp , where Rxi ’s are reflection in the xi−directions. And as

an immediate consequence of Theorem 3.27, we obtain

Corollary 3.28. The homomorphism ρ : Pin(n) → O(n) defined above is surjective. □

Theorem 3.29. There is an exact sequence

1 −→ Z/2 ↪−→ Pin(n) ρ−→ O(n) −→ 1,

where we identify Z/2 = {−1, 1} as a subgroup of Pin(n) that consists of the identity map

and the antipodal map

Proof. It suffices to show that Kerρ = {−1, 1}. Let a be an arbitrary element of the kernel

of ρ. Then for ever x ∈ Rn, we have ρ(a)x = axã = x. We write a = x1 x2 · · · xp where

xi ∈ Sn−1 not necessarily distinct. Note that then ρ(a) = R1 ◦ · · · ◦Rp, where Ri is

reflection in the xi−direction. By our assumption, we actually have ρ(a) ∈ SO(n) so that

det ρ(a) = 1. Hence equivalently, (−1)p = detR1 · · · detRp = 1, which implies that p has to

be even.

Now for each x ∈ Rn we have axã = x, which implies that ax = xã−1. However since

ã−1 = (−1)px1 · · · xp = x1 · · · xp = a, we yield ax = xa for all x ∈ Rn. Furthermore because
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a ∈ Cl(Rn), so we can write a as

a = a0 + a1e1 + a2e2 + · · ·+ aj1j2···jrej1 · · · ejr + · · ·+ a12···ne1e2 · · · en, (3.101)

where aj1j2···jr ∈ R for each 0 ≤ r ≤ n. We shall use (3.101) to compare ax and xa for

specific values of x. If r is odd and 1 ≤ r < n, we take x := ej1 . Observe that

(ej1ej2 · · · ejr)ej1 = (−1)rej1ej1ej2 · · · ejr = (−1)r+1ej2ej3 · · · ejr = ej2 · · · ejr .

While ej1(ej1ej2 · · · ejr) = −ej2 · · · ejr . Comparing coefficients yeild aj1j2···jr = −aj1j2···jr ,

which tells us that aj1j2···jr = 0. If r is even and 1 ≤ r < n, we consider x := ejr and apply

similar computations to get

ejr(ej1 · · · ejr) = (ejrej1 · · · ejr−1)ejr = (−1)r−1ej1 · · · ejrejr = (−1)rej1 · · · ejr−1 = ej1 · · · ejr−1 ,

and (ej1ej2 · · · ejr)ejr = −ej1ej2 · · · ejr−1 . Thus −aj1j2···jr = aj1j2···jr so that aj1j2···jr = 0.

Therefore in all cases of r, 1 ≤ r < n, we have aj1j2···jr = 0. Then (3.101) simplifies to be

a = a0 + a12···ne1 · · · en. Note that ||a|| = 16, so a20 + a212···n = 1. Hence there exists an φ

such that a = cosφ+ sinφ e1e2 · · · en. We substitute x := en into the equation axã = x and

compare the two sides

aenã = (cos2 φ− sin2 φ)en + cosφ sinφ
(
(−1)

(n−2)(n−1)
2

+1 − 1
)
e1e2 · · · en−1.

As a result simultaneously we must have

cos2 φ− sin2 φ = 1, cosφ sinφ
(
(−1)

(n−2)(n−1)
2

+1 − 1
)
= 0.

Equivalently, cos 2φ = 1 and sin 2φ · Cn = 0. Either-way φ has to be of the form kπ, where
6We would like to emphasize that ||.|| here is the norm of the Clifford algebra Cl(Rn).

73



k ∈ Z. Thus a = cos kπ = ±1. We conclude that Kerρ is indeed Z/2.

From our discussion so far, we have found that Pin(n), as a group, is a double cover of

O(n). Moreover by the definition of Pin(n), it is a subspace of S2n−1, which is the unit

sphere in Cl(Rn) with respect to the norm of the Clifford algebra. Since S2n−1 has a

subspace topology inherited from Cl(Rn) where the topology here is induced by the norm,

Pin(n) also has a subspace topology. Note that it is not hard to see the left (right)

multiplication action of Pin(n) on itself is smooth; similarly, the inverted map

Pin(n) → Pin(n) given by a 7→ a−1 is also smooth. Thus, Pin(n) is a Lie group.

Now consider the map ψ : Pin(n) → {±1} = Z/2 defined by ψ(a) = a ã. Such a map is

well-defined for each a ∈ Pin(n), a = x1 x2 · · · xp, where xi ∈ Sn−1, then

ψ(a) = x1x2 · · ·xp−1xpxpxp−1 · · ·x2x1 = (−1)p, which is ±1 depending on the parity of p.

Since ψ is continuous with respect to the topology of Pin(n) and the discrete topology of

Z/2, Pin(n) has at least 2 connected components. In fact

Proposition 3.30. Pin(n) has exactly two connected components.

Proof. Suppose a = x1 · · ·xp is an element of the pin group, where xi ∈ Sn−1. If p is even,

since Sn−1 ⊆ Pin(n) is connected, for each i there is a path γi from xi to (−1)i+1ei. Define

γ(t) := γ1(t)γ2(t) · · · γp(t). Note that γ : [0, 1] → Pin(n) is a path that connects a to 1. On

the other hand if p is odd, similarly we can construct a path between a and −e1 in Pin(n).

Note that −e1 and 1 are not in the same component of Pin(n). Indeed suppose otherwise

there exists a path αt ∈ Pin(n) for all t ∈ [0, 1] such that α0 = 1 and α1 = −e1. ρ then

induces a path between the identity map 1 and the reflection in the −e1−direction R−e1 in

O(n). But 1 is definitely orientation preserving and R−e1 is orientation reversing; hence a

contradiction. This shows that Pin(n) has precisely two connected components.

Recall that the identity component of a Lie group G is a subgroup of G. In particular,

the identity component of Pin(n) is one of its subgroup, and is called the spin group

Spin(n). This is not the only picture of the spin group.
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Theorem 3.31. The following statements are equivalent

1. Spin(n) is the identity component of Pin(n).

2. Spin(n) = Cl+(Rn) ∩ Pin(n).

Proof. Suppose that x ∈ Spin(n), then x is in the component of the identity. Furthermore

since x is also in the pin group, we can write x = x1x2 · · ·xp, where xi ∈ Sn−1 ⊆ Cl(Rn)

and p is even. Note that for each i we can write xi =
∑n

j=1 α
j
iej such that

∑
j(α

j
i )

2 = 1.

Then x =
∏p

i=1(
∑n

j=1 α
j
iej). Distribute out this product, we obtain a sum of the form

x =
∑

0≤r≤n,2|r

αj1j2···jrej1ej2 · · · ejr , (3.102)

where αj1j2···jr ∈ R. By definition x ∈ Cl+(Rn). Thus we have shown that

Spin(n) ⊆ Cl+(Rn) ∩ Pin(n). Conversely, suppose x is an arbitrary element of

Cl+(Rn) ∩ Pin(n). then we can write x as (112), where αj1j2···jr ∈ R and
∑
α2
j1j2···jr = 1.

Note that there is a path γj1 : [0, 1] → Cl(Rn) where γj1(0) = ej1 and γj1(1) = αj1···jrej1 ,

and for every k ≥ 2, there is a path γjk : [0, 1] → Cl(Rn) that connects ejk to (−1)k+1e1.

Then consider

γ(t) :=
∑

0≤r≤n,2|r

αj1···jrγj1(t) · · · γjr(t).

By construction, γ defines a continuous path [0, 1] → Pin(n) with γ(0) = x and

γ(1) =
∑
α2
j1j2···jr = 1. This shows that x is in the identity component of the pin group.

Therefore, we obtain the equality Spin(n) = Cl+(Rn) ∩ Pin(n).

Besides the two descriptions of the spin group, the above theorem also tells us that

elements of Spin(n) are products of even numbers of vectors of unit length in Rn, so

ρ|Spin(n) is a homomorphism onto SO(n). Furthermore, Ker ρ|Spin(n) ⊆ Ker ρ = Z/2 but

both −1 and 1 are elements of Spin(n) that get sent to the identity matrix. Therefore,

Ker ρ|Spin(n) = Z/2. As a result, we obtain
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Proposition 3.32. There is a short exact sequence

1 −→ Z/2 ↪−→ Spin(n) ρ−→ SO(n) −→ 1. □

Corollary 3.33. Spin(n) is a double cover for SO(n); hence it is a compact Lie group. For

n ≥ 3, Spin(n) is simply connected, thus the spin group is the universal cover of the special

orthogonal group.

Proof. Consider the exact homotopy sequence of fibration

π1(Z/2) → π1(Spin(n)) → π1(SO(n))
∂−→ π0(Z/2) → π0(Spin(n)) → π0(SO(n)) → 1,

where recall that π1(Z/2), π0(SO(n)) and π0(Spin(n)) are trivial, while π1(SO(n)) and

π0(Z/2) are Z/2 if n ≥ 3. Now note that for n ≥ 2, π0(Z/2) → π0(Spin(n)) is trivial

because both −1 and 1 are elements of the spin group. Then by exactness, ∂ is surjective,

which implies that it is also an isomorphism. Hence, the map π1(Spin(n)) → π1(SO(n)) is

trivial. On the other hand, π1(Z/2) → π1(Spin(n)) is trivial so that the kernel of

π1(Spin(n)) → π1(SO(n)) is also trivial. Therefore, π1(Spin(n)) is no other than 1.

Example 3.7. It is well-known that S3 is a double cover of SO(3) that is simply

connected. Hence, it is also the universal cover. Then by the above corollary, Spin(3) ∼= S3,

which means that S3 is also a Lie group.

Recall that a Clifford algebra Cl(Rn) over Rn equipped with its usual inner product is

defined as T (Rn)/{v ⊗ v + ||v||2 · 1}. If we were to quotient out the tensor algebra by the

two-sided {v ⊗ v − ||v||2 · 1}, we still obtain a Clifford algebra over Rn according to the

universal property. Such algebra is denoted Cl′(Rn). Similarly when we replace Rn by Cn,

and the usual inner product of Rn by the standard complex symmetric bilinear form for Cn

given by (z, w) 7→
∑n

i=1 z
iwi, then the Clifford algebra over Cn is defined by

T (Cn)/{z ⊗ z + (
∑n

i=1(z
i)2) · 1}. Note that on Cn every complex quadratic form is
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equivalent to
∑

i(z
i)2 so that without ambiguity, we can denote the complex Clifford

algebra Clc(Cn). We shall state without proofs the following results relating Clc(Cn) with

Cl(Rn) and Cl′(Rn).

Proposition 3.34. The complex Clifford algebra Clc(Cn) is the complexification of the real

Clifford algebra

Clc(Cn) = Cl(Rn)⊗R C = Cl′(Rn)⊗R C.

Proposition 3.35. The following graded real algebras are isomorphic

Cl(Rn+2) = Cl′(Rn)⊗R Cl(R2), Cl′(Rn+2) = Cl(Rn)⊗R Cl
′(R2).

Lemma 3.36. There is an isomorphism Clc(C2) =M(2,C) = End (C2).

Corollary 3.37. There is an isomorphism Clc(Cn+2) = Clc(Cn)⊗C End (C2).

Proof. By the complexification of the real Clifford algebra, we have

Clc(Cn+2) = Cl(Rn+2)⊗R C = (Cl′(Rn)⊗R Cl(R2))⊗R C =

(Cl′(Rn)⊗R C)⊗C (Cl(R2)⊗R C) = Clc(Cn)⊗C Cl
c(C2); and by the above lemma, this is

exactly isomorphic to Clc(Cn)⊗C End (C2).

In fact there is an explicit isomorphism between Clc(Cn+2) → Clc(Cn)⊗C End (C2) and

it is defined in the following way: Let e1, · · · en+2 be the generating elements of Clc(Cn+2)

and correspondingly, e∗1, · · · e∗n be those for Clc(Cn). Denote

g1 =

i 0

0 −i

 , g2 =

0 i

i 0


the generating basis of the algebra M(2,C) = End (C2). Then

Clc(Cn+2) ∼= Clc(Cn)⊗ End (C2) by the map

e1 7→ 1⊗ g1, e2 7→ 1⊗ g2, ej 7→ (ie∗j−2)⊗ g1g2, 3 ≤ j ≤ n+ 2.
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Applying the result of Corollary 3.37 recursively, we immediately obtain

Corollary 3.38.

1. If n = 2k, then Clc(Cn) ∼=
⊗k

j=1M(2,C) ∼= End
⊗k

j=1C2 ∼= End (C2k).

2. If n = 2k + 1, then

Clc(Cn) ∼=
⊗k

j=1M(2,C)⊕
⊗k

j=1M(2,C) ∼= End (C2k)⊕ End (C2k).

The complex finite dimensional vector space C2k is called the the complex n−spinors,

and is denoted ∆n for n = 2k or 2k + 1. With this notations, depending on the parity of n,

we have Clc(Cn) isomorphic to either End (∆n) or End (∆n ⊕∆n). Furthermore, the above

isomorphisms can be described explicitly so that we would represent the complex Clifford

algebra Clc(Cn) by the algebra of endomorphism on ∆n. When n is even, the

representation is the just the isomorphism Clc(Cn) → End (∆n); on the other hand, when

n is odd, the representation is the composition

Clc(Cn) → End (∆n)⊕ End (∆n) → End (∆n), where the first map is the isomorphism and

the latter map is the projection. Regardless, the representation Clc(Cn) → End (∆n) is

denoted κn and is called the spin representation of the complex Clifford algebra.

In particular, when n = 2k 7, we would like to precisely write down a formula for κn.

Note that M(2,C) as a vector space over C has the following basis {I, g1, g2, T}, where g1

and g2 are defined as above and

I =

1 0

0 1

 , T =

0 −i

i 0

 .

Let e1, · · · , en be basis elements that generates Clc(Cn). Then the formula for κn with

respect to this choice of bases is given as follow: For each j,

ej 7→ I ⊗ · · · ⊗ I ⊗ gα(j) ⊗ T ⊗ · · · ⊗ T , where α(j) is 1 if j is odd and 2 otherwise.

7When n is odd, it is a similar treatment
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Furthermore, the spin representation κn induces an R−linear map

κn|Rn : Rn ⊂ Cl(Rn) ⊂ Clc(Cn) → End (∆n). We claim that for each vector v in Rn,

κn(v)
2ξ = −||v||2 ξ, where ξ is any element of ∆n. Indeed without loss of generality, assume

ξ = ξ1 ⊗ · · · ⊗ ξk; write v = v1e1 + · · ·+ vnen, where vj ∈ R. Note that Tgα(j) + gα(j)T = 0

and T 2 = I, then

κn(v)
2ξ =

n∑
j=1

n∑
r=1

vjvrξ1 ⊗ · · · ⊗ gα(r)ξ
r ⊗ Tξr+1 ⊗ · · · ⊗ Tgα(j)ξ

j ⊗ T 2ξj+1 ⊗ · · · ⊗ T 2ξk.

The right hand side of the above equality simplifies to be∑n
j=1(v

j)2ξ1 ⊗ · · · ⊗ g2α(j)ξ
j ⊗ T 2ξj+1 ⊗ · · · ⊗ T 2ξk =∑n

j=1(v
j)2ξ1 ⊗ · · · ⊗ (−ξj)⊗ ξj+1 ⊗ · · · ⊗ ξk = −||v||2ξ, which is what we need. We

summarize the above discussion with the following proposition

Proposition 3.39. The complex n−spinors ∆n is a Clifford module with respect to the real

Clifford algebra Cl(Rn). The action κn(v)ξ of Rn on ∆n is called the left Clifford

multiplication of a vector and a spinor. □

Note that by definition, Spin(n) is a a group of invertible elements in the real Clifford

algebra. Hence the restriction of the spin representation of Cl(Rn) to the spin group

κ := κn|Spin(n) : Spin(n) → GL(∆n) is called the spin representation of Spin(n). κ is a

faithful representation, i.e, every distinct element of Spin(n) is mapped to distinct element

of GL(∆n). Furthermore, one can show that there is a Hermitian inner product on ∆n such

that κ is a unitary representation, and the left Clifford multiplication by a vector on the

spinors is skew-adjoint. To do this, first let ( , )∗ be an arbitrary positive definite scalar

product on ∆n. Since Spin(n) is a compact Lie group, we can define µ to be the Haar

measure on it. Now for each fixed pair of spinors φ and ψ, the map

hφψ : g 7→ (κ(g)φ, κ(g)ψ)∗ is a continuous function from Spin(n) → C; thus it is continuous,
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and in turns, measurable with respect to µ. Denote

(φ, ψ) :=

∫
Spin(n)

hφψ(g) dµ(g) =

∫
Spin(n)

(κ(g)φ, κ(g)ψ)∗ dµ(g). (3.103)

Lemma 3.40. ( , ) is a well-defined Hermitian inner product on ∆n.

Proof: It is not hard to see that ( , ) is bilinear. What remains for us to show that ( , ) is

actually well-defined, i.e, it is independent of the choice of g ∈ Spin(n). Let s be another

element of Spin(n) other than g. With respect to the Haar measure, we immediately yield

∫
Spin(n)

hφψ(g) dµ(g) =

∫
Spin(n)

hφψ((sg−1)g) dµ(sg−1g) =

∫
Spin(n)

hφψ(s) dµ(s). □

Now we claim that with respect to the Hermitian inner product defined in (113), κ is a

unitary representation. Indeed, let s ∈ Spin(n), consider

(κ(s)φ, κ(s)ψ) =

∫
Spin(n)

hκ(s)φκ(s)ψ(g) dµ(g) =

∫
Spin(n)

hφψ(sg) dµ(sg) = (φ, ψ),

which shows that κ(s)∗κ(s) = κ(s)κ(s)∗ = Id∆n with respect to ( , ). This observation has

the following implication, since κn(v)2 = −||v|2Id∆n for each v ∈ Rn and without loss of

generality assume v ̸= 0 and ||v|| = 1, κn(v)∗ = −κn(v). As a result

Lemma 3.41. With respect to ( , ) defined in (3.103), we have

(κn(v)φ, ψ) + (φ, κn(v)ψ) = 0 for each v ∈ Rn and φ, ψ ∈ ∆n. □

Finally we can write the spin representation as κ : Spin(n) → U(∆n). For each

g ∈ Spin(n), since κ(g)−1 = κ(g)∗, |detκ(g)| = 1. This statement can be made even

stronger.

Proposition 3.42. If κ : Spin(n) → U(∆n) is the spin representation, then

detκ(g) = 1
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for every g ∈ Spin(n) so that κ is the representation of the spin group into the the special

unitary group SU(∆n) of the space of spinors.

Proof. Consider the group homomorphism that happens to be also continuous with respect

to the smooth structure of Spin(n) and S1, f : Spin(n) → S1 given by f(g) := detκ(g).

Since Spin(n) is simply connected and R is the universal cover of R, then there exists a

continuous lift F : Spin(n) → R such that f(g) = exp(2πiF (g)). Note that F is a group

homomorphism and Spin(n) is compact, so F (Spin(n)) ⊂ R is a subgroup of R that is

bounded in an interval. This is only possible when F (Spin(n)) is the trivial group, in other

words, F ≡ 0. Therefore, detκ(g) = f(g) = exp(0) = 1.

3.7 Spin structures and spin manifolds

Let (M, g) be a connected compact n−dimensional Riemannian manifold. Denote

SOn := O(M,n) the principal SO(n)−bundle of ordered orthonormal frames over M .

Definition 3.14. (Spin structure) A spin structure on M is a principal Spin(n)−bundle

(S̃Pn, ϱ) over M where ϱ : S̃Pn → SOn is a double cover map and ϱ restricted to each fiber

is the double cover ρ : Spin(n) → SO(n) such that the following diagram is commutative

S̃Pn × Spin(n) S̃Pn M

SOn × SO(n) SOn M

ϱ×ρ ϱ

π̃

π

Here the horizontal maps are the actions of the groups on the bundles, and the surjective

smooth invariant maps from the bundles onto the underlying manifolds respectively. If M

possesses a spin structure, M is called a spin manifold.

Definition 3.15. Two spin structures (S̃P
1

n, ϱ1) and (S̃P
2

n, ϱ2) are spin equivalent if and

only if there exists a Spin(n)−equivariant f : S̃P
1

n → S̃P
2

n such that the following diagram
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commutes

S̃P
1

n S̃P
2

n

SOn SOn

f

ϱ1 ϱ2

Note that the above definition gives us an equivalent relation of spin structures on M .

Thus, all the spin structures on M are divided into equivalence classes. One should be

cautious to realize that though the language used here insists upon the relation defined on

M , it really is not the usual equivalence of bundle over the underlying manifold but rather

over the principal bundle SOn. Certainly, there are two spin structures over M that are not

spin equivalent even if the corresponding principal Spin(n)−bundles are equivalent over M .

For example, RP2 and the trivial SO(n)−bundle RP2 × SO(n) satisfy the assertion. We

shall see the reason why this is so later in details.

Suppose that (S̃Pn, ϱ) is some fixed spin structure on M . Consider SOn,p a fiber of

SOn. Because of the identification SOn,p
∼= SO(n), we have π1(SOn,p) = Z/2. Let

ι : SOn,p ↪→ SOn be the inclusion map and α ∈ π1(SOn,p) be it’s non-trivial element. Denote

α# := ι#(α) ∈ π1(SOn). By some general theory of covering spaces, since ϱ : S̃Pn → SOn is

a double cover, H(S̃Pn, ϱ) = ϱ#(π1(S̃Pn)) ⊂ π1(SOn) is a subgroup of index 2.

Lemma 3.43. α# is not an element of H(S̃Pn, ϱ).

Proof. Suppose otherwise that α# ∈ H(S̃Pn, ϱ), that means ι#(π1(SOn,p)) ⊆ ϱ#(π1(S̃Pn)).

At the same time, SOn,p
∼= SO(n) is locally-connected and path connected; thus there

exists a unique lift f : SOn,p → S̃Pn of ι such that ϱ ◦ f = ι. In particular, f(SOn,p) lies in

some fiber of S̃Pn identified with Spin(n). Hence we can view f : SO(n) → Spin(n) where

ρ ◦ f = IdSO(n), which implies that ρ# ◦ f# = Idπ1(SO(n)). However for n ≥ 3,

π1(SO(n)) = Z/2 and π1(Spin(n)) = 1, this leads to a contradiction.

Proposition 3.44. The equivalence classes of spin structures on M are in bijective

correspondence with collection of subgroups H ⊆ π1(SOn) of index 2 that do not contain α#.
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Consider the short exact sequences of spaces 0 → SOn,p ↪→ SOn →M → 0 which

induces the following exact homotopy sequence of fibration

· · · −→ π2(M)
∂−→ π1(SOn,p) = Z/2

ι#−→ π1(SOn)
π#−→ π1(M) → 1. (3.104)

A subgroup H ⊆ π1(SOn) of index 2 is normal. Thus H is normal in π1(SOn) so that we

have a non-trivial homomorphism fH : π1(SOn) → π1(SOn)/H = Z/2 and vice versa. On

the other hand, the condition α# /∈ H is equivalent to the fact that the composition of maps

π1(SOn,p) = Z/2
ι#−→ π1(SOn)

fH−→ π1(SOn)/H = Z/2 = π1(SOn,p)

fH ◦ ι# = IdZ/2. Thus the collection of subgroups H ⊆ π1(SOn) of index 2 that do not

contain α# is in one-to-one and onto correspondence with the collection of homomorphisms

f : π1(SOn) → π1(SOn,p) = Z/2 such that f ◦ ι# = IdZ/2. Therefore, we can rephrase

Proposition 3.44 in the following way

Corollary 3.45. The equivalence classes of spin structures on M are in bijective

correspondence with the collection of homomorphisms f : π1(SOn) → Z/2 where

f ◦ ι# = IdZ/2.

Yet there is another more succinct way to describe the relationship between the

equivalence classes of spin structures on M and the algebraic topology of SOn. First, let’s

recall some algebra facts about the universal property of the abelianization of a group G.

In general, Gab is the abelianization of G if and only if it is an abelian group equipped with

a homomorphism ϕ : G→ Gab that is universal among all abelian groups equipped with

homomorphisms from G. As a result, it is not hard to see that Gab ∼= G/[G,G].

Another application of the universal property of G/[G,G] is as follow: Suppose

φ ∈ Hom(G,Z/2). By the universal property, there exists uniquely a homomorphism

f ∈ Hom(G/[G,G];Z/2) such that f ◦ ϕ = φ. Conversely, a homomorphism from
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G/[G,G] → Z/2 gives rise to a homomorphism from G→ Z/2 by composition. Hence it is

not hard to see that Hom(G/[G,G];Z/2) = Hom(G;Z/2). Replace G := π1(SOn), we

obtain

H1(SOn;Z/2) := Hom(H1(SOn);Z/2) (3.105)

:= Hom(π1(SOn)/[π1(SOn), π1(SOn)];Z/2) = Hom(π1(SOn);Z/2). (3.106)

This means that a homomorphism f : π1(SOn) → Z/2 gives rise to an element which we

also denote f belonging to the first cohomology group H1(SOn;Z/2). At the same time,

the inclusion ι : SOn,p ↪→ SOn induces the homomorphism

ι∗ : H1(SOn;Z/2) → H1(SOn,p;Z/2) = Hom(π1(SOn,p);Z/2) = Hom(Z/2;Z/2) = Z/2.

Hence, the condition f ◦ ι# = IdZ/2 is equivalent to the condition ι∗(f) is not the trivial

map from Z/2 → Z/2.

Consider the long exact sequence of cohomology groups

0 −→ H1(M ;Z/2) π∗
−→ H1(SOn;Z/2)

ι∗−→ H1(SOn,p;Z/2) = Z/2 ∂−→ H2(M ;Z/2) −→ · · · .

We have ι∗(f) is non-trivial in H1(SOn,p;Z/2) = Z/2 if and only if the non-trivial element

1 ∈ Z/2 belongs to to the image of ι∗. By exactness, ∂(1) = 0. The element

w2(M) := ∂(1) ∈ H2(M ;Z/2) is called the second Stiefel-Whitney class of M . The

discussion helps us summarize the necessary and sufficient topological condition for a

connected Riemannian manifold to posses spin structures.

Theorem 3.46. The equivalence classes of spin structures on M are in bijectively

correspondence with the elements of f ∈ H1(SOn;Z/2) such that ι∗(f) ̸= 0 in Z/2.

Moreover, M is a spin manifold if and only if the second Stiefel-Whitney class w2(M) = 0.

When the second Stiefel-Whitney class of M vanishes, the spin structures on M are

completely determined by the first cohomology group H1(M ;Z/2). □
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Corollary 3.47. Suppose M is simply connected. M is a spin manifold if and only if

π1(SOn) = Z/2 and in this case, M has a unique spin structure up-to spin equivalence.

Proof. Since π1(M) = 1, H1(M ;Z/2) = 0. ι∗ is now an injective homomorphism from

H1(SOn;Z/2) = Hom(Z/2;Z/2) = Z/2 → Z/2; hence it is also surjective. Thus 1 belongs

to the image of ι∗ so that w2(M) = 0. Therefore, M is spin. In this case, obviously there is

one and only one element in H1(SOn;Z/2) gets mapped to 1 by ι∗. As a result, M

possesses a unique spin structure up-to spin equivalence.

Conversely suppose M is spin, then w2(M) = 0. Therefore, ι∗ is surjective. Earlier

observation tells us ι∗ is injective so then it is an isomorphism, which means that

H1(SOn;Z/2) = Z/2. But the assertion is only possible when π1(SOn) = Z/2.

Corollary 3.48. If M is 2−connected, i.e, π2(M) = 1 and simply connected, then M is a

spin manifold and it only has one spin structure up-to spin equivalence.

Proof. Since both π1 and π2 of M are trivial, (3.104) gives us an isomorphism

π1(SOn) ∼= π1(SOn,p) = Z/2. By Corollary 3.47, M is spin and its spin structure is unique

up-to equivalence.

Example 3.8. Spin manifolds are not rare. It is well-known that Sn is (n− 1)−connected.

In particular, S3 is 2−connected and also simply connected. Hence S3 is spin and there is

only one spin structure up-to spin equivalence on it.

Example 3.9. Consider the complex projective plane CPn. Note that π1(CPn) = 1 so

wether or not CPn is spin depends on when π1(SO2n) is Z/2. As it turns out, π1(SO2n) is

Z/2 when n ≡ 1 mod 2 and trivial otherwise (cite reference here). Therefore, CP2k+1 is

spin, while CP2k is not.

From now on when dealing with spin manifold M of dimension n, we shall fix a spin

structure on it denoted by S̃Pn. The associated vector bundle Σn := S̃Pn ×κ ∆n with

respect to the spin representation κ is called a spinor bundle over M . Note that Σn is a
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complex vector bundle over M of rank 2
n
2 . Since each fibers of Σn is identified with the

complex n−spinors, and ∆n is equipped with a Hermitian inner product defined previously,

the spinor bundle also has a Hermitian metric that is smoothly varying across its fibers. As

principal Spin(n)−bundle, S̃Pn is always equipped with a principal connection. From what

we have seen before, a choice of principal connection induces a connection on the

associated vector bundle via parallel translation. Our goal here is to construct a connection

on Σn that is compatible with the metric and with the Levi-Civita connection ∇LC .

Consider the connection 1−form ω on SOn produced by ∇LC , ω : TSOn → so(n). We first

observe the following

Lemma 3.49. The Lie algebra spin(n) coincides with the linear subspace

spanR{eiej : 1 ≤ i < j ≤ n.} ⊂ Cl(Rn) so that dimR spin(n) = n(n− 1)/2. Furthermore, the

differential d1ρ : spin(n) → so(n) is an isomorphism where d1ρ(eiej) = 2(Eij − Eji).

Therefore, spin(n) can be identified with so(n).

Proof. cite reference

Thus ω lifts uniquely to a spin(n)−valued 1−form, ω̃ : T S̃Pn → spin(n) given by

ω̃ = (d1ρ)
−1 ◦ ω ◦ dϱ. We claim that ω̃ satisfies Proposition 3.20. Indeed let u ∈ spin(n), Xu

is the killing field on S̃Pn, and p ∈ S̃Pn arbitrarily. Note that

dϱ(Xu(p)) =
d

dt
ϱ(p · exp(tu))

∣∣∣∣
t=0

=
d

dt
(ϱ(p) · ρ(exp(tu)))

∣∣∣∣
t=0

(3.107)

=
d

dt
(ϱ(p) · exp(td1ρ(u)))

∣∣∣∣
t=0

= Xd1ρ(u)(ϱ(p)), (3.108)

which is the killing field associated with d1ρ(u) on SOn. Thus

ω̃(Xu) = (d1ρ)
−1 ◦ ω(Xd1ρ(u)) = (d1ρ)

−1 ◦ d1ρ(u) = u. For the second criterion, let X by an

arbitrary vector field on S̃Pn and fix a point p ∈ S̃Pn. For any g ∈ Spin(n), note that

Ad(ρ(g)−1) = (d1ρ) ◦ Ad(g−1) ◦ (d1ρ)−1 and combining with the repetitive use of chain-rule,
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we have

(Rg)
∗ω̃p(X(p)) = ω̃p·g(dpRgX(p)) = (d1ρ)

−1 ◦ ωϱ(p)·ρ(g)(dp·gϱ · dpRgX(p)) (3.109)

= (d1ρ)
−1 ◦ ωϱ(p)·ρ(g)(dp(ϱ ◦Rg)X(p)) (3.110)

= (d1ρ)
−1 ◦ ωϱ(p)·ρ(g)(dp(Rρ(g) ◦ ϱ)X(p)) (3.111)

= (d1ρ)
−1 ◦ ωϱ(p)·ρ(g)(dϱ(p)Rρ(g) · dpϱX(p)) (3.112)

= (d1ρ)
−1 ◦ (Rρ(g))

∗ωϱ(p)(dpϱX(p)) (3.113)

= (d1ρ)
−1 ◦ Ad(ρ(g)−1)ωϱ(p)·ρ(g)(dp·gϱX(p · g)) (3.114)

= (d1ρ)
−1 ◦ (d1ρ) ◦ Ad(g−1) ◦ (d1ρ)−1 ◦ ωϱ(p·g) · dp·gϱX(p · g) (3.115)

= Ad(g−1)ω̃p·g(X(p · g)). (3.116)

We conclude that ω̃ defines a connection 1−form on S̃Pn. Now following the construction

for (99), we obtain a connection ∇Σn : X(M)⊗ Γ(Σn) → Γ(Σn). We would like to show the

following two important properties of ∇Σn

Proposition 3.50. The connection ∇Σn : Γ(Σn) → Γ(T ∗M ⊗ Σn) satisfies Definition 3.4,

i.e,

1. (∇Σn
X ξ, ψ) + (ξ,∇Σn

X ψ) = X (ξ, ψ) for each X ∈ X(M) and ξ, ψ ∈ Γ(Σn).

2. ∇Σn
X (κn(Y )ψ) = κn(∇LC

X Y )ψ + κn(Y )∇Σn
X ψ for each X, Y ∈ X(M) and ψ ∈ Γ(Σn).

If the above is true, then combine with Lemma 3.41 we yield the main result of this

subsection

Theorem 3.51. The spinor bundle Σn is a Clifford bundle over the spin manifold M . □

We conclude the subsection by providing proof of Proposition 3.50. Suppose n = 2k, 8

Let U ⊆M be an open subset such that we have a local section associated canonically with
8Again, similar treatment for n = 2k + 1.
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a local trivialization of SOn, s : U → π−1(U) ⊂ SOn. Since M is spin, there exists a unique

lift s̃ : U → π̃−1(U) ⊂ S̃Pn such that the following diagram commutes

U ⊆M π̃−1(U) ⊂ S̃Pn

U ⊆M π−1(U) ⊂ SOn

s̃

ϱ

s

Then s̃ can be considered a local section associated canonically with a local

trivialization of S̃Pn on U ⊆M . If we denote xψ, xξ ∈ Γ(S̃Pn,∆n)
Spin(n) be the

corresponding maps to sections ψ, ξ respectively in the sense of Lemma 3.23, then on U

one can write ξ = (s̃, xξ ◦ s̃), ψ = (s̃, xψ ◦ s̃). Note that π̃ ◦ s̃ is the identity on U ; thus

dπ̃ ◦ ds̃ is the identity of TU . Therefore, ds̃(X) = X̃ at least on U , where X̃ is the

horizontal lift of X to X(S̃Pn).

Proof of Proposition 3.50.1: It suffices to prove that metric compatibility condition is true

on U . We have ∇Σn
X ξ = (s̃, dxξ ◦ ds̃ (X)). Hence,

(∇Σn
X ξ, ψ) = (dxξ ◦ ds̃ (X), xψ ◦ s̃). (3.117)

Similarly, we also have

(ξ,∇Σn
X ψ) = (xξ ◦ s̃, dxψ ◦ ds̃ (X)). (3.118)

On the other hand, let {σ1, · · ·σ2k} be an ordered orthonormal basis with respect to the

Hermitian inner product ( , ) on ∆n so that we can write

xξ =
2k∑
i=1

xξiσi, xψ =
2k∑
j=1

xψjσj,
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where xξi’s and xψj’s belong to Γ(S̃Pn,C) appropriately. Then it is not hard to see that

(xξ ◦ s̃, xψ ◦ s̃) =
∑

i(x
ξi ◦ s̃)(xψi ◦ s̃). As a result,

X (ξ, ψ) = X (xξ ◦ s̃, xψ ◦ s̃) = X
2k∑
i=1

(xξi ◦ s̃)(xψi ◦ s̃) (3.119)

=
2k∑
i=1

(dxξi ◦ ds̃ (X))(xψi ◦ s̃) +
2k∑
i=1

(xξi ◦ s̃)(dxψi ◦ ds̃ (X)) (3.120)

(3.117), (3.118) and (3.120) combined gives us the equality. □

Proof of 3.50.1: Again, it suffices to show that the Levi-Civita compatibility condition is

true on U . Let {∂1, · · · , ∂n} be an oriented local synchronuous orthonormal frame field at

m on U . It is enough to show that

∇Σn
∂i
(κn(Y )ψ) = κn(∇LC

∂i
Y )ψ + κn(Y )∇Σn

∂i
ψ. (3.121)

We shall work from the left hand side of (3.121). Suppose Y =
∑

j Y
j∂j, Y j ∈ Γ(M). Then

at m, using Leibniz rule for the connection ∇Σn and chain rule we obtain

LHS =
n∑
j=1

∇Σn
∂i
(Y jκn(∂j)ψ) =

n∑
j=1

Y j∇Σn
∂i
(κn(∂j)ψ) +

n∑
j=1

(∂i Y
j)κn(∂j)ψ (3.122)

=
n∑
j=1

Y j(s̃, dκn(∂j) d(x
ψ ◦ s̃)(∂i)) +

n∑
j=1

(∂iY
j)(s̃, κn(∂j)(x

ψ ◦ s̃)) (3.123)

=
n∑
j=1

Y j(s̃, κn(∂j) d(x
ψ ◦ s̃)(∂i)) +

n∑
j=1

(s̃, κn((∂iY
j)∂j)(x

ψ ◦ s̃)) (3.124)

=
n∑
j=1

(s̃, κn(Y
j∂j) d(x

ψ ◦ s̃)(∂i)) +
n∑
j=1

(s̃, κn((∂iY
j)∂j)(x

ψ ◦ s̃)) (3.125)

=

(
s̃, κn

(
n∑
j=1

Y j∂j

)
d(xψ ◦ s̃)(∂i)

)
+

(
s̃, κn

(
n∑
j=1

(∂iY
j)∂j

)
(xψ ◦ s̃)

)
(3.126)

= (s̃, κn(Y ) d(xψ ◦ s̃)(∂i)) + (s̃, κn(∇LC
∂i
Y )(xψ ◦ s̃)) (3.127)
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= κn(Y )∇Σn
∂i
ψ + κn(∇LC

∂i
Y )ψ = RHS. □ (3.128)

From now on when there is no ambiguity and to avoid notation clutter, we shall write

κn(X)ψ := X · ψ for X ∈ X(M) and ψ ∈ Γ(Σn). Since Σn is a Clifford bundle over the spin

manifold M , it possesses a Dirac operator D : Γ(Σn) → Γ(Σn). When n = 2k 9, the spin

representation decomposes into two irreducible representations

κ = κ± : Spin(n) → SU(∆+
2k ⊕∆−

2k) [9]. Thus when the spin manifold M is even

dimensional, the spinor bundle Σn decomposes correspondingly into Σ+
n ⊕ Σ−

n , i.e, Σn is

Z/2−graded; and it is not hard to see that D is an odd operator.

Let E be any U(m) vector bundle over M of rank m. We always have a canonical

scalar product that varies smoothly across the fibers of E. In the presence of this auxiliary

bundle, one can define another Clifford bundle structure over M , Σn ⊗ E →M . We shall

often refer to this bundle as twisted spinor bundle. To see why this is true, we shall divide

the problem into 3 parts.

Part 1. Since both Σn and E have canonical scalar products, the bundle tensor gives a

natural scalar product. In particular, if ψj ⊗ ϕj ∈ C∞(s⊗E) are twisted spinors (j = 1, 2),

then

⟨ψ1 ⊗ ϕ1, ψ2 ⊗ ϕ2⟩ := ⟨ψ1, ψ2⟩s⟨ϕ1, ϕ2⟩E.

By construction, the above scalar product varies smoothly across the fibers of Σn ⊗ E.

Part 2. The left Clifford multiplication by the covectors to sections of Σn ⊗ E is borrowed

from κ. Specifically, we consider the homomorphism κ⊗ 1E : T ∗X → End(Σn ⊗ E), or

equivalently,

κ := ρ⊗ 1E : T ∗X ⊗ Σn ⊗ E → Σn ⊗ E

so that for every v ∈ Γ(T ∗X) and twisted spinor ψ ⊗ ϕ, we have
9When n = 2k+1, there is no decomposition in the spin representation. In fact, κ : Spin(n) → SU(∆2k+1)

is irreducible.
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κ(v)(ψ ⊗ ϕ) = (κ(v)ψ)⊗ ϕ. Direct calculations still give ρ(v)2 = −g(v, v)1s⊗E.

Furthermore to check the skew-adjoint-ness of ρ with the scalar product defined in Part 1,

we take two arbitrary twisted spinors ψj ⊗ ϕj, and compute

⟨ρ(v)ψ1 ⊗ ϕ1, ψ2 ⊗ ϕ2⟩ = ⟨ρ(v)ψ1, ψ2⟩s⟨ϕ1, ϕ2⟩E = −⟨ψ1, ρ(v)ψ2⟩s⟨ϕ1, ϕ2⟩E. (3.129)

The right hand side of (3.129) is exactly −⟨ψ1 ⊗ ϕ1, ρ(v)ψ2 ⊗ ϕ2⟩.

Part 3. We need a Clifford bundle connection of Σ⊗ E. Constructing one is not difficult.

Let ∇A be any unitary connection of E and consider ∇A := ∇Σn ⊗ 1E + 1Σn ⊗∇A. We

shall show that ∇A is a compatible connection with respect to the two structures defined in

the two previous parts. For the compatibility with the scalar product, let ψj ⊗ ϕj be any

twisted spinors, we have

⟨∇A(ψ1 ⊗ ϕ1), ψ2 ⊗ ϕ2⟩ = ⟨∇Σnψ1 ⊗ ϕ1 + ψ1 ⊗∇Aϕ1, ψ2 ⊗ ϕ2⟩ (3.130)

= ⟨∇Σnψ1, ψ2⟩Σn⟨ϕ1, ϕ2⟩E + ⟨ψ1, ψ2⟩Σn⟨∇Aϕ1, ϕ2⟩E (3.131)

= d⟨ψ1, ψ2⟩Σn⟨ϕ1, ϕ2⟩E + ⟨ψ1, ψ2⟩Σnd⟨ϕ1, ϕ2⟩E. (3.132)

The last equation is exactly d⟨ψ1 ⊗ ϕ1, ψ2 ⊗ ϕ2⟩, where d is the usual exterior derivative on

X. Finally to verify the compatibility with the Levi–Civita connection, let v, w be vector

fields on X and ψ ⊗ ϕ be a twisted spinor. Then

∇v(κ(w)ψ ⊗ ϕ) = ∇Σn
v (κ(w)ψ)⊗ ϕ+ κ(w)ψ ⊗∇Avϕ (3.133)

= ρ(∇LC
v w)ψ ⊗ ϕ+ ρ(w)(∇Σn

v ψ ⊗ ϕ+ ψ ⊗∇Avϕ). (3.134)

The last equality simplified gives κ(∇LC
v w)ψ ⊗ ϕ+ κ(w)∇Av(ψ ⊗ ϕ).

Because of the Clifford bundle structure of Σn ⊗ E, there is also a globally defined

Dirac operator DA associated to the twisted spinor bundle. And just as the untwisted case,
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DA is defined by the composition

Γ(Σn ⊗ E)
∇A−→ Γ(T ∗X ⊗ Σn ⊗ E)

κ−→ Γ(Σn ⊗ E).

We often refer to DA as the twisted Dirac operator. When n is even, the Z/2−grading

of Σn also makes the twisted spinor bundle Z/2−graded, Σn⊗E = Σ+
n ⊗E ⊕Σ−

n ⊗E. And

DA also respects the splitting, D±
A : Γ(Σ±

n ⊗ E) → Γ(Σ∓
n ⊗ E). Sections of the bundle

Σ±
n ⊗ E will be denoted by positive (negative) twisted spinors. Note that the rank of

Σ±
n ⊗ E is exactly 2n/2−1. If E is a line bundle, Σn ⊗ E is the spinc bundle over the spin

manifold M .

4 Analysis of Dirac operator

The majority content of this section is based on Chapter 3 of [17], Chapter 5 of [21],

Chapter 1 of [11].

4.1 General properties

Throughout this section, we assume M is an n−dimensional compact Riemannian spin

manifold without boundary. Let Σn be a fixed spinor bundle over M , and with it we have

the spinor Dirac operator D. We view D as a differential operator from Γ(Σn) → Γ(Σn).

One can impose different Hermitian inner products on the linear space Γ(Σn), the following

are the two we have encountered

A. ( , ) is a local inner product that is smoothly varying across the fibers of Σn induced

from the natural Hermitian inner product on the complex n−spinors ∆n.

B. The global L2−inner product defined by ⟨ , ⟩L2 =
∫
M
( , ) vol.

Since Σn is a Clifford bundle, D has the Weitzenbock formula D2 = ∇Σn∗∇Σn +KΣn and

thus it enjoys all of the L2−properties we have proved previously, namely KΣn , D2 and D
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are L2−self-adjoint. Note that the global L2−inner product gives a norm on Γ(Σn) defined

by ||ψ||2L2 =
∫
M
(ψ, ψ) vol, which makes Γ(Σn) a normed linear space over C. The

completion of Γ(Σn) with respect to || · ||L2 denotes the Banach space L2(Σn) equipped now

with the induced norm || · ||2. It is not hard to see that || · ||2 satisfies the parallelogram

law. Therefore, L2(Σn) is also a Hilbert space equipped with a Hermitian inner product

satisfying ⟨ψ, ψ⟩2 = ||ψ||22. One of the questions we are interested in is to what extent D

remains self-adjoint when Γ(Σn) is replaced with L2(Σn). To answer this, we need some

general theory about elliptic operators. Our setting is the following, suppose E is a certain

vector bundle over M equipped with a metric and a connection ∇ that is both compatible

with the Levi-Civita connection and the metric on E. Like before, we view

∇ : Γ(E) → Γ(T ∗M ⊗ E) as a first order covariant derivative in the direction of a vector

field X on M . Apply ∇ k times in k directions to obtain a kth−order covariant derivative

∇kψ, which is a smooth section of the bundle (⊗k
j=1T

∗M)⊗ E for ψ ∈ Γ(E). Using the

multi-index notation, we define

Definition 4.1. A differential operator P on M of order k is linear map from

Γ(E) → Γ(E) such that for every m ∈M and a local trivialization U × Fr = E|U , P can be

written locally as

P =
∑
|α|≤k

Pα∇|α|
⊗α1

j=1∂1⊗···⊗αn
j=1∂n

.

Here F = C or R and Pα is a certain r × r−matrix whose entries are smooth F−valued

functions defined on U . In other words, Pα ∈ End(E). And we do require that Pα ̸= 0 for

some α.

Definition 4.2. Let ω ∈ Ω1(M) = Γ(T ∗M) and P be a differential operator as in

Definition 4.1. On a trivialization U of E given in Definition 4.1, locally ω =
∑

j ω
jdxj.
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The total symbol of P with respect to ω is a bundle map σP(ω) ∈ End(E) given by

σP(ω) =
∑
|α|≤k

i|α|ωαPα : E → E, e 7→ σP(ω)(e) =
∑
|α|≤k

i|α|ωαPα e.

Here ωα = (ω1)α1 · · · (ωn)αn , where α = (α1, · · · , αn). The principal symbol of P is the total

symbol restricted to the highest order, i.e,

σkP(ω) := σP(ω)||α|=k = ik
∑
|α|=k

ωαPα : E → E, e 7→ σkP(ω)(e) = ik
∑
|α|=k

ωαPα e.

We then can view symbols of linear differential operators as polynomials in T ∗M and

out-puts are vector-bundle valued. The scalar multiplication by i|α| is by convention so that

if P is L2−adjoint, so is its principal symbols. One should note that local formulas of σP

and σkP are independent of the choices of local trivialization and coordinate charts.

Definition 4.3. Let P : Γ(E) → Γ(E) be a differential operator of order k. We say P is

elliptic if and only if for each non-trivial covector field ω (1−form) on M and at each

m ∈M , σkP(ω)m : Em → Em is an isomorphism. In other words, P is elliptic if and only if

σkP : Ω1(M) → GL(E).

In our context, the spinor Dirac operator D is an honest first order differential

operator. The local formula of D has already been established, here we assume that

{∂1, · · · , ∂n} is an oriented synchronous orthonormal frame field around m ∈M and

(x1, · · · , xn) is the corresponding normal coordinate. Suppose ω is an arbitrary non-trivial

covector field on M so that we can write ω =
∑n

j=1 ω
jdxj. Thus the principal symbol of D,

which coincides with the total symbol, is

σD(ω) = σ1
D(ω) = i

n∑
j=1

ωjκn(∂j) = i

n∑
j=1

κn(ω
j∂j) = iκn

(
n∑
j=1

ωj∂j

)
= iκn(ω

#), (4.1)

where ω# is the corresponding vector field of ω via the canonical identification
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T ∗M ∼= TM , ⟨ω#, X⟩ = ω(X) for any vector field X on M . In short, σ1
D(ω) = iω#·, the

operation · signifies the left Clifford multiplication by vector fields. Note that

σ1
D(ω)σ

1
D(ω) = i2ω# · ω#· = ||ω#||2IdΣn . This shows exactly that D is an elliptic operator.

Summarizing the discussion, we obtain

Proposition 4.1. The spinor Dirac operator D : Γ(Σn) → Γ(Σn) is an elliptic first order

differential operator. The principal symbol σD(ω) is an L2−self-adjoint operator. □

Remark 6. Similar calculations would show that any generalized Dirac operator is a first

order elliptic operator. In particular, the Hodge-Dirac operator d+ d∗ is elliptic.

To say anything more about elliptic operators, we need the language of Sobolev spaces

and various related things. Note that the metrics on M and Σn induce a natural metric on

(⊗k
j=1T

∗M)⊗ Σn. Then on Γ(Σn), we can define the basic Sobolev k−inner product as

follow, for each ψ, ξ ∈ Γ(Σn),

⟨ψ, ξ⟩L2
k
:=

∫
M

(ψ, ξ) + (∇Σnψ,∇Σnξ) + · · ·+ ((∇Σn)kψ, (∇Σn)kξ) vol.

Thus the basic Sobolev k−norm on Γ(Σn) is

||ψ||2L2
k
=

∫
M

k∑
j=0

((∇Σn)jψ, (∇Σn)jψ) vol.

Again, Γ(Σn) is a a normed linear space over C with respect to || · ||L2
k
. The completion of

Γ(Σn) with respect to the basic Sobolev k−norm gives us a Banach space L2
k(Σn), where

the induced norm is now just called the Sobolev k−norm || · ||2,k. We call L2
k(Σn) the

Sobolev space. And since || · ||2,k satisfies the parallelogram laws, L2
k(Σn) is also a Hilbert

space equipped with an Hermitian inner-product ⟨ , ⟩2,k satisfying ⟨ψ, ψ⟩2,k = ||ψ||22,k. When

k = 0, it is not hard to see that L2
0(Σn) is isometric to L2(Σn); we shall use them

interchangeably from time to time. Furthermore if k ≤ k′, then ||ψ||2,k ≤ ||ψ||2,k′ . This

means that H2,k′(Σn) sits inside L2
k(Σn) naturally.
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Similarly, one can also define the Ck−norm on Γ(Σn). First, for each ψ ∈ Γ(Σn),

||ψ||2C0 := supM(ψ, ψ). Then for each k non-negative integer,

||ψ||2Ck := max 0≤j≤k{||ψ||2C0 , ||∇Σnψ||2C0 , · · · , ||(∇Σn)kψ||2C0}.

Observe that,

||ψ||22,k =
k∑
j=0

∫
M

((∇Σn)jψ, (∇Σn)jψ) vol ≤
k∑
j=0

∫
M

||(∇Σn)jψ||2C0 vol (4.2)

≤
k∑
j=0

∫
M

||ψ||2Ck vol =
k∑
j=0

||ψ||2Ckvol(M) = vol(M) · (k + 1) · ||ψ||2Ck . (4.3)

Therefore, ||ψ||2,k ≤ vol(M)1/2 · (k + 1)1/2 · ||ψ||Ck . There is a sort of converse to the

inequality (4.3), which is the Sobolev Embedding theorem. The theorem and its proof will

be discussed in the next subsection when the treatment of Sobolev spaces on sections of

vector bundles is more fleshed out.

The goal is this subsection is to state the two following results:

Theorem 4.2. If M is a compact Riemannian spin manifold without boundary of

dimension n and Σn is a fixed spinor bundle over M , then the associated spinor Dirac

operator D is an unbounded operator with respect to the Hilbert space L2(Σn).

Furthermore, D is closable with respect to L2(Σn). In the case M is complete, D is

essentially self-adjoint.

Theorem 4.3. Let M be a compact Riemannian spin manifold without boundary of

dimension n and Spec(D) be the spectrum of the spinor Dirac operator associated with a

fixed spinor bundle Σn. Then the following is true:

1. Spec(D) is a closed in R containing an unbounded discrete sequence of eigenvalues.

2. Each eigenspace Eλ of D is finite-dimensional and consists of smooth sections, i.e,

Eλ ⊆ Γ(Σn).
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3. There is a Hilbert space direct sum decomposition

L2(Σn) =
⊕

λ∈Spec(D)

Eλ.

4. Spec(D) is unbounded on both sides of R and if n ̸≡ 3 mod 4, then it is symmetric

about the origin.

Remark 7. The same statements in Theorem 4.2 and Theorem 4.3 (except for Theorem

4.3.4) can be made for any first order formally self-adjoint elliptic operator. In particular,

they hold for generalized Dirac operators.

4.2 Sobolev spaces

In this subsection, we give a more thorough discussion of Sobolev spaces beyond the

basic definitions introduced previously. We work in almost generality, assume the setting of

previous subsection and insist that the metric on E is a Hermitian one. Similar to the case

of spinor bundle Σn, the notions of L2(E) and L2
k(E) and Ck−norm on Γ(E) are

well-defined. Furthermore, we also have ||ψ||2,k ≤ ||ψ||2,l for k ≤ l. Hence there is a natural

inclusion

L2
l (E) ↪→ L2

k(E).

Equipping and completing Γ(E) with an equivalent norm || · ||′2,k does not change the

inclusion above. Indeed, suppose for each k there are postive constants Ck and ck such that

ck||ψ||2,k ≤ ||ψ||′2,k ≤ Ck||ψ||2,k for any ψ ∈ Γ(E); and observe

||ψ||′2,k ≤ Ck||ψ||2,k ≤ Ck||ψ||2,l = (Ck/cl)cl||ψ||2,l ≤ (Ck/cl)||ψ||′2,l.

It is rather difficult to obtain an in-equivalent Sobolev norm on Γ(E). In fact, the Sobolev

norm depends on a choice of metric of M , Hermitian metric of E, and compatible
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connection ∇ on E. If we change one of these "varying factors", say, a compatible

connection, yet we still have

Proposition 4.4. Suppose || · ||′2,k≥1 is a Sobolev k−norm for a different compatible

connection ∇′. || · ||′2,k is equivalent to || · ||2,k.

Proof. It is sufficient to show the equivalence in the case of basic Sobolev norm. Since ∇′ is

another connection on E, there is an A ∈ Γ(End(E)) such that ∇′ = ∇+A. Note that

m 7→ ||A(m)|| is a smooth function on compact M , thus it achieves a supremum; which we

will also denote by ||A||. Then for any ψ ∈ Γ(E), we have ||Aψ||L2 ≤ ||A|| · ||ψ||L2 . We

proceed with induction.

In the case k = 1, by the Cauchy-Schwarz inequality,

⟨∇′ψ,∇′ψ⟩L2 = ||∇ψ||2L2 + 2ℜ⟨∇ψ,Aψ⟩L2 + ||Aψ||2L2 (4.4)

≤ ||∇ψ||2L2 + 2||A|| ||∇ψ||L2||ψ||L2 + ||A||2||ψ||2L2 (4.5)

≤ ||∇ψ||2L2 + ||A||(||ψ||2L2 + ||∇ψ||2L2) + ||A||2||ψ||2L2 (4.6)

= ||∇ψ||2L2 + ||A|| · ||ψ||22,1 + ||A||2||ψ||2L2 . (4.7)

Thus we obtain,

||ψ||′22,1 = ||ψ||2L2 + ||∇′ψ||2L2 ≤ ||ψ||2 + ||∇ψ||2L2 + ||A|| · ||ψ||22,1 + ||A||2||ψ||2L2 (4.8)

≤ ||ψ||22,1 + ||A|| · ||ψ||22,1 + ||A||2||ψ||22,1 (4.9)

= (1 + ||A||+ ||A||2) · ||ψ||22,1. (4.10)

(4.4)− (4.10) can be replicated when we swap ∇′ with ∇. As a result,

(1 + ||A||+ ||A||2)−1/2 · ||ψ||2,1 ≤ ||ψ|′2,1 ≤ (1 + ||A||+ ||A||2)1/2 · ||ψ||2,1.

Assume the two Sobolev norms are equivalent up-to k, that is, for each 1 ≤ j ≤ k there are
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Cj and cj positive and finite such that cj||ψ||L2
j
≤ ||ψ||′

L2
j
≤ Cj||ψ||L2

j
. Consider

||ψ||′22,k+1 =
k+1∑
j=0

||∇′jψ||2L2 = ||ψ||′2L2
k
+ ||∇′k+1ψ||2L2 .

Now by Cauchy-Schwarz inequality and the induction hypothesis, we have

||∇′k+1ψ||2L2 = ||∇′k∇ψ +∇′kAψ||2L2 ≤ 2||∇′k∇ψ||2L2 + 2||∇′kAψ||2L2 (4.11)

≤ 2||∇ψ||′2L2
k
+ 2||Aψ||′2L2

k
≤ 2C2

k ||∇ψ||2L2
k
+ 2C2

k ||Aψ||2L2
k

(4.12)

≤ 2C2
k ||∇ψ||2L2

k
+ 2C2

kC||ψ||2L2
k
. (4.13)

Therefore, we obtain

||ψ||′22,k+1 ≤ C2
k ||ψ||2L2

k
+ 2C2

k ||∇ψ||2L2
k
+ 2CC2

k ||ψ||2Hk (4.14)

≤ C2
k ||ψ||22,k+1 + 2C2

k ||ψ||22,k+1 + 2CC2
k ||ψ||22,k+1 = (3C2

k + 2CC2
k)||ψ||2k+1. (4.15)

Similarly, we can also show ||ψ||2,k+1 ≲ ||ψ||′2,k+1. So the equivalency is also true at k + 1.

And our proof by induction is complete.

In the proof above, at (4.12) we assume the following result, i.e, if T : E → E is a

bundle map, then it extends to a bounded operator from L2
k(E) → L2

k(E). The proof of

such assertion is independent of the proof Proposition 4.4, so nothing should be logically

inconsistent. Furthermore, the mentioned assertion is part of an important property about

the extension of differential operator of finite order to a bounded operator between Sobolev

spaces. We shall give a detailed discussion of this in the form of the following proposition.

Proposition 4.5.

1. The inclusion L2
l (E) ↪→ L2

k(E) is a bounded operator for k ≤ l.

2. ∇ : L2
k(E) → L2

k−1(E) is bounded.
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3. If T : E → E is a bundle map, then T extends to a bounded operator from

L2
k(E) → L2

k(E) for any k.

4. If P : Γ(E) → Γ(E) is a differential operator of order k, then P extends to a bounded

operator from L2
l (E) → L2

l−k(E).

Proof. If ψ ∈ L2
l (E), then by definition ||ψ||2,k ≤ ||ψ||2,l <∞. On the other hand, if

ψ ∈ L2
k(E) and without loss of generality ψ ∈ Γ(E), then

||∇ψ||2L2
k−1

= ||∇ψ||2L2 + ||∇2ψ||2L2 + · · ·+ ||∇kψ||2L2 ≤ ||ψ||2L2 + ||∇ψ||2L2 + · · ·+ ||∇kψ||2L2 ,

which implies that ||∇ψ||L2
k−1

≤ ||ψ||L2
k
. These two observations immediately imply (4.5.1)

and (4.5.2). For (4.5.3), we need to show that there exists an C positive and finite such that

||Tψ||2,k ≤ C||ψ||2,k. We proceed with induction on k, and simultaneously we would like to

show that each k ≥ 1, ||[T,∇k]ψ||2 = ||[T,∇k]ψ||2,0 ≤ C ′||ψ||2,k−1. The case k = 0 is when

L2
0(E) isometric to L2(E), same argument as the beginning of the proof of Proposition 4.4

yields the result. Now assume that for each 1 ≤ j ≤ k, there are positive and finite Cj and

C ′
j such that ||Tψ||2,j ≤ Cj||ψ||2,j and ||[T,∇j]ψ||2 ≤ C ′

j||ψ||2,j−1. Note that

[T,∇k+1] = [T,∇]∇k +∇[T,∇]∇k−1 +∇2[T,∇]∇k−2 + · · ·+∇k[T,∇]. (4.16)

[T,∇] : L2
0(E) = L2(E) → L2(E) = L2

0(E) is a bounded operator, in particular when

restricted to E, [T,∇] is a bundle map. Thus by the induction hypothesis,

[T,∇] : L2
j(E) → L2

j(E) is a bounded operator for every 0 ≤ j ≤ k. As a result from (4.16)

and (4.5.2), [T,∇k+1] : L2
k(E) → L2

0(E) = L2(E) is also bounded. Since L2
k+1(E) naturally

sits inside L2
k(E), for each ψ ∈ L2

k+1(E) and by triangle inequality we have

||[∇k+1Tψ||2 ≤ ||T∇k+1ψ||2 + ||[T,∇k+1]ψ||2 (4.17)

≤ ||T || · ||∇k+1ψ||2 + C ′
k+1||ψ||2,k ≤ max{||T ||, C ′

k+1}||ψ||2,k+1. (4.18)
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Thus with the induction hypothesis, we obtain

||Tψ||2,k+1 = ||Tψ||2,k + ||∇k+1Tψ||2 (4.19)

≤ Ck||ψ||2,k + max{||T ||, C ′
k+1}||ψ||2,k+1 ≤ Ck+1||ψ||2,k+1. (4.20)

This completes the induction proof of (4.5.3). Lastly, (4.5.4) is an immediate consequence

of (4.5.2) and (4.5.3).

We now take a closer look of the inclusion L2
1(E) ↪→ L2

0(E) = L2(E). Let B be the

closed unit ball in L2
1(E). We have B sits naturally in L2(E) and consider the closure of B

in L2(E), denoted by BL
2

. Obviously, B ⊆ BL
2

. Furthermore, we claim that the reverse

inclusion is also true. Indeed, let ψ ∈ BL
2

= B ∪ ∂BL2 . If ψ ∈ B, there is nothing to show.

However, if ψ ∈ ∂BL2 , then there is a sequence {ψj} in B such that ||ψj − ψ||2 → 0 as j

tends to infinity. Pick a coordinate patch on M so that we have local frame field

{∂1, · · · , ∂n}. As usual, denote grs := ⟨∂r, ∂s⟩. Consider

||∇(ψj − ψ)||22 =
∫
M

(
n∑
r=1

dxr ⊗∇∂r(ψj − ψ),
n∑
s=1

dxs ⊗∇∂s(ψj − ψ)

)
vol (4.21)

=

∫
M

n∑
r,s=1

grs(∇∂r(ψj − ψ),∇∂s(ψj − ψ)) vol (4.22)

= 2
∑
r<s

∫
M

grsℜ(∇∂r(ψj − ψ),∇∂s(ψj − ψ)) vol +
n∑
r=1

∫
M

grr||∇∂r(ψj − ψ)||2 vol.

(4.23)

By compactness of M and the Cauchy-Schwarz inequality, we can estimate further

||∇(ψj − ψ)||22 ≤ C

(∑
r<s

∫
M

2||∇∂r(ψj − ψ)|| · ||∇∂s(ψj − ψ)|| vol +
n∑
r=1

∫
M

||∇∂r(ψj − ψ)||2 vol

)
(4.24)
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≤ C

(∑
r<s

∫
M

(||∇∂r(ψj − ψ)||2 + ||∇∂s(ψj − ψ)||2) vol +
n∑
r=1

∫
M

||∇∂r(ψj − ψ)||2 vol

)
(4.25)

≤ C ′
n∑
r=1

∫
M

||∇∂r(ψj − ψ)||2 vol = C ′
n∑
r=1

||∇∂r(ψj − ψ)||22. (4.26)

Now in general if φ ∈ L2(E), we can write ∇∂rφ = ∂rφ+ Γr(φ), where the first term is

understood as taking derivative in the direction of ∂r of each component function of φ and

Γr is a bundle map from E → E constructed from the Christoffel symbols of ∇. Then

||∂rφ+ Γr(φ)||2 ≤ ||∂rφ||2 + ||Γr(φ)||2. By L2−theory of compact spaces, ∂r is a bounded

operator from L2(E) → L2(E) and by Proposition 4.5.3, Γr is also bounded from

L2(E) → L2(E). Thus ∇∂r is bounded on L2(E). Therefore combining with (166), we

arrive at ||∇(ψj − ψ)||22 ≤ C ′′||ψj − ψ||22. And as j → ∞, we obtain ||∇(ψj − ψ)||2 → 0.

Since ||ψj − ψ||22,1 = ||ψj − ψ||22 + ||∇(ψj − ψ)||22, it is also true that ψj → ψ in L2
1(E). By

triangle inequality, ||ψ||2,1 ≤ ||ψj − ψ||2,1 + ||ψj||2,1 ≤ ||ψj − ψ||2,1 + 1. Let j → ∞, we yield

||ψ||2,1 ≤ 1. We summarize the discussion above in the following lemma

Lemma 4.6. If B is the closed unit ball in L2
1(E), then B = BL

2

. □

Let {Uα} be a finite open cover of M that trivializes E and {ρα} be the partition of

unity subordinated to {Uα}. If ψ is a smooth section of E that also belongs to L2
1(E), ραψ

is considered to be a Cr−valued smooth function with compact support on Uα. Thus if we

would like show a certain property of ψ, it is enough to show that such property holds for

every Cr−valued smooth function ραψ with compact support in Uα. Furthermore when

choosing coordinate charts to live on Tn = S1 × · · · × S1, we reduce the study of L2
1(E) to

the study of smooth functions in L2
1(Tn,Cr) with compact supports.

Integration of a vector-valued smooth function is integrating component-wise with

respect to a basis of a (Hermitian) inner product vector space. It is not hard to show that

such definition of integration is well-defined regardless of choices of basis. With this, we
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can define the Fourier transform of vector-valued smooth functions by Fourier transforming

each of their component functions. In particular for our context, suppose {σ1, · · · , σr} is an

orthonormal basis with respect to Cr, any smooth function ψ in L2
1(Tn,Cr) with compact

support can be written as

ψ(x) =
r∑
j=1

ψj(x)σj,

where ψj ∈ Γ(Tn,C) with compact support. For each ν ∈ Zn, we define ψ̂(ν) as following

ψ̂(ν) :=
r∑
j=1

(
1

(2π)n

∫
Tn

ψj(x)e−iν·x dx

)
σj =

r∑
j=1

ψ̂j(ν)σj. (4.27)

As a result, ||ψ̂(ν)||2Cr =
∑r

j=1 |ψ̂j(ν)|2, which implies that

∑
ν∈Zn

||ψ̂(ν)||2Cr =
∑
ν∈Zn

r∑
j=1

|ψ̂j(ν)|2. (4.28)

Since L2
1(Tn,Cr) sits naturally in L2

0(Tn,Cr) = L2(Tn,Cr), ψ ∈ L2(Tn,Cr). By basic theory

of Hilbert spaces and (4.28), we have

||ψ||22 =
∫
Tn

||ψ(x)||2Cr dx =

∫
Tn

r∑
j=1

|ψj(x)|2 dx =
r∑
j=1

∫
Tn

|ψj(x)|2 dx (4.29)

=
r∑
j=1

(2π)n
∑
ν∈Zn

|ψ̂j(ν)|2 = (2π)n
∑
ν∈Zn

||ψ̂(ν)||2Cr . (4.30)

The covariant derivative ∇ on Γ(Tn,Cr) can be taken as directional derivative of each

component functions. Thus we can write

∇ψ(x) =
r∑
j=1

(
n∑
s=1

dxs ⊗ (∂sψ
j)

)∣∣∣∣
x

σj. (4.31)
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Therefore by Hilbert spaces theory, similarly we obtain

||∇ψ||22 =
∫
Tn

||∇ψ(x)||2Cr dx =

∫
Tn

r∑
j=1

∣∣∣∣ n∑
s=1

dxs ⊗ (∂sψ
j)

∣∣∣∣
x

∣∣∣∣2 dx (4.32)

=
r∑
j=1

∫
Tn

〈
n∑
s=1

dxs ⊗ (∂sψ
j),

n∑
k=1

dxk ⊗ (∂kψ
j)

〉∣∣∣∣
x

dx (4.33)

=
r∑
j=1

∫
Tn

n∑
s,k=1

gsk(x)(∂sψ
j(x))(∂kψj(x)) dx (4.34)

=
r∑
j=1

∫
Tn

n∑
s=1

|∂sψj(x)|2 dx =
r∑
j=1

n∑
s=1

∫
Tn

|∂sψj(x)|2 dx (4.35)

=
r∑
j=1

n∑
s=1

(2π)n
∑
ν∈Zn

|∂̂sψj(ν)|2 =
r∑
j=1

n∑
s=1

(2π)n
∑
ν∈Zn

| − iνsψ̂j(ν)|2 (4.36)

= (2π)n
r∑
j=1

∑
ν∈Zn

|ν|2|ψ̂j(ν)|2 = (2π)n
∑
ν∈Zn

|ν|2
r∑
j=1

|ψ̂j(ν)|2 = (2π)n
∑
ν∈Zn

|ν|2||ψ̂(ν)||2Cr .

(4.37)

(4.30) and (4.37) combined yields for us a relation between the Sobolev 1−norm of ψ on

L2
1(Tn,Cr) to Fourier coefficients ψ̂(ν)’s of ψ

||ψ||22,1 = (2π)n
∑
ν∈Zn

(1 + |ν|2)||ψ̂(ν)||2Cr . (4.38)

Proposition 4.7. (Rellich) The bounded inclusion L2
1(E) ↪→ L2(E) is compact.

Proof. By the discussion above, we reduce the problem to showing the inclusion of

L2
1(Tn,Cr) into L2(Tn,Cr) is compact. Denote B the closed unit ball in L2

1(Tn,Cr). By

Lemma 4.6, we have B = BL
2(Tn,Cr). Thus it is sufficient to show that for any arbitrary

sequence {ψk} of Γ(Tn,Cr) such that ||ψk||2,1 ≤ 1 and ψk’s have compact supports on Tn,

there is convergent subsequence. We claim that there is a subsequence {ψkj} that is

Cauchy in L2(Tn,Cr). And because L2(Tn,Cr) is complete; if such subsequence exits, it

has to converge in L2(Tn,Cr).
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Let ν, η ∈ Zn, for any k we have ψ̂k(ν) =
∑r

j=1 ψ̂
j
k(ν)σj, where ψjk is smooth Cr−valued

function with compact supports on Tn. By triangle inequality and Holder inequality,

consider

||ψ̂k(ν)− ψ̂k(η)||2Cr =
1

(2π)2n

r∑
j=1

∣∣∣∣ ∫
Tn

ψjk(x)(e
−iν·x − e−iη·x) dx

∣∣∣∣2 (4.39)

≤ 1

(2π)2n

r∑
j=1

(∫
Tn

|ψjk(x)| · |e
−iν·x − e−iη·x| dx

)2

(4.40)

≤ 1

(2π)2n

r∑
j=1

(∫
Tn

|ψjk(x)|
2 dx

)(∫
Tn

|e−iν·x − e−iη·x|2 dx
)

(4.41)

=
1

(2π)2n
||ψk||22

∫
Tn

|e−iν·x − e−iη·x|2 dx (4.42)

≤ 1

(2π)2n
||ψk||22,1

∫
Tn

|e−iν·x − e−iη·x|2 dx (4.43)

≤ 1

(2π)2n

∫
Tn

|e−iν·x − e−iη·x|2 dx. (4.44)

Note that e−iν·x − e−iη·x = e−iη·x(e−i(ν−η)·x − 1). As a result,

|e−iν·x − e−iη·x|2 = |e−i(ν−η)·x − 1|2 = 2− 2 cos((η − ν) · x). (4.45)

By the inequality 1− t2/2 ≤ cos t for all t ∈ R and the Cauchy-Schwarz inequality, we

estimate (4, 45) from above

|e−i(ν−η)·x − 1|2 ≤ ((η − ν) · x)2 ≤ |η − ν|2|x|2. (4.46)

Therefore, the above estimate of (4.44) becomes

||ψ̂k(ν)− ψ̂k(η)||2Cr ≤ (2π)−2n|ν − η|2
∫
Tn

|x|2 dx ≤ C(2π)−2n|ν − η|2, (4.47)

for some positive and finite C. Let ϵ > 0 arbitrarily, then whenever |ν − η| < C−1/2(2π)nϵ.
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Then (4.47) implies ||ψ̂k(ν)− ψ̂k(η)||Cr <
√
C(2π)−nC−1/2(2π)nϵ = ϵ. In particular, we

have shown that {ψ̂k} is uniformly equicontinuous in C(Zn,Cr). Furthermore for any k and

ν ∈ Zn, by triangle inequality and Holder inequality, we have

||ψ̂k(ν)||2Cr ≤
1

(2π)n

r∑
j=1

∫
Tn

|ψjk(x)|
2 dx =

1

(2π)n
||ψk||22 ≤

1

(2π)n
||ψk||22,1 ≤ (2π)−n. (4.48)

Thus {ψ̂k} is also uniformly bounded. By the Arzela-Ascoli theorem, there is a

subsequence {ψ̂kj} that is uniformly Cauchy on compact subsets of Zn.

For N > 0, by (4.29) we have

||ψjk − ψjl ||22 = (2π)n
∑
|ν|>N

||ψ̂jk(ν)− ψ̂jl(ν)||2Cr + (2π)n
∑
|ν|≤N

||ψ̂jk(ν)− ψ̂jl(ν)||2Cr . (4.49)

Now the first summation of (4.49), using (4.38), we estimate from above

(2π)n
∑
|ν|>N

||ψ̂jk(ν)− ψ̂jl(ν)||2Cr ≤ (2π)n
∑
|ν|>N

1 + |ν|2

1 +N2
||ψ̂jk(ν)− ψ̂jl(ν)||2Cr (4.50)

≤
||ψjk − ψjl ||22,1

1 +N2
≤ 4

1 +N2
. (4.51)

For the second summation of (4.49), let ϵ > 0, using the uniformly Cauchy subsequence

{ψ̂jk}, for k and l large enough (depending on N and ϵ), we have

(2π)n
∑
|ν|≤N

||ψ̂jk(ν)− ψ̂jl(ν)||2Cr ≤ (2π)n
∑
|ν|≤N

ϵ2

2C ′
N(2π)

n
=
ϵ2

2
, (4.52)

where C ′
N =

∑
|ν|≤N 1. To finish the argument, we simply choose N in (4.51) large enough

(depending on ϵ) so that 4/(1 +N2) < ϵ2/2. Therefore, for k and l large enough

(depending only on ϵ), we have ||ψjk − ψjl ||2 < ϵ. This shows that {ψjk} is Cauchy in

L2(Tn,Cr). With our beginning observation, the proof is complete.
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(4.38) can be generalized to other Sobolev k−norms. In particular using induction, one

can prove that for ψ ∈ L2
k(Tn,Cr) and ψ is smooth with compact support,

||ψ||22,k = (2π)n
∑
ν∈Zn

(1 + |ν|2 + |ν|4 + · · ·+ |ν|2k)||ψ̂(ν)||2Cr . (4.53)

Thus using similar argument, the result can be extended to the following statement

Proposition 4.8. For l < k, the inclusion L2
k(E) ↪→ L2

l (E) is compact. □

Theorem 4.9. (Sobolev Embedding theorem) If k and l are natural numbers such

that l > n
2
+ k, then there is a positive finite constant c (depending on n, l, and k) such that

||ψ||Ck ≤ c||ψ||2,l, for ψ ∈ Γ(E).

Thus the inclusion L2
l (E) ↪→ Ck(E) is a bounded operator.

Proof. Again we reduce the problem to showing ||ψ||Ck ≤ c(l, k, n)||ψ||2,l for ψ ∈ Γ(Tn,Cr)

with compact support. Note that by the Binomial theorem, for each ν ∈ Zn and positive

integer l we have (1 + |ν|2)l =
∑l

j=0

(
l
j

)
|ν|2j. Let c1 := min{

(
l
j

)
: 0 ≤ j ≤ l} and

c2 := max{
(
l
j

)
: 0 ≤ j ≤ l}. Thus we obtain,

c1(1 + |ν|2 + |ν|4 + · · ·+ |ν|2l) ≤ (1 + |ν|2)l ≤ c2(1 + |ν|2 + |ν|4 + · · ·+ |ν|2l).

This shows that the two following Sobolev l−norms are equivalent

(2π)n
∑
ν∈Zn

(1 + |ν|2 + · · ·+ |ν|2l)||ψ̂(ν)||2Cr , (2π)n
∑
ν∈Zn

(1 + |ν|2)l||ψ̂(ν)||2Cr . (4.54)

The later one will be used in this proof. We claim the following

||∇kψ(x)||2Cr ≤
Ck,n
(2π)n

(∑
ν∈Zn

(1 + |ν|2)−l+k
)
||ψ||22,l, (4.55)

107



where Ck,n :=
∑

|α|=k 1. Note that ∇k : Γ(Tn,Cr) → Γ((⊗k
j=1T

∗Tn)⊗ Cr), so for each

ψ ∈ Γ(Tn,Cr) with compact support, in coordinate, we can write

∇kψ =
∑
|α|=k

⊗n
s=1(dxs)

⊗αs ⊗ ∂|α|

∂x1α1 · · · ∂xnαn
ψ :=

∑
|α|=k

⊗n
s=1(dxs)

⊗αs ⊗ ∂|α|ψ. (4.56)

As a result, the Fourier inversion formula, triangle inequality, and the Cauchy-Schwarz

inequality yield us the above estimate

||∇kψ(x)||2Cr =

〈∑
|α|=k

⊗n
s=1(dxs)

⊗αs ⊗ ∂|α|ψ,
∑
|β|=k

⊗n
j=1(dxj)

⊗αj ⊗ ∂|β|ψ

〉∣∣∣∣
x

(4.57)

=
∑
|α|=k

||∂|α|ψ(x)||2Cr =
1

(2π)2n

∑
|α|=k

∣∣∣∣∣∣∣∣ ∑
ν∈Zn

eiν·x∂̂|α|ψ(ν)

∣∣∣∣∣∣∣∣2
Cr

(4.58)

≤ 1

(2π)2n

∑
|α|=k

(∑
ν∈Zn

||∂̂|α|ψ(ν)||Cr

)2

(4.59)

=
1

(2π)2n

∑
|α|=k

(∑
ν∈Zn

(1 + |ν|2)
−l+k

2 (1 + |ν|2)
l−k
2 ||∂̂|α|ψ(ν)||Cr

)2

(4.60)

≤ 1

(2π)2n

(∑
ν∈Zn

(1 + |ν|2)−l+k
) ∑

|α|=k

∑
ν∈Zn

(1 + |ν|2)l−kν2α1
1 · · · ν2αn

n ||ψ̂(ν)||2Cr .

(4.61)

Now observe the following, by a silly estimate we have

∑
|α|=k

∑
ν∈Zn

(1 + |ν|2)l−kν2α1
1 · · · ν2αn

n ||ψ̂(ν)||2Cr ≤
∑
ν∈Zn

(1 + |ν|2)l−k||ψ̂(ν)||2Cr

∑
|α|=k

|ν|2k (4.62)

=
∑
ν∈Zn

(1 + |ν|2)l−k||ψ̂(ν)||2Cr |ν|2kCk,n ≤ Ck,n
∑
ν∈Zn

(1 + |ν|2)k(1 + |ν|2)l−k||ψ̂(ν)||2Cr (4.63)

= Ck,n
∑
ν∈Zn

(1 + |ν|2)l||ψ̂(ν)||2Cr = Ck,n||ψ||22,l. (4.64)

Thus (4.60) becomes (4.54) as desired. If l > n
2
+ k, it is also true that l > n

2
+ k − j for
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each j = 0, · · · , k. Apply (4.54) for each j, we have

||∇k−jψ(x)||2C0 = sup
x∈Tn

||∇k−jψ(x)||2Cr ≤
Ck−j,n
(2π)2n

(∑
ν∈Zn

(1 + |ν|2)−l+k−j
)
||ψ||22,l. (4.65)

Denote c(l, k, n) = max0≤j≤k

{
(2π)−n

√
Ck−j,n

(∑
ν∈Zn(1 + |ν|2)−l+k−j

)1/2}. Such a

constant makes sense and is a finite positive number because
∑

ν∈Zn(1 + |ν|2)−l+k−j <∞

by the p−series test (p = 2(l − k + j) ≥ 2). Therefore, ||ψ||Ck ≤ c(l, k, n)||ψ||2,l.

We end this subsection by summarizing various results in the context of spinor bundle

Σn and its associated spinor Dirac operator D over M .

Theorem 4.10. Let M be an n−dimensional compact Riemannian spin manifold without

boundary and Σn be a fixed spinor bundle over M equipped with the associated spinor Dirac

operator D. Then the following are true

1. The inclusion L2
l (Σn) ↪→ L2

k(Σn) is a bounded operator for k < l.

2. ∇Σn : L2
k(Σn) → L2

k−1(Σn) is bounded. □

3. If T : Σn → Σn is a bundle map, then T extends to a bounded operator from

L2
k(Σn) → L2

k(Σn) for any k. □

4. D extends to a bounded operator from L2
l (Σn) → L2

l−1(Σn). □

5. (Rellich) For l < k, the inclusion L2
k(Σn) ↪→ L2

l (Σn) is compact. □

6. (Sobolev embedding theorem) If l and k are natural numbers such that

l > n
2
+ k, then there is a positive finite constant c(l, k, n) such that

||ψ||Ck ≤ c(l, k, n)||ψ||2,l for each spinor ψ ∈ Γ(Σn). Consequently, the inclusion

L2
l (Σn) ↪→ Ck(Σn) is a bounded operator between Banach spaces. □
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7. As a consequence of 4.10.5, 4.10.6, and (4.3), for l and k are natural numbers where

l > n
2
+ k, any sequence {ψn} in L2

l (Σn) that is uniformly bounded in the Sobolev

l−norm has a subsequence that converges in Ck(Σn). □

Remark 8. Statements in Theorem 4.10 can also be made for any first order formally

self-adjoint elliptic operator.

5 Global Kuranishi model

In this section, we describe various analytical background that goes into the proof of

our main Theorem 1.8. The majority content of this section can be found in details at

Appendix B1, B2 of [23]. We decide to include it this thesis for the sake of self-containment.

The Kuranishi model is an extension of the implicit function theorem which turns the

local analysis of the zero set of a Fredholm map near a singular point into a finite

dimensional eigenvalue problem. Such model was also used by Furuta in his proof of the

10/8-Theorem. We will describe the model in a more abstract setting.

Let X and Y be infinite dimensional Banach spaces and f : X → Y be a smooth map.

For every x ∈ X, we denote dxf : X → Y by its linearization of f at x, and B(x,R) by the

open ball centered at x of radius R, whereas B(x,R) denotes the closed ball.

Lemma 5.1. Let X be a Banach space and ψ : X → X be a continuously differential map

such that ψ(0) = 0 and ∥1− dxψ∥ ≤ γ for all x ∈ X with ∥x∥ < R, γ < 1 is some constant.

Then the restriction of ψ to B(0, R) is injective, ψ(B(0, R)) is an open set, and

ψ−1 : ψ(B(0, R)) → B(0, R) is continuously differentiable with dyψ−1 = [dψ−1(y)ψ]
−1.

Moreover, B(0, R(1− γ)) ⊂ ψ(B(0, R)) ⊂ B(0, R(1 + γ)).

Proof. First, we show the containment. Let f = 1− ψ. Since f(0) = 0 and ∥dxf∥ ≤ γ for

any ∥x∥ < R, f is a contraction on B(0, R). This means that

∥f(x1)− f(x2)∥ ≤ γ ∥x1 − x2∥ for any x1, x2 ∈ B(0, R). By triangle inequality, for any
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x1, x2 ∈ B(0, R) we obtain

∥ψ(x1)− ψ(x2)∥ = ∥x1 − f(x1)− x2 + f(x2)∥ ≤ ∥x1 − x2∥+ ∥f(x1)− f(x2)∥ (5.1)

≤ (1 + γ) ∥x1 − x2∥ ≤ (1 + γ)R. (5.2)

Similarly,

∥ψ(x1)− ψ(x2)∥ ≥ ∥x1 − x2∥ − ∥f(x1)− f(x2)∥ ≥ (1− γ) ∥x1 − x2∥ . (5.3)

(5.2) shows that ψ(B(0, R)) ⊂ B(0, R(1 + γ)), while (5.3) shows that ψ restricted to

B(0, R) is injective. Next we show that B(0, R(1− γ)) ⊂ ψ(B(0, R)). Let

y ∈ B(0, R(1− γ)) and consider the map g(x) = f(x) + y. Since f is a contraction on

B(0, R), g is also a contraction on B(0, R− ϵ) whenever ϵ is small. Hence, it has a unique

fixed point for ∥y∥ = (R− ϵ)(1− γ) and ∥x∥ ≤ R− ϵ. So, we have

g(x) = x, which implies that ψ(x) = y.

Let ϵ→ 0, and we indeed obtain B(0, R(1− γ)) ⊂ ψ(B(0, R)). Similar argument and we

would also have that ψ(B(0, R)) is open and ψ−1 : ψ(B(0, R)) → B(0, R) is continuous.

Finally, we prove that ψ−1 is continuously differentiable. Let x0 ∈ B(0, R) and

y0 ∈ ψ(B(0, R)) such that ψ(x0) = y0, we need to show that for every ϵ > 0, there is a

δ > 0 such that for any ∥y − y0∥ < δ, we have

∥∥ψ−1(y)− ψ−1(y0)− [dx0ψ]
−1(y − y0)

∥∥ ≤ ϵ ∥y − y0∥ .

Note that [dx0ψ]
−1 should be well-defined. This is because ∥1− dx0ψ∥ ≤ γ < 1, so that

[dx0ψ]
−1 =

∞∑
k=0

(1− dx0ψ)
k.
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Furthermore, ∥[dx0ψ]−1∥ ≤ 1/(1− γ). Since ψ is continuously differentiable, for any ϵ > 0,

there is a R > δ > 0 such that if x ∈ B(0, R) and ∥x− x0∥ < δ, then

∥ψ(x)− ψ(x0)− dx0ψ(x− x0)∥ ≤ ϵ(1− γ)2 ∥x− x0∥ .

By (5.3), if ∥y − y0∥ < (1− γ)δ, then we have ∥x− x0∥ < δ. So

∥∥ψ−1(y)− ψ−1(y0)− [dx0ψ]
−1(y − y0)

∥∥ =
∥∥[dx0ψ]−1(y − y0 − dx0ψ(x− x0)

∥∥ (5.4)

≤ 1

1− γ
∥ψ(x)− ψ(x0)− dx0ψ(x− x0)∥ (5.5)

≤ ϵ(1− γ) ∥x− x0∥ (5.6)

≤ ϵ ∥ψ(x)− ψ(x0)∥ = ϵ ∥y − y0∥ . (5.7)

(5.7) is true because of (5.3) again.

Theorem 5.2. (Inverse function theorem) Let f : X → Y be continuously

differentiable. Suppose that D = dx0f : X → Y has a bounded inverse. Choose c > 0 and

δ > 0 such that ∥∥D−1
∥∥ ≤ c, ∥dxf −D∥ ≤ 1

2c

for ∥x− x0∥ < δ. Then the following is true

1. f restricted to B(x0, δ) is injective and f(B(x0, δ)) is open in Y containing

B(f(x0), δ/2c).

2. The inverse map f−1 : B(f(x0), δ/2c) → B(x0, δ) is continuously differentiable.

3. If x1, x2 ∈ B(x0, δ) then ∥x1 − x2∥ ≤ 2c ∥f(x1)− f(x2)∥.

Proof. Direct application of Lemma 5.1 where without loss of generality we assume x0 = 0

and f(0) = 0.
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Given a bounded linear operator D : X → Y between Banach spaces, a pseudo-inverse

of D is a bounded linear operator T : Y → X which satisfies TDT = T and DTD = D.

Note that it is a fact that every Fredholm operator has a pseudo-inverse [reference].

Theorem 5.3. (Kuranishi) Let X and Y be Banach spaces and f : X → Y be a smooth

map such that f(0) = 0. Suppose that D = d0f has a pseudo-inverse T : Y → X. Let

Y0 = ker T . Then there exist an open neighborhood U of 0 in X, a local diffeomorphism

g : U → g(U) ⊂ X, and a smooth map f0 : U → Y0 such that

f(g(x)) = Dx+ f0(x)

for any x ∈ U and

g(0) = 0, d0g = 1, f0(0) = 0, d0f(0) = 0.

Moreover, if f is equivariant with respect to the action of some compact lie group G on X

and Y then the maps g and f0 can be chosen to be equivariant.

Proof. We define ψ : X → X given by ψ(x) = x+ T (f(x)−Dx). Immediately, we see that

ψ(0) = 0 and d0ψ = 0. By Theorem 5.2, there is an open neighborhood U of 0 in X has an

inverse. Let g = ψ−1 and f0 = (1−DT ) ◦ f ◦ g. Then we have

Dψ(x) = Dx+DT (f(x)−Dx) = DTf(x).

This means that on U , D = DT ◦ f ◦ g. Therefore,

f(g(x)) = Dx−DTf(g(x)) + f(g(x)) = Dx+ (1−DT )f(g(x)) = Dx+ f0(x).

If G acts on X and Y and f is G−equivariant, then D is also equivariant and its

pseudo-inverse can also chosen to be G−equivariant. Hence, the construction of g and f0
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above are also going to be equivariant with respect to the G−action.

We now consider the abstract set-up of the global Kuranishi model. Let Pn : X → X

and Qn : Y → Y be sequences of projections where DPn = QnD, TQn = PnT ,

imQn ⊂ imD, ker D ⊂ ker Pn and limn Pnx = 0, limnQny = 0 for all x ∈ X, y ∈ Y . We

defined ψn, gn, fn as in the proof of Theorem 5.3 where P = TD is replaced with Pn and

Q = DT is replaced with Qn:

ψn(x) = x+ TQn(f(x)−Dx), gn = ψ−1
n , fn = (1−Qn) ◦ (D + (f −D) ◦ ψ−1

n ).

Similar calculations as in the proof of Theorem 5.3, we have f ◦ gn = QnD + fn. Note then

the zeros of f on gn(U) is exactly the image of of the zeroes of the restriction of

fn : ker Pn → ker Qn. These domains will limit to the entire X as n→ ∞ if dxf −D is a

uniform family of compact operators.

Lemma 5.4. Let X, Y, Z be Banach spaces and Qn : Y → Z be a sequence of bounded

linear operators such that

lim
n→∞

Qny = 0

for all y ∈ Y . Moreover, let {Kα}α∈A by a collection of bounded linear operators

Kα : X → Y , indexed by a set A, such that the set

B = {Kαx : α ∈ A, x ∈ X, ∥x∥ ≤ 1} ⊂ Y

has compact closure. Then

lim
n→∞

sup
α

∥QnKα∥ = 0.

Proof. First note that there is a c such that ∥Qn∥ ≤ c for all n. Let ϵ > 0 and since B has

compact closure, we may cover it by finitely number of balls centered at y1, · · · , yN of

radius ϵ/2c. We have that there is an n0 such that for all j = 1, · · · , N and n ≥ n0,
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∥Qnyj∥ ≤ ϵ/2. Also, for an α and x ∈ X where ∥x∥ ≤ 1, Kαx ∈ B(yj, ϵ/2c). Then

∥QnKαx∥ ≤ ∥Qn∥ · ∥Kαx− yj∥+ ∥Qnyj∥ ≤ c · ϵ
2c

+
ϵ

2
= ϵ.

The above estimate is true as long as n ≥ n0. Thus, we obtain the result.

6 Rarita-Schwinger-Seiberg-Witten equations

6.1 Rarita-Schwinger operator

A Rarita-Schwinger operator can be defined in general setting. Let (X2n, g) be a closed

Riemannian even dimensional manifold for now. Recall that a Clifford bundle S → X is a

complex vector bundle that is equipped with a Hermitian inner product, a compatible

connection ∇, and a Clifford multiplication ρ : TX ⊗ S → S. As usual, since the manifold

is even dimensional, there is an orthogonal decomposition of S = S+ ⊕ S− such that ρ

exchanges the chirality.

Consider ker ρ, which is a parallel bundle of TX ⊗ S over X. With respect to the

chirality of S, we also have an orthogonal decomposition ker ρ = (ker ρ)+ ⊕ (ker ρ)−. Let

ι : S∓ → T ∗X ⊗ S± = TX ⊗ S± be the embedding defined ι(φ)(X) = − 1
2n
ρ(X)φ. Thus, we

have another orthogonal decomposition S± ⊗ TX = ι(S∓)⊕ (ker ρ)±.

On the bundle S, there are two natural first order differential operators: The Dirac

operator D : Γ(S) → Γ(S) defined by D = ρ ◦ ∇, and the twistor operator

P : Γ(S) → Γ(ker ρ) defined by π ◦ ∇ where π : TX ⊗ S → ker ρ is the orthogonal

projection. Taking into account of the chirality, we note that D± : Γ(S±) → Γ(S∓),

whereas P± : Γ(S±) → (ker ρ)±.

Next we consider the twisted Dirac operator D± : Γ(S± ⊗ TX) → Γ(S∓ ⊗ TX). Follow

the computations in [25], with respect to the decomposition S± ⊗ TX = ι(S∓)⊕ (ker ρ)±,
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D± takes the following matrix form

D± =

1−n
n
ι ◦D± ◦ ι−1 2ι ◦ P+∗

1
n
P+ ◦ ι−1 Q±

 .

Definition 6.1. The Rarita-Schwinger operator associated to the Clifford bundle S → X

is defined by Q± := π ◦ D±|Γ(ker ρ)± .

The above construction carries out similarly when (X, g) is a closed simply connected

smooth spin 4−manifold. In this case, a Clifford bundle is given by a spinc bundle

s1/2 ⊗ L→ X where s1/2 is the associated vector bundle to the only principal

Spin(4)−bundle PSpin(4) → X and L is any complex line bundle. Notation-wise, the

operators defined previously all come with extra subscript: D±
A ,D

±
A , Q

±
A with A being a

unitary connection on L. Borrowing the language from Physics, we call sections of s±1/2 ⊗ L

positive (negative) twisted 1/2−spinors and sections of (ker ρ)± := s±3/2 ⊗ L positive

(negative) twisted 3/2−spinors.

Rarita-Schwinger operator QA is a first order elliptic operator, thus it has a

well-defined index.

Proposition 6.1. Let X be a closed simply connected smooth spin 4−manifold and QA be

the Rarita-Schwinger operator associated to the twisted 3/2−spinor bundle s3/2 ⊗ L→ X

where A is a unitary connection of L. Then the index of QA is given by

indexCQA =
19

8
σ(X) +

5

2
c1(L)

2.

Proof. Apply the equivariant version of Atiyah-Singer index theorem for first order elliptic

operator (Theorem 13.13 of [17]), we have

indexCQA =

(
ch(s+3/2 ⊗ L)− ch(s−3/2 ⊗ L)

χ(TX)
Â(TX)2

)
[X], (6.1)
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where χ(TX) and Â(TX) are the usual Euler class and the Â−class of TX, ch is the

Chern character. On the other hand, using the orthogonal decomposition of s±1/2 ⊗L⊗ TX,

we obtain

ch(s±1/2 ⊗ L) ch(TX) = ch(s± ⊗ L⊗ TX) = ch(s±3/2 ⊗ L) + ch(s∓1/2 ⊗ L). (6.2)

Subtract the two version of (6.2) from each other to get

ch(s+3/2 ⊗ L)− ch(s−3/2 ⊗ L) = (ch(s+1/2 ⊗ L)− ch(s−1/2 ⊗ L))(ch(TX) + 1). (6.3)

Substitute (6.3) into (6.1), recall that Â(TX) = (ch(s+1/2 − ch(s−1/2)) Â(TX)2/χ(TX) to get

indexCQA = ch(TX⊗L)Â(TX)[X]+ch(L)Â(TX)[X] = indexC DA+

(
−1

8
σ(X) +

1

2
c1(L)

2

)
(6.4)

Let’s calculate ch(TX ⊗ L) = ch(TCX ⊗ L). Recall (Chapter 2.7 of [18]):

Fact 1. ch(TCX ⊗ L) = ch(s+1/2 ⊗ s−1/2 ⊗ L) = ch(s+1/2)ch(s
−
1/2)ch(L).

Note that ch(s+1/2)ch(s
−
1/2) = 4− c2(s

+
1/2)− 2c2(s

−
1/2), and ch(L) = 1 + c1(L) + c1(L)

2/2.

Thus, ch(TC ⊗ L) = 4 + 2c1(L)
2 − 2c2(s

+
1/2)− 2c2(s

−
1/2) + 4c1(L). Combine with the fact

that on 4−manifolds, Â(TX) = 1− p1(TX)/24, where p1 is the first Pontryagin class, we

have (picking out top forms)

Â(TX)ch(TCX ⊗ L) = 2c1(L)
2 − 2c2(s

+
1/2)− 2c2(s

−
1/2)−

p1(TX)

6
. (6.5)

Recall (Chapter 2.7 of [18]):

Fact 2. c2(s±1/2)[X] = −3σ(X)/4∓ χ(X)/2.

Since p1(TX)/3[X] = σ(X), use the above formulas, we rewrite (2.5) as

Â(TX)ch(TCX ⊗ L)[X] = 2c1(L)
2[X]− 2

(
−3

4
σ(X)− χ(X)

2

)
+ (6.6)
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− 2

(
−3

4
σ(X) +

χ(X)

2

)
− σ(X)

2
= 2c1(L)

2[X] +
5

2
σ(X). (6.7)

Therefore, (6.4) becomes indexCQA = 19σ(X)/8 + 5c1(L)
2/2.

Remark 9. When L = C and A is the trivial connection, from Proposition 2.2 we have

indexCQ = 19σ(X)/8.

6.2 Gauge theoretic equations for the Rarita-Schwinger operator

From here onward, X is always denoted by a closed simply connected smooth spin

4−manifold. The Clifford multiplication ρ is an isometry iΛ+T ∗X → isu(s+1/2). Let µ be a

quadratic map defined by

µ : s+1/2 ⊗ L⊗ TX = s+1/2 ⊗ L⊗ T ∗X = Hom(TX, s+1/2 ⊗ L) → gL ⊗ su(s+1/2) = isu(s+1/2),

µ(ψ) = ψψ∗ − 1

2
tr(ψψ∗)1s+

1/2
⊗L.

Besides looking for twisted Rarita-Schwinger fields, we impose a curvature condition for

A. What follow are referred as the Rarita-Schwinger-Seiberg-Witten equations (RS-SW),

Q+
Aψ = 0, F+

A = ρ−1(µ(ψ)). (6.8)

If A0 is a fixed referenced unitary connection of L, then every other connection

A = A0 + a, where a ∈ iΩ1(X). (2.8) can also be re-written as

Q+
A0
ψ + π−(a · ψ) = 0, d+a+ F+

A0
= ρ−1(µ(ψ)). (6.9)

We define C = Γ(s+3/2 ⊗ L)⊕ iΩ1(X) to be the configuration space of the RS-SW

equations. R = Γ(s−3/2 ⊗ L)⊕ iΩ+(X) is denoted by its range space. The gauge group G

acts on C by pulling-back the connections and left multiplying by conjugation on the
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twisted 3/2−spinors. G also acts on iΩ+(X) trivially. Not much different from the

standard Seiberg-Witten theory, the following lemma tells us that solutions to (6.9) are

preserved under the gauge group action.

Lemma 6.2. If (ψ,A0 + a) is a solution to (6.9), then h · (ψ,A0 + a) is also a solution for

any h ∈ G =Maps (X,U(1)).

Proof. Since X is simply connected, h has global logarithm, i.e, there is a smooth

real-valued function u such that h = eiu. Then the action of h on a configuration can be

re-described as

h · (ψ,A0 + a) = (e−iuψ,A0 + a+ idu).

We easily see that d+(a+ idu) + F+
A0

− ρ−1(µ(e−iuψ)) = d+a+ F+
A0

− ρ−1(µ(ψ)). At the

same time,

Q+
A0
(e−iuψ) + π−(a · e−iuψ + idu · e−iuψ) = e−iuQ+

A0
ψ − ie−iuπ−(du · ψ)+ (6.10)

+ e−iuπ−(a · ψ) + ie−iuπ−(du · ψ) = e−iu(Q+
A0
ψ + π−(a · ψ)). (6.11)

Therefore, obviously if (ψ,A0 + a) solves (6.9), then so does (e−iuψ,A0 + a+ idu).

RS-SW equations are in an abelian gauge theory. And just as the Seiberg-Witten

equations, there is a gauge-fixing condition for the RS-SW equations. Recall that with

respect to a referenced unitary connection A0, A is in the Coulomb gauge if d∗(A−A0) = 0.

Lemma 6.3. Let (ψ,A0 + a) be any solution to (2.9). Then its orbit by the action of G can

be represented uniquely up to a constant by another solution where the connection part is in

the Coulomb gauge.

Proof. Suppose h = eiu is an element of G such that A0 + a+ idu is in the Coulomb gauge.

That means to show the existence of a connection that is in the Coulomb gauge, we have to
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solve d∗(a+ idu) = 0. Note that since u is a smooth function, d∗u = 0. Therefore, solving

for u in d∗(a+ idu) = 0 is equivalent to solving for u in

d∗du+ dd∗u = ∆u = d∗(−ia) (6.12)

But by Hodge’s decomposition theorem, Ω0(X) = ker∆⊕ d∗Ω1(X), which means that a

solution u for (6.12) always exists up to a constant.

From Lemma 6.2 and Lemma 6.3, we see that after the gauge group action and the

gauge fixing condition, RS-SW becomes a non-linear system of elliptic differential equations

Q+
A0
ψ + π−(a · ψ) = 0, d∗a = 0, d+a+ F+

A0
= ρ−1(µ(ψ)). (6.13)

When L = C and A0 is chosen to be the trivial connection, equations (6.13) become

Q+ψ + π−(a · ψ) = 0, d∗a = 0, d+a = ρ−1(µ(ψ)). (6.14)

The configuration space C and the range space R of (2.14) become Γ(s+3/2)⊕ iΩ1(X) and

Γ(s−3/2)⊕ iΩ0(X)⊕ iΩ+(X). Denote F = D⊕ Q : C → R by the functional of (2.14), where

D = Q+ ⊕ (d+ ⊕ d∗) and Q(ψ, a) = (π−(a · ψ),−ρ−1(µ(ψ)), 0). Note that Mg = F−1(0).

For the remaining of the thesis, we focus only on this functional F .

6.3 Pin(2)-equivariance of the RSSW functional

Let V be a real 4−dimensional vector space. V can be given a quaternionic structure

by considering each vector v in V as the following 2× 2−complex matrix

v =

a+ bi −c+ di

c+ di a− bi

 :=

z −w

w z


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This turns V into an algebra where the multiplication is defined by multiplication of these

complex matrices. Furthermore, the usual Euclidean inner product on V agrees with the

Frobenius inner product on V equipped with the quaternionic structure. We note that if v

is not trivial, then v = |v|2 · (v/|v|2). And since |v|2 = det v, we can also think of V as real

scalar multiplication of SU(2).

Let W = W+ ⊕W−, where W± each is a copy of C2. We define an R−linear map

ρ : V → End(W ) by

ρ(v) =

0 −vt

v 0

 .

Let {e1, e2, e3, e4} be any orthonormal basis of V . Then ρ(ei)ρ(ej) + ρ(ej)ρ(ei) = −2δij. So

ρ is a Clifford multiplication. Furthermore, ρ exchanges the chirality of W . In particular if

ψ ∈ W+, then ρ(v)ψ = v ψ; where we view v ψ as an element of W−. Also note that W±

corresponds to ±1−eigenspaces of the map −ρ(e1)ρ(e2)ρ(e3)ρ(e4).

On C2, it is also naturally endowed with a quaternionic structure. Let ψ ∈ C2, and

write ψ = (ψ1 ψ2)
t. We can view ψ as a quaternion number in two different ways, either

ψ = ψ1 + ψ2j or

ψ =

ψ1 −ψ2

ψ2 ψ1

 .

Now consider the expression ρ(v)ψ, where v ∈ V and ψ ∈ W+. As observed above, we

have

ρ(v)ψ =

z −w

w z


ψ1

ψ2

 =

zψ1 − wψ2

wψ1 + zψ2

 ∈ W−.

The above vector then can be identified with the matrixzψ1 − wψ2 −wψ1 − zψ2

wψ1 + zψ2 zψ1 − wψ2

 =

z −w

w z


ψ1 −ψ2

ψ2 ψ1

 ,
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which is exactly the multiplication of v and ψ in the quaternion numbers. Hence, the

representation (Clifford multiplication) is exactly the multiplication in the quaternions.

Consider the group Spin(4) = SU(2)× SU(2). Let (p−, p+) ∈ Spin(4) arbitrarily. We

define the following group homomorphism Spin(4) → GL(V ) given by

(p−, p+) 7→ (v 7→ p−vp
−1
+ ).

The map v 7→ p−vp
−1
+ is norm preserving; thus the above homomorphism is actually

Spin(4) → SO(V ). Either way, this is a representation of Spin(4) on V . There is another

representation of Spin(4) onto W defined by

(p−, p+) 7→ ((ψ, ϕ) 7→ (p−ϕ, p+ψ)).

This is the spinor representation of the spin group. When Spin(4) only acts on W+,

the above action agrees with the Clifford multiplication ρ restricted to only unit vectors in

V (as multiplication in the quaternions).

The group Pin(2) is defined to be the disjoint union of two unit circles,

Pin(2) = S1 ⊔ j · S1. But we can also view S1 ⊔ j · S1 ⊂ SU(2). Let p0 ∈ Pin(2) and

ψ, ϕ ∈ W±, respectively. There is another action on W± by Pin(2) given by ψ 7→ ψp−1
0 and

ϕ 7→ ϕp−1
0 . We would like to emphasize again that every action we have listed so far is

defined as multiplication in the quaternions. Combine and sum up, we obtain the following

Spin(4)× Pin(2)−modules:

• V := −H+ is the module where the action of (p−, p+, p0) is given by p−vp−1
+ .

• W+ := +H is the module where the action is given by p+ψp−1
0 .

• W− := −H is the module where action is defined by p−ϕp−1
0 .

• R̃ is the Pin(2)−module where the actions are eiθ · x = x and j · x = −x. +H+ is the
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module where the action is given by p+vp−1
+ so that R̃⊕ Λ+V is identified with +H+.

On our manifold X, with respect to its only Spin(4)−bundle PSpin(4) → X, the above

actions make the bundles T ∗X = TX, s±1/2 equivariant with respect to Spin(4)× Pin(2).

Since Pin(2) ↪−→ Spin(4) by the diagonal map, these bundles are also Pin(2)−equivariant.

Fiber-wise, they correspond to −H+, +H, and −H, respectively. And fiber of R⊕ Λ+T ∗X

corresponds to +H+. We note that the Clifford multiplication ρ : TX ⊗ s±1/2 → s∓1/2 is

induced exactly by the Clifford multiplication −H+ × ±H → ∓H defined previously; and the

later one is definitely Pin(2)−equivariant. Thus, ρ : TX ⊗ s+1/2 → s−1/2 is

Pin(2)−equivariant.

Lemma 6.4. The bundles s±3/2 are Spin(4)× Pin(2)−equivariant.

Proof. We just need to check for positive 3/2−spinors. Let ψ =
∑
eα⊗ψα ∈ Γ(s+1/2), where

{eα} is a local orthonormal basis on X with respect to g. Introduce the action of

(p−, p+, p0), we obtain ρ((p−, p+, p0) · ψ) = ρ
(∑

p−eap
−1
+ ⊗ p+ψap

−1
0

)
= p−ρ(ψ)p

−1
0 = 0.

Here we use the equivariant property of ρ. Therefore, if ψ is a 3/2−spinor, then so is

(p−, p+, p0) · ψ. Note that this means that the 3/2−spinor bundles are also

Pin(2)−equivariance.

With abuse of notation, recall that we also denote the Clifford multiplication

TX ⊗ s+1/2 ⊗ TX → s−1/2 ⊗ TX by ρ.

Lemma 6.5. For a ∈ Ω1(X) and ψ ∈ Γ(s+3/2), (a, ψ) 7→ a · ψ is

Spin(4)× Pin(2)−equivariant.

Proof. Write ψ =
∑
eα ⊗ ψα. Then ρ(a)ψ =

∑
eα ⊗ ρ(a)ψα. Introduce the (p−, p+, p0) in

two ways. First, we have (p−, p+, p0) · ρ(a)ψ =
∑
p−eαp

−1
+ ⊗ p−aψαp

−1
0 . On the other hand,

ρ(p−ap
−1
+ )
∑
p−eαp

−1
+ ⊗ p+ψαp

−1
0 =

∑
p−eαp

−1
+ ⊗ p−aψαp

−1
0 . The two expressions are

exactly the same; hence we have the equivariant property of the quadratic map. Again,

this also implies Pin(2)−equivariant.
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Recall that the orthogonal projection π− : Γ(s−1/2 ⊗ TX) → Γ(s−3/2) can be explicitly

given by π−(ϕ) = ψ − ι ◦ ρ(ϕ) = ϕ+ 1
4

∑
α eα ⊗ eαρ(ϕ).

Lemma 6.6. π− is Pin(2)−equivariant.

Proof. Let ϕ =
∑
eα ⊗ ϕα. We only need to check for the action of j. First, we note

π−(j · ϕ) = j · ϕ− ι ◦ ρ(j · ϕ) = j · ϕ− ι ◦ ρ
(∑

jeαj
−1 ⊗ jϕαj

−1
)

(6.15)

= j · ϕ− ι(jρ(ϕ)j−1) = j · ϕ+
1

4

∑
β

eβ ⊗ eβjρ(ϕ)j
−1 (6.16)

= j · ϕ+
1

4

∑
eβ ̸=j

eβ ⊗ eβjρ(ϕ)j
−1 − 1

4
j ⊗ ρ(ϕ)j−1. (6.17)

On the other hand, we have

j · π−(ϕ) = j · (ϕ− ι ◦ ρ(ϕ)) = j · ϕ+
j

4

∑
β

eβ ⊗ eβρ(ϕ) (6.18)

= j · ϕ+
1

4

∑
β

jeβj
−1 ⊗ jeβρ(ϕ)j

−1 (6.19)

= j · ϕ+
1

4

∑
eβ ̸=j

eβ ⊗ eβjρ(ϕ)j
−1 − 1

4
j ⊗ ρ(ϕ)j−1. (6.20)

As a result, we have π−(j · ϕ) = j · π−(ϕ).

Let ψ ∈ s+3/2. Consider the action of (p−, p+, p0) on ψ to obtain p+ψp−1
0 . Passing

through quadratic map µ, we have

p+ψp
−1
0 p0ψ

∗p−1
+ − 1

2
tr(p+ψp−1

0 p0ψ
∗p−1

+ )1 = p+ψψ
∗p−1

+ − 1

2
tr(ψψ∗)p+p

−1
+ = p+µ(ψ)p

−1
+

This shows that

Lemma 6.7. µ : s+3/2 → isu(s+1/2) is equivariant with respect to Spin(4)× Pin(2); hence

Pin(2)−equivariant.
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All aforementioned Pin(2) actions have been unitary (or orthogonal). Therefore, the

connections defined on the bundles are also Pin(2)−equivariant. In particular, D+ and

d+ d∗ are Pin(2)−equivariant. Combine with the previous lemmas, we obtain that the

functional F : C → R is a Pin(2)−equivariant map.

7 Finite dimensional approximation of the RSSW functional

7.1 Linearization of the RSSW functional

We consider the Sobolev completions of CL2
k

and RL2
k−1

by L2
k and L2

k−1 norms,

respectively. Naturally upon completion, they become Hilbert manifolds. As such, for the

sake of convenience, we suppress their subscripts. There is a natural identification of the

tangent spaces of the Hilbert manifolds C and R at a point (ψ, a). Consider a

parametrization of a curve γt := (ψt, at) in C for t ∈ (−ϵ, ϵ), where ϵ > 0 and

ψt = ψ + tϕ, at = a+ tb. Here ϕ is some other positive 3/2−spinor and b is a purely

imaginary valued 1−form. Then a short calculation shows that the derivative of γt at t = 0

gives us γ̇0 = (ϕ, b).

Lemma 7.1. F : C → R is a smooth mapping between separable Hilbert manifolds and its

differential at a point (ψ, a) is

d(ψ,a)F(ϕ, b) =
(
Q+ϕ+ π−(b · ψ + a · ϕ), d∗b, d+b− ρ−1(ψϕ∗ + ϕψ∗)0

)
Proof. Smoothness part comes from Sobolev regularity. Now let γt = (ψt, at), t ∈ (−ϵ, ϵ)

such that γ0 = (ψ, a) and γ̇0 = (ϕ, b), where ϕ ∈ Γ(s+3/2) and b ∈ iΩ1(X). We have

d(ψ,a)F(ϕ, b) = lim
t→0

F(γt)−F(ψ, a)

t

=

(
Q+ϕ+ lim

t→0

π−(at · ψt − a · ψ)
t

, d∗b, d+b− lim
t→0

ρ−1(µ(ψt)− µ(ψ))

t

)
. (7.1)
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Compute the first limit on the right hand side of (7.1), we have

lim
t→0

π−(at · ψt − a · ψ)
t

= π−
(
lim
t→0

at · ψt − at · ψ
t

+ lim
t→0

at − a

t
· ψ
)

= π−(b · ϕ+ a · ψ). (7.2)

For the other limit, we see that

(ψtψ
∗
t )0 − (ψψ∗)0

t
=
ψtψ

∗
t − ψψ∗

t
− 1

2
tr
(
ψtψ

∗
t − ψψ∗

t

)
1

=
ψt(ψ

∗
t − ψ∗)

t
+

(ψt − ψ)ψ∗

t
− 1

2
tr
{ψt(ψ∗

t − ψ∗)

t
+

(ψt − ψ)ψ∗

t

}
1. (7.3)

Let t→ 0 and (7.3) approaches (ψϕ∗ + ϕψ∗)− 1
2
tr(ψϕ∗ + ϕψ∗)1, which is exactly

(ψϕ∗ + ϕψ∗)0. The above calculations give us exactly the formula for the differential of F

at (ψ, a) ∈ C.

Lemma 7.2. Suppose k ≥ 4, R0 > 0 and ∥(ψ, a)∥L2
k
< R0. The linear operator

R(ψ,a) : L
2
k(s

+
3/2)⊕ L2

k(iT
∗X) → L2

k−1(s
−
1/2 ⊗ TX) given by R(ψ,a)(ϕ, b) = b · ψ + a · ϕ is a

compact operator.

Proof. Let {(ϕj, bj)}∞j=1 be a uniformly bounded sequence in L2
k(s

+
3/2)⊕L2

k(iT
∗X). We need

to show that there is a subsequence of {Rψ,a(ϕj, bj)}∞j=1 that converges in L2
k−1(s

−
1/2 ⊗ TX).

By the Rellich lemma, there is a subsequence of {bj}∞j=1 that converges in L2
k−1. Without

loss of generality, we may denote such subsequence by {bj}∞j=1 again and suppose that

bj → b in L2
k−1(iT

∗X). For an arbitrary ϵ > 0, let j be large enough such that

∥bj − b∥L2
k−1

< ϵ/2constR0. Then by the Sobolev multiplication theorem (Appendix IV of

[6]), we have ∥(bj − b) · ψ∥L2
k−1

≤ const ∥bj − b∥L2
k−1

R0 < ϵ/2. Similarly, for j also large

enough, we also have ∥a · (ϕj − ϕ)∥L2
k−1

< ϵ/2. Therefore, {R(ψ,a)(ϕj, bj)}∞j=1 also converges

in L2
k−1(s

−
1/2 ⊗ TX). It is not hard to see that R(ψ,a) is bounded. This shows that R(ψ,a) is

indeed a compact operator.
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Lemma 7.3. When k ≥ 4 and R0 > 0, the linear map Lψ : L2
k(s

+
3/2) → L2

k−1(iΛ
+T ∗X)

defined by Lψ(ϕ) = ρ−1(ψϕ∗ + ϕψ∗)0 is a compact operator for any ψ such that ∥ψ∥L2
k
< R0.

Proof. It is sufficient to show that ϕ 7→ ψϕ∗ + ϕψ∗ is compact. Suppose {ϕj}∞j=1 is a

uniformly bounded sequence in L2
k(s

+
3/2). The Rellich lemma tells us that there is a

subsequence of {ϕj}∞j=1 that converges in L2
k−1(s

+
3/2). For notational convenience, we denote

such subsequence by {ϕj}∞j=1 again, and ϕj → ϕ in L2
k−1(s

+
3/2). Now for any ϵ > 0 and j is

large enough, we have ∥ϕj − ϕ∥L2
k−1

< ϵ/2constR0. By the Sobolev multiplication theorem

(Appendix IV of [6],

∥∥ψ(ϕ∗
j − ϕ∗

j) + (ϕj − ϕ)ψ∗∥∥
L2
k−1

≤
∥∥ψ(ϕ∗

j − ϕ∗
j)
∥∥
L2
k−1

+ ∥(ϕj − ϕ)ψ∗∥L2
k−1

≤

≤ constR0

∥∥ϕ∗
j − ϕ∗∥∥

L2
k−1

+ const ∥ϕj − ϕ∥L2
k−1

R0. (7.4)

The last inequality of (7.4) is less than ϵ. As a result, Lψ is compact as desired.

Note that the formula in Lemma 7.1 is exactly d(ψ,a)F = D+ d(ψ,a)Q. Since orthogonal

projection π− is bounded and Lemma 7.2 tells us that R(ψ,a) is compact whenever

∥(ψ, a)∥L2
k
< R0, π− ◦R(ψ,a) is also compact. By Lemma 3.3, we immediately see that

d(ψ,a)Q is a compact operator whenever ∥(ψ, a)∥L2
k
< R0. Obviously, the linearization of F

and Q are also Pin(2)−equivariant. To summarize the main point of this subsection, we

have the following proposition.

Proposition 7.4. The operator d(ψ,a)Q = d(ψ,a)F −D : C → R is compact and equivariant

under the Pin(2)−action. Furthermore, the set

⋃
(ψ,a)∈B(0,R0)

d(ψ,a)Q(B(0, 1))

has compact closure in R for any prefixed R0 > 0.
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7.2 Kuranishi model for the RSSW functional

Since D is elliptic, D∗D and DD∗ share the same real discrete spectrum {λ1, λ2, · · · }.

Each eigenspace associated to an eigenvalue λ is finite dimensional, a consequence of

ellipticity of D. Now we denote Cλn by the (orthogonal) direct sum of all eigenspaces of

D∗D where the eigenvalues are strictly larger λn, and Cλn by the direct sum of all

eigenspaces of D∗D where the eigenvalues are lesser than or equal to λn. Similarly, define

Rλn and Rλn for DD∗. Note that both Cλn and Rλn are finite dimensional, and

D : C = Cλn ⊕ Cλn → Rλn ⊕Rλn = R

respects the orthogonal decomposition. Furthermore, D is "norm-preserving".

Lemma 7.5. The map D : Cλn → Rλn is an isomorphism between Hilbert spaces.

Proof. We only need to show that D is bijective. First, let v ∈ Cλn such that Dv = 0.

Without loss of generality, suppose that v is an eigenvector associated to an eigenvalue

λ > λn. Then D∗Dv = λ v. This immediately implies that λ v = 0. And since λ ̸= 0, v = 0.

So we have D injective. For surjectivity, we let w ∈ Rλn and without loss of generality

assume that w is an eigenvector associated to an eigenvalue λ > λn. Then DD∗w = λw. A

quick calculation show that (1/λ)D∗w ∈ Cλn . And thus, we have D onto.

Let πλn : R → Rλn be the orthogonal projection. Lemma 3.5 tells us that the

restricted map D is an isomorphism so there is a well-defined bounded inverse

D−1 : Rλn → Cλn . To get a finite dimensional approximation for F , we use the global

Kuranishi model. The idea is straightforward. We first define the following map ϕn : C → C

ϕn := 1C +D−1πλnQ

We would like to show that for a fixed radius R > 0 and large enough n, ϕn is injective
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with a well-defined differential inverse. Then the map fn := (1− πλn)Fϕ−1
n from

Cλn → Rλn is a finite dimensional approximation for F . To prove this, we need to recall

following technical lemmas.

Lemma 7.6. (Lemma 5.4) Let X, Y, Z be Banach spaces and Qn : Y → Z be a sequence

of bounded linear operators such that

lim
n→∞

Qny = 0

for all y ∈ Y . Moreover, let {Kα}α∈A by a collection of bounded linear operators

Kα : X → Y , indexed by a set A, such that the set

B = {Kαx : α ∈ A, x ∈ X, ∥x∥ ≤ 1} ⊂ Y

has compact closure. Then

lim
n→∞

sup
α

∥QnKα∥ = 0.

Proof. See section 5

Lemma 7.7. (Lemma 5.1) Let X be a Banach space and ψ : X → X be a continuously

differential map such that ψ(0) = 0 and ∥1− dxψ∥ ≤ γ for all x ∈ X with ∥x∥ < R, γ < 1

is some constant. Then the restriction of ψ to B(0, R) is injective, ψ(B(0, R)) is an open

set, and ψ−1 : ψ(B(0, R)) → B(0, R) is continuously differentiable with

dyψ
−1 = [dψ−1(y)ψ]

−1. Moreover, B(0, R(1− γ)) ⊂ ψ(B(0, R)) ⊂ B(0, R(1 + γ)).

Proof. see section 5

Lemma 7.8. Let ϕnv = u. Then Fv = 0 if and only if u ∈ Cλn and (1− πλn)Fv = 0.

Proof. Suppose that Fv = Dv + Qv = 0, this is equivalent to Qv = −Dv. Then from

ϕnv = u, we obtain v −D−1
1 πλnDv = u. Note that D and πλn commute. As a result,

v − πλnv = u. But this is equivalent to saying u ∈ Cλn . Obviously, (1− πλn)Fv = 0.
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Conversely if u ∈ Cλn and (1− πλn)Fv = 0, then

u = v +D−1
1 πλn(F −D)v = v +D−1πλnFv − πλnv. Apply D to both sides, we obtain

Du = Dv + Fv − πλnDv = (1− πλn)Dv + Fv. Since u ∈ Cλn , Du ∈ Rλn . And note that

(1− πλn)Dv is clearly also Rλn . Hence Fv ∈ Rλn ∩Rλn . This is possible only if

Fv = 0.

Proposition 7.9. Assume that Mg := F−1(0) is compact. Then there exists an C > 0 and

n large enough such that fn : Cλn → Rλn defined above has no zero as long as u ∈ Cλn and

∥u∥L2
k
= C.

Proof. With Mg being compact, there is an R > 0 such that if ∥v∥L2
k
≥ R, we have

Fv ̸= 0. Note that ϕn(0) = 0 and for any v ∈ C, dvϕn = 1C +D−1πλndvQ so that

dvϕn − 1C = D−1πλndvQ. Since D : Cλn → Rλn is an isomorphism, we have

∥dvϕn − 1C∥ =
∥∥πλndvQ∥∥ .

Note that limn→∞ πλnw = 0 for all w ∈ R and Proposition 7.4 tells us that {dvQ}v∈B(0,3R)

is a uniform family of compact operators. So, by Lemma 7.6, we have

lim
n→∞

sup
v∈B(0,3R)

∥∥πλndvQ∥∥ = 0.

This implies that for an n large enough, say for all n ≥ n0(R),

∥dvϕn − 1C∥ ≤ 1

2
whenever v ∈ B(0, 3R).

Then by Lemma 7.7, ϕn restricted to B(0, 3R) is injective and has a well-defined

continuously differentiable inverse. Furthermore, ϕn(B(0, 3R)) is open and

ϕn(B(0, R)) ⊂ B(0, 3R/2) ⊂ ϕn(B(0, 3R)) ⊂ B(0, 9R/2).
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Suppose that there is u ∈ ∂B(0, 3R/2) ∩ Cλn such that fnu = 0. Let v = ϕ−1
n u or u = ϕnv.

By Lemma 7.8, Fv = 0. But since ∥v∥L2
k
= ∥ϕ−1

n u∥L2
k
≥ R, this leads to a contradiction.

Therefore, for any u ∈ Cλn where ∥u∥L2
k
= C and C > 3R/2 such that

B(0, C) ⊂ ϕn(B(0, 3R)), fnu ̸= 0.

Remark 10. The finite dimensional approximation construction of F above is similar to

Furuta’s in his 10/8th-paper [10].

Remark 11. There is another way to obtain finite dimensional approximation for F and

one still gets the same result in Proposition 7.9. Alternatively, we define

gn := (1− πλn)(D+ Qϕ−1
n ). With the same hypothesis in Proposition 3.9 and a specified

ball B(0, R) in C such that F is never zero outside such ball indicated in the beginning of

the above proof, ϕn restricted to B(0, 3R) is still injective and has a well-defined

continuously differential inverse for large enough n. Then one note that

Dϕn −D− πλnF + πλnD = Dϕn −D− πλn(D+ Q) + πλnD (7.5)

= Dϕn −D− πλnQ = D(1C +D−1πλnQ)−D− πλnQ = 0. (7.6)

Apply ϕ−1
n on the right of the above equations, and we get exactly that

D−Dϕ−1
n − πλnFϕ−1

n + πλnDϕ−1
n = 0. Therefore,

gn = (1− πλn)(D+ Fϕ−1
n −Dϕ−1

n ) (7.7)

= D+ Fϕ−1
n −Dϕ−1

n − πλnD− πλnFϕ−1
n + πλnDϕ−1

n (7.8)

= Fϕ−1
n − πλnD. (7.9)

Hence, Fϕ−1
n = πλnD+ gn. So if u ∈ Cλn and ∥u∥L2

k
≥ 3R/2, then ∥ϕ−1

n u∥L2
k
≥ R. This

implies that Fϕ−1
n u ̸= 0. Because Du ∈ Rλn , so πλnDu = 0. As a result, gnu ̸= 0 also.

Remark 12. The hypothesis that there is a ball of a certain radius centered at 0 in C such

that F ̸= 0 outside such ball is not needed to obtain a finite dimensional approximation for
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F . This condition only ensures that once we have a finite dimensional approximation fn of

F , fn ̸= 0 also on a specified sphere whose existence depends on the aforementioned ball.

Note that the map fn : Cλn → Rλn in Proposition 7.9 is also Pin(2)−equivariant by

construction. Recall that we have shown D to be Pin(2)−equivariant. Thus, Cλn and Rλn

are finite dimensional representations of Pin(2). So, they can be written as

Cλn = Ht ⊕ Rs; Rλn = Hr ⊕ Rq.

Since D : Cλn → Rλn is an isomorphism by Lemma 7.5, 2 indexCQ+ = 4(t− r) and

index (d+ ⊕ d∗) + 1 = s− q. The +1 is needed because R does not contain constant

functions. We know that index (d+ ⊕ d∗) = −b+2 (X)− 1; and Proposition 2.2 tells us that

indexQ+ = 19σ(X)/8. Hence, t = r + 19σ(X)/16 and q = s+ b+2 (X), where

b+2 (X) = dimH+(X). Let k = 19σ(X)/16 and m = b+2 (X). As a result,

Cλn = Hr+k ⊕ Rs; Rλn = Hr ⊕ Rs+m.

Now the complexification of fn would still be Pin(2)−equivariant. Denote the complexified

fn by itself again for convenience. We have a smooth equivariant map

fn : V := H2r+2k ⊕ Cs := V0 ⊕ V1 → W0 ⊕W1 := H2r ⊕ Cs+m := W.

The above map also induces a smooth Pin(2)−equivariant map f : BV/SV → BW/SW ,

where B and S denotes the closed unit ball and closed unit sphere of a vector space. In the

next section, using equivariant K−theory, we will show that if such a map exists, then we

must have m ≥ 2k + 1.
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8 Proof of Theorem 1.8

8.1 Equivariant K-theory

So far, we have seen that if the moduli space of solutions Mg is compact, then there

exists a Pin(2)−equivariant map f : BV/SV → BW/BW between spheres, where V and

W are Pin(2)−representations constructed in the previous section. If the following

proposition holds, then we immediately obtain Theorem 1.8.

Proposition 8.1. If there exists a Pin(2)−equivariant map f : BV/SV → BW/SW ,

where V = H2r+2k ⊕ Cs := V0 ⊕ V1 and W = H2r ⊕ Cs+m := W0 ⊕W1 are

Pin(2)−representations, then either k = 0 or m ≥ 2k + 1.

Indeed, suppose that Proposition 4.1 is true for now, apply it to the setting where f is

the induced map of a finite dimensional approximation for F where F−1(0) = Mg is

compact. Since X is a closed simply connected smooth spin 4−manifold whose intersection

form is indefinite, obviously b2(X) ≥ 2. The inequality in Theorem 1.2 satisfies vacuously

when k = 0. Otherwise, m ≥ 2k + 1. Equivalently, b+2 (X) ≥ 19σ(X)/8 + 1. Scaling the

inequality by 2, we have

b2(X) + σ(X) = 2 b+2 (X) = 2m ≥ 4k + 2 =
19

4
σ(X) + 2.

The above inequality implies that b2(X) ≥ 15σ(X)/4 + 2 as claimed.

Therefore, what remains for us to do in this section is to prove Proposition 8.1. To do

that, we need to recall some facts about equivariant K−theory for Pin(2). The results and

definitions that are about to be listed exist in a variety of places in the literature; for

example, see [23]. We summarize them here for the sake of self-containment.

Let M be any compact Hausdorff space and G is any compact Lie group acting on M .

An G−equivariant complex vector bundle is a complex vector bundle π : E →M that

carries a G−action such that π is equivariant. The group KG(M) is the Grothendieck
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group of the semigroup of equivalence classes of complex G−vector bundles over M . For

two complex G−vector bundles E →M and F →M , we write E ⊖ F as its equivalence

class in KG(M). Note that KG(⋆) is exactly the Grothendieck ring of the set containing

classes of equivalent finite dimensional unitary representations of G, which is denoted by

the representation ring R(G). The functor KG is a homotopy invariant; and hence, any

contractible space M has KG(M) ∼= R(G). The functor KG is also contravariant. In the

case where M has no G−action, KG(M) := K(M)⊗R(G).

If N ⊂M that is also compact and has a G action, the inclusion ⋆→M/N induces a

group homomorphism KG(M/N) → R(G). The relative KG−group KG(M,N) is defined

to be the kernel of aforementioned group homomorphism. Elements of KG(M,N) are

represented by E ⊖φ F such that φ : E|M → E|N is an isomorphism.

Let V be a finite dimensional unitary representation of G. Naturally, BV and SV are

compact and have G−actions. So we set M := BV and N := SV . Then, define the

equivariant Thom class τV ∈ KG(BV,SV ) by

τV := Λ0,evenV ∗ ⊖φ Λ
0,oddV ∗.

The following theorem is an important and deep result that tells us KG(BV,SV ) is a

module over R(G), and as a module, it is generated by τV .

Theorem 8.2 (Bott). Suppose V is a finite dimensional unitary representation of G.

Then KG(BV,SV ) is naturally isomorphic to R(G) via the homomorphism

R(G) → KG(BV,SV ), ρ 7→ ρ⊗ τV .

The above theorem lets us define a notion called KG−theoretic degree. Let V and W

are finite dimensional unitary representations of G. Suppose we have a smooth equivariant

map f : BV/SV → BW/SW so that one has an induced map
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f ∗ : KG(BW/SW ) → KG(BV/SV ). Since f ∗τW ∈ KG(BV,SV ), by Theorem 4.1, there

must be a unique element af ∈ R(G) such that f ∗τW = af ⊗ τV . This element af ∈ R(G)

associated to a smooth map f between spheres is the KG−theoretic degree of f . Note that

af could be formal difference between two unitary representations. However, in the case

where G acts trivially on V and W , af is something more familiar:

Lemma 8.3. Suppose the group G0 = S1 acts trivially on the finite dimensional Hermitian

vector spaces V and W . Let f : BV/SV → BW/SW be smooth and equivariant. Then the

induced map

f ∗ : KG0(BW/SW ) → KG0(BV/SV )

satsfies f ∗(τW ) = deg(f) τV , where deg(f) is the usual degree of a smooth map.

Consequently, if V and W have different dimensions, f ∗τW = 0.

Proof. See reference [23].

Beside Theorem 8.2 and Lemma 8.3, we also need to know exactly what the

representation ring of Pin(2) looks like before proving Proposition 8.1.

Lemma 8.4. The representation ring of Pin(2) is naturally isomorphic to the quotient

ring over Z (also an Z−module)

R(Pin(2)) ∼=
Z[d, h]

⟨d2 − 1, dh− h⟩
.

In particular, d is associated with the unitary representation of Pin(2) over C where

j 7→ −1 and eit 7→ 1; and h is associated with the usual representation of the group on H.

In particular, every 1−dimensional unitary representation is either associated with 1 or d;

and every 2−dimensional unitary representation is of the form

j 7→

0 (−1)n

1 0

 , eit 7→

eit 0

0 e−it

 .
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Proof. See reference [23].

Lemma 8.5. Suppose m ≥ 1. Let f : BV/SV → BW/SW be the smooth Pin(2)−map

where V and W are defined as in Proposition 8.1. Let af be the KG−theoretic degree of f .

Then tr (af (eit)) = 0 for all t. Note that if af happens to a formal difference between two

representations of Pin(2), then we take tr (af (eit)) to be the difference between the traces of

the two representations evaluated at eit.

Proof. We first set up some notations. Let G0 = S1, which is a topological cyclic subgroup

of G := Pin(2). Note that G0 acts trivially on both V0 and W0. Also denote

f0 : BV0/SV0 → BW0/SW0 by the natural restriction of f . So, f0 is obviously smooth and

G0−equivariant. For any finite dimensional unitary representation U of G, we also define a

version of equivariant Thom class λU in KG(BU) ∼= R(G) by denoting

λU = Λ0,evenU∗ ⊖ Λ0,oddU∗. Correspondingly, λ0U is denoted by the restriction of λU to G0.

Next, consider the following commutative diagram

τW ∈ KG(BW,SW ) KG(BV,SV ) ∋ af ⊗ τV

τ 0W ∈ KG0(BW,SW ) KG0(BV,SV ) ∋ a0f ⊗ τ 0V

λ0W1
⊗ τ 0W0

∈ KG0(BW0,SW0) KG0(BV0,SV0) ∋ λ0V1 ⊗ a0f ⊗ τ 0V0

f∗

f∗

f∗0

Here the top two vertical maps are just restrictions. On the other hand, since f ∗
0 is a

R(G0)−linear map and by Lemma 8.3, we have f ∗
0 (λ

0
W1

⊗ τ 0W0
) = λ0W1

⊗ deg (f0) τ 0V0 .

Therefore, λ0V1 ⊗ a0f = deg (f0)λ0W1
. But because m ≥ 1, W0 and V0 have different

dimensions; so, λ0V1 ⊗ a0f = 0. Taking the traces of these two elements λ0V1 and a0f evaluated

at eit, we have

tr (λ0V1(e
it)) tr (a0f (e

it)) = 0.

Since Λ0,evenV ∗
1 and Λ0,oddV ∗

1 are inequivalent unitary representations of G, tr (λ0V1(·))
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cannot be zero. Hence, tr (a0f (eit)) = 0 as claimed for any t.

Lemma 8.6. For d, h ∈ R(Pin(2)) in Lemma 8.4, we have λd = 1− d and λh = 2− h.

Furthermore as elements in R(Pin(2)), (1− d)α = 2α−1(1− d) and

(2− h)β(1− d) = 2β(1− d) for any integers α ≥ 2, β ≥ 1.

Proof. d is associated to the unitary representation of Pin(2) on C. Note that Λ0,0C is the

base field which corresponds to the trivial representation. And Λ0,1C (which is generated

by dz) is canonically isomorphic to C; so, it corresponds to d. As a result,

λd = Λ0,0C− Λ0,1C = 1− d.

We identify H = C2 as previously. Since Λ0,0C2 is the base field which also corresponds

to the trivial representation and Λ0,2C2 (which is generated by dz̄1 ∧ dz̄2) is isomorphic to

C, Λ0,0C2 ⊕ Λ0,2C2 = 1 + 1 = 2 in R(Pin(2)). On the other hand, Λ0,1C2 (which is

generated by dz̄1, dz̄2) is isomorphic to C2 = H. Hence, in R(Pin(2)), Λ0,1C2 = h.

Therefore, λh = 2− h.

Now we prove the two identities by induction. Recall that in R(Pin(2)),

(1− d)2 = 1− 2d+ d2 = 2(1− d)−this is our base case. Suppose that the

(1− d)α = 2α−1(1− d) for all α up to n ≥ 2. Then one sees that

(1− d)n+1 = (1− d) 2n−1(1− d) = 2n−1(1− d)2 = 2n(1− d).

This completes the induction. Similarly, since dh− h = 0 in the representation ring, we

have (2− h)(1− d) = 2− 2d− h+ dh = 2(1− d)−this is the base case for β = 1. Assume

that the identity holds for all β up to n ≥ 1. Then we see that

(2− h)n+1(1− d) = (2− h) 2n(1− d) = 2n 2(1− d) = 2n+1(1− d).

The induction is concluded. We have our result as claimed.
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8.2 Proof of Proposition 8.1

With V,W, f set up as in the end of previous subeciton, and all the notations set up in

the proof of Lemma 8.5, since we have a smooth equivariant map BW → BW/SW , this

induces a homomorphism that is also R(G)−linear KB(BW,SV ) → KG(BW ) taking

τW 7→ λW . Similarly, for V . Note that both KG(BW ) and KG(BV ) are naturally

isomorphic to R(G). So, we have the following commutative diagram

τW ∈ KG(BW,SW ) KG(BV,SV ) ∋ af ⊗ τV

λW ∈ KG(BW ) KG(BV ) ∋ af ⊗ λV

R(G) R(G)

f∗

f∗

∼=

Thus, λW = afλV . Now because λ splits direct sum of representations into product of their

λ’s in the representation ring, we have

λV = (2− h)2r+2k(1− d)s, λW = (2− h)2r(1− d)s+m.

By Lemma 8.6, we see that in R(G),

λV = (2− h)2r+2k 2s−1(1− d) = 2s−1 22r+2k(1− d) = 22r+2k+s−1(1− d). (8.1)

Similarly,

λW = (2− h)2r 2m−1(1− d) = 2m−1 22r(1− d) = 22r+s+m−1(1− d). (8.2)

From (8.1) and (8.2), we obtain

22r+s+m−1(1− d) = 22r+2k+s−1 af (1− d). (8.3)
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Since tr ((1− d)(j)) = tr (1(j))− tr (d(j)) = 1− (−1) = 2, when apply traces evaluated at j

to (8.3), we have

22r+s+m = 22r+2k+s tr (af (j)) (8.4)

Now as element in R(G), by Lemma 8.4, we can write af as

af = α0 1 + α1 d+ αℓ h
ℓ + · · ·+ α2 h.

Here α0, . . . , αℓ are all integers. When evaluating the trace of af (j), we have

tr (af (j)) = α0 − α1 + αℓ tr (hℓ(j)) + · · ·+ α2 tr (h(j)).

By Lemma 8.4 again, tr (h(j)) = 0 and thus the trace of any power of h evaluated at j is

also zero, it turns out that tr (af (j)) = α0 − α1 ∈ Z. Combine with (8.4), it implies that

m ≥ 2k. So, tr (af (j)) ≥ 1. Thus either k = 0 or for m ≥ 1, tr (af (j)) cannot be 1. Assume

otherwise, evaluating the trace of af at i gives us

tr (af (i)) = α0 + α1 + αℓ tr (hℓ(i)) + · · ·+ α2 tr (h(i)).

By Lemma 8.4, the trace of any power of h evaluated at i is exactly zero; and by Lemma

8.5, tr (af (i)) = 0. As a result, α0 +α1 = 0. But it is impossible to find integer numbers α0,

α1 that satisfy α0 + α1 = 0 and α0 − α1 = 1 simultaneously. Therefore, tr (af (j)) ≥ 2.

Going back to (8.4), we obtain m ≥ 2k + 1 as claimed.
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9 Proof of Theorem 1.10

9.1 The elliptic complex of the RSSW equations

Recall that the RSSW equations for a closed simply connected spin 4−manifold X are

given by

Q+ψ + π−(a · ψ) = 0, d+a = ρ−1(µ(ψ))

Let h = eiu ∈ G where u is a real-valued function, and (ψ, a) ∈ C be a point in the

configuration space. Note that

h · (ψ, a) = (e−iuψ, a+ idu)

If h is a stabilizer of (ψ, a), then du = 0. Thus, u is constant. From e−iuψ = ψ, we have

two possibilities: either ψ ≡ 0 or u = 0 when ψ is not identically 0. The obervation

motivates the follow definition.

Definition 9.1. A configuration (ψ, a) ∈ C is irreducible if ψ is not identically 0 so that its

stabilizer in G is exactly 1. (ψ, a) is said to be reducible if ψ ≡ 0, equivalently its stabilizer

in G is U(1). We denote C∗ by the space of irreducible configurations of the RSSW

equations. Consequently, G acts on C∗ freely.

Definition 9.2. We define the functional of the RSSW equations

F : L2
k((T

∗X ⊗ iR)⊕ s+3/2) → L2
k−1((Λ

+T ∗X ⊗ iR)⊕ s−3/2) to be

F(a, ψ) = (d+a− ρ−1(µ(ψ)), Q+ψ + π−(a · ψ)).

At a configuration (a, ψ), the multiplication map M(a,ψ) : L
2
k+1(G) → L2

k((T
∗X ⊗ iR)⊕ s+3/2)

is given by

M(a,ψ)(e
iu) = (a+ idu, e−iuψ).
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A similar calculations in Lemma 7.1 shows that the linearizations of F at (a, ψ) and of

M(a,ψ) at the identity are

d(a,ψ)F(b, ϕ) = (d+b− ρ−1(dψµ(ϕ)), Q
+ϕ+ π−(b · ψ + a · ϕ)) (9.1)

dM(a,ψ)(iw) = (idw,−iwψ). (9.2)

Putting them together, we have the following sequence of maps

E(a, ψ) : 0 → L2
k+1(X, iR) → L2

k((T
∗X ⊗ iR)⊕ s+3/2) → L2

k−1((Λ
+T ∗X ⊗ iR)⊕ s−3/2) → 0,

(9.3)

where the second map is given by (9.2) and the third map is given by (9.1). We claim that

E(a, ψ) is an elliptic complex for each (a, ψ) that is a solution to the RSSW equations, and

we also going to calculate its Euler characteristic.

Proposition 9.1. At any solution (a, ψ) to the RSSW equations, E(a, ψ) is an elliptic

complex.Furthermore, its Euler characteristic is given by 1 + b+2 (X)− 19
4
σ(X).

Proof. First we show that E(a, ψ) is a complex when (a, ψ) is a solution to the RSSW

equations. Indeed, at iw ∈ L2
k+1(X, iR) we have

d(a,ψ)F ◦ dM(a,ψ)(iw) = (id+dw − ρ−1(dψµ(−iwψ)), Q+(−iwψ) + π−(idw · ψ + a · (−iwψ))).

Note that

1. id+dw = iP+d2w = 0.

2. dψµ(−iwψ) = ψ(−iwψ)∗ + (−iwψ)ψ∗ − 1
2
tr (ψ(−iwψ)∗ + (−iwψ)ψ∗)1 = 0.

3. Leibniz rule tells us that

Q+(−iwψ) = −iQ+(wψ) = −iπ−D+(wψ) = −iπ−(wD+ψ + ρ(dw)ψ) (9.4)
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= −wQ+ψ − π−(ρ(idw)ψ) (9.5)

4. (9.5) let us rewrite the second component of d(a,ψ)F ◦ dM(a,ψ)(iw) as

Q+(−iwψ) + π−(idw · ψ + a · (−iwψ)) = −iwQ+ψ − π−(ρ(idw)ψ) (9.6)

+ π−(ρ(idw)ψ)− iwπ−(ρ(a)ψ) (9.7)

= −iw(Q+ψ + π−(ρ(a)ψ)) = 0. (9.8)

As a result, d(a,ψ)F ◦ dM(a,ψ)(iw) = 0, which means that E(a, ψ) is a complex as claimed.

Next we show E(a, ψ) is elliptic. To do this, we deform the complex as follows: For

t ∈ [0, 1], denote E(a, ψ)t by

E(a, ψ)t : 0 → L2
k+1(X, iR) → L2

k((T
∗X ⊗ iR)⊕ s+3/2) → L2

k−1((Λ
+T ∗X ⊗ iR)⊕ s−3/2) → 0,

(9.9)

where the second map is given by:

d(a,ψ)Ft(b, ϕ) = (d+b− tρ−1(dψµ(ϕ)), Q
+ϕ+ π−(tb · ψ + a · ϕ))

and the third map is given by:

dM(a,ψ)t(iw) = (idw,−tiwψ)

Similar calculations show that E(a, ψ)t is also a complex for any t ∈ [0, 1] and (a, ψ) solves

the RSSW equations. Note that E(a, ψ)1 is the the original complex (9.3). While at t = 0,

we have the second map of (9.9) is given by (d, 0) and the third map is given by
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(d+, Q+ ·+π−(a·)). In fact, E(a, ψ)0 = A⊕B where

A : 0 −→ L2
k+1(X, iR)

d−→ L2
k(T

∗X ⊗ iR) d+−→ L2
k−1(Λ

+T ∗X ⊗ iR) −→ 0,

and

B : 0 −→ 0 −→ L2
k(s

+
3/2)

Q+·+π−(a·)−−−−−−−→ L2
k−1(s

−
3/2) −→ 0.

Since the map ϕ 7→ Q+ϕ+ π−(a · ϕ) is a compact perturbation of the Fredholm map Q+, it

is also Fredholm. Furthermore, its index is also the indexQ+. Hence, B is an elliptic

complex. Recall that A is the elliptic complex introduced in subsection 2.4. As a result,

E(a, ψ)0 is elliptic. In turn, the original complex (9.3) is also elliptic.

Denote χ(E) by the (real) Euler characteristic of an elliptic complex E. Euler

characteristic is preserved under continuous deformation of elliptic complex. By

Proposition 6.1 and the discussion at the end of subsection 2.4, we have

χ(E(a, ψ)) = χ(E(a, ψ)0) = χ(A) + χ(B) = −index (d+ + d∗)− indexQ+ (9.10)

= 1 + b+2 (X)− 19

4
σ(X) (9.11)

as claimed.

Let B∗ = C∗/G and M∗ be a collection of [a, ψ] ∈ B∗ that are irreducible solution to the

RSSW equations. Suppose [a, ψ] ∈ M∗. Then the zeroth cohomology H0
(a,ψ) of E(a, ψ) is

trivial, while the first cohomology H1
(a,ψ) is a finite dimensional linear subspace of T[a,ψ]B∗.

This is called the Zariski tangent space of the moduli space M. The second cohomology

H2
(a,ψ) of E(a, ψ) is called the obstruction space. M is called smooth at an irreducible

solution of the obstruction space is trivial. If this is the case, by the implicit function

theorem, a neighborhood of [a, ψ] ∈ M is a smooth finite dimensional submanifold of the

banach manifold B∗ where the tangent space at [a, ψ] is the Zariski tangent space. Note
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that

χ(E(a, ψ)) = dimH0
(a,ψ) − dimH1

(a,ψ) + dimH2
(a,ψ) = −dimH1

(a,ψ)

Thus, we arrive at the following corollary

Corollary 9.2. If [a, ψ] ∈ M∗, then the dimension of the Zariski tangent space to M at

[a, ψ] is

d =
19

4
σ(X)− b+2 (X)− 1.

In other words if M is smooth at [a, ψ], then around [a, ψ], M is smooth manifold of

dimension d.

9.2 Parametrized transversality

Let F :M → N be a smooth Fredholm map between Banach manifolds, this just

means that dF is always a Fredholm operator at each point in M . Sard-Smale theorem [24]

would tell us that the pre-image of a regular value of F would be a finite dimensional

manifold whose dimension is index dF . Moreover, given an arbitrary point y ∈ N , even if

F−1(y) is not a submanifold of finite dimension in X, Sard-Smale theorem still allows us to

choose another y′ that is in some neighborhood of y such that F−1(y′) is indeed a

submanifold. However, in practice, it is often not the case that we have such degree of

freedom. When there are actions of Lie group G on both X and Y , typically we want y to

be a fixed point of the group action so that F−1(y) is also G−equivariant. This further

restricts the choices of y and Sard-Smale theorem cannot be applied directly. In situation

like this, we can adjust our map F by a certain appropriate perturbation: Construct

F̃ :M ×W → N that satisfies the following

1. For any (x,w) ∈ F̃−1(y), d(x,w)F̃ is surjective so that y is a regular value of F̃ .

2. This means that F̃−1(y) ⊂M ×W as a Banach submanifold.
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3. Consider π :M ×W → N a projection onto the second factor. Then the restriction

of π to F̃−1(y) is a Fredholm map. This means that genereically, π−1(w) := F−1
w (y) is

finite dimensional manifold of dimension equals to index dπ.

This method of obtaining transversality is used for ASD equations where the

perturbation W is the Banach manifold of conformal classes of metric on X. While in the

case Seiberg-Witten equations, W is iΩ+(X). For our RSSW equations being in a similar

set-up with the Seiberg-Witten equations but with Rarita-Schwinger operator, we also use

iΩ+(X) as our perturbation.

Definition 9.3. We define the following map F̃ : CL2
k
× L2

k−1(Λ
+T ∗X ⊗ iR) → RL2

k−1
to be

F̃(a, ψ, ω) = (d+a− µ(ψ)− ω,Q+ψ + π−(a · ψ)).

Note that F̃|C×{0} = F that is defined in Definition 9.2. Furthermore,

R± : ψ 7→ Q±ψ + π∓(a · ψ) has an analytic continuation property because it is also a

twisted Rarita-Schwinger operator.

Lemma 9.3. Suppose V,W,H are Hilbert spaces. Let T : V ⊕H → W ⊕H be given by

T (v, h) = (Rv,Qv − h) where R : V → W and Q : V → H are linear so that T is also a

linear map. Then R is surjective if and only if T is also surjective.

Proof. Denote π1 : W ⊕H → W and π2 : W ⊕H → H, respectively, by the projections

onto the appropriate subspaces of the direct sum. Note that T = (π1 ◦ T )⊕ (π2 ◦ T ). Then

if we can show that πi ◦ T is surjective for i = 1, 2, then T is also surjective.

Let ι2 : H → V ⊕H be the inclusion map given by h 7→ (0, h). Since

π2 ◦ T ◦ ι2(h) = −h–which is clearly surjective, π2 ◦ T is surjective. Similarly, let

ι1 : V → V ⊕H be the inclusion v 7→ (v, 0). We note that π1 ◦ T ◦ ι1 = R and R is

surjective. Therefore, π1 ◦ T is also surjective.
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Lemma 9.4. Suppose that for all (a, ψ, ω) ∈ F̃−1(0) where ψ ̸= 0, H2
(a,ψ) = 0. Then dF̃ is

surjective at any (a, ψ, ω) ∈ F̃−1(0) where ψ ̸= 0.

Proof. Similar calculations to the proof of Lemma 7.1, note that the differential of F̃ at any

point (a, ψ, ω) is given by

d(a,ψ,ω)F̃(b, ϕ, η) = (d+b− ρ−1(dψµ(ϕ))− ρ−1(η), Q+ϕ+ π−(b · ψ + a · ϕ)).

By Lemma 9.3, it suffices to show that the map

G : (b, ϕ) 7→ Q+ϕ+ π−(b · ψ + a · ϕ) = R+ϕ+ π−(b · ψ) is surjective. But since H2
(a,ψ) = 0,

d(a,ψ)F is surjective. By Lemma 9.3 again, d(a,ψ)F is surjective if and only if its second

component which is the same as G is surjective. And we our result as claimed.

Let π : CL2
k
× L2

k−1(Λ
+T ∗X ⊗ iR) → L2

k−1(Λ
+T ∗X ⊗ iR) be the projection onto the

second component. From Lemma 9.4, we see that 0 is a regular value of F̃, which means

F̃−1(0) is a submanifold N of CL2
k
× L2

k−1(Λ
+T ∗X ⊗ iR).

Lemma 9.5. Suppose that for all (a, ψ, ω) ∈ F̃−1(0) where ψ ̸= 0, H2
(a,ψ) = 0. Consider

π : N → L2
k−1(Λ

+T ∗X ⊗ iR). Then dπ is always a Fredholm operator restricted to the

solutions where ψ ̸= 0. Furthermore, indexR dπ = 19σ(X)/4− b+2 (X)− 1.

Proof. Recall the functional F defined at the end of subection 6.2. First, we claim that

T(a,ψ,ω)N = {(b, ϕ, η) : d(a,ψ)F(b, ϕ) = (0, 0, η)}. (9.12)

Consider the following complex associated to the functional F̃

Ẽ : 0 −→ L2
k+1(X, iR) → CL2

k
⊕ L2

k(Λ
+T ∗X ⊗ iR)) → RL2

k−1
−→ 0,

where the second map is the differential at the identity of the map

M̃(a, ψ, ω)(e
iu) = (a+ idu, e−iuψ, ω), and the third map is the differential at (a, ψ, ω) of F̃.
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Similar argument as in the proof of Proposition 9.1, Ẽ is an elliptic complex. And we see

that at each irreducible solution of F̃, its Zarisky tangent space is the first cohomology of

Ẽ. Consequently,

T(a,ψ,ω)N =
ker d(a,ψ,ω)F̃

im dM̃(a,ψ,ω)

.

Note that if (b, ϕ, η) is in the kernel of d(a,ψ,ω)F̃, then

d+b− ρ−1(dψµ(ϕ)) = η, Q+ϕ+ π−(b · ψ + a · ϕ) = 0.

Now for (b, ϕ, η) to be in the orthogonal complement of dM̃(a,ψ,ω), it is necessary and

sufficient that b ∈ im d⊥. Immediately, this implies that d∗b = 0. As a result, (9.12) is true

as claimed.

Next we show that dπ restricted to T(a,ψ,ω)N is always a Fredholm operator. Note that

from (9.12), we already have ker d(a,ψ,ω)π = ker d(a,ψ)F . On the other, it is not hard to see

that

im d(a,ψ,ω)π = {η ∈ L2
k−1(Λ

+T ∗X ⊗ iR) : (0, 0, η) = d(a,ψ)F(b, ϕ)} (9.13)

= im d(a,ψ)F ∩ (0⊕ 0⊕ L2
k−1(Λ

+T ∗X ⊗ iR)). (9.14)

Hence, d(a,ψ,ω)π has closed image of finite codimension. This implies that dπ is Fredholm.

To show that its real Fredholm index is 19σ(X)/4− b+2 (X)− 1, we claim that

dim coker dπ = dim coker dF . Equivalently, it suffices to show the following

(Γ(s−3/2)⊕ Ω0 ⊕ {0}) ∩ im dF⊥ = {0}. (9.15)

Indeed, assume (9.15) holds for now, then we have

R = [(Γ(s−3/2)⊕ Ω0 ⊕ {0}) ∩ im dF⊥]⊥ = (0⊕ 0⊕ Γ(Λ+T ∗X ⊗ iR)) + im dF .
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Combine with (9.14), we also have

R =
0⊕ 0⊕ Γ(Λ+T ∗X ⊗ iR)

im dπ
⊕ im dF .

But R = im dF⊥ ⊕ im dF . Therefore,

L2
k−1(Λ

+T ∗X ⊗ iR)
im dπ

∼= im dF⊥

so that dim coker dπ = dim coker dF holds. From calculations in the previous sections, we

have index dπ = index dF = 19σ(X)/4− b+2 (X)− 1 as desired.

We wrap it up by proving (9.15). Suppose (σ, u, 0) ∈ (Γ(s−3/2)⊕ Ω0 ⊕ {0}) ∩ im dF⊥

and (σ, u, 0) ̸= 0. Then R−σ = 0. Furthermore, for any (b, ϕ), we have

0 = ⟨(σ, u, 0), (R+ϕ+ π−(b · ψ), d∗b, d+b− ρ−1(dψµ(ϕ))⟩ (9.16)

= ⟨σ,R+ϕ⟩+ ⟨σ, π−(b · ψ)⟩+ lau, d∗b⟩ = ⟨R−σ, ϕ⟩+ ⟨σ, b · ψ⟩+ ⟨u, d∗b⟩ (9.17)

So, ⟨σ, b · ψ⟩ = −⟨u, d∗b⟩ for all purely imaginary 1−form b. In particular, if d∗b = 0, then

⟨σ, b · ψ⟩ = 0. Define b ∈ iΩ1 such that ⟨b, a⟩ = ⟨σ, a · ψ⟩. Since R+ψ = 0 and R−σ = 0, the

divergence theorem tells us that

d∗b = ⟨D+ψ, σ⟩ − ⟨ψ,D−σ⟩ = ⟨R+ψ, σ⟩ − ⟨ψ,R−σ⟩ = 0.

Let a := b and we arrive at ⟨b, b⟩ = ⟨σ, b · ψ⟩ = 0, which means that b = 0. Since ψ ̸= 0,

σ = 0 on some open set. But σ solve R−. So by analytic continuation, σ = 0 on all of X.

Since ⟨u, d∗b⟩ = 0 for any b, we also have u = 0 on all of X. This is a contradiction.

Lemma 9.6. When b+2 (X) ≥ 1, there is a perturbation by ω ∈ iΩ+(X) such that there is

no reducible solutions to the perturbed RSSW equations.

Proof. Recall that (a, ψ) is a reducible solution to the RSSW equations when ψ = 0. As a
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result, d+a = ω. Since b+2 (X) ≥ 1, there is a non-trivla harmonic class [ω] ∈ H+. Take this

to be our perturbation of the RSSW equations, and there would be no imaginary 1−form a

such that d+a = ω. Consequently, there would not be any reducible solution to such a

pertrubation of the RSSW equations.

Theorem 9.7. (Theorem 1.10) Suppose X is a simply connected smooth spin

4−manifold such that b+2 (X) ≥ 1. Furthermore assume that for every (a, ψ) an solution to

the RSSW equations, H2
(a,ψ) = 0. Then there is a generic self-dual 2−form ω on X such

that the following holds. The gauge equivalence classes of pairs [a, ψ] that solves the

perturbed RSSW equations:

Q+ψ + π−(a · ψ) = 0, d+a = ρ−1(µ(ψ)) + ω

forms a smooth manifold of dimension

d =
19

4
σ(X)− b+2 (X)− 1.

Proof. By Lemma 9.5 and the Sard-Smale theorem, for a generic [ω] ∈ H+, π−1(0) is finite

dimensional manifold whose dimension is exactly

d =
19

4
σ(X)− b+2 (X)− 1.

By Lemma 9.6, all solutions to the perturbation by ω of the RSSW equations are

irreducible. Thus, the gauge group acts freely. Therefore, there is no singularity in the

moduli space and that

{[a, ψ] : Q+ψ + π−(a · ψ) = 0, d+a = ρ−1(µ(ψ)) + ω}

is a smooth finite dimensional manifold of dimension d.
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