
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Graduate Theses and Dissertations

5-2022

Framework of Hardware Trojan Detection Leveraging Structural Framework of Hardware Trojan Detection Leveraging Structural

Checking Tool Checking Tool

Rafael Dacanay Del Carmen
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/etd

 Part of the Graphics and Human Computer Interfaces Commons, Information Security Commons, and

the VLSI and Circuits, Embedded and Hardware Systems Commons

Citation Citation
Del Carmen, R. D. (2022). Framework of Hardware Trojan Detection Leveraging Structural Checking Tool.
Graduate Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/4462

This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion
in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more
information, please contact scholar@uark.edu, uarepos@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F4462&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=scholarworks.uark.edu%2Fetd%2F4462&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.uark.edu%2Fetd%2F4462&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/277?utm_source=scholarworks.uark.edu%2Fetd%2F4462&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/4462?utm_source=scholarworks.uark.edu%2Fetd%2F4462&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20uarepos@uark.edu

Framework of Hardware Trojan Detection
Leveraging Structural Checking Tool

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Computer Engineering

by

Rafael Del Carmen
University of Arkansas

Bachelor of Science in Computer Engineering, 2020

May 2022
University of Arkansas

This thesis is approved for recommendation to the Graduate Council.

Jia Di, Ph.D.
Thesis Director

John Gauch, Ph.D.
Committee Member

Brajendra Panda, Ph.D.
Committee Member

ABSTRACT

 Since there is a significant demand for obtaining third-party soft Intellectual Property (IP)

by first-party integrated circuit (IC) vendors, it is becoming easier for adversaries to insert

malicious logic known as hardware Trojans into designs. Due to this, vendors need to find ways

to screen the third-party IPs for possible security threats and then mitigate them. The development

of the Structural Checking (SC) tool provides a solution to this issue. This tool analyzes the

structure of an unknown soft IP design and creates a network of all the signals within the design

and how they are connected to each other. In addition, these signals will be assigned with assets.

Assets describe the central role of a signal in the entire design. These assets are then used to create

asset patterns, which will be crucial for this thesis research. Previous research on SC tool focuses

on Trojan detection by comparing and matching an unknown design to a trusted design in a Golden

Reference Library. In this thesis research, another method of Trojan detection has been

implemented in the SC tool, which focuses on recognizing specific asset patterns that mainly exist

in Trojan-infested designs. These specific asset patterns can then be used to check against unknown

designs for Trojans without using a Golden Reference Library. This thesis improves this method

by creating a new framework for easily identifying the unique Trojan asset patterns.

ACKNOWLEDGEMENTS

 I would like to thank my advisor, Dr. Jia Di, for supporting me with this research. He has

helped me in many ways during my graduate degree and he has guided me to become a better

person.

I would like to thank my Structural Checking group members, especially Hunter Nauman,

Derek Taylor, and Noah Waller. They have always been helpful to me.

Lastly, thank you to my other committee members, Dr. John Gauch and Dr. Brajendra

Panda. I appreciate your time for accepting and serving as my committee member.

DEDICATION

 To my former teachers, counselors, and other faculty of Little Rock Hall High School.

They are the ones who believed in me and motivated me to become a successful engineering

student and future Computer Engineer. Without their encouragement, I would be pursuing a

different career right now.

CONTENTS

1. INTRODUCTION ... 1

2. BACKGROUND ... 3

2.1 Structural Checking Tool .. 3

2.1.1 Overview .. 3

2.1.2 Assets .. 3

2.1.3 External Assets ... 3

2.1.4 Internal Assets .. 8

2.1.5 Asset Filtering, Asset Trace, and Asset Pattern .. 9

2.1.6 Functionality and Golden Reference Library (GRL) ... 9

2.1.7 Golden Reference Matching ... 10

2.2 Hardware Trojan ... 10

2.2.2 Trojan Trigger ... 11

2.2.3 Trojan Payload .. 11

2.2.4 Trojan Detection ... 12

3. METHODOLOGY AND IMPLEMENTATION .. 13

3.1 Overview ... 13

3.2 Trojan Detection Through Asset Pattern Framework ... 13

3.2.1 Counter Trojan .. 14

3.2.2 Power Drain Trojan .. 15

3.2.3 FSM-Triggered Trojan ... 16

4. RESULTS AND ANALYSIS ... 17

4.1 Counter Trojans ... 17

4.2 Power Drain Trojans ... 19

4.3 FSM-Triggered Trojans ... 21

5. CONCLUSION AND FUTURE WORK .. 24

6. REFERENCES .. 26

 1

1. INTRODUCTION

Hardware Trojans can be inserted in different stages of integrated circuit (IC) production. One

stage of IC production that many researchers focus on is the design stage. Nowadays, it is getting

more difficult for an IC vendor to design every IC component in house. Because of this, many

third parties are given the responsibility for designing certain components known as intellectual

properties (IPs). However, an issue that can arise from letting third parties design components is

whether they are trustable. Due to the vast number of such components, malicious logic or

hardware Trojan can be easily hidden in any of the components.

There have been multiple research efforts about Trojan detection in various stages of IC

production. One approach utilizes machine learning to detect hardware Trojans at the register-

transfer level [1]. There is also research about detecting Trojans by measuring combinational

delays to check whether the designs got altered [2]. Some researchers [3] used randomization-

based probabilistic techniques to verify the legitimacy of the circuit design.

The Structural Checking Tool (SC Tool) is another research on hardware Trojan Detection.

The SC Tool was first introduced in [4]. Unlike other hardware Trojan detection approaches, the

SC Tool focuses on analyzing the structure of a register-transfer level (RTL) IPs and then matches

against entries in a Golden Reference Library (GRL) to see whether they match a known design

with Trojan or not.

 The next chapter of this thesis provides all the relevant background information for the SC

Tool. It provides important details of assets and describes the basic concept of the GRL. Moreover,

this chapter also discusses hardware Trojans that can be inserted during the design phase of IC

production. Chapter 3 proposes an improvement of the tool’s Trojan detection by focusing on the

unique asset pattern method of Trojan detection. Additionally, this chapter introduces three

 2

Trojans that can be detected using the asset pattern method. Chapter 4 discusses the results of

implementing the detection for the three types of Trojans mentioned in Chapter 3. Lastly, Chapter

5 summarizes the thesis and provides insights on how the research done in this thesis can be

improved.

 3

2. BACKGROUND

2.1 Structural Checking Tool

2.1.1 Overview

 The goal of the SC tool is to determine whether an unknown design contains hardware

Trojans or not. The tool takes in unknown soft IP designs, such as in VHDL, as inputs, and then

outputs a report regarding its Trojan status determination. The Structural Checking tool consists

of five main steps, i.e., 1) design parsing, 2) asset assignment, 3) asset filtering, 4) matching

analysis, and 5) Trojan detection.

2.1.2 Assets

 The concept of assets is an integral part of the Structural Checking tool. Assets were

introduced in [5]. The function of an asset is to describe the primary purpose or contribution of a

signal in a soft IP design. A signal can have multiple purposes; therefore, multiple assets may also

be assigned to the same signal. Depending on the asset type, assets can be manually assigned by

the user or automatically by the tool. In addition, asset assignment for a signal may not be the same

in every design since signals may serve different purposes in other designs. The two major types

of assets are External assets and Internal assets. Moreover, assets are divided into various

categories under each of those major types.

2.1.3 External Assets

 An external asset is one of the two major types of assets that are primarily assigned to

describe the contribution of primary port signals of an RTL design. The user of the Structural

Checking tool manually assigns this type of asset. For example, a soft IP design that takes in a

clock signal as one of its primary inputs, that signal can be assigned a SYSTEM TIMING asset.

Currently, there are 75 external assets which are divided into seven categories. The number of

 4

external assets is expected to increase as more signal roles are identified in the future. A past

version of external assets is listed in [6]. Tables 1-7 contain a list of all the current iterations of

assets divided into their respective categories.

Table 1: Data asset category

_ANY The signal may accept any type of data depending on configuration or
settings.

COMPUTATIONAL The signal contributes to the flow of computational data, such as data
used within arithmetic units.

MEMORY The signal contributes to the flow of memory data.

COMMUNICATION The signal handles transmission with external components. (ex.
UART)

PERIPHERAL The signal contains data used within the peripherals of the design. (ex.
Display, Temp, etc.)

ENCRYPTION The signal contains information about data to be encrypted.

DECRYPTION The signal contains information about data to be decrypted.

_HASH The signal contains information about data to be hashed.

DECODING The signal contains information about data used within a decoding
process.

ENCODING The signal contains information about data used within an encoding
process.

ADDRESS The signal controls address used in memory units of the system.

KEY The signal controls a key within an encryption/decryption unit.

SENSITIVE The signal contributes to data that should remain confidential to the
circuit.

CRITICAL The signal contributes to data important to the operation of the circuit
and could cause issues were it to be tampered with.

TEST_IN The TDI (Test Data In) signal of the circuit.

TEST_OUT The TDO (Test Data Out) signal of the circuit.

 5

Table 2: Timing asset category

CLOCK The signal is the system\'s primary clock

CLOCK_CONTROL The signal contributes to the control of the system\'s primary
clock

SYSTEM_

CLOCK_CONTROL

The signal is a subsystem\'s primary clock

SUBSYSTEM_

CLOCK_CONTROL

The signal contributes to the control of a subsystem\'s primary
clock

SYSTEM_TIMING The signal controls timing for the entire system, such as timing
between synchronous components of the circuit

SUBSYSTEM_TIMING The signal controls timing for a particular subsystem

STATUS The signal indicates the status of the system

READY The signal indicates whether or not an operation is ready

DONE The signal indicates whether or not an operation has finished

BUSY The signal indicates whether or not an operation is busy

HOLD The signal indicates whether or not to hold an operation

COUNT The signal is used as a counter within the design

WAIT The signal indicates whether or not an operation must wait

STANDBY The signal indicated an operation with a state of readiness
without being immediately involved

TEST_CLOCK The TCK (Test Clock) signal of the circuit

Table 3: System Control asset category

ENABLE The signal controls a structure by enabling its operation

_SET The signal controls a set operation on part of the circuit

RESET The signal controls a reset operation on part of the circuit

EXECUTE The signal controls execution of an operation

READ The signal controls a read operation

WRITE The signal controls a write operation

SELECT The signal controls a select operation

LOAD The signal controls a load operation

 6

Table 3 (Cont.)

SHIFT The signal controls a shift operation

INTERRUPT The signal controls an interrupt signal

MODE The signal controls the mode of a data processing block

ACKNOWLEDGE The signal is used to acknowledge that an event of some sort has
occurred

HANDSHAKING The signal contributes to communication by way of a handshaking
operation

DATAFLOW The signal controls where data will be sent to

FLAG The signal is used as a flag bit to control the operation of
something

REQUEST The signal is used for making requests to other modules

TEST_MODE_SELECT The TMS (Test Mode Select) signal of the circuit

TEST_RESET The TRST (Test Reset) signal of the circuit

Table 4: Specific System Control asset category

INTERRUPT_CONTROL The signal controls an interrupt unit

PERIPHERAL_CONTROL The signal controls the peripherals of the design (ex.
Display, Temp, etc.)

MEMORY_CONTROL The signal controls memory information

COMMUNICATION_CONTROL The signal controls transmission with external
components (ex. UART)

COMMUNICATION_PROTOCOL The signal handles protocol bit from an external
component (ex. UART)

COMMUNICATION_STATUS The signal handles a transmit ready signal from external
components (ex. UART)

BUS_CONTROL The signal controls access to a bus

DUTY_CYCLE The signal controls duty-cycle-related operations

PHASE The signal controls phase-related operations

EXCEPTION_HANDLING The signal handles exceptions within the system

ERROR_HANDLING The signal handles errors within the system

 7

Table 5: Instruction Set asset category

INSTRUCTION This is a generalized instruction asset that should be applied to

signals that don\'t fit a more specific instruction description

OPERAND This signal is an operand used for an instruction

OPERATION_TYPE This signal sets the type of operation performed by an

instruction

SOURCE This signal describes the location of source data for use with

the instruction or is the source data itself

DESTINATION This signal describes the destination for data output by an

instruction or the destination itself

PROGRAM_COUNTER The signal manipulates the value within a program counter

BRANCH This signal is used for branch operations

OFFSET This signal describes offsets used for instruction decoding,

encoding, and manipulation

PROGRAM_COUNTER_OP The signal controls change within a program counter

DATA_OP The signal controls the operation of a unit dealing with data,

such as ALU/Data operations

MEMORY_OP The signal controls operations of a memory unit

INTERRUPT_OP The signal controls operations of an interrupt unit

PRIORITY This signal sets the priority or importance of an instruction

AVAILABILITY This signal sets the availability stage of an instruction for

bypassing

PIPELINE_CLEAR This signal clears the instruction pipeline

PIPELINE_LOCK This signal locks the instruction pipeline

 8

Table 6: parameter asset category

CONFIGURATION This is a more generic asset used for when the
other parameter assets do not fit properly but

another asset is unnecessary
INITIALIZATION

Parameter related to the initialization of some

data structure or component
FREQUENCY

Parameter that specifies values related to

frequency
TIMING

Parameter that specifies values related to

timing
PHASE

Parameter that specifies values related to

phase
DATA_WIDTH

Parameter that specifies the data width of

some data structure or component
GENERATE_CONTROL Parameter that specifies how some generate

statement should operate
ENABLE Parameter that enables or disables some

feature or features of the design

Table 7: Miscellaneous asset category

COMPONENT

The signal controls components not defined
by other assets

UNKNOWN Cannot define any asset

UNUSED The signal is not used in the circuit

2.1.4 Internal Assets

 The second primary type of asset is the Internal asset. Internal assets are mainly assigned

to internal signals as opposed to external assets. In addition, most internal assets are automatically

assigned by the tool. However, the tool also allows users to manually set three assets: Observable,

Controllable, and Protected.

Table 8: Assignable internal assets

CONTROLLABLE The signal controls an FSM

OBSERVABLE The signal is observable after a scan-in
operation

PROTECTED The signal is protected from known attacks

 9

2.1.5 Asset Filtering, Asset Trace, and Asset Pattern

 After all assets are assigned to primary port signals and internal signals, the next step for

the tool is asset filtering. In this step, assets assigned to a signal will propagate to every signal it is

connected to. For example, suppose a primary input signal is connected to a primary output signal

through a series of intermediate signals. In that case, all assets assigned for that primary input will

also propagate to the primary output and all the intermediate signals. This allows the tool to

determine how the signals are associated with each other and if they share some similar

functionalities. These assets are saved into an asset trace. An asset trace is a set of assets that were

assigned or filtered into a signal.

 An asset pattern is generated by the tool, and it consists of all the asset traces formed within

that design. Asset Pattern consists of six characteristics: input port signal external asset, input port

signal internal asset, output port signal external asset, output port signal internal asset, internal

signal external asset, and internal signal internal asset.

2.1.6 Functionality and Golden Reference Library (GRL)

 The formation of an asset pattern is used to approximate the overall functionality of the

unknown design as well as the functionalities of each of its components. The information stored

in the asset pattern will be compared to other asset patterns in each entry in the GRL during

matching analysis, which will be explained later. Suppose there is a GRL entry that matches the

closest to the unknown design. In that case, the functionality of that GRL entry will be given as

the suggested functionality of the unknown design. Currently, there are 18 functionalities in the

Structural Checking Tool, and they are categorized as either Trojan-free or Trojan-infested

functionalities. The main difference between the two is that the Trojan-infested category contains

functionalities that are commonly found in designs with Trojans.

 10

The Golden Reference Library is a library of trusted and analyzed soft IP designs that are

either Trojan-free or Trojan-infested. Each GRL entry is a single file currently stored as a JSON

file. In addition, A GRL entry contains both the functionalities and the asset pattern of the soft IP

design. The information stored in a GRL entry will be helpful for the matching analysis step.

2.1.7 Golden Reference Matching

 Golden reference matching was first developed in [7]. The matching process for the Golden

Reference Library includes algorithms such as basic matching and partial matching. Basic

matching uses each asset characteristic formed from the unknown design’s asset traces and creates

a percentage match against the designs from the GRL. However, since there are assets that might

be associated with or similar to other assets, partial matching is developed to take that into account.

Slightly similar assets can be assigned a 50% match instead of 100%. Statistical matching,

introduced in [8], is developed to create a more accurate percentage match than both basic and

partial matches. Moreover, Champion GRL and Functionality GRL were added in [9], which

further improves the matching accuracy while also making the matching process more efficient in

computational resources.

2.2 Hardware Trojan

2.2.1 Overview

 Hardware Trojans can be inserted in various stages of IC design flow. There are many

existing strategies for detecting these Trojans in every stage. However, the Structural Checking

tool only focuses on analyzing hardware Trojans inserted into a design at the register-transfer level.

[10] proposes a framework for classifying hardware Trojans. In addition, the framework includes

various categories and subcategories that can characterize a Trojan. However, the only categories

relevant to the Structural Checking tool are the Trojan activation and Trojan action. In this thesis,

 11

these two categories can also be called a Trojan trigger and a Trojan payload. Currently, there are

two main ways hardware Trojans can be detected with the tool [11]. The first method uses

matching analysis, while the second method uses assets and asset traces to analyze patterns from

certain hardware Trojans. This thesis work focuses on Trojan detection using the second method.

2.2.2 Trojan Trigger

 An essential component of a hardware Trojan is how they are activated. Classifying Trojan

triggers were further explored in [12], where an expanded Trojan taxonomy was proposed based

on [13], and Trojan triggers were classified into different types. In this taxonomy, Trojan triggers

can be broken down between digitally triggered or physically triggered. The Structural Checking

tool can only detect digitally triggered Trojans as the tool analyzes Trojans in RTL designs. One

subtype of digitally triggered trojan that can be detected with the tool is called a time-bomb or

sequentially triggered Trojans, according to [12]. An example of this is a counter that operates

like a regular counter, but once the counter reaches a specific value, the Trojan will be activated.

2.2.3 Trojan Payload

The malicious action being made by the Trojan is called the Trojan payload. According to

[15], the hardware Trojan payload can be broken down into four different types: Denial-of-service,

leak information, change the functionality, and degraded performance. As described by [14], a

Trojan with a denial-of-Service payload prohibits a service from working correctly. A Trojan with

leak information leaks sensitive information through covert channels or overt output interfaces,

like an encryption key. Additionally, a change functionality payload manipulates the original

functionality of the target device to a malicious functionality. Lastly, [14] describes the degraded

performance as a Trojan payload that affects the performance of a device by modifying parameters.

 12

2.2.4 Trojan Detection

There are two methods for detecting possible Trojan-infested designs using the Structural

Checking tool, as elaborated in [7]. The first method for detecting Trojans is through functionality

matching. In this method, the unknown design is matched through each champion file [9] listed in

a GRL to assign its functionality. After functionality is set, the unknown design will match against

each design in the champion's functionality category. If it matches closest to a GRL entry flagged

with a Trojan, this design will be marked as possible Trojan-infested. The second method is

through asset pattern recognition. As asset patterns consist of connections between signals and

their functionalities, they can yield helpful information that can be used to suggest possible

Trojans.

 [11] introduced Trojan detection using the second method. The first Trojan involved using

a timing signal as a Trojan trigger. This Trojan can cause denial-of-service as signals, like set or

reset, can disable pertinent timing signals from a synchronous design. To detect this Trojan, the

asset trace of a timing signal was analyzed. If the asset trace contains SET or RESET assets, it can

be flagged as a possible Trojan. In this thesis, the second Trojan was called a key leak Trojan. This

Trojan utilizes a leaking information payload, which, in this case, is an encryption key. An

encryption key is not meant to be connected to a primary output of the design. Therefore, to detect

this type of Trojan, the tool can identify asset traces that contain the key asset. If that same asset

trace is also connected to an output, that can be flagged as a key leak Trojan.

 13

3. METHODOLOGY AND IMPLEMENTATION

3.1 Overview

The current iteration of the tool mainly relies on the first method of Trojan detection

mentioned earlier, which is through matching. This thesis research addresses this issue by

extending the work done in [11], which utilizes the first method of Trojan detection that relies on

asset pattern recognition. This thesis introduces a framework for this method of Trojan detection.

Three Trojans, named Counter Trojan, Power Drain Trojan, and FSM Trojan, respectively, are

implemented and detected using this method.

3.2 Trojan Detection Through Asset Pattern Framework

There are many ways a hardware Trojan can be implemented in soft IPs. Thus,

implementing a Trojan detection for all of them through the use of asset patterns can be difficult

and tedious. It is impractical to analyze every signal’s asset traces in a design. Creating a

framework can be beneficial for tackling this issue. This framework consists of locating the Trojan

in an unknown design first. A Trojan-infested design does not necessarily mean that most circuits

of the design consist of Trojan. Instead, only a tiny portion of the design contains Trojan in order

for it to remain hidden. The hidden Trojan is usually split between a Trojan trigger and a Trojan

payload hidden in separate sections of a design, but sometimes they are also integrated. The

sections of the designs that contain Trojan trigger and payload will then be analyzed for possible

unique asset traces that might only exist in Trojan-infested designs. Depending on the type of

Trojan, these unique asset traces may only be found in either the Trojan trigger section or the

Trojan payload section of the design. If the Trojan is designed in a way that it can provide different

types of payloads, then a unique asset trace may not be found in the Trojan payload section of that

design. This is when it is recommended to analyze the Trojan trigger section of the design instead.

 14

On the other hand, if the Trojan trigger is not unique, then it is recommended to look for the unique

Trojan asset trace in the Trojan payload section of the design. After identifying these unique asset

patterns, the developer of the SC tool can then add an implementation within the SC tool that

detects these specific asset traces.

3.2.1 Counter Trojan

 This Trojan utilizes a counter to deliver its payload. A counter, in general, can be

implemented in multiple ways. A counter can also increment or decrement in different numbers.

However, no matter how a counter is implemented, they all share one similar aspect: they use a

signal that holds the current value of the counter. Usually, if this signal reaches a specific value,

the Trojan payload will be activated. This Trojan can be called a Counter Trojan in this thesis. To

detect this type of Trojan using the asset pattern method, the SC tool can look for signals containing

COUNT assets. This type of asset is only used for signals being used in a counter. Unfortunately,

searching for a counter signal may not be enough to detect a Trojan since the presence of a counter,

in general, is not considered suspicious.

However, many Trojans that utilize counters usually leak essential information out of the

design, such as an encryption key, or modify a signal that holds sensitive data, such as addresses

and memory data. To distinguish this, the tool can then analyze if a signal with the COUNT asset

drives any signals with data-related assets. These data-related assets can be DATA

ENCRYPTION, DATA MEMORY, DATA SENSITIVE, DATA ADDRESSES, or DATA KEY.

This implementation may not guarantee that all signals in these asset patterns will always

accurately detect a Trojan presence. However, it can flag all the designs that hold these conditions.

 15

3.2.2 Power Drain Trojan

 This type of Trojan performs a denial-of-service attack on a device by activating an enable

signal on a Trojan-infested sequential circuit within the design. A sequential circuit can get stuck

on an infinite loop if it is implemented in a certain way and then enabled. As a result, this trojan

can consume power indefinitely. In this type of Trojan, the sequential circuit is the Trojan payload.

In this thesis, this Trojan is called a Power Drain Trojan. Unlike the Counter Trojan, the unique

asset trace exclusive to this Trojan can only be found in the Trojan payload section of the design.

The trigger for this type of Trojan is not unique and can be implemented in different ways. To

detect this Trojan, the tool can check for three conditions. The first condition is to check whether

a signal or set of signals consists of a loop or cycle. This is the first indication that this circuit is

capable of running indefinitely. The second condition is to check if an enable signal activates the

same set of signals. Enable signals can be labeled using ENABLE asset. The enable signal suggests

that it could be the Trojan trigger. Lastly, the third condition is to check if it does not have any

output. This hints that the cycle may not serve any other purpose than running endlessly. Once all

these conditions are met, then it is a good indication that the unknown design contains a Power

Drain Trojan.

 16

3.2.3 FSM-Triggered Trojan

 Adversaries can hide a Trojan inside a Finite State Machine or FSM. This hidden Trojan

can only be executed when the FSM transitions to a specific state activated with a particular

condition. Attackers can insert specific input data in one of the primary input ports of the design.

If the FSM observes this particular input value, it will activate the Trojan-infested state. This type

of Trojan is called an FSM-Triggered Trojan. Similar to the Counter Trojan, the unique asset trace

for this Trojan can be found in the Trojan trigger section of the design, which in this case is a

specific state of the FSM. Usually, only a particular state of the FSM is infested with a Trojan, and

other states of the FSM can still function normally. This Trojan should contain a signal with the

CONTROLLABLE asset. The CONTROLLABLE asset is one of the internal assets that users can

assign to a signal being used in an FSM. In addition, if another signal with a DATA asset is

indirectly driving this signal, this would suggest that a specific input data is activating this FSM

signal. The tool will flag this as a potential FSM-Triggered Trojan if these conditions are met.

 17

4. RESULTS AND ANALYSIS

Test designs written in VHDL were used as inputs to the tool to evaluate the effectiveness

of the framework in detecting the three new Trojans. Each design is processed by the SC tool.

First, they were parsed by the tool to extract all the relevant signal information from the designs.

Second, a combination of manual and automatic asset assignments was done for all primary signals

for each design. Third, asset filtering was done to filter the asset from each signal into the signals

that it is connected to. Lastly, the matching process was skipped in this experiment since this

research focuses on the use of asset pattern Trojan detection. The last step is to start the Trojan

detection using all the asset pattern information collected from the designs. If the tool detects a

possible Trojan, a list of signals associated with the Trojan will be reported.

4.1 Counter Trojans

To evaluate the implementation of the Trojan detection against the Counter Trojan, a test

design written in VHDL was created from scratch. The test design contains multiple

implementations of counters to evaluate the accuracy of the Trojan detection. Figure 1 below

shows a VHDL process block that represents a simple counter.

Figure 1: Simple counter with Trojan

 18

 In this counter, the data_x signal is a primary input, while the data_leak signal is a primary

output. data_x will keep incrementing by one until it is reset. The Trojan is inserted during the line

“data_leak <= secret_key;." This Trojan is activated when the value of data_x reaches “123”.

Since data_leak is a primary output and is set with the value of the secret key, it is considered

suspicious, and the tool flags this as a possible Trojan. Figure 2 lists the signal that got flagged by

the tool as a potential Trojan. The word before the first colon specifies the signal name and the

second word after the first colon specifies which design file this signal is located.

Figure 2: Signal associated with Trojan

Some adversaries might even attempt to hide a Counter Trojan by making the counter more

complex. Figure 3 below shows a counter that is split into two process blocks.

Figure 3: Another implementation of counter

 19

This implementation of a counter is separated into two different process blocks. The first

process block consists of the counter signal data_x being incremented, while the second process

block contains the Trojan payload. In addition, two intermediate signals were added between the

counter signal and the primary output signal data_leak. The tool was still able to detect this

implementation of the Counter Trojan since it relies on asset patterns. No matter where the signals

are placed in the design nor if they put as many intermediate signals as they can to separate the

distance between the counter signal and the output signal, the asset trace of the input signal will

still show that it is driving an output signal that contains a DATA ADDRESS asset. Figure 4 shows

the two signals that got flagged for potential Trojan. Besides secret keys, signals that hold address

data are not usually connected to a primary output.

Figure 4: flagged signals from the Counter Trojan

4.2 Power Drain Trojans

Power Drain Trojans are commonly found in sequential circuits. Two simple sequential

circuits were created in the testing VHDL design to assess the Trojan detection for power drain

Trojans. The first circuit is a ring oscillator, and it is shown below.

 20

Figure 5: Trojan-infested ring oscillator

This ring oscillator consists of three inverters. These inverters are only used within this

process block. This circuit is enabled by a signal called trojan_signal. During the asset assignment,

this signal was assigned to ENABLE asset. To detect this Trojan, the tool should pass the three

conditions for detecting Power Drain Trojans mentioned in the previous section. The first

condition is the existence of a signal with ENABLE asset, which in this case, is the Trojan_enable.

The second condition relies on the presence of a cycle between a set of signals. In this specific ring

oscillator, inverter_2 depends on inverter_1, inverter_3 depends on inverter_1, then inverter_3

loops back to inverter_1. This means that it satisfies the second condition. Lastly, the third

condition states that if the sequential circuit does not have any output. Since the asset pattern in

this circuit can show that the four inverters are not connected with any output signals, it satisfies

the third condition.

Figure 6: Trojan-infested shift register

 21

 Another sequential circuit created to test this power drain Trojan is a simple shift register.

The general purpose of a shift register is to allow the bits of a signal to shift. In Figure 6 above,

intermediate_signal_2 is an internal signal and acts like a shift register. This circuit also contains

an enable signal, thus passing the first condition. The line “intermediate_signal_2 <=

intermediate_signal_2(0) & intermediate_signal_2(10 downto 1);” is recognized by the tool as a

cycle, therefore passing the second condition. Intermediate_signal_2 is not connected with any

primary output; therefore, it finally satisfies the last condition. Figure 7 lists the flagged from both

trojan-infested ring oscillator and shift register

Figure 7: flagged signals with potential Power Drain Trojan

4.3 FSM-Triggered Trojans

To evaluate the effectiveness of the Trojan detection for FSM Trojans, a few designs were

collected from Trust-hub [15] to test the implementation. One of them is RS232-T600, which is a

Trojan-infested communication design that contains a top-level file and two sub-level designs for

its receiver and transmitter components. The current version of the tool only supports VHDL files.

However, the RS232-T600 design was written in Verilog. Therefore, the design was first converted

into VHDL before being parsed by the tool, as shown in Figure 8. The Trojan is hidden within an

FSM under the transmitter component.

 22

Figure 8: Trojan-infested FSM from RS232-T600

 In this specific Trojan, the payload is activated when the FSM observes specific sequence

inputs. Once the FSM transitions to the last state, it will trigger the Trojan, which will ultimately

cause a leak information attack. If the Trojan detection observes a signal with the

CONTROLLABLE asset, it will then analyze its asset trace for all the signals that drive this signal.

Since the asset pattern for this design shows that the state_DataSend signal is set with a

CONTROLLABLE asset, it will then check if it is being driven by any signals that contain any

 23

assets from the DATA asset category. Finally, the tool will then report all the signals associated

with this potential Trojan. There are two rec_datah and xmit_data_h listed in Figure 9 since both

were used in multiple design files.

Figure 9: Flagged signals from RS232-T600

 24

5. CONCLUSION AND FUTURE WORK

Hardware Trojan has become an important security threat to IC vendors incorporating

third-party IPs. Therefore, detecting these Trojan earlier in the IC design flow is critical. There are

two existing methods of Trojan detection for the Structural Checking tool. The first method is

functionality, which compares an unknown soft IP design to a list of trusted designs in the Golden

Reference Library to see whether it matches closely with a Trojan-free or a Trojan-infested design.

The second method of Trojan detection uses the concept of asset patterns, which is done by

analyzing an unknown design to determine if it contains a unique asset pattern commonly found

in Trojan-infested designs. Much of the research done to improve the Structural Checking tool

mainly focused on the functionality matching method. This thesis research expanded on the other

method of Trojan detection. A framework was developed to help future researchers identify the

unique asset patterns hidden in Trojan-infested designs so that they can implement the proper

detection for those Trojans. In addition, three Trojan detection examples were introduced using

this framework.

Many future works can be done to improve the framework introduced in this thesis. The

idea of Trojan detection using asset patterns relies on signals having been assigned with proper

assets. However, the current asset assignment implemented in the tool is mainly tailored for

external signals. There are limited ways an internal signal can be assigned with assets. For

example, some implementation of the Counter Trojan consists of mostly internal signals. Because

of this, those internal signals cannot be assigned with a COUNT asset, which is a crucial part of

detecting a Trojan using asset patterns. Another limitation is that many Trojan-infested designs

were written in Verilog, and by the time this thesis was written, the tool’s Verilog support has not

been completed yet. Because of this, there are limited testing designs used in this research; thus,

 25

accuracy is not the main focus of this research. However, the three Trojan detections introduced

in this thesis can be improved once more testing designs becomes available to be parsed by the

tool.

 26

6. REFERENCES

[1] T. Han, Y. Wang and P. Liu, "Hardware Trojans Detection at Register Transfer Level
Based on Machine Learning," 2019 IEEE International Symposium on Circuits and
Systems (ISCAS), 2019, pp. 1-5, doi: 10.1109/ISCAS.2019.8702479.

[2] Jie Li and J. Lach, "At-speed delay characterization for IC authentication and Trojan

Horse detection," 2008 IEEE International Workshop on Hardware-Oriented Security and
Trust, 2008, pp. 8-14, doi: 10.1109/HST.2008.4559038.

[3] S. Jha and S. K. Jha, "Randomization Based Probabilistic Approach to Detect Trojan
Circuits," 2008 11th IEEE High Assurance Systems Engineering Symposium, 2008, pp.
117-124, doi: 10.1109/HASE.2008.37.

[4] S. C. Smith and J. Di, "Detecting Malicious Logic Through Structural Checking," 2007
IEEE Region 5 Technical Conference, 2007, pp. 217-222, doi:
10.1109/TPSD.2007.4380384.

[5] M. Hinds, J. Brady, M. Rothmeyer, and J. Di, "Signal Assets - a Useful Concept for
Abstracting Circuit Functionality," 2013 Government Microcircuit Applications &
Critical Technology Conference (GOMACTech), March 2013

[6] Le, T. P. (2018). Securing Soft IPs against Hardware Trojan Insertion. Graduate Theses
and Dissertations Retrieved from https://scholarworks.uark.edu/etd/2694

[7] L. Weaver, T. Le and J. Di, "Golden Reference Library Matching of Structural Checking
for securing soft IPs," SoutheastCon 2016, 2016, pp. 1-7, doi:
10.1109/SECON.2016.7506737.

[8] B. McGeehan, F. Smith, T. Le, H. Nauman and J. Di, "Hardware IP Classification
through Weighted Characteristics," 2019 IEEE High Performance Extreme Computing
Conference (HPEC), 2019, pp. 1-6, doi: 10.1109/HPEC.2019.8916225.

[9] N. Waller, H. Nauman, D. Taylor, R. Del Carmen and J. Di, "Character Reassignment for
Hardware Trojan Detection," 2021 IEEE International Midwest Symposium on Circuits
and Systems (MWSCAS), 2021, pp. 861-864, doi:
10.1109/MWSCAS47672.2021.9531813. Signal Assets - a Useful Concept for
Abstracting Circuit Functionality

[10] M. Tehranipoor and F. Koushanfar, "A Survey of Hardware Trojan Taxonomy and
Detection," in IEEE Design & Test of Computers, vol. 27, no. 1, pp. 10-25, Jan.-Feb.
2010, doi: 10.1109/MDT.2010.7.

 27

[11] T. Le, L. Weaver, J. Di, S. Zhang and Y. Jin, "Hardware Trojan Detection and
Functionality Determination for Soft IPs," 2018 IEEE 3rd International Verification and
Security Workshop (IVSW), 2018, pp. 56-61, doi: 10.1109/IVSW.2018.8494891.

[12] R. S. Chakraborty, S. Narasimhan and S. Bhunia, "Hardware Trojan: Threats and
emerging solutions," 2009 IEEE International High Level Design Validation and Test
Workshop, 2009, pp. 166-171, doi: 10.1109/HLDVT.2009.5340158.

[13] Wolff, Francis & Papachristou, Ch & Bhunia, Swarup & Chakraborty, Rajat. (2008).
Towards Trojan-Free Trusted ICs: Problem Analysis and Detection Scheme. 1362-1365.
10.1145/1403375.1403703.

[14] K. Inaba, T. Yoneda, T. Kanamoto, A. Kurokawa and M. Imai, "Hardware Trojan
Insertion and Detection in Asynchronous Circuits," 2019 25th IEEE International
Symposium on Asynchronous Circuits and Systems (ASYNC), 2019, pp. 134-143, doi:
10.1109/ASYNC.2019.00025.

[15] trust-hub, [online] Available: https://www.trust-hub.org/.

	Framework of Hardware Trojan Detection Leveraging Structural Checking Tool
	Citation

	Microsoft Word - Del Carmen - Framework for for Structural Checking Tool final.docx

