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Abstract 

Human acidic Fibroblast Growth Factor 1 (FGF-1) involves in a broad spectrum of biological 

processes, including cell growth, proliferation, differentiation, migration, angiogenesis, wound 

healing, and embryonic development. hFGF1 non-selectively binds to cell surface hFGF receptor 

isoforms to elicit these cell-signaling processes. Since hFGF1 plays a significant role in tissue 

repair activity, that is a prime candidate for novel wound healing therapeutics. However, hFGF1 

has been found to unfold near physiological temperature due to a strong electrostatic repulsion 

created by a dense cluster of positively charged amino acids near the c-terminus. The problem 

not only leads to proteolytic degradation of the unfolded protein but also limits the 

bioavailability of hFGF1 and then restricts application of hFGF1 in pharmacology. To overcome 

this instability, hFGF1 with the positively charged residues near the c-terminus in the region 

known as the heparin-binding pocket binds to the heavily sulfated glycosaminoglycan, heparin, 

which decreases the charge-charge repulsion. However, the use of heparin in hFGF1 wound-

healing therapeutics imposes a serious challenge. To address these issues, I have designed a 

charged reversed single mutation in the heparin-binding pocket of hFGF1 to decrease the 

repulsion between the closely packed positively charged, enhanced stability and cell proliferation 

activity of the protein. Study of this mutation is performed by biophysical experiments. The 

results show that site-directed mutagenesis in hFGF1 can enhance the inherent stability of the 

growth factor and increase mitogenic activity of hFGF1 in absence of heparin. 
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CHAPTER 1 

INTRODUCTION 

Growth factors are proteins well known for intercommunication between cells through 

ligand/receptor cell signaling. Cell signaling can be processed by several types of 

ligands/effector molecules such as proteins. There are three modes for cell signaling known as 

succession - reception of the signal, transduction through relay molecules, and cellular response 

by the target cell. Intercommunication between cells is started by an extracellular ligand binding 

to a specific receptor in an extracellular part of the target cell. A chemical input inside the cell as 

a transduction signal is triggered by a ligand to detect the reception. The ligand-specific response 

is created when the chemical signal has reached its target intracellularly. Growth factors are 

proteins well known for cell growth and differentiation. Therefore, hFGF1 is a good candidate 

for novel wound healing therapeutics due to its role in tissue repair activity.  

Four modes of signaling can occur for the cell signaling process. The first mode known as 

autocrine secretion, is processed by binding a hormone to autocrine receptors on the same cell. 

The second mode of signaling, paracrine secretion, is found where neighboring cells release 

factors onto each other’s extracellular receptors. The next one is defined as intracrine secretion 

that the cell stimulates itself by a cellular product inside the cell. The third mode of secretion is 

intracrine secretion where in the cell stimulates itself by a cellular product that acts inside the 

cell. Despite other modes of signaling, endocrine signaling is transported to cells through the 

bloodstream [1,2] 

Classification of the Fibroblast Growth Factor Family  

According to sequence homology and phylogeny, the mammalian fibroblast growth factor (FGF) 

family are divided into 7 subfamilies (Fig. 1); however, they are classified into 6 subfamilies 
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based on the gene location analysis [1-3]. FGF11 subfamily performs as an intracrine manner, 

but the FGF19 subfamily is involved in endocrine FGFs, the rest of the FGF subfamilies have an 

important role in the paracrine manner. Only the member of paracrine subfamily is also found in 

binding to the heparan sulfate [2].  

 

Fig. 1: Classification of FGFs by subfamily and type of signaling [1]. 

 

FGFs as mitogens, involve in fetal and embryonic developments, pathological conditions, and 

some biological processes in adult organisms. Regarding adult organisms, the growth factors 

participate in angiogenesis, tissue repair, and wound healing. 

The FGF family consist of 23 related proteins with a molecular weight ranging 17 to 34 kDa [4]. 

Metabolic processes are induced by FGF through binding and activating specific tyrosine kinase 

fibroblast growth factor receptors (FGFRs). In fact, formation of FGF-FGFR complex causes 

induction in downstream signaling through pathways such as the retrovirus-associated DNA 

sequences (RAS)/mitogen-activated protein kinase (MAPK), and phospholipase-Cγ (PLCγ) 
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pathways, phosphoinositide-3-kinase (PI3K) /Protein kinase B (AKT) but specificity of the 

events triggered by individual members of the FGF family is still not clear [4]. There is a  

similarity among most FGFs in terms of amino acid composition [5]. The FGF family consists of 

structurally related polypeptide growth factors that share high affinity for heparin, interact with 

FGFRs, and carry out distinct functions. Based on crystallography analysis of FGF proteins, it 

displays a β trefoil fold structure consisting of 12 beta sheets strands organized into the central 

domain that five of the sheets are placed in the hairpin binding pocket [6]. FGFs are formed from 

a cell-surface polysaccharide, heparin sulfate proteoglycans (HSPGs) involved in protein 

regulation, especially in the activation of transcription, post-transcriptional modifications 

(capping, splicing, polyadenylation, and mRNA stability), translation initiation, post-

translational modifications (O-linked glycosylation, N-linked glycosylation, phosphorylation, 

acetylation, methylation, and ribosylation), intracellular trafficking, secretion, bioavailability, 

and ligand-receptor interactions [7]. 

Structure and Function of the FGF Family  

FGF1 subfamily consists of FGF1 and FGF2, proteins that are well known for 

their cell proliferating activity and expression in both developmental and adult stages. The FGF1 

subfamily as a prototypical or archetypal family known as an acidic fibroblast growth factor 

since its isoelectric point (approximately 6.5) is relatively acidic compared to basic FGF (FGF2) 

with isoelectric point of 9.6 [8]. FGF1 was the first growth factor isolated and identified. The 

prototypical FGF genes comprise 3 coding exons, out of which exon 1 contains the initiating 

codon- methionine. Despite the paracrine function of FGF1, it acts in an intracrine signaling. Not 

only the FGFs members are secreted by the cell but also, they don’t have the N-terminal 

hydrophobic sequence instead, they are directly translocated to the nucleus [9-12]. As the mRNA 
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does not include a signal peptide sequence that targets FGFs for secretion through the classic 

ER-Golgi complex secretory pathway, they structure of this subfamily is unique compared to 

other FGFs. FGFs employ a non-classical pathway to be secreted [11]. The open reading frame 

in FGF1 is also edged by the termination codons, whereas FGF2 contains a 5 transcribed 

sequence that initiates from upstream CUG codons for translation [12]. 

FGF1 and FGF2 are significantly different in size and sequence, but they have similarities such 

as core region of homology encompassing 120–130 residues; that shows a common ancestral 

gene. There is 53% protein sequence homology between the structure of FGF1 and FGF2. Both 

bind tightly to heparin and share many biochemical and biological properties [13]. While in the 

FGF1 subfamily, there is a similar preference for N-sulfate and O-sulfate, FGF1 differs in that, 

and it also binds saccharide structures with 6-O-sulfated heparin. This subfamily included three 

Heparin Binding Sites (HBS), including the primary HBS1 and the secondary binding sites 

HBS2 and HBS3 [14].  

FGF1 is a single chain positively charged polypeptide with a molecular weight around 5,967 Da 

and a isoelectric point (pI) of 7.73 [4]. FGF1 was purified from the brain by standard 

chromatographic techniques such as gel filtration, ion-exchange chromatography, reverse-phase 

HPLC and isoelectric focusing. In addition, purification of FGF-1 is performed by heparin 

Sepharose chromatography because of its high heparin affinity. While FGF1 was recognized as a 

polypeptide containing 140 amino acids, the subsequent sequence analysis exhibited 154 amino 

acids polypeptide in FGF1 that is expressed in microvascular endothelial cells. FGF1 participates 

in cell differentiation such as cell growth and survival, adipogenesis, embryonic development, 

and tissue repair. 
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FGF2 with a molecular weight ranging from 18-24 kDa is well conserved among the other 

species. Human FGF2 (hFGF2) consists of four cysteine residues (Cys 33, Cys 77, Cys 95, and 

Cys 100) without disulfide bonds. Two of these cysteine residues (Cys 33 and cys 100) are 

conserved in all FGF family members. Based on the site directed mutagenesis studies, 

substitution of Cys 77, 95, and 100 to serine does not affect the cell proliferation activity of 

FGF2. However, substitution of Cys 33 to serine causes 60% reduction in the biological activity 

of hFGF2. Several studies indicated that there is no difference between cell surface receptor-

binding and heparin-binding domains of FGF2 [5].  

FGF1 and FGF2, as prototype members of the FGF family, play a critical play in controlling of 

biological functions such as developmental processes during embryogenesis and various 

physiological roles in the adult state, including the regulation of angiogenesis, wound healing, 

organ development (eye, skin, brain, lung, limb, muscle, bone, blood, and heart), and 

metabolism. FGF1 and FGF2 also exhibit broad mitogenic and cell survival activities, such as 

cell growth, cell differentiation, tissue repair, tumor growth, and invasion. Moreover, FGF1 and 

FGF2 participate in neurogenesis. The application of FGF1 and FGF2 in wound healing is more 

than FGF7 and FGF10. In addition, recombination of human FGF1 (rh-FGF1) and human FGF2 

(rh-FGF2) played an important role in the treatment of ulcers and diabetic foot ulcers. Both rh-

FGF1 and rh-FGF2 have a positive effect on curing ulcers, diabetic foot abscess, and second-

degree burns [15].  

FGF4 Subfamily  

The FGF4 subfamily includes FGF4, FGF5 and FGF6. FGF4 consists of 206 amino acids protein 

expressed only during embryonic stages that included both an amino signaling sequence for 

classical secretion as well as an N-glycosylation site [16, 17]. 
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Several studies suggested that FGF4 and FGF6 are more stable than FGF3 and FGF17 in absence 

of heparin [18]. Based on data obtained from crystal structure, FGF4 and FGF6 possess 2 

heparin binding sites (HBS). The first heparin binding site is located between β6 and β7, β9 and 

β10; β10 and β12 strands which included Lys 142, 144, 147, 183, 186, 188, and 189, 

respectively. The second heparin binding site involves three lysine residues (Lys 65, 81, and 

158). For FGF6, HBS1 is located the region between β10 and β12 strand and includes Lys 144, 

185, and 194. HBS2 includes Lys 83 (found near the N-terminal of β1 strand) and Lys 158 on 

the β8 strand. Human FGF4 involves in the embryonic development regulation, cell 

proliferation, and cell differentiation. 

FGF5 consists of a highly conserved core region included of 12 β strands and a signal peptide at 

the N terminus [19]. Human FGF4 involves in the of cell proliferation regulation and cell 

differentiation. FGF5 plays a critical role in determining hair length in mammals. Based on 

reported studies in 2007, mutation of proline to histidine in the FGF5 gene causes longhair 

phenotypes in cats [14]. 

FGF6 with 25kDa is found in varying lengtheparin (208, 198, or 175 amino acids). Human FGF6 

involves in the regulation of cell proliferation, cell differentiation, angiogenesis, myogenesis, and 

regeneration of calf muscles [20].  

FGF7 Subfamily  

The FGF7 subfamily includes FGF3, FGF7, FGF10, and FGF22. The subfamily incorporated  in 

various diseases such as congenital deafness, lacrimo-auriculo-dento-digital syndrome, 

inflammatory bowel disease, Apert syndrome, and prostate cancer [21].  

Human FGF3 is a 239 amino acid protein expressed during embryonic stages and is secreted 

through the classical secretion pathway because of an amino-terminal signal sequence. FGF7 as a 
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Keratinocyte Growth Factor (KGF) with 28 kDa consists of 194 amino acids and a 31 amino acid 

N-terminus sequence. It is known as 10 beta strands, which form five double stranded anti-

parallel beta sheets with single beta-sheet hydrogen bond between residues 137 and 141. FGF7 

subfamily members play an important role in organogenesis and tissue patterning in the embryo, 

tissue homeostasis in adult mammals, and accelerate wound healing [22]. FGF7 is critical for the  

regulation of embryonic development, cell proliferation and cell differentiation and normal 

branching morphogenesis. 

Moreover, this growth factor is expressed with FGFR2b in hepatocytes. In vivo and in vitro 

studies indicate that FGF7 and its related receptor accelerate the proliferation of hepatocytes 

following liver damage, disease, and partial hepatectomy [23].  

FGF10 with 20 kDa consists of 209 amino acids with a hydrophobic 35 amino acid signal 

The sequence at its N-terminus. The protein is essentially expressed in different cells such as 

fibroblasts, adult pre-adipocytes, lung mesenchyme, posterior limb mesoderm and mesenchyme. 

FGF10 is expressed at both embryonic and adult stages and is reported to mediate limb, lung, 

and brain development. Because of impartial lung development of FGF10, its knockout mice 

died at birth [16, 24]. FGF10 is also involves in liver development by maintaining the survival of 

hepatoblasts [23]. 

FGF22 with 209 amino acids and a molecular weight of 23 kDa has a 22 amino acid signal 

sequence and is expressed in cerebellar granule cells [25]. Vivo studies indicate that FGF22 is a 

presynaptic organizing molecule and neutralization of FGF22 inhibits differentiation of mossy 

fibers involved in signal transmission at sites of contact with granule cells. FGF22 has also been 

shown in the inner root sheath of hair follicles, which depicts a role in hair development [20]. In 

addition, this FGF member has shown an important pro-oncogenic role in the developing skin 



 

 8 

cancer, as FGF22 knockout mice were found to develop fewer papillomas than control mice in a 

carcinogenesis challenge study [20]. 

Based on the studies have done by Terauchi, FGF22 was used as a target-derived presynaptic 

organizer by hippocampus region of the mouse brain uses [26]. There is also minimal or no 

heparin binding affinity in FGF3 and FGF2, and the difference causes distinct biological 

properties and functions [27]. Amino acid sequence alignment shows that FGF3 was stabilized 

through unmodified heparin and any of the singly desulfated heparins [27]. In the case of FGF10, 

there was no obvious difference in the stabilizing effect of heparin and the singly desulfated 

heparins. Therefore, there are similar binding preferences between FGF10 and FGF3 but are not 

equal. 

FGF8 Subfamily  

The FGF8 subfamily as a paracrine signaling molecule includes FGF8, FGF17, and FGF18. 

Multiple human isoforms in Human FGF8 and FGF17 members distinct this subfamily [28]. The 

variation is formed from alternative splicing within the first exon, which causes length changing 

of the N-terminus sequence from 62 to 156 amino acids [29]. Regulation of biological activity of 

these FGFs in midbrain and hindbrain patterning and its development have been determined by 

the splicing variation [29]. Furthermore, the crystal structure of FGF8-FGFR2c and FGF17-

FGFR2c complexes implies that the N-terminus sequence discrepancy modulates receptor 

binding such that FGF17 binds the receptor with stronger affinity than FGF8 [30]. FGF8 and 

FGF17 play an important role in regulation of neuroepithelial proliferation in the brain at a 

junction in the mid-hind region [16, 31]. In addition, FGF8 involves in development of 

embryonic limb and central nervous system [16]. 

FGF18 comprised 207 amino acids and an N-terminus 26 amino acid secretion signal 
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sequence [31]. FGF18 expression is found in muscles, pancreas, midbrain, lung, and the 

intestinal tract during embryonic development. Furthermore, FGF18 involves in cell 

proliferation, cell differentiation, cell migration cartilage, formation, and osteogenesis of skeletal 

development [31].  

FGF9 Subfamily  

The FGF9 subfamily includes FGF9, FGF16, and FGF20, which are secreted outside of the cell 

and are paracrine signaling. FGF9,  with 208 amino acids and 30 kDa, is a potent mitogen which 

is produced by neurons [32]. Although it does contain a distinct N-terminus signal sequence, it 

does not have an unusual hydrophobic sequence as a compulsory part of its secretion [16]. 

FGF9 expression has been found in high levels throughout kidney, lung, and prostatic stromal 

cells, and multiple cell types in the central nervous system. Due to sex reversal of knockout mice 

male to female, FGF9 plays a critical role in role in male sex determination [33]. Furthermore, 

FGF9 has a vital role in the proliferation of lung mesenchyme, produceing other FGFs, including 

FGF3, FGF7, FGF10, and FGF22. FGF16 with 207 amino acids and 26 kDa is not classically 

secreted due to lack of an amino terminal signal sequence. FGF16 expression has been reported 

during embryonic development through cardiac myocytes and in brown adipose tissue. Severe 

cardiac abnormalities are found in FGF16 knockout mice due to reduction of FGF16 in adult 

stages [33, 34]. 

FGF20 with 211 amino acids and 23 kDa has no signal sequence. FGF20 is expressed in a region 

of the midbrain known as the substantia nigra pars compacta, where it preserves dopaminergic 

neurons, which prevents onset of Parkinson’s disease. Stimulation of MAPK 

pathway is happened during interaction of FGF20 with FGFR1c in the midbrain region which 

ultimately sustains the dopaminergic neurons and prevents Parkinson’s disease [35]. 
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FGF11 Subfamily  

The FGF11 subfamily includes FGF11, FGF12, FFG13, and FGF14. These FGFs are known as 

FGF homologous factors (FHFs) and display high levels of sequence homology [16]. Members 

of the FGF11 subfamily share between 58-71% sequence identity with each other and only up to 

30% sequence identity with other members of the FGF family [29]. These members not only 

secreted from cells but also are intracrine signaling proteins that function independently of cell 

surface FGFRs [37]. Furthermore, this subfamily interacts with the cytoplasmic C-terminal tails 

of voltage-gated sodium channels to regulate channel gating and intracellular signal trafficking 

[36].  

FGF19 Subfamily 

FGF19 subfamily includes FGF19, FGF21, and FGF23 with endocrine signaling. Studies that 

have been reported about FGF15 (the mouse ortholog of FGF19), indicates that FGF19 has an 

important role in the regulation of bile acid homeostasis in the liver through interaction with 

FGFR4 expressed on hepatocytes [38]. FGF19 consists of 216 amino acids and a 22 amino acid 

N-terminal signal sequence. According to reports on FGF19 transgenic mice, FGF19 increases 

fatty acid oxidation and reduces level of liver triglycerides, glucose and enhances sensitivity to 

insulin [39]. In addition, FGF19 plays an important role in the treatment of diabetes through the 

reduction of brown adipose tissue [39]. FGF19 signals are not only via binding with FGFR4 in 

the liver but can also through interaction with other FGFRs in the presence of the single-pass 

transmembrane protein, β-Klotho [1, 39]. 

FGF21 includes 171 amino acid protein with a molecular weight of approximately 19 kDa. 

FGF21 expression is reported in the pancreas, liver, and white adipose tissue. Although this FGF   

can activate most FGFR isoforms, it preferentially binds to FGFR1c. Moreover, the binding of 
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FGF21 with FGFRs is cooperated with by β-Klotho [1, 39]. Therefore, FGF21 plays a metabolic 

role in increasing insulin sensitivity and glucose uptake, stimulating fatty acid oxidation, and 

inducing the adaptive starvation response [40]. 

FGF23 consists of 251 amino acids with a 24 amino acid N-terminus signal sequence and has a 

molecular weight of approximately 28 kDa. FGF23 expression is placed in bone cells to regulate 

serum phosphate levels and vitamin D levels by preventing reabsorption in the proximal tubule 

and intestine through the interaction of FGF23 with FGFR1c (complexed with the 

transmembrane protein α-Klotho) in the kidney [40]. In addition, FGF23 interact with the 

parathyroid gland to prevent the secretion of the parathyroid hormone, which regulates 

phosphate uptake from bone [38]. 

hFGF1 Structure  

β-trefoil family is determined for the structure of hFGF1. One of 10 fundamentals protein 

superfolds known as the β-trefoil which consists of three connected trefoil units (Fig.2) [41, 42]. 

While the β-trefoil structure has been reported as a monomeric unit for epidermal growth factors, 

the β-trefoil is determined in dimeric and trimeric units, respectively for certain protease 

inhibitors as well as in fibroblast growth factors [42]. Therefore, it’s predicted the evolution of 

the β-trefoil structure is derived from sequential gene duplication(s)/fusion(s) [41, 42]. Different 

types of proteins, including fibroblast growth factors, interleukin-1α and -1β, Kunitz soybean 

trypsin inhibitors, plant cytotoxins and bacterial toxins such as the ricin-like toxins, as well as 

some carbohydrate-binding proteins including xylanase, have trefoil structure [41, 43, 44].  
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Fig. 2: Secondary structure of hFGF1. Twelve β-strands are folded into β-trefoil structure [41]. 

 

Heparin 

 

Chemistry and Structure of Heparin 

Heparin is a member of glycosaminoglycan groups (GAGs). These molecules consist of 

repeating disaccharide units that most frequently include D-glucosamine and L-iduronic acid and 

less commonly include D-glucuronic acid, N-acetylglucosamine, as well as unsubstituted 

glucosamine units (Fig. 3) [45, 46]. These sugar units are heavily sulfated and linked via α-

(1→4) glycosidic linkages. Sulfate groups are commonly found on positions 2 and 6 on D-

glucosamine as well as on position 2 on the L-iduronic acid unit [45, 46]. 

Figure 3. The structure of heparin comprised of repeating disaccharide unit included L-iduronic 

acid (left) and D-glucosamine (right) linked via α-(1→4) glycosidic linkages [46]. 

 

The sugar composition of heparins from various species and tissues creates substantial variation 

[46]. In addition, the length of heparin-like polysaccharide chains is varied from 3 to 30 kDa. 

Heparin and Heparan Sulfate 
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Another GAG family, known as heparan sulfate (HS), is reported in the extracellular matrix with 

a similar sequence and backbone structure to heparin. Proportions and arrangements of sugar 

saccharides and sulfation patterns are completely different in HS compared to heparin [46, 47]. 

HS expression is placed by all cells throughout the human body. However, heparin is only 

expressed by mast cells [47]. Moreover, HS and heparin have different degrees of sulfation. 

Only 30-60 % sulfated with clusters of the polysaccharide sulfate is reported for HS, and other 

portions are unsulfated, but heparin is 80-90 % sulfated with no clustering of the sulfate groups 

[47]. 

Biosynthesis of Heparin 

Heparin is synthesized in the golgi apparatus through several steps by different Enzymes [47]. 

The first step begins with a serine residue of the core protein, serglycin, followed by forming the 

non-sulfated tetrasaccharide substrate (-GlcA-Gal-Gal-Xyl-) through the sequential linkage of D-

glucuronic acid (GlcA), glacatose (Gal), and xylose (Xyl) by various enzymes [47]. The primary 

substrate is produced by the elongation process included two steps, the first step involves 

addition of N-acetyl-D-glucosamine (GlcNAc), and the  second step begins with the alternating 

addition of GlcA and GlcNAc (Fig. 4) [47, 48]. Polymerization of the substrate is then catalyzed 

by complexed EXT1 and EXT2 polymerases. At the Modification process, GlcNAc N-

deacetylase / Nsulfotransferase enzymes are involved to catalyze the substitution of acetyl 

groups with sulfate groups [49]. Furthermore, uronosyl C5-epimeraser, and O-sulfation are 

applied to catalyze the epimerization of D-glycuronic acid units into Liduronic acid, that is 

placed on two positions in Dglucuronic acid and one position in L-iduronic is catalyzed by 2-O, 

3-O, and 6-O sulfotransferases (Fig. 4) [48, 49]. Furthermore, a wide variety of polysaccharides 

as heparin-like molecules are yielded to enhance the biological activity of these GAGs.  
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Figure 4. Biosynthesis of heparin [48]. 

 

Biological Significance of Heparin 

Heparin is an anticoagulant that reveals increasing the inhibitory action of antithrombin. Heparin 

binds with various serine protease inhibitors; however it has the most dominant interaction with 

antithrombin. Antithrombin depicts high affinity at a specific pentasaccharide sequence within 

heparin (αDGlcNAc(6S)-βDGlcA-αDGlcNS(3S, 6S)-αLIdoA(2S)-αDGlcNS(6S)) [50]. Upon 

binding, a conformational change within antithrombin exposes a reactive loop that mimics the 

substrate of the serine protease thrombin. The protease becomes locked in an inactive complex, 

preventing its succeeding action on fibrinogen to initiate the clot forming process when thrombin 

cleaves the sequence of the reactive loop on antithrombin [50]. 

Heparin also highly interacts with FGFs to regulate FGF movement and the duration of their 

biological half-life. Furthermore, heparin plays a critical role in the organization of growth and 
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development of complex systems and organisms [51]. Due to role of FGFs in tissue repair 

following injury, heparin is  known as a mediator of wound healing processes. 

Heparin-hFGF1 Interaction 

Electrostatic interactions between the sulfate groups of  heparins and the positively charged 

residues of the heparin-binding pocket of hFGF1 are the basis of the interaction between heparin 

and hFGF1. The heparin-binding region of FGFs consists of three exposed loops. The loops are 

included several positively charged residues placed on beta strands 10 and 11 [6]. Site directed 

mutagenesis studies since 1990 have reported a reduction in the heparin-binding affinity 

specifically for charge reversal of lysine residues toward the C-terminus (K132, K127, K114, 

and K115) [52].  

X-ray crystallography and multidimensional nuclear magnetic resonance are used to determine 

the full characterization of the heparin-hFGF1 interface. One of the first hFGF1-heparin crystal 

structures displayed the binding of a hFGF1 dimer to a heparin disaccharide (PDB 2AXM) 

through C-terminal residues 126-142 of hFGF1 [35]. In addition, there is no protein-protein 

interactions in the crystal structure and each monomer binds the heparin through sulfate groups 

on opposing sides of the polysaccharide [35]. According to studies performed by DiGabriele and 

coworkers, heparin binding does not induce any conformational change in hFGF1 structure. An 

additional crystal structure consisting of two 1:1 hFGF1-FGFR2 dimers indicates that a helical 

heparin disaccharide chain causes contacts with both hFGF1 monomers (denoted A and B) (PDB 

1E0O) [53]. The crystal structure also shows that K126, K127, N128, K132, R133, R136, and 

K142 positions in the hFGF1 facilitate heparin binding [53].  

While there is an interaction between hFGF1 monomer and 6 monosaccharides of heparin, 

hFGF1 monomer B interacts with only 5 heparin monosaccharides, and it creates distinct 
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contacts with heparin through a hydrogen bond between Trp121 and GlcN-1 [53]. According to 

reports performed by Pellegrini and coworkers, there are 340 kinks between the second 

and third disaccharides in heparin chains, and it shows that van der Waals forces significantly 

contribute to hFGF1-heparin binding as well as electrostatic interactions [53]. 

Following studies of the positively charged residues in the heparin-binding region of hFGF1 

revealed the significance of the conserved lysine at position 132, located in the base of the 

pocket toward the protein core. Interaction of K132 with critical N-sulfate and 2-O-sulfate 

groups on the heparin iduronic acid sugar induces a conformational change in the positioning of 

iduronic acid. The conformational alternation of heparin changes the backbone torsion angles of 

heparin and induces a “kink” in the ligand structure [54]. Repositioning of heparin induces the 

formation of additional van der Waals forces that help to achieve optimum binding with hFGF1, 

as previously noted [53, 54]. Each family has a unique spatial arrangement of these positively 

charged heparin-binding residues, making FGF with different affinity for different heparin-like 

GAGs. 

Overlay of the Cα traces of residues in the heparin-binding region from five different FGF 

crystal structures indicated (including hFGF1) the structural arrangement of these loop regions 

corresponds to and is more rigid in character, as previously mentioned [54].  This implies that the 

spatial arrangement of these side chains for hFGF1 provides a unique “signature” for its heparin-

binding interface [54].  Moreover, biophysical characterization of the protein in the presence and 

absence of heparin displayed that the binding of heparin with hFGF1 does not conduct any 

conformational shift within the protein. 

Role of Heparin in hFGF1-FGFR Signaling 
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The debate about the role of in hFGF1-FGFR interaction and subsequent activation is still 

ongoing. Heparin plays an essential role in protein stability, receptor binding, and activation of 

hFGF1 [45, 52, 53, 55]. According to the reported crystal structures, heparin involves in the 

biological function of hFGF1. These structures also imply that both monomers of dimeric hFGF1 

are linked to the same heparin chain as well as the FGFR. Thus, the heparin plays an important 

role in the hFGF1 dimerization and FGFR activation process [53, 56]. In addition, the dimer 

structure of these crystals reveals that hFGF1 dimerization is mandatory for subsequent receptor 

binding and activation. In 2002, Kumar and coworkers used sucrose octasulfate (SOS) as a 

molecular mimic of heparin to assess the biological activity of hFGF1 [57]. Their study indicates 

that the binding of SOS to hFGF1 retains the protein in a monomeric form. In addition, they 

indicate that binding of monomeric hFGF1 to SOS involves in cell proliferation activity [57]. In 

conclusion, hFGF1 oligomerization is not mandatory for its biological activity with 

corresponding FGFRs. Further study by Angulo and coworkers in 2005 indicates that hFGF1 

dimerization is not critical for its biological activity, and the sulfation pattern of heparin-like 

ligands has an essential impact on the mitogenic activity of hFGF1 [58]. In the study, two 

synthetics sulfated hexasaccharides (with different sulfation patterns) are utilized to bind and 

retain hFGF1 in its monomeric form as they cannot facilitate hFGF1 dimerization. The sulfate 

groups of both ligands expand the length of the ligand molecule; however, there are sulfate 

groups on both faces of the molecule at the first ligand, and the other ligand shows sulfate groups 

only on one side [58, 59]. Previous studies indicated that the ligand with sulfate groups oriented 

toward only one face of the molecule facilitated hFGF1-mediated cell signaling at the same level 

as natural heparin and that dimerization of hFGF1 is then not mandatory for biological activity 

[58, 59]. In multiple mutagenesis studies, heparin is an absolute requirement for hFGF1 cell 
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signaling. Several studies have been reported that heparin is not critical in the biological activity 

of hFGF1, but that is utilized for stabilizing the inherently unstable protein and enhancing the 

bioavailability of the protein in reservoirs near the cell surface. hFGF1 is defined as an unstable 

protein at temperatures close to physiological due to its poor thermal stability and short half-life 

in vivo [42, 60-62]. The poor stability of hFGF1 can be known as a regulatory mechanism that 

protects against overactive or unregulated FGF1 signaling, which leads to tumorigenesis [63].  

The studies, that claimed heparin is not essential for hFGF1 biological activity, have reported 

that function of hFGF1 can be heparin independent if the thermal stability of the protein could be 

increased [62]. 

At another study, they reported the hFGF1 mutant K132E with reduced heparin-binding and 

completed FGF receptor binding and activation, and further was shown to induce early 

intermediate gene transcription [52]. Further study indicates however substitution of serine for 

cysteine residues in three positions (30, 97, and 131) increases hFGF1’s half-life from 0.26 hours 

up to 73 hours, it thermally destabilizes the protein [61]. Further studies attempted to design 

mutations with increased stability and increased the core-packing arrangement of hFGF; 

however, one mutation, L58F, showed an increasing the thermal stability of hFGF1 [42].  

In the recent study, a sequence homology approach was applied to introduce the three 

mutations: H35Y, H116Y, F122Y [62]. However, each mutation enhanced the thermal 

stability of hFGF1 by a couple of degrees, they were all finally combined with L58F to introduce 

the quadruple mutant H35Y/L58F/H116Y/F122Y with the increased thermal stability of hFGF1 

by 7.8°C [62].  

In addition, the quadruple mutant showed similar biological activity to the wildtype protein. 

Another study utilized a sequence homology approach to introduce two additional stabilizing 
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mutants Q54P and S61I [64]. The two mutants were then combined with the previously 

described quadruple mutant as well as an additional stabilizing mutation, H107G, to introduce 

septuplet mutant:H35Y/Q54P/S61I/L58F/H107G/H116Y/F122Y. The seven mutations showed 

increasing thermal stability of hFGF1 by 27oC [64]. The septuplet and triple mutants 

(Q54P/S61I/H107G) in the absence of heparin are six and ten times higher than the wildtype 

hFGF1. 

In 2009, Zakrzewska and coworkers redesigned the K132E mutation (that was previously 

introduced by Wong et al.) to examine the role of heparin within hFGF1 activity. Introduction of 

charge reversal K132E mutation is predicted to reduce hFGF1 heparin binding affinity due to its 

position within the heparin-binding pocket. In addition, the study has been reported that the 

hFGF1 K132E mutant is inactive toward DNA synthesis [65]. 

The combination of the K132E mutant with the stabilizing triple mutant (Q54P/S61I/H107G) 

implied that in the absence of heparin, the mitogenic activity of this quadruple mutant was 

equivalent to the level of heparin-bound wildtype hFGF1 [65]. In conclusion, the heparin has no 

essential role in hFGF1 binding and activation of its FGFR. 

Another study indicated that the hydrogen bonds have important roles in stabilization of N and C 

terminal flexible strands, hypothesizes that the stability of hFGF1 could be enhanced if disulfide 

bonds were inserted into the N and C terminal tails. Although K26C and P148C mutants were 

introduced to generate disulfide bonds, increasing thermal stability and mitogenic activity of 

hFGF1are reported under reducing conditions, with no disulfide bond formation.  

Despite disagreement on the role of heparin for hFGF1 activity with FGFRs, there have been 

several studies indicating the ability of hFGF1 to facilitate cell signaling in a heparin 

independent manner [37, 28, 66, 67].  



 

 20 

FGFR Gene Evolution  

FGFR genes were found in both humans and mice with approximately 810 amino acids with 56-

71% sequence homology and identical exon-intron sequencing [3, 1]. The FGFRs variation is a 

result of alternative splicing of the extracellular immunoglobin-like (Ig) domains giving rise to 

FGFRs with either two or three Ig domains [3]. The FGFR splicing regulation has conserved 

mechanism throughout evolutionary history. Alternative splicing of FGFRs 1, 2, and 3 gives rise 

to two different Ig domain III (IIIb and IIIc) forms. Ig domains II, III and the linker region 

between the two domains are involved in the ligand-binding specificity of the receptor [68]. 

Furthermore, there are seven various FGFR isoforms with unique ligand-binding specificity from 

the four known FGFR genes (1-IIIb, 1-IIIc, 2-IIIb, 2-IIIc, 3-IIIb, 3-IIIc, and 4) [1].  

FGFR Structure and FGFR -FGF Binding Interface  

FGFRs are composed of an extracellular domain included three Ig-like domains that facilitate 

ligand-binding, a single pass  helical transmembrane domain, and an intracellular tyrosine-

kinase domain [1]. All receptor isoforms contain around 810 amino acids with molecular weights 

of approximately 90 kDa [37, 69]. 

Protein-receptor binding interface study reveals that hFGF1 contacts Ig domains II (D2) and D3 

of the receptor at the junction between the two domains [37]. Ig domain I (D1) and the acidic 

sequence of residues between D1 and D2 inhibit ligand binding. In addition, recombinant 

receptor proteins lacking D1 have a higher binding affinity for FGFs [37]. While there are many 

bounds between the FGF1 ligand and D3, making contacts with 23 residues, only 13 contacts are 

reported for FGF1-D2 [70]. In FGF1, 39 of 140 residues are involved in receptor binding that 

none of them include heparin-binding residues. According to  the crystal structure of a heparin 

bound FGF1 dimer complexed with an FGFR2 dimer, the receptor’s contacts between FGF1 and 
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D2 are prominently hydrophobic [56]. In addition, the 1:1 FGF1:FGFR2 structure complex also 

indicates contact between the N and C terminal ends extending from the core of the FGF1 ligand 

and the D2-D3 linker region (Fig. 5).  

In the presence of heparin, it is bonded to the FGF1: FGFR complex through the heparin-binding 

region of FGF1. There are symmetrical complexes between FGF-receptor dimer and heparin 

with contacts of heparin with both FGFs and both receptor chains, or asymmetrical with contacts 

of heparin with both FGF ligands and only one receptor chain. A study of the FGF1-FGFR2 

crystal structure in the presence (PDB 1E0O) and absence (PDB 1DJS) of heparin implies two 

conformations for the receptor D3. In the presence of heparin D3 of the receptor is rotated 

around the D2-D3 linker region by an additional 170 Å.  

 

Figure 5. Top left, 1:1 FGF1:FGFR2 complex in the absence of heparin (PDB 1DJS). Top right, 

2:2 FGF1:FGFR2 complex in the absence of heparin (D2 and D3 domains are colored in blue 

and green, FGF1 is colored in red, and receptor contacts with the FGF1 ligand are colored in 

yellow). Bottom left, 2:2 FGF1:FGFR2 complex in the presence of a heparin disaccharide 

(FGFR2 is colored in pink, FGF1 ligand is colored in yellow and blue, and heparin is in yellow 

stick formation) (PDB 1E0O). 
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Signaling Cascades 

The extracellular domain of FGFRs promote receptor-ligand complex dimerization upon ligand 

binding. The FGF-FGFR dimerization brings the intracellular tyrosine kinase domains of both 

receptors in proximity to each other [71, 28]. The receptor is activated by phosphorylation of a 

maximum of six tyrosine residues, and different signaling pathways are activated based on 

specificity of the FGF ligand. The final phosphorylation of Y677 and Y766 for FGFR1 induces 

substrate binding of STAT3, phospholipase Cγ (PCγ), and adaptor proteins such as FGFR 

substrate 2. Once activation of the receptor happened, adaptor proteins are phosphorylated by 

the receptor for various intracellular signaling pathways. One pathway known as PCγ pathway, 

induces the cleavage of phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) into diacyl 

glycerol (DAG) and inositol 1,4,5-triphosphate (IP3).  

Mitogen-activated protein kinase (MAPK) pathway, as another pathway activated by FGFRs, 

mediates cell proliferation, survival, and mitosis through the activation of specific transcription 

factors that regulate target gene expression [37]. The third pathway included the Janus kinase 

(JAK)/signal transducer and activator of transcription (STAT) pathway to mediate cell growth 

and differentiation and regulate the immune response. The last signaling pathway related to 

FGFRs involves activating of phosphoinositide 3-kinase and protein kinase B (PI3K-AKT). The 

PI3K- AKT pathway stimulates cell growth and proliferation through phosphorylation.  

FGF and FGFR Regulation  

Aberrant FGF/FGFR signaling plays a role in tumorigenesis and many other diseases due to 

irregulating in signaling process [71]. One mechanism for signaling regulation is found in 

interaction of ubiquitin ligase Cbl to FGFRs, which results in internalization and degradation of 

the receptors [37]. Another type of regulation includes phosphatases involved in controlling the 
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receptor kinase activity and downstream signaling. Growth factor receptor bound 2 (GRB2), as 

an adaptor protein in dimeric form, bind the C-terminal of FGFR2 to inhibit complete 

phosphorylation. The binding of GRB2 also sterically hinders the downstream binding of other 

adaptor proteins necessary for MAPK and PI3K-AKT signaling pathways [37]. In addition, 

signaling pathways such as RAS-MAPK can inhibit the the receptor’s kinase activity upon 

phosphorylation of specific C-terminus residues by ERK1 and ERK2 (downstream kinases 

activated by the pathway). Another type of FGF-FGFR regulation known as microRNAs directly 

affects FGF and FGFR expression at the post-translational stage [37]. Several studies have found 

that overexpression of FGFs and/or corresponding FGFRs is caused the suppression of 

microRNAs. MicroRNA-152 and microRNA-198 are found to regulate FGF2 down, and FGFR1 

expression respectively. Suppression of microRNAs 152 and 198 in non-small-cell lung cancer 

causes the overexpression of FGF2 and FGFR1, which leads to hyper proliferation and reduces 

apoptosis [37].  

FGF Secretion  

As FGFs are released from the cell into the extracellular matrix since they affect their biological 

properties through binding to cell surface receptors. All FGF family members except the 

prototypical ones (FGF1 and FGF2) contain some signal peptide that directs their secretion out 

of the cell. FGFs 3-8, 10, 17-19, 21, and 23 contain N- terminus peptides that signal their 

secretion through the classical endoplasmic reticulum-Golgi pathway [36]. FGFs 9, 16, and 20 

have N-terminal hydrophobic sequences that regulate their secretion from the cell [3, 36]. FGF1 

and FGF2 do not contain signal peptides since they are secreted non-classically. The stress 

response to different stimuli such as heat shock and hypoxia induces the secretion of FGF1 and 

FGF2 [67]. Several studies have been reported regarding the non-classical release of FGF1 to 
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show the order of prerequisites that lead to protein secretion. At the first event, the oxidation of 

C30 on FGF1 leads to the formation of an FGF1 homodimer (causing the formation of 

intermolecular disulfide bond) by intracellular Cu2+. FGF1 is associated with S100A13, a 

calcium-binding protein that anchors the complex to the cell membrane. A bond between 

FGF1/S100A13 complex and the C2A portion of the integral transmembrane protein (p40Syt1) 

is created. Lastly, the ternary complex FGF1/S100A13/p40Syt1 is transported across the 

membrane.  

FGF/FGFR Diseases  

As FGFs/FGFRs are involved in several diseases due to their role in mammalian development, 

abnormal signaling is by ligand and/or receptor mutations. In this context, Pfeiffer syndrome was 

reported due to D321A mutation occurring in FGFR2c. This mutation reduces binding of 

FGFR2c with FGF2 and increases the aberrant autocrine signaling with FGF10 [28]. Several 

diseases have been studied for the mutations, such as S252W in FGFR2, N546K in FGFR1, 

N540K in FGFR3, and G380R in FGFR3 [71, 36, 72]. Kallmann syndrome, a form of 

hypogonadotropic hypogonadism, is a disease that has been related several different frameshift, 

nonsense, or donor splice mutations within various exons in FGFR1 coding genes [71]. 

Kallmann syndrome due to loss of function mutations is marked by a lack of hormones needed 

for sexual development as well as impairment in the sense of smell [73]. Kallmann syndrome 

without treatment causes infertility. FGFs and their corresponding FGFRs have a critical role in 

tumorigenesis in many types of cancers due to their role in cell survival, growth, and migration. 

Several drugs with similar function to FGFR selective tyrosine kinase inhibitors are designed in 

phase II and III clinical trials for the treatment of FGFR mutations that lead to cancer. In 

addition, there are many therapeutics targeting FGFR related cancers, such as FGFR antibodies 
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as isoform specific to avoid unwanted side effects, FGF-ligand traps, which utilize the 

extracellular portion of an FGFR and target mitogenic FGFs, and allosteric molecules capable of 

limiting FGFR signaling with reducing pancreatic cancer progression in mice [71].  

Therapeutic Applications of FGFs: 

There is a wide range of clinical applications for many different FGFs; However, only those 

related to hFGF1 will be described due to stay relevant to the aims of this project. Due to FGF1 

ability to induce cell proliferation, migration, differentiation, and angiogenesis, it plays an 

essential role in regenerating tissues such as skin, blood vessels, muscle, adipose, bone, and 

nerve. 

As FGF1 is involved in all phases of the wound healing process, such as inflammation, tissue 

regeneration, and re-modeling, it is a critical in the accelerate the novel wound healing therapies.  

Based on the United States health care system, acute and chronic wounds such as diabetic foot 

ulcers, pressure ulcers, and chronic venous leg ulcers causes serious problems. However, 71,000 

diabetic foot ulcers receive amputations each year; a 68% mortality rate exists for patients with 

stage II or IV pressure ulcers [74]. Studies have displayed a vital role of FGF1 in improvement 

and acceleration of wound healing in diabetic mice and patients with burn wounds [75]. 

Diffusion and inherent limitations of FGF1 cause significant thermal unfolding and protease 

degradation during directly injection to the wound site [76].  

In addition, when FGF1 is continuously applied to the defective area, it acts more efficiently. To 

address these issues, there have been several studies regarding the application of FGF1 using 

delivery methods such as porous scaffolds, hydrogels, and nano-particulates. Porous scaffolds 

are composed of natural polymers such as collagen, fibrin, and glycosaminoglycans, and binding 

FGF1 to the polymers is through electrostatic interactions that prolong the delivery of the protein 
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by a slower release of the protein from the scaffold [77]. The application of self-hardening 

bioceramics is also a progressive field for the delivering  of FGFs to hard tissues such as bone 

and teeth [77]. There is another delivery method known as hydrogels that resemble in vivo 

extracellular matrices better than other delivery methods. FGFs fabricated into hydrogels are 

very secure and are released by enzymatic reactions or hydrolytic cleavages [76]. The release 

rate of FGFs from hydrogels is dependent on the charge characteristics and the biodegradability 

of the hydrogel material 

Scope of the Present Work: 

hFGF1 as a universal ligand binds to all the four types of FGFRs. hFGF1 plays a vital role in 

regulating wound healing and angiogenesis due to increasing proliferation of fibroblasts and 

embryonic cells. However, hFGF1 as a therapeutic agent has low thermodynamic stability and a 

short half-life in vivo.  

One of the research interests of Dr. Kumar’s group is to investigate the structural and functional 

aspects of the FGF-1 protein as a vital protein involved in the various vital cellular processes, 

especially in wound healing. Based on the importance of the subject, several studies have been 

reported regarding the development of a potential therapeutic agent to accelerate wound healing. 

To achieve this aim, the engineering of growth factors and cytokines has lately attracted lots of 

attention in medicine. However, there are numerous commercial growth factors to improve 

wound healing in today’s market, such as PDGF, TGF, EGF, FGF, the development of a novel 

cure is still a clinical challenge. 

The previous work done in our group (R136E FGF1 mutant) showed an increase in cell 

proliferation activity, stability of FGF1 and decreased heparin binding affinity significantly 

compared to wildtype hFGF1. In the first study, we focus on the introduction of another single 
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mutation in FGF1(R136sY) to increase thermal stability, resistance to proteases, half-life, and 

biological activity of FGF1 using site directed mutagenesis compared to wtFGF1. Tyrosine 

sulfation is a common post-translational modification in secreted and membrane-bound proteins 

[77]. Sulfotyrosine is involved in several types of protein-protein interactions due to its 

biological function. For example, sulfotyrosine has been identified in binding of chemokine to 

the chemokine receptors [78]. Tyrosine sulfation also plays a determined role in the coagulation 

cascade; it has been involved in several clotting factors as well as in natural thrombin inhibitors 

[79-80]. To obtain the aim, we designed a single mutation on wtFGF1 by substituting one 

positive charge residue at position 136 with a negatively charged residue. The introduced 

mutation (R136sY) was placed in heparin binding pocket. It was predicted that the designed 

variant would reduce the electrostatic interaction between the positively charged residues to 

develop a clear vision of the role of heparin in hFGF1 activation and cell signaling.  

The second study aims to characterize the variant using biophysical methods to monitor the 

overall structure, conformational stability, and backbone flexibility. Therefore, the engineered 

variant gives us a better understanding to overcome the burdens and challenges of wild-type 

FGF, such as unfolding at physiological temperature, susceptibility to proteolytic degradation, 

and severely limiting its bioavailability. Our results lead us to future development in compatible 

biomaterials for topical and internal applications such as treating a variety of biomedical 

conditions, including wound healing.  
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CHAPTER 2 

Overexpression, Purification, and Characterization of the Human Acidic Fibroblast 

Growth Factor Variants and Evaluation of its effects on the Structure, Stability, and Cell 

Proliferation Activity of the hFGF1. 

Abstract  

Human acidic fibroblast growth factor (hFGF1) plays an important role in cellular processes 

such as cell proliferation, cell differentiation, angiogenesis, and tumor growth. hFGF1 is found to 

have a low half-life in vivo and low melting temperature in the physiological range (Tm =42˚C). 

It’s also believed that heparin’s interaction with FGFRs is mandatory to stabilizes the FGF1-

FGFR binary complex and signaling. 

In this context, engineering via charge reversal mutation (R136 sulfoY or R136sY) at heparin 

binding pocket is performed to study the effects of decreasing the positive charge at the heparin 

binding pocket on the protein stability and cell proliferation as compared to R136E. 

After obtaining the pure protein, characterization of the single (R136sY) variant was performed 

to monitor the overall structure, conformational stability, and backbone flexibility. A cell 

proliferation assay is used to assess the bioactivity of the designed variant. The results of this 

study clearly indicate the introduced mutant doesn’t change the secondary and tertiary structure 

of hFGF1. Based on the limited enzymatic digestion and 8-Anilinonaphthalene-1-sulfonic acid 

(ANS) binding experiments, the designed mutation renders the growth factor more resistant to 

proteolytic enzymes and more flexible compared to wtFGF1 molecule. Moreover, thermal 

denaturation data indicates R136sY mutant shows higher Tm than wtFGF1. In conclusion, the 

introduction of the R136sY mutant makes hFGF1 more resistant to thermal, chemical, and 

proteolytic digestion and increases mitogenic activity. 
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Introduction  

As a large class of biomolecules,  growth factors  play a vital role in cell growth, development, 

and differentiation [4]. Fibroblast growth factors (FGFs) consist of a family with twenty-two 

related proteins that have an important role in mitogenic and cell-survival activities. All the FGF 

family members show strong mitogenic properties needed for proper growth and development 

[1-3]. One family member is known as the acidic fibroblast growth factor (FGF1). The human 

FGF1 (hFGF1) is found as a positively charged protein with a molecular weight around 16kDa. 

The hFGF1 has a relatively short half-life of 5 minutes and low thermal stability in the body, 

with a melting temperature (Tm = 42°C) close to the physiological range [5].  

Binding of hFGF1 to heparin not only increases the stability but also protects the protein against 

proteolytic digestion and denaturation via heat. Heparin is a polydispersed sulfated molecule 

known as glycosaminoglycans by repeating disaccharide chains of L-iduronic acid, and D-

glucosamine found in the extracellular matrix and cell surfaces. hFGF1 binds to the heparin to 

eliminate the charge-charge repulsion via electrostatic interactions with the positively charged 

residues near the c-terminus in the region known as the heparin-binding pocket,  and it renders 

the protein less susceptible to proteolytic cleavage and degradation [6].  

Despite several studies, the role of heparin in the activation of fibroblast growth factor proteins 

and the protein receptor interactions (FGFRs) is still controversial. Tyrosine kinases (RTKs) as a 

member of the FGFRs family, on the surface of cell membranes, stimulating intracellular 

signaling pathways which are responsible for processes such as cell proliferation, cell 

differentiation, and cell migration. Based on the multidimensional nuclear magnetic resonance 

(NMR) technique, 3D solution structure of protein shows that hFGF1 consists of twelve β-

strands arranged in an antiparallel fashion into a β-barrel structure [7-10]. 
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The introduction of R136E variant as a point mutation into the receptor binding site and heparin 

binding pocket of hGFGF1 was constructed by previous research in our lab. The variant 

increased the inherent stability and enhance bioactivity of the hFGF1, which can be applied for 

potential pharmaceutical use in wound healing medications [11-15]. Most of these hFGF1 

variants have been reported based on the introduction of point mutations into the receptor 

binding site and heparin binding pocket of hFGF1 and then increases its stability.  

The Prior work performed in our lab demonstrated that mutations in the heparin binding pocket 

could modulate the stability and mitogenic activity, which is the purpose of this project [16-19]. 

This chapter is focused on introduction of R136sY as a variant of hFGF1 using site directed 

mutagenesis and characterization of R136sY mutant compared to R136E and wtFGF1(Fig. 1). 

 

 

 

 

 

 

 

Fig. 1: Amino acid sequence of wtFGF1. The residues highlighted in red, and green represent the 

mutated residues in wtFGF1 to form R136E and R136sY, respectively.  

 

Both R136E and R136sY are located in hFGF1’s heparin-binding region (Fig. 2). At both 

mutations, a polar positively charged amino acid is replaced with a polar negatively charged one 

[20]. Replacement of the arginine residue with negatively charged residue decreases the 

wtFGF1 
MFNLPPGNYK KPKLLYCSNG GHFLRILPDG TVDGTRDRSD QHIQLQLSAE SVGEVYIKST 

ETGQYLAMDT DGLLYGSQTP NEECLFLERL EENHYNTYIS KKHAEKNWFV GLKKNGSCKR 

GPRTHYGQKA ILFLPLPVSS D 

R136E 

MFNLPPGNYK KPKLLYCSNG GHFLRILPDG TVDGTRDRSD QHIQLQLSAE SVGEVYIKST 

ETGQYLAMDT DGLLYGSQTP NEECLFLERL EENHYNTYIS KKHAEKNWFV GLKKNGSCKR 

GPETHYGQKA ILFLPLPVSS D  

R136sY 
MFNLPPGNYK KPKLLYCSNG GHFLRILPDG TVDGTRDRSD QHIQLQLSAE SVGEVYIKST 

ETGQYLAMDT DGLLYGSQTP NEECLFLERL EENHYNTYIS KKHAEKNWFV GLKKNGSCKR 

GPsYTHYGQKA ILFLPLPVSS D  
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repulsion between the positively charged amino acid residues in the heparin-binding region, 

which can plausibly lead to increase the inherent stability of the hFGF1. Moreover, the 

substitution of Arg by Glu or sulfo-Tyr will increase the variant hFGF1’s resistance to trypsin 

digestion since trypsin cleaves at the C-terminal of arginine and lysine residues.  

 

 

Fig. 2: Ribbon representation of mutated residue location in wtFGF1 structure. 

 

The purpose of this chapter is to focus on the structural forces that contribute to high stability of 

the mutation. Altering the primary amino acid sequence can potentially affect the secondary and 

tertiary structure of the protein; then, analyses are performed to ensure that the three-dimensional 

structure of the variant is not significantly altered. Structural analyses are utilized to assess the 

role of the amino acid mutations on hFGF1 variants contributing to its higher stability and 

increased biological function. In conclusion, the R136sY variant have been demonstrated to have 

a higher inherent stability as compared to wtFGF1 but similar inherent stability as compared to 

R136E mutant. 

Results and Discussion  

Human acidic fibroblast growth factor (hFGF1) is a 155-amino acid, an all 𝛽-sheet protein. The 

region on hFGF1 between residues 124 and 140 facilitates heparin binding (Fig. 2). Net positive 
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charge related to the six polar, basic amino acids at physiological pH located in the heparin 

binding pocket [21]. Previous studies have demonstrated that the repulsion interaction between 

the positive residues in heparin bonding pocket on hFGF1 makes it unstable and unlikely to 

complex with the FGF receptor. Consequently, binding of hFGF1 to the heparin contributes to 

the stability of the growth factor [22]. 

1) Site Directed Mutagenesis and Bacterial Transformation:  

The mutations are designed on FGF1 plasmid by using the Quick Changes site directed 

mutagenesis kit (Agilent Inc. USA). The single mutant (R136sY) is engineered in the heparin 

binding pocket of FGF1. 

1μL of the vector pET20b-R136Y FGF1 plasmid is added to 100μL of BL-21 (DE3) pLysS 

competent E. coli cells. Well-standardized heat shock-based transformation procedure is applied 

to transform the cells. In the following steps, a mixture of the competent E.coli cells and the 

plasmid of R136Y is placed in a water path for 45seconds. At the next step, 800μL of the sterile 

lysogeny broth (LB) is added to the cells to nurture them while they are incubated in a shaker at 

250 rpm for 45 minutes at 37°C. A 100μL of competent E.coli and the R136Y plasmid are spread 

on an Agar plate included the desired concentration antibiotics. The Ampicillin (Amp) and 

Chloramphenicol (Cap) are utilized since the gene in FGF1 plasmid is resistant to Amp and Cap. 

Therefore, only the competent E. coli cells containing FGF1 plasmid can survive. At the end, the 

Agar plate included bacterial cells and the antibiotics are stored upside down in an incubator for 

14-15hours at 37°C. Therefore, transformation of R136Y plasmid is successfully completed 

which is depiced by the presence of bacterial colonies on the plate (Fig. 3) 
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 A B 

Figure 3: Transformation of R136Y plasmid by using strains of competent E. coli cells (BL-21 

(DE3) pLysS). Positive control (Panel- A) and Negative control (Panel- B). 

 

2) Recombinant Protein Expression:  

Small scale expression is accomplished before starting large scale expression to check the 

presence of protein. That is started by inoculation of one or more colonies from Agar plate into 

LB broth included antibiotics (Amp and Cap). The overnight culture is inoculated into LB 

included Amp and Cap; then, incubated at 37°C for 2.15 hours at 250 rpm. After 2.15 hours, the 

culture is checked by UV visible spectrometer at wavelength 600nm to measure the optical 

density (OD). When the culture reached the required OD (between 0.4 to 0.6), O-Sulfonate-L-

tyrosine sodium salt (2 mM) is added to the culture to synthesis sulfated peptide. When the cells 

meet an OD600 between 06-0.8, the isopropyl 𝛽-D-1- thiogalactopyranoside (IPTG) is added to 

induce expression. IPTG is a bimolecular reagent whose chemical structure is analogous to 

allolactose. IPTG is significant because it stimulates lac operon which can induce the expression 

of protein in BL-21 (DE3) pLysS competent E. coli cells. Cells were grown for an additional 7 h 

at 37°C. After 7 hours, cells are harvested by centrifugation and resuspended in buffer containing 

10 mM phosphate, 25 mM ammonium sulfate, 100 mM sodium chloride, 5% glycerol, 1mM 

EDTA, 1% BME and 1mM PMSF at a pH of 7.2. The bacterial cells are sonicated, then 

centrifuged to obtain the protein of interest. Expression of the protein is checked by running 
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SDS-PAGE. Optimization of IPTG concentration is then performed. Based on the result, we 

consider 2 mM as a desired concentration for induced reagent in the expression of R136sY FGF1 

protein (Fig. 4). 

Fig. 4: SDS-PAGE analysis of R136sY FGF1 protein overexpression by 5 mM IPTG (Panel- A), 

2 mM (Panel- B) and 0.8 mM (Panel- C). Induced sample (Lane-1); Supernatant (Lane-2); Pellet 

(Lane-3); Marker-pure wtFGF1 (Lane-4). 

 

3) Protein Purification:  

Purification of the hFGF1 and its mutants is achieved by using heparin Sepharose affinity 

column chromatography. hFGF1 and its variants are purified using a stepwise sodium chloride 

gradient in 10 mM sodium phosphate buffer (PB) containing 25 mM (NH4)2SO4 at pH 7.2. While 

pure wtFGF1 is typically obtained in the 1.5 M sodium chloride buffer fraction, R136E and 

R136sY are eluted in the 0.8 M sodium chloride buffer fraction. Since the binding affinity of the 

R136E and R136sY variants is weaker than pure wtFGF1, they are eluted in less sodium chloride 

buffer fraction (Fig.5).  
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Fig. 5: SDS-PAGE analysis of proteins wtFGF1 (Panel- A), R136E (Panel- B) and R136sY 

(Panel- C) purified by heparin Sepharose affinity chromatography at different concentrations of 

NaCl. Supernatant (Lane-1); 10 mM PB + 100mM NaCl (Lane-2); 10 mM PB + 300 mM NaCl 

(Lane-3); 10 mM PB + 500 mM NaCl (Lane-4); 10 mM PB + 800 mM NaCl (Lane-5); 10 mM 

PB + 1500 mM NaCl (Lane-6); Marker-pure wtFGF1 (Lane-7); All buffer fractions included 25 

mM (NH4)2SO4 at pH 7.2 

 

The yields of the purified wtFGF1 and the single mutant proteins are in the range of 10–20 mg 

per liter of bacterial culture.  

4) Fluorescence Spectroscopy: 

Fluorescence spectroscopy is utilized to examine the tertiary structure of proteins and monitor 

the structural differences between the wtFGF1 and its variants. wtFGF1 displays intrinsic 

fluorescence due to the presence of one tryptophan (W121) and eight tyrosine residues. The 

fluorescence spectrum is analyzed by examining the presence or absence of peaks at 308 nm and 

350 nm. The intrinsic fluorescence spectrum of native wtFGF1 shows an emission maximum at 

308 nm, representative of the eight tyrosine residues in the native protein. In the natured state(s) 

of the protein, the fluorescence of the single tryptophan residue (W121) is mostly quenched by 

lysine and proline residues. Fig.6 exhibits the overlay of intrinsic fluorescence spectra of 

wtFGF1 and its variants. The result indicates that the intrinsic fluorescence spectra of all the 

designed variants shows an emission maximum at 308 nm the same as wtFGF1. Furthermore, the 
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presence of tyrosine peak at 308 nm and absence of tryptophan peak at 350 nm implies that the 

tertiary structure of the FGF1 is not significantly changed due to the introduced mutations.  

Fig. 6: Intrinsic fluorescence spectra of wtFGF1 and the designed variants. wtFGF1 (red), R136E 

(green), R136sY (blue).  

 

5) Circular Dichroism (CD) Spectroscopy: 

Far-UV CD spectral data is used to examine the secondary structure of proteins and monitor the 

structural differences between the wtFGF1 and its variants. 

The overlay of far-UV CD spectra of wtFGF1 and the variants shows there are no changes in the 

secondary structures of FGF1 after mutations (Fig. 7). The negative peak at 208 nm (class II β‐

protein structure) and the positive peak at 228 nm (β‐turns, loops and aromatic side chains) show 

no significant difference in terms of the global secondary structure (β-trefoil). 
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Fig. 7: Circular dichroism (CD) spectra of wtFGF1 and its variants. wtFGF1 (red), R136E 

(green), R136sY (blue).  

 

6) 8-Anilinonaphthalene-1-sulfonic acid (ANS) Binding Assay: 

8-anilino-1-nathalenesulfonate (ANS) is a non-polar fluorescent dye that is generally used to 

evaluate the presence of solvent-exposed hydrophobic surface(s) in proteins [26]. The relative 

fluorescent intensity is directly proportional to the number of the hydrophobic amino acids in the 

protein and the number of ANS molecules bound to the protein. Normally, hydrophobic residues 

are buried inside the protein core. Therefore, increasing the ANS fluorescence indicates exposure 

of these hydrophobic residues toward the surface of the protein.  

A comparison of the ANS curves reveals that the relative fluorescence intensity for R136E, and 

R136sY mutants is similar and lower than wt-hFGF1 (Fig. 8). These results show that the 

charge-reversal at position 136 renders the proteins less flexible, increases compactness and 

induces changes in the solvent exposed surface.  
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Fig. 8: ANS binding curves of wtFGF1 and the variants in the absence of heparin. wtFGF1 (red), 

R136E (green), R136sY (blue).  

 

7) Proteolytic Digestion: 

Limited trypsin digestion (LTD) assay is a helpful technique to evaluate the subtle changes in 

flexibility of the backbone caused by engineered mutations in the heparin-binding pocket of 

hFGF1 [27]. Trypsin as a serine protease cleaves polypeptides at the carboxyl end of positively 

charged amino acids lysine and arginine residues [28]. Moreover, wtFGF1 contains three 

arginine and nine lysine residues. Limited trypsin cleavage is then accomplished on wtFGF1 and 

the designed mutations to reveal the effects of the individual mutations on the conformational 

flexibility of the arginine and lysine residues in FGF1.  

At the first, the appropriate trypsin concentration is determined by preparing different 

concentration of the enzyme (0.001, 0.005, 0.01, 0.05, 0.1, 0.5 and 1mg/ml). The trypsin with 

different concentration is incubated with the protein at the same time duration, 30 min (Fig.9). 
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The desired trypsin concentration is obtained based on 10% undigested protein (Fig.10). Trypsin 

digestion time dependent is then started with the desired trypsin concentration (0.05 mg/ml). 

Based on the result, after 40 minutes incubation with the enzyme, wtFGF1, R136E and R136sY 

mutants are digested by 90%, 75% and 10% respectively (Fig. 12). The densitometric analysis 

results indicate that R136E and R136sY mutants are resistant against the action of trypsin 

whereas wtFGF1 is digested by 80% in the first 20 minutes (Fig. 12). Manipulating of wtFGF1 

by negative charged residue introduced at position R136 decreases repulsions in the heparin 

binding pocket, renders the tertiary structure of hFGF1 more compact and increases the 

resistance of protein to proteolytic digestion. Moreover, substitution of one of the three arginine 

residues by glutamic acid or sulfotyrosine renders the designed hFGF1 mutations resistant due to 

eliminate a trypsin cleavage site. The trypsin digestion results are in a good agreement with ANS 

binding experiment regarding decreasing flexibility of FGF1 due to the designed variants. 

Fig. 9: SDS-PAGE analysis of concentration dependent limited trypsin digestion of R136sY 

variant. 0.1 mg/mL of proteins only (Lane-1); 1 mg/mL of trypsin only (Lane-9); Every lane 

represents specific concentration of trypsin at 30 min incubation, 0.001 mg/mL of trypsin (Lane-

2); 0.005 mg/mL of trypsin (Lane-3); 0.01 mg/mL of trypsin (Lane-4); 0.05 mg/mL of trypsin 

(Lane-5); 0.1 mg/mL of trypsin (Lane-6); 0.5 mg/mL of trypsin (Lane-7); 1 mg/mL of trypsin 

(Lane-8).  
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Fig. 10: Densitometric analysis of concentration dependent limited trypsin digestion of R136sY 

variant in absence of heparin as monitored by SDS-PAGE.  

 

Fig. 11: SDS-PAGE analysis of time dependent limited trypsin digestion of wtFGF1 (Panel –A), 

R136sY (Panel-B) and R136E (Panel-C) variants. 0.1 mg/mL of proteins only (Lane-1); 0.05 

mg/mL of trypsin only (Lane-2); Every lane represents specific time for trypsin incubations, 2 

minutes (Lane-3); 4 minutes (Lane-4); 6 minutes (Lane-5); 10 minutes (Lane-6); 15 minutes 

(Lane-7); 30 minutes (Lane-8); 45 minutes (Lane-9); 60 minutes (Lane-10); 90 minutes (Lane-

11); 120 minutes (Lane-12); 150 minutes (Lane-13).   
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Fig. 12: Densitometric analysis of time dependent limited trypsin digestion of wtFGF1 and the 

designed variants in absence of heparin as monitored by SDS-PAGE, wtFGF1 (red), R136E 

(green), R136sY (blue). 

 

8) Thermal Denaturation: 

The thermal denaturation technique, based on far-UV CD, is used to measure protein’s 

conformational stability under high temperatures and compare the thermal stability changes of 

wtFGF1 and its variants. In CD, thermal stability is determined by fractional unfolded calculated 

by the average molar ellipticity at different temperature (25°C to 90°C). Thermal denaturation 

plot indicates melting temperature (Tm), which is defined as the temperature at which 50% of the 

protein denatures [28].  

The analysis of the thermal stability data of the wtFGF1 and the FGF1 mutants  

reveals higher thermal stability level for R136E and R136sY with the Tm being 56°C and 54°C 

respectively compared to the wild type with the Tm = 42°C (Fig. 13). 
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Fig. 13: Thermal stability analysis of the wtFGF1 and its variants in the absence of heparin using 

Circular Dichroism, wtFGF1 (red), R136E (green) and R136sY (blue).  

 

The thermal equilibrium unfolding data depicts that the introduction of positively charged 

residue at position 136 increases the stability of the protein variants with 12-14°C in the thermal 

resistant. It also seems substitution of arginine by sulfotyrosine and replacement of Arginine with 

Glutamic acid render the protein more compact compared to wtFGF1. This compactness might 

strengthen the interactions inside the protein core and stabilize the protein against thermal and 

enzymatic degradation. Improvement the stability level of the variant protein compared with the 

wtFGF1strongly supports our hypothesis. These reported results also are in a good agreement 

with the data from limited trypsin digestion. 

9) Differential Scanning Calorimetry: 

Differential scanning calorimetry is performed to examine the thermal stability and refolding of 

proteins using DSC (Fig.14). According to the DSC profiles, designing charge-reversal mutation 

at heparin binding pocket on FGF1(R136sY) increases the thermal stability with 12°C compared 
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to wtFGF1and reduces the thermal stability 2°C compared to R136E. The results of thermal 

refolding by DSC show that the Tm of refolded wtFGF1, R136sY and R136E is ~ 67°C, 69°C 

and 42°C, respectively. Furthermore, the designed proteins (R136sY and R136E) are more 

thermal stable than wtFGF1. 

 

Fig. 14: Thermal unfolding (Panel -A) and refolding (Panel -B) of proteins measured by DSC, 

wtFGF1 (red), R136E (green) and R136sY (blue).  

 

10) Urea Denaturation 

The urea denaturation technique, based on the change in intrinsic fluorescence intensity at 305 

nm/350 nm, is accomplished to monitor protein’s conformational stability under increasing urea 

concentration and compare the chemical stability changes of wtFGF1 and its variants. 

However, the urea denaturation mechanisms are not still clear. Several studies reported the 

correlation between urea-induced unfolding proteins and urea interactions to protein’s peptide 

bonds, polar amino acids, non-polar amino acids, side chains or both polar and non-polar amino 

acids. In addition, researchers have challenges regarding the effect of urea on electrotactic 

interactions or hydrogen bonding [29]. 
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There is a correlation between protein thermal, chemical stability, and protein’s half-life. 

Therefore, higher biological activity at physiological temperature for an extended time duration 

is expected for proteins with higher Tm and Cm values. The denaturation concentration (Cm) was 

defined as the urea concentration which 50% of the protein population is in a denatured state 

[30]. The overall trend of the curves of wtFGF1 and its variants displays that both R136E and 

R136sY are more stable at higher urea concentrations than in comparison to wtFGF1 without 

heparin (Fig.15). Substitution of Arginine by glutamic acid or sulfotyrosine at 136 positions 

reduces positive charge repulsion in the heparin binding pocket and makes the protein more 

compact and stable against chemicals compared to wtFGF1. 

Fig. 15: Urea stability analysis of wtFGF1 and its variants in the absence of heparin, wtFGF1 

(red), R136E (green) and R136sY (blue).  

 

The results implies that wtFGF1 can be simply lost its tertiary structure by exposed to 1.5 M of 

urea while the tertiary structure of the engineered R136E and R136sY mutants would be lost by 

1.8 M and 2.8 M of urea respectively (Fig. 15). Therefore, the designed variants are thermally 
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unfolded at high temperatures and chemically denatured in high urea concentration. In 

conclusion, the results from the urea denaturation experiments indicate that the introduction of 

R136E and R136sY mutations make the protein more stable than wtFGF1. These results are 

consistent with the structural flexibility data. 

11) Bioactivity Assay: 

This experiment is accomplished to assess how the introducing mutations affect the cell 

proliferation activity of the protein at different concentrations. hFGF1 as a heparin binding 

protein plays an important role in stimulating mitogenic and angiogenic activity. Several studies 

indicated that heparin is critical for FGF receptor activation. In this context, decreased heparin 

binding affinity of the charged reversed single mutation in FGF1(R136sY) is expected to result 

in decreased activation of the receptor. However, this cell proliferation study implies that the 

hFGF1 variants with reduced heparin binding affinity show increased cell proliferation activity. 

Both R136E and R136sY mutants display same trend in bioactivity assay at protein 

concentrations below 69 ng/ml. Fig. 16 depicts that there is no significant difference between 

bioactivity level of wtFGF1 and its variants at the highest protein concentration (69 ng/ml) but 

that displays higher cell proliferation activity for R136sY and R136E in compared to wtFGF1 at 

protein concentration range of 2-69 ng/ml. 
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Fig. 16: Cell proliferation activity of NIH 3T3 cells treated with wtFGF1(red), R136E (green) 

and R136sY(blue) at different concentration (69, 40, 29, 12, 6, 2 and 0 ng/ml). 

 

Based on the results, the reduction in the charge-charge repulsion in the heparin binding region 

can led to decreasing interaction of fibroblast growth factors with heparin and increasing cell 

proliferation activity. In the studies, reported by Moscatelli and coworkers, have showed that 

heparin affinity binding is not mandatory for activation of FGF2-receptor interaction. 

In another study, substitution of two or all three cysteine residues in hFGF1 with serine reduces 

hFGF1 affinity towards heparin despite increasing physiological half-life and exhibition 

prolonged biological action [31]. Several mutagenesis studies have indicated that interaction of 

fibroblast growth factors with heparin is not essential for FGFR activation and inducing 

downstream signaling pathways. Similar observation by other groups showed that there is a 

correlation between increased stability and enhanced cell proliferation activity irrespective of 

heparin binding. 
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In conclusion, R136E and R136sY mutations prolong mitogenic activity in comparison to 

wtFGF1 [16, 17].  

Conclusions  

FGF1 protein participates in the various key cellular processes such as wound healing. Based on 

importance of this subject, several studies have reported in developing a potential therapeutic 

agent to enhance the wound healing process. For this purpose, engineering of growth factors has 

currently attracted lots of attention in the field of medicine.  

A previous study of the introduced hFGF1 variant in our lab, R136E, has indicated an increase in  

thermal and proteolytic stability of hFGF1 and a decrease in the protein’s affinity for HS [14]. In 

addition, R136E mutant showed higher (about seven times) cell proliferation activity compared 

to wt-hFGF1 [14]. Furthermore, it can be inferred that increased structural stability of mutant 

protein leads to enhanced activity of the protein.  

In this research, we have introduced another single charge-reversal mutation by substitution of 

R136 to sulfotyrosine in the HBR of hFGF1 to monitor the overall structure, conformational 

stability, backbone flexibility and bioactivities of the protein compared to R136E and wtFGF1. 

This project’s basis is related to understanding the role of individual residues in the heparin 

binding pocket region of FGF1 and increasing the half-life, and biological stability of the protein. 

Based on the bioactivity assay outcomes, there are higher mitogenic activity for the introduced of 

R136sY mutant compared to wtFGF1 (what about compared to R136E in this paragraph). The 

overall data obtained in the current chapter indicate the designed mutants make hFGF1 reduced 

heparin binding affinity, increased cell proliferation activity and more stable against chemical, 

thermal and proteolytic stability compared to wtFGF1. In addition, the results imply that 

increased affinity for heparin does not necessarily result in increased cell proliferation activity.  
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Materials and methods  

Quikchange II XL mutagenesis kits and the competent cell (BL-21 (DE3) pLysS) were produced 

by Agilent, and Qiagen, USA supplied the DNA plasmid isolation kit. Lysogeny broth was 

obtained from IBI Scientific, USA. Cell culture medium was purchased from EMD Millipore, 

USA. Heparin Sepharose resin, used for protein purification(s), was supplied from GE 

Healthcare, USA. VWR Scientific., USA produced the buffer components (Na2HPO4, NaH2PO4, 

NaCl). American Type Culture Collection (ATCC) was the producer of NIH 3T3 cells, and 

additional cell culture reagents such as, fetal bovine serum (FBS), DMEM media and penicillin 

streptomycin was obtained from Thermo Fisher Scientific (Waltham, MA). 

All other chemicals and materials were high-quality analytical grade. Unless otherwise stated, 

samples were made in 10 mM phosphate buffer containing 25 mM ammonium sulfate and 100 

mM NaCl (pH 7.2). 

Construction and Purification of hFGF1 and the variants  

hFGF1 variant is constructed sing the site-directed mutagenesis (SDM) kit (Quik- Change II XL) 

(Fig. 17). After checking protein presence by small scale expression, large scale expression 

would be started. For expression of hFGF1, BL-21 (DE3) pLysS cells are grown to an Optical 

Density of 0.4–0.6 at Abs of 600 and incubated with O-Sulfonate-L-tyrosine sodium salt. At 

OD600 ranging from 06-0.8, the cells are then incubated with 1 mM isopropyl β-D-

thiogalactopyranoside for 7 hours at 37°C. IPTG as an allolactose analogous is used to stimulate 

lac operon which can induce protein expression in competent cells. Cells are harvested by 

centrifugation at 6000 rpm for 20 minutes, and the resultant pellet is stored in a -20ºC freezer 

until purification. To purify the R136sY mutant protein, the affinity chromatography separation 

method is accomplished using a heparin-Sepharose column. The bacterial pellet containing the 
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protein of interest obtained from the previous step is resuspended in 10 mM phosphate buffer 

containing 25 mM ammonium sulfate, 100 mM sodium chloride, 5% glycerol, 1mM EDTA and 

1% BME at a pH of 7.2. They are then ruptured using ultrasonication for 30 cycles with 20 

second on/off pulses. After adding 1mM PMSF, centrifugation at 19,000 rpm for 20 minutes is 

done to separate the supernatant without cell debris (extra contamination) from the pellet. 

Subsequently, the resultant clear supernatant containing R136sY-FGF1 is loaded to the heparin 

Sepharose affinity column, washed with the same buffer used to resuspend the pellet, and then 

exposed to a stepwise sodium chloride gradient (100, 300, 500, 800, and 1500 mM NaCl). 

Fractions are collected and 15% Sodium Dodecyl Sulfate Poly Acrylamide Gel Electrophoresis 

(SDS-PAGE) analysis is performed for each sample at different salt concentration to verify the 

purity of proteins followed by staining with Coomasie brilliant blue. The desired fraction (800 

mM NaCl) is buffer exchanged to 100 mM NaCl and concentrated down to 5 ml using a 10 kDa 

MW cutoff Millipore centrifugal concentrator. The concentration of the pure R136sY -FGF1 

protein is measured using Nanodrop and Bradford methods at A280 nm. The protein is then 

aliquoted into 1ml eppendorf tubes and stored in a -80 ºC freezer for further experiments. 

Fig. 17: pET20 expression vector with recombinant wtFGF1 gene and ampicillin resistant gene 

[24].  
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 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE):  

The protein samples are resolved on a 15% polyacrylamide gel. The gel is running in 200 V, 100 

mA. The gel is then stained using Coomassie Brilliant Blue dye and destained by a detainer 

(composition of methanol and acetic acid).  

Precipitation of protein by Trichloroacetic Acid (TCA):  

TCA preparation is performed to disrupt non-covalent bond and the addition of a reducing agent 

(2-mercaptoethanol) causes breaking any disulfide bonds or disulfide bridges to have a complete 

denatured protein. TCA is an acidic compound that consists of ester and salt (Cl-). At the first, 

TCA (10% of the protein volume) is added to protein samples to get more protein precipitation. 

After centrifugation, the supernatant is discarded, and the pellet is washed with 100% acetone 

and centrifuged again. Heating block is then used to dry the pellets and that is dissolved in 8M 

urea and blue loading dye (made up from 95% of blue dye plus 5% of 2-mercaptoethanol).  

Circular Dichroism and Fluorescence Spectroscopy  

CD and fluorescence spectra data are recorded as an average of 3 accumulations at 25 °C using a 

Jasco J-720 spectropolarimeter. The results of the CD and fluorescence spectra are obtained to 

determine the secondary and tertiary structural changes of wtFGF1 and FGF1 after mutations. 

For analysis, 13μM of protein in 10 mM PB + 25 mM (NH4)2SO4+100 mM NaCl at pH 7.2 are 

recorded using a quartz cell of 0.1 mm path length in the standard sensitivity mode with a scan 

speed of 50 nm per minute. The wavelength of the spectrophotometer is set in a range of 190-250 

nm at 25ºC, and the scanning speed is 20 nm/min. The CD data are expressed as molar ellipticity 

(deg x cm2 x dmol-1). Molar ellipticity is calculated and plotted against a wavelength. 

Intrinsic fluorescence spectroscopy is used to determine any alternation in the tertiary structure 

and folding of protein by combining 13 μM protein with 10 mM PB + 25 mM (NH4)2SO4+100 
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mM NaCl. The excitation wavelength for the fluorescence measurements is 280 nm and the 

emission is recorded from 300–450 nm. Intrinsic fluorescence is performed at these wavelengths 

to study if there are any changes between tyrosine and tryptophan residues, which fluoresce at 

308 and 350 nm, respectively. A buffer subtraction is made to correct any background noise.  

8-Anilino-1-Napthalenesulfonic Acid (ANS) Binding Assay  

ANS binding assay measurements are performed using a Fluorescence Spectrophotometer F-

2500 (Hitachi) at 25°C using a slit-width of 2.5 nm and a 10mm quartz cuvette. Extrinsic 

fluorescence experiments are made with protein concentration of 13 μM in 10 mM phosphate 

buffer containing 100 mM NaCl, and 25 mM (NH4)2SO4 (pH 7.2). Titrations using an ANS 

stock are prepared by addition of 10 μM increments of ANS followed with mixing and 

incubation for 2 minutes preceding each reading at 25⁰C. Fluorescence intensity is recorded with 

an excitation at 380 nm and emission intensity is measured at 510nm. 

Limited Trypsin  

Concentration and time-dependent limited trypsin digestion (LTD) are performed for the proteins 

dissolved in 10 mM phosphate buffer containing 100 mM NaCl, and 25 mM (NH4)2SO4 (pH 

7.2) with a total volume of 100μl. The trypsin concentration at the concentration-dependent LTD 

experiment is set over the range of 0.001-0.5 mg/ml (30 minutes incubation at 37℃) while the 

concentration for the time-dependent LTD is 0.05 mg/ml. After addition of trypsin to all protein 

samples at time-dependent LTD experiment, they are incubated at 37℃ for 2-150 minutes. The 

reaction is then stopped by the addition of 10 % trichloroacetic acid prior to analysis on 15% 

SDS-PAGE. Gels are stained using Coomassie Brilliant Blue (Sigma Aldrich) and the band 

intensity at different time points is calculated by using UN-SCAN IT software densitometric 

through plotting the average pixel intensity versus time intervals.   
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Thermal Equilibrium Unfolding 

Thermal denaturation experiments are monitored using a Jasco-1500 spectropolarimeter 

equipped with Circular Dichroism to track the unfolding nature of hFGF1 and related variants at 

increasing thermal intervals. The folding mechanism of the protein as a function of temperature 

is evaluated in the absence of heparin. The data is scanned in the wavelength range of 190-250 

nm, the scan speed of 50 nm/min and the CD data is collected at a wavelength of 228 nm. 

For spectra, protein samples are prepared using a protein concentration of 13 μM in 10 mM 

phosphate buffer containing 100 mM NaCl, and 25 mM (NH4)2SO4 (pH 7.2). A temperature 

probe is inserted into the sample cell to heat the sample, and the spectra are collected in 5 

degrees increments from 25 to 90°C. For thermal denaturation, the fraction unfolded is 

calculated using (Mx−M25)/(M90−M25) where M is the molar ellipticity value at 228 nm and M25 

and M90 are the molar ellipticity value at 25℃ and 90℃ respectively. Tm, temperature at which 

50% of the protein molecules exist in the denatured state(s), is calculated from the plot of 

fraction of unfolded protein population versus temperature.  

Differential Scanning Calorimetry 

Differential scanning calorimetry (DSC) is conducted for the proteins dissolved in 10 mM 

phosphate buffer containing 100 mM NaCl, and 25 mM (NH4)2SO4 (pH 7.2) to determine the 

thermal stability of proteins using changes in heat capacity due to exothermic or endothermic 

reactions. All samples are subjected to degassing at 25°C for 15 minutes, and the cells then are 

equilibrated for 10 minutes at the same temperature. Scans are processed from 10 to 90 °C with a 

1°C /min ramping temperature. Before running the protein samples, buffer blanks experiments 

are performed to obtain a stable baseline. CpCalc Version 2.2.0.10 software provided by the 

manufacturer is utilized to process the data.  
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Urea Denaturation 

 

Chemical denaturation experiments are monitored using a Jasco-1500 spectropolarimeter 

equipped with intrinsic fluorescence to track the conformational changes of hFGF1 and related 

variants at increasing urea concentration intervals.  

Urea, an organic compound, is useful in protein denaturation due to non-covalent bonds 

distraction. This experiment uses 8 M pure urea, 13 μM of wtFGF1 and the FGF1variants. All 

proteins are eluted in a buffer containing low salt concentration.  

For the urea denaturation, urea is steadily added to increase the urea concentration from 0 M to 8 

M, and the fluorescence value at 308 nm and 350 nm is recorded at each addition. The ratio of 

308 nm to 350 nm is recorded, and the fraction unfolded is calculated using (Fx−F0)/(F0−F8). F is 

the fluorescence value at 308 nm divided by the fluorescence value at 350 nm, and F0 and F8 are 

the fluorescence fractions at 0 M urea and 8 M urea, respectively.  

Cm, urea concentration at which 50% of the protein molecules exist in the denatured state(s), is 

calculated from the plot of fraction of unfolded protein population versus different concentration 

of urea. 

Bioactivity Assay  

3T3 fibroblast cells obtained from ATCC (Manassas, VA) are cultured in media including 

DMEM supplemented with newborn calf serum (NCS) and L-glutamine, penicillin-streptomycin 

is purchased from Thermo Fisher Scientific (Waltham, MA). Cells are grown and incubated 

overnight at 37 ℃. The bioactivity of wtFGF1and the related variants are determined by 

quantifying the cell number increase after the cells are incubated with the proteins. Starved 3T3 

fibroblasts is collected and seeded in a well plate with a seeding density of 20,000 cells/well. The 
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bioactivity assays are repeated three times at the same condition. 3T3 cell proliferation is 

assessed by the Cell Titer-Glo (Promega, Madison, WI) after 72 hours. 
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CHAPTER 3 

CONCLUSIONS AND FUTURE DIRECTIONS 

Conclusions 

Fibroblast growth factors (FGFs) family consists of 23 genes which play an important role in 

eliciting several biological processes in embryonic and adult organism. hFGF1 as a mitogenic 

factor with molecular weight of 16kDa shows high affinity for heparin. However, FGF1 has an 

essential issue that it is prone to thermal and proteolytic degradation at a biological pH and under 

physiological conditions. Site directed mutagenesis technique was then applied in this study to 

introduce the R136sY mutation with increased FGF1 stability and biological activity. The single 

mutation was introduced in the heparin binding pocket. Heparin- Sepharose column was then 

used to purify R136sY. After obtaining pure protein, it was biophysically and biochemically 

evaluated through using different techniques. The designed variant doesn’t alter overall 

secondary and tertiary structure of FGF1. The biological study of R136sY indicates higher 

mitogenic activity compared to wtFGF1. Thermodynamic and proteolytic studies imply that 

decreasing repulsion of positive charges in the heparin binding site can lead to improvement in 

structural stability of hFGF1. Based on the results from limited enzymatic digestion, thermal and 

urea denaturation, R136sY mutation renders FGF1 to be more resistant to the thermal, chemical, 

and proteolytic degradation. Therefore, the data from this study strongly supported our 

hypothesis. According to the characteristic, the engineered variant can be a good candidate for 

wound healing. 

Significance of this Thesis 

hFGF1 has an intrinsically low thermal stability and short half-life under physiological 

temperature. There have been several studies to increase the thermal and proteolytic stability of 
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hFGF1. A previous mutation studied in Kumar lab was related to substitution of arginine at 

position 136 with glutamic acid which showed increasing in stability and cell proliferation 

activity when compared to the wtFGF1. At this study, another hFGF1R136 single mutant was 

introduced to evaluate its effect on the structure, stability, and cell proliferation activity of the 

FGF1. This study creates an opportunity for better understanding structure-activity relationships 

of FGFs allowing systematic generation of novel proteins with modified properties as topical and 

injectable treatments in pharmaceutical wound healing applications.  

Future Directions 

Since 1980s, proteins have been played a critical role in pharmaceuticals industry with around 

200 marketed products including therapeutics, diagnostics, and vaccines [1]. 

In addition, combination of protein design techniques and recombinant protein technology lead 

to produce novel therapeutic agents by engineering different types of proteins. Modification of 

the desired protein by targeting its limitations and overcome the challenges is obtained through 

rational and knowledge based molecular evolution. 

The studied variant in my dissertation with improving the stability of FGF1 can be a good 

candidate in the field of diabetic research, wherein the role of hFGF1 variant will be to increase 

the glucose-lowering activity and enhance the cell proliferation ability. The variant could also be 

a new class of FGF-based protein therapeutics against Type-1 & Type-2 diabetes. 

Based on this research results, further studies are more likely to be accomplished toward 

improving the properties of the native FGF1. The studies need to be conducted on charge-

reversal mutation at heparin binding pocket at position 136 on FGF1 to increase the bioactivity 

of FGF and enhance the stability. For this purpose, site directed mutagenesis technique is utilized 

to engineer the desired variant that will be more efficient in terms of both activity and stability. 
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While our single variant (R136sY) has indicated enhanced mitogenic activity, there have been 

several hFGF1 variants demonstrating increased metabolic activity and decreased potential to 

promote cell proliferation. In regard the future work, more mutations on FGF1(R136sY) in the 

heparin binding pocket can be designed to understand the role of individual residue in the overall 

stability of the molecule. 

In addition, future studies are needed to be performed regarding heparin binding affinity of 

wtFGF1 and its variants. In this regard, isothermal titration calorimetry (ITC) is used to 

determine thermodynamic binding parameters of interactions in solution.  
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