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ABSTRACT

Machine learning algorithms have been widely used in real world applications. The

development of these techniques has brought huge benefits for many AI-related tasks, such as

natural language processing, image classification, video analysis, and so forth. In traditional

machine learning algorithms, we usually assume that the training data and test data are

independently and identically distributed (iid), indicating that the model learned from the

training data can be well applied to the test data with good prediction performance. However,

this assumption is quite restrictive because the distribution shift can exist from the training

data to the test data in many scenarios. In addition, the goal of traditional machine learning

model is to maximize the prediction performance, e.g., accuracy, based on the historical

training data, which may tend to make unfair predictions for some particular individual or

groups. In the literature, researchers either focus on building robust machine learning models

under data distribution shift or achieving fairness separately, without considering to solve

them simultaneously.

The goal of this dissertation is to solve the above challenging issues in fair machine

learning under distribution shift. We start from building an agnostic fair framework in fed-

erated learning as the data distribution is more diversified and distribution shift exists from

the training data to the test data. Then we build a robust framework to address the sample

selection bias for fair classification. Next we solve the sample selection bias issue for fair

regression. Finally, we propose an adversarial framework to build a personalized model in

the distributed setting where the distribution shift exists between different users.

In this dissertation, we conduct the following research for fair machine learning under

distribution shift.



• We develop a fairness-aware agnostic federated learning framework (AgnosticFair) to

deal with the challenge of unknown testing distribution;

• We propose a framework for robust and fair learning under sample selection bias;

• We develop a framework for fair regression under sample selection bias when dependent

variable values of a set of samples from the training data are missing as a result of

another hidden process;

• We propose a learning framework that allows an individual user to build a personalized

model in a distributed setting, where the distribution shift exists among different users.
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1 Introduction

In this chapter, we introduce the motivation and provide an overview of this disser-

tation, and then summarize the contributions of this research.

1.1 Motivation

Machine learning algorithms have been widely used in real world applications. The

development of these techniques has brought huge benefits for many AI-related tasks, such

as natural language processing [1, 2, 3], image classification [4, 5], video analysis [6], and so

forth. In traditional machine learning algorithms, we usually assume that the training data

and test data are independently and identically distributed (iid), indicating that the model

learned from the training data can be well applied to the test data with good prediction

performance. However, this assumption is quite restrictive because the distribution shift can

exist between the training data and test data in many scenarios. For instance, the collection

of medical results may be only available from some certain groups as the data from other

groups are very difficult and costly to obtain. Sensor data collection can be another example.

It is natural that different sensors may malfunction at different rates or we collect data

with different rates, indicating that some portions of the observed data are either under-

represented or over-represented. These scenarios make the iid assumption inappropriate and

incorrect, which can impose huge challenges to construct useful and reliable machine learning

models that could work in practice.

Another issue in traditional machine learning is the potential discrimination in the

model’s decision output. The goal of traditional machine learning model is to maximize the

prediction performance, e.g., accuracy, based on the historical training data. As a conse-
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quence, such models may tend to make unfair and discriminative predictions for some par-

ticular individuals or groups. One particular example is Correctional Offender Management

Profiling for Alternative Sanctions (COMPAS) [7], an machine learning algorithm applied

in multiple USA states to determine how likely a defender will be re-offended in the future.

A detailed analysis from ProPublica shows that the risk score computed by the algorithm is

more biased to the black defender, e.g., COMPAS is almost twice as likely to incorrectly de-

termine black defendants as high risk than white defendants. Therefore, unfairness and bias

caused by the machine learning models can cause serious social concerns and damage to some

unfavorable groups. It is imperative to develop fairness-aware machine learning algorithms

so that the decision can be made fair and reliable to all groups of people.

The issue of distribution shift in machine learning has drawn increasing attentions in

the past few years. When facing the distribution shift between the training and test data,

we first need to characterize the types of changes that occur from the training data to the

test data, which can help in determining the appropriate techniques to solve this issue.

Researchers have divided the distribution shift into several cases [8], such as covariate shift,

prior probability shift, domain shift, and so forth. Various techniques have been developed

to solve the distribution shift based on different scenarios. Taking the covariate shift as an

example, weighted sample [9] is proposed to correct the distribution shift, where we assign

different weights for the training data to resemble the test data so that the learned model

can be applied to the test data with good predictive performance. In addition, how to detect

and calibrate prior probability shift can be found in [10], and adversarial learning approaches

to solve domain shift are also reported [11, 12].

Fairness-aware machine learning is also an active area and researchers have developed

approaches to unveil the discrimination by either investigating historical data or prediction

2



results, and then achieve fairness by modifying the biased data, or enforcing constraints

for the models, or processing unfair prediction results. Different fairness notions [13] are

also proposed to quantify the strength of unfairness, such as demographic parity, equality of

odds and equality of opportunity. Based on these notions, various frameworks are designed to

achieve the fairness. For example, Hardt et al. [14] adjust a trained unconstrained model to

remove discrimination based on equalized odds. After adjustment, the unconstrained model

behaves like a randomized classifier that assigns each data point a probability conditional

on its protected attribute and predicted label. These probabilities are calculated by a linear

program to minimize the expected loss. Moreover, different approaches to ensure different

fairness notions are also reported [15, 16, 17].

However, most of the studies only focus on correcting distribution shift between the

training and test data or ensuring fairness of the machine learning models separately, without

considering the connection between them. However, there are several challenges in achieving

fair machine learning under distribution shift. First, how to correct the distribution shift and

achieve fairness simultaneously is under explored. Second, directly applying the approach

to solve distribution shift may cause more unfairness in machine learning models. Third,

there exist many different fairness notions and we may need to achieve several fairness

notions simultaneously, therefore it is necessary to design a unified framework which is able

to incorporate different fairness notions under distribution shift.

1.2 Overview

The goal of this dissertation is to address challenging issues in fairness-aware machine

learning under distribution shift.

First, we focus on how to achieve fairness under distribution shift in the federated

3



learning setting. Federated learning [18] is an attractive framework to handle complex data

[18, 19, 20] as it enables a new implementation of distributed deep learning over a large

number of clients. Although tremendous research has been done on the federated learning,

how to achieve fairness in federated learning is under-explored. One big challenge in federated

learning is that the training data is geo-distributed and the distribution of different clients

is also different. In addition, the test data distribution may also be unknown which triggers

another challenge of developing fair federated learning algorithms. Directly applying fairness

constraint on the training data in federated learning cannot guarantee fairness on the test

data. To address the above challenges, we propose fairness-aware agnostic federated learning

to achieve both good prediction performance and fairness for unknown test data (Chapter

4).

Second, we focus on how to achieve fairness in machine learning under sample selection

bias. In traditional supervised learning, the underlying assumption is that the training data

and test data are drawn from the same distributions. However, when the distributions on

training and test data sets do not match, we are facing sample selection bias. Consequently,

the learned model on the biased data is more vulnerable and will incur more accuracy loss

and unfairness when it comes to the test data. We investigate this problem by adopting

reweighing estimation approach for bias correction and minimax robust estimation to build

a robust framework so that the learned machine learning models are both fair and robust

for the test data (Chapter 5).

Third, we explore on fairness-aware regression when it comes to the sample selection

bias. Much of existing work has focused on the fair classification, while fair regression has

received less attentions. The prediction outcome of regression is continuous which is quite

different from classification, and new fairness notions are needed to quantify the unfairness in

4



regression so that previous frameworks on fair classification may not be applied. In addition,

the possible sample selection bias poses another challenge to build fairness-aware regression

models. We propose a general framework for fair regression under sample selection bias,

where different fairness notions can be incorporated into this framework (Chapter 6).

Fourth, we study how to select similar data for an individual user and build a person-

alized model in a distributed setting. The traditional approach to build a machine learning

model is to first collect data from different sources and then build a global model on these

data. However, the global model may not be optimal for individual users as the data dis-

tribution from different users may vary. The issue is that an individual user usually can

collect limited data and needs to retrieve similar data from other users, which brings the

challenge that how to efficiently select similar data. In addition, with the retrieved similar

data, another challenge is how to better improve the performance of the personalized model

for individual users. We design an adversarial framework that allows an individual user to

efficiently select similar data and build a personalized model (Chapter 7).

The remainder of this dissertation is organized as follows. In Chapter 2, we discuss

related work on how to correct distribution shift in machine learning and develop different

frameworks to ensure fairness in machine learning. Then in Chapter 3, we present some

preliminary background for distribution shift and fairness-aware machine learning. The main

body of this dissertation is in Chapters 4 - 7. Finally, we conclude this dissertation and discuss

future work in Chapter 8.

1.3 Summary of Contributions

In Chapter 4, we propose fairness-aware agnostic federated learning (AgnosticFair)

to deal with the challenge when the testing data distribution is unknown. We formulate
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AgnosticFair as a two-player adversarial minimax game between the learner and the ad-

versary. The adversary aims to generate any possible unknown testing data distribution to

maximize the classifier loss. We assign an individual reweighing value on each training sam-

ple and incorporate reweighing value in both agnostic loss function and agnostic fairness

constraint. As a result, the global model learned in the minimax game achieves both high

accuracy and fairness guarantee on unknown testing data. Moreover, each client can simply

deploy the global model on its local site as the learned global model guarantees fairness

on any local data. We conduct extensive experiments on two public datasets and compare

our approach with several baselines. Evaluation results demonstrate the effectiveness of our

proposed AgnosticFair in terms of accuracy and fairness under data shift scenarios. To our

best knowledge, we are the first one that formulates the problem of fairness-aware federated

learning under the data distribution shift among the clients.

In Chapter 5, we develop a framework for robust and fair learning under sample

selection bias. We embrace the uncertainty incurred by sample selection bias by producing

predictions that are both fair and robust in test data. Our framework adopts the reweighing

estimation approach for bias correction and the minimax robust estimation approach for

achieving robustness on prediction accuracy. Moreover, during the minimax optimization,

the fairness is achieved under the worst case, which guarantees the model’s fairness on test

data. To address the intractable issue, we approximate the fairness constraint using the

boundary fairness and combine into the classifier’s loss function as a penalty. The modified

loss function is minimized in view of the most adverse distribution within a Wasserterin

ball centered at the empirical distribution of the training data. We present two algorithms,

RFLearn1 for the scenario where the unlabeled test dataset D is available, and RFLearn2

for the scenario where D is unavailable. In RFLearn1, we estimate the sample selection
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probability via its density ratio of training data and test data and then correct the bias

in loss function. In RFLearn2, we introduce some natural assumptions, i.e., the samples

in the same cluster have the same selection probability which is within a range from the

uniform selection probability. The algorithm first clusters the training data and robustifies

the sample selection probability estimation of each cluster within a Wasserterin ball. We

test our algorithms on two real-world datasets and experimental results demonstrate that

our algorithms can achieve both good performance on prediction and fairness.

In Chapter 6, we propose, FairLR?, the fair regression framework under sample se-

lection bias when dependent variable values of a set of samples from the training data are

missing as a result of another hidden selection process. Our FairLR? adopts the classic Heck-

man model [21] for bias correction and the Lagrange duality theory [22] to achieve regression

fairness based on a variety of fairness notions. Our fair regression framework minimizes the

loss function subject to fairness inequality and equality constraints. We apply the Lagrange

duality theory to transform the primal problem into a dual convex optimization problem and

analyze whether fairness metrics satisfy the Slater condition, thus achieving strong duality.

For the two popular fairness notions, mean difference (MD) and mean squared error dif-

ference (MSED), we further derive two explicit formulas without optimizing iteratively. We

conduct experiments on three real-world datasets and the experimental results demonstrate

our approach’s effectiveness in terms of both utility and fairness.

In Chapter 7, we develop a learning framework that enables an individual user to

effectively collect data and build a robust model on the combination of the collected data

and his own data. For data collection, we propose an approach of using an auto-encoder

and a generative adversarial network (GAN) [23]. The auto-encoder is used to obtain data

representation that is further used to train the GAN. The trained encoder and the discrim-
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inator from GAN are sent to his neighbors. Each neighbor user uses the encoder to obtain

the representation of his data and then uses the discriminator to calculate the probability

score of his data. Data with high probability scores are combined with the user’s original

data to train the personalized model. The advantage of using GAN is that it can capture

inherent properties of the underlying data without manually specifying features. With the

requested data, we develop two approaches to improve the performance of the personal-

ized model. The first approach is weighted learning by assigning a different weight to each

record of the requested data. The data record with a high probability score computed by the

discriminator is assigned with a high weight. The weighted learning is able to capture the

importance of different data. The second approach is the adversarial learning that aims to

minimize the distribution discrepancy between the requested data and user’s own data. The

core idea of the adversarial learning is to map both the requested data and user’s own data

into the same feature space where the distribution discrepancy is minimized. Our adversarial

training is analogous to the discriminator of the GAN. The role of the discriminator is to

predict whether the generated features are from user’s own data or the requested data.
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2 Related Work

2.1 Fair Machine Learning

Fairness-aware learning received lots of attentions in the past few years. The goal

of fair machine learning is to remove discrimination and unfairness by either changing the

biased data and/or the predicted models built on the biased data. There have been lots

of works in past few years in achieving fairness in machine learning systems, which can be

generally divided into three groups: pre-processing, in-processing and post-processing.

The mainstream of pre-processing approaches [24, 25, 26, 27] is to modify the training

data to remove discriminatory patterns. The logic is that the machine learning model will

make fair predictions if it is trained on discrimination-free data. Several approaches [26, 28]

are proposed to modify the training data, including massaging, which modifies the labels of

some individual data records, sampling, which changes the sample size of different groups,

reweighting, which assigns different weights to individuals. In [27], the authors investigate

on the removal of indirect discrimination from the original data. In particular, they modify

the information of the non-sensitive attributes so that we cannot infer any information of

the sensitive attributes. Calmon et al. [29] propose a probabilistic formulation of data pre-

processing for reducing discrimination, where a convex optimization is designed to control

discrimination while limit distortion in individual data samples. Zhang et al. [16] develop

a causal graph based approach to remove the discrimination. The research in [30] applies

generative adversarial neural networks to generate fair data from the original training data

and uses the generated data to train the model. In addition, learning fair representations

from the training data also belongs to the pre-processing approaches. For example, Zhao et
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al. [31] investigate the relationship between fair representation and decision making with the-

oretical guarantee. They employ the adversarial technique to extract the fair representation.

Song et al. [32] propose an information theoretically motivated objective to learn maximally

expressive representations subject to fairness constraints.

The core idea of in-processing is to incorporate the fairness constraint into the clas-

sification model during the optimization process [15, 33, 34, 35, 36, 37, 38]. For instance,

the work [37] adds a non-discrimination constraint on the training samples during the op-

timization of the classifier. The authors in [35] study the optimization of non-convex and

non-differentiable constraints induced by the fairness. Zafar et al. [15] introduce a flexible

mechanism to achieve fairness in machine learning. They leverage a novel intuitive measure

of decision boundary fairness and transform it into a convex optimization, and the proposed

approach can be applied into logistic regression, linear regression and SVM. Wu et al. [39]

transform the fairness constraints to be convex and provide theoretical guarantees to achieve

fairness for classifiers. Donini et al. [34] present an empirical risk minimization to incorpo-

rate fairness constraint into the learning problem. It aims to make the conditional risk of

the classifier to be approximately constant subject to the sensitive variable. Both risk and

fairness bounds are derived to support the statistical consistency.

Post-processing approaches modify the prediction label by the trained classifiers. In

fact, some of the pre-processing methods can also be applicable into the post-processing, such

as massaging, reweighting, and sampling. There are also lots of works developed specifically

for post-processing. For example, Hardt et al. [14] adjust a trained unconstrained model to

remove discrimination based on equalized odds. After adjustment, the unconstrained model

behaves like a randomized classifier that assigns each data point a probability conditional

on its protected attribute and predicted label. These probabilities are calculated by a linear
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program to minimize the expected loss. Kim et al. [40] propose a rigorous framework of post-

processing to achieve fairness across different subgroups. They assume black box access to

the predictor and a relatively small set of labeled data for auditing and leverage the boosting

mechanism to remove the bias.

2.2 Distribution Shift in Machine Learning

Distribution shift widely exists in machine learning as the data in which we use dur-

ing the training will differ from what we face in the future test scenario. In many cases,

researchers may ignore the differences by presuming either the training and test data match,

or it makes no difference if they do not match. In fact, the mismatch can cause the perfor-

mance degradation or incorrect predictions when deploying the trained models into practice.

There have been lots of works in the past years to develop different frameworks to correct

the distribution shift and make the machine learning models more robust.

The earlier works to correct distribution shift, especially covariate shift, focus on the

density ratio estimation. For covariate shift, we usually assume that the feature distribution

P (X) changes over training and test data, while the conditional distribution P (Y |X) from

label to data remains unchanged, where X is the data feature and Y denotes the data

label. One major direction is to estimate the weight between the training and test data. For

example, Sugiyama et al. [41] estimate the input densities of the training and test data and

then estimate the importance by the ratio of the density estimates. The authors prove that

the reweighing of each instance is asymptotically optimal for log-likelihood estimation. In

[9], Cortes et al. develop a cluster based technique to estimate the reweighing function from

the training data to test data, and derive theoretical bound of error rate difference between

the estimation technique and using perfect reweighing. Zadrozny et al. [42] develop a general
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framework for bias correction and apply it into different machine learning models, including

bayesian classifiers, logistic regression, SVM and decision tree. Storkey et al. [43] investigate

using mixture regression to estimate the weight between the training and test data without

presuming the test and training densities are known. Another direction is to use kernel mean

matching (KMM) that reweighs training instances to match means of the test ones. Huang

et al. [44] first to propose a nonparametric method to correct sample selection bias based on

KMM. The authors first use kernel functions to transform the data into feature space, and

match training and test distributions in feature space. The advantage is that the resulted

optimization is a simple quadratic programming and can be applied straightforwardly into

several different regression and classification algorithms. Yu et al. [45] investigate KMM from

the theoretical perspective and derive high probability confidence bounds for the KMM,

which enhance the understanding of the effectiveness of KMM under covariate shift.

Robust machine learning under distribution shift has been investigated in recent years

[46, 47, 48, 49, 50]. In many cases, the density ratio estimation is challenging, e.g. we know

nothing more than weak prior knowledge on how the test distribution may shift from the

training distribution, or the estimation will incur significant error due to limited labeled

data. Wen et al. [47] consider covariate shift between the training and test data and apply

Gaussian kernel functions to reweigh the training examples and correct the shift. They

propose a minimax robust framework to minimize the most adverse distribution and provide

robust classification when it comes to the test data. Similarly, Liu et al. [46] propose a robust

bias-aware probabilistic classifier that can deal with different test data distributions using a

minimax estimation formulation. Chen et al. [49] borrow the minimax framework formulation

from [46] and apply it into the robust regression. The resulted regression model is robust

to the uncertainty caused by the sample selection bias and demonstrates the benefits on a
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number of regression tasks.

2.3 Fair Machine Learning under Distribution Shift

Most recently, there have been a few papers that study fairness from the distribu-

tionally robust perspective. Taskesen et al. [51] propose a distributionally robust logistic

regression model with an unfairness penalty. They assume the unknown true test distribu-

tion is contained in a Wasserstein ball centered at the empirical distribution on the observed

training data. The proposed model, which robustifies the fair logistic regression against all

distributions in the ball, is equivalent to a tractable convex problem when unfairness is quan-

tified under the log-probabilistic equalized opportunities criterion. However the approach ro-

bustifies the distribution at the individual data level and overlooks the overall distribution.

Reza et al. [52] propose the use of ambiguity set to derive the fair classifier based on the

principles of distributional robustness. The proposed approach incorporates fairness criteria

into a worst case logarithmic loss minimization but ignores the distribution shift. Yurochkin

et al. [53] develop an individual fair distributionally robust classifier with a Wasserstein

ambiguity set. However, the approach does not admit a tractable convex reformulation.

In addition, there has been research on fairness aware domain adaptation and transfer

learning of fairness metrics, e.g., [54, 55, 56, 57]. In particular, Schumann et al. [54] study

the fair transfer learning from source domain to target domain and provide a fairness bound

on the target domain of the predictor trained on the source domain data. Coston et al. [55]

study the fair transfer learning with missing protected attributes under the covariate shift.

Similarly, Kallus et al. [57] use covariate shift correction when computing fairness metrics

to address bias in label collection. The above works also adopt the idea of reweighing the

source examples to resemble the target domain examples during the training.
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Moreover, fair learning from label biased training data [58, 59] and fair representation

learning [60, 32, 31] are also reported. For example, the authors in [59] develop a framework

to model how label bias can arise in a dataset, assuming that there exists an unbiased

ground truth, and develop a bias correcting approach based on re-weighting the training

examples. Du et al. [61] propose a robust framework to achieve fairness in federated learning

under covariate shift between the training data and test data. It applies Gaussian kernel

to generate the adversary distribution and minimizes the worst adversary distribution loss

during training. Zhao et al. [31] investigate the relationship between fair representation

and decision making with theoretical guarantee. They employ the adversarial technique to

extract the fair representation. Singh et al. [62] study the covariate shift in the domain

adaption and assumes a known causal graph of the data generating process and a context

variable causing the shift. Reza et al. [63] apply minimax optimization to achieve robustness

fairness under covariate shift, where the fairness violation penalty term between the target

input distribution and adversary’s conditional label distribution is incorporated during the

optimization.

2.4 Distributed and Federated Learning

Distributed deep learning from multiple sources has been long investigated in the

past few years. In the pioneer work [64], the dataset is distributed in different machines and

a global model is learned by exchanging parameters between participating users. Following

this work, later researchers focus on how to train distributed deep learning models more

efficiently. For instance, Chilimbi et al. [65] propose an efficient and scalable system to al-

low the training of distributed deep learning. Wen et al. [66] develop a strategy to reduce

communication cost in distributed deep learning to accelerate the training process. More-
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over, how to improve the performance of distributed deep learning has been investigated

extensively [67, 68, 69]. Distributed deep learning is usually applied in the data center set-

ting, where the data are divided into different powerful machines so that we do not have to

concern about the data security, data distribution, or computing power. Federated learning,

as a more general distributed learning framework [18], is proposed to push deep learning

to mobile and edge devices, in which mobile devices only have limited data and users are

willing to collaboratively learn a joint model. Lots of challenges arise for federated learning,

including data privacy, non-iid data distribution among different devices, imbalanced data,

limited computing power of mobile devices [70, 19].

There exist extensive research works on federated learning aiming to solve various

challenges. The pioneer work of federated learning is proposed by [18] where it considers

that data is distributed among different mobile devices and proposes an algorithm called

FedAvg to enable the collaborative learning among different clients. In this pioneer work, it

points out several challenges mainly including the limited bandwidth of federated learning

clients, privacy leakage and non-IID (independent and identically distributed) data among

different clients. Lots of subsequent works investigate on how to solve the above issues.

The work [18] takes the first shoot to reduce massive communication cost by applying

FedAvg to reduce the communication rounds during the model training. The authors in [71]

propose to sparsify the exchanged parameters by selecting important ones so that the total

number of parameters per round is reduced significantly. In [72], the authors design a gradient

quantization approach using less bits to represent the full 32 bits float gradient, which can

reduce the communication cost in both uploading and downloading stages. In addition,

there are also lots of works toward reducing communication cost [67, 73, 74, 75, 76]. The

privacy protection in federated learning also receives increasing attentions in the past few
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years. For example, the work [70] encrypts the exchanged parameters of local clients before

uploading to the central server. The authors in [77] adopt the concept of differential privacy

and add differentially private noise on the exchanged parameters to protect the client privacy.

Applying the encryption and differential privacy to prevent privacy leakage are also reported

in [78, 79, 80, 81].

The non-IID data widely exists in federated learning due to the massive distributed

clients and our work falls into this category. In [19] the authors study the federated learning in

a multi-task setting where each client collects individual data with its own statistical pattern.

The proposed model learns individual pattern for each client while simultaneously borrow

shared information from other clients. The research [82] considers the non-IID distribution

among different clients and provides theoretical convergence analysis. The authors in [83]

point out the distribution shift in the training data of federated learning and proposes three

approaches to adapt the federated learning model to enable the personalization of each local

client. In [84] the authors propose a federated learning framework to train the model from

non-IID data, where a small subset of data is globally shared among all the clients. Most

recently, the authors in [85] propose agnostic federated learning. However, the proposed

framework solves the problem by optimizing the worst case for a single client.
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3 Preliminaries

In this chapter, we provide the essential notions and fundamental background used

in this dissertation. We provide the fairness notions for both classification and regression.

Then we provide some basics of the distribution shift.

3.1 Fairness Notions of Classification

We first give the definitions used for fair machine learning classification. Suppose we

have a labeled dataset D, consisting of a set of unprotected attributes X ∈ Rn, a class label

Y and a protected attribute S. For easy discussion, we consider Y ∈ {0, 1} and S ∈ {0, 1} as

binary variables. Consider the following classifier f : X → Y , which maps the unprotected

attributes X to the class label Y . The requirement of fair classification is that the predicted

label Ŷ = f(X) is unbiased respect to the protected variable S. Previous works [13, 86]

provide several definitions to quantify the fairness of the classifier.

Definition 1. Demographic parity. Given a labeled dataset D and a classifier f : X → Y ,

the property of demographic parity is defined as P (Ŷ = 1|S = 1) = P (Ŷ = 1|S = 0).

In Definition 1, P (Ŷ = 1|S = 1) denotes the conditional probability of favorable

group receiving a positive decision while P (Ŷ = 1|S = 0) indicates the conditional probabil-

ity of unfavorable group receiving a positive decision. We require that the predicted labels

are independent of the protected attribute. We usually use risk difference to quantify the

unfairness measured by demographic parity.
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Definition 2. Risk Difference (RD) is used to measure the discrimination of the model:

RD = |Pr(Ŷ = 1|S = 1)− Pr(Ŷ = 1|S = 0)|. (3.1)

We can say the model is more fair if RD is smaller. In many fair machine learning

frameworks, we usually write down the optimization subject to the fairness constraints as:

minimize fD(w)

subject to RD ≤ τ

(3.2)

where w are the parameters of the machine learning models that need to be optimized and

τ ∈ R+ is the threshold of constraint. Usually the optimization of Equation 3.2 under the

fairness constraint define by RD is computationally intractable to obtain because the fairness

constraint contains the indicator function. An alternative fairness constraint is defined as the

covariance between the sensitive attribute and the signed distance from the non-sensitive

attribute vector to the decision boundary. It has been proved that the decision boundary

fairness is a concept of risk difference [39]. We write this alternative definition CD(x; w) as:

CD(x; w) = E[(s− s̄)dw(x)]− E[(s− s̄)]dw(x) ∝
n∑
i=1

(si − s̄)dw(xi), (3.3)

where s̄ is the mean value of the protected attribute, xi is the ith data sample in D, and si

is the protected attribute value of xi. For linear classification models, it has been proved in

[?] that decision boundary is defined by xTw = 0 so that we can reduce Equation 3.3 as

CD(x; w) =
n∑
i=1

(si − s̄)xTi w (3.4)
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3.2 Fairness Notions of Regression

Different from the fair classification, the prediction of the regression classifier is con-

tinuous and the protected attribute can either be categorical or numerical. In the following,

we use ŷ to denote the prediction outcome of regression and a to denote the protected

attribute. We first define the used definitions in fairness regression problems.

Definition 3. The mean difference (MD) of numeric prediction ŷ in D by a binary protected

attribute a is defined as

MD(ŷ, a) = E(ŷ|a = 0)− E(ŷ|a = 1) (3.5)

Definition 4. The mean squared error difference (MSED) of numeric prediction ŷ in D by

a binary protected attribute a is defined as

MSED(ŷ, a) = E[(y − ŷ)2|a = 0]− E[(y − ŷ)2|a = 1] (3.6)

Definition 5. The correlation coefficient of numeric prediction ŷ and numeric protected

attribute a is defined as

ρŷa =
E[(ŷ − µŷ)(a− µa)]

σŷσs
(3.7)

Definition 6. The partial correlation coefficient of numeric prediction ŷ and numeric pro-

tected attribute a given y is defined as

ρŷa.y =
ρŷa − ρŷyρay√

1− ρ2
ŷy

√
1− ρ2

ay

(3.8)
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Definition 7. The statistical parity (SP) is defined as

SP = P[f(X) ≥ z|A = a]− P[f(X) ≥ z] for all a ∈ A and z ∈ [0, 1] (3.9)

Definition 8. The bounded group loss (BGL) is defined as

BGL = E[l(f(X), Y )|A = a] for all a ∈ A (3.10)

3.3 Distribution Shift

The term of distribution shift in machine learning can also be explained by dataset

shift, which was first defined in [8]. It says dataset shift happens if the joint distribution of

inputs and outputs differs between the training and test stage. Following [87], we define the

dataset shift as:

Definition 9. Dataset shift appears when the training and test joint distributions are dif-

ferent. It is equivalent as

Ptr(x, y) 6= Pte(x, y) (3.11)

In Definition 9, Ptr(x, y) denotes the joint distribution in the training data, while

Pte(x, y) indicates the joint distribution in the test data. There exists two major types of

distribution shift, including covariate shift and prior probability shift.

Definition 10. Covariate shift appears in X→ Y problem only, and is described as

Ptr(y|x) = Pte(y|x), Ptr(x) 6= Pte(x) (3.12)
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Definition 11. Prior probability shift appears in Y → X problem only, and is described as

Ptr(x|y) = Pte(x|y), Ptr(y) 6= Pte(y) (3.13)

Covariate shift is more common in practice and in this dissertation we focus on

building robust machine learning models under covariate shift. There exist several possible

causes for dataset shift and we focus on sample selection bias in this dissertation, which is

the most common one. Sample selection bias usually refers to a systematic flaw in the data

collection or labeling process. This flaw leads to the non-uniform sampling of the training

data from the population to be modeled. There are four types of sample selection bias

analyzed from previous literature [87], including missing completely at random, missing at

random, missing at random-class, and missing not at random.

Definition 12. Missing completely at random (MCAR) occurs when the sampling method

is completely independent of x and y:

P (s = 1|x, y) = P (s = 1) (3.14)

Definition 13. Missing at random (MAR) occurs when s depends on x but conditional on

x is independent of y:

P (s = 1|x, y) = P (s = 1|x) (3.15)

Definition 14. Missing at random-class (MARC) occurs when s depends on y but condi-

tional on y is independent of x:

P (s = 1|x, y) = P (s = 1|y) (3.16)
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Definition 15. Missing not at random (MNAR) occurs when there is no independence

assumption between x, y, and s.

From Definitions 12 - 15, s is a binary selection variable that s = 1 (s = 0) denotes

the inclusion (rejection) of a data in the training sample process. For MCAR, it does not

generate any data shift. MAR will cause covariate shift while MARC can lead to prior

probability shift. The bias of MNAR will introduce covariate shift or prior probability shift.
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4 Fairness-aware Agnostic Federated Learning

4.1 Introduction

In traditional machine learning, the training data is usually stored in a central server.

The central server needs to first collect the data from different sources and combines these

data together to facilitate the learning. The rapid development of the various machine learn-

ing or deep learning models benefits significantly from the large-scale training data. However,

the above training approach also raises data privacy concerns because the raw data needs to

be uploaded to the server, which can lead to the possible sensitive information leakage.

To alleviate the above issues caused by centralized learning, federated learning is

proposed as an attractive framework to handle complex data [18, 19, 20], as it enables a

new implementation of distributed deep learning over a large number of clients. Compared

to the traditional centralized learning which collects all local data samples and builds the

model at a central server, federated learning trains local models on local data samples and

local clients exchange parameters to generate a global model. Although tremendous research

has been done on the federated learning, how to achieve fairness in federated learning is

under-explored. Fairness receives increasing attentions in machine learning. Previous research

demonstrates that many machine learning models are often biased or unfair against some

protected groups especially when they were trained on biased data. How to achieve fairness

in federated learning is more urgent because the training data used in federated learning is

often geo-distributed among various groups.

One challenge of achieving fairness in federated learning is due to the statistical

challenge of the unknown testing data distribution. In this chapter, we consider a supervised
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task with features X and labels Y and assume P (y|x) is common across all clients. Our goal is

to train a single global model that learns P (y|x). The single global model can then be shared

to clients or provided to new clients with no training data. However, in federated learning, the

distributions of training data at different clients are often different, i.e., Pi(x, y) 6= Pj(x, y).

Data shift clearly exists between the training distribution of local data used to build the

model and the unknown testing distribution. This data shift causes significant challenges

for developing fair federated learning algorithms because the learned model may have poor

performance on testing data and the learned model with fairness constraint on the training

data cannot guarantee the fairness on the testing data.

It is beneficial to build a learning model that is robust against the possible unknown

testing distribution in terms of both utility and fairness. The authors in [85] propose agnostic

federated learning to deal with the unknown testing data distribution. They model the testing

distribution as a mixture of the client data distributions and the mixture weight of one client

is deviated from the proportion of its local data in the whole training data. They define

the agnostic empirical loss with mixture weights and present a fast stochastic optimization

algorithm. However, in their formulation, the model is optimized for the performance of the

single worst client and does not take the fairness into consideration.

In this work, we propose fairness-aware agnostic federated learning (AgnosticFair) to

deal with the challenge when the testing data distribution is unknown. We formulate Ag-

nosticFair as a two-player adversarial minimax game between the learner and the adversary.

The adversary aims to generate any possible unknown testing data distribution to maximize

the classifier loss. We assign an individual reweighing value on each training sample and

incorporate reweighing value in both agnostic loss function and agnostic fairness constraint.

As a result, the global model learned in the minimax game achieves both high ac-
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curacy and fairness guarantee on unknown testing data. Moreover, each client can simply

deploy the global model on its local site as the learned global model guarantees fairness

on any local data. We conduct extensive experiments on two public datasets and compare

our approach with several baselines. Evaluation results demonstrate the effectiveness of our

proposed AgnosticFair in terms of accuracy and fairness under data shift scenarios.

The main contributions of this work are summarized as follows:

• To the best of our knowledge, our research is the first one that formulates the problem

of fairness-aware federated learning under the data distribution shift among the clients.

• We propose to use kernel function parametrization in loss function and fairness con-

straints so that they are both agnostic to the data distribution shift.

• We develop an efficient approach to optimize the agnostic loss function under the

agnostic fairness constraints between the server and clients. During the optimization

process, only parameters and coefficients are needed to exchange between clients and

the server without disclosing any raw data.

• We conduct extensive experiments to demonstrate that our approach can achieve fair

prediction under distribution shift while maintaining high accuracy.

The rest of this chapter is organized as follows. Section 4.2 presents the problem

formulation of fairness agnostic federated learning and techniques to solve the problem.

Section 4.3 shows the experimental results of our proposed framework. Section 4.4 concludes

the chapter and presents the future work. Note that this chapter is originally from the

published work [61].
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Table 4.1: Notations

Symbol Definition

u1, u2, . . . , up p clients in federated learning

Dk local dataset of uk

tki = (xki , y
k
i ) the i-th tuple of uk

S sensitive attribute

w the parameter vector of federated learning model

L(w) loss function of federated learning model

L(w,α) loss function of agnostic federated learning model

l(fk(x
k
i ; w), yki ) loss value of tki in uk

α coefficients of reweighing function

θα(x) reweighing function

K(x) Gaussian kernel function

CD(α; x; w) agnostic decision boundary fairness constraint

wt
k parameters of uk at tth step

w̄t average parameters of p users at tth step

αt values of α at tth step

L, θ, C loss, equality, inequality constraint in Equation 4.14

φtL, φ
t
C coefficient vector of w of L,C at tth step

φtL,k, φ
t
C,k coefficient vector of w of L,C of uk at tth step

ψtL, ψ
t
θ, ψ

t
C coefficient vector of α of L, θ, C at tth step

ψtL,k, ψ
t
θ,k, ψ

t
C,k coefficient vector of α of L, θ, C of uk at tth step

4.2 Fair Agnostic Federated Learning

4.2.1 Problem Formulation

We first define the following notations used throughout the chapter. Suppose there

exist p local clients u1, u2, . . . , up in the federated learning setting and each client is associated
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with a dataset Dk = {X, Y }, k ∈ [1, p]. The kth client contains nk samples and each sample

is denoted as tki : {xki , yki }, i ∈ [1, nk]. The total number of data samples is defined as

n =
∑p

k=1 nk. Let X ∈ X be the input space and Y ∈ Y be the output space. We consider

the binary classification that Y = {0, 1}. The global model f predicts the label as ŷ = f(x).

The goal of the federated learning is to collaboratively train a machine learning model f by

these p clients.

The standard federated learning framework aims to minimize the empirical risk L(w)

over all records and learns the parameter vector w ∈ W as the following:

min
w∈W

L(w) =
1

n

p∑
k=1

nk∑
i=1

l(fk(x
k
i ; w), yki ) (4.1)

where fk is the classifier of uk, l(fk(x
k
i ; w), yki ) is the loss of sample tki in uk. In general,

federated learning includes the following steps.

• Step 1: The server specifies the learning task, e.g., linear regression or deep neural

network, for these p clients and sends out initial parameters w0.

• Step 2: At tth step, uk receives averaged parameters w̄t from the server as the new

round of initialization parameters and then finds out the optimal wt+1
k using its local

data Dk:

wt+1
k = arg min

w∈W

1

nk

nk∑
i=1

l(fk(x
k
i ; w), yki ). (4.2)

• Step 3: The server receives parameters wt+1
k from each client uk and sends averaged

parameter w̄t+1 =
1

p

∑p
k=1 wt+1

k back to all clients.

It should be noted that step 2 and step 3 are repeated until reaching the preset convergence.

We present the pseudo code of the standard federated learning framework in Algorithm 1 in
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Algorithm 1 Federated Learning Framework
1: Input:
2: Dk from client uk, k = 1, · · · , p;
3: Training steps T ;
4: Initial parameter vector w0;
5: Output:
6: Global model parameter vector w;
7: Initialize parameters w0 for all clients;
8: t = 0;
9: While t ≤ T do
10: Client Side:
11: for k = 1 : p do
12: Client k receives averaged w̄t and computes wt+1

k using Equation 4.2;
13: Client k uploads wt+1

k to server;
14: Server Side:
15: Server receives wt+1

k (1 ≤ k ≤ p) from all clients;

16: Server computes w̄t+1 =
1

p

∑p
k=1 wt+1

k and sends back to each client;

17: t = t+ 1;
18: return w̄T

order to compare with our fairness-aware agnostic federated learning in Algorithm 2.

In the fair learning, without loss of generality, we assume S is one sensitive attribute

in X with S = 0 representing the minority group and S = 1 the majority group. Following

the standard federated learning framework, we write the objective function subject to the

fairness constraint:

min
w∈W

L(w) =
1

n

p∑
k=1

nk∑
i=1

l(fk(x
k
i ; w), yki )

subject to g(x; w) ≤ ε,

(4.3)

where g(x; w) ≤ ε is the fairness constraint and related to the sensitive attribute S. The

weight of each sample in Equation 4.3 from these p clients is uniform. The underlying as-

sumption of the standard federated learning framework is that the testing data distribution

is the same as the distribution of the training data (union of data samples from p clients).

However, this assumption is rather restrictive and will lead to the following possible draw-
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backs. First, the performance of the trained model will be degraded if the distribution of the

training data and that of the testing data do not coincide. Second, the fairness achieved on

the training data does not guarantee the fairness on the testing data.

4.2.2 Agnostic Loss Function

It is usually considered that the distribution shift exists between the training data

Ptr(X) and the testing data Pte(X), whereas the conditional distribution P (Y |X) indicating

the prediction remains the same. To correct the distribution shift between Ptr(X) and Pte(X),

a widely used approach is to reweigh the training samples in the learning process so that the

learned model f can reflect the testing data distribution. We write the objective function in

Equation 4.3 with the reweighed training samples as the following:

min
w∈W

L(w) =
1

n

p∑
k=1

nk∑
i=1

θ(xki )l(fk(x
k
i ; w), yki ), (4.4)

where θ(x) is the reweighing function to correct the distribution shift from Ptr(X) to Pte(X).

There exist several methods to estimate the reweighing value θ(x) if the (unlabelled) testing

data is given [88]. For example, applying density ratio estimation can compute the reweighing

value θ(x) = Pte(x)/Ptr(x) for each example, then the reweighing value can represent the

possible testing distribution in real scenarios.

However, we cannot properly estimate the reweighing values if we do not have avail-

able testing data. Therefore, it is necessary to extend the above framework by building a

classifier which is favorable to any unknown testing distribution. We define the agnostic loss
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over any unknown testing data as the following:

min
w∈W

max
θ∈Θ

L(w, θ) =
1

n

p∑
k=1

nk∑
i=1

θ(xki )l(fk(x
k
i ; w), yki ). (4.5)

Θ represents the set of unknown testing data distribution produced by the adversary. The

formulation can be considered as a two-player adversarial game such that the adversary in

Equation 4.5 tries to select a reweighing function θ ∈ Θ to maximize the loss of the objective,

whereas the learner tries to find parameters w ∈ W to minimize the worst case loss over the

unknown testing data distribution produced by the adversary.

The proposed framework by Equation 4.5 enjoys several advantages. First, under the

independent and identically distributed (IID) data settings, the minimization of the robust

reweighed loss is equivalent and dual to the empirical risk minimization (objective function

in Equation 4.3) [89]. It indicates that the optimization of Equation 4.5 will not cause

performance degradation when no distribution shift exists. Second, the optimal w ∈ W is

minimized for the worst case loss and the performance of the global model is robust with

any unknown testing data.

4.2.3 Kernel Function Parametrization

The reweighing function θ ∈ Θ can be chosen based on the prior knowledge or the

application scenario. A reweighing function on individual data sample across clients usually

corrects the distribution shift more accurately. We rewrite the agnostic loss in Equation 4.5

as:

min
w∈W

max
α∈R+

L(w,α) =
1

n

p∑
k=1

nk∑
i=1

θα(xki )l(fk(x
k
i ; w), yki )

subject to
1

n

p∑
k=1

nk∑
i=1

θα(xki ) = 1.

(4.6)
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θα(x) is the reweighing function that is linearly parametrized as the following:

θα(x) =
M∑
m=1

αmKm(x), 0 ≤ αm ≤ B (4.7)

where Km(x) is a basis function, M is the number of basis functions, and α contains the

mixing coefficients α1, α2, · · · , αM . The sum-to-one constraint of the reweighing function

θα(x) ensures that it can properly model the unknown distribution shift from the training

data to the testing data. The coefficient αm is non-negative and bounded by B ∈ R+,

which constrains the value of θα(x) and controls the capacity of the adversary. The linearly

parametrized reweighing function θα(x) has two advantages. First, the linear form allows

us to choose multiple basis functions to capture many different possible uncertainties of the

unknown testing data. Second, the optimization with linear form can be more easily solved

by linear programming or convex programming tool.

In fact, there are many options to choose the form of basis functions. In this chapter,

we choose the Gaussian kernel

Km(xki ) = exp(− ‖ bm − xki ‖2 /2σ2) (4.8)

with the basis bm and the kernel width σ. The basis bm can be chosen based on some prior

knowledge, for example, we can set bm as some possible centers of the testing data according

to the hypothesis. σ is the width of the kernel. As the smaller variation of ‖ bm − x ‖2 will

cause larger value change of the kernel function and smaller σ indicates more possible testing

distributions that the adversary can generate [47].

Or the basis bm could be an indicator function 1[.] which represents groups from
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different clients, ages, or domains. The value generated by each kernel function can be seen

as a conditional probability P (x|m) of observing x given the class m in a mixture model.

The mixing coefficients α ∈ A are usually bounded in the non-negative Euclidean space.

The agnostic federated learning framework proposed by [85] is a special case of our

framework. As being said that the basis function could be an indicator function 1[·] repre-

senting a group. In [85], it models the testing data distribution as an unknown mixture of

p clients where each group is assigned with a uniform weight. The unknown testing data

distribution in [85] can be constructed under our framework as the following:

θα(xki ) = λk
nk
n
, 1 ≤ i ≤ nk, 1 ≤ k ≤ p (4.9)

where
nk
n

is the uniform weight of each data xki before reweighing. More specifically, for each

client uk, the agnostic federated learning [85] assigns the same value λk to reweigh each data

in Dk. However, assigning reweighing value at the client level is insufficient to model the

unknown distribution shift due to the following two reasons. First, the data from the same

client also has diversity and needs different reweighing values. Second, different clients can

have similar data and these similar data should be assigned with similar reweighing values.

In our framework, we assign the reweighing value at the individual data level, which is more

capable of modeling the unknown testing data distribution.

4.2.4 Agnostic Fairness Constraint

The fairness constraint g(x; w) in standard federated learning (Equation 4.3) assigns

uniform weight for each sample. When it comes to the unknown testing data, the fairness

achieved by Equation 4.3 may not guarantee the fairness on unknown testing data. As

32



being said, the adversary tries to produce a set of possible unknown testing distributions.

It encourages us to construct the agnostic fairness constraint based on the unknown testing

distributions by the adversary. Then, the optimization of the objective function is subject

to the fairness constraint based on the unknown testing distribution.

There exist several notions for fairness constraint and we have described the defini-

tions in Chapter 3. Here we use the risk difference RD as the fairness constraint. For each

client, we define Dkij = {x|Ŷ = i, S = j} where i, j ∈ [0, 1]. For notation convenience, we

define Dk·j = {x|S = j} where j ∈ [0, 1] and · represents {0, 1}. Then we can write the

expression for RD(f) with uniform weight on training data as the following:

|
∑p

k=1

∑
1xki ∈Dk11∑p

k=1

∑
1xki ∈Dk·1

−
∑p

k=1

∑
1xki ∈Dk10∑p

k=1

∑
1xki ∈Dk·0

| ≤ ε, (4.10)

where 1[.] is an indicator function and ε ∈ [0, 1] is a threshold for the fairness constraint.

However, Equation 4.10 is constructed based on the training data and cannot preserve fair-

ness on the unknown testing data. Hence, we use the same reweighing function to construct

the agnostic fairness constraint as the following:

|
∑p

k=1

∑
xki ∈Dk11

θα(xki )∑p
k=1

∑
xki ∈Dk·1

θα(xki )
−

∑p
k=1

∑
xki ∈Dk10

θα(xki )∑p
k=1

∑
xki ∈Dk·0

θα(xki )
| ≤ ε. (4.11)

Then our proposed fairness-aware agnostic federated learning (AgnosticFair) is the com-

bination of Equation 4.6 and Equation 4.11. The fairness constraint in Equation 4.11 is

constructed based on the unknown testing distribution, so when it comes to the unknown

testing data, the trained classifier can still preserve the fairness. Another benefit is that even

though the distributions of the local clients and the server side do not coincide, the classifier
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can still guarantee the fairness on each local client due to the agnostic fairness constraint.

The optimal solution of Equation 4.6 under the fairness constraint by Equation 4.11 is

computationally intractable to obtain because the fairness constraint contains the indicator

function. We then can use the covariance fairness (Equation 3.3 ) CD(x; w) as:

CD(x; w) =
1

n

p∑
k=1

nk∑
i=1

(sxki − s̄)dw(xki ), (4.12)

where sxki is the value of the sensitive attribute of the sample xki , dw(xki ) is the distance to

the decision boundary of the classifier f , s̄ is the mean value of the sensitive attribute over

D that is

∑p
k=1

∑nk
i=1 sxki

n
. To achieve fair classification, it is required that |CD(x; w)| ≤ τ

where τ ∈ R+. Incorporating the reweighing values into the fairness constraint gives:

CD(α; x; w) =
1

n

p∑
k=1

nk∑
i=1

(sxki − s̄)θα(xki )dw(xki ). (4.13)

4.2.5 Solving Fairness-aware Agnostic Federated Fairness Learning

Now we are ready to formulate our agnostic federated learning under the decision

boundary fairness constraint as:

min
w∈W

max
α∈R+

L(w,α) =
1

n

p∑
k=1

nk∑
i=1

θα(xki )l(fk(x
k
i ; w), yki )

subject to
1

n

p∑
k=1

nk∑
i=1

θα(xki ) = 1, 0 ≤ αm ≤ B

| 1
n

p∑
k=1

nk∑
i=1

(sxki − s̄)θα(xki )dw(xki )| ≤ τ.

(4.14)

The optimization of Equation 4.14 includes two sets of parameters, α and w. The

minimax expression encourages us to alternatively optimize α and w in an iterative way.
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Figure 4.1: The interaction between the client and server in federated learning. The client
side optimizes its local w and server side optimizes the α.

The client and server will collaboratively optimize w and α to solve the minimax problem.

The general pipeline is that the client optimizes w with fixed α, while the server optimizes

α with fixed w. One challenge is how both the server and the clients conduct optimization

iteratively through sharing parameters or intermediate results (rather than raw data), as

required in federated learning.

The objective loss L(w,α) (abbreviated as L) shown in Equation 4.14 can be written

as a function of w with corresponding coefficients φL when α is fixed. More importantly, the

second summation over samples in client uk,
∑nk

i=1 θα(xki )l(fk(x
k
i ; w), yki ), can be similarly

expressed as a function w with corresponding coefficients φL,k. We can easily see φL =∑p
k=1 φL,k and hence each client can simply send φL,k (rather than any raw data) to the server.

Similarly, when w is fixed, L(w,α) can be written as a function of α with corresponding

coefficients ψL, the second summation over samples in client uk has coefficients ψL,k, and

ψL =
∑p

k=1 ψL,k.

Similarly, the equality constraint for the reweighing functions (abbreviated as θ) and

the inequality constraint for the decision boundary fairness (abbreviated as C) in Equation
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4.14 can be expressed as functions with corresponding coefficients. Throughout this chapter,

we use φ to denote the coefficients vector of w (with fixed α), ψ to denote the coefficients

vector of α (with fixed w). We use the subscript L, θ and C denote the loss function, equality

constraint, and inequality constraint, and further add the subscript k for the coefficients from

client uk. Moreover, we use the superscript t to express the coefficients at step t during the

optimization. For example, ψtC,k denotes the coefficient vector of α (with fixed w) in the

inequality constraint formula for client uk at step t. We note that the equality constraint

only involves variable α and does not have coefficient vector φθ. We put all of the notations

in Table 4.1 and show their relationships in the following equation.

φtL =

p∑
k=1

φtL,k, φ
t
C =

p∑
k=1

φtC,k

ψtL =

p∑
k=1

ψtL,k, ψ
t
θ =

p∑
k=1

ψtθ,k, ψ
t
C =

p∑
k=1

ψtC,k.

(4.15)

In the following, we present details about the optimization process between the server

and client. We show those key parameters and coefficients exchanged between the client and

the server as well as their calculations in Figure 4.1.

Client side: In standard federated learning, each client computes w based on its local data

and exchanges the updated w with other clients via the server. Here we also follow this

standard approach that each client computes the optimal values of w locally using the fixed

α received from the server. We can decompose the part of Equation 4.14 related to w as the

following:

min
w∈W

L(w) =
1

n

p∑
k=1

nk∑
i=1

θα(xki )l(fk(x
k
i ; w), yki )

subject to | 1
n

p∑
k=1

nk∑
i=1

(sxki − s̄)θα(xki )dw(xki )| ≤ τ.

(4.16)
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Algorithm 2 AgnosticFair: Fairness-aware Agnostic Federated Learning
1: Input:
2: Dk from client uk, k = 1, · · · , p;
3: Training steps T ;
4: Initial parameters w0 and α0;
5: Output:
6: Global model parameter vector w;
7: Initialize parameters w0 and α0 for all clients;
8: t = 0;
9: While t ≤ T do
10: Client Side:
11: for k = 1 : p do
12: Client k receives averaged w̄t, αt and φtC ;
13: Client k computes optimal wt+1

k using Equation 4.17 and uploads to server;
14: Client k computes φtC,k, ψ

t+1
L,k , ψ

t+1
θ,k , ψ

t+1
C,k and uploads to server;

15: Server Side:
16: Server aggregates ψt+1

L =
∑p

k=1 ψ
t+1
L,k , ψt+1

θ =
∑p

k=1 ψ
t+1
θ,k , ψ

t+1
C =

∑p
k=1 ψ

t+1
C,k ;

17: Server computes optimal αt+1 using Equation 4.18;

18: Server aggregates φt+1
C =

∑p
k=1 φ

t+1
C,k and averages w̄t+1 =

1

p

∑p
k=1 wt+1

k ;

19: Server sends back w̄t+1, αt+1 and φt+1
C ;

20: t = t+ 1;
21: return w̄T

It can be seen that given the fixed α, the optimization of w is only subject to the inequality

constraint. The optimization of Equation 4.16 depends on the choice of loss function and

the learning model. For example, the loss function of linear regression is convex and the

inequality constraint of w is also linear so the convex programming tool can be used to

solve it. However, the loss function over w of many other machine learning models (e.g.,

deep learning models) is not convex. Hence, it is challenging to optimize the non-convex

function subject to the constraint. We observe that the inequality constraint in Equation

4.16 is used to guarantee the fairness of the updated w during the optimization. Instead

of optimizing non-convex loss function subject to the constraints, we can transform the

inequality constraint to a penalty term on the loss function.

We choose the square term for fairness inequality constraint as a penalty and rewrite
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the loss function of w for client k as the following:

min
w∈W

L(w) =
1

nk

nk∑
i=1

[θ(xki )l(fk(x
k
i ; w), yki )] + λ(

1

n

p∑
k=1

nk∑
i=1

(sxki − s̄)θα(xki )dw(xki ) − τ)2

(4.17)

where λ is a hyperparameter controlling the trade-off between the classification accuracy

and the fairness. Equation 4.17 includes two terms. The first term is the loss of each client

based on its own data while the second term is the global fairness constraint.

Suppose client uk receives the average parameters w̄t and αt from the server at the

tth step, it can compute φtL,k using αt and local data Dk. For the second term computation,

it needs to receive φtC =
∑p

k=1 φ
t
C,k from the server, where each client can compute φtC,k

independently using local data Dk. In this process, the raw data of each client is not exposed,

which fulfills the requirement of federated learning. Given w̄t, φtL,k and φtC , client uk obtains

the complete form of Equation 4.17 and can compute optimal wt+1
k based on Dk. Based on

wt+1
k and fixed αt, it can compute ψt+1

L,k , ψ
t+1
θ,k , ψ

t+1
C,k , and φt+1

C,k and upload them to the server.

Server side: The optimization of α is subject to both equality and inequality constraints,

which is expressed as:

max
α∈R+

L(α) =
1

n

p∑
k=1

nk∑
i=1

θα(xki )l(fk(x
k
i ; w), yki )

subject to
1

n

p∑
k=1

nk∑
i=1

θα(xki ) = 1, 0 ≤ αm ≤ B

| 1
n

p∑
k=1

nk∑
i=1

(sxki − s̄)θα(xki )dw(xki )| ≤ τ.

(4.18)

Given fixed w, θα is a linear function subject to linear equality and inequality constraints.

The server aggregates coefficient vector ψt+1
L , ψt+1

θ , ψt+1
C of α (Equation 4.15) to obtain the
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complete form of Equation 4.18.

The server then uses linear programming tool to obtain the optimal values αt+1

and sends back to each client. In addition, the server also averages parameters w̄t+1 =

1

p

∑p
k=1 wt+1

k , aggregates φt+1
C =

∑p
k=1 φ

t+1
C,k , and sends them back to each client for next

round iteration.

We also present the pseudo code of our proposed fairness-aware agnostic federated

learning (AgnosticFair) in Algorithm 2. It can be seen that each client optimizes w at the

local side and the server optimizes α. The final classifier with fair prediction is achieved

through the iterative optimization process.

4.2.6 Variants of AgnosticFair

There exist several variants of our fairness-aware agnostic federated learning which

can be used as baselines. We consider the following two variations in this chapter and will

show their experimental results in Section 4.3.

The first variation is termed as AgnosticFair-a that optimizes agnostic loss (Equation

4.6) without any fairness constraint. AgnosticFair-a only deals with the data distribution shift

regarding the accuracy and has no fairness guarantee on the model. The goal of considering

AgnosticFair-a is to test its accuracy performance with comparison to [85] using our proposed

reweighing function.

The second variation is termed as AgnosticFair-b that considers the agnostic loss and
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uniform weighted fairness constraint, which is expressed as the following:

min
w∈W

max
α∈R+

L(w,α) =
1

n

p∑
k=1

nk∑
i=1

θα(xki )l(fk(x
k
i ; w), yki )

subject to
1

n

p∑
k=1

nk∑
i=1

θα(xki ) = 1, 0 ≤ αm ≤ B

|
∑p

k=1

∑
1xki ∈Dk11∑p

k=1

∑
1xki ∈Dk·1

−
∑p

k=1

∑
1xki ∈Dk10∑p

k=1

∑
1xki ∈Dk·0

| ≤ ε.

(4.19)

It is expected that AgnosticFair-b can guarantee the fairness under the IID setting but

fails to achieve fairness under unknown distribution shift. For comparison, our AgnosticFair

(Equation 4.14) can guarantee fairness while maintain high accuracy performance under the

unknown distribution shift. We will show their comparisons in Section 4.3.

4.3 Experiments

4.3.1 Experimental Setup

Datasets. We evaluate our proposed approach AgnosticFair on two datasets, Adult

dataset [90] and Dutch dataset [28]. Adult dataset collects the personal information from

different people including age, education level, race, gender, and so forth. The prediction task

is to determine whether the income of a person is over 50K or not. Dutch dataset collects

personal information of the inhabitants in Netherlands and the task is also to classify the

individual into high income or low income. For both datasets, we set “gender” as the sensitive

attribute. For non-sensitive attributes, we apply one-hot encoding to convert the categorical

attributes into vectors and normalize numerical attributes to the range within [0, 1]. After

preprocessing, Adult dataset consists of 45222 data samples and each data sample has 40

features, whereas Dutch dataset consists of 60420 data samples and each data sample has
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Table 4.2: Model performance under data distribution shift (Adult and Dutch) Acc:
accuracy

Methods
Adult Dataset Dutch Dataset

Training Acc Testing Acc Testing RD Training Acc Testing Acc Testing RD

FL 0.7500 0.7998 0.1477 0.8133 0.7951 0.1945

AgnosticFair 0.7413 0.7626 0.0196 0.7478 0.7205 0.0371

AgnosticFair-a 0.7820 0.8294 0.1306 0.8259 0.8162 0.2154

FairFL 0.7537 0.7534 0.0852 0.6899 0.7011 0.0961

[85] 0.7761 0.7774 0.1150 0.8170 0.7738 0.1238

Table 4.3: Local fairness and global fairness under data distribution shift (Adult)

Methods u1 Testing RD u2 Testing RD Global Testing RD Global Testing Accuracy

AgnosticFair 0.0208 0.0177 0.0196 0.7626

AgnosticFair-b 0.0450 0.0795 0.0673 0.7885

35 features.

To create the distribution shift scenarios from the training set to the testing set,

we artificially split each dataset as the following. For Adult, the training set Dtr contains

80% data of people working in private company and 20% data of people working in other

organizations, and the testing set Dte contains the rest of the data. Hence, Dtr of Adult is

dominated by data of people working in private company, while Dte of Adult is dominated by

data of people working in other organizations. We consider 2 local clients in our experiment

u1 and u2. u1 only contains data of people working in private company from Dtr while u2

only contains data of people working in other groups. Similarly for Dutch, the training set

Dtr contains 80% data of people who are married with children and 40% data of people

from other groups, and Dte contains the rest of the data. We also consider 2 local clients, u1

contains data of people who are married with children while u2 contains of people in other

groups.

Hyperparameters. In our experiment, we use Gaussian kernel in Equation 4.8 as the
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Table 4.4: Model performance of IID data(Adult and Dutch) Acc: accuracy

Methods
Adult Dataset Dutch Dataset

Training Acc Testing Acc Testing RD Training Acc Testing Acc Testing RD

FL 0.8129 0.8130 0.1490 0.8116 0.8096 0.1698

AgnosticFair 0.7938 0.7749 0.0299 0.7338 0.7322 0.0270

AgnosticFair-a 0.8083 0.8111 0.1515 0.8135 0.8089 0.1526

FairFL 0.7731 0.7723 0.0235 0.7564 0.7346 0.0325

[85] 0.7774 0.7785 0.1484 0.7925 0.7892 0.1547

reweighing function to construct the unknown testing data distribution. The upper bound

B for α is set as 5 and σ is chosen to be 1. In fact, the upper bound of B is rarely reached

in practical optimization so that it will not limit the power of the adversary too much. The

basis of the Gaussian kernel is chosen from training data and the number of kernels is set as

200. The threshold τ in Equation 4.14 is set as a constant 0.05 and λ in Equation 4.17 is set

as 2.

Baselines. In our experiment, we use the logistic regression model to evaluate our proposed

algorithm. We compare the performance of our proposed AgnosticFair with the following

baselines: (a) standard federated learning (FL) without fairness constraint; (b) standard

federated learning with fairness constraint (FairFL); (c) agnostic federated learning [85] that

assigns the reweighing value at the client level. To conduct meaningful comparison between

our model with baselines, we introduce several variations: AgnosticFair-a that optimizes

agnostic loss (Equation 4.6) without any fairness constraint; AgnosticFair-b that optimizes

agnostic loss subject to unweighted fairness constraint (Equation 4.19).

Metrics. We evaluate our proposed framework and baselines based on utility and fairness.

We use accuracy to measure the utility and risk difference (RD) to measure the fairness.

A fair classifier usually has RD(f) ≤ 0.05. We run all experiments 20 times and report the

average results.
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Figure 4.2: Model fairness under data distribution shift (Adult)
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Figure 4.3: The accuracy of the global model with different number of local clients (Adult).

4.3.2 Comparison under Unknown Data Shift

In our framework, the reweighing function is designed to improve the performance

of the classifier if the data distributions of the training and the testing set do not coincide.

The use of the reweighing function in the fair constraint can also achieve fairness guarantee

under unknown testing data.

Accuracy. We report the experimental results in Table 4.2 that demonstrate the accuracy

improvement by our framework. We summarize several interesting points regarding accuracy

as the following. The testing accuracy of AgnosticFair-a is 0.8264 on Adult and 0.8162 on

Dutch, while the accuracy of FL is 0.7998 on Adult and 0.7951 on Dutch. More specifically,

AgnosticFair-a outperforms FL by 0.0296 on Adult and by 0.0211 on Dutch. It demonstrates

that the agnostic loss function in Equation 4.5 improves the performance of the model when

it comes to the distribution change.

Compared to [85], AgnosticFair-a enjoys higher accuracy. As we discussed before,
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assigning a reweighing value at the client level optimizes the client with the worst loss which

will reduce its generalization ability on the unknown testing data. For AgnosticFair-a, we

assign a reweighing value for each data sample across all clients and put more weights on

difficult data samples with higher loss. In fact, the difficult data samples can come from

any client and are taken into the consideration during the training process. Hence, the

generalization ability in the testing stage of AgnosticFair-a is increased.

Fairness. In this experiment, we will show that our proposed AgnosticFair can achieve

fairness guarantee under unknown data distribution shift. In Table 5.1, the two columns

“Testing RD” show the risk difference values of our Agnostic-Fair and four baselines over

the testing data of both Adult and Dutch. We also draw a plot in Figure 4.2 to show

achieving fairness on the training data by baselines cannot guarantee fairness on testing

data whereas our AgnosticFair can achieve the guarantee. First, experimental results show

that both AgnosticFair and AgnosticFair-b can achieve fairness on the training data, but

only AgnosticFair can guarantee the fairness on the testing data. AgnosticRegFair-b uses

the agnostic loss function, but its fairness constraint is unweighted. It can be concluded that

using the agnostic loss function only cannot guarantee the fairness when it comes to the

unknown testing data.

Second, FL achieves high accuracy but cannot achieve the fairness. The RD of the

FL is 0.1477, whereas a fair learning model usually requires RD to be less than 0.05. The

fairness constraint of FairFL does not consider data distribution shift. The results show that

FairFL achieves fairness on the training data but fails on the testing data.

Federated Learning with Different Number of Clients. Our proposed AgnosticFair

can also achieve fairness for local clients when the distribution shift exists between the local

clients and the global server. In fact, the distribution shift from the global training data
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to the local client data is a special case of the unknown testing data distribution. We use

the same data split setting and report the result of local fairness and global fairness in

Table 4.3. It can be seen that AgnosticFair-b cannot guarantee the fairness on the unknown

testing data because it fails on u2 (RD = 0.0795). Due to the agnostic fairness constraint

of AgnosticFair, it can achieve fairness for both local clients. To demonstrate the stability

of our proposed AgnosticFair, we show its accuracy under different number of clients in

Figure 4.3. We use the same data split setting and distribute the data evenly to each client

without overlap. The accuracy of the global classifier is recorded when fairness is achieved

on all clients. It can be seen that the performance of AgnosticFair is independent of the

number of clients. For comparison, we also use another straightforward approach LocalFair

that achieves fairness for each local client by adding a local fairness constraint based on its

own data. It can guarantee the fairness for local client, however, the drawback is to add a

local fairness constraint for each client, which will reduce the utility of the global model if

more clients are included. Figure 4.3 also shows the accuracy curve of LocalFair, we can see

that its performance degrades significantly with the increasing number of clients.

4.3.3 Comparison under IID Setting

In our last experiment, we also test the performance of our model under the IID

data setting. In this experiment, we randomly split two datasets, Adult and Dutch. For each

dataset, we use 80% of the data as the training set and the rest 20% as the testing set. The

number of local clients is set to be 2 and the training data is evenly distributed to each local

client. Table 4.4 shows the experimental results.

First, AgnosticFair-a achieves same level of performance with FL if no data distribu-

tion shift exists. For Adult, the testing accuracy of FL (AgnosticFair-a) is 0.8130 (0.8111).
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For Dutch, the testing accuracy of FL (AgnosticFair-a) is 0.8096 (0.8089). It is quite inter-

esting because in [89] the authors state: under (IID) data, the minimization of the robust

reweighed loss (Equation 4.4 in our framework) is equivalent and dual to the empirical risk

minimization (Equation 4.3 in our framework). Hence, the accuracy of the AgnosticFair-a

and FL also echoes the theoretical statement in [89].

Second, our proposed AgnosticFair-a also achieves higher accuracy than [85] under

the IID setting. More specially, the testing accuracy is 0.7785 (0.7892) for Adult (Dutch),

which is still lower than that of FL. As aforementioned, [85] assigns a different weight for

each client. The optimization process as stated in their work will improve the worst loss of

the individual client, whereas the global generalization on the testing data will be weakened.

Finally, our AgnosticFair achieves fairness guarantees while preserve good accuracy.

4.4 Summary

In this chapter, we develop a fairness-aware agnostic federated learning framework

(AgnosticFair) to deal with the challenge of unknown testing distribution. We use kernel

reweighing functions to assign a reweighing value on each training sample in both loss func-

tion and fairness constraint. Therefore, the centralized model built from AgnosticFair can

achieve high accuracy and fairness guarantee on unknown testing data. Moreover, the built

model can be directly applied to local sites as it guarantees fairness on local data distribu-

tions. Experimental results on two real datasets demonstrate the effectiveness in terms of

both utility and fairness under data shift scenarios.
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5 Robust Fairness-aware Learning under Sample Selection Bias

5.1 Introduction

Traditional supervised machine learning assumes that training data and test data

are independently and identically distributed (iid), i.e., each example t with pairs of feature

input x and label y drawn from the same distribution Q = P (x, y). The conditional label

distribution, P (y|x), is estimated as P̂ (y|x) (aka, a classifier f(x)) from the given training

dataset Ds. Similarly, in the fair machine learning, we aim to learn a fair classifier f(x, a)

from the training dataset drawn from Q = P (x, a, y) where a is a protected attribute such

as gender or race. However, when the distributions on training and test data sets do not

match, we are facing sample selection bias or covariate shift. Sample selection bias occurs

frequently in reality — the available training data have been collected in a biased manner

whereas the test is instead performed over a more general population. The classifier f simply

learned from the training dataset is vulnerable to sample selection bias and will incur more

accuracy loss over test data. Moreover, the fair classifier trained with the biased data cannot

guarantee fairness over test data. This is a serious concern when it is critical and imperative

to achieve fairness in many applications.

In this chapter, we develop a framework for robust and fair learning under sample

selection bias. We embrace the uncertainty incurred by sample selection bias by producing

predictions that are both fair and robust in test data. Our framework adopts the reweighing

estimation approach for bias correction and the minimax robust estimation approach for

achieving robustness on prediction accuracy. Moreover, during the minimax optimization,

the fairness is achieved under the worst case, which guarantees the model’s fairness on test
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data. To address the intractable issue, we approximate the fairness constraint using the

boundary fairness and combine into the classifier’s loss function as a penalty. The modified

loss function is minimized in view of the most adverse distribution within a Wasserterin ball

centered at the empirical distribution of the training data.

We present two algorithms, RFLearn1 for the scenario where the unlabeled test

dataset D is available, and RFLearn2 for the scenario where D is unavailable. In RFLearn1,

we estimate the sample selection probability via its density ratio of training data and test

data and then correct the bias in loss function. In RFLearn2, we introduce some natural as-

sumptions, i.e., the samples in the same cluster have the same selection probability which is

within a range from the uniform selection probability. The algorithm first clusters the train-

ing data and robustifies the sample selection probability estimation of each cluster within

a Wasserterin ball. We test our algorithms on two real-world datasets and experimental re-

sults demonstrate that our algorithms can achieve both good performance on prediction and

fairness. Note that this chapter is originally from the published work [91].

5.2 Problem Formulation

We first define notations throughout this chapter. Let X denote the feature space,

A the protected attribute, and Y the label set. Let Q denote the true distribution over

X × A× Y according to which test samples t = (x, a, y) are drawn.

For simplicity, we assume both y and a are binary where y = 1 (0) denotes the

favorable (unfavorable) decision and a = 1 (0) denotes the majority (minority) group. Under

the sample selection bias setting, the learning algorithm receives a training dataset Ds of NDs

labeled points t1, · · · , tNDs drawn according to a biased distribution Qs over X×A×Y . This

sample bias can be represented by a random binary variable s that controls the selection
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of points, i.e., s = 1 for selected and s = 0 otherwise. We consider the problem of building

over Ds a fair classifier f assigning labels Ŷ ∈ {0, 1} that depends only on X,A (so Ŷ ⊥

(Y, S)|X,A) under certain fairness constraints. Many fairness notions were proposed in the

literature, such as demographic parity and mistreatment parity. In this chapter, we choose

the classic demographic parity and use risk difference (RD) as the fairness quantity. In

short, RD measures the difference of the positive predictions between the majority group

and minority group.

Problem Formulation 1 (Fair Classifier Under Sample Selection Bias) With the observed

Ds, how to construct a fair classifier f that minimizes the expected loss E(x,a,y)∈Q[l(f(x, a), y)]

subject to |RD(Q)| ≤ τ where l is the loss function, RD(Q) is the risk difference over

distribution Q, i.e., RD(Q) = |PQ(ŷ = 1|a = 1) − PQ(ŷ = 1|a = 0)|, and τ ∈ [0, 1] is a

threshold for the fairness constraint.

5.3 Fair Classifier under Sample selection bias

The probability of drawing t = (x, a, y) according to the true but unobserved dis-

tribution Q is straightforwardly related to the observed distribution Qs. By definition of

the random selection variable s, the observed biased distribution Qs can be expressed by

PQs(t) = PQ(t|s = 1) or PQs(x, a, y) = PQ(x, a, y|s = 1). Assuming P (s = 1|x, a) 6= 0 for all

t ∈ X × A× Y , by the Bayes formula, we have

PQ(t) =
P (t|s = 1)P (s = 1)

P (s = 1|x, a)
=

P (s = 1)

P (s = 1|x, a)
PQs(t) (5.1)
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Hence, if we define and construct the new distribution Q̂s as P (s=1)
P (s=1|t)Qs, i.e., PQ̂s(x, a, y) =

P (s=1)
P (s=1|x,a,y)

PQs(x, a, y), we have the following result.

E(x,a,y)∈Q̂s [l(f(x, a), y)] =
∑
x,a,y

l(f(x, a), y))PQ̂s(x, a, y)

=
∑
x,a,y

l(f(x, a), y))
P (s = 1)

P (s = 1|x, a, y)
PQs(x, a, y)

=
∑
x,a,y

l(f(x, a), y))
P (s = 1)

P (s = 1|x, a, y)
PQ(x, a, y|s = 1)

=
∑
x,a,y

l(f(x, a), y))
P (s = 1)

P (s = 1|x, a, y)

PQ(s=1|x,a,y)PQ(x, a, y)

PQ(s = 1)

=
∑
x,a,y

l(f(x, a), y))PQ(x, a, y)

= E(x,a,y)∈Q[l(f(x, a), y)]

Similarly we have RD(Q̂s) = RD(Q). Equivalently, if we define and construct a modified

training dataset D̂s by introducing a weight P (s=1)
P (s=1|x,a,y)

to each record t ∈ Ds, we can ap-

proximate E(x,a,y)∈Q̂s [l(f(x, a), y)] using E(x,a,y)∈D̂s [l(f(x, a), y)], which can be expressed as

1
NDs

∑NDs
i=1

P (s=1)
P (s=1|t) l(f(xi, ai), yi).

If we can derive the probabilities P (s = 1) and P (s = 1|x, a), we could derive the

true probability PQ from the biased one PQs exactly and correct the sample selection bias

in fair classification.

Theorem 1. Under sample selection bias, the classifier f that minimizes E(x,a,y,s)∈D̂s [l(f(x, a), y)]

subject to RD(D̂s) ≤ τ is a fair classifier.

Note that the classifier f which tries to minimize 1
NDs

∑NDs
i=1 l(f(xi, ai), yi) under

RD(Ds) ≤ τ would incur a large generalization error and cannot achieve fairness with

respect to the true distribution Q.
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The sample selection bias causes training data to be selected non-uniformly from the

population to be modeled. Generally there are four types of sample selection bias, missing

completely at random when P (s = 1|x, a, y) = p(s = 1), missing at random when P (s =

1|x, a, y) = p(s = 1|x, a), missing at random-class when P (s = 1|x, a, y) = p(s = 1|y), and

missing not at random when there is no independence assumption between x, a, y and s.

In the following, we focus on missing at random, which indicates biasedness of the selected

sample depends on the feature vector x and protected attribute a.

The fairness constraint RD(D̂s) ≤ τ can be derived as

|
∑

1(xi,ai)∈D11
s

P (s=1)
P (s=1|xi,ai)∑

1(xi,ai)∈D·1s
P (s=1)

P (s=1|xi,ai)

−
∑

1(xi,ai)∈D10
s

P (s=1)
P (s=1|xi,ai)∑

1(xi,ai)∈D·0s
P (s=1)

P (s=1|xi,ai)

| ≤ τ, (5.2)

where 1[.] is an indicator function, Dijs = {(xi, ai)|Ŷ = i, A = j} where i, j ∈ {0, 1}, D·js =

{(xi, ai)|A = j} where j ∈ {0, 1} and · represents {0, 1}.

Then the minimization of the loss on D̂s subject to the fairness constraint is as:

min
w∈W

L(w) =
1

NDs

NDs∑
i=1

P (s = 1)

P (s = 1|xi, ai)
l(f(xi, ai), yi)

subject to RD(D̂s) ≤ τ

(5.3)

where w are the parameters of the classifier f and R(D̂s) is shown in Equation 5.2. We then

have our following corollary.

Corollary 1. With the assumption that selection variable s and label y are independent

given x, i.e., P (s|x, a, y) = P (s|x, a)), the classifier f that minimizes E(x,a,y,s)∈D̂s [l(f(x, a), y)]

subject to RD(D̂s) ≤ τ is a fair classifier under sample selection bias where D̂s is constructed

by weighting each sample t ∈ Ds with P (s=1)
P (s=1|x,a)

.
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5.4 Robust Fairness-aware Learning

To obtain the optimal solution of Equation 5.3, we need to derive the sample selection

probability P (s = 1|t). However, it is rather challenging to get the true P (s = 1|t) practically

because the selection mechanism is usually unknown. Instead, we need to estimate the sample

selection probability and use the estimated probability P̂ (s = 1|t) as the true P (s = 1|t).

To take the estimation error between P (s = 1|t) and P̂ (s = 1|t) into consideration,

we adopt the approach of minimax robust minimization [48, 46, 47] which advocates for the

worst case of any unknown true sample selection probability. We make an assumption here

that the true P (s = 1|x, a) is with the ε range of the estimated P̂ (s = 1|x, a). Therefore,

any value of P (s = 1|x, a) in this ε range represents the possible real unknown distribution

Q. Following the standard robust optimization approaches and taking the estimation error

into consideration, we reformulate Equation 5.3:

min
w∈W

max
P (s=1|xi,ai)

L(w, P ) =
1

NDs

NDs∑
i=1

P (s = 1)

P (s = 1|xi, ai)
l(f(xi, ai), yi)

subject to |P (s = 1|xi, ai)− P̂ (s = 1|xi, ai)| ≤ ε

RD(D̂s) ≤ τ

(5.4)

In fact, P (s = 1) is a constant and does not affect the problem formulation and

optimization. The robust minimax optimization can be treated as an adversarial game by

two players. One player selects P (s = 1|xi, ai) within the ε range of the estimated P̂ (s =

1|xi, ai) to maximize the loss of the objective, which can be seen as the worst case of Q. As

aforementioned, the selection probability is determined by the corresponding distribution Q

and then different selection probability can represent different Q. Another player minimizes
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the worst case loss to find the optimal w. There are two advantages of robust minimax

optimization of Equation 5.4. First, it takes the worst case induced by the estimation error

into consideration, thus the obtained classifier f is robust to any possible Q within the error

range of the estimation. Second, during the minimax optimization, the fairness is achieved

under the worst case. Therefore, we can guarantee the fairness for any possible Q within the

error range of the estimation.

The computation of RD(D̂s) involves the indicator function, as shown in Equation

5.2, which makes it computationally intractable to reach the optimal solution of Equation 5.4.

To address the intractable issue, we approximate the fairness constraint using the boundary

fairness from Equation 3.3 in Chapter 3 and write the boundary fairness C(t,w) on Ds as:

CDs(t,w) =
1

NDs

NDs∑
i=1

(ai − ā)dw(xi), (5.5)

where ai is the sensitive attribute value of ti, ā = 1
NDs

∑NDs
i=1 ai is the mean value of the

sensitive attribute and dw(xi) is the distance to the decision boundary of the classifier f and

is formally defined as dw(xi) = wTxi. Similarly we will have the boundary fairness on D̂s as:

CD̂s(t,w) =
1

NDs

NDs∑
i=1

(ai − ā)
P (s = 1)

P (s = 1|xi, ai)
dw(xi). (5.6)

We enforce CD̂s(t,w) ≤ σ, σ ∈ R+ to achieve the fair classification. With the boundary
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fairness, we can rewrite the robust and fairness-aware loss function as:

min
w∈W

max
P (s=1|xi,ai)

L(w, P ) =
1

NDs

NDs∑
i=1

P (s = 1)

P (s = 1|xi, ai)
l(f(xi, ai), yi)

subject to |P (s = 1|xi, ai)− P̂ (s = 1|xi, ai)| ≤ ε

| 1

NDs

NDs∑
i=1

(ai − ā)
P (s = 1)

P (s = 1|xi, ai)
dw(xi)| ≤ σ

(5.7)

5.4.1 Solving Robust Fairness-aware Optimization

The optimization of Equation 5.7 involves two sets of parameters w and P (s =

1|xi, ai). According to its minimax formulation, it is preferable to obtain the optimal solution

in an iterative manner by optimizing w and P (s = 1|xi, ai) alternatively. First, we fix

P (s = 1|x1, ai) and decompose the part of Equation 5.7 only related to w as:

min
w∈W

L(w) =
1

NDs

NDs∑
i=1

P (s = 1)

P (s = 1|xi, ai)
l(f(xi, ai), yi)

subject to | 1

NDs

NDs∑
i=1

(ai − ā)
P (s = 1)

P (s = 1|xi, ai)
dw(xi)| ≤ σ

(5.8)

It can be seen that with the fixed P (s = 1|xi, ai), the optimization of w subjects to the linear

fairness constraint. In fact, the optimal w is determined by the choice of loss function l and

learning model f . For example, if the chosen model is regression model, then the optimization

of w subject to the linear constraints belongs to the family of quadratic programming, which

can be solved efficiently by the available tools. Instead, if we choose some complex models,

e.g. deep learning models, then the loss function parameterized by w is non-convex, and it is

quite challenging to apply the commonly used optimization techniques, e.g. gradient decent,

to optimize w with the existence of linear constraints. Therefore, for the generalization
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purpose, we choose to transform the fairness constraint as a penalty term and add to L(w),

which can be expressed as:

min
w∈W

L(w) =
1

NDs

NDs∑
i=1

P (s = 1)

P (s = 1|xi, ai)
l(f(xi, ai), yi)

+β(
1

NDs

NDs∑
i=1

(ai − ā)
P (s = 1)

P (s = 1|xi, ai)
dw(xi) − σ)2

(5.9)

where β is a hyperparameter that controls the trade-off between the utility and fairness. By

the transformation, standard optimization techniques such as stochastic gradient decent can

be used to solve Equation 5.9.

Second, we can fix w and decompose the part of Equation 5.7 only related to P (s =

1|xi, ai) as the following:

max
P (s=1|xi,ai)

L(P ) =
1

NDs

NDs∑
i=1

P (s = 1)

P (s = 1|xi, ai)
l(f(xi, ai), yi)

subject to |P (s = 1|xi, ai)− P̂ (s = 1|xi, ai)| ≤ ε

| 1

NDs

NDs∑
i=1

(ai − ā)
P (s = 1)

P (s = 1|xi, ai)
dw(xi)| ≤ σ

(5.10)

The objective of Equation 5.10 is a linear combination of P (s=1)
P (s=1|xi,ai) as we can treat

P (s=1)
P (s=1|xi,ai) to be one variable. P (s = 1) is a constant and does not affect the optimization.

For the first constraint, |P (s = 1|xi, ai) − P̂ (s = 1|xi, ai)| ≤ ε, we can obtain the range

of P (s=1)
P (s=1|xi,ai) after we estimate the range of each P (s = 1|xi, ai). The second constraint

| 1
NDs

∑NDs
i=1 (ai − ā) P (s=1)

P (s=1|xi,ai)dw(xi)| ≤ σ in Equation 5.10 is linear with respect to P (s=1)
P (s=1|xi,ai)

when w is fixed. Therefore, the optimization of P (s=1)
P (s=1|xi,ai) is a standard linear programming

and we can directly apply linear programming tool to get the optimal solution of P (s=1)
P (s=1|xi,ai)
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without any additional relaxation.

5.4.2 RFLearn1: Sample Bias Correction with Test Data Available

In the previous section we formulate the robust and fairness-aware problem under

the assumption that the estimated P̂ (s = 1|x, a) is obtained, but without addressing how

to estimate it. In this section, we assume the unlabeled D is available and estimate the true

P (s = 1|x, a) by using D and Ds together. For a particular data record t, the ratio between

the number of times t in D and the number of times t in Ds in terms of (a, x) is an estimation

value for P (s = 1|x, a). Formally, for t ∈ D, let Dt denote the subset of D containing exactly

all the instances of t and nt = |Dt|. Similarly, let Dts denote the subset of Ds containing

exactly all the instances of t and mt = |Dts|. We then have P̂ (s = 1|x, a) = mt
nt

.

Lemma 1 [9] Let δ > 0, then, with probability at least 1− δ, the following inequality holds

for all t ∈ Ds:

|P (s = 1|x, a)− mt

nt
| ≤

√
ln2m′ + ln1

δ

p0ND
(5.11)

where m′ denotes the number of unique points in Ds and p0 = mint∈DP (t) 6= 0.

For notation convenience, we define θ(xi, ai) = P (s = 1|xi, ai) and θ̂(xi, ai) = P̂ (s =

1|xi, ai), where θ̂(xi, ai) is the empirical value based on the frequency estimation. Lemma

1 states that |θ(xi, ai) − θ̂(xi, ai)| is upper bounded by the right term in Equation 5.11.

Then we can apply the robust fairness aware framework by setting θ(xi, ai) within ε range of

estimated θ̂(xi, ai), where ε is the right term of Equation 5.11. According to the Theorem 2

in [9], the generalization error between the true distribution θ(xi, ai) and distribution using
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Table 5.1: Model performance under data distribution shift (Adult and Dutch) Acc:
accuracy

Methods
Adult Dataset Dutch Dataset

Training Acc Test Acc Training RD Test RD Training Acc Test Acc Training RD Test RD

LR (unbiased) 0.8124 0.8126 0.1562 0.1373 0.7493 0.7669 0.1498 0.1395

LR 0.8041 0.7882 0.1344 0.1228 0.7018 0.6821 0.0378 0.1012

FairLR 0.7823 0.7622 0.0231 0.0956 0.7006 0.6624 0.0289 0.0991

[47] 0.7883 0.8048 0.1348 0.1333 0.6812 0.7044 0.1421 0.1394

RFLearn1− 0.7412 0.7875 0.0351 0.1048 0.6501 0.6879 0.0315 0.0809

RFLearn1 0.7484 0.7816 0.0281 0.0416 0.6673 0.6910 0.0317 0.0405

RFLearn2− 0.7473 0.7771 0.0321 0.0963 0.6457 0.6809 0.0411 0.0973

RFLearn2 0.7336 0.7678 0.0197 0.0238 0.6479 0.6755 0.0321 0.0373

Table 5.2: Model performance of RFLearn1 under sample selection bias with different δ
(Adult and Dutch). Acc: accuracy

δ
Adult Dataset Dutch Dataset

Training Acc Test Acc Training RD Test RD Training Acc Test Acc Training RD Test RD

0.025 0.7181 0.7601 0.0189 0.0219 0.6521 0.6812 0.0291 0.0326

0.05 0.7217 0.7673 0.0239 0.0398 0.6521 0.6812 0.0321 0.0326

0.1 0.7484 0.7816 0.0307 0.0416 0.6673 0.6910 0.0378 0.0405

0.15 0.7239 0.7768 0.0277 0.0333 0.6701 0.6994 0.0275 0.0379

the estimated θ̂(xi, ai) is expressed as:

|Lθ(w)− Lθ̂(w)| < µ

√
ln2m′ + ln1

δ

p0ND
(5.12)

where µ is a constant determined by σ (Lemma 1) and hyperparameter β (Equation 5.9).

Suppose the maximum value of Lθ̂(w) is defined as Lθ̂(w)max and our robust fairness-aware

optimization is to minimize Lθ̂(w)max per iteration. The loss Lθ̂(w)max consists of both

the prediction loss and fairness loss. Therefore, the minimization of upper bound of the

generalization error of true distribution can provide robustness in terms of both prediction

and fairness.
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Table 5.3: Model performance of RFLearn2 under sample selection bias with different ρ
(Adult and Dutch). Acc: accuracy

ρ
Adult Dataset Dutch Dataset

Training Acc Test Acc Training RD Test RD Training Acc Test Acc Training RD Test RD

0.2 0.7229 0.7558 0.0178 0.0114 0.6401 0.6543 0.0175 0.0214

0.4 0.7336 0.7628 0.0197 0.0238 0.6479 0.6755 0.0321 0.0373

0.6 0.7428 0.7724 0.0269 0.0361 0.6544 0.6792 0.0301 0.0314

5.4.3 RFLearn2: Sample Bias Correction without Test Data Available

In this section, we focus on the scenario without unlabeled test data D. The challenge

is how to use Ds alone to estimate the true sample selection probability so that we can

construct D̂s to resemble D. In general, the exact relationship between Ds and D is unknown.

Without additional assumptions, it is impossible to build a model to resemble the true D

with only access to the observed Ds.

We assume that 1) there exist K clusters in Ds; 2) the samples in the same cluster

have the same selection probability; and 3) the selection probability of each sample is within

a range of the uniform selection probability. Under these assumptions, the ratio P (s=1)
P (s=1|xi,ai) for

each sample from the same cluster is the same. The ratio vector for K clusters is defined as

r = (r1, r2, · · · , rK). We robustify the estimation by approximating r within a Wasserstein

ball Bρ [92] around the uniform ratio ru, where all of the values in ru is 1. Formally we

have |r − ru| ≤ ρ, where ρ is the radius of the Wasserstein ball. Suppose xi belongs to the

k-th cluster where k ∈ [K], we can write the robust loss of f with only Ds available as the
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following:

min
w∈W

max
r∈Bρ

L(w, r) =
1

NDs

NDs∑
i=1

rkl(f(xi, ai), yi)

subject to |r− ru| ≤ ρ

| 1

NDs

NDs∑
i=1

(ai − ā)rkdw(xi)| ≤ σ

(5.13)

The above formulation also saves huge amounts of computational cost as it reduces the

number of constraints from the training data size level to the cluster size level.

5.5 Experiments

Dataset. We use two benchmark datasets, Adult [90] and Dutch [28], to evaluate

our proposed algorithms, RFLearn1 and RFLearn2. Adult dataset consists of individual’s

information such as age, education level, gender, occupation, race, and so forth. The task for

Adult dataset is to predict whether an individual’s income is over 50k or not based on the

collected personal information. Dutch dataset is a collection of Census data in Netherlands,

where each data sample has different attributes like Adult datasets, including education

level, gender, race, marital status and so forth. The task is also a binary classification to

predict whether an individual belongs to low income or high income group. In both datasets,

we set gender as the protected attribute and use one-hot encoding to convert the categorical

attributes to vectors and apply normalization to covert numerical attributes into the range

[0, 1]. After preprocessing, Adult has 45222 records and 40 features, while Dutch has 60420

records and 35 features.

Experimental Setting. We follow the biased data generation approach in [93] and choose

to select the data based on the education level (married status) for Adult (Dutch). For Adult,

we create the biased training data by selecting 18157 records from the first 35000 records
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(randomly choosing 70% of people with 10+ years education and 30% of people with less

than 10 years education) and use the rest 10222 records as the test data. Similarly for Dutch,

we create the biased training data by selecting 20928 examples from the first 45000 records

(randomly choosing 75% of married people and 25% of unmarried people) and use the rest

15420 records as the test data.

Baselines. We choose the logistic regression (LR) to implement and evaluate different al-

gorithms. We consider the following baselines to compare with our proposed RFLearn1 and

RFLearn2: (a) LR without fairness constraint (LR); (b) LR with fairness constraint (FairLR);

(c) robust LR in [47] that uses kernel functions to reweigh samples under covariate shift but

ignores the fairness constraint. For RFLearn1 (RFLearn2), we also consider its variation

RFLearn1- (RFLearn2-) that optimizes the robust loss with unweighted fairness constraint.

Metrics and Hyperparameters. We evaluate the performance in terms of prediction

accuracy and risk difference (RD). We consider a classifier is fair if RD(f) ≤ 0.05. The

hyperparameter β that controls the accuracy-fairness trade-off is set as 1. The radius ρ is set

as 0.4, δ is set as 0.1, and σ is set as 0.2. For RFLearn2− and RFLearn2, we apply K-means

[94] to cluster the training data and set the number of clusters 300. We run all experiments

20 times and report the average results.

5.5.1 Accuracy vs. Fairness

We report the accuracy and fairness on both training data and test data for each

method in our results. Note that our goal is to achieve robust accuracy and fairness on test

data under the sample selection bias. Results on both training and test data help explain

why baselines focusing on the training data itself fail achieving good accuracy and fairness

on test data.
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Accuracy. Table 5.1 shows prediction accuracy and risk difference of each model on training

and test data for both Adult and Dutch. The first row LR (unbiased) indicates the perfor-

mance of the logistic regression model with unbiased training data. We randomly select the

same number of data from the original datasets. The results of the rest rows are all con-

ducted on our biased training data discussed in the experimental setting section. We can

draw several important points from the experimental results.

First, the testing accuracy of LR is 0.7882 for Adult and 0.6821 for Dutch, whereas

the accuracy of LR (unbiased) is 0.8126 for Adult and 0.7669 for Dutch. It demonstrates

that the model prediction performance degrades under sample selection bias. Second, with

the use of robust learning, the prediction accuracy for Adult (Ducth) of RFLearn1- is 0.7875

(0.6879) and RFLearn2- is 0.7771 (0.6809), which outperforms FairLR by 0.0253 (0.0255)

and 0.0109 (0.0185). As the fairness constraints of RFLearn1- and RFLearn2- are the same

with FairLR, it demonstrates that the robust learning in Equation 5.7 can provide robust

prediction under the sample selection bias. Third, the testing accuracy from robust learning

methods is higher than the training accuracy, which further demonstrates the advantage

of robust learning under the sample selection bias. Fourth, the accuracy of RFLearn1 is

higher than that of RFLearn2. It is reasonable as we leverage the unlabeled test data in our

RFLearn1.

Fairness. In this section, we focus on fairness comparison. We summarize below the inter-

esting observations from Table 5.1. First, all of FairLR, RFLearn1- and RFLearn2- can only

achieve fairness on the training data with RD ≤ 0.05, but none of these approaches can guar-

antee the fairness on the test data. RFLearn1- and RFLearn2-, which uses the unweighted

fairness constraint, also fail to achieve fairness on the test data. The method proposed by [47]

only considers the robustness of prediction error but ignores the fairness, so that it cannot
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achieve the fairness on the test data as well. Second, RFLearn1 and RFLearn2 can achieve

fairness on both training and test data. The result is consistent with our algorithms as we

enforce the fairness under any possible adverse distribution. Therefore, the classifier is also

robust in terms of meeting fairness requirement on the test data even it is trained on the

biased sampling data.

5.5.2 Effects of Hyperparameters

In this section, we conduct sensitivity analysis of our RFLearn1 and RFLearn2 with

different hyperparameters. Due to space limits, we focus on two key parameters δ and ρ.

Table 5.2 shows the performance of RFLearn1 with different δ values. Note that in Lemma

1 the estimation error of the sample selection probability is upper bounded with the proba-

bility greater than 1− δ. The upper bound (the right side in Equation 5.11) increases with

the decreasing δ. A larger upper bound indicates that the adversary can generate more pos-

sible distributions during the robust optimization, hence helping achieve better prediction

accuracy on test data. However, when the upper bound is too large, excessive possible distri-

butions may reduce the prediction accuracy on test data. The experimental results in Table

5.2 match our above analysis.

Table 5.3 shows the result of RFLearn2 under different radius ρ. We can see that the

testing accuracy increases with the increasing ρ. Larger ρ indicates more possible generated

distributions which are more likely to cover the test distribution and improve the model

performance. Moreover, the proposed RFLearn1 and RFLearn2 can achieve both fairness on

the training and test data with different δ and ρ. It is beneficial as the fairness performance

of our proposed algorithms are not sensitive to the varying δ and ρ.
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5.6 Summary

In this chapter we have developed a robust and fair learning framework with two

algorithms to deal with the sample selection bias. Our framework adopts the reweighing

estimation approach for bias correction and the minimax robust estimation for achieving

robustness on prediction accuracy and fairness on test data.
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6 Achieve Regression Fairness under Sample Selection Bias

6.1 Introduction

Fairness has been an increasingly important topic in machine learning. Fair machine

learning models aim to learn a function f for a target variable Y using input features X and

a sensitive attribute A (e.g., gender), while ensuring the predicted value Ŷ fair with respect

to A based on some given fairness criterion. Fair machine learning models can be categorized

into pre-processing (modifying training data or learning a new representation such that the

information correlated to the sensitive attribute is removed), in-processing (adding fairness

penalty to the objective function during training), and post-processing (applying perturba-

tion or transformation to model output to reduce prediction unfairness). Much of existing

works has focused on classification. In this paper, we focus on fair regression where the target

Y is continuous.

Fair regression can be naturally defined as the task of minimizing the expected loss

of real-valued predictions, subject to some fairness constraints. Fairness notions under the

regression setting are in principle based on some forms of independence, e.g., the indepen-

dence of model prediction Ŷ and sensitive attribute A, the independence of prediction error

Ŷ − Y and sensitive attribute A, and the conditional independence of Ŷ and A given Y .

Different from the classification setting, variables of Y and Ŷ (even A) become continuous

in the regression setting, which requires new fairness notions and constrained optimization

techniques. Researchers have developed quantitative metrics based on moment constraints,

such as mean difference [95], mean squared error difference [96], and Pearson correlation [97].

These simplified metrics can be easily calculated but fail to capture subtle effects. For exam-
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Figure 6.1: Illustrative example for fair regression under sample selection bias. Fitted models
with sample correction incorporate feature values of unadmitted students. Black line: LR w/o
correction, black dashed line: LR with correction, red line: fair LR w/o correction, red dashed
line: fair LR with correction.

ple, the predicted values may have different variances across groups. Recently, researchers

started to propose fairness metrics based on distributions/densities instead of simple point

estimate [98], and develop approximation methods [99] for achieving fairness in regression. It

is imperative to develop a general fair regression framework that enforces a variety of fairness

notions and provides efficient implementation and theoretical analysis when dual optimiza-

tion and approximation are applied. Moreover, all previous fair regression research assumed

the training data and testing data are drawn from the same distributions. This assumption

is often violated in real world due to the sample selection bias between the training and

testing data.

Figure 6.1 shows an illustrative example of studying the relationship between SAT

scores (X) and potential college achievement (Y ) of students. The regression model trained

on only observed student samples who were already admitted to college (denoted as Ds and

shown as solid data points in Figure 6.1(a)) would be biased as the fitted model did not

consider applicants who could potentially go to college (denoted as Du and shown as hollow
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points in Figure 6.1(a)). Note that for these applicants who did not go to college, SAT scores

(X) are still available although their corresponding college achievements (Y ) are missing.

Moreover, as shown in Figure 6.1(b), the fair regression model trained on only admitted

college students Ds in fact would be unfair and cannot be adopted for future applicants

whose distribution is assumed to resemble the union of Ds and Du. It is imperative to learn

a fair regression model that can incorporate X values of samples from Du to both improve

model fitness and achieve fairness on population.

In this chapter, we propose, FairLR?, the fair regression framework under sample

selection bias when dependent variable values of a set of samples from the training data

are missing as a result of another hidden selection process. Our FairLR? adopts the classic

Heckman model [21] for bias correction and the Lagrange duality theory [22] to achieve

regression fairness based on a variety of fairness notions. Our fair regression framework

minimizes the loss function subject to fairness inequality and equality constraints. We apply

the Lagrange duality theory to transform the primal problem into a dual convex optimization

problem. For the two popular fairness notions, mean difference (MD) and mean squared

error difference (MSED), we derive two explicit formulas without optimizing iteratively. For

Pearson correlation, we derive its conditions of satisfying the Slater condition, thus achieving

strong duality. We conduct experiments on three real-world datasets and the experimental

results demonstrate our approach’s effectiveness in terms of both utility and fairness. Note

that this chapter is originally from the arxiv version in [100].

6.2 Related Work

Fair Regression. For linear regression f(·) : X → Y with discrete sensitive attribute A,

Calders et al. [95] first introduced mean difference and AUC to measure the unfairness.
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Fitzsimons et al. [101] also used a similar concept termed as group fairness expectation to

ensure fair prediction for different groups. For regression with discrete/continuous sensitive

attribute, Mary et al. [102] used the Rényi maximum correlation coefficient of prediction and

sensitive attribute to describe the fairness penalty. Recently, Agarwal et al. [98] presented

two fairness definitions, statistical parity and bounded group loss. The statistical parity uses

the departure of the CDF of f(X) conditional on A = a from the CDF of f(X). When

the departure is close to zero, the prediction is statistically independent of the protected

attribute. The bounded group loss requires that the prediction error of any protected group

stay below some pre-determined threshold.

To address the challenge of estimating information-theoretic divergences between con-

ditional probability density functions, Steinberg et al. [99] introduced fast approximations

of the independence, separation and sufficiency group fairness criteria for regression models

from their (conditional) mutual information definitions. Chzhen et al. [103] focused on de-

mographic parity that requires the distribution of the predicted output to be independent

of the sensitive attribute. They established a connection between fair regression and optimal

transport theory and derived a closed form expression for the optimal fair predictor, i.e., the

distribution of this optimum is the Wasserstein barycenter of the distributions induced by

the standard regression function on the sensitive groups.

Fair Classification under Sample Selection Bias. The sample selection bias causes

training data to be selected non-uniformly from the population to be modeled. Extensive

research has been conducted on classification under sample selection bias (refer to a survey

[87]). Some recent research focused on robust classification under sample selection bias [48,

46, 47, 61, 104]. For example, Wen et al. [47] considered covariate shift between the training

and testing data and proposed a minimax robust framework that applies Gaussian kernel
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functions to reweigh the training examples. Du et al. [104] adopted the reweighing estimation

idea for sample bias correction and used the minimax robust estimation to achieve robustness

on prediction accuracy. To tackle the unfairness issue under distribution shift, Taskesen et al.

[51] developed a distributionally robust logistic regression model with an unfairness penalty.

They assumed the unknown true test distribution is contained in a Wasserstein ball centered

at the empirical distribution on the observed training data. Rezaei et al. [52] proposed the

use of ambiguity set to derive the fair classifier based on the principles of distributional

robustness. Other related work includes fair transfer learning [54] and fair classification with

bias in label collection [57, 59].

6.3 Fair Regression under Sample Selection Bias

6.3.1 Problem Formulation

We first define the notations used in this paper. Let (X, A, Y ) denote the training

data D, where X is the feature space, A is the protected attribute, and Y is the continuous

target attribute. D contains n data samples, among which m samples (xi, ai, yi) are fully

observed and the remaining n−m data points have yi missing. We denote the fully observed

part as Ds and the other part as Du. The whole training data D is selected uniformly from the

population to be modeled. However, Ds is non-uniformly selected and the bias of Ds could

depend on both feature vector x, a and target variable y. A regression function f(·) : X → Y

tries to learn optimal parameter w. We denote ŷ = f(x;w).

Problem Statement. Given the training dataset D = Ds ∪ Du, derive regression function

f(·) : X → Y that achieves fairness on population with respect to protected attribute A

based on some fairness criterion.
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We emphasize the sample selection bias considered in our work is different from the

traditional covariate shift scenario. Although the covariate shift tackles the shift between the

training distribution Ptr(X) and test distribution Pte(X), it usually assumes both a labeled

training dataset and an unlabeled testing dataset are available in the training phase. In our

work, we do not require the unlabeled testing data in the training phase. Instead, we assume

the available training dataset contains a mixture of labeled and unlabeled data points but

the labeling process is biased. In our setting, we are able to use the Heckman model to correct

the bias with theoretical guarantee as we can compute the conditional unbiased expectation

analytically. However, the previous commonly used approaches for covariate shift can only

achieve robust estimation within a range but cannot provide theoretical guarantee.

6.3.2 Heckman Model Revisited

Heckman model [21] addresses the issue of sample selection bias when the depen-

dent variable in the regression has values that are missing not at random. In the two-step

estimation procedure of Heckman model, the first step uses probit regression to model the

sample selection process and derives a new variable called the Inverse Mills Ratio (IMR).

The second step adds the IMR to the regression analysis as an independent variable and

uses ordinary least squares to estimate the regression coefficients. This two-step estimator

can perform well when there is no multicollinearity between the IMR and the explanatory

variables. We present below the Heckman model formally.

The selection equation of the ith sample is zi = x1iγ + ui where x1i includes the set

of features related to sample selection, γ is the set of regression coefficients, and ui is the
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error term. The selection index s is defined as:

si =


1 zi > 0

0 zi ≤ 0

(6.1)

where si = 1 indicates that the ith sample is fully observed and si = 0 indicates its target

value yi is missing. The prediction model is based on linear regression and for the ith sample

we have yi = ŷi + εi = x2iβ + εi where ŷi is the predicted value, x2i includes the set of

features used for prediction, β is the set of regression coefficients, and εi is the error term.

Following the default assumptions in the Heckman model, x2i is a subset of x1i, indicating

that all attributes predicting the outcome of interest can also predict selection equation, and

ui ∼ N(0, 1), and εi ∼ N(0, σ2
ε ). The correlation coefficient of ui and εi is denoted by ρ.

The prediction outcome based on Ds alone is biased and we can correct it by computing the

conditional means of the prediction outcome as:

E(yi|si = 1) = E(yi|zi > 0) = E(x2iβ + εi|x1iγ + ui > 0)

= x2iβ + E(εi|x1iγ + ui > 0)

= x2iβ + E(εi|ui > −x1iγ)

(6.2)

Because ui and εi are correlated, then we have (see the supplemental material for derivations)

E(εi|ui > −x1iγ) = αiρσε (6.3)

where αi =
φ(−x1iγ)

1− Φ(−x1iγ)
is usually termed as IMR. Here φ(·) denotes the standard normal

density function and Φ(·) denotes the standard cumulative distribution function.

To compute the value of αi, the first step is to estimate the coefficients γ. We use the

70



maximum likelihood estimate (MLE) to estimate γ by treating the selection equation as a

probit classification model and we have

P (si = 1) = Φ(x1iγ), P (si = 0) = 1− Φ(x1iγ) (6.4)

Then the likelihood of D is expressed as:

LH(γ; si,x1i) =
n∏
i=1

Φ(x1iγ)si(1− Φ(x1iγ))1−si (6.5)

The maximization of Equation 6.5 will obtain the estimates of γ, and thus we can compute

αi for each selected sample (xi, ai, yi) in Ds. With available αi, we can rewrite Equation 6.2

as:

E(yi|si = 1) = x2iβ + αiρσε (6.6)

Then we can estimate the coefficients β from Equation 6.6, e.g., via the ordinary least

squares (OLS) by minimizing minβ L(β) =
∑m

i=1(x2iβ + αiρσε − yi)2.

6.3.3 Fair Regression via Heckman Correction

We first present the general fair regression framework that aims to minimize the risk

and learns the parameters w ∈ W subject to the fairness constraints:

min
w∈W

E[l(ŷ, y)] = E[l(f(x;w), y)]

subject to gi(ŷ, y, a) ≤ 0, i = 1, · · · , p

hj(ŷ, y, a) = 0, j = 1, · · · , q

(6.7)
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where f is the learning model, l is the loss function, gi are fairness inequality constraints,

and hj are fairness equality constraints.

We then formulate the fair regression under sample selection bias and rewrite Equa-

tion 6.7 to minimize the empirical loss subject to the fairness constraint:

p∗ = min
β̃
L(β̃) =

m∑
i=1

l[(fh(x̃2i; β̃), y)]

subject to gi(β̃) ≤ 0, i = 1, · · · , p

hj(β̃) = 0, j = 1, · · · , q

(6.8)

where β̃ = [β,βα], βα = ρσε, x̃2i = [x2i, αi], and fh(x̃2i; β̃) = x̃2iβ̃ is the Heckman pre-

diction function. Note that from Equation 6.6 the bias is corrected by αi which carries the

information of Du. The effect of each αi on the sample (xi, ai, yi) is quantified by ρσε. We

can then treat ρσε as one additional dimension βα of the coefficient vector. In addition, the

fairness constraint computed based on the corrected β̃ and x̃2i is unbiased.

6.3.3.1 Fairness Notions

Previous works on fair regression developed notions are based on the independence of

model prediction (or prediction error) and sensitive attribute. Different from the classification

setting, target variable Y is continuous and sensitive attribute A can be either categorical

or continuous. Table 6.1 summarizes fairness notions including their formula, reference, and

applicability in terms of sensitive attribute type. We leave their formal definitions in the sup-

plemental material. The mean difference (MD), the mean squared error difference (MSED),

the statistical parity (SP), and the bounded group loss (BGL) handle categorical sensitive

attribute whereas Pearson correlation (ρŷa) and our introduced partial correlation (ρŷa.y)
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handles numerical sensitive attribute. The partial correlation ρŷa.y includes both y and a in

the condition which is similar to the equalized opportunity [14] in fair classification. MD,

Pearson and SP focus on independence of model prediction and sensitive attribute whereas

MSED, Partial and BGL consider prediction error. Moreover, SP (BGL) measures the de-

pendence of prediction (prediction error) and sensitive attribute on distributions/densities,

in contrary to point estimate of other notions.

Table 6.1: Fairness notions for regression

Definition Reference Equation Categorical Numeric

MD [95, 96, 105, 106, 107, 108] MD(ŷ, a) = E(ŷ|a = 0)− E(ŷ|a = 1) X ×

MSED [95, 96] MSED(ŷ, a) = E[(y − ŷ)2|a = 0]− E[(y − ŷ)2|a = 1] X ×

Pearson [97] ρŷa =
E[(ŷ−µŷ)(a−µa)]

σŷσs
× X

Partial ours ρŷa.y =
ρŷa−ρŷyρay√
1−ρ2ŷy
√

1−ρ2ay
× X

SP [98, 105, 108, 109] SP = P[f(X) ≥ z|A = a]− P[f(X) ≥ z] X ×

BGL [98, 110] BGL = E[l(f(X), Y )|A = a] X ×

In general, we can enforce strict fairness via equality constraints and relaxed fairness

via inequality constraints in Equation 6.8. For example, we use hj(β̃) = 0 for MD = 0, and

use gi(β̃)− τ ≤ 0 for MD ≤ τ where τ is a user-specified threshold. One challenge is for SP

as the number of constraints is uncountable. We can apply the algorithm developed in [98]

that discretizes the real-valued prediction space and reduces the optimization problem to

cost-sensitive classification. The cost-sensitive classification is then solved by the reduction

approach [111]. We note that our framework can be used to enforce multiple fairness notions

at the same time and some notions may be mutually contradictory [112], which can cause

vacuous solutions.
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6.3.3.2 Dual Formulation

To solve the primal optimal problem (Equation 6.8) with a variety of fairness notions,

we apply the Lagrange duality theory [22] to relax the primal problem by its constraints.

The Lagrangian function is

Lc(β̃, λ, υ) = L(β̃) + λTg(β̃) + υTh(β̃) (6.9)

where λ ∈ Rp
+ and υ ∈ Rq are the Lagrange multiplier vectors (or dual variables) associated

with inequality constraints and equality constraints. The dual function hence is defined as

Q(λ, υ) = inf β̃ Lc(β̃, λ, υ). Note that the dual function Q(λ, υ) is a pointwise affine function

of (λ, υ), it is concave even when the problem (Equation 6.8) is non-convex. For each pair

(λ, υ), the dual function gives us a lower bound of the optimal value p∗, i.e., Q(λ, υ) ≤ p∗.

The best lower bound leads to the Lagrange dual problem:

d∗ = max
λ�0,υ

Q(λ, υ) = max
λ�0,υ

min
β̃
Lc(β̃, λ, υ) (6.10)

The Lagrange dual problem is a convex optimization problem because the objective to be

maximized is concave and the constraint is convex. We can solve the dual optimization

problem by alternating gradient descent steps over the primal variables β̃ and dual variables

(λ, υ), respectively. In particular, by iteratively executing the following two steps: 1) find

β̃∗ ← argminβ̃Lc(β̃, λ, υ); 2) compute λ ← λ + η dLc
dλ

(β̃∗, λ, υ), υ ← υ + η dLc
dυ

(β̃∗, λ, υ), the

solution will converge.

Next, we show instantiations of two widely used fairness notions, MD and MSED, by

deriving their explicit formulas without iterative optimization.
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Result 1. For fair regression with the mean squared loss and MD(ŷ, a) = 0, we have the

closed solution

β̃ = (X̃T
2 X̃2)−1(X̃T

2 y −
dT (X̃T

2 X̃2)−1X̃T
2 y

dT (X̃T
2 X̃2)−1d

d) (6.11)

Proof. The fair Heckman prediction model can be described as:

minL(β̃) =
m∑
i=1

(x̃2iβ̃ − yi)2

subject to
1

m0

∑
i∈D0

x̃2iβ̃ =
1

m1

∑
i∈D1

x̃2iβ̃

(6.12)

where m0 is the number of data in Ds with a = 0, m1 is the number of data with a = 1, and

m = m0 +m1.

We solve this optimization problem Equation 6.12 using Lagrange multipliers. For

convenience, we use d to denote
1

m0

∑
i∈D0

x̃2i−
1

m1

∑
i∈D1

x̃2i. Then we can rewrite Equation

6.12 as the following constrained minimization problem:

L(β̃) = min
m∑
i=1

(β̃x̃2i − yi)2 + 2λdT β̃ (6.13)

where λ is the Lagrange multiplier.

By taking the partial derivatives of jth coefficient β̃j of β̃:

∂L(β̃)

∂β̃j
=

m∑
i=1

2(x̃2iβ̃ − yi)x̃2ij + 2λdj (6.14)

where x̃2ij is the jth component of x̃2i and dj is the jth component of d. By setting the
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derivative to be zero for all j, we can get:

(
m∑
i=1

x̃2ix̃2ij)β̃ =
m∑
i=1

yix̃2ij − λdj (6.15)

Thus we can rewrite Equation 6.15 with matrix form:

X̃T
2 X̃2β̃ = X̃T

2 y − λd (6.16)

where X̃2 is the matrix form of x̃2i, i ∈ [m] and y is the vector form of yi, i ∈ [m]. Therefore,

we have:

β̃ = (X̃T
2 X̃2)−1(X̃T

2 y − λd) (6.17)

We can also get solution of λ using the fairness constraint dT β̃ = 0:

λ =
dT (X̃T

2 X̃2)−1X̃T
2 y

dT (X̃T
2 X̃2)−1d

(6.18)

By substituting λ into Equation 6.17, we have the closed solution.

Result 2. For fair regression with the mean squared loss and MSED(ŷ, a) = 0, we have the

closed solution

β̃ =(X̃T
2 X̃2 +

λ

m0

(X̃0
2 )TX̃0

2 −
λ

m1

(X̃1
2 )TX̃1

2 )−1

(X̃T
2 y +

λ

m0

(X̃0
2 )Ty0 −

λ

m1

(X̃1
2 )Ty1)

(6.19)

Proof. The fair Heckman prediction model can be described as:

minL(β) =
m∑
i=1

(x̃2iβ̃ − yi)2

subject to
1

m0

∑
i∈D0

(x̃2iβ̃ − yi)2 =
1

m1

∑
i∈D1

(x̃2iβ̃ − yi)2

(6.20)
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We use the same notations as above and apply the Lagrange multipliers:

L(β̃) = min
m∑
i=1

(x̃2iβ̃ − yi)2 + λ(
1

m0

∑
i∈D0

(x̃2iβ̃ − yi)2 − 1

m1

∑
i∈D1

(x̃2iβ̃ − yi)2) (6.21)

We can compute the derivatives of β̃ with the matrix form and set it to be zero:

2X̃T
2 (X̃2β̃ − y) +

2λ

m0

(X̃0
2 )T (X̃0

2 β̃ − y0)− 2λ

m1

(X̃1
2 )T (X̃1

2 β̃ − y1) = 0 (6.22)

where X̃0
2 is the matrix form of x̃2i, i ∈ [m0], X̃1

2 is the matrix form of x̃2i, i ∈ [m1], y0 is

the vector form of yi, i ∈ [m0], y1 is the vector form of yi, i ∈ [m1], and y is the vector form

of yi, i ∈ [m]. Then we can get:

(X̃T
2 X̃2 +

λ

m0

(X̃0
2 )TX̃0

2 −
λ

m1

(X̃1
2 )TX̃1

2 )β̃ = X̃T
2 y +

λ

m0

(X̃0
2 )Ty0 −

λ

m1

(X̃1
2 )Ty1 (6.23)

Therefore, the solution of β̃ is:

β̃ = (X̃T
2 X̃2 +

λ

m0

(X̃0
2 )TX̃0

2 −
λ

m1

(X̃1
2 )TX̃1

2 )−1(X̃T
2 y+

λ

m0

(X̃0
2 )Ty0−

λ

m1

(X̃1
2 )Ty1) (6.24)

We can then substitute Equation 6.24 to MSED(ŷ, a) = 0 and compute the solution of λ

and β̃.

6.3.3.3 Duality Gap Analysis

The optimal value d∗ of the Lagrange dual problem, by definition, is the best lower

bound on p∗ that can be obtained from the Lagrange dual function. The difference p∗ −

d∗, which is always nonnegative, is the optimal duality gap of the original problem. One

77



theoretical question is whether and under what conditions we can achieve zero duality gap

(i.e., the optimal values of the primal and dual problems are equal) in our fair regression

framework.

Result 3. For fair regression with the convex loss function and the fairness inequality con-

straints (i.e., less than a user-specified threshold τ), the strong duality holds for Pearson

correlation if the linear relationship exists between x and a.

Proof. Our proof is based on strong duality via Slater condition. The Slater condition states

that if a convex optimization problem has a feasible point β̃0 in the relative interior of the

problem domain and every inequality constraint gi(β̃) ≤ 0 is strict at β̃0, i.e., gi(β̃0) < 0,

then strong duality holds. Both MD and MSED can be viewed as a special case of a general

set of linear inequalities on conditional moments [111] and satisfy Slater condition. Next we

present the proof that Slater condition also holds for Pearson coefficient as fairness constraint.

The correlation usually exists between x̃2 and a, and then the prediction based on x̃2

has disparate impact. We can remove the correlation between x̃2 and a through the following

regression:

B̂ = (ATA)−1X̃2,U = X̃2 − B̂A (6.25)

whereA = (a1, a2, · · · , an) and we define ui as the i-th datapoint of U . With the assumption

that the linear relationship exists between x̃2 and a, it was proved by [97] that (u, a) has

the same information with (x̃2, a) and the correlation between u and a is O(
1√
n

).

Suppose the prediction outcome ŷ is expressed as the following:

ŷ = aβ̃a + uβ̃u (6.26)
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Then we can compute the Pearson coefficient as the following:

ρ(ŷ, a) =
Cov(ŷ, a)√
V ar(ŷ)V ar(a)

(6.27)

where Cov(ŷ, a) is the correlation between ŷ and a, V ar(ŷ) is the variance of ŷ, and V ar(a)

is the variance of a. Cov(ŷ, a) is calculated as:

Cov(ŷ, a) = Cov(aβ̃a + uβ̃u, a)

= Cov(aβ̃a, a) + Cov(uβ̃u, a)

= β̃aV ar(a) + 0

= β̃aV ar(a)

(6.28)

The variance of ŷ is computed as:

V ar(ŷ) = V ar(aβ̃a + uβ̃u)

= V ar(aβ̃a) + V ar(uβ̃u)

= β̃2
aV ar(a) + β̃TuVuβ̃u

(6.29)

where Vu is the covariances of u. Thus Equation 6.27 can be written as:

ρ(ŷ, a) =
Cov(ŷ, a)√
V ar(ŷ)V ar(a)

=
β̃aV ar(a)√

(β̃2
aV ar(a) + β̃TuVuβ̃u)V ar(a)

=
β̃a

√
V ar(a)√

β̃2
aV ar(a) + β̃TuVuβ̃u

(6.30)

Up to now, we can write down the fairness regression subject to the fairness constraint of
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Pearson coefficient:

min
β̃
L(β̃) =

m∑
i=1

l[(fh(x̃2i; β̃), y)]

subject to ρ2(ŷ, a) ≤ ε

(6.31)

where ε is the threshold of the fairness metric. The fairness constraint ρ2(ŷ, a) ≤ ε is equiv-

alent to:

(1− ε)β̃2
aV ar(a)− εβ̃TuVuβ̃u ≤ 0 (6.32)

The Slater condition requires that {(β̃a, β̃u) : (1− ε)β̃2
aV ar(a)− εβ̃TuVuβ̃u < 0} 6= ∅.

It can be easily verified that Slater condition holds. For example, we can set β̃a to be zero.

Since Vu is symmetry and we can apply diagonal decomposition for Vu and the eigenvalues

of Vu cannot be all zero. Suppose the jth eigenvalue of Vu is non-zero, and we can set the

corresponding jth component of β̃u to be same sign with the jth eigenvalue, and set all other

components of β̃u to be zero, so that the the Slater condition holds.

Remarks Note that we do not need to conduct the duality gap analysis for the mean

difference (MD) and the mean squared error difference (MSED) as Results 1 and 2 have

already given the explicit formulas for the primal optimization. For Partial, SP, BGL and

other potential fairness notions, we leave their analysis in our future work. Moreover, when

there is no sample selection bias, our Results 1-3 naturally hold by removing the tilde from

those tilde symbols (e.g., β̃).
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6.4 Experiments

6.4.1 Experiment Setting

Datasets. We conduct our experiment on three real-world datasets that are widely

used to evaluate fair machine learning models. For each dataset, we choose 70% of data as

training data D and leave the rest as testing data. To create the sample selection bias, we

follow the procedure in [93] by splitting D into Ds (samples with fully observed features X

and target Y ) and Du (samples with missing Y ) according to some specific features. We show

the characteristics of three datasets including protected attribute A, target Y , sizes of Ds,

Du, and testing data in Table 6.2 and show the attribute lists used in selection/prediction

in Table 6.3.

Table 6.2: Characteristics of datasets

Dataset Protected Attribute A Target Y |Ds| |Du| Testing

CRIME AAPR Crime Rate 976 419 599

LAW Black/Non-black GPA 1373 567 810

COMPAS Black/Non-black Risk Score 2153 924 1320

CRIME dataset [113] was collected from the 1990 US Census and contains socio-

economic data of 1994 communities. The task is to predict the crime rate of a given commu-

nity based on its socio-economic information. We choose the African American Population

Ratio (AAPR) as the sensitive attribute and label a community as protected if its AAPR is

greater than 50% and non-protected otherwise. In total, we have 219 protected communities

and 1775 non-protected communities. In our experiments, we remove attributes with missing

values and standardize all attributes to have zero mean value and unit variance. We include

samples to Ds if the ratio of people under the poverty level in a community is less than 0.05,
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Table 6.3: Attributes used for selection/prediction. Those with italic font are for prediction
and those with either regular or italic font are for selection.

Dataset Attribute

CRIME population, householdsize, racepctblack, racePctWhite, racePc-
tAsian, racePctHisp, agePct12t21, agePct12t29, agePct16t24,
agePct65up

numbUrban, pctUrban, medIncome, pctWWage, pctWFarmSelf,
pctWInvInc, pctWSocSec, pctWPubAsst, pctWRetire, medFam-
Inc

LAW cluster, lsat, ugpa, zgpa, fulltime, fam inc, age, gender, pass

COMPAS decile score.1, age cat 25 - 45, age cat Greater than 45,
age cat Less than 25, c charge degree F, c charge degree M, sex,
age, juv fel count, juv misd count, juv other count, priors count,
two year recid

and samples to Du otherwise.

LAW dataset [114] was collected from the Law School Admissions Council’s National

Longitudinal Bar Passage Study and consists of personal records of law students who went

on to take the bar exam, including LSAT score, age, race and so forth. The task is to predict

the GPA of a student based on other attributes. We choose race as the sensitive attribute

and treat black as protected. The dataset contains a total of 20649 records and we randomly

select 3000 records, including 500 protected samples and 2500 non-protected samples. We

include samples to Ds if the year of birth is after 1950, and samples to Du otherwise.

COMPAS dataset [7] consists of a collection of data from criminal defenders from

Florida in 2013-2014. Each data sample is associated with personal information, including

race, gender, age, prior criminal history, and so forth. The task is to predict the risk level

of a defender based on other attributes. We choose race as the sensitive attribute and treat

black defenders as protected. After removing the duplicated data samples, we have a total of

4397 data samples, including 2694 protected samples and 1703 non-protected samples. We
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include samples to Ds if the year of decile score is less than 10, and to Du otherwise.

Baseline Models and Metrics. We choose linear regression with the standard

loss function, mean squared loss, in our proposed framework FairLR?. We adopt each of

four fairness metrics, MD, MSED, Pearson coefficient and Partial coefficient, with equality

constraint forms. We consider the following baseline models: (a) Linear regression (LR)

without fairness constraint; (b) Linear regression with Heckman correction (Heckman) from

[21] (c) Linear regression with each fairness constraint (FairLR), including MD [95], MSED

[96], Pearson coefficient [97], and Partial coefficient. We evaluate the performance of the

proposed framework based on prediction accuracy and fairness. We use the mean squared

error (MSE) to measure prediction accuracy. For fairness, we use MD and MSED in the binary

sensitive attribute setting and Pearson coefficient and Partial coefficient in the numerical

sensitive attribute setting. As the goal of fair regression is to achieve good accuracy and

fairness on population, we use MSE and fairness calculated from testing data to compare

different models. For a comprehensive comparison, we also report those values calculated

from Ds.

6.4.2 Performance Evaluation on Binary Protected Attribute

We report in Figure 6.2 our main comparison results on three datasets. Y-axis is

MSE to reflect prediction accuracy and X-axis is based on the fairness metric chosen in fair

regression models (FairLR and FairLR?). In particular, the three plots in the first row of

Figure 6.2 report MD whereas those on the second row report MSED. In each plot, we have

eight markers with different shape and color, each of which reflects the MSE and fairness

metric for one of the four compared models on either Ds or testing data. Throughout this

section, we use ◦, 4, �, and ? to denote LR, Heckman, FairLR and FairLR?, and use hollow

83



Figure 6.2: Performance evaluation of binary protected attribute on CRIME, LAW, and
COMPAS

(solid) marker to represent results on Ds (testing data). In general, markers in bottom-left

region (close to origin) indicate good performance of corresponding methods as we want to

achieve both low MSE for prediction and low MD/MSED for fairness.

We focus on the main results of comparing four methods on testing data, reflected

by four solid markers in each plot. We clearly see that markers of Heckman always locate

below that of LR, indicating Heckman successfully corrects the sample selection bias and

reduces prediction error on testing data. Taking Figure 6.2 (a) as an example, the MSE

of Heckman is 0.0553 whereas the MSE of LR is 0.0923. Similarly, as FairLR does not

do bias correction, the solid marker of FairLR is also higher than that of FairLR? for all

three datasets. This demonstrates the effectiveness of Heckman model for correcting sample

selection bias. Moreover, the solid marker of FairLR is always on the right side of FairLR?,

reflecting that FairLR simply trained on Ds without bias correction fails to achieve fairness
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Figure 6.3: Performance evaluation of numerical protected attribute on CRIME

on testing data. For example, in Figure 6.2 (f), the MSED of FairLR is 0.0612 whereas that

of FairLR? is 0.0162. To conclude, our proposed FairLR? achieves the best trade-off between

fairness and regression accuracy on the testing data.

It is also interesting to compare each model’s performance between the training data

and testing data. For our FairLR?, we can see its hollow marker and solid marker are close

to each other horizontally, indicating that the fairness achieved on Ds can also guarantee

the testing fairness. However, the hollow marker and solid marker of FairLR are separate,

indicating the sample selection bias can incur unfairness in the testing data although FairLR

achieved training fairness.

6.4.3 Performance Evaluation on Numerical Protected Attribute

We conduct experiments on CRIME by using the original numerical attribute AAPR

as sensitive attribute. We use Pearson coefficient to measure the independence between Ŷ

and A, and use Partial coefficient to measure the conditional independence of Ŷ and A

given the true target value Y . Figure 6.3 shows the comparison results of four models. We
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Figure 6.4: Effects of Ratio r = |Du|/|D|

have similar observations as the binary protected attribute setting. First, for results on Ds

reflected by hollow markers, there is no surprise that all of the hollow markers are in bottom

region with low MSE, and both FairLR and FairLR? can achieve training fairness in terms of

both Pearson coefficient and Partial coefficient. Second, for results on testing data reflected

by solid markers, Heckman (FairLR?) achieves lower MSE than LR (FairLR) as the former

model considers the sample bias selection. More importantly, only FairLR? is able to achieve

testing fairness given the fairness threshold.

6.4.4 Performance Evaluation on Biased Ratio

In this section, we evaluate how ratio r = |Du|/|D| would affect the performance of

our FairLR? and baseline FairLR on the testing data. Note that larger r indicates more bias

in sample selection. We conduct experiments on CRIME. Figure 6.4 plots results of MD

and MSED. In both plots, X-axis shows the varied r values from 0.1 to 0.4, the left Y-axis

shows MSE, and the right Y-axis shows the fairness metric (MD or MSED). Correspondingly,

we use solid lines to represent MSE values and dashed lines to represent fairness values. It

is unsurprising to see that FairLR? always achieves better performance (smaller MSE and

smaller MD or MSED) than FairLR, as demonstrated in Figure 6.4 that lines with symbol
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? locate below those with symbol �. More importantly, for our FairLR?, the fairness value

(MD or MSED) and prediction error (MSE) are stable when r increases, demonstrating the

robustness of our FairLR? against sample selection bias. On the contrary, for FairLR, both

the unfairness and prediction error on the testing data increase when r increases.

6.5 Summary

In this chapter, we have developed a framework for fair regression under sample se-

lection bias when dependent variable values of a set of samples are missing. The framework

adopts the classic Heckman model to correct sample selection bias and captures a variety

of fairness notions via inequality and equality constraints. We applied the Lagrange dual-

ity theory to derive the dual convex optimization and showed the conditions of achieving

strong duality for Pearson correlation. For the two popular fairness notions, mean difference

and mean squared error difference, we further derived explicit formulas without optimizing

iteratively. Experimental results on three real-world datasets demonstrated our approach’s

effectiveness.

87



7 Enhancing Personalized Modeling via Weighted and Adversarial Learning

7.1 Introduction

The past few years have witnessed an increasing role that deep learning plays in

various kinds of applications, such as image classification [4], text generation [115], recom-

mendation systems [116] and other artificial intelligence (AI)-related tasks. More recently,

data for training deep learning models is increasingly distributed among different users. A

traditional approach for the deployment of deep learning model is to collect all these data

into a central server and build a global model. An alternative way is to collaboratively learn

a global model among distributed users via parameters exchange [64]. The key of previous

works is to build a one-fit-all global model and use it to perform classification or prediction

for all users. Although a global model captures generic information of training data from all

users, it cannot fulfill the personalized demand for each individual user due to the diverse

data distribution among different users.

It is necessary to construct a personalized model for each individual user to improve

intelligent services. Although the global model learns generic information over all users,

the specific features of each individual user’s data, which are of vital importance to build

the personalized data, are often overlooked by the global model. In many circumstances,

building a personalized model can achieve better performance for specific users. For instance,

personalized recommendation systems play important roles for many online services [117],

such as production advertisement, sales promotion, and information recommendation. In

addition, electronic health records [118] are used to predict disease progression and provide

treatment plans. Since electronic health records are patient-specific, personalized models are
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more effective for individual users.

In fact, in many cases, an individual user can only collect a small amount of data,

which is insufficient to build an accurate personalized model to achieve satisfactory per-

formance. To improve the performance of personalized model, an individual user needs to

request similar or complementary data from other users. Pioneer works of building person-

alized model have been done in medical field, e.g., Cheng et al. [118] develop a framework of

collecting data from similar patients and then training a personalized model on the combi-

nation of these collected data and his own data.

However, there are two challenges in the pipeline of building personalized models. The

first challenge is how to efficiently and effectively collect similar data from other users. It is

obvious that randomly selecting data from other users may not improve the performance of

personalized model as those collected data may be different from the user’s own data. Previ-

ous research [118] applies similarity metrics to construct similarity index for data selection.

However, it is burdensome to construct similarity index and the similarity metrics are often

based on manually designed features. The computational cost is high when one compares

paired data one by one due to the high operation complexity of O(n2) especially when the

number of data n is large. Moreover, it is often unclear to choose one appropriate similarity

metric so most appropriate data can be collected. Another challenge is how to better train the

personalized model with the requested data. Previous research simply combines the collected

data with user’s own data, which may not build the personalized model with high accuracy.

This is because there may exist distribution discrepancy between the collected data and

user’s own data, especially when the user can only get a small amount of data from other

users (e.g., due to privacy concerns or high data collection cost). Hence it is imperative to

develop personalized learning models that can handle the potential distribution discrepancy.
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Motivated by the above two challenges, in this chapter, we develop a learning frame-

work that enables an individual user to effectively collect data and build a robust model

on the combination of the collected data and his own data. For data collection, we propose

an approach of using an auto-encoder and a generative adversarial network (GAN) [119].

The auto-encoder is used to obtain data representation that is further used to train the

GAN. The trained encoder and the discriminator from GAN are sent to his neighbors. Each

neighbor user uses the encoder to obtain the representation of his data and then uses the

discriminator to calculate the probability score of his data. Data with high probability scores

are combined with the user’s original data to train the personalized model. The advantage

of using GAN is that it can capture inherent properties of the underlying data without

manually specifying features. With the requested data, we develop two approaches to im-

prove the performance of the personalized model. The first approach is weighted learning

by assigning a different weight to each record of the requested data. The data record with

a high probability score computed by the discriminator is assigned with a high weight. The

weighted learning is able to capture the importance of different data. The second approach

is the adversarial learning that aims to minimize the distribution discrepancy between the

requested data and user’s own data. The core idea of the adversarial learning is to map both

the requested data and user’s own data into the same feature space where the distribution

discrepancy is minimized. Our adversarial training is analogous to the discriminator of the

GAN. The role of the discriminator is to predict whether the generated features are from

user’s own data or the requested data.

The main contributions of this chapter are summarized as follows. First, we demon-

strate that building a global model is not an optimal choice for personalized prediction.

Second, we develop a strategy based on auto-encoder and GAN to effectively collect simi-
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lar data from other users. Third, instead of directly using the requested data for training,

we design two approaches, weighted learning and adversarial learning, to further improve

the performance of the personalized model. Finally, we conduct extensive experiments and

the results demonstrate the efficiency of the proposed framework. Note that, this chapter is

originally from the published works [120, 121].

7.2 Related Work

Personalized deep learning and recommendation: Personalized model is popular in

the areas of medicine and recommendation systems. In these areas, building a personalized

model for each individual user is necessary since medical data and recommendation service

are user-specific and a global model cannot capture personalized features. In personalized

medical prediction area, similarity learning is fundamental for building a personalized patient

model. In [122], Che et al. propose a dynamic temporal matching approach to find similar

data for individual users and build a personalized RNN model for each individual user to

predict disease. The authors [123] develop a CNN-based similarity method for paired data

comparison and perform personalized disease prediction. Other works using different metrics

for similarity personalized learning [124, 125, 126] are also reported.

Personalized recommendation has also made rapid progress in many areas, such as e-

commerce, advertising, audio and video recommendation [127]. Collaborative filtering, which

is one of the most popular recommendation approaches, makes predictions about the interests

of a user by collecting preferences from many similar users. Various metrics are used to

measure the similarity between different users. For instance, Luo et al. [128] apply cosine

similarity to build recommendation system for smart grid end users and Kouki et al. [129] use

Pearson’s correlation to compute data similarity. Recently, deep learning models are widely
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used to improve the performance of personalized recommendation. For example, Hu et al.

[130] propose to diversify personalized recommendation results by leveraging user-session

contexts and designing session-based neural networks to efficiently learn session profiles over

large number of users and items. Yu et al. [131] design an attention-based LSTM framework

to generate users’ representations and adaptively to learn and predict according to the specific

context.

Different from above works, we propose an efficient similarity approach based on auto-

encoder and GAN and apply adversarial training to reduce potential distribution discrepancy.

In fact, our work can be integrated into personalized recommendation systems to improve

their performance. For example, our auto-encoder and GAN based similarity approach can be

used to efficiently group different users in collaborative filtering recommendation. Moreover,

the adversarial training can also be applied to learn and differentiate the representations of

different users and then improve the personalized prediction in content-specific scenarios.

Representation learning: Representation learning has been a well studied research area

in the past few years [132], especially in computer vision, natural language processing and

transfer learning. There are several works that apply representation learning to solve dis-

tribution discrepancy between different parties. For example, Tzeng et al. propose to learn

domain invariant representations from the source domain and transfer to the target domain

for prediction [133]. Liu et al. develop a framework that disentangles domain-invariant and

domain-specific features in image translation and manipulation [134]. In [135], Gupta et al.

extract invariant features between different agents in the reinforcement learning. Misra et al.

propose a multi-task model to learn common representations between different tasks and use

it to improve prediction performance [136]. Our work falls into the general area that exploits

feature representation among different groups for performance improvement [137, 138]. Dif-
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Figure 7.1: The framework of personalized learning where (a), (b) and (c) is for weighted
learning and (a), (b) and (d) is for adversarial learning.

ferent from previous works, our work applies adversarial training to reduce the distribution

discrepancy and learns the prediction task simultaneously to improve its performance.

7.3 Weighted Learning and Adversarial Learning

7.3.1 Framework Overview

Consider there exist N individual users in this distributed setting and each user has

his own local dataset that contains features X and label Y . Let U and D represent the set of

users and datasets, respectively, where each user Ui is associated with dataset Di. Suppose Di

contains Mi data samples, namely (X1, Y1), (X2, Y2) , . . . , (XMi
, YMi

). The goal of each user

Ui is to build a personalized classification model fi which takes Di as input and minimizes
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the prediction loss Li =
∑Mi

m=1 li(fi(Xm), Ym), where li is the given loss function. To boost

the performance of classifier fi and reduce prediction loss Li, user Ui will request similar

data from his neighbors. The neighbors can be defined from different ways. For example, in

a sensor network, the neighbors can be sensors within a physical region. In our experiments,

we treat the neighbors of Ui as all other users except Ui.

For the personalized learning, the joint distribution of Ui could be different from that

of its neighbour Uj, i.e., P (XUi , YUi) 6= P (XUj , YUj). The most rigorous assumption is that

P (XUi) 6= P (XUj) and P (YUi |XUi) 6= P (YUj |XUj). Although the overall distribution of Di

and Dj are not the same, it is possible that a subset of Dj at user Uj could be similar to Di

and hence in our framework Ui can request a subset of similar data, Ds, from its neighbours

such that P (XUi) ≈ P (XUs) and thus P (YUi|XUi) ≈ P (YUs|XUs).

However, there could still exist possible distribution shift between Di and Ds, there-

fore, the second part of our framework is focused on how to better use the requested data to

build a personalized model. We propose two approaches on how to combine the requested

data Ds with Di to build a personalized model for Ui. The first approach is weighted learning

shown as Figure 7.1(a), (b) and (c), while the the second approach is adversarial learning

shown as Figure 7.1(a), (b) and (d). We show the workflow of our personalized learning

framework in Algorithm 3. The workflow has three subsections.

Train auto-encoder and GAN: The first subsection (lines 2 - 4) is to train auto-encoder

and GAN for Ui based on his own dataset Di. Line 3 trains a normal auto-encoder for Ui.

With the trained auto-encoder, we apply its Enc to compute the representations of Di and

use the learned representations as the input to train the GAN. For clear illustration, we show

the training process in Figure 7.1(a).

Request Ds for Ui: The second subsection (lines 6 - 8) is to request similar data for Ui
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from his neighbors. This subsection is also illustrated in Figure 7.1(b). Ui first sends his Enc

and D1 to his neighbors. Each neighbor Uj uses Enc to compute the representation of each

sample and then uses discriminator D1 to obtain a probability score p for each sample. Uj

collects all data samples with score p > τ , puts into Ds, and sends Ds back to Ui.

Personalized learning: The final subsection is to build a personalized model for Ui based

on Di and Ds. We propose two approaches to train a personalized model. The first approach

is the weighted learning (Figure 7.1(c)) and lines 10-14 show its training process. Ui first

uses the discriminator D1 to compute the probability score p of each data sample from Ds

and uses p as the weight for each data from Equation 7.7. With the probability score, the

personalized model can better capture the importance of each requested data sample. The

second approach is the adversarial training (Figure 7.1(d)) and lines 15 -22 show its training

process. The adversarial training can reduce the distribution discrepancy between Di and

Ds, which can further improve the performance of fi compared to training fi directly over

Di and Ds.

In fact, the proposed personalized learning is a general framework. It can apply to

different machine learning models, such as logistic regression, convolutional neural networks,

and long short-term memory neural networks. In our framework, the goal of the auto-encoder

and GAN is used to select similar data from other users. In fact, we do not need to train

a perfect GAN using lots of data as previous research on generating fake images/sentences

to fool human. When the user has limited data, the auto-encoder and GAN trained with

insufficient data may select data samples that are not similar to the individual’s own data.

This is the reason why we propose AdvPL to further reduce the distribution discrepancy

between the individual user’s data and requested data.
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7.3.2 Train Auto-Encoder and GAN for Individual User

The first step of AdvPL is to train the auto-encoder and GAN for Ui. Typically both

Enc and Dec are deep neural networks. The Enc takes the data in Di and obtains its hidden

representation. The hidden representation is then fed into the Dec to output a reconstructed

input. The advantage of using representations by the auto-encoder is to make the training

of the GAN easier, especially for sequential data. The Enc obtains hidden representation of

data in Di and GAN takes it as input.

GAN has a very appealing property: its discriminator can implicitly learn hidden sim-

ilarity metric and use it to discriminate real data and fake data. As a result, the discriminator

is able to capture data distribution pattern of Ui.

Encoder: The encoder is a neural network which takes mth data Xm and outputs a

hidden representation as:

hEncm = Enc(Xm), (7.1)

where hEncm is the hidden representation of Xm and Enc(·) denotes the computation of

hidden representation by the encoder neural network. The hidden representation is deemed

to capture the information of the input data, which will be the input of the decoder.

Decoder: The decoder is used to reconstruct original input based on hEncm and the

reconstruction of Xm is expressed as:

X ′m = Dec(hEncm ), (7.2)

where X ′m is the reconstructed data of Xm and Dec(·) denotes the computation of recon-

structed input by the decoder neural network.
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Algorithm 3 The framework of personalized learning

1: Input: Ui with dataset, Di and threshold τ , Option: [Weighted learning, Adversarial
learning]

2: Output: Well trained personalized model fi;
3: /* Train auto-encoder and GAN */:
4: Initialize parameters in auto-encoder (Enc, Dec) and GAN(G, D1) for Ui;
5: Ui trains the auto-encoder using Di and updates parameters for Enc, Dec using Equation

7.1, 7.2 and Equation 7.3;
6: Ui trains the GAN using representations by Enc and updates parameters for G, D1 using

Equation 7.4;
7: /* Request Ds for Ui */:
8: Ui sends Enc and D1 to his neighbor users Uj;
9: Requested dataset Ds = ∅;
10: For each neighbor user Uj: encode Dj by Enc, compute probability score p using D1,

and put data in Ds with p > τ ;
11: If Option = Weighted learning:
12: /* Weighted training */:
13: while not converged:
14: Compute probability score for each data from Ds from Equation 7.6;
15: Compute weighted loss based on Di and Ds from Equation 7.7 and update model
16: parameters;

17: Elif Option = Adversarial learning:
18: /* Adversarial training */:
19: Initialize parameters in feature extractor (F ), model classifier (C), and discriminator
20: (D2) for adversarial training;
21: Ui trains C and F to optimal performance using Di;
22: while not converged:
23: Fix D2 and F , and update C with loss Equation 7.10 over Di and Ds;
24: Fix C, update D2 and F with loss Equation 7.9 and 7.8 over Di and Ds;
25: return personalized model fi

The performance of the auto-encoder is evaluated by the distance between Xm and

X ′m and the loss over Di is expressed as:

LAE =
1

Mi

Mi∑
m=1

(Xm −X ′m)2 (7.3)

After the training process of auto-encoder, Ui can use the Enc to transform input

data into hidden representation and train the GAN based on the representation data. The

97



GAN consists of a generator G and a discriminator D1. The goal of G is to generate fake

representation hEncfake and D1 is to distinguish real representation hEncreal and fake representation

hEncfake. The objective function of the GAN is the same as the traditional GAN in previous

work [119]:

min
G

max
D1

EhEncreal∼Pdata
logD1(hEncreal)

+ EhEncfake∼P (G)log(1−D1(G(hEncfake))),

(7.4)

where Pdata (PG) denotes the probability distribution of Di (noise).

The data distribution of Ui is captured by his auto-encoder and GAN. To request

similar data, Ui only needs to send Enc and D1 to his neighbor users Uj. If a data point of

Uj passes the D1 with high probability score, then this data is more likely to be sampled

from the same distribution of Ui and can be put into Ds.

7.3.3 WL: Weighted Learning for Personalized Model

A straightforward approach is to directly incorporate Ds to his personalized model

so that we have the combined Ds and Di as the training data. The total loss based on the

combination of Ds and Di is expressed as:

Lunweighted =

|Di|∑
m=1

li(fi(Xm), Ym) +

|Ds|∑
n=1

li(fi(Xn), Yn), (7.5)

where li is the loss function and fi is the classifier for Ui. In Equation 7.5, each data sample

in Di and Ds is assigned with the same weight.

However, the importance of data samples in Ds should not be the same and generally

should be less than data samples in Ds due to the distribution discrepancy. As we discussed,
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the neighbor user Uj uses Enc and D1 to compute the probability score p for each data

sample as the following:

pn = D1(Enc(Xn)), (7.6)

where Xn is the nth data from Ds. As aforementioned, the discriminator D1 captures the

distribution of Di. Therefore, pn can be seen as a metric to measure the similarity between

Xn and Di. Higher pn indicates that Xn is more likely to be sampled from the distribution

of Di. Hence we take pn into consideration and assign pn as the weight of Xn to construct a

weighted loss:

Lweighted =

|Di|∑
m=1

li(fi(Xm), Ym) +

|Ds|∑
n=1

pnli(fi(Xn), Yn), (7.7)

The intuition of Equation 7.7 is that it assigns a higher (lower) weight for the data sample

which is more (less) similar to the distribution of Di. Consider the following two cases.

First, if the probability scores of all requested data from Ds are approaching to 1, then the

weighted loss Equation 7.7 is reduced to the unweighted loss Equation 7.5, indicating that

the unweighted loss is a special case of the weighted loss. Second, if the probability scores of

the requested data are mixed, then the weighted loss can capture the importance difference

of different data samples so that it can better improve the performance of the personalized

model.

7.3.4 AdvPL: Adversarial Learning for Personalized Model

We explain the motivation and necessity of the adversarial training. Our aim is to

reduce the distribution discrepancy between Di and Ds. As shown in Figure 7.2(a), the data

in Ds (Di) are represented by circular (triangular) dots. In raw data space, Ds and Di are
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Figure 7.2: (a) It depicts raw data distribution using dots and triangles between Di and Ds.
In raw data space, the distribution betweenDi andDs is partly overlapped. (b) By optimizing
a loss function that simultaneously maximizes overlap in the feature representation space
and improves the model performance, we can reduce the distribution discrepancy between
Ds and Di.

partially overlapped and there exists a distribution discrepancy between them. Consequently,

the model performance may not be optimal if Ui directly uses them to train the personalized

model. However, if we can transform the raw data into another space where Di and Ds can

be well overlapped as shown in Figure 7.2(b), then the distribution discrepancy in this new

space will be reduced and these new transformed data can be used to build a more accurate

model. To minimize the distribution discrepancy between Ds and Di, we present an adver-

sarial learning framework as shown in Figure 7.1(d). The adversarial learning simultaneously

reduces the distribution discrepancy between Ds and Di in the feature space and trains the

model with these feature data simultaneously.

The adversarial training for personalized model is composed of three parts including

feature representation extractor (F ), discriminator D2 and model classifier C. It should be

mentioned that F and C are two parts of a complete neural network model, so the extracted

representations by F can be directly used as intermediate input for C. F is used to extract

representations of data in Di and Ds. The adversarial training process is analogous to the
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traditional GAN. The role of F is to mimic the function of the generator in GAN while the

role of the discriminator D2 is to distinguish the feature representations between Di and

Ds created by F . In our proposed AdvPL, F is trained in a manner that maps the data

in Di and Ds to feature representations with binary labels, where the label is 1 if feature

representation belongs to Di and is 0, otherwise. The key of the AdvPL is that F and D2

are trained together through the adversarial learning process. More specifically, the goal of

F is to generate the feature representations of data in Di and Ds into the same space. F is

to fool D2 and makes D2 unable to distinguish the representations between Di and Ds. On

the contrary, D2 is trained to predict whether the feature representations are from Di or Ds.

The loss function of F is similar to the generator in traditional GAN and has the

following expression:

LF = −EZ∼Ds logD2(F (Z)) (7.8)

where F (Z) is the representation of data in Ds.

The discriminator D2 is trained to identify whether a data sample is from Di or Ds

given the feature representations. It is obvious that if the transformed representation suffers

from huge distinction between Di and Ds, then D2 is able to separate them easily. The

adversarial loss of D2 is:

LD2 = −EX∼Di logD2(F (X))− EZ∼Ds log(1−D2(F (Z))) (7.9)

where F (X) denotes the representations of his own data in Di. It can be seen that D2 plays

the same role as the traditional discriminator in traditional GAN.

The combination of LF and LD2 can mimic the adversarial training process of tradi-

tional GAN. Through the adversarial learning process, the data in Di and Ds are transformed
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into the hidden representation space. In this space, D2 cannot tell the difference between

them so that the distribution discrepancy between Di and Ds can be minimized.

Different from the traditional GAN which only generates realistic examples, our ulti-

mate goal is to train a more accurate model for individual user. As shown in Figure 7.1(d),

the extracted representations from Di and Ds will be fed into C and the loss function of C

with K classes is:

LC = −
Mi∑
m=1

K∑
k=1

1k=Ym logC(F (Xm))−
|Ds|∑
m=1

K∑
k=1

1k=Ym logC(F (Zm)), (7.10)

where C is the final layer of model classifier and Ym are the corresponding labels. Mi is the

data number of Di and |Ds| is the size of Ds. Therefore, the full framework is to minimize

the joint loss function L:

L = LC + LF + LD2 , (7.11)

where L denotes the sum loss of the adversarial learning framework. The joint training

process of the adversarial learning framework is summarized in Lines 17 - 21 in Algorithm

1. It mainly includes two parts. The first part is that Ui trains C and F using Di. Our goal

is to build a personalized model and use similar data Ds to improve model performance, so

we first achieve optimal model performance based on Di. The second step is to alternatively

train C, F and D2. To train C, we fix F and D2. To train F and D2, we fix C. In this

way, the balance of the adversarial training will be under better control. To be noted here,

we first train the personalized model to optimal performance before starting the adversarial

training. Compared to training D2 at the beginning, it is easier to improve the performance

of the adversarial training.
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7.4 Experimental Results

In this section, we evaluate the performance of WL and AdvPL using three real-world

datasets. In Section 7.4.1, we present experimental setup details including dataset descrip-

tions, hyperparameters, and baselines. In Section 7.4.2, we present our main results of the

accuracy comparison of our proposed framework and other baseline models and the corre-

sponding training efficiency on three datasets. In Section 7.4.3, we present detailed analysis

on the performance of the proposed framework using the first two datasets. First, we com-

pare the performance of the personalized model (without requested similar data) and global

model to demonstrate the benefits of the personalized model. Second, we measure the per-

formance improvement of the personalized model, WL and AdvPL, with requested similar

data. Third, we compare our algorithms with other similarity metrics and demonstrate the

advantages of our proposed framework. Fourth, we conduct sensitivity analysis and investi-

gate the effects of the probability distribution of the requested data and the budget size on

the performance of WL and AdvPL.

7.4.1 Experimental Setup

Datasets: To evaluate the performance of our algorithm, we conduct our experiments on

three real-world datasets, including UNIX Command Sequence, Shakespeare Text and Yesi-

Well health data. The UNIX Command Sequence dataset [139] is composed of 50 files, where

each file corresponds to one user’s command sequence collected by the UNIX acct auditing

mechanism. Each user is recorded with a long sequence consisting of the UNIX command in

a period of time, such as troff, dpost, eqn, sed, cat, ls, gs and so forth. The sequence length

of each user is 15000 and the average number of command types for these 50 users is over
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100. We split the long command sequence of each user evenly into 500 sequences. For each

sequence, we aim to build a classifier that predicts the final command based on the previous

commands in this sequence. More specifically, the input data is a sequence consisting of

UNIX commands with length T and the task is to predict the next command at the T + 1

step. It is natural that different users have their own typing styles. For example, technical

users and non-technical users often have different command sequences. In our experiment,

we build one personalized model for each user. The Shakespeare Text dataset is constructed

from The Complete Works of William Shakespeare [18]. This dataset is written in the form

of plays and each speaking role in the plays is treated as an individual user. We subsample

40 speaking roles and build one personalized model for each speaking role. For each speak-

ing role, we process its input text data to a sequence list where each sequence has a fixed

length 100. The numbers of sequences of each speaking role are within the range between

5000 and 10000. The task is to predict the next character after reading previous characters

in each sequence. YesiWell health dataset [140] was collected between 2010 and 2011 as a

collaboration study by different institutes, including PeaceHealth Laboratories, SK Telecom

Americas, and the University of Oregon, to help people maintain active lifestyles and lose

weight. The dataset includes a group of 254 overweight and obese individuals and records

the information of various aspects such as physical activities, social activities, biomarkers,

and biometric measures. The total distance of walking and running is included in physical

activities and measured via a mobile device carried by each user. The distance of each user

is reported daily and forms a long sequence. Our task is to build a classifier for each user

to predict the daily distance based on the distance sequence of previous days. For this clas-

sification task, we divide the distance into 30 ranges and assign a label to each distance

range. After preprocessing, we select 69 users by removing sequences with missing values
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and abnormal patterns due to data reporting error. The sequence length is set as 10 and the

data size of each user is between 200 and 500. We summarize the characteristics of UNIX

Command Sequence, Shakespeare Text and YesiWell data in Table 7.1.

Table 7.1: The characteristics of UNIX Command Sequence, Shakespeare Text and YesiWell
data.

Dataset Users Sequence Length Data Size

UNIX Command Sequence 50 50 500

Shakespeare Text 40 100 5000 - 10000

YesiWell data 69 10 200 - 500

Hyperparameters: In our experiment, we use two-layer long short-term memory (LSTM)

neural networks as the classification model for both two tasks. Each layer of the LSTM

classification model has the dimension 256 and the output of the second LSTM layer is sent

to a softmax output layer for prediction. For each user, we select 80% of the sequences as

training data and the rest as testing data. We also choose LSTM to build the auto-encoder

which is composed of an encoder and a decoder. Both the encoder and a decoder consist

of two-layer LSTMs. The dimensions of the hidden layer in the encoder and decoder are

both set as 256. Each subsequence is embedded with 512 dimensions before sending to the

encoder as input. The last hidden layer of the encoder is taken out to be the input of the

decoder. For the GAN model, both the discriminator and generator are feedforward neural

networks. More specifically, the generator has two hidden layers with dimensions 50 and

100, respectively. The discriminator also has two hidden layers with dimensions 100 and

50, respectively. The dimension of the Gaussian noise is the same as the size of the hidden

representations by the encoder.

Baselines: In our proposed WL (AdvPL), each user collects Ds from other users and trains

his personalized model using Di and Ds in a weighted training (adversarial training) manner.
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We compare our WL and AdvPL with the following baselines:

• Global: the global model is a one-fit-all model for all of the users, which is built on the

collection of all users’ training data.

• PL: each user trains his own personalized model (the same structure as the global

model) only based on his own training data.

• PL Rand: each user randomly requests Ds and trains the model simply with the com-

bination of Di and Ds.

• PL Euc: each user requests Ds from other users based on the euclidean similarity met-

ric and trains his model as PL Rand. The euclidean similarity metric is computed as

follows: for each user, we compute the one-hot-vector of each command and obtain a

vector vi by averaging the one-hot-vector of all commands. Similarly, for each subse-

quence of other users, we compute its vector vs. Then we can compute the euclidean

similarity metric between vi and vs.

• PL Cos: each user requests Ds from other users based on the cosine similarity metric

and trains his model as PL Rand. The computation of the cosine similarity metric is

the same as PL Euc.

• PL Multi: each user requests Ds using our proposed autoencoder and GAN. We apply

the multi-task framework [141] and treat Di and Ds as two different tasks. In this

implementation, only the final classification layer for Di and that for Ds are different.

We run our methods and all baselines for five times and report the mean and standard

deviation of accuracy in our evaluation.
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7.4.2 Main Results

7.4.2.1 Accuracy Comparison

The accuracy comparison of our proposed framework and other baseline models on

three datasets is shown in Table 7.2. The size of requested data Ds is 1000 for UNIX Com-

mand Sequence, 8000 for Shakespeare Text and 300 for YesiWell. From the experimental

results, we summarize key observations and leave the detailed comparison in the following

sections. First, the average accuracy of PL is higher than that of Global, indicating that

one-fit-all model may miss the specific features of individual’s data, especially in the sce-

narios where the distribution of individual’s data is rather diverse. Second, our proposed

framework outperforms other similarity metrics in selecting similar data. As we explained,

the auto-encoder and GAN can capture implicit complex features from the data whereas

other similarity metrics only compute simple statistical information. Third, the proposed

AdvPL performs the best among all approaches. It demonstrates that AdvPL can reduce

the distribution discrepancy between individual’s data and requested data and thus improve

the overall prediction accuracy.

We further test the statistical significance of the improvements between our proposed

methods and baseline models. We run our methods and all baseline models for five times, use

the independent two-sample t-test, and then calculate the p-value. For UNIX dataset, the

p-values of testing AdvPL against Global, PL, PL Rand, PL Euc, PL Cos, PL Multi, and

WL are 0.0006, 0.0073, 0.0045, 0.0102, 0.0143, 0.1819, and 0.1619, respectively. Using the

threshold of 0.05, AdvPL has statistically significant improvement over Global, PL, PL Rand,

PL Euc and PL Cos. AdvPL can still achieve decent p-values (less than 0.2) when comparing

with WL and PL Multi (using GAN based similarity metric). For Shakespeare and YesiWell
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Table 7.2: Accuracy comparison (mean ± std) of the proposed framework and baselines
based on five runs on UNIX Command Sequence, Shakespeare, and YesiWell. The scale of
the numbers is %.

Dataset PL Global PL Rand PL Euc PL Cos PL Multi WL AdvPL

UNIX 54.86 ± 3.42 51.98 ± 2.89 54.46 ± 3.16 55.88 ± 2.77 56.10 ± 3.05 59.46 ± 3.17 59.34 ± 2.96 61.42 ± 3.26

Shakespeare 53.67 ± 2.25 51.87 ± 2.37 52.60 ± 2.07 53.91 ± 2.12 53.88 ± 2.27 55.49 ± 1.96 56.19 ± 2.21 57.45 ± 1.97

YesiWell 32.79 ± 4.19 30.48 ± 4.37 32.19 ± 3.67 34.21 ± 3.94 34.62 ± 3.77 35.46 ± 4.01 35.82 ± 4.23 37.84 ± 3.75

Table 7.3: Training time (second) of the proposed framework and other baselines.

Dataset PL Global PL Rand PL Euc PL Cos PL Multi WL AdvPL

UNIX 118.2 1053.7 211.5 598.2 701.6 543.2 533.5 581.2

Shakespeare 677.7 4762.5 1213.2 4078.2 4983.4 2785.3 2752.4 3042.5

YesiWell 65.3 584.7 118.9 313.5 372.9 252.7 259.3 273.2

datasets, we have similar observations.

7.4.2.2 Training Efficiency

The training efficiency is an important metric to evaluate the performance of the

proposed framework. In this section, we compare the training time of our proposed framework

and baselines. We report the results in Table 7.3 and summarize the key findings as the

following. First, we can see that the training of auto-encoder and GAN can increase the

total completion time from the comparison between PL Rand and WL. However, this extra

training time is worth as we demonstrate that the proposed framework can improve the

overall performance significantly. Second, other similarity metrics, PL Euc and PL Cos, need

to compare paired data one by one, which incurs high computational cost. Although auto-

encoder and GAN will increase the total training time in our framework, each data sample

only needs one single comparison when using the discriminator of the trained GAN for similar

data selection. Third, adversarial learning takes more time to finish the training than WL,

but the burden increased by the adversarial learning is not significant.
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Figure 7.3: UNIX Command Sequence (a): The accuracy of the Global and PL for each
user. (b): The accuracy of the Global, WL and PL Adv for each user. Shakespeare text (c):
The accuracy of the Global and PL for each user. (d): The accuracy of the Global, WL and
PL Adv for each user.

7.4.3 Detailed Performance Analysis

In this section, we conduct detailed evaluations and compare the performance of

WL, AdvPL and other baseline models. We study the effects of probability distribution

and requested dataset size on the performance of the proposed framework. For demonstra-

tion purpose and space limit, we only show the performance analysis on UNIX Command

Sequence and Shakespeare Text.
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Figure 7.4: The percentage of users with accuracy increment over 5% using the PL Euc,
PL Cos, PL multi, WL and AdvPL compared to the PL.

7.4.3.1 Accuracy Comparison of Global and PL

In this experiment, we compare the performance of the Global and PL for each user

to show the necessity of building the personalized model. The experimental result for UNIX

Command Sequence (Shakespeare Text) is shown as Figure 7.3(a)(Figure 7.3(c)). To illus-

trate the result more clearly, we sort the users according to the prediction accuracy of the

personalized model. The accuracy of each user using the Global (PL) is shown as the red

star line (black dot line). It can be seen that the trend of the PL is above the Global for

most users. More specifically, the average accuracy of the Global and PL for UNIX Com-

mand Sequence (Shakespeare Text) is 51.98% (51.87%) and 54.86% (53.67%), respectively.

The maximum accuracy increment of the PL over the Global for UNIX Command Sequence

(Shakespeare Text) is 8.0% (3.7%). As aforementioned, Global captures the overall infor-

mation of all training samples and overlooks the user-specific information. However, the

user-specific information is the key to improve the performance of the PL. Hence the PL can

better learn the pattern of each user.
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7.4.3.2 Accuracy Comparison of WL and AdvPL

In this experiment, we test the effectiveness of the proposed algorithms and show the

accuracy of the WL and AdvPL for UNIX Command Sequence (Shakespeare Text) as Figure

7.3(b) (Figure 7.3(d)). The size of requested Ds for UNIX Command Sequence (Shakespeare

Text) is set as 1000 (8000). The accuracy of the WL (AdvPL) is shown as the black dot line

(blue triangular line). For comparison, we also plot the accuracy of the Global as the red

star line.

We have the following observations. First, the accuracy of the AdvPL is higher than

that of the WL. It demonstrates that adversarial learning can minimize the distribution

discrepancy between Di and Ds. The reduced distribution discrepancy can help the AdvPL

achieve higher accuracy than the WL. Second, both WL and AdvPL have a great advantage

over the Global. It shows that our proposed algorithms are effective to select similar data

for each user and help improve the performance of the personalized model. More specifically,

the average accuracy of the WL and AdvPL for UNIX Command Sequence (Shakespeare

Text) is 7.36% (4.32%) and 9.44% (5.58%) higher than that of the Global, respectively. In

contrast, the average accuracy of the PL for UNIX Command Sequence (Shakespeare Text)

is only 2.88% (1.80%) higher than that of the Global.

We further investigate the effects of the assigned weights in WL and compare its

performance with PL Sim (unweighted learning as shown in Equation 7.5). From our exper-

imental results, the average performance of WL and PL Sim over all users are at the same

level. This is because for most of the users in our experiments, the probability scores of their

requested data Ds are high, i.e., approaching to 1, and the loss function (Equation 7.7) of

WL is reduced to the loss function (Equation 7.5) of PL Sim. However, for a few other users,
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Table 7.4: Accuracy comparison (mean ± std) based on five runs for UNIX Command
Sequence using different similarity metrics and Ds sizes. The average accuracy of the Global
and PL is: 51.98%, 54.86%, respectively. The scale of the numbers is %.

|Ds| PL Rand PL Euc PL Cos PL Multi WL AdvPL

400 54.48 ± 3.23 55.12 ± 3.04 55.34 ± 2.91 56.84 ± 3.27 56.82 ± 3.15 60.14 ± 3.77

600 54.24 ± 3.19 55.28 ± 3.55 55.62 ± 2.89 57.96 ± 3.02 57.72 ± 3.37 60.68 ± 2.75

800 54.62 ± 3.43 55.56 ± 3.24 55.78 ± 2.10 58.62 ± 3.22 58.48 ± 2.88 61.10 ± 3.73

1000 54.46 ± 3.16 55.88 ± 2.77 56.10 ± 3.05 59.46 ± 3.17 59.34 ± 2.96 61.42 ± 3.26

Table 7.5: Accuracy comparison (mean ± std) based on five runs for Shakespeare Text
using different similarity metrics and Ds sizes. The average accuracy of the Global and PL
is: 51.87%, 53.67%, respectively. The scale of the numbers is %.

|Ds| PL Rand PL Euc PL Cos PL Multi WL AdvPL

2000 52.36 ± 2.04 53.63 ± 2.23 53.45 ± 1.83 54.21 ± 2.19 54.32 ± 2.57 56.62 ± 2.79

4000 52.49 ± 2.57 53.65 ± 1.79 53.61 ± 2.18 54.70 ± 2.28 54.95 ± 2.62 56.91 ± 2.42

6000 52.35 ± 1.95 53.79 ± 2.17 53.80 ± 2.33 55.24 ± 2.29 55.64 ± 1.93 57.31 ± 2.14

8000 52.60 ± 2.07 53.91 ± 2.12 53.88 ± 2.27 55.49 ± 1.96 56.19 ± 2.21 57.45 ± 1.97

the probability scores of the requested data Ds are mixed, i.e., some data samples have lower

probability scores while other data samples have higher probability scores. In this case, the

performance of WL is better than Pl Sim. Taking one user (ID = 3) from UNIX Command

Sequence as an example, the accuracy of WL is 3% higher than that of PL Sim. We pro-

vide more detailed analysis in 7.4.3.4 and discuss under what scenarios WL can outperform

PL Sim.

7.4.3.3 Accuracy Comparison Using Different Similarity Metrics

Previous section shows the performance between the WL and AdvPL. In this sec-

tion, we compare with the personalized models using other similarity metrics. For better

comparison, we show the average accuracy rather than plotting the accuracy of all users.

The comparison result for UNIX Command Sequence (Shakespeare Text) is shown as the

5th row in Table 7.4 (Table 7.5) with |Ds| = 1000 (|Ds| = 8000). We have the following
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interesting observations. First, if the user randomly requests Ds, the average performance

of the PL Rand is slightly decreased compared to the PL. Second, the performance of the

PL Euc and PL Cos helps improve the performance over the PL, however, the performance

increment of our proposed WL is the best among these three similarity metrics. Third, the

AdvPL achieves the best performance among all strategies. PL Multi adopts the general

multi-task learning framework [141] to learn common features between Di and Ds, however,

it only achieves similar performance as WL, which demonstrates that our proposed AdvPL

is more effective than the traditional multi-task learning method.

Moreover, we also study the effect of requested dataset Ds size on the performance

of the WL and AdvPL. The result for UNIX Command Sequence (Shakespeare Text) is

shown in Table 7.4 (Table 7.5) with Ds size increasing from 400 to 1000 (2000 to 8000).

We have the following three observations from the results. First, the performance of the

PL Rand is slightly decreased compared to the PL under different Ds sizes. It is reasonable

that large distribution discrepancy of the randomly requested Ds and Di can deteriorate

the personalized model performance. Second, the accuracy values of the PL Euc, PL Cos,

PL Multi and WL increase with the increasing size ofDs. Third, we discover that with smaller

Ds size, the accuracy increment from WL to AdvPL is more significant. More specifically, the

accuracy increment of the AdvPL over the WL for UNIX Command Sequence (Shakespeare

Text) is 3.32% (2.30%), 2.96% (1.96%), 2.62% (1.67%) and 2.08% (1.26%), respectively, with

the corresponding Ds size as 400 (2000), 600 (4000), 800 (6000), 1000 (8000). The reason

is that with smaller Ds size, some less similar data in Ds impedes the model performance

improvement to a greater extent due to the smaller total amount of data. In contrast, if

the total data size is larger, then the effects of some less similar data is smaller and the

advantage of the AdvPL is also weakened. As a result, the AdvPL plays a more important
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role for personalized model with smaller budget size ofDs. It is more practical in real scenarios

that one user can only request limited amount of data from other users due to the privacy

concern or communication cost burden.

To further compare the performance of different strategies, we plot the percentage of

users with accuracy increment greater than 5% using the PL Euc, PL Cos, PL Multi, WL

and AdvPL over the PL under different Ds size. The result is shown in Figure 7.4. It can

be seen that the AdvPL greatly outperforms other strategies. In addition, the WL achieves

better performance than the PL Euc and PL Cos, demonstrating the effectiveness of our

proposed method in requesting similar data.

7.4.3.4 Effects of Probability Distribution and Budget Size on WL, AdvPL and

PL Sim

In this section, we investigate the effects of the probability distribution of the re-

quested data determined by D2 and the budget size of Ds for the WL, AdvPL and PL Sim.

We randomly select a single user (ID = 29) in the UNIX Command Sequence dataset and

conduct the experiments for demonstration purpose. Table 7.6 shows the effects of probabil-

ity distribution of the requested data for the WL, AdvPL and PL Sim. We divide the range

of probability score by D2 evenly into five regions between 0.5 and 1.0. For each region, we

select Ds containing 1000 samples and test the accuracy of the WL, AdvPL and PL Sim.

For example, if we select the range [0.5, 0.6], it means the probability score of all requested

data falls into the range [0.5, 0.6].

We have the following observations. First, the accuracy of the WL is lower if the

probability distribution of the data in Ds is in a low range. For example, if all of the data in

Ds is requested within the range [0.9, 1.0], then the accuracy of the WL is 5% higher than
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that of the Ds within the range [0.5, 0.6]. As we know, higher probability by the discrimina-

tor indicates the data is more likely to be sampled from Di. Consequently, lower probability

distribution range of Ds will cause larger distribution discrepancy with Ds and lower per-

formance improvement of the WL. Second, the accuracy of the AdvPL for Ds with different

probability distribution ranges is stable. The advantage of the AdvPL is that it can reduce

the distribution discrepancy between Di and Ds, so that the performance of the AdvPL can

still be improved greatly under a higher distribution discrepancy. It demonstrates that the

AdvPL can better improve the personalized model performance if only less similar data is

available. Third, the advantage of the AdvPL is weakened if the distribution discrepancy

between Di and Ds is smaller. The reason is that if Ds is of high similarity compared with

Di, then the user can directly combine them and train the model without considering the

effect of distribution discrepancy.

We also investigate the difference between WL and PL Sim. In fact, both WL and

PL Sim are sensitive on the probability score. When the probability score is within low

range, the accuracy of WL is higher than that of PL Sim. This is because that WL lowers

the importance of the requested data while PL Sim treats all requested data with uniform

weight. Taking the probability score within the range [0.5, 0.6] as an example, the accuracy

values (mean ± std) of PL Sim and WL are 60.8 ± 1.64 and 63.0 ± 1.94, respectively.

Its p-value from the t-test is 0.0230, which indicates a significant improvement of WL over

PL Sim. When the probability score is within the high range, WL and PL Sim have similar

performance because WL is reduced to PL Sim as aforementioned. In short, WL outperforms

PL Sim when the similarity between requested data and original data is relatively low. WL

and PL Sim achieve similar performance when sufficient similar data can be collected from
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Table 7.6: Accuracy comparison (mean ± std) based on five runs for a single user (UNIX
Command Sequence) based on Ds with different discriminator score.

Discriminator Score PL Sim WL AdvPL

0.5 - 0.6 60.8 ± 1.64 63.0 ± 1.94 66.8 ± 1.79

0.6 - 0.7 63.0 ± 2.05 63.2 ± 1.48 67.0 ± 2.12

0.7 - 0.8 64.6 ± 1.67 66.0 ± 1.41 68.2 ± 2.17

0.8 - 0.9 67.0 ± 1.49 67.2 ± 1.10 67.8 ± 2.16

0.9 - 1.0 66.8 ± 1.31 67.0 ± 1.58 68.2 ± 1.92

Table 7.7: Accuracy comparison (mean ± std) based on five runs for a single user (UNIX
Command Sequence) based on Ds with different size.

Ds Size PL Sim WL AdvPL

400 57.6 ± 1.51 59.2 ± 1.48 63.0 ± 2.00

600 58.8 ± 1.64 60.4 ± 1.81 64.0 ± 2.44

800 60.2 ± 1.48 60.2 ± 1.09 65.4 ± 1.87

1000 60.8 ± 1.64 63.0 ± 1.94 66.8 ± 1.79

neighbors.

Table 7.7 shows the effects of Ds size on the performance of the PL Sim, WL and

AdvPL. To test the sensitivity of the adversarial training process, we request less similar

data and set the probability distribution of the data in Ds within the range [0.5, 0.6]. We

have the following observations. First, the accuracy of the WL increases slowly with the

increasing size of Ds as we select less similar data with the probability distribution in the

low range [0.5, 0.6]. So although the user requests more data, the performance gain by these

increasing less similar data is still insignificant. Second, with the adversarial training, the

accuracy of the AdvPL improves greatly over the WL. It can be seen that the performance

improvement of the AdvPL is almost stable under different sizes of Ds. It demonstrates that

the AdvPL can still improve the model performance greatly even with a limited budget size
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and less similar data available.

7.5 Summary

In this paper, we proposed the AdvPL framework enabling individual users to effec-

tively collect data from other users and train a robust personalized model. We proposed to use

the auto-encoder and GAN to select similar data from other users. The trained auto-encoder

and GAN, which capture inherent information of user’s personal data, can be efficiently used

to choose similar data from others, thereby avoiding tedious process of paired data compar-

ison. We have developed two approaches to combine the requested data and user’s own data

to improve the performance of personalized learning. The first approach is weighted learning

that assigns different weights to different requested data. Then the model can capture the

importance of different requested data. The second approach is adversarial training that

maps selected data and user’s own data to the same feature space and jointly trains the

personalized model. The adversarial training can effectively mitigate potential distribution

discrepancy between selected data and user’s own data. We conducted extensive experiments

to demonstrate the effectiveness of the proposed framework.
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8 Conclusion and Future Work

8.1 Conclusion

In this dissertation, we focus on the fairness-aware machine learning under distribu-

tion shift. We have done several works to address the following problems:

• How to achieve fairness and maintain good prediction performance in federated learning

setting, where the distribution of the test data is unknown;

• How to achieve fairness and prediction performance for classification under sample

selection bias;

• How to achieve fairness for regression problem under sample selection bias;

• How to request similar data for an individual user in a distributed setting and how to

use the requested data to build a personalized model.

To address the above problems, we summarize the work we have done as the following.

In Chapter 4, we have proposed a fairness-aware agnostic federated learning frame-

work to deal with unknown testing data distributions. We applied kernel reweighing functions

to parametrize the loss function and fairness constraint. Hence our framework can achieve

both good model accuracy and fairness on unknown testing data. We conducted a series of

experiments on two datasets and experimental results demonstrated three benefits of the

trained centralized model by our fairness-aware agnostic federated learning. First, it can

improve the prediction accuracy under the distribution shift from the training data to the

testing data. Second, it can guarantee fairness on the unknown testing data. Third, it can

guarantee the fairness of each local client.
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In Chapter 5, we have proposed a robust and fair learning framework to deal with

the sample selection bias. Our framework adopts the reweighing estimation approach for

bias correction and the minimax robust estimation for achieving robustness on prediction

accuracy and fairness on test data. We further developed two algorithms to handle sample

selection bias when test data is both available and unavailable. Experimental results showed

our algorithms can achieve both good prediction accuracy and fairness on test data.

In Chapter 6, we have developed a framework for fair regression under sample selection

bias when dependent variable values of a set of samples are missing. The framework adopts

the classic Heckman model to correct sample selection bias and captures a variety of fairness

notions via inequality and equality constraints. We applied the Lagrange duality theory to

derive the dual convex optimization and showed the conditions of achieving strong duality

for fairness metrics in our framework. For the two popular fairness notions, mean difference

and mean squared error difference, we further derived explicit formulas without optimizing

iteratively. Experimental results on three real-world datasets demonstrated our approach’s

effectiveness.

In Chapter 7, we proposed the AdvPL framework enabling individual users to effec-

tively collect data from other users and train a robust personalized model. We proposed to use

the auto-encoder and GAN to select similar data from other users. The trained auto-encoder

and GAN, which capture inherent information of user’s personal data, can be efficiently used

to choose similar data from others, thereby avoiding tedious process of paired data compar-

ison. We have developed two approaches to combine the requested data and user’s own data

to improve the performance of personalized learning. The first approach is weighted learning

that assigns different weights to different requested data. Then the model can capture the

importance of different requested data. The second approach is adversarial training that
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maps selected data and user’s own data to the same feature space and jointly trains the

personalized model. The adversarial training can effectively mitigate potential distribution

discrepancy between selected data and user’s own data. We conducted extensive experiments

to demonstrate the effectiveness of the proposed framework.

8.2 Future Work

In this section, we point out some future directions for fairness-aware machine learning

under distribution shift.

Following the research in Chapter 4, we can extend our agnostic fair framework to

cover other commonly used fairness notations. e.g., equalized odds and equalized opportunity

[13], and incorporate surrogate functions in agnostic fair constraints of our framework to

address the challenge of the indicator function used in fairness notations. We will also study

kernel function parametrization with different basis functions. Our proposed framework can

also be adapted to the centralized fairness-aware learning where the training and testing data

differ. Moreover, the proposed framework can also be applied in the fair transfer learning

where distribution shift usually exists between the source domain and target domain.

Following the research in Chapter 5, we can study other types of sample selection

bias, i.e., missing not at random that the sample selection probability also depends on the

label. We will also study how to enforce other fairness notions such as equal opportunity

[14].

Following the research in Chapter 6, we will conduct theoretical analysis and empirical

evaluation of density based fairness notions, e.g., SP and BGL, and notions for multiple sensi-

tive attributes. Some recent work [142] proposed to use Hirschfeld-Gebelein-Rényi Maximum

(HGR) correlation coefficient as a regression fairness notion to evaluate the independence be-
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tween prediction and sensitive attributes. However, it is quite challenging to compute HGR.

We can only get analytical solution for some certain distributions, e.g., jointly Gaussian dis-

tribution [143], or apply approximation approaches. In our future work, we will study HGR

in our framework. We will also study improved estimators [144] that address the limitations

of Heckman estimator, e.g., sensitivity of estimated coefficients with respect to the distribu-

tional assumptions on the error terms, and extend to nonlinear cases, e.g., kernel regression,

in our fair regression.

Following the research in Chapter 7, we have two major directions for our future

work. First, we will study how to achieve privacy in our AdvPL. The auto-encoder and

GAN contain private information of the individual user’s data. Previous works demonstrate

that deep learning models can memorize abundant information of the training data [145].

To protect the privacy of training data in Di, we can build differential privacy preserving

versions of auto-encoder and GAN, e.g., by adopting the ideas of [146] and [147] respectively.

Moreover, the data Ds collected from other users are also private and users may not want to

share. We will study the use of local differential privacy [148] for private data comparison and

collection. Second, we will investigate how to determine most appropriate data to improve

the performance of personalized model. Our current work is based on the idea of selecting

similar data to boost the performance. Ideally, we want to determine the properties of new

data that can best improve the model performance, e.g., reducing the prediction error of

the built model. With that, we only need to collect truly useful data and skip redundant

ones, which will greatly reduce the communication burden and improve efficiency. One idea

is to use active learning to select new data that improve personalized model performance.

However, existing active learning strategies [149] may not be directly applied here because

the data determined by the active learning may contain large distribution discrepancy from
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individual user’s own data. It is interesting to investigate how to combine the active learning

and personalized model.
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[28] I. Žliobaite, F. Kamiran, and T. Calders, “Handling conditional discrimination,” in
IEEE ICDM, 2011.

124



[29] F. P. Calmon, D. Wei, B. Vinzamuri, K. N. Ramamurthy, and K. R. Varshney, “Opti-
mized pre-processing for discrimination prevention,” in Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems, 2017, pp. 3995–4004.

[30] D. Xu, S. Yuan, L. Zhang, and X. Wu, “Fairgan: Fairness-aware generative adversarial
networks,” in IEEE Bigdata, 2018.

[31] H. Zhao and G. Gordon, “Inherent tradeoffs in learning fair representations,” in
NeurIPS, 2019.

[32] J. Song, P. Kalluri, A. Grover, S. Zhao, and S. Ermon, “Learning controllable fair
representations,” in AISTATS, 2019.

[33] M. B. Zafar, I. Valera, M. Gomez Rodriguez, and K. P. Gummadi, “Fairness beyond
disparate treatment & disparate impact: Learning classification without disparate mis-
treatment,” in ACM WWW, 2017.

[34] M. Donini, L. Oneto, S. Ben-David, J. S. Shawe-Taylor, and M. Pontil, “Empirical risk
minimization under fairness constraints,” in NIPS, 2018.

[35] A. Cotter, H. Jiang, S. Wang, T. Narayan, S. You, K. Sridharan, and M. R. Gupta,
“Optimization with non-differentiable constraints with applications to fairness, recall,
churn, and other goals,” Journal of Machine Learning Research, 2019.

[36] T. B. Hashimoto, M. Srivastava, H. Namkoong, and P. Liang, “Fairness without de-
mographics in repeated loss minimization,” in ICML, 2018.

[37] B. Woodworth, S. Gunasekar, M. I. Ohannessian, and N. Srebro, “Learning non-
discriminatory predictors,” in COLT, 2017.

[38] S. Baharlouei, M. Nouiehed, and M. Razaviyayn, “R\’enyi fair inference,” in ICLR,
2020.

[39] Y. Wu, L. Zhang, and X. Wu, “On convexity and bounds of fairness-aware classifica-
tion,” in ACM WWW, 2019.

[40] M. P. Kim, A. Ghorbani, and J. Zou, “Multiaccuracy: Black-box post-processing for
fairness in classification,” in Proceedings of the 2019 AAAI/ACM Conference on AI,
Ethics, and Society, 2019, pp. 247–254.

[41] M. Sugiyama, S. Nakajima, H. Kashima, P. Von Buenau, and M. Kawanabe, “Di-
rect importance estimation with model selection and its application to covariate shift
adaptation.” in NIPS, vol. 7. Citeseer, 2007, pp. 1433–1440.

[42] B. Zadrozny, “Learning and evaluating classifiers under sample selection bias,” in
ICML, 2004.

[43] A. J. Storkey and M. Sugiyama, “Mixture regression for covariate shift,” Advances in
neural information processing systems, vol. 19, p. 1337, 2007.

125



[44] J. Huang, A. Gretton, K. Borgwardt, B. Schölkopf, and A. Smola, “Correcting sample
selection bias by unlabeled data,” Advances in neural information processing systems,
vol. 19, pp. 601–608, 2006.
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